# 4. SITE 69

## Shipboard Scientific Party<sup>1</sup>

# SITE DATA

Occupied: October 17-20.

Position: Latitude 6° 00.0'N. Longitude 152° 51.93'W.

Water Depth: 4978 meters.

- Total Depth: 230 meters, ending in middle Eocene chert.
- Holes Drilled: Two holes.
- **Cores Taken:** Twenty-one cores (8 in Hole 69, 13 in 69A). Cored 0 to 32 meters, 52 to 162 meters, 187 to 196 meters, 214 to 231 meters.

#### RESULTS

An almost complete stratigraphic section was cored from middle Miocene to middle Eocene, consisting of three lithologic units:

- Upper radiolarian ooze and bedded siliceous and calcareous ooze 0 to 32 meters of middle and early Miocene age; 32 to 50 meters was not cored.
- Calcareous nannofossil ooze, 50 to 144 meters, of early Miocene and Oligocene age.
- 3) Lower radiolarian ooze, 144 to 227 meters, of upper and middle Eocene age.

Hard chert beds below 227 meters were penetrated to 231 meters, but were not recovered.

The contact between Oligocene nannofossil ooze and Eocene radiolarian ooze was very sharp.

### BACKGROUND

Site 69 is located about 350 miles northeast of Christmas Island of the Line Islands, in the crustal block between the Clarion and Clipperton Fracture Zones, about 200 miles north of the Clipperton. Since some time was gained at Site 68, where drilling was terminated in a shallow chert horizon, Site 69 was chosen as an additional site to provide lateral control for the N-S section across the equatorial Pacific belt of high productivity and thick sediments. This N-S section was the main objective of Leg 8. Site 69 provides stratigraphic information between the near-equatorial holes drilled to the west during Leg 7 (Sites 62 through 66) and our line of holes and the E-W section drilled across the East Pacific Rise during Leg 9.

There was no SCAN survey for this site and all site information is derived from the observations on the *Challenger*. Topography in the vicinity of the site is moderate with occasional seamounts; one, about 10 miles south of the site, reaching 900 meters in height. The site is located in a gentle northwest plunging depression, or trough, about 3 miles SW of a 180-meter seamount.

Reflection horizons within the sediment are concordant with the sea floor; acoustic basement is also concordant in general, but not in detail (Figure 1 and Figure 12, Chapter 2). Total 'thickness' to acoustic basement in the area varies between 0.25 and 0.35 seconds, thinning to zero near the seamounts. At the site, prominent reflectors are at 0.020, 0.050, 0.190 and 0.305 seconds; the second and third reflectors are correlated with the top and bottom of the Marquesas Oceanic Formation and the fourth with the indurated Eocene sediments near the bottom of the drilled section (Figures 6, 7 and 8, Chapter 2).

A topographic map of the vicinity of Site 69, airgun records, and further site information are given in Chapter 25.

#### **OPERATIONS**

The first hole at Site 69 was drilled as an exploratory hole, and bottomed in chert at 231 meters after taking seven cores. About 60 meters of the section were cored, and 46 meters recovered.

Hole 69A was drilled about 30 meters from the original site in order to recover some of the intervals not cored in the first hole. Thirteen cores were taken totaling 106 meters, and 93 meters were recovered.

<sup>&</sup>lt;sup>1</sup> Joshua I. Tracey, Jr., U. S. Geological Survey, Washington, D. C.; George H. Sutton, University of Hawaii, Honolulu, Hawaii; W. D. Nesteroff, Université de Paris, Paris, France; Jon Galehouse, San Francisco State College, San Francisco, California; C. C. von der Borch, Scripps Institution of Oceanography (present address: Flinders University, Bedford Park, South Australia); T. C. Moore, Oregon State University, Corvallis, Oregon; U. Z. Bilal ul Haq, Geologiska Institutionene, Stockholm, Sweden (present address: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts); and J. P. Beckmann, Geologisches Institute, Zurich, Switzerland.



Figure 1. Airgun record across Site 69 and interpretation.

|                   | Core<br>No. | Interval Below<br>Seafloor (meters) | Cored<br>(m) | Recovered<br>(m) | Comments                   |
|-------------------|-------------|-------------------------------------|--------------|------------------|----------------------------|
| Hole 69           | 1           | 0-9                                 | 9.1          | 9.1              | Washed down 2.9 m          |
|                   | 2           | 14-23                               | 9.1          | 9.1              |                            |
|                   | 3           | 23-32                               | 9.1          | 9.1              | Drilled 19.5 m             |
|                   | 4           | 52-61                               | 9.1          | 9.1              | Drilled 55.2 m             |
|                   | 5           | 117-126                             | 9.1          | 9.1              | Drilled 61.0 m             |
|                   | 6           | 187-196                             | 9.1          | 0.0              | Drilled 31.7 m             |
|                   | 7           | 227-228                             | 1.2          | 0.0              | Hard layer 69.2 m          |
|                   | 8           | 228-231                             | 3.0          | 0.3              | Total depth 231 m in chert |
| Total             |             |                                     | 59.1         | 46.4             | 79% recovery               |
| Hole 69A          | 1           | 61-70                               | 9.1          |                  | Drilled 61.3 m             |
|                   | 2           | 70-79                               | 9.1          | 9.1              |                            |
|                   | 3           | 79-88                               | 9.1          | 7.0              |                            |
|                   | 4           | 88-98                               | 9.1          | 9.1              |                            |
|                   | 5           | 98-107                              | 9.1          | 9.1              |                            |
|                   | 6           | 107-116                             | 9.1          | 9.1              | Drilled 36.6 m             |
|                   | 7           | 126-135                             | 9.1          | 4.6              | Core liner collapsed       |
|                   | 8           | 135-144                             | 9.1          | 7.9              |                            |
|                   | 9           | 144-153                             | 9.1          | 7.9              |                            |
|                   | 10          | 153-162                             | 9.1          | 9.1              | Drilled 51.8 m             |
|                   | 11          | 214-223                             | 9.1          | 9.1              |                            |
|                   | 12          | 223-229                             | 6.7          | 2.1              |                            |
|                   | 13          | 229-230                             | 0.9          | 0.0              | Total depth 231 m in chert |
| Total             |             |                                     | 108.3        | 82.6             | 76% recovery               |
| Total 69 +<br>69A |             |                                     | 165.0        | 129.0            | 77% recovery               |

TABLE 1 Summary of Coring at Site 69

Total coring at the site amounted to 177 meters of which 139 meters (70 per cent) were recovered.

An attempt to run the Welex drill pipe logging device failed, as the tool became stuck in a drill pipe joint.

## LITHOLOGY AND STRATIGRAPHY

Core recovery at Site 69 was good, and the cores display a sedimentary sequence from the middle Miocene to the middle Eocene. However, some cores were badly disturbed by drilling, mainly those containing lower Oligocene nannofossil ooze. Three sedimentary formations are present at Site 69: The Clipperton Formation (0 to 35 meters), the Marquesas Formation (35 to 144 meters), and the Line Islands Formation (144 to 231 meters).

#### **Clipperton Oceanic Formation**

The Clipperton Oceanic Formation is made up of two lithologic units at Site 69. The upper unit consists of radiolarian ooze and extends from the sea floor to a depth of 19.6 meters. The ooze is dark yellowish brown to yellowish gray, moderately mottled with very pale brown. The texture is somewhat porous or "bready." Radiolaria are the dominant constituent with rare diatoms. The calcium carbonate content is zero. The radiolarian ooze unit is middle Miocene in age. The contact with the lower cyclic unit is sharp and corresponds to the top of the uppermost carbonaterich bed.

The lower unit of the Clipperton Oceanic Formation at Site 69 consists of alternating calcareous (radiolariannannofossil) and siliceous (radiolarian) oozes from 19.6 to 32 meters. The two lithologies in this cyclic unit are separated by sharp contacts marked by color changes. The calcareous beds are generally very pale orange and are composed predominantly of calcareous nannoplankton (60 to 70 per cent) and Radiolaria (30 to 40 per cent). Siliceous beds composed mainly of Radiolaria make up most of the cyclic unit and are dark yellowish brown. In general within the cyclic unit, the darker brown the color, the lower the carbonate content. The basal contact of the cyclic unit was not cored and lies somewhere in the 32 to 52 meter interval. It is tentatively placed at 35 meters. The cyclic unit of the Clipperton Oceanic Formation is middle and early Miocene in age.

### **Marquesas Oceanic Formation**

This formation is composed of nannofossil ooze with variable proportions of Radiolaria. Calcium carbonate content generally ranges from 60 to 95 per cent. The central part of the unit—of upper Oligocene age—is a rather high-carbonate nannofossil ooze, whereas the top and the bottom portions are more siliceous. Coccolithophorids and discoasters are the dominant fossils. The siliceous fraction is composed of Radiolaria and diatoms. As in the oozes of the Clipperton, the diatoms are proportionately rare but are relatively more abundant in the more siliceous top and bottom sections.

The color is white to very pale orange, pale brown and light gray. The top and the base of the formation display darker hues, generally yellowish brown.

Bedding occurs throughout the whole unit. Contacts are sharp between beds of different colors or of slightly different physical properties. Generally the lighter colored beds are richer in calcareous fossils. The texture is firm to stiff in beds rich in Radiolaria, and in contrast is softer and more plastic in the nannofossil oozes. Moderate mottling is noted from the top to the base of the formation.

The contact between the Marquesas Oceanic Formation and the underlying Line Islands Oceanic Formation is a sharp disconformity corresponding to the Oligocene-Eocene boundary. The last core which was recovered from the Marquesas, Core 8, is an Oligocene radiolarian-nannofossil ooze whereas Core 9, drilled immediately below, is a noncalcareous upper Eocene radiolarian ooze.

## Line Islands Oceanic Formation

The upper part of the Line Islands Oceanic Formation is composed of radiolarian ooze. The sediment consists almost wholly of Radiolaria and radiolarian debris. Diatoms, although more abundant than in the overlying calcareous Oligocene oozes, are rare. The calcium carbonate content is zero. The color is dark, grading from yellowish to dark brown. The ooze is moderately mottled in orange. Plastic beds with smooth texture alternate with firmer and more porous beds which show a "bready" texture on freshly cut sections.

At 227 meters the core bit hit a hard layer of chert of which one piece was recovered. The chert is dark brown and has a conchoidal fracture. Subsequent coring penetrated an estimated four meters of chert and soft layers, of which only small chert chips were recovered. These lowermost layers are of middle Eocene age.

## PHYSICAL PROPERTIES

Porosities range between about 60 and 90 per cent and sonic velocities range between about 1.50 and 1.55 km/sec. Except for a few anomalously low measurements the relationship between velocity and porosity is as expected for siliceous and calcareous ooze mixed in varying proportions (Figure 2). At this site most of the sediments fall near the two extremes of high and low calcium carbonate (CaCO<sub>3</sub>). Grain-matrix density averages near 2.0 g/cm<sup>3</sup> and 2.6 g/cm<sup>3</sup> (with a great deal of scatter) for siliceous and calcareous portions, respectively.

The most striking change in physical properties within the unconsolidated sediments occurs across the Marquesas-Line Islands boundary at a depth of 144 meters where the sediment changes from highly calcareous to highly siliceous ooze. This boundary also correlates with a prominent subbottom reflector. Above the boundary the measured sonic velocities are lower than that for sea water. If the laboratory measurements are representative of *in situ* values, they indicate the existence of a low-velocity channel within the sediments to a depth of 144 meters (Figure 7, Chapter 2).

Velocity and density of one piece of Eocene chert are reported in Chapter 2.

Results of grain-size and carbon-carbonate analyses are tabulated in Appendices II and III, respectively.



Figure 2. Sonic velocity versus porosity of unlithified sediments from Site 69 for three ranges of calcium carbonate content. Theoretical curves are based on the equation of Wood (1941). Upper curve, grain-matrix density 2.2 g/cm<sup>3</sup>, appropriate for siliceous ooze. Lower curve, grain-matrix density 2.65 g/cm<sup>3</sup>, appropriate for calcareous ooze.

|                 | DSDP       | Leg 8                                                                                | Site 69                                                                    |                              |                        |                        |                   | oira                          | DSG                          | ena                         |                             |                     |                          |                          |                            | g                             | ~                          |       |
|-----------------|------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|------------------------|------------------------|-------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|---------------------|--------------------------|--------------------------|----------------------------|-------------------------------|----------------------------|-------|
| DEPTH in meters | BARREL No. | 0<br>FORAMINIFERA<br>50 percentage of total<br>fauna in > 80 mesh<br>fraction<br>100 | – 1:10 FORAMINIFERA<br>– 1<br>– 10<br>– 100 planktonic/benthonic<br>– 1000 | strong SOLUTION EFFECTS weak | Catapsydrax dissimilis | Globigerina tripartita | Globigerina sp. A | Globoquadrina altispira altis | Globoquadrina altispira glob | Globoquadrina dehiscens adv | Globoquadrina praedehiscens | Globorotalia mayeri | Globorotalia opima opima | Globorotalia opima s. l. | Globorotalia pseudokugleri | Sphaeroidinellopsis seminulir | BIOSTRATIGRAPHY            | AGE   |
|                 | Т          |                                                                                      |                                                                            | ?                            |                        |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               | ?                          | ?     |
| F -             |            |                                                                                      |                                                                            | 5                            |                        |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               |                            | -Mid. |
|                 | 2          |                                                                                      | $\leq$                                                                     | E                            |                        |                        |                   |                               |                              | 1                           |                             |                     |                          |                          |                            | 1                             | N.14<br>to N.7             | MIC.  |
|                 | 3          |                                                                                      | 4                                                                          | ۴                            |                        |                        |                   | 1                             |                              |                             |                             |                     |                          |                          | T                          |                               | ?                          | INE   |
|                 |            |                                                                                      |                                                                            |                              |                        |                        |                   | 0                             |                              |                             |                             |                     |                          |                          |                            |                               | ugleri                     | MIOCI |
|                 |            |                                                                                      |                                                                            |                              |                        |                        |                   | ſ                             |                              |                             |                             |                     |                          |                          |                            |                               | N.4 ?<br>stalia k<br>one ? | ower  |
| - 50 -          |            | 1                                                                                    | <                                                                          | $\mathbf{H}$                 | H                      |                        |                   |                               | _                            |                             | T                           |                     |                          |                          | 1                          |                               | l<br>Sloboro<br>Zv         | _     |
|                 | 4          | 5                                                                                    |                                                                            | 1                            |                        | -                      |                   |                               |                              |                             | $\parallel$                 |                     |                          |                          | L                          |                               |                            | ~     |
| L .             | A 1        | 5                                                                                    |                                                                            |                              | Ш                      |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               | ?                          | CENE  |
|                 | A 2        | 5                                                                                    | $\geq$                                                                     |                              |                        |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               | P.22 ?                     | OFICO |
|                 | A 3        | $\geq$                                                                               |                                                                            | 5                            |                        |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               | one<br>one                 | per   |
|                 | A 4        |                                                                                      | 5                                                                          |                              |                        |                        |                   |                               |                              |                             |                             |                     |                          |                          |                            |                               | P.21<br>G. opi<br>opima 2  | 4     |

Figure 3. Foraminifera of Site 69. Frequency distribution, ranges of important species, and biostratigraphy.

# PALEONTOLOGY

# Foraminifera

Hole 69 reached a depth of 231 meters. Eight spot cores were cut, but only the first six had significant recovery. In Hole 69A, the uncored intervals of Hole 69 were sampled as far as it was necessary to get a complete record of the Oligocene. This procedure resulted in the somewhat complicated sequence of core numbers shown on Figure 3. Of the thirteen cores taken in Hole 69A, twelve were suitable for paleontological sampling. The faunas at Site 69 are mainly siliceous. Only an interval of about 25 meters in the Oligocene (*Globorotalia opima opima* Zone or P. 21) had microfaunas which consisted of up to 50 per cent foraminifera. Even in the most calcareous samples, the small species (*Cassigerinella chipolensis, Chiloguembelina* spp. and the *Globigerina ciperoensis* group) are absent altogether. The Oligocene is the only part of the section where specific zones could be distinguished with reasonable confidence.

The faunas of Site 69 contain a relatively large percentage of benthonic foraminifera (see the

| D S               | DPL        | eg 8 Site                                                                                                               | 69 (cont.)                                                               |                            |                        |                  |                       |                        |                   |                     |                          |                          | 8                             | ۲                |                    |
|-------------------|------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|------------------------|------------------|-----------------------|------------------------|-------------------|---------------------|--------------------------|--------------------------|-------------------------------|------------------|--------------------|
| B DEPTH in meters | BARREL No. | <ul> <li>0</li> <li>FORAMINIFERA</li> <li>50 percentage of total<br/>fauna in &gt; 80 mesh</li> <li>fraction</li> </ul> | -1:10 FORAMINIFERA<br>1 FORAMINIFERA<br>-10 planktonic/benthonic<br>-100 | strong<br>SOLUTION EFFECTS | Catapsydrax dissimilis | Globigerina pera | Globigerina prasaepis | Globigerina tripartita | Globigerina sp. A | Globorotalia mayeri | Globorotalia opima opima | Globorotalia opima s. l. | Spiroplectammina trinivatensi | BIOSTRATIGRAPH   | AGE                |
|                   | A 5<br>A 6 | 5                                                                                                                       | 2                                                                        |                            |                        |                  | 1                     |                        |                   |                     |                          |                          |                               | P.21             | IG OCENE           |
|                   | 5          | }                                                                                                                       |                                                                          | Ş                          |                        |                  |                       |                        |                   |                     |                          |                          |                               | probably<br>P.20 | ν Upper Ol         |
|                   | A 7<br>A 8 |                                                                                                                         |                                                                          |                            |                        |                  | i                     |                        |                   |                     |                          |                          |                               | P.20 to          | Lower<br>DLIGOC. ? |
| - 150 -           | A 9        | Ì                                                                                                                       |                                                                          | 3                          |                        |                  |                       |                        |                   |                     |                          |                          |                               | ?                |                    |
|                   | A 10       | J<br>                                                                                                                   |                                                                          | ?                          |                        |                  |                       |                        |                   |                     |                          |                          |                               | -                | EOCENE             |
|                   |            |                                                                                                                         |                                                                          |                            |                        |                  |                       |                        |                   |                     |                          |                          |                               |                  | probably           |
|                   | 6          | }                                                                                                                       |                                                                          | ?                          |                        |                  |                       |                        |                   |                     |                          |                          |                               | ?                |                    |

Figure 3. Continued.

planktonic/benthonic ratio curve on Figure 3). In the Oligocene and Lower Miocene, the most conspicuous forms belong to the genera Eggerella, Vulvulina, Chrysalogonium, Stilostomella Cibicides, Globocassidulina, Gyroidina, Laticarinina and Pullenia. In the Eocene, the foraminifera are exclusively agglutinated forms. The resemblance of these faunas to those of the Oceanic Formation of Barbados (West Indies) has already been pointed out.

The faunas of the upper part of Holes 69 and 69A are predominantly or exclusively siliceous. Planktonic foraminifera occur most abundantly in Core 69-2 (Section 3 to core catcher), at a depth of 17 to 23 meters below the sea floor. They are scarce and include *Globoquadrina dehiscens advena*, *Globorotalia mayeri* and *Sphaeroidinellopsis seminulina*, which indicate an age between N. 7 and N. 14.

In Section 69-3-5 (depth 29 meters) the highest *Catapsydrax dissimilis* was found, associated with *Globoquadrina praedehiscens*. A few small globorotalias, which are probably *G. pseudokugleri*, occur from this depth down to the bottom of Core 69-4 (61 meters) and suggest that this interval might be the *Globorotalia kugleri* Zone (N. 4). In this case the next two Cores, 69A-1 and 69A-2 would essentially represent the *Globigerina ciperoensis ciperoensis* Zone

| D                          | DSDP       | Leg                              | 8 Site                                                                                                    | 69                       | (cont.)                                          |                                 |            | ۲۲             |     |
|----------------------------|------------|----------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------|---------------------------------|------------|----------------|-----|
| B Depth in meters          | BARREL No. | L <sup>0</sup><br>E FORAMINIFERA | <ul> <li>50 percentage of total</li> <li>fauna in &gt; 80 mesh</li> <li>fraction</li> <li>T100</li> </ul> | -1:10<br>-1 FORAMINIFERA | – 10<br>–100 Planktonic/benthonic<br>–1000 ratio | strong SOLUTION EFFECTS<br>weak | Lituolidae | BIOSTRATIGRAPH | AGE |
|                            |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
|                            | A II       | 5                                |                                                                                                           |                          |                                                  | ?                               |            |                |     |
|                            | A 12       |                                  |                                                                                                           |                          |                                                  |                                 |            | Ŷ              | ŕ   |
| <sup>-</sup> 231 –<br>T.D. |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
| - 250 -                    |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
|                            |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
|                            |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
|                            |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |
| 300                        |            |                                  |                                                                                                           |                          |                                                  |                                 |            |                |     |

Figure 3. Continued.

(P. 22). The Globorotalia opima opima Zone (P. 21) can be identified from the core catcher sample of Core 69A-2 down to 69A-6-6 (79 to 116 meters). As expected, the lowest occurrence of Globorotalia mayeri is found in this Zone, in Section 69A-6-3. Smaller specimens of Globorotalia opima s.l. occur along with occasional Globigerina prasaepis below 116 meters, down to 69A-7-2. Below this, the faunas remain similar, but become successively poorer to the bottom of Core 69A-8 (144 meters). The interval from 116 to 144 meters might include the Globigerina ampliapertura Zone (P. 20) and possibly some slightly older beds. From the top of Core 69A-9 (144 meters) to total depth, the samples contain abundant Radiolaria together with rare agglutinated foraminifera.

Among these, *Spiroplectammina trinitatensis* is probably of some stratigraphic importance, since it is a common form in the Eocene of the Caribbean area.

#### **Calcareous Nannoplankton and Silicoflagellates**

With the exception of the upper 10 meters or so, calcareous nannoplankton occur down to about 140 meters. Below this depth, the calcareous fossils have been dissolved. Thirty-one species were identified in the lower Miocene to lower Oligocene section (Table 2). In the lower Oligocene, discoasters are the predominant fossil. The stratigraphic ranges of calcareous nannoplankton are shown in Figure 4.

| Species                                                        | Occurrences<br>(Hole/Core Nos.) |
|----------------------------------------------------------------|---------------------------------|
| Calcareous Nannoplankton                                       |                                 |
| Coccolithus bisectus (Hay, Mohler and Wade) as figured by      |                                 |
| Bramlette and Wilcoxon                                         | 69/5;69A/2-8                    |
| Cyclococcolithus formosus Kamptner                             | 69A/7-8                         |
| C. neogammation Bramlette and Wilcoxon                         | 69A/5-3; 69A/1-5;<br>69A/7-8    |
| Discoaster adamanteus Bramlette and Wilcoxon                   | 69/2-4; 69A/1-8                 |
| D. argutus Hay                                                 | 69/2                            |
| D. brouweri Tan Sin Hok                                        | 69/2                            |
| D. calcaris Gartner                                            | 69/3                            |
| D. challengeri Bramlette and Riedel                            | 69/3                            |
| D. deflandrei Bramlette and Riedel                             | 69/2-5;69A/1-8                  |
| D. dilatus Hay                                                 | 69/2                            |
| D. druggii Bramlette and Wilcoxon                              | 69/3                            |
| D. exilis Martini and Bramlette                                | 69/2-3                          |
| D. extensus Hay                                                | 69/2                            |
| D. kugleri Martini and Bramlette                               | 69/2-3                          |
| D. lautus Hay                                                  | 69/2-4;69A/1-4                  |
| D. perplexus Bramlette and Riedel                              | 69/3                            |
| D. tani nodifer Bramlette and Riedel                           | 69/5;69A/6-8                    |
| D. tani ornatus Bramlette and Wilcoxon                         | 69A/6                           |
| D. tani tani Bramlette and Riedel                              | 69/5;69A/5-6                    |
| D. variabilis Martini and Bramlette                            | 69/2-3                          |
| Helicopontosphaera compacta Bramlette and Wilcoxon             | 69/5?;69/6                      |
| Reticulofenestra umbilica (Levin) Martini and Ritzkowski       | 69A/7-8                         |
| Sphenolithus belemnos Bramlette and Wilcoxon                   | 69A/1                           |
| S. ciperoensis Bramlette and Wilcoxon                          | 69A/1-3                         |
| S. distentus (Martini) Bramlette and Wilcoxon                  | 69A/3-5                         |
| S. heteromorphus Deflandre                                     | ?                               |
| S. moriformis (Bronnimann and Stradner) Bramlette and Wilcoxon | 69/3-5;69A/1-8                  |
| S. predistentus Bramlette and Wilcoxon                         | 69/5;69A/3-8                    |
| S. pseudoradians Bramlette and Wilcoxon                        | 69A/6                           |
| Triquetrorhabdulus carinatus Martini                           | 69/4-5; 69A/1-3                 |
| T. rugosus Bramlette and Wilcoxon                              | 69/2                            |
| Silicoflagellates                                              |                                 |
| Corbisema tricantha (Ehrenberg) Hanna                          | 69A/9                           |
| Dictvocha fibula Ehrenberg                                     | 69/1-2                          |
| Distephanus speculum (Ehrenberg) Haeckel                       | 69/4                            |
| D. speculum brevispinus (Gemeinhardt) Frenguelli               | 69/1                            |

 TABLE 2

 Calcareous Nannoplankton and Silicoflagellate Occurrences in Holes 69 and 69A



Figure 4. Calcareous nannoplankton of Site 69. Distribution and biostratigraphy.

Silicoflagellates are common in the middle Miocene sediments but are virtually absent below about 30 meters. *Dictyocha tricantha* is present in the upper Eocene.

The following calcareous nannoplankton zones were recognized at Site 69:

Hole 69 Core 1-1 to 1-CC: Barren Core 2-1 to 3-4: Discoaster kugleri Zone Core 3-5 to 3-CC: Discoaster druggii Zone? Core 4-1 to 4-CC: Triquetrorhabdulus carinatus Zone Core 5-1 to 5-CC: Sphenolithus predistentus Zone Core 6-6 to 6-CC: Barren Hole 69A Core 1-1 to 2-4: Triquetrorhabdulus carinatus Zone Core 2-5 to 3-5: Sphenolithus ciperoensis Zone Core 3-6 to 5-CC: Sphenolithus distentus Zone Core 6-1 to 7-1: Sphenolithus predistentus Zone Core 7-2 to 8-CC: Discoaster tani ornatus Zone Core 9-1 to 11-CC: Barren, with younger contamination Core 12-1: Barren, with younger contamination

#### Radiolaria

The first core (69-1), taken at the sea floor, contains sediments from the uppermost Middle Miocene. From this point down to the Upper Eocene a fairly continuous section was cored. The Lower Miocene-Oligocene section is very thick and contains about 50 meters of section which has not been previously zoned with Radiolaria. A zonation of this interval is proposed in the summary section on Radiolaria. The radiolarian ooze above the chert that terminated Hole 69A was from the lower part of the Middle Eocene.

Radiolaria are numerous and moderately well preserved throughout the section cored. Some solution of the tests is evident in samples from Cores 69-4 (Lower Miocene), 69A-6, 69-5 (the lower part of the Upper Oligocene). Reworking and mixing were frequently encountered in the upper 100 meters of the section and were most common in the noncalcareous part of the section (Cores 69-1, 69A-9, 69A-10) and in Core 69-4. Diatoms are particularly abundant in the Lower Oligocene and uppermost Eocene part of the section.

#### REFERENCE

Berggren, W. A., 1969. Cenozoic chronostratigraphy, planktonic foraminiferal zonation and the radiometric time scale. *Nature*. 224, 1072.

| 72  |        | SIT     | TE 69    |                      |                          |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         |       |
|-----|--------|---------|----------|----------------------|--------------------------|----------|--------|-----------|--------|-------|----------------------------------------|--------|-----------|---------|-----------|---------|-------|--------|----------|---------|--------|---------|-------|-------|---------|--------|-------------------------------------------|-------|---------|----------|---------|---------|-------|
| ~ [ | RA     | RE      |          |                      | 1                        |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         |       |
|     | FE     | W       |          | _                    |                          |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         |       |
|     | CO     | MMO     | N        |                      |                          |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         |       |
|     | AB     | UNDA    | NT       |                      |                          | imus     |        | 1         |        |       | is                                     |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        | pata                                      |       |         |          |         |         |       |
|     | UN     | CORE    | D<br>VAL |                      |                          | tepenult | ughesi | etterssor | alata  | onus  | Imontens                               | stata  | umiferus  | dentata | forcipata | ilfilio | ра    | ornuta | etrapera | aponica | rginis | simplex | rius  | bipes | papilio | usta   | praeforci                                 | osa   | naticus | ateuchus | racilis | riedeli |       |
|     | COMMEN | ITS     |          |                      |                          | tus an   | tus hu | (2)       | pyris  | latic | ys de                                  | tta co | man       | pyris   | yris.     | ys we   | violi | ella c | ella t   | ella j  | tta vi | ayris   | tuba  | mium  | oyris   | a rob  | yris                                      | uun s | prisi   | ovris    | mis gi  | yris    |       |
|     | D - 5  | Suspect | ted do   | wn-working<br>,      |                          | natarı   | natar  | artus     | ados   | artus | tocor                                  | cycle  | artus     | cados   | lsopp.    | hocor   | artus | ocaps  | ocaps    | ocaps   | cycle  | ados    | artus | moca  | ados    | cyleti | lsopp                                     | cyrti | artus   | lsope    | nonq    | lsopp   | STI   |
|     | R – 5  | Suspec  | ted rev  | ,<br>vorked<br>ssils | ONE                      | Om       | 0mi    | Cani      | Dore   | Cam   | Stic                                   | Calo   | Cam       | Don     | Dore      | Stic    | Cam   | Cyri   | Сул      | Cyri    | Calo   | Don     | Cam   | Lyci  | Dor     | Calo   | Dore                                      | Theo  | Cam     | Dor      | Arto    | Dore    | OMMEN |
| I   | OLEC   | ORES    | ECT.     | NTERVAL              | z                        |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         | Ŭ     |
| 1   | 69     | ī       | 1        | cm<br>55-57          | nus                      |          | Т      |           |        | Т     |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         | R     |
|     |        | 1       | cc       |                      | ante-<br>nultiv<br>ersso |          | Ī      | 1         |        |       |                                        |        |           |         | 1         | 1       |       | 1      |          |         |        |         |       |       |         | 1      |                                           |       |         |          |         |         | R     |
|     |        | 2       | 2        | 83-85                | 0.<br>pet                | 1111     | 1141   | 1/4/      | ,1111, | 1. 1. | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 11/1   | un        | 1141.   | 11411     | 11/1    | 1111  | 112.11 |          | 1111    | up 1   | 1111.   | 1111  | 11/1  | /////   | 11/1   | /////                                     | 1141  | upi     | 1111     | 1111    | ////    | R     |
|     |        | 2       | 4        | 79-81                | suno                     |          |        | 1         | Т      |       |                                        |        |           |         | 1         | Ť.      | 1     |        |          |         | t.     |         |       |       |         |        |                                           |       | 8       |          |         |         | R,D   |
|     |        | 2       | 6        | 83-85                | C.<br>latic              |          |        | ų.        |        |       |                                        | Т      |           |         |           |         |       |        |          |         |        |         |       | 1     |         |        |                                           | 1     |         |          |         |         | D     |
|     |        |         | °.       | 05-05                | ata                      | 1        |        |           | 1      |       | 1                                      |        | 4         | 1       |           | 1       | - E   |        | 1        | I.      | 1      |         |       |       |         |        |                                           |       | E       |          |         |         | ĸ     |
|     |        | 2       | cc       |                      | d p                      |          |        |           |        |       |                                        | 1      |           |         |           |         |       |        |          | ř       | L      |         |       |       |         |        |                                           |       |         |          |         |         | R     |
|     |        | 3       | 1        | 83-85                | a,                       |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         | 1     |       |         |        |                                           |       |         |          |         |         | R     |
|     |        | 3       | 3        | 81-83                | C.<br>costat             |          |        |           |        |       |                                        |        |           |         |           |         |       |        | L        |         |        |         |       |       |         |        |                                           |       |         |          |         |         | R     |
|     |        | 3       | 5        | 81-83                |                          |          |        |           |        |       | T                                      |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         | R     |
|     |        | 3       | cc       |                      | ginis                    | ]        |        |           |        |       |                                        | 5      | 202020202 | I       |           | 1       |       |        | I        |         |        |         | Ī     |       |         |        |                                           |       |         | 1        |         |         | R     |
|     |        | 4       | 1        | 45-47                | vir C.                   | 1111     | 11111  | 1111      | /////  | .1111 | 1111.                                  | 11111  | /////     | 11111   | 1141.     | 11111   | 1141  | 11111  | 11411    | 11141   | m      | 11811   | 1111  |       |         | 1111   | in an |       | 1111    | 1141     | 1111.   | 1111    | 5     |
|     |        | 4       | 3        | 70-74                | ium                      |          |        |           |        |       |                                        |        |           |         |           |         |       | I      |          |         |        | 1       |       |       |         |        | T                                         |       |         |          | 1       |         | R.D   |
|     |        | 4       | 5        | 94.96                | tocan                    |          |        |           |        |       |                                        |        |           |         |           |         |       | 1      |          |         | I,     | I       |       | T     | Т       |        |                                           |       |         |          |         |         | D     |
|     |        | 4       | 3        | 04-80                | Lychn                    |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         | F      |         |       | 1     |         |        |                                           |       | ÷.      |          |         |         | 5     |
|     |        | 4       | cc       |                      |                          | -        |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         | l,     |         |       |       |         |        |                                           | 1     |         | 1        | -       | T       | R     |
|     | 69A    | 1       | 1<br>5   | 81-83<br>81-83       | ).<br>apilio             |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       |         |        |                                           |       |         |          |         |         | R     |
|     |        |         |          |                      | D                        |          |        |           |        |       |                                        |        |           |         |           |         |       |        |          |         |        |         |       |       | 1       |        |                                           |       | 1       |          |         | 1       | 1.047 |

Figure 5. Radiolaria at Site 69. Frequency, distribution and biostratigraphy.

|      | SI      | TE 69             |                 |                    |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        |      |
|------|---------|-------------------|-----------------|--------------------|--------|--------|--------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|--------|---------|--------|------|
| R    | ARE     |                   |                 |                    | 1      |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         | a      |         |        |      |
| F    | EW      |                   | _               |                    |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         | cephal |         |        |      |
| c    | оммо    | N                 |                 |                    |        |        |        |         |         |         |         |        |        |         |         | 0       | dr      |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         | ryptod |         |        |      |
| A    | BUND    | ANT               |                 |                    |        | -      |        |         | 5       | s       |         |        | 965    |         |         | papili  | is grot |         | dno      | Ĩ,      | 10      | um      | 12      | group   |         | a       | nsis   | tha     |         |         |        |         |         | hala c | un      |        |      |
| U    | NCOR    | ED<br>RVAL        | '11111.         |                    | sa     | aticus | acilis | ustum   | ricero. | irculu  | x       | rosa   | uadrij | pinose  | avida   | opnaso  | bylon.  | ılis    | llus gro | igolfie | acanth  | tuliger | nitra ( | totelis | urris   | jacchi  | rbade  | racani  | omia    | ropoz   | la     | ara     | osa (?, | tocep  | noech   | ispida |      |
| COMM | INTS    |                   |                 |                    | ouuo s | prism  | mis gn | ia angi | yris t  | vyris c | ia cru. | s tube | yris q | oyris s | trys gr | oyris p | tris ba | is pape | ia ocel  | e mor   | tis tri | um fis  | 1 (?) n | ia aris | tora ti | tis (?) | mis ba | tis tet | tis bro | tis rhi | s amp  | s chald | s sinu  | e cryp | 1 (?) a | hora h |      |
| D    | Suspec  | ted do<br>drillin | wn-working<br>g |                    | ocyrti | nartus | ophor  | tocycl  | cados   | cados   | tocycl  | ocyrti | cados  | cados   | trobol  | cados   | hochy   | ocyrti  | ocych    | ocamp   | rsocyi  | yringi  | apiun   | ocycl   | ladop   | hocyr   | nohqo  | rsocyı  | rsocyi  | rsocyi  | ocyrti | ocyrti  | ocyrti  | ocotyl | apium   | ladopi | s    |
| R –  | Suspec  | ted rev           | worked          | 끹                  | The    | Can    | Arte   | Lith    | Don     | Dor     | ΓII     | The    | Dor    | Dor     | Cen     | Dor     | Set     | Pod     | Lith     | The     | Thy     | Eus     | Litt    | Lith    | Cyc     | Lop     | Arte   | Thy     | Thy     | Thy     | Pod    | Pod     | Pod     | The    | Lith    | Cyc    | TUE  |
| HOLE | older r | nicrofo           | ossils          | ZON                |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | COMN |
| 69A  | CORE 6  | SECT.             | cm              | 28a                | T      | T      | T      | T       | T       |         | _       |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
| 69   | 5       | 1                 | 81-83           | T.<br>anno         | 1141   | 11111  | 11 11  | 11111   | 11111   | mm      | up      |        | IN II  |         | 1111    | /////   | 1111    | /////   | 1111     | 1111    | /////   | 1111    | /////   | /////   | 1111    | ////    | 1111   | /////   | 1111    | 11111   | /////  | /////   | 1111    | .1111  | 11111   | 1111:  | R    |
| 1.00 | 5       | 3                 | 81-83           |                    |        |        | ł      |         |         |         |         | T.     |        | Ĩ       |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      | 5       | 5                 | 81-83           |                    |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        |      |
|      | 5       |                   | 01 05           |                    |        |        |        |         |         |         |         |        | T.     |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        |      |
| 604  | -       |                   | 01.02           | osa                |        |        |        |         |         |         | 1       | 4      |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        |      |
| 094  | ,       | E .               | 01-03           | tubei              |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | ĸ    |
|      | 7       | 2                 | 81-83           | cyrtis             |        |        |        |         |         |         |         |        |        | ł       |         | а.      |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      | 7       | 3                 | 83-85           | Theo               |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      | 7       | cc                |                 |                    |        |        |        |         |         |         |         |        | ł      |         | L       |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      | 8       | 3                 | 81-83           |                    |        |        |        |         |         |         |         |        |        |         | ų.      |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         | ĩ      | R    |
|      | 8       | 5                 | 81-83           |                    |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          | а       | т       | т       |         | ī       |         |         |        |         |         | T       | a.     |         |         |        |         |        | R    |
|      | 8       | cc                |                 |                    | -      |        |        |         |         |         |         | Ţ      |        |         |         |         | r       | а       | ĩ        |         |         |         | ĩ       |         |         |         | ĭ      |         |         |         |        | ĩ       |         |        |         |        | R    |
|      | 9       | 1                 | 81-83           |                    |        |        |        |         |         |         |         | ų.     |        |         |         |         |         |         |          | ļ       |         |         |         | 1       |         |         |        | r.      |         |         | i.     |         |         |        | ř       |        | R    |
|      | 9       | 3                 | 143-145         | yrtis              |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          | 1       |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      | 9       | 5                 | 81-83           | <sup>1</sup> yrsoc |        |        |        |         | 1       |         |         |        |        |         |         |         |         |         |          |         |         |         |         | Ļ       | _       |         |        | I       |         | 2       |        |         | ş       | -      | ÷       |        |      |
|      | 9       | cc                |                 | T 4                |        |        |        |         |         |         |         |        |        |         |         |         |         |         |          |         |         |         |         |         |         |         |        |         |         |         |        |         |         |        |         |        | R    |
|      |         |                   |                 |                    |        |        |        |         |         |         |         |        |        |         |         |         |         | _       |          | -       | -       |         |         | -       |         |         |        |         |         |         |        |         |         |        |         |        |      |

 $\frac{3}{3}$  Figure 5. Continued.

| SITE 69 RARE FEW COMMON ABUNDANT UNCORED INTERVAL COMMENTS D – Suspected down-working during drilling R – Suspected reworked older microfossils HOLE[CORE]SECT.[INTERVAL               | ZONE                 | Artophormis gracilis                   | Dorcadospyris triceros | Theocyrtis tuberosa | Thyrsocyrtis bromia   | Thyrsocyrtis tetracantha | Artophornis barbadensis  | Cycladophora turris          | Lithocyclia aristotelis group | Lithapium (?) mitra (?) | Eusyringtum fistuligerum                  | Thyrsocyrtis triacantha | Thyrsocyrtis rhizodon    | Theocampe mongolfieri                      | Lithochytris vespertilio      | Lithocyclia ocellus group | Podocyrtis papalis     | Sethochytris babylonis group | Podocyrtis ampla     | Lophocyrtts (?) jacchia                | Podocyrtis mitra     | Sethochytris triconiscus (?)              | Podocyrtis chalara             | Cycladophora hispida | Theocorys anapographa |                  |                      | COMMENTS |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|------------------------|---------------------|-----------------------|--------------------------|--------------------------|------------------------------|-------------------------------|-------------------------|-------------------------------------------|-------------------------|--------------------------|--------------------------------------------|-------------------------------|---------------------------|------------------------|------------------------------|----------------------|----------------------------------------|----------------------|-------------------------------------------|--------------------------------|----------------------|-----------------------|------------------|----------------------|----------|
| 69A 10 3 81-83<br>10 cc<br>69 6 1 82-84<br>6 cc                                                                                                                                        | P. T. chalara bromia | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                        |                     |                       |                          |                          |                              |                               |                         |                                           |                         | 11011<br>11011           | 11-11<br>11-11                             |                               |                           |                        | um<br>um                     | 11111.<br>11111      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      | nen.<br>Nen                               |                                | 1141.<br>1171.       | uun<br>uku            | 8                |                      | R<br>R   |
| RARE<br>FEW<br>COMMON<br>ABUNDANT<br>ABUNDANT<br>COMMENTS<br>D - Suspected down-working<br>during drilling<br>R - Suspected reworked<br>older microfossils<br>HOLE CORE SECT. INTERVAL | ZONE                 | Thyrsocyrtis triacantha                | Eusyringium lagena (?) | Podocyrtis diamesa  | Thyrsocyrtis rhizodon | Theocampe mongolfieri    | Theocotyte venezuelensis | Thyrsocyrtis hirsuta robusta | Lithapium (?) plegmacantha    | Theocorys anapographa   | Theocotyle cryptoephala cryptocephala (?) | Theocorys anaclasta     | Lithochytris vespertilio | Lamptonium (?) fabaeforme (?) chaunothorax | Triactis tripyramis triangula | Lithocyclia ocellus group | Podocyrtis sinuosa (?) | Podocyrtis papalis           | Theocotyle (?) ficus | Sethochytris babylonis group           | Phormocyrtis striata | Lamptonium (?) fabaeforme (?) constrictum | Triactis tripyramis tripyramis | Lithochytris archaea | Podocyrtis aphorma    | Lithocampium sp. | Cycladophora hispida |          |
| 69A 11 1 81-83<br>11 cc                                                                                                                                                                | T. triacantha        |                                        | 1                      | T                   | I                     |                          |                          |                              |                               |                         |                                           |                         |                          |                                            | T                             |                           |                        |                              |                      |                                        |                      | I                                         |                                |                      |                       |                  |                      |          |

| 6 | 6         | 6       | s o | s       | S       | 4    | 4     | 4       | 3 0 | 3       | 3       | 2 c     | 2                 | 2       | 69A 1 c | HOLE CORE SE | R - Suspected<br>older micr | COMMENTS<br>D - Suspected<br>during dril | ABUNDAN  | COMMON | FEW | RARE | SITE 6 |
|---|-----------|---------|-----|---------|---------|------|-------|---------|-----|---------|---------|---------|-------------------|---------|---------|--------------|-----------------------------|------------------------------------------|----------|--------|-----|------|--------|
| 5 | 3 100-102 | 1 81-83 | ö   | 3 80-82 | 1 81-83 | Ċ    | 3 0-2 | 1 81-83 | č   | 5 81-83 | 1 81-83 | c       | 5 81-83           | 1 81-83 | °       | CT.INTERVA   | reworked<br>ofossils        | down-working<br>ling                     | Т        |        | I   |      | 9      |
|   |           |         | 7   | Theocy  | rtis an | nosa |       |         |     |         |         |         | Dorcad<br>papilio | lospyr  | is      | 7            | ONE                         |                                          |          |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         |         |                   |         |         |              | Car                         | anartus tubari                           | us       |        |     |      |        |
|   |           | 8       |     | 2       |         |      | ŝ     |         | -   | _       | ŝ       |         |                   |         | -       |              | Lya                         | hnocanium b                              | ipes     |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         |         |                   |         | _       |              | Do                          | cadospyris pa                            | pilio    |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         |         |                   |         | -       |              | Cal                         | ocyletta robu                            | sta      |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         |         |                   | _       |         | -            | Do                          | rcadospyris pi                           | aeforcip | ata    |     |      |        |
| _ |           | _       |     |         | -       |      | _     |         |     | _       |         |         | -                 |         |         |              | The                         | eocyrtis annos                           | a        |        |     |      |        |
| _ |           |         |     |         |         |      | -     |         |     | _       | _       | (       | _                 | _       |         |              | Car                         | inartus prisma                           | ticus    |        |     |      |        |
|   |           | 8       |     | -       |         |      |       | -       |     |         |         | _       |                   |         | _       |              | Do                          | cadospyris at                            | euchus   |        |     |      |        |
| _ |           |         |     | -       |         |      | _     | -       |     |         | _       |         |                   |         |         |              | Art                         | ophormis gra                             | cilis    |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         | <u></u> |                   |         |         | -            | Do                          | rcadospyris rie                          | edeli    |        |     |      |        |
|   |           | _       |     |         |         |      | -     | -       |     |         |         | -       |                   |         |         |              | Do                          | rcadospyris ci                           | rculus   |        |     |      |        |
| _ |           | -       | _   | 6       |         |      |       |         |     |         |         |         |                   |         |         |              | Do                          | rcadospyris tr                           | iceros   |        |     |      |        |
|   |           |         |     |         |         |      |       |         |     |         |         |         |                   | _       |         |              | Liti                        | hocyclia angu                            | tum      |        |     |      |        |
|   |           |         | D   | R       | R       | D    |       |         | D   | D       |         |         |                   | R       | R,D     | 0            | OMMENT                      | ſS                                       |          |        |     |      |        |

S Figure 5. Continued.

76



Figure 6. Age versus depth at Site 69, based on the biostratigraphic zonations of the foraminifera, calcareous nannoplankton and Radiolaria. Ages based on the time scale of Berggren (1969).

SEDIMENT THICKNESS (METERS)





| AGE           | NATURAL GAMMA *<br>1.0 (Counts/7.6 cm/1.25 min)<br>× 10 <sup>3</sup> | L.5 CORE NO.           | METERS | LITHOL. | LITHOLOGIC DESCRIPTION                                   | 0                      | %<br>CaCO <sub>3</sub><br>50 100 |
|---------------|----------------------------------------------------------------------|------------------------|--------|---------|----------------------------------------------------------|------------------------|----------------------------------|
| MIDDLE EOCENE | ****                                                                 | 11<br>A<br>7 12<br>8 A | -      |         | Rad ooze.<br>Cherts interbedded with calcareous<br>ooze. | DS OCEANIC FORMATION + |                                  |
|               |                                                                      | 8 A                    |        |         | ooze.                                                    | LINE ISLANDS           |                                  |
|               |                                                                      |                        | -      |         |                                                          |                        |                                  |



Physical Properties, Site 69, 200-400 Meters G./M. DENSITY  $(g/cm^3)$ 2.0 3.0

| AGE                | FORAMS   | NANNOS   | RADS                 | METERS   | SECT. NO. | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                 | 9<br>CaC<br>0 5 | 6<br>CO <sub>3</sub><br>0 100 |
|--------------------|----------|----------|----------------------|----------|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|
|                    |          |          |                      |          | 1         |         | 0.3m near top of the barrel<br><u>Rad ooze</u> - moderate brown (7.5YR3/2) with streaks<br>of pale yellowish orange (10YR8/6).                         | ¥''''           |                               |
|                    |          |          | irtus antepenultimus | 2        | 2         | Void    | Smear summaryRads90%Diatoms10Sponge spicules1%                                                                                                         |                 |                               |
|                    |          |          | Ommata               |          | 3         |         | 0.4m,near middle of the barrel<br><u>Rad ooze</u> - as above, contains a patch of pale<br>yellowish brown (10YR6/2) <u>Nanno ooze</u> .                | ł               |                               |
| E TO UPPER MIOCENE | (absent) | (absent) |                      | 51111111 | 4         |         |                                                                                                                                                        |                 |                               |
| MIDDL              |          |          |                      |          | 5         | Void    | Microfossil groupPreservationAbundanceForaminiferaBenthonic forms<br>onlyRare<br>onlyCalcareous<br>nannoplanktonAbsentRadiolariaModerateCommon         |                 |                               |
|                    |          |          | isoni                | 81111111 | 6         |         | Comments: Common admixed Upper Eocene - Oligo-<br>cene and Lower Miocene Radiolaria.<br>0.22m near bottom of the barrel<br><u>Rad ooze</u> - as above. | -               |                               |
|                    |          |          | C.<br>petters        |          |           |         |                                                                                                                                                        | 1111            |                               |

SITE 69 Core 1 Cored interval: 0-9 m

| AGE            | FORAMS                 | NANNOS               | RADS                | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9<br>CaC | %<br>CO <sub>3</sub> |
|----------------|------------------------|----------------------|---------------------|--------|----------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|
| MIDDLE MIOCENE | N.7 to N.14 (absent) F | ? Discoaster kualeri | Dorcadospyris alata |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Rad ooze. Dark yellowish brown (10YR3/2).         Smear summary         Rads       99%         Diatoms       1%         with paches of Nanno ooze very pale orange (10YR8/2).         Microfossil group       Preservation         Abundance         Foraminifera       Poor         Radiolaria       Moderate         Common       Radiolaria         Moderate       Common         Comments:       Admixed Middle and Upper Eocene and Lower Miocene Radiolaria. Some contamination (downworking due to drilling) noted in radiolarians and calcareous nannoplankton.         large patch of Rad nanno ooze         Nannos 70%         Rads       30%         below 20.8m:       occurrence of beds of Rad nanno ooze (60-70% CaCO <sub>2</sub> ) light colored yellowish brown (10YR4/2) t8 olive gray 5YR5/1. |          |                      |
|                |                        |                      | · · · · · ·         |        |                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                      |

SITE 69 Core 2 Cored interval: 14-23 m



| AGE            | FORAMS    | NANNOS               | RADS                  | METERS       | SECT. NO.   | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                     | %<br>CaCO <sub>3</sub><br>0 50 100 |
|----------------|-----------|----------------------|-----------------------|--------------|-------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                |           |                      |                       | 1111         |             |         | Rad ooze. Dark yellowish brown (10YR4/2).                                                                                                                                                                                                                                                                                  |                                    |
| MIDDLE MIOCENE | (absent)  | ? Discoaster kugleri | Calocycletta costata  | 1            | 2           |         | Smear summaryRads96-99 %Nannos0-2 %Diatoms0-1 %Sponge spicules 0-1 %with streaks, swirls and beds of Rad nanno oozevery pale orange (10YR8/2) to light olive gray(5YR6/1).Smear summaryNannos60-70%Rads30-40%Microfossil groupPreservationAbundanceForaminiferaPoorRareCalcareousGoodnannoplanktonRadiolariaModerateCommon |                                    |
| LOWER MIOCENE  | N.4 7 N.6 | ? Discoaster druggi  | C. vir-<br>gin-<br>is | <sup>3</sup> | 4<br>5<br>6 |         | <pre>Comments: Admixed Eocene, Oligocene, and Lower<br/>Miocene Radiolaria. Some contamina-<br/>tion (downworking) noted in 3-6.</pre> 30.1 - 30.3 m interbedded <u>Rad Nanno Oozes</u><br>30.5 - 31.2 with <u>Nanno Rad Ooze.</u><br>31.5 - 32.0                                                                          |                                    |

SITE 69 Core 3 Cored interval: 23-32 m



| AGE             | FORAMS | NANNOS                       | RADS               | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %<br>CaCO <sub>3</sub><br>0 50 100 |
|-----------------|--------|------------------------------|--------------------|--------|----------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| UPPER OLIGOCENE | 2 N.4  | Triquetrorhabdulus carinatus | Lychnocanium bipes |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Rad Nanno Ooze.       Dark yellowish brown (10YR4/2)         to yellowish gray (5Y7/1).         beds of darker and lighter oozes.         Lighter beds         display higher CaCO3 content.         Smear summary         Nannos       50-10%         Rads       10-50%         Sponge spicules       trace         Microfossil group       Preservation       Abundance         Foraminifera       Moderate       Rare         Calcareous       Poor to       Common         nannoplankton       moderate       Radiolaria         Radiolaria       Poor to       Common         good (highly       variable)       Comments:         Comments:       Admixed Eocene - Lower Oligocene       Radiolaria.         Gouverking) in sections 3, 4, 5 and6.       Autor |                                    |

SITE 69 Core 4 Cored interval: 52-61 m





| Serie of beds of <u>Rad namo ozes</u> , varying CaCO <sub>3</sub><br>beds contain only 40% namos. Bedding with<br>sharp basal contact.<br>Pale yellowish brown (10YR6/2) to very pale<br>brown. (10YR8/2) moderate mottling.<br><u>Pale yellowish brown (10YR6/2) to very pale<br/>brown. (10YR8/2) moderate mottling.</u><br><u>Smear summary</u><br><u>Namos 40-85%</u><br>Rads 15-60%<br>Diatoms 0-2 %<br>Sponge Spicules trace<br><u>Microfossil group</u> <u>Preservation</u> <u>Abundance</u><br>Foraminifera Poor to mod-<br>erate<br>Calcareous Moderate Common<br>namoj lanktom<br>Radiolaria Moderate Few<br>Comments: Scant admixed Eocene Radiolarians in<br>sections 1 and 3. Smee contamination<br>(dowrworking) of calcareous namo-<br>fossils probable. Common diatoms in<br>section 3 and below. | AG                 | FORAMS | NANNOS                    | RADS                | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %<br>CaCO <sub>3</sub><br>0 50 100 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------------------------|---------------------|--------|----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LIPPER OI L'GOCENE | P. 20  | Sphenolithus predistentus | Theocrytis tuberosa |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Serie of beds of <u>Rad nanno oozes</u> , varying CaCO <sub>3</sub><br>content mostly 70 to 85% of nannos but some<br>beds contain only 40% nannos. Bedding with<br>sharp basal contact.<br>Pale yellowish brown (10YR6/2) to very pale<br>brown. (10YR7/3) with swirls very pale orange<br>(10YR8/2) moderate mottling.<br><u>Smear summary</u><br>Nannos 40-85%<br>Rads 15-60%<br>Diatoms 0-2%<br>Sponge Spicules trace<br><u>Microfossil group</u> <u>Preservation</u> <u>Abundance</u><br>Foraminifera Poor to mod-<br>erate<br>Calcareous Moderate Common<br>nannoplankton<br>Radiolaria Moderate Few<br>Comments: Scant admixed Eocene Radiolarians in<br>sections I and 3. Some contamination<br>(downworking) of calcareous nanno-<br>fossils probable. Common diatoms in<br>section 3 and below. |                                    |

SITE 69 Core 5 Cored interval: 117-126 m





| AGE           | FORAMS   | NANNOS   | RADS               | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                  | Ca( | %<br>CO₃<br>50 10 |
|---------------|----------|----------|--------------------|--------|----------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|
| MIDDLE EOCENE | (absent) | (absent) | Podocyrtis chalara |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Smear summary<br>(10YR8/4) - moderately mottled, "bready" texture.         Smear summary<br>Rads       99-100%<br>Diatoms         Rads       99-100%<br>Diatoms         Diatoms       1%<br>Sponge Spicules         Microfossil group       Preservation<br>benthonic forms<br>Calcareous<br>nannoplankton         Radiolaria       Good         Abundant         Comments:       Some diatoms present. |     |                   |

SITE 69 Core 6 Cored interval: 187-196 m



| AGE | FORAMS | NANNOS | RADS | METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SECT. NO. | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                    | 9<br>CaC        | 6<br>203 |
|-----|--------|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
|     |        |        |      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01        |         |                                                                                                                                                                           | ŤΠŤ             | ППП      |
| AGE | FORAMS | NANNOS | RADS | State         State <th< td=""><td>SECT. NO.</td><td>LITHOL.</td><td>LITHOLOGIC DESCRIPTION<br/>Chert (4cm recovered), dark brown, conchoidal<br/>fracture.<br/>Barrel 8: No recovery. Total drilling: 231m<br/>in chert and layers of soft marls.</td><td>9<br/>CaC<br/>0 5</td><td></td></th<> | SECT. NO. | LITHOL. | LITHOLOGIC DESCRIPTION<br>Chert (4cm recovered), dark brown, conchoidal<br>fracture.<br>Barrel 8: No recovery. Total drilling: 231m<br>in chert and layers of soft marls. | 9<br>CaC<br>0 5 |          |
|     |        |        |      | 81111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         | Barrel 8: No recovery.Total drilling: 231m<br>in chert and layers of soft marls.                                                                                          |                 |          |
|     |        |        |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         |                                                                                                                                                                           | hun             | ш        |

SITE 69 Core 7 Cored interval: 227-228 m

| AGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FORAMS  | NANNOS                   | RADS                  | METERS                                                                                                | SECT. NO.   | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                      | %<br>CaCO <sub>3</sub><br>0 50 | 100 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|
| RE CERTIFICATION OF CERTIFICATIONO OF CERTIFICATION OF CERTIFICATION OF CERTIFICATION OF CE | E       | inatus                   |                       | ¥                                                                                                     | 1<br>2<br>3 |         | <u>Rad nanno ooze</u><br>Pale brown (10YR6/3) to light brownish gray<br>(10YR6/2) to white (10YR8/1), slightly to<br>moderately mottled, occasional bedding.<br><u>Smear summary</u><br>Nannos 70-80%<br>Rads 20-30%<br>Diatoms trace                                       |                                |     |
| UPPER OLIGOCENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 P. 22 | Triquetrophabdulus carin | Dorcadospyris papilio | 5<br>6<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 6           |         | Microfossil group Preservation Abundance<br>Foraminifera Moderate to Few<br>good<br>Calcareous Moderate Common<br>nannoplankton<br>Radiolaria Moderate Common<br>Comments: Scant admixed older calcareous<br>nannofossils and Eocene radiolarians.<br>Some diatoms present. |                                |     |

SITE 69A Core 1A Cored interval: 61-70 m


| AGE             | FORAMS              | NANNOS                                                | RADS                  | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9<br>CaC<br>0 5 | 6<br>CO <sub>3</sub><br>0 10 |
|-----------------|---------------------|-------------------------------------------------------|-----------------------|--------|----------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|
| UPPER OLIGOCENE | 2.7 + 22<br>? P. 22 | Sphenolithus ciperoensis Triquetrorhabdulus carinatus | Doreadospyris papilio |        | 1<br>2<br>3<br>4<br>5<br>6 |         | barrel moderately disturbed.<br>Rad nanno ooze. Very pale brown (10YR7/3) to<br>1ight yellowish brown (2.5Y6/4) to pale olive<br>(5Y3/6) to white (N8).<br>moderately mottled<br>occasional bedding<br><u>Smear summary</u><br>Nannos 70-80%<br>Rads 20-30%<br>Diatoms trace<br><u>Microfossil group Preservation Abundance</u><br>Foraminifera Moderate Few<br>Calcareous Moderate Few<br>Calcareous Moderate Common<br>nannoplankton<br>Radiolaria Moderate to Common<br>good<br>Comments: Scant reworked older nannofossils and<br>Lower Oligocene radiolarians. Some<br>diatoms present. |                 |                              |
|                 | -1                  |                                                       |                       |        |                            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | huul            | шц                           |

## SITE 69A Core 2A Cored interval: 70-79 m



| AGE           | FORAMS       | NANNOS                                | RADS             | METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SECT. NO.     | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %<br>CaCO <sub>3</sub><br>0 50 100                                                                                                                                                                                                         |
|---------------|--------------|---------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGE OLIGOCENE | P. 21 FORAMS | entus Sphenolithus ciperoensis NANNOS | Theocyrtis amosa | METERS   METERS     0   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1 <td< td=""><td>1 2 3 4 5 5 6</td><td>LITHOL.</td><td>Lightly disturbed   Rad nanno ooze   mostly white (10YR8/2) to yellowish brown (10YR5/6), bedded (sharp contacts)   Smear summary   Nannos 50-80%   Rads 20-50%   Diatoms trace   Microfossil group Preservation   Abundance   Foraminifera Moderate to good   Calcareous Poor to common to abundant   Radiolaria Poor to common moderate   Comments: Some reworked older nannofossils and some contamination (downworking) noted in radiolarians from section 5 and catcher.</td><td>%   CaCO3   0 50 100   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1</td></td<> | 1 2 3 4 5 5 6 | LITHOL. | Lightly disturbed   Rad nanno ooze   mostly white (10YR8/2) to yellowish brown (10YR5/6), bedded (sharp contacts)   Smear summary   Nannos 50-80%   Rads 20-50%   Diatoms trace   Microfossil group Preservation   Abundance   Foraminifera Moderate to good   Calcareous Poor to common to abundant   Radiolaria Poor to common moderate   Comments: Some reworked older nannofossils and some contamination (downworking) noted in radiolarians from section 5 and catcher. | %   CaCO3   0 50 100   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 1   1 |
|               |              | S. dist                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                            |

SITE 69A Core 3A Cored interval: 79-88 m



| AGE             | FORAMS | NANNOS                 | RADS             | METERS | SECT. NO.                  | LITHOL.  | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                  | Cat<br>0 5 | %<br>CO <sub>3</sub><br>60 10 |
|-----------------|--------|------------------------|------------------|--------|----------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
| UPPER OLIGOCENE | P. 21  | Sphenolithus distentus | Theocyrtis amosa |        | 1<br>2<br>3<br>4<br>5<br>6 | Unopened | Nanno ooze<br>white with yellowish brown (10YR5/6) patches<br>bedded<br><u>Smear summary</u><br>Nannos 80-95%<br>Rads 5-20%<br>Diatoms trace<br><u>Microfossil group Preservation Abundance</u><br>Foraminifera Moderate<br>Calcareous Moderate to<br>nannoplankton poor<br>Radiolaria Moderate<br>Comments: Some reworked older nannofossils.<br>Bome diatoms present. |            |                               |

SITE 69A Core 4A Cored interval: 89-98 m



| AGE         | FORAMS    | NANNOS           | RADS              | METERS                                                                                                | SECT. NO. | LITHOL.  | LITHOLOGIC DESCRIPTION                                                                                                                                                                                   | Cat<br>0 5 | %<br>CO₃<br>50 100 |
|-------------|-----------|------------------|-------------------|-------------------------------------------------------------------------------------------------------|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|
| R OLIGOCENE | 21 FORAMS | lithus distentus | cyrtis amosa RADS | WETERS                                                                                                | 2 3 3 4   |          | LITHOLOGIC DESCRIPTION   disturbed by drilling.   Nanno ooze. White (N8)   Smear summary   Nannos 90%   Rads 10%   Microfossil group Preservation   Froaminifera Moderate   Calcareous Moderate Abundant |            |                    |
| UPPI        |           | ? Sphen          | The               | 6<br>7<br>8<br>8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 6         | Unopened | nannoplankton<br>Radiolaria Moderate Common<br>Comments: Some diatoms present.<br>106.65 to 106.86m - no core.                                                                                           |            |                    |

SITE 69A Core 5A Cored interval: 98-107 m



| AGE             | FORAMS | NANNOS                   | RADS             | METERS | SECT. NO.                  | LITHOL. | LITH                                                                                                                                                                                                                              | OLOGIC DESCRIPTIO                                                                                                 | N                                                                                             | 9<br>CaC<br>0 5 | 6<br>CO <sub>3</sub><br>0 10 |
|-----------------|--------|--------------------------|------------------|--------|----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------------------|
| UPPER OLIGOCENE | p. 21  | Sphenolithus predisentus | Theoerytis amosa |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Sections 3, 4 and<br>fluids.<br><u>Nanno ooze</u> . White<br>plastic and stiff 1<br><u>Smear summary</u><br>Nannos 85-90%<br>Rads 10-15%<br><u>Microfossil group</u><br>Foraminifera<br>Calcareous<br>nannoplankton<br>Radiolaria | 5 badly disturb<br>to yellowish br<br>beds.<br><u>Preservation</u><br>Moderate<br>Moderate<br>Poor to<br>moderate | ed by drilling<br>own (10YR5/6)<br>Abundance<br>Few<br>Common to<br>abundant<br>Few to common |                 |                              |
|                 |        |                          |                  |        |                            |         |                                                                                                                                                                                                                                   |                                                                                                                   |                                                                                               | harl            | 1111                         |

SITE 69A Core 6A Cored interval: 107-116 m



| AGE             | FORAMS         | NANNOS                  | RADS                | METERS                | SECT. NO. | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                | 9<br>CaC<br>0 5 | 6<br>20 <sub>3</sub><br>0 100 |
|-----------------|----------------|-------------------------|---------------------|-----------------------|-----------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|
| U. OLIG.        |                | tentus                  |                     |                       |           | Void    | Liner collapsed,core badly disturbed,poor recovery.                                                                                                                                                                                                                                   |                 |                               |
|                 |                | Sphenolithus predis     |                     | 2<br>3<br>4<br>1<br>1 | 1         |         | 1.28 m of <u>Nanno Ooze</u> near the middle of the<br>barrel; white (N8) - badly disturbed.<br><u>Smear summary</u><br>Nannos 90%<br>Rads 10%                                                                                                                                         |                 | 1<br>1<br>1<br>1              |
| LOWER OLIGOCENE | ? P.20         |                         | Theocyrtis tuberosa | 5<br>6<br>7           |           | Void    | Microfossil groupPreservationAbundanceForaminiferaModerateFewCalcareous<br>nannoplanktonModerateAbundantRadiolariaModerateCommonComments:Scant admixed Eocene Radiolaria<br>common diatoms present.133.2 to 134.8m.Nanno ooze, white, stiff,<br>undisturbed.Nanno ooze, white, stiff, |                 |                               |
|                 | + P. 18 to P20 | Discoaster tani ornatus |                     | 8                     | 2         |         | 134.2 to 135.0m. <u>Nanno ooze</u> ,white, stiff,<br>undisturbed.                                                                                                                                                                                                                     |                 |                               |

SITE 69A Core 7A Cored interval: 126-135 m



| Nanno Rad Ooze   1   2   2   2   3   3   Void   4   3   Void   4   3   Void   4   5   6   7   6   6   6   6   6   6   7   6   7   6   7   6   7   7   7   7   7   7   7   7   7   7   7   7    8   9   9   9   9   9   9   10   10   10   10   10   10   < | AGE             | FORAMS         | NANNOS                  | RADS                | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                  | Cat<br>0 5 | %<br>CO <sub>3</sub><br>50 10 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------------|---------------------|--------|----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
|                                                                                                                                                                                                                                                            | LOWER OLIGOCENE | P. 18 to P. 20 | Discoaster tani orantus | Theocrytis tuberosa |        | 1<br>2<br>3<br>4<br>5<br>6 | Void    | Nanno Rad Ooze   mostly white (N8) with beds of very pale brown (10YR8/2)   bedding   stiff, "bready" texture below Section 2.   Smear summary   Nannos 50-75%   Rads 25-50%   Microfossil group Preservation   Abundance   Foraminifera Moderate   Moderate Common   calcareous Moderate Common   Radiolaria Moderate Common   Radiolaria Moderate Common   Radiolaria Moderate Common |            |                               |

SITE 69A Core 8A Cored interval: 135-144 m



| AGE          | FORAMS                  | NANNOS   | RADS              | METERS | SECT. NO.             | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9<br>Ca(<br>) 5 | %<br>CO <sub>3</sub> |
|--------------|-------------------------|----------|-------------------|--------|-----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|
| UPPER EOCENE | Eocene undifferentiated | (absent) | Theosyrtis bromia |        | 1<br>2<br>3<br>4<br>5 |         | Rad Ooze   Yellowish brown (10YR5/6) to dark brown (10YR4/4)   Lightely mottled (orange)   bedding   "bready" texture   occasional more plastic beds   Smear summary   Rads 99-100%   Diatoms trace   Sponge spicules trace   No core below 151.5m   Microfossil group Preservation   Abundance   Foraminifera Agglutinated<br>benthonic<br>forms only   Calcareous Absent   Radiolaria Moderate   Abundant   Comments: Some reworking of Middle Eocene<br>Radiolaria and contamination (down-<br>working) of younger nanofossils. |                 |                      |

SITE 69A Core 9A Cored interval: 144-153 m



| AGE          | FORAMS                 | NANNOS   | RADS              | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                            | Cat<br>0 5 | %<br>CO3 |
|--------------|------------------------|----------|-------------------|--------|----------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| UPPER EOCENE | Eocene undiffeentiated | (absent) | Theocyrtis bromia |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Fragments of caved Nanno ooze.   Rad ooze   Dark brown (10YR4/4)   lightly mottled   bedding   "bready" texture   stiff and more plastic beds   Smear summary   Rads 99-100%   Diatoms trace   Sponge spicules trace   Sponge spicules trace   Foraminifera Agglutinated benthonic forms only   Calcareous nannoplankton Absent   Radiolaria Moderate Abundant   Comments: Some reworked Middle Eocene Radiolaria |            |          |
|              |                        |          |                   |        |                            |         | vounger nannofossils.                                                                                                                                                                                                                                                                                                                                                                                             | im         | 1111     |



|               |          | _        | 17.70                    | · ·    |                            | oorea   | HOCT VALLE LIT LED III                                                                                                                                                                                                                                                                                                                                   |                                                                        |            |                               |
|---------------|----------|----------|--------------------------|--------|----------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|-------------------------------|
| AGE           | FORAMS   | NANNOS   | RADS                     | METERS | SECT. NO.                  | LITHOL. | LITHOLOGIC DESCRIPTIO                                                                                                                                                                                                                                                                                                                                    | N                                                                      | Cat<br>0 5 | %<br>CO <sub>3</sub><br>50 10 |
| MIDDLE EOCENE | (absent) | (absent) | Iftyrsocyrtis triacantha |        | 1<br>2<br>3<br>4<br>5<br>6 |         | Rad ooze   dark brown (10YR4/4)   light to heavy mottles   bedding   "bready" texture   stiff and more plastic beds   Smear summary   Rads 99-100%   Diatoms trace   Sponge Spicules trace   Microfossil group Preservation   Foraminifera   Calcareous   nannoplankton   Radiolaria Moderate   Comments: Some contamination (down younger nannofossils. | Abundance<br>Absent<br>Absent<br>Common to<br>abundant<br>nworking) of |            |                               |
|               |          |          |                          |        | - 1                        |         |                                                                                                                                                                                                                                                                                                                                                          |                                                                        | huu        | 1111                          |

SITE 69A Core 11A Cored interval: 214-223 m



| AGE           | FORAMS   | NANNOS   | RADS                    | METERS                     | SECT. NO. | LITHOL.              | LITHOLOGIC DESCRIPTION                                                                                                                                                                                                                                                                                                         | Cat<br>0 5 | %<br>CO <sub>3</sub> |
|---------------|----------|----------|-------------------------|----------------------------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|
| MIDDLE EOCENE | (absent) | (absent) | Thyrsocyrtis triacantha | 1<br>1<br>2<br>3<br>4<br>1 | 1         | Void<br>Void<br>Void | Near the top of the barrel 2 layers (31 and<br>32cm) of<br><u>Rad ooze</u> (99 to 100% rads), dark brown (10YR4/3),<br>with fragments of caved <u>Nanno Ooze</u><br>Barrel 12 may be entirely caved !<br>Barrel 12 may be entirely caved !<br><u>Abundance</u><br>Foraminifera<br>Calcareous<br>nannoplankton<br><u>Absent</u> |            |                      |
|               |          |          |                         |                            |           | Void                 | Radiolaria Moderate Common to<br>abundant<br>Comments: Some contamination (downworking) of<br>younger nannofossils.                                                                                                                                                                                                            |            |                      |
|               | ā.       |          |                         | 7                          |           | No<br>recovery       | ←Core 69A-12 was stopped at 229.7 m by a hard<br>Tayer.                                                                                                                                                                                                                                                                        |            |                      |
|               |          |          |                         |                            |           |                      | Core 69A-13: No recovery.<br>Total drilling 231 m in Cherts and soft Marls.                                                                                                                                                                                                                                                    |            | 1111                 |

SITE 69A Core 12A (223-229.7 m) and 13A (229.7-231 m)



Site 69, Core 2, Sections 3-6.



Site 69, Core 3, Sections 1-5.



Site 69, Core 4, Sections 1-6.



Site 69, Core 5, Sections 1-6.

| SECTION | 1                     | 2                     | 3        | 4              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6          |
|---------|-----------------------|-----------------------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| -0 cm-  | 20.000 No. 1182       |                       | Second 1 | LA ANA THE HAR | CONSISTENCE IN AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| -       |                       | A CONTRACTOR          |          | 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| F       | 1 A A                 |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| -       |                       |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| F       | - 5 19                |                       |          |                | TIME :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| 25      |                       |                       |          |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| -       |                       |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| -       |                       |                       |          |                | and the second se |            |
| F       |                       |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| -       | 1                     |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 50      | and the second second |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| F       |                       | 200                   |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| F       |                       | 5                     | 12       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| F       | -                     | and the second second |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|         | •                     |                       |          |                | from the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second |
| -75     | 1                     |                       |          |                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| -       |                       |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|         |                       | A.C.                  |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Γ       |                       |                       | 9 23     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|         |                       |                       |          | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
|         | 7                     |                       |          | all in         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -          |
| L       | Por la                |                       |          |                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,          |
| L       |                       |                       |          | 1. 2.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| L       | 201                   |                       | AS I     |                | a for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 125     |                       |                       | THE .    | " - al         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| _       |                       |                       | 1        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| -       |                       |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| L       | a                     | Carlo I               |          |                | 14- P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| L       | fr -                  |                       |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| L_150 - |                       | ANI                   | -        | Arres :        | 2449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |

Site 69, Core 6, Sections 1-6.



Site 69A, Core 1, Sections 1-6.

| SECTION    | 1                     | 2                     | 3              | 4                                | 5                   | 6                      |
|------------|-----------------------|-----------------------|----------------|----------------------------------|---------------------|------------------------|
| -0 cm-     | Margarette F          | IN COMPANY IN THE     | ALLER DE STRAT | - TATUS SUBSTRATEGISCO P. DO MOR | Annual Annual In an | land the second second |
| -          |                       |                       | No.            |                                  | 1 - Co              |                        |
| -          |                       |                       |                |                                  |                     |                        |
|            | E Star                | Company of the        | A CORE         | 8                                | 1 million           |                        |
| Г          |                       | and the second second |                | <b>X</b>                         |                     | Margare 1              |
| -          |                       |                       |                | 1 1 1                            | and the second      |                        |
| - 25       | Califica :            |                       | No 1           |                                  | Sugar I             |                        |
|            |                       | Contract 1            | S Internet and |                                  |                     |                        |
| F          |                       |                       |                |                                  |                     |                        |
|            |                       |                       |                | 5 7.5                            |                     |                        |
|            | and the second second |                       | E.C. M         |                                  |                     |                        |
| Γ          |                       |                       | 18 1           | B                                |                     | (Parties)              |
| $\vdash$   |                       | Part 1                | A 11           | 15                               |                     |                        |
| 50         |                       | 2 miles               | 16 (A)         | 1 the state                      |                     | 23.51                  |
|            |                       | S all                 | A THE          | 10000                            | TRAVER OF           |                        |
| -          |                       |                       | ST PART        |                                  |                     |                        |
|            |                       | 1                     |                | Participant in                   |                     |                        |
|            | The second            | Des ser               |                |                                  | and the second      |                        |
| Γ          |                       |                       |                |                                  |                     | Para In                |
| -          |                       |                       |                |                                  |                     |                        |
| 75         |                       |                       | 1              |                                  |                     | 1598                   |
| 15         |                       | 12 13 1               |                |                                  | 1000000             |                        |
| -          |                       |                       |                |                                  | 1305                |                        |
| L          |                       |                       |                | R                                |                     |                        |
|            |                       | (1)(1)(1)             |                | 1                                | Contraction of the  |                        |
| F          |                       | 1845 2                | Lans 1         |                                  | REF                 | ALC: NO                |
| <b>-</b> - |                       | No.                   |                |                                  |                     | 1 Carl                 |
| 100        |                       |                       |                |                                  |                     |                        |
|            |                       |                       |                |                                  |                     |                        |
| -          |                       |                       |                |                                  |                     | CIAN.                  |
| L I        |                       | the state             |                | 16 A                             |                     |                        |
|            |                       |                       |                | BUS                              | Com 1               | 10250                  |
| Γ          |                       |                       | 1831           |                                  | 1 2 2 1             |                        |
| - 1        |                       |                       | 1871           |                                  | NOSSI T             |                        |
| 125        | a la                  | Cherry I              |                |                                  | Same and            |                        |
| 120        |                       |                       |                |                                  |                     | INCOME.                |
|            |                       |                       |                |                                  |                     |                        |
| ⊢          |                       | 13.20                 |                | 1                                |                     | R                      |
|            |                       | Summer 1              |                | Sec. 1                           |                     |                        |
|            |                       |                       |                |                                  |                     |                        |
| - 1        |                       | 1 33                  | 1 - 1 - 1      | ASSA I                           |                     |                        |
| L_150 _    |                       |                       |                | 1 martin                         |                     |                        |

Site 69A, Core 2, Sections 1-6.



Site 69A, Core 3, Sections 1-6.



Site 69A, Core 4, Sections 1, 2, 5, 6.





Site 69A, Core 5, Sections 1-4, 6.

(a)





Site 69A, Core 6, Sections 1, 2, 6.



Site 69A. Core 8, Sections 1-6.



Site 69A, Core 9, Sections 1-5.



*Site 69A, Core 10, Sections 1-6.* 132


Site 69A, Core 11, Sections 1-6.



