8. SITE 73

Shipboard Scientific Party¹

SITE DATA

Occupied: November 17-19.

Position: Latitude 01° 54.58'S. Longitude 137° 28.12'N.

Water Depth: 4387 meters.

Hole Depth: 302 meters ending in middle Eocene siliceous chalk, limestone and chert.

Holes Drilled: One hole.

Cores Taken: Twenty-one cores; continuous 0 to 94 meters, 243 to 302 meters; spot cores at 140, 206 meters.

RESULTS

The cored sediments may be grouped into three principle sequences:

- An upper layered sequence, 74 meters thick, of Quaternary to Middle Miocene age comprising repetitive beds of variable carbonate content (radiolarian-nannofossil and nannofossil-radiolarian ooze) (0 to 65 meters) of Quaternary, Pliocene and Upper Miocene age, overlying a bedded siliceous ooze, dominantly radiolarian (67 to 74 meters) of upper and middle Miocene age, but containing a dominant assemblage of reworked lower Miocene species.
- A high-carbonate sequence (radiolariannannofossil to nannofossil ooze, 65 to 288 meters) of middle Miocene to lower Oligocene age.
- Bedded carbonate ooze, siliceous chalk and chert (288 to 302 meters) of upper and middle Eocene age.

BACKGROUND

Site 73 is one of the sites along the N-S line drilled during Leg 8 to investigate the east-west trending accumulation of sediments centered about 2° N near 140° W. It lies about 170 miles south of Site 72 and 270 miles north of Site 74. Site 73, along with Site 72 to the north, was added to the N-S line of sites proposed by the JOIDES Pacific Advisory Panel in order to obtain better stratigraphic correlation across the Equator.

There was no SCAN survey for this site and all site information is derived from observations made on the Challenger. The principal topographic feature in the vicinity of the site is a northeast trending ridge or alignment of seamounts with a maximum relief of about 300 meters in the southwestern part of the survey area (about 6 miles from the site). The shortest distance between the ridge and the drilling site is about 3 miles. The ridge runs transverse to the general dip of the sea floor of about 10 meters per mile to the southeast. A depression, or moat, is apparent in the upper sediments on either side of the ridge. Generally the rather gentle sea floor topography and intermediate reflectors follow variations in acoustic basement with some attenuation. However, there are a number of exceptions in the area. Near the site are a number of small-scale flexures and offsets that may be controlled by underlying faults. Also, there appears to be a discordant zone within the upper portion of the sediments near the site. Depth to acoustic basement in the vicinity is about 0.36 second. Near the site this rises to 0.25 second (Figure 1 and Figure 10, Chapter 2).

At Site 73 the prominent reflectors are at 0.100 and 0.355 seconds. The upper reflector correlates with the Clipperton-Marquesas boundary at 73 meters depth, which, at this location, appears to be an unconformable contact. The lower reflector, acoustic basement, is correlated with the Marquesas-Line Islands boundary at 288 meters or indurated sediment within the Line Islands occurring near 300 meters (Figures 6, 7 and 8, Chapter 2).

¹ Joshua I. Tracey, Jr., U. S. Geological Survey, Washington D. C.; George H. Sutton, University of Hawaii, Honolulu, Hawaii; W. D. Nesteroff, Université de Paris, Paris, France; Jon Galehouse, San Francisco State College, San Francisco, California; C. C. von der Borch, Scripps Institution of Oceanography (present address: Flinders University, Bedford Park, South Australia); T. C. Moore, Oregon State University, Corvallis, Oregon; U. Z. Bilal ul Haq, Geologiska Institutionene, Stockholm, Sweden (present address: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts); and J. P. Beckmann, Geologisches Institute, Zurich, Switzerland.

A topographic map of the vicinity of Site 73, airgun records, and further site information are given in Chapter 25.

Figure 1. Airgun record across Site 73 and interpretation.

OPERATIONS

The drilling plan was to core continuously from the sea floor into upper Miocene; then to "ship core" (coring every 50 meters or so) into Oligocene sediments; then to core continuously to basement.

In the drilling of Hole 73, 11 core runs (0 to 94 meters) were taken into middle Miocene sediment

before any "ship coring" was attempted, for upper Miocene cores contained lower Miocene fossils, indicating a probable significant hiatus or discontinuity.

Two cores were taken at 190 meters and 206 meters, and coring was continuous from 243 to 302 meters.

A Welex drill pipe electric log was run while coming out of the hole.

	Core No.	Interval Below Seafloor (meters)	Cored (m)	Recovered (m)	Comments
Hole 73	1	0-3	3.1	3.1	Poor core
	2	3-12	9.1	7.6	
	3	12-21	9.1	8.5	
	4	21-30	9.1	9.1	
	5	31-40	9.1	8.2	
	6	40-49	9.1	9.1	
	7	49-58	9.1	9.1	
	8	58-67	9.1	9.1	
	9	67-76	9.1	8.7	
	10	76-85	9.1	9.1	
	11	85-94	9.1	9.1	
	—	94-140	-	-	Drilled 149 feet
	12	140-149	9.1	9.1	
	-	149-206	—	-	Drilled 187 feet
	13	206-215	9.1	9.1	
	_	215-243		-	Drilled 90 feet
	14	243-252	9.1	9.1	
	15	252-262	9.1	9.1	
	16	262-270	9.1	9.1	
	17	270-279	9.1	9.1	
	18	279-288	9.1	9.1	
	19	288-297	9.1	9.1	
	20	297-300	3.1	3.1	Hard layer at 300 m
	21	300-302	2.4	2.4	
Total		302	173.1	169.8	97.5% recovery

TABLE 1 Summary of Coring at Site 73

LITHOLOGY AND STRATIGRAPHY

Three sedimentary formations are present at Site 73: the Clipperton Oceanic Formation (0 to 73.4 meters) consisting of an upper cyclic unit (0 to 6.5 meters) of alternating calcareous and siliceous oozes, a middle varicolored unit (6.5 to 62.9 meters) of calcareous oozes, and a lower unit (62.9 to 73.4 meters) of radiolarian ooze; the Marquesas Oceanic Formation (73.4 to 288 meters) consisting of radiolariannannofossil ooze; and the Line Islands Oceanic Formation (288 to 302 meters) consisting of semi-indurated radiolarian-nannofossil ooze, nannofossil-radiolarian ooze, and radiolarian ooze overlying silicified limestone and chert. Calcareous nannoplankton are by far the most common constituent of the sediments at Site 73 with Radiolaria, foraminifera and diatoms forming significant portions of some intervals.

Clipperton Oceanic Formation

The Clipperton Oceanic Formation is composed of three units at Site 73. The upper cyclic unit (0 to 6.5 meters) consists of alternating calcareous and siliceous oozes. The contacts between the two lithologies are usually sharp and marked by color changes. Most of the individual beds are from 5 to 50 centimeters thick and are soft and plastic. The calcareous portions are siliceous foraminiferal-nannofossil oozes and make up about 80 per cent of the unit. They are white to very light gray or brown and are composed predominantly of calcareous nannoplankton (50 to 65 per cent) with Radiolaria (10 to 25 per cent), foraminifera (10 to 20 per cent), and diatoms (5 to 10 per cent) The siliceous portions are calcareous radiolarian oozes and form about 20 per cent of the unit. They are various shades of brown and have an average composition of Radiolaria (50 per cent), calcareous nannoplankton (25 per cent), foraminifera (15 per cent), and diatoms (10 per cent). In general, the darker brown the color, the lower the calcium carbonate (CaCO₃) content. This cyclic unit is Quaternary in age. The contact of the cyclic unit with the underlying varicolored unit is sharp and is placed at the top of the uppermost pastel-hued bed.

The middle varicolored unit (6.5 to 62.9 meters) of the Clipperton Oceanic Formation is distinguished from the overlying cyclic unit by its pastel colors and from the underlying radiolarian ooze unit by its colors and composition. The varicolored unit is bedded with most beds in the upper portion between 5 and 30 centimeters thick and most beds in the lower portion between 5 and 50 centimeters thick. Beds are distinguished mainly by sharp color differences with little compositional change evident. Most beds are either bluish white, light bluish gray, light greenish gray, yellowish gray, or pale purple. Mottling is not present at the top of the unit but increases in intensity to moderate mottling at the base. All beds are soft and plastic. The upper portion of the unit is siliceous foraminiferal-nannofossil ooze similar compositionally to that in the overlying cyclic unit. From about 43 meters to the base of the varicolored unit the composition changes to radiolarian-nannofossil ooze mainly due to an increasing Radiolaria content and a decreasing foraminifera content. The radiolarian-nannofossil oozes are mainly composed of calcareous nannoplankton (45 to 60 per cent) with Radiolaria (30 to 50 per cent), foraminifera (0 to 10 per cent), and diatoms (0 to 10 per cent). The lower portion of the varicolored unit is more variable in composition than at Sites 71 and 72.

From about 56 to 64.4 meters is a zone having characteristics of both the varicolored unit and the underlying radiolarian ooze unit. The pastel purple, green, and blue sediments are interbedded with brownish, more siliceous oozes. The basal contact of the varicolored unit has been placed at the top of the uppermost radiolarian ooze bed at 62.9 meters. The varicolored unit is Quaternary, Pliocene, and late Miocene in age.

The lower unit (62.9 to 73.4 meters) of the Clipperton Formation at Site 73 consists of radiolarian ooze. Thin individual beds can be distinguished in the upper and lower portions of the unit with a single 5.3-meter thick bed from 67.6 to 72.9 meters. The radiolarian ooze unit is mostly dark grayish brown in the upper and lower portions and various shades of brown and dark brown in between. The darkest portions contain no carbonate, whereas the lighter brown portions average about 20 per cent carbonate. The entire interval is moderately mottled with very pale brown. Radiolaria make up 80 to 95 per cent of the unit with calcareous nannoplankton usually ranging from 0 to 20 per cent. The radiolarian ooze unit is upper and middle Miocene in age based mainly on foraminifera and calcareous nannoplankton in the enclosing calcareous layers. Much of the unit contains an almost pure lower Miocene radiolarian fauna however, which suggests that much of the radiolarian ooze unit may represent a slump or slide deposit, or solution and deposition at a disconformity. Paleontological evidence suggests mixing and reworking. In addition, the site survey seismic profiles show an apparent unconformity at the depth of this unit. The contact between the radiolarian ooze unit and the underlying Marquesas Oceanic Formation is sharp and occurs at the hiatus at the base of the lowermost radiolarian ooze bed.

Marquesas Oceanic Formation

The entire Marquesas Oceanic Formation at Site 73 is highly calcareous (65 to 95 per cent), composed mainly of calcareous nannoplankton (coccolithophoride and discoasters). The upper and lower portions contain more siliceous debris than the middle portion. The upper portion consists of radiolarian-nannofossil ooze and extends from 73.4 to 149 meters below the sea floor. Colors grade from light gray to pale brown to white, sharp contacts being rare. The beds are slightly to moderately mottled with very pale brown and white. Calcareous nannoplankton comprise 65 to 95 per cent of the sediment, Radiolaria 5 to 35 per cent.

The middle portion of the Marquesas Oceanic Formation consists of one bed of nannofossil ooze, extending from 206 to approximately 261 meters below the sea floor. The unit is white and not mottled. Calcareous nannoplankton comprise 90 to 95 per cent of the unit, Radiolaria 3 to 8 per cent. The contact with the underlying beds is gradational.

The lower portion of the Marquesas Oceanic Formation is siliceous nannofossil ooze and is part of the same bed that forms the middle portion. A compositional difference is all that distinguishes one from the other. The lower beds are slightly more siliceous than the middle ones, 5 to 20 per cent silica compared to 5 to 10 per cent. The lower portion extends from about 261 to 288 meters below the sea floor. The unit is white and not mottled. Calcareous nannoplankton form 80 to 95 per cent of the unit. Radiolaria form 3 to 15 per cent of the unit near the top and less than 5 per cent near the base. Diatoms form less than 5 per cent of the unit near the top and 5 to 15 per cent near the base. The contact with the underlying Line Islands Oceanic Formation at 288 meters is sharp and represents a disconformity that corresponds to the Oligocene-Eocene boundary. The Marquesas Formation is middle Miocene and Oligocene in age.

Line Islands Oceanic Formation

The upper portion of the Line Islands Oceanic Formation at Site 73 consists of interbedded radiolariannannofossil ooze, nannofossil radiolarian ooze, and radiolarian ooze extending from 288 to about 300 meters below the sea floor. Most beds are between 60 and 160 centimeters thick and are distinguished by both color and compositional differences. Some of the contacts are sharp, others gradational. The beds are various shades of brown, ranging from pale brown to dark brown with yellowish-brown beds being especially common. In general, the darker brown the color, the lower the carbonate content of the beds. All the beds are moderately mottled with very pale brown. The beds are stiff near the top and grade to semi-indurated at the bottom. The radiolarian-nannofossil oozes are composed mainly of calcareous nannoplankton (50 to 85 per cent) and Radiolaria (15 to 50 per cent). The nannofossil-radiolarian oozes and radiolarian oozes are composed mainly of Radiolaria (50 to 98 per cent) and calcareous nannoplankton (1 to 50 per cent). Calcareous beds are more abundant than siliceous beds. This upper portion of the Line Islands Oceanic Formation is late Eocene in age. The contact with the underlying beds is gradational.

The lower portion consists of one 12-centimeter bed of very dark gray chert with yellowish-brown silicified limestone both above and below. The unit extends from about 300 meters below the sea floor to the bottom of the hole at 302.7 meters. The contact between radiolarian-nannofossil ooze of the upper portion and silicified limestone of the lower portion is gradational and is rather arbitrarily placed at 300 meters, where a color change and an age boundary occur. The silicified limestone is intensely mottled with very pale brown and is composed of about 70 per cent carbonate and about 30 per cent silica. The limestone contains calcareous nannoplankton, Radiolaria, and diatoms that are partially to almost completely dissolved. The chert is more indurated than the limestone and contains vugs partially filled with carbonate. The lower portion of the Line Islands Oceanic Formation is middle Eocene in age.

Figure 6 is a plot of age versus depth, based on the biostratigraphic zonations of the foraminifera, nannoplankton, and Radiolaria, with the time scale, in millions of years, based on that of Berggren (1969).

PHYSICAL PROPERTIES

Porosities range between about 40 and 80 per cent and velocities range between 1.49 and 1.58 km/sec. Most of

sampled sediments are high in calcium carbonate $(CaCO_3)$ and the velocity-porosity data for 65 to 100 per cent calcium carbonate $(CaCO_3)$ in Figure 2 fall near the theoretical curve for a grain-matrix density of 2.65 g/cm³ appropriate for such material. The few data points for low calcium carbonate $(CaCO_3)$ (0 to 35 per cent) fall near the curve for density 2.20 g/cm³ appropriate for siliceous ooze. Some points fall below the curves; possible reasons for this are mentioned in Chapter 2.

There appears to be a rather sharp decrease in porosity and increase in sonic impedance with depth near the Clipperton-Marquesas boundary at 73 meters depth. A prominent subbottom reflection is correlated with this boundary (Figure 6, Chapter 2). There also appears to be a decrease in natural gamma radiation across this boundary. Radiation abruptly increases again across the Marquesas-Line Islands boundary at 288 meters. Near the top of the hole, radiation exceeds 1800 counts and rapidly decreases to less than 1000 counts.

For depths less than 100 meters, sonic velocities are less than that for sea water.

Velocity and density were determined for two pieces of indurated core; a muddy limestone and a chert (Chapter 2). A velocity of 4.70 km/sec and a density of 2.53 g/cm^3 were obtained for the chert.

Results of grain-size and carbon-carbonate analyses are tabulated in Appendices II and III, respectively.

PALEONTOLOGY

Foraminifera

A single hole was drilled at this site, which reached a depth of 302 meters in the Middle Eocene. Continuous cores are available from the Quaternary into the Middle Miocene (Cores 73-1 to 11) and again from within the Oligocene to total depth (Cores 73-14 to 21). The stratigraphic section is similar to that of Site 72, but the Pliocene and Upper Miocene are richer in radio-larians. The microfaunas of Cores 73-8 and 9 in the Upper Miocene are often predominantly siliceous, as are those of Cores 73-19 and 20 at the top of the Eocene. It appears that in both these cases the siliceous faunas are closely associated with unconformities.

As at Site 72, the Quaternary is fairly thick (at least 15 meters). Planktonic foraminifera are common and are dominated by *Globorotalia tumida* and *Pulleniatina* spp. The change in coiling of *Pulleniatina* from random to dextral occurs just above Section 73-2-4 (depth 7 meters). The Pliocene/Quaternary boundary is within Core 73-3, somewhere between Section 2 (earliest *Globorotalia truncatulinoides*) and Section 5 (highest *G. tosaensis*), at a depth of 15 to 18 meters. The highest zone of the Pliocene, N. 21 with *Globorotalia*

tosaensis, extends down to Section 73-5-3 (36 meters). Practically at the same depth, the earliest *G. pseudopima*, indicating the base of N. 20, was found. The base of the Pliocene (base of N. 19) is at 73-7-4 (55 meters). The thickness of the Pliocene is thus almost the same as at Site 72 (at least 37 meters, a maximum for the Leg 8 sites).

Upper Miocene foraminiferal faunas are found from 73-7-5 to 73-9-5, 77 centimeters (55 to 74 meters). They are practically homogeneous and all indicate the highest Miocene zone, N. 18. However, some down-mixing may have occurred in the lower part of this interval, which is predominantly siliceous, in which case the base of N. 18 would be slightly higher than Section 73-9-5. The samples from here downwards are already Middle Miocene (probably N. 12) in age. Most probably there is an unconformity at 74 meters (or slightly higher), which would account for the absence of several zones (N. 13 to N. 16-17).

In the Middle Miocene, we have a good record of the *Globorotalia fohsi* lineage, which can be paralleled with that of Site 71. The stratigraphically important first occurrences are located as follows:

Earliest Globorotalia fohsi robusta at 73-9-6 (76 meters).

Earliest G. f. lobata (approximate base of N. 12) at 73-10-1 (77 meters).

Earliest G. f. praefohsi (base of N. 11) at 73-10-4 (82 meters).

Earliest G. f. peripheroacuta (base of N. 10) at 73-11-6 (94 meters).

Continuous coring was stopped after Core 73-11, and two spot cores were taken, which represent the *Globorotalia kugleri* Zone (N. 4) and the *G. opima opima* Zone (P. 21), respectively. Continuous coring was resumed at 243 meters with Core 73-14. From here down to 73-17-2 (273 meters), *Globorotalia opima* s.l. (medium-sized), *Globigerina prasaepis* and rare *G. ampliapertura* are found, indicating most probably the *Globorotalia ampliapertura* Zone (P. 20). The highest *Pseudohastigerina* occurs at 73-17-3, and the *Pseudohastigerina/Cassigerinella chipolensis* Zone (P. 18-19) reaches down to the Eocene/Oligocene boundary at the bottom of Core 73-18 (288 meters).

The Eocene faunas are again quite distinct from those of the Oligocene. In Cores 73-19 and 20, they are rather siliceous and contain only a few benthonic species such as *Nuttalides truempyi* and *Alabamina dissonata*. From the core catcher sample of Core 20 (approximately 299 meters) to total drilling depth (302 meters), planktonic foraminifera are again more common and include *Catapsydrax dissimilis*, *Globigerina senni* and *Truncorotaloides rohri*. The age of these samples is upper Middle Eocene, Orbulinoides beckmanni Zone (P. 13) or Truncorotaloides rohri Zone (P. 14). The samples from Cores 18 to 21 are often contaminated with younger sediments.

Calcareous Nannoplankton and Silicoflagellates

Calcareous nannoplankton occur abundantly in all material retrieved from Site 73. In one portion of the middle Miocene the majority of the species present are reworked from lower Miocene deposits. Silicoflagellates are present throughout the Neogene and upper Eocene, but are absent from the Oligocene. Forty-eight species of calcareous nannoplankton and two of silicoflagellates were identified at Site 73. Fifteen nannoplankton zones were recognized. Two intervals include two zones together because they could not be separated.

Hole 73

Core 1-1 to 3-3:	Gephyrocapsa oceanica and Pseudoemiliania lacunosa Zones
Core 3-4 to 4-2:	Discoaster brouweri Zone
Core 4-3 to 5-CC:	Discoaster asymmetricus Zone
Core 6-1 to 7-4:	Ceratolithus rugosus Zone
Core 7-5 to 8:	Ceratolithus tricorniculatus Zone
Core 9-1 to 9-3:	Discoaster quinqueramus Zone
Core 9-4 to 9-CC:	Discoaster kugleri Zone
Core 10-1 to 10-4:	Discoaster exilis Zone
Core 10-5 to 11-CC:	Sphenolithus heteromorphus and Helicopontosphaera ampliaperta Zones
Core 12-1 to 12-CC:	Triquetrorhabdulus carinatus Zone
Core 13-1 to 13-CC:	Sphenolithus distentus Zone
Core 14-1 to 17-3:	Sphenolithus predistentus Zone
Core 17-4 to 18-CC:	Discoaster tani ornatus Zone
Core 19-1 to 21-CC:	Middle Eocene, probably Dis- coaster sublodoensis Zone

Radiolaria

At this site cores were taken continuously from the sea floor to the Middle Miocene part of the section. All of the Pliocene and most of the Middle and Upper Miocene biostratigraphic zones described by Riedel and Sanfilippo (1970) were identified. The Radiolaria are numerous and well preserved; however, reworking of Lower Miocene Radiolaria (from the *Calocycletta virginis* and *C. costata* Zones) is common through the lower part of this continuously cored section (73-6-5

D	SDP	Leg 8	Site 73			oira		icuta	onda												iscens		۲	
DEPTH in meters	BARREL No.	0 FORAMINIFERA 50 percentage of total fauna in > 80 mesh fraction 100	-1:10 1 FORAMINIFERA -10 planktonic/benthonic -100 planktonic/benthonic	strong SOLUTION EFFECTS	Globigerinoides fistulosus	Globoquadrina altispira altisp	Globorotalia fohsi fohsi	Globorotalia fohsi peripheroa	Globorotalia fohsi peripheror	Globorotalia fohsi praefohsi	Globorotalia fohsi robusta	Globorotalia mayeri	s Globorotalia cf. miocenica	. Globorotalia pseudopima	Globorotalia tosaensis	Globorotalia truncatulinoides	s Globorotalia tumida	s Pulleniatina obliqueloculato	s Pulleniatina primalis d	Sphaeroidinella dehiscens	Sphaeroidinellopsis paenedeh	Sphaeroidinellopsis seminulin	BIOSTRATIGRAPH	A G E
	2	<	Ž													1		Ľ					N.22-23	JATERN- ARY
	3																	2						_ĕ
	4	\langle	2													1		2					N.21	Upper NE
	5	\leq		[]											!			5					N.20 ?	PLIOCEI
_ 50	6	M	<															1	5				N.19	Lower
5 0 -	7	\geq															Ļ		ት	1				
1	8	2	5	2															1				N.18	Jpper OCENE
F -	9	2	2									+					!						? N.12	_?_
- 1	10	3		2				1		I													N.11	e E
- ·	-11	3	3	4																			N.10	MIOCE
L 100 -									2													1	N.9	

Figure 3. Foraminifera of Site 73. Frequency distribution, ranges of important species and biostratigraphy.

051 06 DEPTH in meters 06 DEPTH in meters 07 08 DEPTH in meters 08 DEPTH in meters 00 09 DEPTH in meters 00 01 0 Deptercentage of total 06 Denta 0 07 D00 Fraction 08 D00 Dianktonic/benthonic 09 D00 Fraction 00 D100 Partonic/benthonic 01 D00 Fraction 010 Partonic/benthonic 010 Partonic/benthonic 0100 Fraction 100 Partonic/benthonic 100 Partonic/benthonic 100 Partonic/benthonic 100 Partonic/benthonic 100 Partonic/benthonic 100 Partonic/benthonic 1000 Partonic/benthonic 1000 Partonic 1000 <td< th=""><th></th><th>DSDP</th><th>Leg 8 Sit</th><th>e 73 (cont.</th><th>)</th><th></th><th>s</th><th></th><th></th><th>×</th><th></th></td<>		DSDP	Leg 8 Sit	e 73 (cont.)		s			×	
	DEPTH in meters	BARREL No.	 FORAMINIFERA FORAMINIFERA 50 percentage of total 50 fauna in > 80 mesh fraction 	-1:10 - 1 FORAMINIFERA - 10 planktonic/benthonic -100 ratio	strong weak SOLUTION EFFECTS	Catapsydrax dissimilis	Globoquadrina praedehiscen	Globorotalia kugleri	Globorotalia mayeri	BIOSTRATIGRAPH	AGE
-150 - 12 - N.4						?	?	?			MIOCENE
	 	12	<				?	?		N.4	-> Lower M

Figure 3. Continued.

D	SDP	Leg 8 Site	73 (cont)															is						
S DEPTH in meters	BARREL No.	D FORAMINIFERA FORAMINIFERA 50 percentage of total fauna in >80 mesh fraction 100	-1:10FORAMINIFERA 1 -10 planktonic/benthonic -100 ratio	strong solUTION EFFECTS weak	Cassigerinella chipolensis	Catapsydrax dissimilis	Chiloguembelina cubensis	Globigerina ampliapertura	Globigerina prasaepis	Globigerina senni	Globigerina tripartita	Globorotalia wilsoni	Globorotalia gemma	Globorotalia mayeri	Globorotalia opima opima	Globorotalia spinulosa	Globorotaloides sp. A	Pseudohastigerina barbadoens	Truncorotaloides rohri	Alabamina dissonata	Anomalina dorri oragonensis	Nuttallides truempyi	BIOSTRATIGRAPHY	AGE
[²⁰⁰]					î	?	?				?		?	1	?									
	13		3																				P.21	₽
 	14		~	- - -				1									?						n	o Upper OLIGOC
	15 16	ž	X																				P.20 ? Globigerinc ampliapertura Z	
	17	\geq	Z	2														Ц					B 10 10	wer
	18	?	?	? 7							i												F.18-19	ف
	19	5		Ę		-														1			?	CENE
300	20 21	2	2	3		li				1		1				1			1		1		P.13-14	₹₩ M.EOC

Figure 3. Continued.

Figure 4. Calcareous nannoplankton of Site 73. Distribution and biostratigraphy.

through 73-11-CC). The reworking is especially pronounced in the lower part of Core 73-8 and top of Core 73-9 where a layer of brown siliceous ooze contains a fauna composed predominantly of Lower Miocene Radiolaria. Abundant fragments of lower Miocene Orosphaerid Radiolaria are also present; the tests are not well preserved. The almost pure Lower Miocene fauna of this highly siliceous layer is sandwiched in a calcareous Middle to Upper Miocene sequence and suggests that this siliceous ooze may represent either a slump deposit or a layer of very slow accumulation from which the carbonate and less resistant Middle-Upper Miocene Radiolaria have been removed by solution.

In the lower part of Core 73-9 (Sections 5 and 6) some Upper Miocene material (*Stichocorys peregrina* Zone) is present. In light of the two intervening biostratigraphic zones and in spite of the intensive reworking and apparent slumping present in these cores, rather than relying on more complicated explanations, it is suggested that this Upper Miocene material results from downworking during drilling.

Spot samples were taken in the Lower Miocene (Core 73-12, lower part of the *Calocycletta virginis* Zone) and Middle Oligocene (Core 73-13, *Theocyrtis annosa* Zone). Radiolaria in these two cores were sparse and not well preserved. Little or no reworked older material was found.

The lower part of the Oligocene to the bottom of the hole in Upper to Middle Eocene chert, was cored continuously. Cores 73-14 and 73-15 are from the uppermost part of the Lower Oligocene, an interval entirely missing at Site 72. The lower part of the Lower Oligocene is found in Cores 73-17 and 73-18. Most samples from these two cores also contain common to abundant diatoms. Radiolaria from the uppermost Eocene are found in Cores 73-19 and 73-20

	S	ITE 73	3																									
R F C A COMME D – S d R – S o	ARE EW OMMO BUND/ NTS uspecte uring dr uspecte Ider mid	N ANT ed dow rilling ed rewe	n-working porked sils	ZONE	Spongaster pentas	Pterocanium prismatium	Stichocorys peregrina	Ommatartus penultimus	Ommatartus antepenultimus	Ommatartus hughesi	Cannartus (?) petterssoni	Dorcadospyris alata	Cannartus laticonus	Stichocorys delmontensis	Calocycletta costata	Cannartus mammiferus	Dorcadospyris dentata	Dorcadospyris forcipata	Stichocorys wolffil	Cannartus violina	Cyrtocapsella cornuta	Cyrtocapsella tetrapera	Calocycletta virginis	Dorcadospyris simplex	Cannarius tubarius	Lychnocantum bipes	Cannartus prismaticus	COMMENTS
73	conq	1.011	cm 6cc	as	Τ	Τ		Т									Τ		T		Т							R
	7	3	81-83	S. pent		İ.	Т							Ĩ.	1		L,		1		1		Ĩ					R
	7	5	81-83		1		н		T	Т							1				T.							R
			7cc	orys na				ŧ.					1		्रा										Ŀ			R
	8	2	81-83	tichoco			Τ.				T		,	T.		L		1							T		T	R
	8	3	81-83	Si	T	Ĩ.	ł.		ĩ.					T.		1	al c	ł			I				1			RD
	•	4	01.02	us (I	-			Т				4				1			Т		1					R,D
	٥	4	81-65	, ante ultim							Ĩ.				ĩ.	ĩ.	1	1									1	ĸ
	8	5	81-83	0 Den							Į.		1	Ψ.		I.		Ŧ		1	1		L.				1	R
	8	6	0-2			ĩ	1	ĩ																				R
			8cc	rssoni									1	1		ĩ	1	Ŷ		ļ							1	R,D
	9	1	81-83	pette							L																a	R,D
	9	3	81-83	tartus			i.					2					5			ĩ								R,D
	9	5	81-83	Cam																	- 20							R,D
			9cc				10706	1.72			Ĩ		T							,								R,D
	10	1	81-83	lata					Ι	1	9										i.							R,D
	10	3	81-83	D. a										T		Ī			1	·								R

Figure 5. Continued.

<u> </u>						T							Г —	1					1								<u> </u>						
	S	ITE 73	8																														
R	ARE																																
F	EW	1	_																														
0	OMMON	4					is																pata				~						
	BUNDA	NT D			ta	s	ntens	ta	ferus	tata	cipata			uta	pera	is	plex	-	es	cus		lis	eforci	a	uchus	mn	dripe	eros	um		a	1054	
COMM	INTER	VAL	11111.		ris ala	ticonu	delmo	costa	ammij	ris den	is for	wolffi	olina	t corn	ı tetra	virgin	is sim,	barius	m bip	ismati	nosa	graci	is pra	obust	is ate	is circ	is qua	is tric	Isugust	XIII	theros	ris spin	
D -	Suspected during d	ed dow rilling	n working		lospy	rtus la	corys	cletta	u snt	lospyi	lospy	corys	tus vi	apsell	apsell	cletta	lospyr	tus tu	ocanit	id snt.	rtis a	iormis	lospyi	letta 1	lospyi	lospyı	lospy	tospy	yclia (yclia	ortis to	lospy	ENTS
R –	Suspect	ed rewo	orked	ш	Dorca	annai	Sticho	alocy	annar	Dorcat	Dorcat	ticho	annar	yrtoc	yrtoc	alocy	Jorcad	annar	ychno	annar	heocy	Irtopl	Jorcad	alocy	Dorcat	Dorcae	Dorcat	Dorca	Lithoc	Lithoc	heoc)	Dorcat	MMOC
	older m	icrofos	sils	INOZ			~1	ľ	0			5		"			1				L		1			1	-			<u> </u>	-		
HOLI	CORE	SECT.	Cm Cm	L					Т		-	L			L_				-									-					P
73	10	5	81-83	vris		-	ł	Ť	L	Ŧ																							ĸ
			10cc	r Idospi												ų.																	R
	11	3	81-83	Dorce						E					1	1		1															R
			11cc							1111				1111	1111				-					141		11111		,,,,,,			1111	1111	R 11111
	12	1	81-83	a																													
	12	3	81-83	yclett										1		1		112	L														
	12	5	81-83	Caloc																													
			12cc													I								Ι									
	13	1	81-83		1		,,,,,,			/////	,,,,,,	/////		/////	1111.	,,,,,,	1141		11411				11111	1141.				,,,,,		,,,,,,			,,,,,,
	13	3	81-83	yrtis sa																		1				Τ							R
	13	5	81-83	Theoc																													
			13cc	10000																					1						Ī		
	14	1	81-83		111	1111		11111	1111	1111	11111	1111	11111	1111	1111	1111	11111	1111		11111	1111	1111	1111,	1111	1111	1117	un,	un.	1111		12.11	1111	''''''
	14	3	81-83	tis sa																										Í		t	
		5	01-05	teocyr ubero:																													
	14	5	81-83	Th II																													
			14cc																									1.0					

Figure 5. Continued.

Figure 5. Continued.

Figure 5. Continued.

Figure 6. Age versus depth at Site 73, based on the biostratigraphic zonations of the foraminifera, calcareous nannoplankton and Radiolaria. Ages based on the time scale of Berggren (1969).

Species	Occurrences (Hole/Core Nos.)
Calcareous Nannoplankton	
Ceratolithus cristatus Kamptner	73/1-8
C. rugosus Bukry and Bramlette	73/3-7
C. tricorniculatus Gartner	73/5-8
Chiasmolithus oamaruensis (Deflandre) Hay, Mohler and Wade	73/19-21
Coccolithus bisectus (Hay, Mohler and Wade) as figured by Bramlette and Wilcoxon	73/13, 15-21
Coronocyclus nitescens (Kamptner) Bramlette and Wilcoxon	73/10, 12
Cyclococcolithus formosus Kamptner	73/18-21
C. leptoporus (Murray and Blackman) Kamptner	73/1-12
C. neogammation Bramlette and Wilcoxon	73/10-19
Discoaster adamanteus Bramlette and Wilcoxon	73/9, 11, 13
D. asymmetricus Gartner	73/4,5
D. barbadiensis Tan Sin Hok	73/19-21
D. brouweri Tan Sin Hok	73/3-9
D. calcaris Gartner	73/8-11
D. challengeri Bramlette and Riedel	73/6-8
D. deflandrei Bramlette and Riedel	73/6-8, 10-14, 17, 18
D. dilatus Hay	73/9
D. exilis Martini and Bramlette	73/6-11
D. extensus Hay	73/5-8
D. incomptus Hay	73/19-21
D. kugleri Martini and Bramlette	73/8,9
D. lodoensis Bramlette and Riedel	73/19, 21
D. pentaradiatus Tan Sin Hok	73/4, 5
D. quinqueramus Gartner	73/7-9
D. saipanensis Bramlette and Riedel	73/19-21
D. sublodoensis Bramlette and Sullivan	73/19-21
D. surculus Martini and Bramlette	73/5-9,10?
D. tani nodifer Bramlette and Riedel	73/14, 19-21
D. tani ornatus Bramlette and Wilcoxon	73/14, 15
D. tani tani Bramlette and Riedel	73/14, 17-19
D. variabilis Martini and Bramlette	73/6-10
Gephyrocapsa oceanica Kamptner	73/1-4
Helicopontosphaera compacta (Bramlette and Wilcoxon)	73/15-17, 21
H. intermedia (Martini) Hay and Mohler	73/10
H. kamptneri Hay and Mohler	73/1, 3-5
H. recta (Haq) Martini	73/15

TABLE 2		
Calcareous Nannoplankton and Silicoflagellate Occurrences at S	Site	73

Species	Occurrences (Hole/Core Nos.)
Reticulofenestra pseudoumbilica	73/6,7,9
R. umbilica (Levin) Martini and Ritzkowski	73/17-21
Sphenolithus belemnos Bramlette and Wilcoxon	73/12
S. distentus Bramlette and Wilcoxon	73/13-15
S. heteromorphus Deflandre	73/10, 11
S. moriformis (Bronnimann and Stradner) Bramlette and Wilcoxon	73/10-21
S. predistentus Bramlette and Wilcoxon	73/15-17
S. pseudoradians Bramlette and Wilcoxon	73/13,14
S. radians Deflandre	73/19,20
Thoracosphaera cf. T. deflandrei Kamptner	73/21
Triquetrorhabdulus carinatus Martini	73/12
T. rugosus Bramlette and Wilcoxon	73/5, 7-9
Silicoflagellates	
Corbisema tricantha (Ehrenberg) Haeckel	73/18
Dictyocha fibula Ehrenberg	73/2-4,18

TABLE 2 - Continued

(to 73-20-5). Sediments from Section 73-20-5 (lower part) and 73-21 contain few Radiolaria; no age is given for this interval. Except in the lowermost Oligocene and Upper Eocene, Radiolaria are poorly preserved in the bottom part of the section.

REFERENCE

Berggren, W. A., 1969. Cenozoic chronostratigraphy, planktonic foraminiferal zonation and the radiometric time scale. *Nature*. 224, 1072.

AG	E 1.0	NATURAL GAMMA * (Counts/7.6 cm/1.25 min) × 10 ³	1.5 CORE NO.	METERS	LITHOL.	LITHOLOGIC DESCRIPTION	0	% CaCO ₃ 50 100
OUATERNARY	-		2	-		Siliceous foram nanno ooze, white, interbedded with calcareous rad ooze, brown.	+	
NE	Annonda		4	-	\sim	Siliceous foram nanno ooze. Alter- nating beds of bluish white, light bluish gray, light greenish gray and pale purple. Some beds slight- ly mottled. Beds vary from 5 to 30 cm in thickness.	C FURMALIUN	Multur
PLIOCE	berten hat		5	50		Smear summary Rad nanno and nanno rad ooze.		S
R MIOCENE	and have	2	7 8	_		Alternating beds. Light bluish f gray, light olive gray, light green- ish gray, yellowish gray and very pale brown. Some beds mottled. Beds vary from 5 to 50cm in thick- ness.	AN I.	
OCENE UPPE			9 10	-		Smear summary rads 30-50% Smear summary diatoms 0-10% Rad ooze, Brown.	£	
MI DDLE MI	ANK .		11	100		Smear summary rads 80-95% nannos 0-20%		{
						Rad nanno ooze. Light gray to pale brown to white. Slightly to moder- ately mottled with very pale brown and white.		
LOWER MIOCEN						Smear summary nannos 65-95% rads 5-35%		_
L.A.	E		12	150			אַריבאא טעבאו	
				_		Gradational lithology change		
PER OLIGOCENE	-			-				
5								

AGE	NATURAL GAMMA * 1.0 (Counts/7.6 cm/1.25 min) × 10 ³	Los No.	METERS	LITHOL.	LITHOLOGIC DESCRIPTION	C	% CaCO ₃) 50 100
MIDDLE EOCENE BOCENE BOCENE WITH MANANA UPPER OLIGOCENE WINN	LOWER OLIGOCENE	13 14 14 15 16 17 18 19 20 21			Nanno ooze. White, un-mottled. Smear summary [nannos 90-95% rads 3-8% Gradational lithology change Siliceous nanno ooze. White, un- mottled. Smear summary [nannos 80-95% rads 3-15% diatoms 5-15% Rad nanno, nanno rad and rad ooze. Alternating beds. Grading to semi- indurated near bottom. Pale brown. Moderately mottled with very pale brown. Beds vary from 60-160cm in thickness. Smear summary [nannos 1-85% (mainly 50-80%) rads 15-98% (mainly 20-50%) Siliceous limestone and chert Limestone: yellowish brown, strongly mottled with pale brown. Siliceous limestone and chert Limestone: yellowish brown, strongly mottled with pale brown. Smear summary [nannos + interstit. CaC0 ₂ 70% rads, diatoms + interstit. silica ~30% (Nannos, rads and diatoms partly to wholly dissolved). Chert: Very dark gray 12cm thick.	LINE ISLANDS OCEANIC FORMATION + MARQUESAS OCEANIC FORMATION	

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	c 0	% aCO ₃ 50 100
QUATERNARY	N. 22 - N. 23	sphyrocapsa oseanica and	Quaternary (undifferentiated)		1 2		Entire barrel is very watery and disturbed. Sea floor surface represented at top of Sect. Sea floor surface represented at top of Sect. Sea floor surface represented at top of Sect. Alternating beds of light gray (10YR7/2), whi and very pale brown (10YR7/3). Smear summary Nanos 55-65% Forams 10-20% Rads 10-15% Diatoms 5-10% Fish debris < 1% sponge spicules < 1% Microfossil group Preservation Abundanc Foraminifera Moderate Abundant Calcareous Moderate Common nannoplankton Radiolaria Good Common	0 1.	
	Ν.	Gephyrocapso Pseudoemilia	Que				nannoplankton Radiolaria Good Common	111	

SITE 73 Core 1 Cored interval: 0-3 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 10
QUATERNARY	N. 22 - N. 23 FOR	Gephyrocapsa oceanica and Pseudoemiliania lacunosa	Quaternary		1 2 3 4 5	LITHOL	Sections 4 and 5 are moderately disturbed. Sections 4 and 5 are moderately disturbed. Siliceous Foram Nanno Ooze Alternating beds of light gray (10YR7/2), white, pale brown (5YR5/2), pale purple, light greenish gray (5GY8/1), and bluish white (5B9/1). Most beds are between 10 and 30 cm thick. Most beds are between 10 and 30 cm thick. Sections 10-50%, mostly 50-65% Rads 10-50%, mostly 10-25% Porams 10-25% Diatoms 5-10% Sponge Spicules < 1%	CaCO ₃ 0 50 10 1111111

SITE 73 Core 2 Cored interval: 3-12 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	9 Ca(6 CO ₃
PLIOCENE QUATERNARY	N. 21 N. 22 - N. 23 FO	Discoaster browseri	ismatium Quaternary (undifferentiated)	$\frac{1}{3}$	1 2 3 4 5 6		Siliceous Foram Nanno Ooze Alternating beds of bluish white (5B9/1), various shades of gray and purple. Most beds are between 10 and 30 cm thick. Most beds are between 10 and 30 cm thick. Nannos 35-65%, mostly 55-65% Rads 10-45%, mostly 10-20% Forams 10-20% Diatoms 5-10% Sponge spicules < 1%		
			P. 1					1111	h

SITE 73 Core 3 Cored interval: 12-21 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	9 CaC 0 5	6 CO ₃ 0 100
PLIOCENE	N. 21	Discoaster asymmetricus	Pterocanium prismatium		1 2 3 4 5 6		Siliceous Foram Nanno Ooze Alternating beds of light bluish gray (5B7/1), bluish white (5B9/1), pale purple (5P6/2), and light greenish gray (5GY8/1). Most beds are between 5 and 30 cm thick, a few are thicker. Smear summary Nannos 30-65%, mostly 55-65% Rads 10-50%, mostly 10-20% Forams 10-20% Diatoms 5-10% Sponge spicules < 1%		

SITE 73 Core 4 Cored interval: 21-30 m

AGE FORAMS NANNOS RADS	METERS SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50	100
N. 19 - N. 20 PLIOCENE N. 19 - N. 20 Discoaster asymmerticus Pterocanium prismatium	2 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Top	Section 2 from 88-150 cm and Sections 3 and 4 are very watery. Siliceous Foram Nanno Ooze Alternating beds of bluish white (5B9/1), light bluish gray (5B7/1), pale purple (5P6/2), and light greenish gray (5GY8/1). Most beds are between 5 and 30 cm thick. <u>Smear summary</u> Nannos 50-65% Rads 10-30% Forams 10-20% Diatoms 5-10% Sponge spicules < 1% Fish debris < 1% <u>Microfossil group</u> <u>Preservation</u> <u>Abundance</u> Foraminifera Moderate Abundant Calcareous Moderate Common nannoplankton Radiolaria Moderate Common Comments: Some diatoms, reworked older nanno- fossils.		

SITE 73 Core 6 Cored interval: 40-49

	AGE
Stiliceous Foram Nanno Ooze Alternating beds of bluish white (5B9/1), light bluish grav (5B7/1), pale purple, and light greenish grav (5GV8/1). Beds are between 20 and 50 cm thick. Smear summary Nannos 45-65% Rads 10-15% Pintone Forams Pish debris 1% Fish debris 1% Forams 5-15% Songe spicules 1% Forams 5-15% Songe spicules<	PLIOCENE

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCo 50	0 ₃
					1		Sections 1, 3 and 4 are disturbed and mixed. Section 2 is very watery.		•
PLIOCENE	N. 19 - N. 20	lithus rugosus	uster pentas	2	2	Unopened	Rad Nanno Ooze alternating with Nanno Rad Ooze Alternating beds of yellowish gray (5Y7/2), light greenish gray (5GY8/1), light bluish gray (5B7/1), greenish gray (5G6/1), light olive gray (5Y6/1), and very pale brown (10YR7/4). Beds are between 5 and 30 cm thick (Sections 5 and 6).		
		Ceratol	Sponga	3 	3			•	
				511111111	4		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		•
					5		Microfossil groupPreservationAbundanceForaminiferaModerateCommonCalcareousGoodCommonnannoplanktonModerateCommonRadiolariaModerateCommonComments:Common reworked older radiolarians and nannofossils.Common	-	
UPPER MIOCENE	N. 18	Citricomiculatus	trichocorys peregrina	8 1 1 1 1 1 1	6				}
			St						ш

SITE 73 Core 7 Cored interval: 49-58 m

SITE 73 Core 8 Cored interval: 58-67 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 100
UPPER MIOCENE	N. 18	Ceratolithus tricorniculatus	Cannartus petterssoni antepenultimus Strichocorys peregrina		1 2 3 4 5 6		Sections 1, 2, and 3 are moderately disturbed. Rad Nanno Ooze alternating with Nanno Rad Ooze Alternating beds of bluish white (5B9/1), light bluish gray (5B7/1), very pale brown (10YR7/4), very pale purple, light olive gray (5Y5/2), and brown (10YR5/3). Moderately mottled in lower 2 m. Most beds are between 10 and 50 cm thick. <u>Smear summary</u> Rads 35-85% Nannos 5-60% Diatoms 5-10% Forams < 5% Sponge spicules < 1% Fish debris < 1% <u>Microfossil group</u> Preservation Abundante erate Sec. 3-6 poor- moderate Calcareous Good Common nannoplankton Radiolaria Moderate - Common - poor abundant Comments: Common reworked radiolarian and nanno- fossils. Abundant orosphaerid radiolarian spine in Sec. 6. Some mixed younger radiolarians in catcher. <u>Rad Ooze</u> Brown (10YR5/3), very dark grayish brown (10YR3/2), and dark grayish brown (10YR4/2). Moderately mottled with very pale brown (10YR7/4) <u>Smear summary</u> Rads 80-95% Nannos 0-15% Diatoms < 1% Sponge spicules < 1% Fish debris < 1%	

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 100
UPPER MIOCENE	N. 18	Discoaster quiqueramus	: petterssoni		2		Entire barrel is moderately disturbed. <u>Rad Ooze</u> Brown (10YR5/3) to dark brown (10YR3/3). Moderately mottled with very pale brown (10YR7/4) <u>Smear summary</u> <u>Rads</u> 75-95% Nannos 0-20% Diatoms < 5% Sponge spicules < 1% Fish debris < 1% Forams trace <u>Microfossil group</u> <u>Preservation</u> <u>Abundance</u> Foraminifera Sec. 1-5 mod- Few erate Sec. 5-cc Common moderate Calcareous Good Common nannoplankton Radiolaria Moderate Common Comments: Common reworked older radiolarians and nannofossils (Section 5).	
UPPER MIOCENE	I. 12 (Gr. fohsi lobata) N. 14	Discoaster kugleri	Cannartus	6 7 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 6		Rad Nanno Ooze Alternating beds of light gray (10YR7/2), pale brown (10YR6/3) and white,slightly mottled with very pale brown (10YR7/4). Smear summary Nannos 35-95%, mostly 50-90% Rads 5-60%, mostly 10-45% Diatoms 5% Forams < 1%	

SITE 73 Core 9 Cored interval: 67-76 m

METERS FORAMS NANNOS NO 1% RADS SECT. 7 CaCO₃ AGE LITHOL. LITHOLOGIC DESCRIPTION 50 100 Ó TITIT 2 Siliceous Limestone and Chert Limestone - yellowish brown (10YR5/4), intensely mottled with very pale brown (10YR7/4). Smear.summary Nannos and interstitial carbonate 70% Rads, diatoms, and interstitial silica 30% Nannos, rads, and diatoms are partially to completely dissolved. Chert (12 cm thick) More indurated than the limestone. Very dark gray (10YR3/1). 5 At the top and bottom of the chert are thin 1 (several mm thick) layers of limestone more indurated than the rest. Downmixed Small opaque grains of iron oxide? fairly even disseminated throughout. 6 material 0. 7 sublodensis Contains vugs filled with carbonate. 2 Preservation Microfossil group Abundance Foraminifera undetermined) Moderate Common 14 EOCENE HH Calcareous Good Common D. Ч. nannoplankton I, Absent 1 Radiolaria 8 Eocene MI DDLE 13 Comments: Common mixed younger microfossils in Section 1-2. 4 ddle 3 1111 W . . . Total drilling: 302 m in limestone. 1111111

SITE 73 Core 21 Cored interval: 300-302 m

Site 73, Core 10, Physical Properties

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	Ca 0 5	% CO ₃
MIDDLE MIDCENE	N. 10 FOR	Sphenolithus heteromorphus and Helicopontosphaera ampliaperta	Doreadospyris alata RA	Law 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LDES 1 2 3 4 5 6		Entire barrel is disturbed and mixed. Rad Nanno Ooze Light gray (10YR7/2) to light brownish gray (10YR6/2). Less disturbed and mixed layers are moderately mottled with white and pale brown. Smear summary Nannos 80-95% Rads 5-20% Forams 1% Diatoms 1% Sponge spicules 1% Fish debris 1% Sold Calcareous Good Calcareous Good Common nannoplankton Moderate Common Radiolaria Moderate Common Comments: Conmon reworked older radiolarians.		
	? N. 9								•

SITE 73 Core 11 Cored interval: 85-94 m

Site 73, Core 11, Physical Properties

AGI	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% . CaCO ₃ 0 50 10
	LUMEN FILOCENE CONTRACTOR NO. 4 FORAMS	Triquetrorhabdulus carinatus	Calocycletta virginis	Baseline Baseline Baseline Baseline Baseline 0 1 <td< td=""><td>1 2 3 3 4 5 5</td><td></td><td>Nanno Ooze White (10YR8/2) moderately mottled with white (10YR8/1) and very pale brown (10YR7/4). Entire barrel is part of one bed. Smear summary Nannos 90-95% Rads 3-8% Forams < 5%</td> Sponge spicules < 1%</td<>	1 2 3 3 4 5 5		Nanno Ooze White (10YR8/2) moderately mottled with white (10YR8/1) and very pale brown (10YR7/4). Entire barrel is part of one bed. Smear summary Nannos 90-95% Rads 3-8% Forams < 5%	

SITE 73 Core 12 Cored interval: 140-149 m

Site 73, Core 12, Physical Properties

u z z z 0 50 10 1

SITE 73 Core 13 Cored interval: 206-215 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCC 0 50	D ₃
LOWER OLIGOCENE UPPER OLIGOCENE	P. 20	Sphenolithus predistentus	Theoryrtis tuberosa		1 2 3 4 5 6		Nanno Ooze White. Entire barrel is part of one bed. Smear summary Nannos 90-95% Rads 3-8% Forams < 5%		

SITE 73 Core 14 Cored interval: 293-252 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 100
LOWER OLIGOCENE	P. 20	Sphenolithus predistentus	Theoryrtis tuberosa		s 1 2 3 4 5 6		Section 1 from 0-25 cm is contaminated with cavings from above. Nanno Ooze White. Entire barrel is part of one bed. Smear summary Nannos 90-95% Rads 3-8% Forams 5% Diatoms 1% Microfossil group Preservation Abundance Foraminifera Moderate Few Calcareous Good Abundant nannoplankton Radiolaria Poor-moderate Few-common Comments: Rare mixed younger radiolarians in Section 1.	
								hunni

SITE 73 Core 15 Cored interval: 252-261 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO 0 50) ₃
					1 2 3 4 5 6		Smear summary Nannos 80-95% Rads 3-15% Forams < 5%		

SITE 73 Core 16 Cored interval: 261-270 m

.....

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaC0 0 50	D ₃
LOWER OLIGOCENE	P 18 - P. 19 P. 20	Discoaster tani orantus Sphenolithus predistentus	Theocyrtis tuberosa		1 2 3 4 5 6		Section 1 from 0-35 cm is contaminated with cavings from above. Siliceous Nanno Ooze White. Entire barrel is probably part of one bed although there is some alteration of softer and harder layers (probably due to intermittent circulation during drilling). Since at the second during drilling). Since at the second during drilling). Mannos 80-95% Biatoms 3-15% Rads 2-10% Forans < 1% Sponge spicules: 1%		

SITE 73 Core 17 Cored interval: 270-279 m

Section 1, 2, and 3 are very watery and mixed. Section s 4, 5, and 6 are disturbed.
Comments: Common mixed younger assemblages noted in all groups (Section 1-4).

SITE 73 Core 18 Cored interval: 279-288 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 100
UPPER EOCENE	Upper to Upper Middle Eocene	Middle Eocene - Discoaster sublodensis ?	Thyrsocyrtis bromia	ALIGN 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 3 3 4 5 6		Smear summary Nannos 1-75%, mostly 40-75% Rads z5-98%, mostly 22-60% Foramin (10YR7/4). Beds are between 20 and 160 cm thick.	
						* *******	kadiolaria Moderate Common	

SITE 73 Core 19 Cored interval: 288-297 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 10
						Тор	Sections 1 and 2 and Section 3 from 0-50 cm are composed of down mixed material.	
II DDLE EOCENE UPPER EOCENE	Upper to upper Middle Eocene	A compared by the second of th	Thyrsocyrtis bromia		1 2 3 4 5	Down- mixed material	Rad Nanno Ooze (Semi-indurated at top) To siliceous limestone (indurated at the bottom). Various shades of yellowish brown ranging from light yellowish brown (10YR6/4) to dark yellowish brown (10YR4/4). The darker the color, the lower the carbonate content. Slightly to moderately mottled with very pale brown (10YR7/4). Beds are between 15 and 125 cm thick (many of the color changes are gradational). Smear summary Nannos 55-85% Rads Rads 15-45% Forams Foramis 1% Diatoms Diatoms 1% Yeish debris Microfossil group Foraminifera Preservation Moderate (predominately benthonic forms) Calcareous nannoplankton Radiolaria Radiolaria Sec. 1-5 poor- Common moderate catcher poor Rare Comments: Common mixed younger foraminifera in Section 3.	

SITE 73 Core 20 Cored interval:297-300 m

AGE	FORAMS	NANNOS	RADS	METERS	SECT. NO.	LITHOL.	LITHOLOGIC DESCRIPTION	% CaCO ₃ 0 50 100
MIDDLE EOCENE	P. 13 - P. 14	Middle Eocene - D. sublodensis ?	(undetermined)		1	Down- mixed material	Siliceous Limestone and Chert Limestone - yellowish brown (10YR5/4), intensely mottled with very pale brown (10YR7/4). Smear summary Nannos and interstitial carbonate 70% Rads, diatoms, and interstitial silica 30% Nannos, rads, and diatoms are partially to completely dissolved. Chert (12 cm thick) More indurated than the limestone. Very dark gray (10YR3/1). At the top and bottom of the chert are thin (several mm thick) layers of limestone more indurated than the rest. Small opaque grains of iron oxide? fairly even disseminated throughout. Contains vugs filled with carbonate. Microfossil group Preservation Abundance Foraminifera Moderate Common Calcareous Good Common nannoplankton Radiolaria Absent Comments: Common mixed younger microfossils in Section 1-2. Total drilling: 302 m in limestone.	

SITE 73 Core 21 Cored interval: 300-302 m

Site 73, Core 2, Sections 1-5.

Site 73, Core 3, Sections 1-6.

Site 73, Core 4. Sections 1-6.

Site 73, Core 6, Sections 1-6.

Site 73, Core 7, Sections 1, 3-6.

Site 73, Core 8, Sections 1-6.

Site 73, Core 9, Sections 1-6.

Site 73, Core 10, Sections 1-6.

Site 73, Core 11, Sections 1-6.

Site 73, Core 12, Sections 1-6.

Site 73, Core 13, Sections 1-6.

SECTION	1	2	3	4	5	6
-0 cm-	WA SAME					and the second
			. 1	TU III	4 1	R
F	te Sent Li			Pres 1	S. C.	
L			M	- 1	14 V .	
			7.0 -		1	
-	Seren 1	1 mil 1 mil				
25		6 -		4		
F			1-1-1			
L						
F		2 · · · · 2 · 3				19
L		12				
11555			100 mm 2 1			N- PA
- 50		8				· · · · · ·
Γ						5 157
-				Cerry La		1 2 2
				Land E		
-	(X	15- 1 B	100 CAR 1	Same S
F						1.1.
1000						and the second
- 75	1			4.4- TT		2
L.						Sec. 1
				1		
F						
L						Star I have
				1-2-1		
-				12 14		
100				·反 引着		
100		an an office a		Q		
-				1		14
				地 雪月		
F				12		1.10
F					1	1.1.1
				1 2 2		
Г					19	
-125			1			
F			1.3			
L						
F						
L	1			1	1	
Γ		1 2 3	1			
L 150 -					Constant 1	Comments of the

Site 73, Core 14, Sections 1-6.

Site 73, Core 15, Sections 1-6.

Site 73, Core 16, Sections 1-6.

Site 73, Core 17, Sections 1-6.

Site 73, Core 19, Sections 1-6.

Site 73, Core 20, Sections 3, 4, 5.

Site 73, Core 21, Sections 2, 3.

619