17. PRELIMINARY REPORT ON PALEOMAGNETISM OF DEEP SEA DRILLING PROJECT LEG 2 SPECIMENS

N. D. Opdyke, Lamont-Doherty Geological Observatory, Palisades, New York

The core locations and descriptions of cores are given elsewhere in this report. All paleomagnetic measurements were made at Lamont-Doherty Geological Observatory on magnetometers of the type described by Foster, 1966. The natural remanent magnetization (NRM) of all specimens was measured and each specimen was then partially demagnetized in alternating fields of 50 oersteds. Selected specimens (one from each drill hole) were progressively demagnetized in fields up to 200 oersteds and A.F. demagnetization curves were plotted.

The intensity of magnetization varies widely both within each site and between sites from about 1×10^{-7} emu/gram to 2×10^{-4} emu/gram. Intensities at these levels are measurable on most modern magnetometers used to measure sediments. The majority of the specimens have intensities to the 10^{-6} emu/gram level which are easily measurable even after A.F. demagnetization. It must be emphasized that intensities normalized by the methods employed here are only approximate since the specimens are measured and weighted at various states of dessication. However, the numbers given indicate clearly which specimens are easily measurable and which are not.

¹Lamont-Doherty Geological Observatory Contribution No. 1392.

The A. F. demagnetization curves are typical of stable and partially stable rocks. The relative stability can also be judged by comparing the intensity before and after A. F. cleaning, and in a few cases the intensity actually increases after treatment in 50 oersteds peak field, indicating the removal of an unstable component.

The magnetic inclination has been plotted in Figures 7 through 10 showing whether the specimen is normally (+) or reversely (-) magnetized. Most of the specimens are older than Miocene in age and direct comparison with the known magnetic stratigraphy for the past 5 m.y. or with the sea floor spreading sequence is probably unwarranted, especially since the cores are discontinuous and the age designation is not precise. It should be noted however that in certain core barrels the sediments are often dominantly normal or reversely magnetized in sections of core as old as Eocene and Upper Cretaceous. In some cases the reversals are questionable since the dips are low and the declination does not change 180° with respect to adjacent specimens. These apparent reversals could be caused by disturbance and disorientation of the core during the drilling. In seven cases, changes of greater than 120° occur with changes of inclination within a single barrel making it more likely that a true reversal of the field has been recorded.

				Depth Below		NRM			50 oe	ersted
Hole	Core	Section	Sampled at (cm)	Sea Floor (m)	Decl.	Incl.	Intensity (emu/gm) \times 10 ⁻⁵	Decl.	Incl.	Intensity $(emu/gm) \times 10^{-5}$
8	1	1	100-102	168.9	44.4	-35.0	7.3000	59.4	-8.0	4.16000
8	2	1	99-100	250.0	102.0	44.3	0.8850	118.8	30.6	0.26900
8	2	1	100-102 ^a	250.0	110.5	35.1	0.6410	85.4	21.0	0.29800
8	2	2	6-8	250.6	71.3	36.2	1.1400	64.4	25.2	0.66400
8	2	3	12-14	252.1	292.9	54.8	0.7010	229.9	64.5	0.33000
8	2	3	72-74	252.7	299.2	69.4	0.0925	302.1	62.5	0.06620
8A	1	1^{a}	102-104 ^a	279.3	292.5	-8.1	0.3870	298.4	-5.6	0.38300
8A	1	1	108-110	279.4	325.0	-43.1	0.0136	349.7	-49.7	0.00916
8A	1	2	6-8	279.9	200.8	32.2		206.5	41.8	-
8A	1	2	83-84	280.5	123.6	-39.7	0.0151	108.4	-11.9	0.01040
9	5	3	48-50	34.9	238.4	67.5	1.2600	237.4	66.8	1.01000
9	5	3	98-100	35.4	337.7	59.8	1.2000	323.4	62.4	0.70700
9	5	4	75-77	36.7	338.6	56.8	0.6570	306.8	34.9	0.52700
9	5	5	70-72	38.1	290.5	77.0	3.6100	298.8	76.4	0.33600
.9	7	1	126-128	195.8	250.6	20.6	1.4500	237.0	21.7	1.64000
9	7	2	90-92	196.9	9.7	51.8	19.2000	11.0	51.4	14.80000
9	7	4 ^a	74-76 ^a	199.7	243.4	-26.8	1.3600	251.8	-40.4	1.43000
9	8	4	89-91	209.0	40.8	65.6	2.1200	49.7	50.7	1.73000
9	8	4	100-103	209.1	320.3	65.1	1.7700	326.6	62.3	1.55000
9	8	5	15-18	209.8	96.9	73.5	2.7100	76.6	67.3	2.18000
9	8	6	18-20	211.3	170.9	2.4	0.7980	162.6	-29.6	0.98000
9	9	2	3-5	303.0	155.9	57.6	0.6230	132.2	19.8	0.27900
9	9	2	78-80	303.8	335.5	-38.7	0.8070	334.8	-56.6	1.32000
9	9	3	7-10	304.6	140.1	43.8	0.0123	246.0	21.1	0.00605

TABLE 1Summary of Magnetic Data

^aSamples used for A-F Demagnetization.

				Depth Below	NRM				50 oersted		
Hole	Core	Section	Sampled at (cm)	Sea Floor (m)	Decl.	Incl.	Intensity $(emu/gm) \times 10^{-5}$	Decl.	Incl.	Intensity (emu/gm) × 10 ⁻⁵	
9	10	1	100-103	311.6	56.9	72.5	0.4000	47.0	-57.8	0.25500	
9	10	2		312.9	257.2	78.3	0.0407	303.1	60.5	0.01170	
9A	1	5	18-21	684.8	161.0	-10.0	8.8300	159.7	-16.1	6.13000	
9A	2	1	140-142	759.6	81.9	58.5	7.1800	68.9	37.2	1.47000	
9A	3	1	82-84	765.7	163.4	77.4	14.4000	111.6	61.7	1.63000	
9A	3	4	134-136	770.7	325.7	70.4	14.5000	30.2	57.2	2.73000	
10	1	2	13-15	31.5	186.6	-28.9	1.0800	211.8	-76.0	0.5360	
10	2	2	12-14	41.8	126.1	51.1	0.6240	14.9	46.3	0.4110	
10	2	2	78-80	42.5	166.9	76.4	0.4950	177.1	70.1	0.2340	
10	2	2	129-131	43.0	209.3	63.3	1.5800	202.4	61.8	0.6920	
10	2	3	13-15	43.3	153.0	32.4	1.7400	134.2	32.8	0.6250	
10	2	3	49-51	43.8	117.1	87.3	0.9950	284.1	70.2	0.3960	
10	2	3	99-101	44.2	126.0	24.1	1.0400	70.1	45.5	0.4220	
10	2	4	5-7	44.8	184.9	-5.4	0.5430	189.3	36.6	0.2800	
10	3	1	49-51	48.7	149.8	50.1	0.6320	160.4	53.0	0.4380	
10	3	3	10-12	51.3	231.8	42.8	0.4920	256.1	52.0	0.2020	
10	3	3	49-51	51.7	251.3	48.1	0.6770	274.1	50.0	0.4020	
10	3	3	81-83	52.0	321.5	25.3	1.0500	325.8	20.7	0.4300	
10	3	4	12-14	52.8	126.5	38.2	0.4370	172.4	80.9	0.1240	
10	3	4	45-46	53.2	186.5	38.2	0.4850	62.4	70.1	0.1390	
10	3	4	125-127	54.0	183.7	16.7	0.3630	185.9	-7.8	0.5220	
10	5	1	118-120	72.5	175.0	-19.9	0.4370	192.7	-18.3	0.0852	
10	5	1	127-129	72.6	275.2	-63.2	0.2100	292.4	-53.4	0.2200	
10	5	2	12-14	72.9	172.3	24.9	0.2510	131.8	32.4	0.1240	
10	5	2	49-51	73.3	246.9	25.5	• `	288.5	26.1		
10	5	2	74-76	73.5	196.4	10.0	0.2560	240.2	11.0	0.0880	
10	5	3	49-51	74.8	213.6	-0.6	0.2020	196.1	14.1	0.1540	

TABLE 1 - Continued

Depth Below NRM 50 oersted Sampled Sea Floor Intensity Intensity Hole Core $(emu/gm) \times 10^{-5}$ $(emu/gm) \times 10^{-5}$ Section at (cm) (m) Decl. Incl. Decl. Incl. 10 5 4 5.9 49-51 77.3 106.5 0.0442 247.5 2.0 0.0253 5 5 20-22 10 77.5 148.6 31.1 1.1700 28.4 124.7 0.6330 5 5 10 49-51 77.8 269.4 22.8 0.4560 278.5 15.2 0.3630 7 10 1 91-93 90.4 150.4 -21.9 0.7300 158.6 -46.7 0.2900 10 7 1 110-112 90.6 193.4 49.5 1.0100 175.5 73.1 0.3980 7 2 40-42 10 91.4 41.8 52.6 0.2400 154.7 38.1 0.2640 10 7 2 49-51 91.5 234.5 25.2 0.6440 282.9 41.0 0.2210 10 7 3 2-4 92.5 71.2 160.4 51.6 0.6610 44.1 0.5250 10 7 3 49-51 93.0 183.9 52.4 1.0600 336.3 66.1 0.5470 80-82 10 7 3 93.3 187.7 45.9 1.0400 172.7 56.9 0.4420 10 7 4 8-10 1.4000 39.1 94.1 129.8 27.1113.6 0.5190 7 10 4 1.0700 49-51 94.5 134.5 32.2 124.5 22.0 0.4240 72-74 10 7 4 94.7 204.5 13.8 1.6400 210.9 30.0 0.3460 9 10 1 45-47 176.7 191.8 15.3 0.1330 141.3 -39.7 0.1100 10 9 1 79-81 177.0 87.8 -44.9 3.3200 -51.1 1.1 0.4670 0.3710 10 9 104-107 1 177.2 181.6 8.9 197.8 -31.8 0.1590 20-22 10 9 2 177.9 194.0 0.0863 -56.3 20.3 159.6 0.0440 0.2910 10 9 2 49-51 178.2 293.1 -9.9 317.2 -29.10.3670 10 9 2 80-82 178.5 -65.6 303.6 285.7 -12.0 --9 3 10 49-51 179.7 174.5 21.0 0.1140 9.4 116.8 0.0272 9 3 10 70-72 179.9 75.9 30.2 0.5450 -43.8 110.7 0.2090 80.1 10 10 1 108-110 292.3 282.4 47.2 0.2490 308.4 0.7920 10 3 20-22 380.9 125.6 -15.4 0.6200 94.5 -17.5 11 0.4650 10 11 3 52-54 381.2 -18.9 0.4790 -29.2 134.1 125.0 0.3990 10 11 4 5-7 382.3 221.2 -8.3 220.7 -41.6 0.7560 1.0200

 TABLE 1 - Continued

^aSamples used for A-F Demagnetization.

				Depth Below		NRM			50 oe	rsted
Hole	Core	Section	Sampled at (cm)	Sea Floor (m)	Decl.	Incl.	Intensity (emu/gm) $\times 10^{-5}$	Decl.	Incl.	Intensity (emu/gm) \times 10 ⁻⁵
10	12	2	14-16	388.4	143.4	51.1	0.83500	127.5	67.1	0.54000
10	12	2	50-52	388.8	238.7	30.3	1.80000	242.0	24.4	1.21000
10	12	3	8-10	389.9	63.6	32.8	0.94000	53.9	27.9	0.74700
10	12	3	49-51	390.3	314.7	15.8	1.39000	319.0	21.4	0.91900
10	12	3	68-70	390.5	89.5	53.4	1.44000	74.2	49.1	0.89900
10	12	4	12-14	391.4	124.6	41.7	1.31000	114.9	47.8	0.80200
10	12	4	49-51	391.8	303.8	38.0	1.12000	309.5	26.0	0.78300
10	12	4	75-77	392.1	252.2	57.0	0.58900	290.0	63.9	0.39000
10	13	1	120-122	397.1	67.3	46.6	1.08000	45.5	41.9	0.66900
10	13	2	155-157	397.5	334.9	45.8	0.86600	355.4	37.2	0.66200
10	13	3	315-317	399.1	214.9	32.5	0.88900	226.3	32.5	0.49200
10	14	2	50-52	407.0	281.1	-25.8	1.00000	294.4	-15.0	0.55600
10	16	3	121-123	427.4	324.3	-58.6	0.73300	333.0	-42.7	0.54600
10	17	2	75-77	434.6	194.1	39.9	0.92600	190.6	32.4	0.51200
10	17	3	4-6	435.3	206.5	29.4	0.70600	210.3	22.3	0.30700
10	18	5	2-4	447.4	120.1	35.2	0.54700	115.8	31.3	0.28300
10	18	5	50-52	447.9	123.3	53.1	0.52500	107.4	39.3	0.29800
12B	1	1	32-34	110.3	159.2	30.1	0.01000	157.5	31.0	0.00581
12B	2	1	128-130	157.1	228.9	-33.3	0.02180	220.7	-49.9	0.01240
12B	2	2	16-18	157.5	268.6	-59.9	0.07650	274.6	-51.0	0.05520
12B	2	2	45-47	157.8	162.8	30.4	0.00753	219.7	-24.8	0.01140
12C	5	2	10-12 ^a	43.4	157.5	31.7	0.97500	118.3	45.1	0.27800
12C	5	2	74-76	44.0	40.0	26.9	0.62000	37.8	26.2	0.47100
12C	5	3	12-14	44.9	172.1	22.1	0.75200	191.3	83.7	0.11500
12C	6	1	110-112	52.0	201.4	41.8	0.61500	141.3	-5.2	0.15400

TABLE 1 - Continued

^aSamples used for A-F Demagnetization.

379

				Depth Below	NRM			50 oersted		
Hole	Core	Section	Sampled at (cm)	Sea Floor (m)	Decl.	Incl.	Intensity $(emu/gm) \times 10^{-5}$	Decl.	Incl.	Intensity $(emu/gm) \times 10^{-5}$
12C	6	2	10-12	52.5	240.4	21.8	1.50000	248.9	5.7	0.81000
12C	8	1	75-78	70.0	165.3	24.0	0.89300	126.5	34.8	0.13300
12C	9	1	127-129	79.7	174.9	20.5	1.45000	162.4	26.8	0.06940

 TABLE 1 - Continued

Hole	Core	Section	Sampled at (cm)	Peak Field in Oersteds	Intensity (emu/gm) × 10 ⁻⁵	Decl.	Incl.
8	2	1	100	NRM	0.516	110.5	35.1
				50	0.240	85.4	21.0
				100	0.159	94.1	15.1
				150	0.122	102.8	21.2
				200	0.130	94.6	21.6
8A	1	1	102	NRM	0.387	292.5	-8.1
				50	0.383	298.5	-5.6
				100	0.374	294.7	-8.0
				150	0.281	338.2	-11.0
				200	0.0990	283.3	-45.2
9	7	4	74-76	NRM	1.36	243.4	-26.8
				50	1.43	251.8	-40.4
				100	1.18	250.5	-41.9
				150	1.01	255.3	-40.4
				200	0.639	250.9	-34.0
10	11	3	20-22	NRM	0.620	125.6	-15.4
				50	0.465	94.5	-17.5
				100	0.352	89.8	-14.9
				150	0.211	84.6	-18.5
				200	0.156	92.1	-16.2
12B	1	1	32-34	NRM	0.0100	159.2	30.1
				50	0.00581	157.5	31.0
				100	0.00617	216.0	-15.0
				150	0.00648	127.6	-19.7
				200	0.00426	176.4	-11.8
12C	5	2	10-12	NRM	0.975	157.5	31.7
				50	0.278	118.3	45.1
				100	0.167	87.8	36.7
				150	0.163	85.8	27.1
				200	0.185	73.1	9.4

 TABLE 2.
 A-F DEMAGNETIZATION RESULTS

Figures 7 through 10: Paleomagnetic reversed stratigraphy for Sites drilled on Leg 2.

Figure 9. Hole 10.

Figure 9. Continued

Figure 10. Holes 12B and 12C