5. SITE 10

The Shipboard Scientific Party

SITE REPORT

Objectives

It was the decision of the Atlantic Advisory Panel that Site 10 should be located on the lower western flank of the Mid-Atlantic Ridge (lat 32° 37'N, long 52° 20'W). This site is located on an exceptionally shallow point of an area typified by abyssal hills of low relief that vary in depth below sea level from 2550 to 2650 fathoms (4664 to 4847 meters). To the northeast of Site 10, the bottom deepens rapidly into a fairly flat trough that is probably an eastern tongue of the Sohm Abyssal Plain. A greater percentage of carbonate sediments on the top of a rise, such as where Site 10 is located, is inferred by the increased thickness of the sedimentary blanket there by comparison with the deeper surrounding slopes.

Two primary objectives influenced the selection of Site 10. One objective was to test the theory of sea floor spreading as discussed in Chapter 1. Site 10 is the westernmost member of a series of proposed sites distributed across the axis of the Mid-Atlantic Ridge. Determinations based on the age of and the sediment directly overlying acoustical basement at these sites would provide a check on the spreading concept. The second objective is related to the results of seismic reflection profiler studies in this region (Figure 1). To the east of the southern Sohm Abyssal Plain, on the lower flank of the Mid-Atlantic Ridge, there are pockets of acoustically transparent sediment between the steep peaks of basement rock. On portions of the flank that are deeper than 4400 meters below sea level, a single strong reflector is recorded in some of these pockets. It was considered that the determination of the age and nature of this reflector would contribute to our understanding of the sedimentary and tectonic history of the lower flanks of the ridge. At Site 10, a very weak reflector was noted on seismic records a few hundred feet beneath the sea floor with a stronger reflector at about 600 feet (182.9 meters). The remaining sediment is acoustically transparent, overlying a typically strong basement reflector at about 1500 feet (457.3 meters) below the sea floor. Because calcareous microfossils were found to be sparse in the sediments cored at Sites 8 and 9, a location having a sediment-water interface topographically above the estimated calcium carbonate compensation depth was also a factor in determining the exact location of Site 10 in order to assure its usefulness for biostratigraphic purposes.

Therefore, the following drilling prospectus was proposed:

1) Cut two cores at 300 feet (91.4 meters) below the sea floor.
2) Cut two cores at 550 feet (167.6 meters), or at the first resistant formation between 500 and 550 feet (152.4 and 167.6 meters) below the sea floor.
3) Attempt continuous coring of the interval between 1200 feet (365.8 meters) below the sea floor and the basement.
4) Recover five feet (1.5 meters) of basement rock.
5) Take one punch core at the surface of the sea floor as the drill string is retrieved from the hole.

In addition to the available well logging procedures measurement of hole inclination was to be attempted.

1M. N. A. Peterson, Scripps Institution of Oceanography, La Jolla, California; N. T. Edgar, Scripps Institution of Oceanography, La Jolla, California; C. von der Borch, Scripps Institution of Oceanography, La Jolla, California; M. B. Cita, University of Milano, Milan, Italy; S. Gartner, Institute of Marine Sciences, Miami, Florida; R. Goll, Scripps Institution of Oceanography, La Jolla, California; and, C. Nigrini, Scripps Institution of Oceanography, La Jolla, California.
Drilling and Coring Log

At 1330 hours, November 2, final positioning for Site 10 was accomplished in 15,406 feet (4697 meters) (corrected depth) of water at a location defined by the co-ordinates: latitude 32° 51.73'N and longitude 52° 12.92'W (Figure 2). The drill string included a Hycalog tungsten carbide bit, 14 drill collars, and 1 bumpersub. The reader is referred to Tables 1 and 2 for a summary of the coring operations. Figure 3 is a tracing of the on station profiling record showing the reflection time to significant subbottom horizons and basement. Drilling commenced immediately and at a depth of 98 feet (29.9 meters) below the sea floor, sediments were encountered that were considered to be adequately firm for coring. On the first coring attempt, a 30 foot (9.1 meter) core was cut at a rate of 300 feet (91.4 meters) per hour. During retrieval of the inner core barrel, the winch stopped, and the inner core barrel remained suspended in the drill pipe for six hours. At 1730 hours, November 3, Core 1 was recovered, and drilling was resumed immediately. Core 1 contained seven feet (2.1 meters) of nannofossil chalk ooze of early and middle Pliocene age. Assuming that the late Tertiary section was relatively complete, the sedimentation rate, based on Core 1, was extraordinarily low. Therefore, it was concluded that the late Tertiary section might be condensed here and should be continuously cored. Drilling was stopped at 138 feet (42.1 meters) below the sea floor; on the second attempt, a 25 foot (7.6 meter) core was cut at 250 feet (76.2 meters) per hour. At 2020 hours, November 2, Core 2 was recovered, and it contained 16 feet (4.9 meters) of nannofossil chalk ooze and clay. The sediment was obviously disturbed and was Middle and late Miocene in age. On the third attempt, a 30 foot (9.1 meter) core was cut at 300 feet (91.4 meters) per hour. At 2250 hours, November 3, Core 3 was recovered, and it contained 19 feet (5.8 meters) of nannofossil chalk ooze that was Oligocene in age. On the fourth attempt, a 30 foot (9.1 meter) core was cut at 300 feet (91.4 meters) per hour. At 0045 hours, November 4, the inner core barrel was recovered, but the core catcher was missing and there was no core in the liner. The core catcher was retrieved from the bottom of the drill string on the second spearing attempt, but the bit penetrated 16 feet (4.9 meters) of sediment before coring continued. Cores 5, 6 and 7 were all cut at 300 feet (91.4 meters) per hour. A 30 foot (9.1 meter) length of core was cut for each of Cores 5 and 6. Core 5 was recovered at 0520 hours, November 4, and it contained 22 feet (6.7 meters) of nannofossil chalk ooze of Oligocene and late Eocene Ages. Cores 6 was recovered at 0700 hours, November 4, and it was found to be empty, except for scrapings on the inner wall of the liner. These scrapings were located at a position of 90 to 110 centimeters above the base of the liner, and they are evidence that the liner had been filled, but that the core catcher did not retain the sediment. On the seventh attempt, a 34 foot (10.4 meter) core was cut at 300 feet (91.4 meters) per hour. At 0840 hours, November 4, Core 7 was recovered, and it contained 18 feet (5.5 meters) of nannofossil chalk ooze of late Middle Eocene Age. The sediment accumulation calculated for Core 7 was faster than in previous cores and it was concluded that the interval of slow sedimentation was adequately sampled; drilling was resumed at a depth of 328 feet (100 meters) below the sea floor.

In order to sample the strong reflector discussed earlier, drilling stopped at a depth of 548 feet (167 meters) below the sea floor. On the eighth attempt, a 30 foot (9.1 meter) core was cut at 300 feet (91.4 meters) per hour. At 1200 hours, November 4, Core 8 was recovered, and it contained one foot (0.3 meter) of chert. A 30 foot (9.1 meter) length was cut for Core 9, directly below Core 8, at a rate of 100 feet (30.5 meters) per hour. Core 9 was recovered at 1415 hours, November 4, and it contained 15 feet (4.6 meters) of nannofossil-radiolarian chalk ooze of early Eocene Age. A bed of chert 10 centimeters thick was present 35 centimeters below the top of the core. Drilling resumed to a depth of 955 feet (291.1 meters) below the sea floor. The tenth core was attempted at this point, and a 25 foot (7.6 meter) length of core was cut at 83 feet (25.3 meters) per hour. During the recovery of Core 10, the sand line reel motor and the power sub failed and were repaired. At 0200 hours, November 5, Core 10 was recovered, and it contained 23 feet (7 meters) of foraminiferal-nannofossil ooze of late Maestrichtian Age. Because of the time lost due to mechanical malfunctions, it was decided to drill down to a depth near the basement. At 1239 feet (377.6 meters) below the sea floor, continuous coring was resumed until contact with the basement occurred. In this sequence, a total length of 267 feet (81.4 meters) of core was cut. Thirty foot (9.1 meter) lengths were cut for each of Cores 11 to 18 at rates of 100 feet (30.5 meters) to 150 feet (45.7 meters) per hour. The sediment recovered in these cores is predominantly nannofossil-foraminiferal chalk ooze and ranges in age from early Maestrichtian to Campanian. Contact with the basement occurred in Core 19, in which 19 feet (5.8 meter) were cut in 45 minutes. At 2315 hours, November 5, Core 19 was recovered, and it contained one foot (0.3 meter) of marble above two feet (0.6 meters) of igneous rock. For Core 20, an 8 foot (2.4 meter) length was cut in four hours and a 7 foot (2.1 meter) section of igneous rock was recovered. After well logging operations, Site 10 was abandoned at 0600 hours, November 7. The total time spent at Site 10 was 122.5 hours, and a depth of 1506 feet (459 meters) below the sea floor was reached. A total length of 251 feet (76.5 meters) of core was recovered, and the average recovery rate was 44.7 per cent.
Figure 2. Chart showing Glomar Challenger’s approach to Site 10.
Figure 3. Line drawing of profiler record made on station by Glomar Challenger at Site 10.
<table>
<thead>
<tr>
<th>Hour/Date</th>
<th>Core No.</th>
<th>Depth Below Sea Floor m</th>
<th>Depth Below Sea Surface m</th>
<th>Core Cut m</th>
<th>Core Recov. m</th>
<th>% Core Recov.</th>
<th>No. of Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1730</td>
<td>1</td>
<td>29.9 98</td>
<td>4742 15,556</td>
<td>9.14 30</td>
<td>2.13 7</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>3 Nov</td>
<td></td>
<td>40.0 128</td>
<td>4751 15,586</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>2</td>
<td>40.2 133</td>
<td>4753 15,591</td>
<td>7.62 25</td>
<td>4.88 16</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>3 Nov</td>
<td></td>
<td>48.2 158</td>
<td>4760 15,616</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2250</td>
<td>3</td>
<td>48.2 158</td>
<td>4760 15,616</td>
<td>9.14 30</td>
<td>5.79 19</td>
<td>63</td>
<td>4</td>
</tr>
<tr>
<td>3 Nov</td>
<td></td>
<td>57.3 188</td>
<td>4769 15,646</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0045</td>
<td>4</td>
<td>57.3 188</td>
<td>4769 15,646</td>
<td>9.14 30</td>
<td>0 0</td>
<td>0</td>
<td>0(^a)</td>
</tr>
<tr>
<td>4 Nov</td>
<td></td>
<td>66.4 218</td>
<td>4778 15,676</td>
<td>9.14 30</td>
<td>0 0</td>
<td>0</td>
<td>0(^b)</td>
</tr>
<tr>
<td>0520</td>
<td>5</td>
<td>71.3 234</td>
<td>4784 15,692</td>
<td>9.14 30</td>
<td>6.71 22</td>
<td>73</td>
<td>5</td>
</tr>
<tr>
<td>4 Nov</td>
<td></td>
<td>80.4 264</td>
<td>4793 15,722</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0700</td>
<td>6</td>
<td>89.5 294</td>
<td>4802 15,752</td>
<td>9.14 30</td>
<td>0 0</td>
<td>0</td>
<td>0(^c)</td>
</tr>
<tr>
<td>4 Nov</td>
<td></td>
<td>100.0 328</td>
<td>4812 15,786</td>
<td>10.36 34</td>
<td>5.49 18</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>1220</td>
<td>7</td>
<td>167.1 548</td>
<td>4879 16,006</td>
<td>9.14 30</td>
<td>.30 1</td>
<td>3</td>
<td>1(^d)</td>
</tr>
<tr>
<td>4 Nov</td>
<td></td>
<td>176.2 578</td>
<td>4888 16,036</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1415</td>
<td>8</td>
<td>185.3 608</td>
<td>4897 16,066</td>
<td>9.14 30</td>
<td>4.57 15</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>4 Nov</td>
<td></td>
<td>291.2 955</td>
<td>5003 16,413</td>
<td>7.62 25</td>
<td>7.01 23</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>0200</td>
<td>9</td>
<td>298.8 980</td>
<td>5011 16,438</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Nov</td>
<td></td>
<td>377.7 1239</td>
<td>5090 16,697</td>
<td>9.14 30</td>
<td>4.88 16</td>
<td>55</td>
<td>4(^e)</td>
</tr>
<tr>
<td>0840</td>
<td>10</td>
<td>386.8 1269</td>
<td>5099 16,727</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Nov</td>
<td></td>
<td>395.9 1299</td>
<td>5108 16,757</td>
<td>9.14 30</td>
<td>4.88 16</td>
<td>55</td>
<td>4(^f)</td>
</tr>
<tr>
<td>1000</td>
<td>11</td>
<td>395.9 1299</td>
<td>5108 16,757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Nov.</td>
<td></td>
<td>405.0 1329</td>
<td>5117 16,787</td>
<td>9.14 30</td>
<td>5.18 17</td>
<td>60</td>
<td>4(^g)</td>
</tr>
<tr>
<td>1140</td>
<td>12</td>
<td>405.0 1329</td>
<td>5117 16,787</td>
<td>9.14 30</td>
<td>4.26 14</td>
<td>47</td>
<td>3</td>
</tr>
<tr>
<td>5 Nov</td>
<td></td>
<td>414.1 1359</td>
<td>5127 16,817</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1250</td>
<td>13</td>
<td>414.1 1359</td>
<td>5127 16,817</td>
<td>9.14 30</td>
<td>2.13 7</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>5 Nov</td>
<td></td>
<td>423.2 1389</td>
<td>5136 16,847</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1405</td>
<td>14</td>
<td>423.2 1389</td>
<td>5136 16,847</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Nov</td>
<td></td>
<td>432.3 1419</td>
<td>5145 16,877</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 shaded data
TABLE 1 - Continued

<table>
<thead>
<tr>
<th>Hour/Date</th>
<th>Recov.</th>
<th>Core No.</th>
<th>Depth Below Sea Floor</th>
<th>Depth Below Sea Surface</th>
<th>Core Cut</th>
<th>Core Recov.</th>
<th>% Core Recov.</th>
<th>No. of Sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>m ft</td>
<td>m ft</td>
<td>m ft</td>
<td>m ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905</td>
<td>5 Nov</td>
<td>17</td>
<td>432.3 1419</td>
<td>5145 16,877</td>
<td>9.14 30</td>
<td>3.66 12</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5 Nov</td>
<td>18</td>
<td>441.4 1449</td>
<td>5154 16,907</td>
<td>9.14 30</td>
<td>7.62 25</td>
<td>83</td>
<td>5</td>
</tr>
<tr>
<td>2110</td>
<td>5 Nov</td>
<td>19</td>
<td>450.5 1479</td>
<td>5163 16,937</td>
<td>5.79 19</td>
<td>.91 3</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>2315</td>
<td>5 Nov</td>
<td>19</td>
<td>456.7 1498</td>
<td>5169 16,956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0530</td>
<td>6 Nov</td>
<td>20</td>
<td>459.0 1506</td>
<td>5171 16,964</td>
<td>2.44 8</td>
<td>2.13 7</td>
<td>90</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Hole inclination: @ 200' = 4°
TD = 16,964 feet.

a Core 4 - Retrieved without catcher which had apparently unscrewed; very thin smear slide.

b Core 6 - Core catcher scraping saved; scrapings from liner at 90 to 110 cm above catcher; an almost full core was lost; the liner scrapings were put in vial in catcher freezer box.

c Core 8 - No liner; broken fragments were put in freezer box.

d Core 11 - Core catcher in 2 freezer boxes.

e Core 12 - Core catcher in 1 freezer box.

f Core 13 - Core catcher in 1 freezer box.
<table>
<thead>
<tr>
<th>Core No.</th>
<th>Drilling Time (hr)</th>
<th>Depth Cored (ft)</th>
<th>Av. Coring Rate (ft/hr)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>25</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.1</td>
<td>30</td>
<td>300</td>
<td>Chert in core catcher</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>30</td>
<td>100</td>
<td>Eocene Radiolaria, thin chert probably reflector</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
<td>25</td>
<td>83</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>11</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>12</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>13</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>14</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>17</td>
<td>0.2</td>
<td>30</td>
<td>150</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>18</td>
<td>0.3</td>
<td>30</td>
<td>100</td>
<td>Upper Cretaceous</td>
</tr>
<tr>
<td>19</td>
<td>0.8</td>
<td>19</td>
<td>24</td>
<td>Basement</td>
</tr>
<tr>
<td>20</td>
<td>4.0</td>
<td>8</td>
<td>4</td>
<td>Basement</td>
</tr>
</tbody>
</table>
Summary of Drilling and Coring at Site 10

<table>
<thead>
<tr>
<th>WATER CONTENT</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BULK DENSITY</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

1. Nannofossil chalk ooze, pale to dark yellowish brown.
2. Nannofossil chalk ooze interbedded and mixed with zeolite “red clay” for 2-4.
3. Nannofossil chalk ooze interbedded and mixed with zeolitic “red clay” for 5-7.
5. Foram-nannofossil chalk ooze, pale yellow, white, olive gray.

Figure 4. Summary of drilling and coring at Site 10.
Foram nannofossil chalk ooze for 14-18, with volcanic debris, ash layers, and generally increasing proportion of dolomite rhombs with depth. Very pale brown. Nannofossil ooze above basalt contact in 19, separated from basalt by marble layer and glassy contact zone.

Figure 4. Continued.

The Cores Recovered from Site 10

Figures 5 through 21 are the graphic summaries of the cores recovered at Site 10.

These figures show, for each core:
(1) The stratigraphic age.
(2) The natural gamma radiation
(3) The bulk density determined by the GRAPE (Gamma Ray Attenuation Porosity Evaluation) equipment
(4) The length of the core in meters measured from the top of the core and the subbottom depth of the top of the cored interval.
(5) The lithology (see key with Chapter 3).
(6) The positions of the tops of each core section.
(7) Some notes on the lithology.
Figure 5. Hole 10 Core 1.

Nannofossil chalk ooze pale brown to dark yellowish brown, laminated diffusely in shades of brown.
<table>
<thead>
<tr>
<th>AGE</th>
<th>ρ_B (gm/cc)</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1.5 2 2.5 3 3.5</td>
<td>0</td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

Portion of liner empty.

142 ft (43 m) *Nannofossil chalk ooze, dark yellowish brown, mottled with gray orange and pale brown.*

Figure 6. *Hole 10 Core 2.*
LITHOLOGIC DESCRIPTION

Nannofossil chalk ooze, brown.

Zeolitic "red clay", very dark gray brown, mixed with nannofossil ooze.

Zeolitic "red clay".

Zeolitic "red clay", very dark brown, mixed with nannofossil chalk ooze.

Zeolitic "red clay".

Nannofossil chalk ooze
Mixed & interbedded zeolitic "red clay" & nannofossil chalk ooze.

"Red clay"

Nannofossil chalk ooze with some ? zeolites. Yellowish brown.

Figure 6. Continued.
Lithologic Description

- **169 ft (51 m)**
- Nannofossil chalk ooze and nannofossil marl ooze, shades of brown, interbedded.

Figure 7. Hole 10 Core 3.

<table>
<thead>
<tr>
<th>AGE</th>
<th>ρ_B (gm/cc)</th>
<th>γ (counts/2.5 min./3" section)</th>
<th>M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Nannofossil chalk ooze, light yellow brown to yellow brown.
Nannofossil chalk ooze mixed with clay, pale brown to yellow brown to grayish orange.

Nannofossil chalk ooze with small amounts of ?zeolites, dark to light yellow brown.

Figure 7. Continued.
LITHOLOGIC DESCRIPTION

242 ft (74 m)

Nannofossil chalk ooze with small amounts of ? zeolites, Dark yellow brown.

Figure 8. Hole 10 Core 5.
Nannofossil chalk ooze with small amounts of zeolites. Grayish orange to moderate yellow brown.

Nannofossil chalk ooze with clay. Dark gray brown to light yellowish brown, mottled.
<table>
<thead>
<tr>
<th>AGE (counts/2.5 min./3" section)</th>
<th>CM</th>
<th>LITHOLOGIC DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>0</td>
<td>310 ft (94 m) Porportion of liner empty.</td>
</tr>
</tbody>
</table>

Figure 9. Hole 10 Core 7.

Nannofossil ooze, with irreg. darker brown areas rich in clay. Pale brown to very dark grayish brown
Figure 9. Continued.

Nannofossil chalk ooze with clay yellowish brown to dark yellow brown.
LITHOLOGIC DESCRIPTION

1. **593 ft (181 m)**
 - Chert.

2. **Nannofossil marl ooze-radiolarian ooze mixed in varying proportions.**
 - Yellow brown, dark gray brown, pink.

Figure 10. Hole 10 Core 9.
Lithologic Description

- **Foram-nannofossil chalk ooze.**
- Pale yellow.

Figure 11. Hole 10 Core 10.
Foram-nannofossil chalk ooze.
Pale yellow, white, light olive gray.

Figure 11. *Continued.*
LITHOLOGIC DESCRIPTION

Portion of liner empty
1253 ft (382 m)
Nannofossil-foram chalk ooze
with possible thin ash layer.
White.

Figure 12. *Hole 10 Core 11.*
Possible ash layer.

Nannofossil-foram chalk ooze, containing disseminated ? volcanic minerals & traces of dolomite rhombs.
Light gray to very pale brown.

Possible ash layer. Dark brown.

Figure 12. Continued.
<table>
<thead>
<tr>
<th>AGE</th>
<th>ρ_B (gm/cc)</th>
<th>γ (counts/2.5 min./3' section)</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

Portion of liner empty.

1283 ft (391 m)

Foram-nannofossil chalk ooze with scattered dolomite rhombs.

Very pale brown.

Figure 13. Hole 10 Core 12.
Lithologic Description

- **Nannofossil-foram chalk ooze.**
- Scattered dolomite rhombs.
- Occasional white layers may be altered volcanic ash. Zeolites present in minor quantities.
- Very pale brown, pale yellow, grayish orange, pink.

Figure 13. Continued.
<table>
<thead>
<tr>
<th>AGE</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>γ (counts/2.5 min./3" section)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

Portion of liner empty.
1312 ft (400 m)

Nannofossil-foram chalk ooze.
Traces of dolomite rhombs.
Pale yellow.

Figure 14. *Hole 10 Core 13.*
LITHOLOGIC DESCRIPTION

1329 ft (605 m)
<table>
<thead>
<tr>
<th>AGE</th>
<th>ρ_B (gm/cc)</th>
<th>γ (counts/2.5 min./3" section)</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

Figure 15. *Hole 10 Core 14.*

1348 ft (411 m)
Portion of liner empty.

Nannofossil-foram chalk ooze.
Traces of dolomite rhombs.
Zones enriched in possible volcanic debris. Discrete ? ash layers as shown.
Very pale brown.
Figure 16. Hole 10 Core 15.

Foram-nannofossil chalk ooze
with admixtures of ? volcanic
debris and discrete ash layers.
Some zones contain up to
30% dolomite (rhombs).
Very pale brown.
<table>
<thead>
<tr>
<th>AGE</th>
<th>ρ (gm/cc)</th>
<th>γ (counts/2.5 min./3" section)</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>1.5 2 2.5 3 3.5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

1406 ft (428 m)

Foram-nannofossil chalk ooze, with zeolites, traces of dolomite rhombs, and admixtures of volcanic debris.

Discrete tuff layers present as shown.

1419 ft (432 m)

Dolomite rhombs up to 25% near base of barrel.

Figure 17. Hole 10 Core 16.
Foram-nannofossil chalk ooze, dolomitic in part (dolom. rhombs up to 50% locally). Very pale brown.
<table>
<thead>
<tr>
<th>AGE (Ma)</th>
<th>(\rho_B) (gm/cc)</th>
<th>(\gamma) (counts/2.5 min./3rd section)</th>
<th>CM</th>
<th>Lithologic Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>10,000</td>
<td>0</td>
<td>(Nannofossil-foram chalk ooze,) somewhat dolomitic (rhombs), containing admixed (?) volcanic material.</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(\rho_B)</td>
<td>200</td>
<td>(Dolomite rhombs) locally 40-60%.</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
<td>(\gamma)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td></td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 19. Hole 10 Core 18.
Figure 19. Continued.

Nannofossil-foram chalk ooze, dolomitic. Dolomite rhombs 10-20%. Many volcanic ash layers, possibly diagenetically modified.
<table>
<thead>
<tr>
<th>AGE</th>
<th>$P_B^{(gm/cc)}$</th>
<th>γ(counts/2.5 min./3'' section)</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

1495 ft. (456 m)

Nannofossil chalk ooze, glass fragments at base. Grades down into indurated carbonate ("marble") at contact with igneous rock. Light gray to white.

Basalt, vesicular, coarse texture. Thin glass layer at top.

1498 ft (457 m)

Figure 20. *Hole 10 Core 19.*
<table>
<thead>
<tr>
<th>AGE (10,000)</th>
<th>(\rho) (gm/cc)</th>
<th>(\gamma) (counts/2.5 min./3" section)</th>
<th>CM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LITHOLOGIC DESCRIPTION

1. 1498 ft (457 m)
2. Basalt.
3. 1505 ft (459 m)

Figure 21. *Hole 10 Core 20.*
The Cores Recovered from Site 10

Figures 22 through 79 show details of the individual core sections of the cores from Site 10.

Each figure shows:

1. A scale of centimeters from the top of each section.
2. A photograph of the core section.
3. The lithology (see key with Chapter 3).
4. The positions of smear slides (x).
5. Notes on the lithology, X-ray mineralogy, carbon content, expressed as a percentage of total sediment (see Chapter 9), the water content and the grain size (see Chapter 8). Colors are given with reference to the GSA Rock Color Chart.
10YR8/3
(V. pale brn.)

Snd. 0.5, Slt. 18.5, Cl. 81.0

Tot. C. 8.1, Org. C. 0.0, CaCO₃ 67.5

Nannofossil chalk ooze, mod. mottled w/white & brn.
Nannos. 97%

10YR6/3
(V. pale brn.)

X-ray diffraction results
(90-92 cm)

Kao. 3.4%
Quartz 3.8
K-feld. 1.3
Calcite 91.5

Figure 22. Hole 10 Core 1 Section 1.
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>X-ray Diffraction Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3 (M)</td>
<td>X-ray diffraction results (3-5 cm)</td>
</tr>
<tr>
<td>10YR6/3</td>
<td>Kao. 4.7%</td>
</tr>
<tr>
<td></td>
<td>Quartz 7.7</td>
</tr>
<tr>
<td></td>
<td>K-feld. 2.8</td>
</tr>
<tr>
<td></td>
<td>Plag. 1.0</td>
</tr>
<tr>
<td></td>
<td>Calcite 82.0</td>
</tr>
<tr>
<td></td>
<td>Dolo. 1.9</td>
</tr>
<tr>
<td>10YR4/2</td>
<td>X-ray diffraction results (24-26 cm)</td>
</tr>
<tr>
<td></td>
<td>Mica 6.9%</td>
</tr>
<tr>
<td></td>
<td>Kao. 6.7</td>
</tr>
<tr>
<td></td>
<td>Quartz 9.7</td>
</tr>
<tr>
<td></td>
<td>K-feld. 1.9</td>
</tr>
<tr>
<td></td>
<td>Calcite 74.8</td>
</tr>
<tr>
<td>Nannofossil chalk ooze</td>
<td></td>
</tr>
<tr>
<td>Nannos. 95%</td>
<td></td>
</tr>
<tr>
<td>Color laminated.</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction results (52-54 cm)</td>
<td></td>
</tr>
<tr>
<td>Mica 6.5%</td>
<td></td>
</tr>
<tr>
<td>Kao. 4.5</td>
<td></td>
</tr>
<tr>
<td>Quartz 5.4</td>
<td></td>
</tr>
<tr>
<td>K-feld. 1.4</td>
<td></td>
</tr>
<tr>
<td>Plag. 1.3</td>
<td></td>
</tr>
<tr>
<td>Calcite 80.9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 23. Hole 10 Core 1 Section 2.
10YR4/2
(Dk. yellsh. brn.)

Sect. disturbed

Nannofossil chalk ooze.
Greatly mottled w/gry.
orange & pale brn.
Nannos. 90%

Figure 24. Hole 10 Core 2 Section 1.
10YR4/3
(Brn.)

X

Tot. C. 3.0, Org. C. 0.1, CaCO$_3$ 24.2
Snd. 0.2, Slt. 16.3, Cl. 83.5

X-ray diffraction results
(39-41 cm)

Montm. 0.0%
Mica 13.7
Kao. 19.5
Quartz 24.0
K-feld. 6.3
Plag. 7.3
Calcite 29.2

10YR3/2 (M)
(V. dark grysh. brn.)

10YR4/2 (m)
(Dark grysh. brn.)

X

0-15 cm: Nannofossil chalk ooze.
Nannos. 92%

X-ray diffraction results
(17-19 cm)

Montm. 0.0%
Mica 14.0
Kao. 21.8
Quartz 32.8
K-feld. 9.4
Plag. 8.4
Calcite 13.6

15-115 cm: Zeolitic red clay.
Zeolites 20%
Clay mins. 80%
Forams present in some zones.
Light-colored layers
nannofossil ooze: -
Nannos. 90%

X-ray diffraction results
(69-71 cm)

Kao. 25.4%
Quartz 29.9
K-feld. 8.7
Plag. 8.0
Calcite 26.0

X-ray diffraction results
(89-91 cm)

Montm. 0.0%
Mica 2.8
Kao. 24.2
Quartz 19.8
K-feld. 4.9
Plag. 5.4
Cris. 41.2
Side. 1.7

115-140 cm: Zeolitic red clay.

X-ray diffraction results
(133-135 cm)

Mica 4.8%
Kao. 4.2
Quartz 14.8
Cris. 29.8
Side. 2.0
Phil. 44.4

140-150 cm: Nannofossil chalk ooze
mixed w/red clay.
Whole sect. disturbed.

X-ray diffraction results
(16-18 cm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clin.</td>
<td>0.0%</td>
</tr>
<tr>
<td>Kao.</td>
<td>9.0</td>
</tr>
<tr>
<td>Quartz</td>
<td>14.8</td>
</tr>
<tr>
<td>K-feld.</td>
<td>1.9</td>
</tr>
<tr>
<td>Plag.</td>
<td>0.0</td>
</tr>
<tr>
<td>Calcite</td>
<td>9.8</td>
</tr>
<tr>
<td>Cris.</td>
<td>21.7</td>
</tr>
<tr>
<td>Phil.</td>
<td>42.8</td>
</tr>
</tbody>
</table>

0-90 cm: - Zeolitic red clay mixed w/nannofossil chalk ooze.
Nannos. 20-80%
Zeolites 10-20%
Clay mins. 50%

X-ray diffraction results
(79-81 cm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mica</td>
<td>7.7%</td>
</tr>
<tr>
<td>Kao.</td>
<td>1.9</td>
</tr>
<tr>
<td>Quartz</td>
<td>14.7</td>
</tr>
<tr>
<td>K-feld.</td>
<td>8.9</td>
</tr>
<tr>
<td>Plag.</td>
<td>10.3</td>
</tr>
<tr>
<td>Calcite</td>
<td>56.5</td>
</tr>
</tbody>
</table>

90-135 cm: - Red clay
Clay mins. 100%

X-ray diffraction results
(102-104 cm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kao.</td>
<td>36.8%</td>
</tr>
<tr>
<td>Quartz</td>
<td>31.8</td>
</tr>
<tr>
<td>K-feld.</td>
<td>10.7</td>
</tr>
<tr>
<td>Plag.</td>
<td>20.6</td>
</tr>
</tbody>
</table>

135-144 cms: - Nannofossil chalk ooze.
Nannos. 70%
Clay 30%

X-ray diffraction results
(139-141 cm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>7.1%</td>
</tr>
<tr>
<td>Calcite</td>
<td>92.9</td>
</tr>
</tbody>
</table>

144-150 cm: - Mixed red clay & nannofossil ooze.

Figure 26. Hole 10 Core 2 Section 3
0-3 cm: *Calcareous red clay.*
3-6 cm: *Nannofossil chalk ooze.*
6-20 cm: *Mixed nannofossil chalk ooze & red clay.*
20-35 cm: "red clay".

X-ray diffraction results (24-26 cm)
- Kao. 12.6%
- Quartz 9.1%
- K-feld. 2.1%
- Plag. 7.4%
- Calcite 68.8%

35-150 cm: *Nannofossil chalk ooze w/clay.*
- Nannofossils 90%
- Clays 10%

X-ray diffraction results (75-77 cm)
- Calcite 100%

Figure 27. Hole 10 Core 2 Section 4
Snd. 0.1, Slt. 48.2, Cl. 51.7
10YR3/2 (M) (Dk. grysh. brn.)
10YR4/3 (M) (Brn.)
10YR6/3 (M) (Pale brn.)
10YR5/4 (M) (Yellsh. brn.)

X

Sect. disturbed.

32-72 cm: - *Interbedded nannofossil chalk ooze & clayey nannofossil marl ooze.*
Nannos. 20-80%
Clay mins. 0-60%

X-ray diffraction results
(43-45 cm)
Kao. 10.0%
Quartz 7.5
K-feld. 2.9
Plag. 2.6
Calcite 72.9
Arag. 4.1

Tot. C. 8.0, Org. C. 0.6, CaCO₃, 61.6
10YR6/4 (M)
(Lt. yell. brn.)

X

72-150 cm: - *Nannofossil chalk ooze.*
Nannos. 90%
Clays 10%

X-ray diffraction results
(103-105 cm)
Calcite 100%

10YR5/4
(Yell. brn.)

X

X-ray diffraction results
(140-142 cm)
Kao. 3.8%
Quartz 2.1
Calcite 91.9

Figure 28. Hole 10 Core 3 Section 1
Figure 29. Hole 10 Core 3 Section 2
X-ray diffraction results
(13-15 cm)
Quartz 2.0%
Calcite 98.0

Nannofossil chalk ooze w/clay.
Nannos. 70-100%
Clays 0-30%

X-ray diffraction results
(83-85 cm)
Kao. 6.8%
Quartz 5.9
K-feld. 1.6
Plag. 1.9
Calcite 83.8

X-ray diffraction results
(140-142 cm)
Kao. 2.5%
Quartz 2.5
Calcite 95.0

Figure 30. Hole 10 Core 3 Section 3
10YR6/4 to 10YR7/4 (gry. orange) X-ray diffraction results (15-17 cm)
Quartz 3.5%
Calcite 96.5
Quartz 8.1, Org. C. 1.2, CaCO$_3$ 57.5
Snd. 0.1, Slt. 12.2, Cl. 87.7
Calcite 96.5
Nannofossil chalk ooze with clay.
Nannos. 90-100%
Clay mins. 5-30%

Figure 31. Hole 10 Core 3 Section 4
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Color</th>
<th>Nannofossil chalk ooze w/zeolites.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-150</td>
<td></td>
<td>Mottled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nannos 90-100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeolites 0-5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay mins. 0-5%</td>
</tr>
<tr>
<td>10YR4/2</td>
<td>Dark yellow brown</td>
<td>Tot. C. 9.3, Org. C. 0.0, CaCO$_3$ 77.5</td>
</tr>
<tr>
<td>10YR6/4</td>
<td>Yellow brown</td>
<td>X-ray diffraction results (115-117 cm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz 1.6%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calcite 98.4</td>
</tr>
</tbody>
</table>

Figure 32. Hole 10 Core 5 Section 1
Tot. C. 9.6, Org. C. 0.4, CaCO$_3$ 76.6
Snd. 0.1, Slt. 44.6, Cl. 55.3
X-ray diffraction results
(15-17 cm)
Calcite 100%

X

10YR7/4
(Grysh. orange)

Nannofossil chalk ooze
Nannos. 100%
X-ray diffraction results
(70-72 cm)
Calcite 100%

Figure 33. Hole 10 Core 5 Section 2.
X-ray diffraction results
(5-7 cm)
Calcite 100%

Snd. 0.0, Slt. 54.1, Cl. 45.9

Nannofossil chalk ooze
Nannos. 90-100%
Zeolites 0-10%

Tot. C. 10.6, Org. C. 0.0, CaCO3 88.3

X-ray diffraction results
(88-90 cm)
Calcite 100%

Figure 34. Hole 10 Core 5 Section 3.
Figure 35. Hole 10 Core 5 Section 4.
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>X-ray Diffraction Results (10-12 cm)</th>
<th>X-ray Diffraction Results (35-37 cm)</th>
<th>X-ray Diffraction Results (84-86 cm)</th>
<th>X-ray Diffraction Results (99-101 cm)</th>
<th>X-ray Diffraction Results (144-146 cm)</th>
</tr>
</thead>
</table>
| 0-25 | Kao. 9.1%
Quartz 6.2
K-feld. 2.2
Plag. 2.4
Calcite 80.1 | Kao. 4.9%
Quartz 3.4
K-feld. 1.2
Plag. 1.3
Calcite 89.2 | Kao. 6.5
Quartz 2.2
Plag. 1.8
Calcite 89.5 | Kao. 4.7%
Quartz 2.8
Plag. 1.1
Calcite 91.4 | Kao. 7.3%
Quartz 2.8
K-feld. 1.7
Plag. 1.7
Calcite 86.5 |
| 25-50 | Nannofossil chalk ooze, w/zeolites. Nannos. 65-90%
Clay mins. 0-10% | | | |
| 50-75 | | | | |
| 75-100 | | | | |
| 100-125 | | | | |
| 125-150 | | | | |
| 150-167 | | | | |

Figure 36. Hole 10 Core 5 Section 5.
Nannofossil chalk ooze w/clay.
(Dark zones richer in clay).
Nannos. 60-85%
Clay mins. 0-50%

X-ray diffraction results
(103-105 cm)
Mica 2.8%
Kao. 11.2
Quartz 3.3
K-feld. 4.7
Plag. 1.6
Calcite 76.4

Figure 37. Hole 10 Core 7 Section 1.
Nannofossil chalk ooze w/ zeolites & clay.

Figure 38. Hole 10 Core 7 Section 2.
Figure 39. Hole 10 Core 7 Section 3.
Snd. 0.2, Slit. 34.3, Cl. 65.5
Tot. C. 5.4, Org. C. 0.1, CaCO$_3$ 44.1

X-ray diffraction results
(4-6 cm)
Clin. 11.5%
Quartz 4.9
Calcite 83.6

Nannofossil marl ooze to chalk ooze, w/clay.
Nannos. 50-95%
Clay mins. 0-50%

Snd. 0.1, Slit. 30.2, Cl. 69.7

10YR4/2
(Dk. yell. brn.)

10YR5/4

Figure 40. Hole 10 Core 7 Section 4.
X-ray diffraction results (11-13 cm)
Quartz 2.2%
K-feld. 1.4
Calcite 96.4

32-36 cm: - Chert

X-ray diffraction results (86-88 cm)
Quartz 1.8%
Calcite 98.2

Figure 41. Hole 10 Core 9 Section 1.
X-ray diffraction results
(10-12 cm)
Calcite 100%

X-ray diffraction results
(100-102 cm)
Kao. 4.9%
Quartz 2.4
Calcite 92.7

Radiolarian-nannofossil ooze.
Rads. + spic. 50-60%
Nannos. 30-50%
Clay mins. 10%

Figure 42. Hole 10 Core 9 Section 2.
X-ray diffraction results
(10-12 cm)
Calcite 100%

46 Tot. C. 8.1, Org. C. 3.0, CaCO₃ 42.5
2.5YR6/4
(Lt. yelsh. brn.)

Nannofossil-radiolarian ooze,
mottled throughout.
Nannos. 45-80%
Rads. + spics 10-25%
Clay mins. 5-15%

100-112 cm: - Clay
Clay mins. 100%

X-ray diffraction results
(110-112 cm)
Clin. 13.5%
Quartz 3.6
Calcite 82.9
Figure 44. Hole 10 Core 10 Section 1.

X-ray diffraction results
(88-90 cm)
Calcite 100%

Foram-nannofossil chalk ooze
Nannos. 70%
Forams 30%

Snd. 2.5, Slt. 37.0, Cl. 60.5
Tot. C. 11.1, Org. C. 0.0, CaCO₃ 92.5

5Y7/3 (M)
(Pale yell.)
X-ray diffraction results
(12-14 cm)
Calcite 100%

Tot. C 11.1, Org. C 1.4, CaCO$_3$ 80.8
Snd. 2.3, Slt. 66.0, Cl. 31.7

Nannofossil-foram chalk ooze
Nannos 70%
Forams 30%

X-ray diffraction results
(80-82 cm)
Calcite 100%

Snd. 1.8, Slt. 27.0, Cl. 71.2
5Y7/3 (M)
(Pale yell.)
X-ray diffraction results

Snd. 1.9, Slt. 26.5, Cl. 71.6
Calcite 100%

Tot. C. 11.6, Org. C. 0.3, CaCO₃ 94.1

2.5Y8/2 (M)
White

Nannofossil-foram chalk ooze.
Nannos. 90%
Forams 10%

Snd. 1.4, Slt. 48.9, Cl. 49.7
X-ray diffraction results
(84-86 cm)
Calcite 100%

Figure 46. Hole 10 Core 10 Section 3.
X-ray diffraction results (10-12 cm)
Calcite 100%

Snd. 1.8, Slt. 35.1, Cl. 63.1
Tot. C. 10.1, Org. C. 3.4, CaCO₃ 55.9

5Y8/2 (M) to 5Y7/2 (M) (Lt. olive gry.)

Nannofossil-foram chalk ooze

X-ray diffraction results (76-78 cm)
Calcite 100%

Snd. 1.8, Slt. 32.8, Cl. 65.4

Figure 47. Hole 10 Core 10 Section 4.
Tot. C. 10.8, Org. C. 0.0, CaCO₃ 90.0
Snd. 2.9, Slt. 33.7, Cl. 63.4

X-ray diffraction results (12-14 cm)
Calcite 100%

2.5Y8/2 (M)
(White)
Snd. 2.4, Slt. 30.4, Cl. 67.2

Nannofossil-foram chalk ooze.
Nannos. 80%
Forams 20%

X-ray diffraction results (74-76 cm)
Calcite 100%

Figure 48. Hole 10 Core 10 Section 5.
Figure 49. Hole 10 Core 11 Section 1.

10YR8/1
(White)

Snd. 3.4, Slt. 32.5, Cl. 64.1

X

Sect. disturbed

Nannofossil-foram chalk ooze
w/possible thin ash bed.

X-ray diffraction results
(130-132 cm)
Calcite 100%
Figure 50. Hole 10 Core 11 Section 2.
Figure 51. Hole 10 Core 11 Section 3.

X-ray diffraction results (6-8 cm)
Calcite 100%

Tr. dolomite rhombs.

Snd. 4.0, Slt. 31.4, Cl. 64.6

10YR7/4 (V. pale brn.)

10YR7/2 (Lt. gry)

Nannofossil-foram chalk ooze.
Layers vary from indurated to soft.
Nannos. 70-85%
Forams 10-30%
Snd. 4.2, Slt. 30.2, Cl. 65.6

X-ray diffraction results
(15-17 cm)
Calcite 100%

Tot. C. 10.3, Org. C. 3.9, CaCO$_3$ 53.3

10YR7/3
(V. pale brn.)

Nannofossil-foram chalk ooze
Nannos. 65-70%
Forams 20%
?Zeolites 10%

10YR3/3
(Dk. brn.)

10YR7/3

Figure 52. Hole 10 Core 11 Section 4.
Figure 53. Hole 10 Core 12 Section 1.

Foram-nannofossil chalk ooze w/scattered dolomite Rhombs.
Forams 50%
Nannos 40%
Sect. partly disturbed

10YR7/4 (M)
(V. pale brn.)
Figure 54. Hole 10 Core 12 Section 2.
Tot. C. 10.6, Org. C. 0.1, CaCO₃ 87.5
Snd. 2.2, Slt. 10.6, Cl. 87.2

X-ray diffraction results
(14-16 cm)
Calcite 100%

2.5Y7/4 (M)
(Pale Yell.)

X-ray diffraction results
(71-73 cm)
Calcite 100%

82-88 cm: - White mottle containing poss. volcanic mins. ?Feldspar.

Figure 55. Hole 10 Core 12 Section 3.
Figure 56. Hole 10 Core 12 Section 4.
10YR7/4 (M) (Pale yell.)

Nannofossil-foram chalk ooze.
Nannos. 40-65%
Forams 10-40%
Dolom Tr.

Tot. C. 10.5, Org. C. 4.0, CaCO$_3$ 54.1

X-ray diffraction results
(92-94 cm)
Calcite 100%

Snd. 0.9, St. 7.7, Cl. 91.4

Figure 57. Hole 10 Core 13 Section 1.
Snd. 0.7, Slt. 29.5, Cl. 69.8

Tot. C. 10.8, Org. C. 0.1, CaCO$_3$ 90.0

X-ray diffraction results
(18-20 cm)
Calcite 100%

10YR7.5/3 (M)
(v. pale brn.)

Nannofossil-foram chalk ooze.

10YR5/2 (M)
(Lt. brn. gry.)

80-82 cm: Possible altered ash layer.
Unidentified volc. mins. 20%
Nannos. + forams 80%

X-ray diffraction results
(98-100 cm)
Calcite 100%

Figure 58. Hole 10 Core 13 Section 2.
X-ray diffraction results (30-32 cm)
Calcite 100%

Nannofossil-foram chalk ooze
w/?volcanic minerals & traces
dolomite rhombs throughout.
Nannos. 40-70%
Forams 10-20%
Dolom. 0-2%
Proportion of ?volcanic minerals
apparently greater in darker
sections of core, for example at
80 cm.
X-ray diffraction results
(80-82 cm)
Calcite 100%

Tot. C. 10.7, Org. C. 0.1, CaCO₃ 89.1
X-ray diffraction results
(10-12 cm)
Calcite 100%

Nannofossil-foram chalk ooze,
w/traces of dolom. rhombs and
layers of ?tuft.
Nannos. 60-70%
Forams 20%
Zeolites or clay 10%
Dolom 0-2%

78-80 cm: Volcanic minerals
locally 70%; Unidentified.

Figure 60. Hole 10 Core 13 Section 4.
10YR7.5/3 (M)
(V. pale brn.)

Nannofossil-foram chalk ooze.
Forams 55%
Nannofossils 40%
?Volcanic mins. 5%
Dolom. rhombs 1%

Figure 61. Hole 10 Core 14 Section 1.
X-ray diffraction results (18-20 cm)

Calcite 100%

?Calcite vein, white & hard.

10YR7.5/3 (M)
(V. pale brn.)

Nannofossil-foram chalk ooze
Nannos. 40%
Forams 40%
Clay or zeolites 20%
Dolom. rhombs 1%

Possible volcanic material
from 10-17 cm, 118-120 cm,
& 146-148 cm.

Tot. C. 10.8, Org. C. 4.8, CaCO₃ 50.0

Figure 62. Hole 10 Core 14 Section 2.
Figure 63. Hole 10 Core 14 Section 3.

X-ray diffraction results (6-8 cm)
- Calcite: 100%

Nannofossil-foram chalk ooze, with volcanic minerals.
- Nannos.: 50-60%
- Forams: 25%
- Clay mins.: 10-30%

Darker layers richer in unidentified volcanic contributions.
Snd. 2.6, Slt. 33.8, Cl. 63.6
10YR7.5/3 (M)
(V. pale brn. mod. mottled.)

X-ray diffraction results
(106-108 cm)
Calcite 100%

Tot. C. 10.6, Org. C. 2.6, CaCO₃ 66.6

Nannofossil-foram chalk ooze.
Nannos. 60%
Forams 25%
?Zeolites 15%
Dolomite 1%

Figure 64. Hole 10 Core 15 Section 1.
X-ray diffraction results (10-12 cm)
Calcite 100%

10YR7.5/3 (M)
(V. pale brn., mottled white & dk. gry.)

Foram-nannofossil chalk ooze w/?volcanic minerals.
Forams 40-50%
Nannos 20-30%
?Zeolites 15-20%
Dolomite 0-30%

X-ray diffraction results (78-80 cm)
Calcite 100%

Tot. C. 10.6, Org. C. 0.2, CaCO₃ 86.6

Figure 65. Hole 10 Core 15 Section 2.
<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>X-ray diffraction results</th>
</tr>
</thead>
<tbody>
<tr>
<td>77-79 cm</td>
<td>Foram-nannofossil chalk ooze</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calcite 100%</td>
<td></td>
</tr>
<tr>
<td>97-99 cm</td>
<td>?tuff layer,</td>
<td>97-99 cm: ?tuff layer,</td>
</tr>
<tr>
<td></td>
<td>?volc. mins. 35%</td>
<td>97-99 cm: ?tuff layer,</td>
</tr>
<tr>
<td>142 cm</td>
<td>?tuff layer.</td>
<td>142 cm: ?tuff layer.</td>
</tr>
<tr>
<td></td>
<td>Tot. C. 10.4, Org. C. 0.9, CaCO₃ 79.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-ray diffraction results</td>
<td></td>
</tr>
<tr>
<td>143-145 cm</td>
<td>Calcite 100%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 66. Hole 10 Core 16 Section 1.
X-ray diffraction results
(2-4 cm)
Calcite 100%

Foram-nannofossil chalk ooze
w/?volcanic contributions
Forams 50%
Nannos. 30%
Clay mins. 10%
Dolom. rhombs 1%

Light-colored bands may be rich in altered volcanics.
?Volcanic minerals 75%
Nannos. 15%
Forams 5%
Tot. C. 9.7, Org. C. 0.0, CaCO₃ 80.8

10YR7.5/3 (M)
(V. pale brn.)

Nannofossil-foram chalk ooze, w/ trace dolomite
Nannos. 40%
Forams 20%
?Zeolites 40%
Dolom. rhombs tr.

Snd. 2.2, Slt. 8.1, Cl. 89.7

140-145 cm: Dolomite-rich zone, slightly more indurated.
Dolom. rhombs 25%

X-ray diffraction results
(143-145 cm)
Calcite 100%

Figure 68. Hole 10 Core 16 Section 3.
Figure 69. Hole 10 Core 17 Section 1.
X-ray diffraction results
(5-7 cm)
Calcite 100%

Tot. C. 11.3, Org. C. 0-0, CaCO$_3$ 94.1

10YR 7.5/1 (M)
(V. pale brn.)

Nannofossil-foram chalk ooze, partly dolomitic
Nannos. 30-50%
Forams 10-40%
Dolom. rhombs 3-20%

Figure 70. Hole 10 Core 17 Section 2.
X-ray diffraction results

Snd. 2.1, Slt. 13.2, Cl. 84.7 (3-5 cm)
Calcite 100%

Tot. C. 10.5, Org. C. 0.1, CaCO₃ 86.6

10YR7.5/3 (M)
(V. pale brn.)

Dolomitic nannofossil-foram marl ooze.
Dolom rhombs 30-50%
Nannos 30-40%
Forams 10-20%
Clay mins. 0-20%

Figure 71. Hole 10 Core 17 Section 3.
Tot. C. 10.9, Org. C. 0.1, CaCO\textsubscript{3} 89.1
Snd. 2.4, Slt. 24.0, Cl. 73.6

X-ray diffraction results
(14-16 cm)
Calcite 100%

Nannofossil-foram chalk ooze, dolomitic, w/local \textit{volcanic} contributions.
Nannos. 40-70%
Forams 10-50%
Dolom. rhombs 3-10%

X-ray diffraction results
(73-75 cm)
Calcite 100%

85-90 cm: \textit{Layer enriched in \textit{volc. mins.}}
Nannos. 70%
Clay mins. 15%
Forams 10%
Dolom. rhombs 3%
Opaques 3%

Figure 72. \textit{Hole 10 Core 18 Section 1.}
X-ray diffraction results
(Snd. 2.4, Slt. 36.4, Cl. 61.2)
Calcite 100%

Dolomitic nannofossil marl ooze
Dolom. rhombs 40-60%
Nannos. 25%
Forams. 15%
X-ray diffraction results
(75-77 cm)
Calcite 100%

Figure 73. Hole 10 Core 18 Section 2.
Snd. 1.2, Stl. 31.0, Cl. 67.8

X-ray diffraction results
(4-6 cm)

Calcite 100%

10YR7/4
(V. dk. brn.)

Dolomitic nannofossil-foram,
marl ooze.

Dolom. rhombs 15-20%
Nannos. 50-55%
Forams 10-20%
? Clay mins 10-20%

Layering appears as diffuse bands in tones of brown. Possibly these represent layers enriched in volcanic contributions.

Tot. C. 9.5, Org. C. 0.1, CaCO₃ 78.3

Figure 74. Hole 10 Core 18 Section 3.
X-ray diffraction results
(13-15 cm)
Snd. 1.8, Slt. 28.0, Cl. 70.2
Calcite 100%

Tot. C. 10.8, Org. C. 0.0, CaCO₃ 90.0.

10YR7-5/3 (M)
(V. pale brn.)

Dolomitic nannofossil-foram chalk ooze.
Nannos. 70%
Dolom. rhombs 15%
Clay mins. 15%
Forams 10%

Darker-toned diffuse layers possibly enriched in volcanic contributions.

Figure 75. Hole 10 Core 18 Section 4.
Snd. 3.1, Slt. 12.0, Cl. 84.9. X-ray diffraction results (0-2 cm)
Calcite 100%

10YR7.5/3 (M)
(V. pale brn.)

Dolomite nannofossil-foram chalk ooze.
Nannos. 70%
Dolom. rhombs 20%
Forams 5%
? Clay mins. 5%

Darker-toned diffuse layers possibly enriched in volcanic contributions.

Tot. C. 10.3. Org. C. 0.2, CaCO$_3$ 84.1
10YR7/4 (M)

Figure 76. Hole 10 Core 18 Section 5.
30-73 cm: *Nannofossil ooze,* unconsolidated. Glass fragment at base.

73-83 cm: *Indurated carbonate.*

83-86 cm: *Cherty material* associated w/glass.

86-94 cm: *Glass fragments*

94-101 cm: *Indurated carbonate,* marble-like, separated by thin glass layer from underlying basalt.

101-150 cm: *Basalt,* vesicular, coarse texture.

Figure 77. Hole 10 Core 19 Section 1.
Basalt, Doleritic texture

Figure 78. Hole 10 Core 20 Section 1.
Figure 79. Hole 10 Core 20 Section 2.

Basalt

5Y3/1 (M) (v. dk. gry.)
Lithology

At Site 10, a total of 250 feet (76.2 meters) of sediment was recovered from about 100 feet below the ocean floor down to basement. Sediments of two types were present: the first, a nannofossil-foraminiferal chalk ooze; and, the second, a deep-sea clay commonly containing minor but varying amounts of nannofossils and foraminifera. The clay occurs in only one interval between 133 and 158 feet (40.5 and 48.1 meters), separating the remaining calcareous section into an Upper Pliocene-Pleistocene unit and an underlying Oligocene to Cretaceous unit. This sediment, which was dated from interbedded calcareous material, is predominantly Miocene with the lowest part being Oligocene. The uppermost 420 feet (128 meters) of the lower sequence of nannofossil-foraminiferal ooze contain significant amounts of phillipsite. Radiolaria of Lower Eocene Age, occur between 578 and 608 feet (176 and 185 meters). At least one thin chert horizon is associated with this interval. From a depth of 1000 feet (305 meters) down to basement, the incidence of thin volcanic tuff layers with volcanic minerals increases. Small scattered dolomite rhombs increase in abundance downward. The basement is a vesicular diabasic rock with a chilled glassy upper margin. A thin contact zone of carbonate sediment that has been recrystallized to marble separates the igneous rock from overlying, essentially unaltered, dolomitic nannofossil-foraminiferal ooze.

In general, the calcareous ooze varies from pale brown to grey-white. The clayey sediments contrast by being yellow-brown, brown, and dark brown.

The clays vary in composition. Some zones are composed entirely of zeolite and clay. Other zones are composed of clays admixed with calcareous microfossils. The clay sequence is typified by dark brown, clay-rich zones interbedded with pale brown, nannofossil-rich layers, generally separated by gradational boundaries. The dark brown pigment appears to be due to abundant translucent, dark red ferruginous particles in the clay-size range.

Volcanic contributions, which occur within the lowermost portion of the sediment column, are present either as thin discrete layers or are disseminated throughout the carbonate ooze. The layers are generally of the order of 2 to 5 centimeters in thickness and may be dark to light brown. Glass shards are not common, but scattered feldspar crystals occur within aggregates of minerals that may be, at least in part, altered volcanic debris.

Dolomite rhombs, averaging 12 microns in size, occur scattered throughout the nannofossil-foraminiferal ooze within the zone containing appreciable volcanic material. The proportion of dolomite increases irregularly with depth, from less than 1 per cent at a depth of 1000 feet (305 meters) to a very substantial fraction of the approximately 10 micron size fraction near basement.

The glassy upper portion of the volcanic basement lies in direct contact with a layer of white marble about 12 centimeters thick. Fragments of glass several centimeters across were recovered above this white marble, followed by a seven centimeter zone of pink, semi-indurated carbonate. Above this an unconsolidated, light grey, dolomitic, coccolithic-chalk ooze occurs which contains glass fragments at the base. The white marble and pink semi-indurated zones are associated with basaltic glass.

Physical Measurements

Natural Gamma-Radiation

Gamma-ray activity was found to be high in sediments containing phillipsite and is considered to be a sensitive indicator of its presence. Small peaks, counting at a single 3 inch interval, correspond in several instances to visible layers containing volcanic debris. The gamma-ray activity of the Cretaceous pure-carbonate ooze was scarcely above background. The underlying basement basalts have appreciable gamma-ray activity which probably derives from the potassium-bearing minerals, some of which are alteration products.

X-Radiography

The X-ray exposure time for core sections of Site 10 systematically followed the density trend—with denser sections causing longer exposure times. The radiographs show the extent and concentrations of the volcanic layers in the lower part of the hole.

Gamma Radiation Attenuation Porosity Evaluator (GRAPE)

At this site, the usual increase in density downward by compaction is overshadowed by variations in the lithology in certain intervals. Highly calcareous oozes were found, according to the GRAPE, to have high densities and low porosities. By comparison, clays from similar depths have distinctly low densities. Radiolarian-rich sediments have the lowest densities in the sediments measured, except where they are silicified to chert.

Characteristic values, sequentially downward, are: The upper 133 feet (40.5 meters) of calcareous chalk ooze have densities up to 1.70 gm/cc and 60 per cent porosity. The intermediate layer of clay between 133 and 158 feet (40.5 and 48.2 meters) has a density range of 1.43 to 1.56 gm/cc and a porosity of about 70 per cent. The calcareous and slightly zeolitic sediments down to 324 feet (98.8 meters) are very similar to the upper
calcareous oozes, but have densities ranging up to 1.73 gm/cc and porosities down to 50 to 55 per cent. The radiolarian-rich sediments near 600 feet (182.9 meters) have densities in the range of 1.35 to 1.58 gm/cc and porosities of 65 to 70 per cent. For the underlying carbonate sediment, there is a general increase in density with core depth. The maximum density range is 2.1 to 2.2 cm/cc, porosity ranges from 20 to 30 per cent. As a precaution, the samples of basement were not exposed to ionizing radiation in either the GRAPE or the X-ray radiography.

Penetrometer

Penetrometer measurements of sediment rigidity did not show a systematic increase with sediment depth, as was the case at other sites. This was due to the unusually soft Cretaceous carbonate sediments which occur at depth at Site 10.

Sonic Velocity

Sonic velocity measured directly on the cores yielded an average of about 1.56 km/sec. This compares unfavorably with 1.83 calculated from seismic profiling and drilling. This difference is probably too great to be accounted for by the effects of pressure. A more plausible explanation is disturbance of the core material during coring. It is also possible that velocities measured in the laboratory parallel to bedding may differ from values obtained vertically. Velocity measurements in the upper several hundred feet were consistent and reasonable. At greater depths, sonic velocity varies from quite high to quite low within a short depth range and in sediments of similar lithology. Throughout much of the Cretaceous carbonate section the sediment has a texture that is easily and irreversibly destroyed by physically disturbing the sediment. It is very likely that the act of coring may have partially destroyed this micro-texture, which may be due to incipient cementation. A single section near the bottom yielded a sonic velocity of up to 2.13 km/sec. It may be that the incipient cementation in this zone close to the basin was sufficient to buttress the sediment against serious deformation during coring so that its sound transmission properties were not affected. Calculations based on this highest value at the base of the Cretaceous carbonates yield an average sonic velocity, uncorrected for pressure, of about 1.70 km/sec for the entire section. This value appears to conform more closely to the *in situ* measurement.

Down-Hole Logging

Logging plans called for: in-pipe interval velocity and open-hole qualitative density, electric and natural gamma-ray measurements.

The interval velocity phones were suspended in the pipe at a depth of 3280 feet (1000 meters) beneath the ship where the system was tested using a 20 cubic-inch air gun source. No recognizable signal was noted on the records. Similar tests were made at 4920 feet (1500 meters), 6560 feet (2000 meters) and 8200 feet (2500 meters) without success. The interval velocity system failed because the hydrophones did not appear to be sufficiently sensitive to record the air gun signal, although they may be capable of recording a signal from a substantially more powerful source, such as, explosives, which are not permitted to be shot from the drilling vessel. No attempt was made to dampen hydrophone motion in the pipe, although large amplitude noise noted on the records probably resulted from a direct coupling with the ship's motion. This system does not seem to be designed to receive the relatively weak signals commonly employed in standard oceanographic seismic techniques and is, therefore, not suited for use with the air gun. The records have been preserved for future detailed analysis.

The open-hole measurements were even less successful. Considerable difficulty was experienced in passing the sonde through the bit. Once through the bit all signals were lost immediately; the system became stuck and the cable parted at the crown block sheave at a tension of under 9000 pounds. The 17,000 feet (5182 meters) of cable and the sonde were lost. The gamma-ray, neutron and sonic velocity tools were not operative at this time.
Paleontology and Biostratigraphy - Summary

<table>
<thead>
<tr>
<th>Nannofossils</th>
<th>Foraminifera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole 10, Core 1:
The core catcher of Core 1 yielded abundant nannofossils indicating early Pliocene or possibly latest Miocene (Messinian) Age. The assemblage is characterized by Reticulofenestra pseudoumbilica, Sphenolithus abies, Ceratolithus tricorniculatus, Discoaster brouweri, D. pentaradiatus and D. surculus. At the top, Core 1 is considerably younger—probably late Pliocene—the nannofossil assemblage being characterized by Discoaster pentaradiatus, D. brouweri, D. surculus, Ceratolithus rugosus and cf. Cyclcoccolithus cricotus.</td>
<td>Hole 10, Core 1:
Foraminifera, mostly planktonic, are abundant in Core 1 and were studied in some detail. They indicate a probable middle Pliocene Age for the upper part of the core (Section 1, in part), a Lower Pliocene Age for the lower part of Section 1 and for Section 2. These age assignments are based on the occurrence of Globorotalia multiformis and Globoquadrina altispina and Globoquadrina globosa throughout the core; of Globigerina nepenthes and Sphaeroidellopsis seminulina (in Section 2) and Sphaeroidinella dehiscens forma immatura (in Section 2 and the lower part of Section 1). The great abundance of Sphaeroidellopsis at the base of the core suggests a lowermost Pliocene Age. Reference is made to Zone N.19 of Blow for Section 2 and the lower part of Section 1, and to the upper part of Zone N. 19 (or Zone N.20?) of Blow for the upper part of Section 1. Benthonic foraminifera are scarce and some of them are probably displaced (single specimens of Quinqueloculina with corroded test).</td>
</tr>
<tr>
<td>Hole 10, Core 2:
The core catcher sample of Core 2 yielded abundant nannofossils of probably upper Oligocene or possibly basal Miocene Age. The assemblage is dominated by Coccolithus neogammation and Discoaster sp. cf. D. druggi. Also present are Sphenolithus ciperoensis, S. moriformis and questionable Triquetrorhabdulus carinatus. At the top, Core 2 contains characteristic Lower Pliocene nannofossils, apparently transitional to Upper Miocene (Messinian) near the base of Core 1, Section 1; Upper Miocene (basal Tortonian) near the top of Core 2; and mixed Upper, Middle and Lower Miocene throughout most of the remainder of Core 2. Most Miocene index species are lacking, however, it is apparent that some Middle and Lower Miocene sediments are present. Doubtless there also are gaps in sedimentation and a considerable amount of vertical mixing, possibly caused by caving during the coring operation.</td>
<td>Hole 10, Core 2:
All the samples studied from Core 2 are to some degree contaminated with Pleistocene and sub-Recent material, particularly the topmost sample. In Section 1 the planktonic fauna indicates an uppermost Miocene Age, near the Miocene-Pliocene boundary, with Sphaeroidinellopsis seminulina, Globigerina nepenthes, Sphaeroidinellopsis subdehiscens etc. In Section 2 samples are poor in foraminifera, but contain abundant fish debris and fish teeth, and many broken tests of planktonic foraminifera. The assemblages indicate a probable Upper Miocene Age (Sphaeroidinellopsis seminulina, S. subdeniscens, Globigerina nepenthes, etc.). The top of Section 3, of which the planktonic foraminiferal fauna is dominated by Globoquadrina dehiscens and appears strongly affected by dissolution, is probably Middle Miocene in age. Lower in Section 3 and in Section 4, samples yielded poor planktonic faunas with Globigerina venezuelana, Globorotalia opima nana, some atypical Globigerina rohri, abundant Globigerinita unicava and G. dissimilis which indicate a probable upper Oligocene (pre-Globigerinoides datum) age, but do not allow a precise age determination. According to foraminiferal evidence, the Miocene is practically absent at Hole 10 with an important gap, which may be located in Core 2, that is Oligocene in its lower part and topmost Miocene in its upper part.</td>
</tr>
</tbody>
</table>
Nannofossils

<table>
<thead>
<tr>
<th>Hole 10, Core 3:</th>
<th>Hole 10, Core 3:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The core catcher sample and most of Core 3 contain a monotonous and generalized nannoflora of Oligocene Age, and are dominated by Coccolithus neogammation, generalized asteroliths, Sphenolithus moriformis and Coccolithus pelagicus–eopelagicus types. Also present are rare specimens of Sphenolithus ciperensis, S. predistentus, S. radians, Reticulofenestra scissura, and R. umbilica.</td>
<td>The foraminiferal fauna is very poor in the core catcher of Core 3 and the planktonic forms are strongly subordinate to the benthonics, which are diversified with many genera and species present but without great stratigraphic significance. Fish teeth and various fish debris are also abundant. The species Globigerinita unicava, G. dissimilis, Globorotaloides suteri, Globigerina venezuelana, G. rohri (below its usual size) indicate an Oligocene Age.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 10, Core 4:</th>
<th>Hole 10, Core 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The core catcher and all core material of Core 4 was lost. A smear slide made from inside the core barrel contained Coccolithus neogammation, Sphenolithus moriformis, generalized asteroliths, and large Coccolithus eopelagicus. This should be noted as the first instance where the sample recovered was insufficient for an age determination with nannofossils.</td>
<td>Insufficient material for foraminiferal examination.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 10, Core 5:</th>
<th>Hole 10, Core 5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The core catcher sample of Core 5 yielded a rich Upper Eocene nannoflora characterized by Discoaster saipanensis, D. barbadiensis, D. tani tani, Reticulofenestra umbilica, Helicopontosphaera compacta, R. scissura, Cyclococcolithus orbis, Bramletteius serraculoides and Isthmolithus recurvus. At the top, Core 5 contains an Oligocene nannoflora; and, the Oligocene-Eocene boundary is at the top of Section 5 of Core 5, marked by the last occurrence of Discoaster saipanensis and D. barbadiensis. Isthmolithus recurvus and Bramletteius serraculoides persist upwards into Core 4 (see Appendix: discussion of Eocene-Oligocene boundary).</td>
<td>All the washed residues of Core 5 are very small. Samples were taken where the sediment was relatively light in color, but the content in planktonic foraminifera is highly variable. In Section 1 some specimens referable to Globorotalia opima suggest a middle Oligocene Age (Globorotalia opima Zone?). In Section 3 the presence of Globigerina ampliapertura, G. cf. tapuriensis, G. tripartita, G. rohri, Globigerinita dissimilis, G. unicava suggest a lower Oligocene Age—with the possible condensation of two zones. Since the planktonic foraminifera are scarce and not well preserved, no precise age determination is possible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 10, Core 6:</th>
<th>Hole 10, Core 6:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The core catcher of Core 6 yielded a rich Upper Eocene nannoflora very similar to that found in the core catcher of Core 5.</td>
<td>Insufficient material for foraminiferal examination.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hole 10, Core 7:</th>
<th>Hole 10, Core 7:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The core catcher of Core 7 yielded an uppermost Middle Eocene to Upper Eocene nannoflora characterized by Reticulofenestra scissura, R. umbilica, Discoaster barbadiensis, D. saipanensis, cf. D. tani tani, Bramletteius serraculoides, Cyclococcolithus orbis and cf. Isthmolithus recurvus.</td>
<td>The core catcher of Core 7 yielded a poorly preserved fauna with abundant benthonic foraminifera, fish debris and planktonic foraminifera. The planktonic assemblage is unusually poor and most of the genera, such as Globorotalia, Truncorotaloides, Hantkenina, etc., which are common in the stratigraphic interval involved, are lacking. This notwithstanding the presence of an important zonal marker (Porticulasphaera mexicana vel Orbulinoides beckmanni) allows a precise age determination, since O. beckmanni is a total range zone indicating the upper part of the Middle Eocene. Also present are Globigerapsis index, Globigerinita sp. and numerous benthonic species with arenaceous as well as calcitic tests.</td>
</tr>
<tr>
<td>Nannofossils</td>
<td>Radiolaria</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Hole 10, Core 8: The core catcher of Core 8 yielded a Lower Eocene nannoflora characterized by Discoaster lodoensis, D. barbadiensis, Discoasteroides kupperi, Chiasmolithus grandis, Sphenolithus radians and Cruciplacolithus staurian. At the top of Core 8 the same nannofossils were recorded.</td>
<td>Hole 10, Core 8: The core catcher sample of Core 8 contains an abundant, well preserved Eocene radiolarian fauna, including Podocyrtis papalis, Lynchnocanium bellum and Anthocyrtidium hispidum. The absence of Calocyclas turris indicates a Lower to Middle Eocene age for the assemblage (see further paleontological notes).</td>
</tr>
<tr>
<td>Hole 10, Core 9: The nannoflora from the core catcher sample of Core 9 is very similar to that obtained from Core 8 with the addition of a discoaster species similar to Discoaster multiradiatus, but with only 14 rays, and tentatively identified as Discoaster salisburgensis. The age of this level is Lower Eocene, probably G. formosa Zone.</td>
<td>Hole 10, Core 9: Samples from throughout Core 9 contain an abundant and well-preserved radiolarian fauna of Lower to Middle Eocene Age (see further paleontological notes).</td>
</tr>
<tr>
<td>Hole 10, Core 10: The sediments recovered in Cores 10 to 19 contained a rich and varied Upper Cretaceous nannoflora. From the top of Core 10 the following species were identified: Lithraphidites quadratus, Cribrosphaerella chrenbergi, Prediscosphaera Cretacea, P. spinosa, Arkhangelskiella cymbiformis, Microvagab辅导 decoratus, Maslovella barnesae, Cribropsephalus concicus, Micula decussata, Effelliolithus turrisiella, Rhabdolithes regularis, Lithraphidites carniolensis, Kaupneriopsis sp., Tetralithus murus, Tetralithus aculeus, Cylindralithus gallicus, Zygodiscus pseudanthophorus, Microvagab辅导 stradneri, Cretarhabdus? decorus and Rhabdolithina splendens. The same species were also recorded from the core catcher of Core 10. Lithraphidites quadratus restricts this assemblage to the Maestrichtian.</td>
<td>Hole 10, Core 10: Cores 10 through 18 yielded very rich and beautifully preserved Upper Cretaceous foraminiferal faunas which allowed precise age determinations. The topmost sample taken in Core 10 contains: racemiguembelina fructicosa, Planoglobulina acervulinoides, Globotruncana conica, G. stuarti, Praeglobotruncana citae (vel Globotruncanella havanensis), Globotruncana contusa (abundant, with large, high-spired specimens—indicating the latest evolutionary stages of the species) and many other species and is referable to the upper part of the Globotruncana mayaroensis Zone, where the zonal marker is often absent. This zone is the last known from the Upper Cretaceous, and is referred to as the upper Maestrichtian. The core catcher of Core 10 contains the species listed above, as well as Globotruncana mayaroensis, Globigerinelloides messinae, Rugoglobigerina rugosa, etc.</td>
</tr>
<tr>
<td>Hole 10, Core 11: See Core 10.</td>
<td>Hole 10, Core 11: The core catcher of Core 11 contains a rich and diversified planktonic foraminiferal fauna with Globotruncana tricarinata, G. linneiana, G. fornicata, C. conica, Planoglobulina acervulinoides, Rugoglobigerina, etc., which is referred to the Globotruncana tricarinata Zone (lowermost Maestrichtian).</td>
</tr>
</tbody>
</table>
Nannofossils

| Hole 10, Core 12: | Hole 10, Core 12: |
| See Core 10. | The core catcher of Core 12 yielded a foraminiferal fauna very similar to that of Core 11 and is also referred to the *Globotruncana tricarinata* Zone (lowermost Maastrichtian). |

| Hole 10, Core 13: | Hole 10, Core 13: |
| See Core 10. | The presence of the zonal marker *Globotruncana calcarata* places Cores 13 (pars) and 14 in the homonymous zone (upper Campanian), which—being a total range zone—is clearly defined. The last occurrence of *Globotruncana calcarata* has been noticed in Section 4 of Core 13. For the definition of the Campanian-Maastrichtian boundary, see the discussion in Chapter 20. Also present are *Globotruncana arca*, *G. rosetta*, *G. fornicata*, *G. linneiana*, *G. ventricosa*, *G. tricarinata*, *Globigerinelloides messinae*, *Heterohelix globulosa*, *Schackoina tappanae*, etc. |

| Hole 10, Core 14: | Hole 10, Core 14: |
| See Core 10. | As above, *Globotruncana calcarata* Zone (upper Campanian). |

| Hole 10, Core 15: | Hole 10, Core 15: |
| See Core 10. | Most of the species present in Core 14 are also present here, e.g., *Globotruncana arca*, *G. ventricosa*, *G. tricarinata*, *G. calciformis*, *G. elevata*, *G. linneiana*, etc. *Globotruncana calcarata* is present in Section 1, but is lacking in lower sections. Several zonal names have been proposed for the pre-*Globotruncana calcarata* datum stratigraphic interval (*Globotruncana elevata* Zone, *G. stuartiformis* Zone, *G. stuarti sensulato* Zone), all of which are comparable since the upper boundary of all of them is indicated by the first occurrence of *Globotruncana*. |

| Hole 10, Core 16: | Hole 10, Core 16: |
| See Core 10. | Same fauna as above with *Pseudotextularia elegans*, *Heterohelix globulosa*, *Schackoina multispinata*, *Globigerinelloides* spp., *Globotruncana elevata*, *G. calciformis*, *G. arca*, *G. linneiana*, *G. marginata*, *G. fornicata*, etc.; *Globotruncana elevata* Zone, Campanian. A good correlation with the stratotype of the Campanian Stage as described by Van Hinte (1965) is possible, but the present fauna is much more diversified. |

| Hole 10, Core 17: | Hole 10, Core 17: |
| See Core 10. | Assemblage similar to Core 16; Campanian, *Globotruncana elevata* Zone. |

| Hole 10, Core 18: | Hole 10, Core 18: |
| See Core 10. | As for Core 17, Campanian (middle to lower), *Globotruncana elevata* Zone. |

| Hole 10, Core 19: | Hole 10, Core 19: |
| See Core 10. | As above. |
Rates of Sediment Accumulation

The reader is referred to the Cruise Leg Synthesis for discussion of the basic assumption involved in these calculations.

At Site 10 six cored intervals allowed a calculation of rates of sediment accumulation. They are as follows:

1) Miocene/Pliocene boundary at 40 meters; 6 m.y.
2) Eocene/Oligocene boundary at 80 meters; 38 m.y.
3) Upper Middle Eocene (Orbulinoides beckmanni Zone) at 99 meters; 45 m.y.
4) Lower Eocene (Globorotalia formosa formosa Zone or G. aragonensis Zone—Globorotalia rex Zone) at 185 meters; 51 m.y.
5) Uppermost Maestrichtian (upper part of the Globotruncana mayaroensis Zone) at 295 meters; 65 m.y.
6) Lower Campanian (Globotruncana elevata Zone) at 475 meters; 80 m.y.

The rates of sediment accumulation for the different intervals considered are as follows:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Rate of Sediment Accumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miocene/Pliocene boundary to Recent (ocean floor to Core 2):</td>
<td>0.8 cm/1000 years</td>
</tr>
<tr>
<td>Eocene/Oligocene boundary to Miocene/Pliocene boundary (Core 5 to Core 2):</td>
<td>0.12 cm/1000 years</td>
</tr>
<tr>
<td>Middle Eocene to Eocene/Oligocene boundary (Core 7 to Core 5):</td>
<td>0.25 cm/1000 years</td>
</tr>
<tr>
<td>Lower Eocene to Middle Eocene (Core 9 to Core 7):</td>
<td>1.43 cm/1000 years</td>
</tr>
<tr>
<td>Upper Maestrichtian to Lower Eocene (Core 10 to Core 9):</td>
<td>0.78 cm/1000 years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval</th>
<th>Rate of Sediment Accumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miocene/Pliocene boundary to Recent:</td>
<td>0.8 cm/1000 years</td>
</tr>
<tr>
<td>Eocene/Oligocene boundary to Recent:</td>
<td>0.21 cm/1000 years</td>
</tr>
<tr>
<td>Middle Eocene to Recent:</td>
<td>0.22 cm/1000 years</td>
</tr>
<tr>
<td>Lower Eocene to Recent:</td>
<td>0.36 cm/1000 years</td>
</tr>
<tr>
<td>Upper Maestrichtian to Recent:</td>
<td>0.45 cm/1000 years</td>
</tr>
</tbody>
</table>

The sediment accumulation rate for the Pliocene-Pleistocene interval penetrated at Site 10 is approximately 0.8 cm/1000 years. This is somewhat less than the 1 to 3 cm/1000 years commonly considered an average rate for calcareous pelagic sediments (Broecker et al., 1958). A middle Pliocene Age determined for Section 1 of Core 1 (see nannofossil biostratigraphy) yields a value of 0.77 cm/1000 years, and is in very close agreement with the rate of accumulation for the entire Pliocene-Pleistocene interval.

The rate of sediment accumulation from the top of the Eocene to the base of the Pliocene is 0.12 cm/1000 years, which is far below that of the interval above. This figure is obviously misleading, however, as there appears to be a gap in sedimentation in the Lower and/or Middle Miocene interval, or a greatly attenuated and mixed section, or both. In addition, the core which penetrated this interval also appears to be contaminated by down-hole caving.

The interval from the upper Middle Eocene (Orbulinoides beckmanni Zone) to the basement of the Oligocene is also characterized by a low sediment accumulation rate, i.e., 0.25 cm/1000 years, although for this interval no large gap in sedimentation is apparent from preliminary sampling.

The Middle Eocene to Lower Eocene interval and the Lower Eocene to uppermost Cretaceous interval have a sediment accumulation rate of 1.07 cm/1000 years and 0.91 cm/1000 years, respectively. These values are not significantly different and are comparable to the 0.8 cm/1000 years estimated for the Pliocene-Pleistocene interval at this site.

The Cretaceous interval from the upper Maestrichtian to the lower Campanian yields a sediment accumulation rate of 1.2 cm/1000 years, which is only slightly higher than the apparently undisturbed intervals above.

The 1 to 3 cm/1000 years figure commonly accepted for calcareous pelagic sediments is based largely on data obtained from piston cores which usually penetrate only Pleistocene, and rarely Pliocene, sediments; and, hence, a rate of about 1.0 cm/1000 years is entirely reasonable.

Discussion

Site 10 was drilled in 15,402 feet (4697 meters)—corrected—of water. The sediment is predominantly calcareous throughout, which suggests that this area has remained above the effective calcium carbonate
compensation depth from lower Campanian times to the Recent. In contrast, the sediment at Site 7, 8 and 9 apparently was deposited on the sea floor at a level below the compensation depth.

Possible zeolites are found in the clays from the Eocene to the late Miocene—scattered throughout and forming thin beds within calcareous oozes. As discussed in the report for Site 9, these zeolites and clays may have been formed by the alteration of volcanic material possibly supplied by seamounts that lie to the north and northwest. The zeolites of Site 10 are mostly typical laths and cross twigs of phillipsite.

A seismic reflector that lies in acoustically transparent sediments has been noted over a wide area of the western lower flank of the Mid-Atlantic Ridge in the North Atlantic. The reflector lies at a sediment depth of about 500 to 600 feet (152.4 to 182.9 meters), based on seismic measurements. The coring rate for Core 9 decreased markedly and a piece of radiolarian chert was recovered in that core as well as in the core catcher of Core 8. In addition, the drilling record showed a decrease in the drilling rate below Core 9. The evidence suggests that the reflector is associated with the Eocene siliceous sediment.

The deeper sediments at Site 10, immediately above volcanic basement, exhibit almost no signs of iron-enrichment. In fact, they appear to be unaltered and unconsolidated calcareous oozes right down to the basalt contact. The main changes with increasing depth are the increasing proportions of volcanogenic material and dolomite rhombs.

REFERENCES

APPENDIX - MICROPALAEONTOLOGICAL DETERMINATIONS
Lists of Selected Planktonic and Benthonic Foraminifera and Age Determinations by M. B. Cita.
Sample 10-1-1, 57-59 cm (depth about 30.5 meters below the mud line):
Rich planktonic assemblage including Globoquadrina altispira altispira (very abundant, dominant species), G. altispira globosa, Orbulina universa, Globorotalia sp. ex gr. G. miozea, G. cf. crassaformis, G. aff. pungiculata, G. menardii (right coiling), G. multicamerata, Sphaeroidinella sp. (also without external cortex), Sphaeroidinella altispira globosa, Orbulina universa, Globorotalia altispira altispira (very abundant, dominant species), G. miozea, G. aff. pungiculata, G. aff. crassaformis, G. aff. cf. ex gr. S-sized forms include Pyrgo spp., Globocassidulina, Cassidulina, Cibicides, Quinqueloculina, Lagena. Also present rare Ostracodes. Assemblage very poor.
Age determination: As above.

Sample 10-1-1, 98-100 cm (depth about 30.9 meters below the mud line):
Planktonic assemblage as above.
Age determination: As above.

Sample 10-1-1, 135-137 cm (depth about 31.25 meters below the mud line):
Many broken tests of planktonic foraminifera. Assemblage as above, but containing also rare Sphaeroidinella altispira altispira, Sphaeroidinellina dehiscens, Sphaeroidinella dehiscens immatura, Globorotalia pungiculata. Among the benthonics are present Cassidulina sp., Laticarinina pauperata, Pyrgo spp. Lagena, etc.
Age determination: Lower Pliocene, Zone N.19.

Sample 10-1-1, 1-3 cm (depth about 31.40 meters below the mud line): Planktonic assemblage as above.
Age determination: As above.

Sample 10-1-2, 101-103 cm (depth about 32.40 meters below the mud line): Assemblage similar to the overlying ones, with Globigerina nepenthes, Sphaeroidinella altispira, Sphaeroidinellina dehiscens and forma immatura, Sphaeroidinellina subdehiscens, Globorotalia pungiculata, single specimens of Globorotalia margaritae, etc. The benthic population includes Pyrgo, Quinqueloculina, Pullenla, Cassidulina, Gyroidina, etc.
Age determination: Lower Pliocene, lower part of Zone N.19.

Sample 10-1-2, 41-43 cm (depth about 31.80 meters below the mud line): Assemblage as above, with Globorotalia multicamerata, Sphaeroidinellina seminulina, Globobquadrina altispira, Globorotalia pungiculata, Globigerinoides conglobatus, etc. Benthonic assemblage including Globocassidulina, Cassidulina, Cibicides spp., among which C. pseudoungarianus, Pyrgo, Lagena, Eponides, Pullenla, Laticarinina pauperata. Very rare Ostracodes. Assemblage very poor.
Age determination: As above.

Sample 10-1-2, 64-66 cm (depth about 32 meters below the mud line): Assemblage as above, with Globigerina nepenthes. Benthonic assemblage including Allomorphina trigona, Quinqueloculina, Gyroidina, etc.
Age determination: Lower Pliocene, Zone N.19 of Blow.

Sample 10-1-2, 101-103 cm (depth about 32.40 meters below the mud line): Assemblage similar to the overlying ones, with Globigerina nepenthes, Sphaeroidinellina seminulina, Sphaeroidinellina dehiscens and forma immatura, Sphaeroidinellina subdehiscens, Globorotalia altispira, single specimens of Globorotalia margaritae, etc. The benthonic population includes Pyrgo, Quinqueloculina, Pullenla, Cassidulina, Gyroidina, etc.
Age determination: Lower Pliocene, lower part of Zone N.19.

Sample 10-1, core catcher (depth about 40 meters below the mud line): Planktonic assemblage as above.
Age determination: As above.
Sample 10-2-1, 134-136 cm (depth about 41.55 meters below the mud line): Rich heterogeneous planktonic assemblage including Lower Pliocene species such as Sphaeroidinellopsis subdehiscens and sub-Recent ones such as fully keeled Globorotalia truncatulinoides, pink Globigerinoides ruber, Globigerina digitata, Pulleniatina obliquiloculata finalis, etc. Age determination: the oldest species indicate a Lower Pliocene or topmost Miocene Age. It is the opinion of the writer that the Quaternary species have been artificially introduced during the coring operations.

Sample 10-2-2, 1-3 cm (depth 41.7 meters below the mud line): Planktonic assemblage including Globigerina nepenthes, Orbulina universa, Globigerinita glutinata, Sphaeroidinellopsis seminulina, S. subdehiscens, Sphaeroidinella dehiscens immutata, Globorugoida alitspira, Globigerinoides conglobatus, G. elongatus, Hustigerina siphonifera. Benthonic assemblage including Laticarinina pauperata, Pyrgo, Eponides, Planulina, Ehrenbergina, etc. Assemblage rather poor, with many broken tests (dissolution). Some contamination with sub-Recent materials. Age determination: lowermost Pliocene (probably basal part of Zone N.19).

Sample 10-2-2, 48-50 cm (depth about 42.2 meters below the mud line): Planktonic assemblage very poor, including Globigerina nepenthes (abundant), Sphaeroidinellopsis seminulina (rare), Globorugoida dehiscens, Globigerinoides venezuelana. Detrital material is common, as well as fish teeth. Also present benthonic foraminifera, among which are Laticarinina pauperata, Spirolectammina, Gyroidina girardana, Siphonodasoria, Eggerella. Age determination: Middle-Upper Miocene.

Sample 10-2-2, 102-105 cm (depth about 42.7 meters below the mud line): Planktonic assemblage including Globorugoida alitspira, Sphaeroidinellopsis seminulina, S. subdehiscens, Globigerinoides ruber, G. conglobatus, Globorotalia acostaensis, Globigerina nepenthes, Orbulina universa, etc. Detrital material is present as well as fish teeth and rare Ostracodes. Benthonic foraminifera include Laticarinina pauperata, Quinquiloculina, Anomalina, Eponides, Globocassidulina, etc. Many broken tests of planktonic foraminifera. Age determination: Upper Miocene, Probably Tortonian.

Sample 10-2-3, 0-3 cm (depth about 43.2 meters below the mud line): Assemblage very poor, with many broken tests of planktonic foraminifera. The fauna is dominated by Globorugoida dehiscens et aff. Also present Globigerina cf. bulloides, Globigerinita dissimilis, Sphaeroidinellopsis sp. Benthonic assemblage as above, including also Vaginulina, Ellipsonodosaria, Eggerella, Pullenia, Pleurostomella, etc. Age determination: Miocene, possibly Lower to Middle.

Sample 10-2-3, 82-85 cm (depth about 44 meters below the mud line): Assemblage very poor, mostly consisting of minute fragments of the test of planktonic foraminifera. Some contamination with younger material (fragments of Pliocene to Recent keeled Globorotalias). Globigerina venezuelana. Also present abundant detritus, fish teeth and other fish remains, benthonic foraminifera including Siphonodasoria verneului, Globocassidulina, Vulnerina, Gyroidina, etc. Age determination: probably Miocene.

Sample 10-2-3, 142-144 cm (depth about 44.6 meters below the mud line): Assemblage very poor, similar to the preceding one. Globigerinita dissimilis, G. unicava and Globigerina cf. venezuelana have been identified. Age determination: possibly Lower Miocene or Oligocene.

Sample 10-2-4, 15-17 cm (depth about 44.85 meters below the mud line): Assemblage poor in planktonic foraminifera, which include the taxa Globigerinita dissimilis, G. unicava, Globorotalia opima nana, Globigerina venezuelana. Benthonic foraminifera include Eggerella, Textularia, Globocassidulina, Vaginulina, Nodosaria, Siphonodasoria, Cibicides, Eponides, Nonion, Pleurostomella, Pullenia. Also present abundant fish teeth. Some contamination with Quaternary material. Age determination: As above.

Sample 10-2-4, 40-42 cm (depth about 45.1 meters below the mud line): Assemblage very poor, strongly affected by dissolution. Benthonic foraminifera and fish teeth as above. Many broken tests of planktonic foraminifera. Some contamination with Quaternary material. Age determination: As above. A pre-Miocene age is probable, but is based only on negative factors (absence of Globigerinoides spp.).

Sample 10-2-4, 64-66 cm (depth about 45.35 meters below the Mud line): Assemblage as above. Age determination: As above.

Sample 10-2-4, 90-93 cm (depth about 45.60 meters below the mud line): Assemblage as above, with many broken tests of planktonic foraminifera. Diversified, though not rich, benthonic assemblage including, among others, Vulnerina jarvsi, Pullenina quinqueloba, etc. Always abundant fish teeth. Age determination: probably Oligocene (upper?).

Sample 10-2-4, 105-107 cm (depth about 45.75 meters below the mud line): Assemblage as above. Some contamination with Quaternary material. Age determination: As above.

Sample 10-2-4, 145-147 cm (depth about 46.15 meters below the mud line): Assemblage containing many broken tests of planktonic foraminifera and some entire shells belonging to
the species Globigerina rohri, G. venezuelana, Globigerinita dissipitlis, G. unicava, Globorotalia opima opima, G. opima nana. A number of small, immature tests of Globigerinae. Few benthonic foraminifera including Vulvulina jarvisi, Gyroidina girardana, Pleurostomella sp.

Age determination: Oligocene, probably Globorotalia opima Zone.

Sample 10-2, core catcher (depth about 48.2 meters below the mud line):
Assemblage rather poor in planktonic foraminifera, including the species Globigerina rohri, G. venezuelana, Globigerinita dissipitlis, G. unicava. Fairly abundant benthonic foraminifera of Oligocene affinity including genera with calcareous test (Pleurostomella, Nodosarella, Ellipsnodosaria, Siphonodosaria, Globocassidulina, Gyroidina girardana) and arenaceous test (Vulvulina jarvisi, Dorothia, Eggerella, Textularia, etc.). Also present fish debris and teeth.

Age determination: As above.

Sample 10-3-2, 28-30 cm (depth about 50 meters below the mud line):
Planktonic assemblage very poor, mostly consisting of minute fragments of tests. Some (rare) tests are complete, but internally dissolved. They belong to Globigerinita unicava.

Age determination: probably Oligocene.

Sample 10-3, core catcher, (depth about 57.3 meters below the mud line):

Age determination: probably Oligocene.

Sample 10-5-1, 103-105 cm (depth about 72.3 meters below the mud line):
Very poor planktonic assemblage, mostly consisting of minute fragments of tests. Most of the entire tests are empty, internally dissolved. The assemblage is dominated by Globigerinita unicava. Also present G. dissipitlis, Globigerina venezuelana, G. cf. rohri, Globorotalia opima opima.

Age determination: Oligocene, probably Globorotalia opima opima Zone.

Sample 10-5-2, 39-41 cm (depth about 73.2 meters below the mud line):
Poor planktonic assemblage, as above. Fairly abundant benthonic foraminifera and fish teeth.

Age determination: Oligocene.

Sample 10-5-3, 120-123 cm (depth about 74.6 meters below the mud line):
Many broken tests. Planktonic foraminifera are fairly abundant, but most of them under their average size. They include Globigerinita unicava (abundant), G. dissipitlis, Globigerina cf. ampliapertura, G. rohri, G. ex gr. G. tripartiita, G. cf. tapuriensis.

Age determination: Lower Oligocene, possibly Zones P.18 to P.20 of Blow, condensed (P).

Sample 10-5-4, 58-60 cm (depth about 75.5 meters below the mud line):
Planktonic assemblage very poor, including Globigerina sp. and Globigerinita unicava, with empty tests. Many fragments of tests, probably due to dissolution. The benthonic assemblage includes Globocassidulina, Cibicides, Eponides, Pleurostomella, Ellipsnodosaria, Globospira charoides, etc. Numerous fish teeth.

Age determination: None, (lower Oligocene?).

Sample 10-5, core catcher (depth about 80.4 meters below the mud line):
Very poor planktonic assemblage including Globigerina venezuelana, Globorotaloides sp. and many broken tests. Planktonic assemblage fairly diversified, including Cibicides sp., C. grimsdalei, Pullenia salisburyi, Gyroidina octocamerata, Siphonodosaria, Nodosarella, Globocassidulina, Robula, etc.

Age determination: None, (lower Oligocene? Upper Eocene?).

Sample 10-7-1, 83-85 cm (depth about 90.3 meters below the mud line):
Poor planktonic assemblage, mostly consisting of broken tests. Globigerinita unicava, Globorotaloides sp., Globigerina ouachitensis, G. cf. tripartiita. The benthonic assemblage includes Eponides trumpyi, Gyroidina octocamerata, Siphonodosaria, Globocassidulina, etc.

Age determination: probably Upper Eocene.

Sample 10-7-2, 100-103 cm (depth about 92 meters below the mud line):
Very poor assemblage, similar to the preceding one.

Age determination: As above.

Sample 10-7-3, 38-41 cm (depth about 92.9 meters below the mud line):
Planktonic assemblage as above, with Globigerapsis index. Benthonic assemblage including Eponides trumpyi, Cibicides grimsdalei, Pleurostomella sp.

Age determination: As above.

Sample 10-7-4, 119-122 cm (depth about 95.2 meters below the mud line):
Planktonic assemblage as above.

Age determination: As above.

Sample 10-7, core catcher (depth about 98.8 meters below the mud line):
Poor planktonic assemblage including Orbulinoides beckmanni, Globigerinita sp., Globigerapsis index. Many broken tests; empty tests are usual. Fairly rich benthonic assemblage including Clavulina, Karreriella, Dorothia, Osangularia mexicana, Cibicides, Eponides, etc.

Age determination: upper Lutetian, Orbulinoides beckmanni Zone (upper part of the Middle Eocene).
Sample 10-8, core catcher (depth about 176.2 meters below the mud line):
No foraminifera present.
Age determination: None.

Sample 10-9, core catcher (depth about 185.3 meters below the mud line):
No foraminifera present.
Age determination: None.

Sample 10-10-1, 76-78 cm (depth about 292 meters below the mud line):
Rich planktonic assemblage including Globotruncana contusa (abundant, with highly evolved specimens), G. conica, G. stuarti, Praeglobotruncana citae, Racemiguembelina fructicosa, Pseudotextularia elegans, Pseudoguembelina excolata, Planoglobulina acervulinoides, P. multicamerata, Rugoglobigerina spp., Globigerinelloides messinae, etc.
Age determination: Maestrichtian (upper), Globotruncana mayaroensis Zone.

Sample 10-10-2, 100-102 cm (depth about 293.85 meters below the mud line):
Rich planktonic assemblage as above, also including Globotruncana mayaroensis.
Age determination: late Maestrichtian, Globotruncana mayaroensis Zone.

Sample 10-10-3, 100-102 cm (depth about 295.3 meters below the mud line):
Planktonic assemblage as above. Age determination: As above.

Sample 10-10-4, 100-102 cm (depth about 296.8 meters below the mud line):
Planktonic assemblage as above. Age determination: As above.

Sample 10-10, core catcher (depth about 298.8 meters below the mud line):
Rich and diversified planktonic assemblage including Globotruncana area, G. caliciformis, G. fornicata, G. linneiana, G. tricarinata, G. ventricosa etc. Also present some benthonic foraminifera among which Reussella szajnochae szajnochae.
Age determination: early Maestrichtian, Globotruncana tricarinata (or corresponding) Zone.

Sample 10-11-1, 140-143 cm (depth about 396.9 meters below the mud line):
Planktonic assemblage as above. Benthonic assemblage including Aragonia and Gavelinella.
Age determination: As above.

Planktonic assemblage as above.
Age determination: As above.
Sample 10-13, core catcher (depth about 405 meters below the mud line):
Rich and diversified planktonic assemblage including Globotruncanina calcarata (rare), G. arca, G. rosetta, G. fornicta, G. linneiana, G. ventricosa, G. tricarinata, Globigerinelloides mesinae, Heterohelix globulosa, Schackoina tappanae, etc. Very rare benthonic foraminifera including Aragonia sp.
Age determination: uppermost Campanian, Globotruncanina calcarata Zone.

Sample 10-14-1, 120-122 cm (depth about 406.2 meters below the mud line):
Planktonic assemblage as above.
Age determination: As above.

Sample 10-14-2, 100-102 cm (depth about 407.5 meters below the mud line):
Planktonic assemblage as above.
Age determination: As above.

Sample 10-14, core catcher (depth about 414.1 meters below the mud line):
Planktonic assemblage as above, very rich and well preserved.
Age determination: As above.

Sample 10-15-1, 120-122 cm (depth about 415.3 meters below the mud line):
Planktonic assemblage as above, with Globotruncanina calcarata, etc.
Age determination: as above, Globotruncanina calcarata Zone.

Sample 10-15, core catcher (depth about 423.2 meters below the mud line):
Rich planktonic assemblage including Globotruncanina elevata, G. caliciformis, G. fornicta, G. linneiana, G. ventricosa, Pseudotextularia elegans, etc.
Age determination: Campanian, Globotruncanina elevata Zone.

Sample 10-16-1, 130-132 cm (depth about 423.5 meters below the mud line):
Rich planktonic assemblage as above.
Age determination: As above.

Sample 10-16-2, 100-102 cm (depth 424.7 meters below the mud line):
Assemblage as above.
Age determination: As above.

Sample 10-16, core catcher (depth about 432.3 meters below the mud line):
Globotruncanina arca, C. caliciformis, G. fornicta, G. linneiana, G. elevata, Heterohelix globulosa, Pseudotextularia elegans, Globigerinelloides sp., Schackoina multispinata, etc.
Age determination: Campanian, Globotruncanina elevata Zone.

Sample 10-17-1, 140-142 cm (depth about 443.7 meters below the mud line):
Assemblage as above.
Age determination: As above.

Sample 10-17, core catcher (depth 441.4 meters below the mud line):
Very rich and diversified planktonic fauna including Globotruncanina linneiana, G. elevata, G. marginata, G. fornicta, G. caliciformis, Pseudotextularia elegans, Heterohelix globulosa, Globigerinelloides sp., etc. Rare benthonic foraminifera including Gavelinella, Verneuilina, Gaudryina, etc.
Age determination: lower to middle Campanian (Globotruncanina elevata Zone).

Sample 10-18-1, 100-102 cm (depth about 442.4 meters below the mud line):
Rich assemblage as above.
Age determination: As above.

Sample 10-18-2, 110-112 cm (depth about 444 meters below the mud line):
Rich assemblage as above, including Globotruncanina arca, G. rosetta, G. linneiana, G. fornicta, G. elevata, G. caliciformis etc.
Age determination: lower to middle Campanian.

Sample 10-18-3, 100-102 cm (depth about 445.4 meters below the mud line):
Rich assemblage as above.
Age determination: As above.

Sample 10-18-4, 120-122 cm (depth about 447.1 meters below the mud line):
Rich assemblage as above, also including Reussella szajnochae szajnochae.
Age determination: As above.

Sample 10-18, core catcher (depth about 450.5 meters below the mud line):
Rich assemblage as above, also including Globotruncanina marginata, G. elevata, G. caliciformis, G. fornicta, G. rosetta, Schackoina tappanae, etc.
Age determination: Globotruncanina elevata Zone, lower to middle Campanian.

Sample 10-19-1, 80-82 cm (depth about 451.3 meters below the mud line):
Rich assemblage as above.
Age determination: As above.

Calcareous Nannofossil Determinations by S. Gartner.

Sample 10-1, top:
Age determination: late Pliocene.

Sample 10-1-1, 56 cm:
Discoaster pentaradiatus, D. broeweri (3, 4, and 6 rays) D. surculus, Ceratolithus rugosus, cf. Coccolithus cri-
cotus, Cyclococcolithus leptoporus, Scyphosphaera amphora, Disco lithus phaseolus, Reticulofenestra pseudoumbilica (small).

Age determination: middle-late Pliocene.

Sample 10-1-1, 66 cm:
As above.
Age determination: middle-late Pliocene.

Sample 10-1-1, 100 cm:
As above.
Age determination: middle-late Pliocene.

Sample 10-1-1, 125 cm:
As above.
Age determination: middle-late Pliocene.

Sample 10-1-1, 140-145 cm:
Discoaster pentaradiatus, D. brouweri, D. surculus, C. variabilis, Reticulofenestra pseudoumbilica, Cyclococcolithus leptoporus, Ceratolithus rugosus.
Age determination: middle Pliocene.

Sample 10-1-1, 150 cm:
As above.
Age determination: middle Pliocene.

Sample 10-1-2, 145 cm:
Age determination: early Pliocene.

Sample 10-1, core catcher:
As above.
Age determination: early Pliocene.

Sample 10-2-1, 134 cm:
As above.
Age determination: early Pliocene.

Sample 10-2-1, 143 cm:
Age determination: late Miocene (Messinian) - early Pliocene.

Sample 10-2-2, 2 cm:
Discoaster variabilis, D. brouweri (primitive, with large center), D. pentaradiatus, Reticulofenestra pseudoumbilica, Ceratolithus tricorniculatus.
Age determination: early Pliocene.

Sample 10-2-2, 60 cm:
Discoaster exilis, D. kugleri, Coccolithus neogammation.
Age determination: middle Miocene (Messinian) - early Pliocene.

Sample 10-2-2, 140 cm:
Age determination: mixed late Middle Miocene and late Miocene.

Sample 10-2-3, 2 cm:
Age determination: mixed late Middle Miocene and late Miocene.

Sample 10-2-3, 20 cm:
Discoaster exilis, D. aulakos, D. kugleri, D. deflandrei, Coccolithus neogammation, Sphenolithus moriformis.
Age determination: middle Miocene.

Sample 10-2-3, 40 cm:
Discoaster exilis, D. deflandrei, Coccolithus neogammation, Sphenolithus heteromorphus, Cyclolithella rotunda.
Age determination: early Miocene.

Sample 10-2-4, 140 cm:
Coccolithus neogammation, Sphenolithus ciperoensis, S. moriformis.
Age determination: Oligocene.

Sample 10-3-1, 40 cm:
Age determination: Oligocene.

Sample 10-3-1, 80 cm:
Cf. Reticulofenestra scissura, Sphenolithus moriformis, Coccolithus neogammation, Cyclolithella rotunda, Coccolithus eopelagicus.
Age determination: Oligocene.

Sample 10-3-1, 100 cm:
Coccolithus neogammation, cf. Reticulofenestra scissura, Sphenolithus ciperoensis.
Age determination: early Oligocene.

Sample 10-3, core catcher:
Coccolithus neogammation, Reticulofenestra scissura, Sphenolithus pseudoradians.
Age determination: early Oligocene.

Sample 10-5-4, 140 cm:
Reticulofenestra umbilica, R. scissura, Isthmolithus recurvus, Sphenolithus pseudoradians, Discoaster tani
tani, Bramletteius serraculoides.
Age determination: early Oligocene.

Sample 10-5-5, 20 cm:
Bramletteius serraculoides, Reticulofenestra umbilica,
R. scissura, Sphenolithus pseudoradians, Cyclococcolithus orbis,
Discoaster saipanensis, Isthmolithus recurvus, Hayella situliformis,
Discoaster tani tani.
Age determination: late Eocene.

Sample 10-5-5, 40 cm:
As above plus Discoaster barbadiensis.
Age determination: late Eocene.

Sample 10-5-5, core catcher:
As above.
Age determination: late Eocene.

Sample 10-6, core catcher:
As above.
Age determination: late Eocene.

Sample 10-7, core catcher:
As above.
Age determination: late Eocene.

Sample 10-8 top:
Discoaster lodoensis, D. barbadiensis, Discoasteroides
cuupperi, Chiasmolithus grandis, Coccolithus gammatiorion,
Cyclococcolithus orbis, Cruciplacolithus staurion.
Age determination: early Eocene.

Sample 10-8, core catcher:
As above.
Age determination: early Eocene.

Sample 10-9, core catcher:
Discoaster lodoensis, D. salisburgensis, Discoasteroides
kupperi, Sphenolithus radians, Chiasmolithus grandis,
Cyclococcolithus orbis.
Age determination: early Eocene.

Sample 10-10, top:
Lithraphidites quadratus, L. carniolensis, Cribrosphe-
rella ehrenbergii, Prediscosphaera cretacea, P. spinosa,
Microrhabdulus decoratus, M. stradneri, Maslovella barn-
esae, Arkhangelskiella cymbiformis, Cretarhabdus con-
icus, C. crenulatus, Micula decussata, Eiffellithus
turriselpheli, Rhabdolithina regularis, R. splendens,
Kamptnerius sp., Tetrallithus aculens, T. murus,
Cylindricalithus gallicus, Zygodiscus pseudanthophorus, Cre-
tarhabdus? decorus.
Age determination: Maestrichtian.

Sample 10-10, core catcher:
As above.
Age determination: Maestrichtian.

Sample 10-11, core catcher:
As above less Cylindricalithus gallicus, Lithraphidites
quadrtact, Prediscosphaera spinosa, Tetrallithus murus,
plus Arkhangelskiella parca, Cylindricalithus serratus.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-12, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-13, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-14, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-15, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-16, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-17, core catcher:
As above.
Age determination: late Cretaceous (Campanian-Mae-
strichtian).

Sample 10-18, core catcher:
As above less Rhabdolithina regularis.
Age determination: early Campanian.

Sample 10-19, core catcher:
As above less Rhabdolithina splendens.
Age determination: early Campanian.