15. X-RAY MINERALOGY STUDIES—LEG 16¹

Ivar Zemmels, University of California, Riverside, California

METHODS

Semiquantiative determinations of mineral composition in bulk samples, 2-20 μ and $<2\mu$ fractions from Leg 16 have been performed according to the methods described in the reports of Legs 1 and 2 and in the Initial Reports of the Deep Sea Drilling Project, Volume IV, Appendix III. The mineral analyses of the 2-20 μ and $<2\mu$ fractions were performed on CaCO,-free residues. Drilling mud with barite was pumped between drilling Cores 15 and 16 in Hole 163. No contamination is evident. The results are presented in Tables 1 to 8 and in Figures 1 to 24. A summary of the samples submitted for X-ray diffraction analysis appears in Table 9. No samples were submitted for X-ray diffraction analysis from DSDP 156. The sediment age, lithologic units, and nomenclature of sediment types used in Figures 1 to 24 and throughout the text of this report are from the data of the Deep Sea Drilling Project hole summaries of Leg 16.

RESULTS

DSDP 155

DSDP 155 is located in a small trough on the east flank of the Coiba Ridge. Four Late and Middle Miocene sediment types were described at this site: (1) mottled nannoplankton marl, (2) waxy claystone, (3) mottled marly clay and marl, and (4) nannoplankton foraminiferal chalk. The first three types are interbedded, but each dominates a portion of the section. Each sample submitted for X-ray diffraction analysis was examined and then assigned to one of the above sediment types by matching the samples with the sediment description in the Leg 16 hole summaries. The numbers appearing in Figures 1, 2, and 3 refer to these sediment types.

Except for the calcite content (Figures 1, 2, 3), there are few mineralogical differences between the samples of sediment types 1, 2, and 3. The noncalcareous portion is generally extremely rich in montomorillonite. Mica is present only occasionally and in small amounts. A high degree of diagenetic activity is evidenced by the frequent presence of clinoptilolite, pyrite, possibly K-feldspar, and occasional occurrences of cristobalite and barite.

Sediment type 4 is uniformly high in calcite. As above, montmorillonite is the predominant clay mineral. This sediment does not contain clinoptilolite or plagioclase. Pyrite, barite, and K-feldspar, however, are present throughout.

DSDP 157

DSDP 157 is located on the south flank of Carnegie Ridge, approximately 700 km east of the Galapagos Islands.

The section consists of diatomaceous nannofossil chalk ooze at the top which grades to a slightly siliceous chalk at the base. Consolidation increases markedly below 250 meters but is not accompanied by any detectable mineralogic changes. The age of the sediments is Holocene to Late Miocene.

The entire section is highly calcareous (Figure 4). The major noncalcareous minerals are quartz and plagioclase; mica occurs infrequently and only in small amounts. As at DSDP 155, montmorillonite is the predominant clay mineral in the $<2\mu$ fraction. A small amount of kaolinite is present in the $<2\mu$ fraction in the upper portion of the section and roughly coincides with the beginning of the Pleistocene (Figure 6). Barite and pyrite are prominent in the 2-20 μ fraction and increase in concentration with depth (Figure 5). The amorphous scattering value is extremely high in the decalcified fractions due to a high content of opaline skeletal detritus.

DSDP 158

DSDP 158 is located in an equidimensional basin, approximately 25 km in diameter, on the crest of the Cocos Ridge. A complete section of nannofossil chalk and chalk ooze ranging in age from Pleistocene to Middle Miocene was recovered (Figure 7).

The top 30 meters of this section contain significant quantities of volcanic ash and terrigenous detritus. Clinoptilolite, amphibole, and talc found in the 2-20 μ fraction in this interval are probably related to the volcanic materials (Figure 8). An unusual occurrence of montmorillonite is seen in the 2-20 μ fraction in the top 30 meters of the section and may be the result of occlusion of the montmorillonite in 2-20 μ size grade material.

A marked increase in the degree of induration of the chalk ooze occurs between 135 and 171 meters. Some mineralogic differences are associated with the transition from chalk ooze to chalk. The unindurated sediment above this horizon contains some mica and chlorite in the 2-20 μ fraction, whereas the indurated sediment below is barren of these minerals. Also, kaolinite in the $<2\mu$ fraction is more abundant and occurs more frequently in the unconcolidated sediments above (Figure 9). Barite is more common in the lower part of the section. Pyrite concentration generally increases with depth.

DSDP 159

The site is located midway between the Clipperton and Clarion fracture zones and about 2000 km west of the crest of the East Pacific Rise.

^{&#}x27;Institute of Geophysics and Planetary Physics, University of California, Riverside, Contribution No. 72-18.

The section consists of a brown noncalcareous radiolarian clay which overlies an interbedded sequence of alternating clay, calcareous clay, and marl ooze. The marl ooze is dominant at the base of the section.

There are very few mineralogical differences between the noncalcareous portions of the several sediment types. Quartz and mica are the predominant lithogenous minerals throughout the section. Montmorillonite is the most abundant mineral in the $<2\mu$ fraction. Barite, phillipsite, and clinoptilolite are common throughout. The occurrence of chlorite, however, is restricted to the Quaternary sediments and correlates with a slight increase in the mica content (Figures 10, 11, 12).

DSDP 160

DSDP 160 is located approximately 3000 km west of the crest of the East Pacific Rise, about midway between the Clipperton and Clarion fracture zones.

At DSDP 160, a sequence similar to the sequence at DSDP 159 occurs, with a brown zeolitic clay overlying nannoplankton chalk ooze. Phillipsite and clinptilolite are abundant in the brown zeolitic clay (Figure 13). Clinoptilolite is restricted to the zeolite clay unit, but phillipsite appears to be uniformly distributed throughout the section in the decalcified 2-20 μ and $<2\mu$ fractions (Figures 14, 15). The concentrations of plagioclase, quartz, mica, and montmorillonite appear to be uniform in the decalcified fraction. Barite occurs throughout but is more abundant in the nannoplankton chalk ooze unit. No samples from a basal ferruginous chalk were submitted for X-ray analysis.

DSDP 161

DSDP 161 lies approximately 4000 km west of the East Pacific Rise crest and about midway between the Clarion and Clipperton fracture zones.

Five sediment units were established by shipboard scientists: (1) a thin layer of ferruginous radiolarian clay, (2) a sequence in which pale orange nannoplankton chalk ooze alternates with brown ferruginous radiolarian-nannoplankton chalk ooze, (3) a massive clay-free nannoplankton chalk ooze, (4) chalk ooze as above but slightly indurated, and (5) a dark yellowish brown indurated radiolarian ooze.

Units 1 and 5 contrast markedly with the other units in their bulk mineralogy (Figure 16), inasmuch as they contain less calcite than Units 2, 3, and 4. Units 1 and 5 show detectable amounts of montmorillonite, quartz, plagioclase, mica, phillipsite, and barite, the decalcified 2-20 μ and $<2\mu$ fractions, however, show a remarkably uniform content of these minerals throughout the section without regard to the lithologic units (Figures 17. 18). In contrast to DSDP 159 and 160, clinoptilolite is virtually absent at this site. The amorphous scattering value is high throughout the section in the decalcified fractions because of the high content of biogenous silica.

DSDP 162

DSDP 162 is located due north of DSDP 161, 80 km south of the Clarion Fracture Zone on one of a series of fault blocks associated with the fracture zones.

A complete section was recovered at DSDP 162, consisting of a highly ferruginous and radiolarian-rich sediment diluted with small amounts of calcite. The high amorphous scattering value of all the fractions (Table 7) is a result of the high content of amorphous, biogenous silica and hydrated iron oxide colloids. Seven sediment types were identified by shipboard sedimentologists: (1) brown ferruginous radiolarian clay, (2) nannofossil chalk ooze with common Radiolaria, (3) clayey radiolarian-nannofossil marl ooze, (4) radiolarian-nannofossil chalk ooze, (5) ferruginous clayey radiolarian ooze, (6) ferruginous porcellaneous chert (not submitted for X-ray diffraction analysis), and (7) brown ferruginous zeolitic claystone. Each of the samples submitted for X-ray mineralogical analysis was assigned to one of the sediment types after an examination of the sediment. The numbers in the lithology column refer to the sediment descriptions above. Types 2, 3. 5. and 7 are predominant in segments of the section and give their names to the lithologic units (Figures 19, 20, 21).

Dilution by amorphous materials and calcite in bulk samples makes it difficult to interpret the mineralogical variation of the crystalline components (Figure 19). Plagioclase, phillipsite, and quartz occur throughout the section in the 2-20µ fraction (Figures 20, 21). Mica, which is ubiquitous in pelagic sediments, is absent from a number of samples in the third lithologic unit, implying that the lithogenous component in this sediment is negligible in comparison to the biogenous and hydrogenous components. The occurrence of clinoptilolite is restricted to the lowermost brown zeolitic claystone unit. Despite the high content of amorphous, hydrated iron oxides in all the samples from DSDP 162, the crystalline form, goethite, occurs only in the Eocene claystone unit (Table 7). Montmorillonite predominates the $<2\mu$ fraction throughout the section and occurs practically to the exclusion of other crystalline minerals in the lowest three lithologic units. Barite was detected in small amounts in only the top two lithologic units. The lower barite content at DSDP 162 compared with DSDP 161 to the south may be due to the greater distance of DSDP 162 from the equatorial zone of high organic productivity.

DSDP 163

DSDP 163 is located in a group of abyssal hills 200 km south of the Clarion Fracture Zone and about 5000 km west of the East Pacific Rise crest.

Four lithologic units with rather different mineralogical compositions were recognized at DSDP 163 (Figures 22, 23, 24). The topmost unit, a brown zeolitic clay, is practically noncalcareous. Phillipsite forms a major constituent of the sediment but no clinoptilolite was detected. Mica is present and correlates with the quartz content in all three fractions, indicating that it has a detrital origin. No barite was detected in the decalcified fractions.

The second unit, consisting of a clayey radiolarian ooze with chert, is also noncalcareous and is distinguished by a generally higher level of amorphous scattering than adjacent units. For this reason, only a small number of minerals were detected. Barite is more prevalent in the second unit than in the first unit. A short interval of cherty, brown zeolitic clay is characterized by a very large concentration of montmorillonite, phillipsite, and clinoptilolite, and a large variety of other minerals in minor quantities. These are quartz, mica, plagioclase, barite, palygorskite, and chlorite.

The lowermost lithologic unit is a thick, highly uniform, mottled nannofossil chalk of Cretaceous age. Chert occurs intermittently throughout the unit. The uniformity in sediment type is reflected by the uniformity of the mineralogy of this unit, which, however, is very unusual for a pelagic deposit. Quartz is prevalent, as in most marine sediments, but mica occurs in somewhat larger concentrations than in most pelagic sediments of the equatorial Pacific. Moreover, the mica content does not correlate with the quartz content, implying that the mica in this unit is not of detrital origin. Plagioclase, which in most marine sediments occurs in all size grades, is absent from the $<2\mu$ fraction and is low in the 2-20 μ fraction. On the other hand, K-feldspar is prevalent in the 2-20µ fraction. Phillipsite is absent, but clinoptilolite occurs throughout the unit. Barite is absent. Mica generally predominates over montmorillonite in the $<2\mu$ fraction.

Palygorskite is reported throughout the mottled nannofossil chalk unit fractions. What is being reported as palygorskite may, in fact, be a mixed-layer clay. The difficulty of identifying palygorskite in the presence of mica and mixed-layer clays because of interferences of the diffraction patterns is discussed in the X-ray mineralogy studies report in Volume 13 (in preparation). The difficulty of resolving palygorskite, mica, and mixed-layer patterns is increased in the present case because they contain a large amount of amorphous material which dilutes the crystalline material and reduces the diffracted X-ray intensity.

The unusual mineral assemblage in the cherty, mottled nannofossil chalk unit might best be explained by assuming that intense diagenesis has occurred. Montmorillonite converting to mica, possibly by way of a mixed-layer clay phase, would account for a reduction of montmorillonite and an unusually large concentration of mica in this unit. Plagioclase may be eliminated from the $<2\mu$ fraction as a result of dissolution and may be replaced by the more stable K-feldspar phase. Also, chert and clinoptilolite are common constituents of diagenetically altered sediments.

TABLE 1 Results of X-Ray Diffraction Analyses from DSDP 155

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Cris.	K-Fe	Plag.	Mica	Chlo.	Mont.	Clin.	Pyri.	Bari.	Hali.
Hole	155: Bulk	Samples														
1	434-443	439.00 441.53 442.00	79.5 76.2 77.9	68.0 62.9 65.4	45.6 7.2 55.1	6.9 0.4 3.9	1	3.9 15.5 4.6	4.4 4.0 2.5	1.5 2.9	0.9 _ _	32.0 59.1 25.8	4.9 - 6.9	- 9.1 1.3	-	- 1.8 -
2	443-452	448.00 450.54	79.8 -	68.4	39.3 11.4	6.2 2.4	30.7	- 4.6	2.0 3.4		_	10.8 68.3	9.8 4.3	1.2 0.9	-	0.8
3	452-461	458.50 459.54	84.4 84.8	75.6 76.2	$\begin{array}{c} 10.1\\ 16.3 \end{array}$	16.0 20.9	_	9.7 12.5	5.5 5.0	_	_	37.7 28.4	16.9 14.8	-2.1	4.1	-
4	461-470	466.00 468.54	85.1 84.5	76.8 75.9	5.5 2.1	23.1 17.2	46.3	14.7 3.2	10.7 4.7	-	-	33.0 24.6	12.9	2.0	-	-
5	470-479	476.50 477.54 478.00	83.1 79.8 74.5	73.6 68.4 60.2	25.2 29.2 70.5	28.4 31.4 18.0	1	5.7 4.0 1.3	3.5 _ _	5.3 2.8 1.3	1.9 0.8 1.1	23.6 27.0 5.4	11	1.1 1.1 -	5.3 3.7 2.5	11
6	479-488	483.52	82.0	71.9	46.4	11.0		2.1	-	-	$\overline{\mathcal{A}}$	36.2	-	3.3	123	1.1
7	488-497	489.52	62.6	41.6	92.4	7.6		-			-			-	-	(1,1) = (1,1)
8	497-506	499.57 506.00	63.3 62.1	42.7 40.7	88.1 95.7	1.1 1.3	_	4.3 1.7	-	2.3	-	4.2 1.3	-	1	_	-
9	506-515	515.00	60.1	37.6	99.2	0.8	-	-	-			-	-		-	-
Hole	155: 2-20/	u Fraction														
1	434-443	439.00 441.53 442.00	78.5 79.3 76.4	66.4 67.7 63.1		17.0 0.7 10.8		11.0 22.7 11.8	26.2 12.3 25.5	F 4 4	1.6	12.9 54.1 7.4	26.6 - 38.4	4.7 10.3 6.2		
2	443-452	448.00 450.54	77.2 78.2	64.4 65.9		14.4 4.7		8.2 15.8	15.4 17.3	6.2	_	10.1 35.2	44.9 19.2	7.0 1.6	-	
3	457-461	458.50 459.54	76.3 76.6	63.0 63.4		11.8 20.8		21.5 24.2	6.3 11.9	3.0 3.2	_	9.7 9.6	41.5 22.6	1.7 2.7	4.5 6.2	
4	461-470	466.00 468.54	80.2 78.0	69.0 65.6		20.1 29.1		15.9 11.2	23.8 29.2	2.0	2	12.5 13.2	22.7 3.7	5.1 7.2	- 4.4	
5	470-479	476.50 477.54 478.00	80.4 75.5 77.0	69.4 61.7 64 1		50.5 49.2 52.2		8.9 14.2 10.0	3.9 5.0 4.6	7.7 6.2 6.2	2.7 1.8 2.9	10.7 7.3 8.8	-	5.3 5.2 4.8	10.3 10.9 10.4	

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor. Ca	lc. Quar.	Cris.	K-Fe	Plag.	Mica	Chlo.	Mont.	Clin.	Pyri.	Bari.	Hali.
Hole	155: 2-20	Fraction - Co	ontinue	d											
6	479-488	483.52	81.3	70.7	16.7		11.5	2.8		-	45.8	$\gamma \rightarrow \gamma$	15.3	7.8	
7	488-497	489.52	70.5	53.9	45.0		28.0			_		\sim	5.3	21.7	
8	497-506	499.57 506.00	79.2 72.5	67.4 57.1	17.3 19.1		47.8 54.4	_		-	27.6 7.3	-	7.3 4.4	14.7	
9	505-515	515.00	69.5	52.3	21.9		52.0	-	2	0.9	-	-	3.5	21.6	
Hole	155: <2µ	Fraction													
1	434-443	439.00 441.53	69.4	52.1	9.8	-	5.9	2.3	-	-	82.0 100.0	-	-	-	
2	443-452	442.00 448.00 450.54	75.4	61.6	5.6 7.6 1.4	57.1 _	4.3 - 2.8	2.0 - 2.3	-	-	85.5 34.2 92.3	1.6 1.1 1.2	1.1 - -	1	
3	452-461	458.50 459.54	83.6		16.0 25.2	-	-	2.9 _		-	78.5 74.8	2.7	-		
4	461-470	466.00 468.54	82.5	72.4	23.3 18.5	48.6	3.9 -	2.5	1	_	67.2 31.8	2.0	$1.1 \\ 1.1$	-	
5	470-479	476.50 477.54 478.00	80.6 -	69.7 -	27.9 45.9 47.5	1 1 1	3.6 2.3 2.9	1.6 - 1.1			66.2 51.8 45.1		0.8	1.1	
6	479-488	483.52	82.9	73.3	16.3	-	5.2				73.4	-	3.1	2.1	
7	488-497	489.52	79.1	67.3	76.1	-	2.0	$\sim - 1$	-	-	19.3	-		2.7	
8	497-506	499.57 506.00	82.4 77.5	72.6 64.9	2.6 10.8	_	3.8 3.4	-	4.0	2	88.2 84.5	_	1.4 -		
9	506-515	515.00	86.1	78.3	14.0	-	8.1			4.2	69.9		-	3.8	

 TABLE 1 - Continued

^aMeters below sea floor.

 TABLE 2

 Results of X-Ray Diffraction Analyses from DSDP 157

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Mont. Clin.	Phil.	Paly.	Pyri.	Bari. Unkn. ^t
Holes	157 and 1	157A: Bulk Sa	mples	_										
1A	0-9	7.54	68.3	50.4	96.0	1.2	1.4		\rightarrow	1.4				-2
2A	9-18	10.48	66.6	47.9	99.4	0.6	~		-					1777.
1	6-19	11.55	64.8	44.9	99.1	0.9	\sim		= 3	-				
3A	18-27	24.04	69.3	52.0	99.1	0.9	~		-					-
2	19-28	23.55	63.1	40.3	99.6	0.4	~		-	-				-
3	28-37	28.05	68.0	50.0	96.5	1.0	2.5		-	-				-
4	37-66	39.95	70.4	53.8	96.4	0.8	2.7		-	-				177
5	46-55	49.04	66.3	47.3	99.4	0.6	-		-	-				-
6	55-64	56.46	77.4	64.6	99.3	0.7			-	-				122
7	64-73	68.54	68.8	51.3	99.5	0.5	-		-	-				-
8	73-82	73.02 75.41	70.1 71.8	53.2 55.9	99.1 99.1	0.9 0.9	-			-				-
9	82-91	88.91 89.54	79.5 80.8	67.9 69.9	94.6 97.0	$0.8 \\ 1.2$	1.5		-	-				3.2 1.7
10	91-99	91.04	82.1	72.0	90.1	1.2	1.0		3.4	2.2				2.1
12	108-117	114.05	69.0	51.6	99.4	0.6	~		-	-				
14	126-135	129.04	80.0	68.8	99.4	0.6	\leq		20	ш.				

 TABLE 2 – Continued

	Cored Interval Below Sea	Sample Depth ³ Below Sea													
Core	Floor (m)	(m)	Diff.	Amor	. Calc.	Quar.	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Paly.	Pyri.	Bari. Unkn. ^b
Holes	s 157 and 1	57A: Bulk Sam	ples – (Continu	ued										
15	135-144	141.04	66.8	48.1	99.5	0.5	122		4	-					-
16	144-153	151.54	70.7	54.3	96.6	1.0	-		2.4						
17	153-162	160.53	76.1	62.6	99.5	0.5	-			-					-
18	162-171	166.53	70.1	53.3	99.7	0.3	-			\sim					
19	171-180	178.54	75.0	60.9	98.1	0.6	-		\rightarrow	-					1.3
21	189-198	195.02	75.8	52.3	99.4	0.6				1					-
23	207-216	213.02	65.0	45.3	99.5	0.5	-		-						
25	225-234	230.98	64.2	44.0	97.7	0.4	-		1.9	-					-
27	243-252	246.03	69.6	52.5	99.6	0.4	-		_	-					
28	252-261	258.03	64.9	45.2	99.5	0.5	-		-	-					-
29	261-270	262.54	62.9	42.0	99.6	0.4	-			-					-
30	270-279	277.53	66.8	48.1	99.6	0.4	-		-	-					-
31	279-288	286.52	65.2	45.7	100.0	-	-		_	-					
32	288-297	295.53	60.0	37.5	100.0	-	-		-	-					
33	297-306	304.54	64.5	44.5	100.0	-	-		\rightarrow	-					-
35	315-324	316.38	61.9	40.5	100.0	-	—		-	-					-
36	324-333	327.03	63.1	42.3	99.7	0.3	-		-	-					-
39	345-350	346.48	59.0	35.9	100.0	-	-			-					-
Holes	157 and 15	57A: 2-20µ Fr	action												
1A	0-9	7.54	94.5	91.4		23.7	51.0		15.7					3.8	5.9
2A	9-18	10.48	97.6	96.2		18.1	51.6		16.4			-		5.4	8.5
1	10-19	11.55	94.7	91.7		36.1	50.9		-		-	-		3.4	9.5
3A	18-27	24.04	95.7	93.3		35.4	52.5		-		+	-		6.0	6.1
2	19-28	23.55	96.6	94.7		36.1	47.9		13.4		-			2.6	-
3	28-37	28.05	94.2	90.9		27.8	40.7		10.3		-	17.4		-	3.9
4	37-46	39.95	99.0	98.5		30.8	46.5				1000	16.1		6.5	-
5	46-55	49.04	96.5	94.6		30.8	41.9		14.9		-	12.4		-	-
6	55-64	56.46	99.2	98.7		40.3	51.5				-	200		8.2	<u>8.111</u>
7	64.73	68.54	96.6	94.7		25.5	40.5		9.5		1	$i \rightarrow i$		9.3	15.3
8	73-82	73.02	96.2	94.0		27.7	43.1		12.7		-	2.000		3.9	12.6
		75.41	97.4	95.9		26.0	61.8		and the		100	\sim		5.0	7.2
9	82-91	88.91	97.2	95.6		28.5	41.9		11.6		-			11.9 26.4	6.0 11.4
10	91-99	91.04	96.0	93.7		21.2	46.8				-	_		16.4	15.6
12	108-117	114.05	95.9	93.6		24.2	38.0							26.4	11.4
14	126-135	129.04	99.2	98.7		25.2	61.5							13.4	-
15	135-144	141.04	95.8	93.5		17.1	42.6		1951 220					33.1	7.2
16	144-153	151.54	97.8	96.6		16.8	36.7		24.0					14.6	7.8
17	153-162	160.53	98.6	97.8		16.5	44.8		24.0		_	_		21.3	17.4
18	162-171	166.53	98.2	97.1		19.7	31.1				1993. 19 44			25.4	23.8
19	171-180	178 54	97.2	95.6		14.9	25.8		24 5					14.6	20.1
21	189-198	195.02	98.0	96.9		18.4	50.5		27.0					16.4	14.7
23	207-216	213.02	96.1	93.0		30.4	38.5		573 1997		- 1973 1944			17.6	13.6
25	225-234	230.98	95.1	92.4		27.9	36.3							13.7	22.1
27	243-252	230.90	96.3	94 3		18.4	41 7							18.6	21.3
28	252-261	258.03	95.3	92.4		10.4	32.2		12.5		175 112			17.0	18.8
20	252-201	258.05	93.4	92.4		19.5	52.5		12.5		-			17.0	10.0

Core	Cored Interval Below Sea Floor (m)	Sample Depti Below Sea Floor	h ^a	Amor	Calc	Quar	Plag	Kaol	Mica	Mont	Clin	Phil	Palv	Puri	Bari	Linka b
Holes	157 and 15	57A: 2-20µ	Fraction -	- Conti	nued	Quart	1 146.	Ruoi.	Mica	- Monte	Chill		ruly.	.,	Durn	
29	261-270	262.54	95.0	92.2		22.6	41.8		-		-	_		16.0	19.6	
30	270-279	277.53	98.2	97.3		12.7	28.5		22.5		100	-		17.2	19.0	
31	279-288	286.52	98.6	97.8		26.5	26.4		-		-	-		17.8	29.2	
32	288-297	295.53	98.2	97.1		14.6	24.3		_		-	_		15.1	46.1	
33	297-306	304.54	98.3	97.4		15.3	41.0		-		<i>.</i> =	-		10.8	33.0	
35	315-324	316.38	97.4	96.0		17.5	35.5		-		-	-		8.9	38.1	
36	324-333	327.03	96.3	94.3		14.5	35.2		-		—	-		14.9	35.4	
39	345-350	346.48	84.1	75.2		11.4	31.8		6.1		19.2	-		14.1	17.5	
Hole	s 157 and 1	57A: <2µ 1	Fraction													
1A	0-9	7.54	96.4	94.4		11.0	-	4.7	13.8	66.8			-	3.7	-	
2A	9-18	10.48	85.0	76.6		8.8	4.2	3.4	-	83.6			\sim			-
1	10-19	11.55	94.8	91.8		9.5	6.6	5.9	8.8	44.9			19.4	-	5.0	-
3A	18-27	24.04	96.1	94.0		6.9	4.3	5.0	8.6	56.0			14.2	1.9	3.1	2.23
2	19-28	23.55	96.9	95.2		14.9	13.8	7.5		31.2			32.6	-	-	
3	28-37	28.05	94.1	90.8		8.1	3.8	4.9	5.3	60.6			17.2	-	-	\rightarrow
4	37-46	39.95	99.0	98.4		19.9	14.8	15.5	24.3	25.5			-	-	(-)	
5	46-55	49.04	95.4	92.8		9.8	7.0	6.5	13.	62.9			-	-	$\sim - 1$	÷
6	55-64	56.46	99.5	99.1		36.1	-	_	_	63.9			-	-		
7	64-73	68.54	98.6	97.9		14.9	-	9.5	-	75.6			-	-		
8	73-82	73.02 75.41	99.2 97.5	98.7 96.1		21.2 16.5	19.2 11.5	11.6 9.8	-	48.0 62.2			_		_	
9	82-91	88.91	98.1	97.1		17.7	20.9	-	-	38.7			_	9.2	13.6	-
10	01.00	01.04	90.4	97.4		10.5	0.1	9.2	22.0	17.0				8 1	20.2	
10	109 117	114.05	96.0	90.9		15.0	20.0	-	25.0	21.2			-	7.5	17.2	Abund
14	106-117	129.04	97.5	90.1		13.5	50.3	0.0		51.5				26.1	17.2	Major
14	125-135	141.04	99.1	90.0		31.6	27.1	_	_	_				14.4	27.0	Major
15	144 152	151.54	99.5	90.9		51.0	27.11	_	-	1				14.4	100.0	Major
17	153,162	160.53	90.7	00.0										100.0	100.0	Major
18	162-171	166.53	08.0	08.3		17.1	_	16.1	_	47 1				19.7		Abund
10	171-180	178 54	97.9	96.7		14.1	17.5	12.5		30 4				16.5		Abund
21	189-198	195.02	99.9	99.8		42.9	-	-	_	-			-	57.1	-	-
23	207-216	213.02	97.8	96.5		13.7	9.7		-	61.4			-	7.7	7.6	-
25	225-234	230.98	95.2	92.6		8.8	5.4	-	9.1	74.5				2.2	_	-
27	243-252	246.03	96.7	94.8		31.1	-	-	-	68.9			-	-	-	Major
28	252-261	258.03	95.2	92.5		10.3	6.4	227		80.2			-	3.1	_	-
29	261-270	262.54	94.8	91.9		15.1	10.2	-	-	71.1			-	3.6	-	\simeq
30	270-279	277.53	97.8	96.6		12.6	12.1	_	-	75.4			-	-	-	-
31	279-288	286.52	99.8	99.6				4	_	12			\sim		23	-
32	288-297	295.53	98.4	97.5		10.9	13.5	-	-	69.5			-	6.0	÷	-
33	297-306	304.54	99.9	99.8		-	_	_	-	-			-	-	-	-
35	315-324	316.38	98.1	97.0		11.4	17.6	-	-	71.3			<u> 11</u>		210	Abund
39	345-350	346.48	93.0	89.1		7.2	7.3	5.0	10.0	70.5			-	-		-

TABLE 2 - Continued

^aMeters below sea floor. ^bRelative intensities of peaks are quite variable -3.80A (broad), 4.41A, and 4.59A.

TABLE 3 Results of X-Ray Diffraction Analyses from DSDP 158

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Bari.	Amph.	Unkn	b . Unkn	. ^C Talc.
Hole	158: Bulk	Samples																		
1	0-9	3.04	80.2	69.1	77.4	5.1	6.5	1.4		-	8.6		0.9		-	-				
2	9-18	9.91	79.1	67.3	88.2	4.7	2.7	_		1.3	3.0		-		_					
		11.41	79.5	67.9	84.3	4.6	3.7	-		-	7.2		-		-	-				
		15.04	76.2	62.8	85.3	2.9	6.4	-		_	5.4		-		-	-				
3	18-27	15.54	74.2	59.7	90.3	2.8	1.7	1070			5.3		-		-	-				
4	27-36	31.53	68.3	50.5	94.4	1.7	1.7	-		-	2.2		-		-	-				
5	36-45	39.04	65.0	45.3	98.8	1.2		-		-	-		_		-	_				
6	45-54	49.53	62.6	41.6	99.3	0.7	-	-		-	-		~ -1		-	-				
7	54-63	60.03	59.3	36.4	99.6	0.4	-	-		\rightarrow	\rightarrow		-		-	-				
8	63-72	69.04	59.8	37.2	99.5	0.5					-		-		-	-				
9	72-81	74.41	61.6	40.0	99.3	0.7	-	-		-	-		—		-	-				
		79.53	60.7	38.6	99.1	0.9	-	_		_	-				-	-				
10	81-90	88.53	60.4	38.2	99.5	0.5		-		\rightarrow	1000		-		-	-				
11	90-99	96.02	62.5	41.4	99.6	0.4	-	-		-	-		-		-	-				
12	99-108	105.03	61.2	39.4	99.6	0.4	-	-		-	-		-		—	-				
13	108-117	114.02	57.9	34.2	99.6	0.4	-	\sim		-	-		-		-	-				
14	117-126	132.03	63.6	43.1	99.3	0.7	\sim	122		_	\simeq				-	-				
15	126-135	130.54	65.2	45.6	99.4	0.6	-	-		_	-		-		-	-				
16	135-144	142.53	61.2	39.3	100.0	=5	-	\sim			-				-	-				
17	144-153	151.54	64.3	44.5	100.0	—	—	-		-	-		-		-	_				
18	153-162	160.52	66.7	48.0	100.0	\rightarrow	-	-		-	-		-		-	-				
19	162-171	169.52	58.4	35.0	100.0	_	_	_		_	<u></u>				_	_				
20	171-180	178.52	59.4	36.5	100.0	-	_	-		-	-		-		-					
21	180-189	186.03	62.9	42.0	100.0	_	_	_			_		_		_	_				
22	189-198	196.52	64.0	43.8	100.0	_							_		_					
23	198-207	204 02	66.2	47.2	100.0										_	_				
24	207-216	209.02	83.4	74.1	96.1										12	27				
24	207-210	210.02	82.2	72.2	97.0	_	2	-		-	-				-	3.0				
25	216-225	223.52	75.8	62.1	98.5	-	-			-	-		-		-	1.5				
26	225-234	225.00	74.3	59.8	100.0	_	-	-		-	-		-		-	-				
27	234-243	241.53	71.9	56.0	100.0	_	-				-		-		-	-				
28	243-252	249.02	75.0	60.9	96.0	0.5	2.0	-			_		-		_	1.5				
29	252-261	255.02	79.9	68.7	100.0	_	2	_		_	_		_		_	-				
30	261-270	268.54	65.2	45.6	100.0	—	-	-		-	-		-		-	-				
32	279-287	283.53	65.9	46.7	100.0	_	22				2		\sim		_					
33	287-296	288.52	66.9	48.3	98.5	-	1.5	-		-			_		-	_				
Hole	158· 2.20u	Fraction																		
	201 2-204		100							1	-		الد الوران							
1	0-9	3.04	87.7	80.7		30.0	39.5		-	2.5	16.3		6.2	-	-	2.9	1.8	-	-	0.8
2	9-18	9.91	87.2	80.0		30.0	36.7		7.4	3.1	11.5		7.6	-	12	_	2.4	-	_	1.3
		15.04	88.5	82.0		29.8	41.2		3.9	2.1	12.4		4.2	-	2.4	-	2.9	-	-	0.5

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor. Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Barj.	Amph	. Unkn.b	Unkn.c	Talc.
Hole 1	58: 2-20µ	Fraction - Co	ontinued	1															
3	18-27	25.54	84.3	75.5	30.6	35.9		3.5	2.7	16.2		4.2	-	1.3	2.7	1.9		-	0.8
4	27-36	31.53	85.0	76.5	34.4	33.7		4.3	4.5	8.6		3.5		1.3	7.3	1.9	-	—	0.5
5	36-45	39.04	88.9	82.6	38.7	34.9		5.1	5.2			3.7	-	2.0	7.6	2.3	-	(-)	0.5
6	45-54	49.53	91.1	86.0	32.5	43.4		6.0	3.9	121		120	1000	3.8	7.0	2.7	-	_	0.7
7	54-63	60.03	92.6	88.4	32.8	31.4		10.8	7.8				-	5.2	11.9		1	Pres	-
8	63-72	69.04	93.3	89.5	38.0	33.6		11.6	6.5	(=)			-	2.6	7.7	-	-	Pres	-
9	72-81	74.41 79.53	91.1 87.6	86.1 80.7	38.6 27.1	34.0 23.5		8.9 11.1	5.2 6.9	-		-		6.1 4.6	7.3 13.8	_	ाम सन्दर्भ	_	_
10	81-90	88.53	91.8	87.2	26.1	44.7		-	7.5			-	-	7.1	14.5	-	-	-	-
11	90-99	96.02	93.6	90.0	22.2	38.5		9.3	6.1	$\sim - 1$		-	-	5.0	18.9	-	1	-	\simeq
12	99-108	105.03	89.5	83.6	28.5	28.7		9.3	5.9	\sim		-	-	3.5	24.1	-		=	-
13	108-117	114.02	89.6	83.7	22.5	36.1		8.7	5.3	7 = 0		-	<u></u>	5.0	22.4	-		\rightarrow	-
14	117-126	123.03	91.4	86.5	23.4	29.0		10.8	8.1	$\sim - 1$		-		5.8	22.8		577	-	575
15	126-135	130.54	96.8	95.0	30.6	28.6		9.7	13.3			-	\sim	5.2	12.7	-	-	-	-
16	135-144	142.53	94.6	91.5	10.8	38.4		-	10.6	-		1	-	7.6	32.6	-	Abund	-	-
17	144-153	151.54	95.7	93.3	12.5	50.5		-	11.5			-	-	3.7	21.8	-	Abund	-	-
18	153-162	160.52	96.6	94.7	15.5	25.7		-	-	-		-		7.2	51.6	-	2	-	_
19	162-171	169.52	95.7	93.3	10.4	38.5		-		-		-	-	6.7	44.3	-	100	Trace	-
20	171-180	178.52	92.0	87.5	7.2	40.8			6.4			-	5 44	6.3	39.4	-	Abund	Trace	-
21	180-189	186.03	94.1	90.8	4.5	42.3		-	-	120		-	-	10.6	42.6	-	-	-	-
22	189-198	196.52	96.0	93.8	14.9	-			-	-		-		16.5	68.6	-	Abund	-	-
23	198-207	204.02	95.8	93.4	7.8	45.2		-	-			-		8.5	38.4	-	-	\rightarrow	-
24	207-216	209.41 210.02	98.5 96.7	97.7 94.8	6.2 2.2	45.5 40.2		-	277 244	-		-	-	21.8 14.9	26.5 42.7	_		-	_
25	216-225	223.52	96.8	95.0	6.8	40.6		-	-	-		-	-	12.2	40.4	-	-	—	-
26	225-234	225.00	96.4	94.4	7.3	27.7			1	-		-	-	11.0	54.1	-			121
27	234-243	241.53	98.2	97.2	4.4	16.9		-	-	-		-	-	18.3	60.4			-	17
28	243-252	249.02	90.9	85.7	4.3	40.4			_	3		-	-	20.6	34.7	-	-	-	-
29	252-261	255.02	97.7	96.4	2.1	26.0		-	100			1	-	34.7	37.3	-		2.00	-
30	261-270	268.54	92.9	89.0	1.4	28.1		-	-			-		18.7	51.8	-	-	$c_{ij} = c_{ij}$	
32	279-287	283.53	95.9	93.7		27.2		-	-	2		-		45.4	27.4	-	-	() }	-
33	287-296	288.52	96.1	93.8	-	25.1		-	-				57	42.9	32.0	-		-	-
Hole	158: <2µ I	raction																	
1	0-9	3.04	86.5	79.0	11.9	8.1	6.3	-	-	73.8	-	-		-	-				
2	9-18	9.91	87.5	80.5	10.9	7.3	6.9	-	-	72.7	-	2.2		-					
		$11.41 \\ 15.04$	89.6 87.3	83.7 80.2	11.0 11.3	6.2 6.6	6.4 5.9	6.5	-	69.9 74.6		1.7			≂. +0				
3	18-27	25.54	89.5	83.7	12.1	6.9	6.6	7.1	-	67.3	-	-		_					
4	27-36	31.53	87.5	80.5	11.9	6.6	8.1	6.4	-	67.1	-	~		$(\exists \exists)$	-				
5	36-45	39.04	88.9	82.6	18.1	14.4	7.4	6.5	-	49.3	-			-	4.2				
6	45-54	49.53	89.0	82.8	11.3	5.7	11.2	7.0	1.00	63.0	-	-		1.8	_				
7	54-63	60.03	91.1	86.0	13.9	7.0	12.1	-	-	67.1	-	-		-					
8	63-72	69.04	88.3	81.7	11.7	4.9	11.3	8.4		61.0		-		-	2.8				
9	72-81	74.41 79.53	89.6 90.1	83.7 84.5	12.9 17.7	6.3 12.4	$\begin{array}{c} 1.6\\ 12.1 \end{array}$	12.1 9.8	4.6	62.5 39.0	-	-		_	9.1				
10	81-90	88.53	93.9	90.4	9.0	5.1	8.5	6.9	877	67.0	-				2.8				

TABLE 3 – Continued

TABLE 3 - Continued

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc. Qu	ar. Pla	g. Kaol	. Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Bari,	Amph.	Unkn. ^b	Unkn. ^C Talc
Hole	158: <2µ	Fraction - Co	ntinuea	1														
11	90-99	96.02	91.9	87.3	15.	9 10	2 12.9	9.9	_	47.2	-	-		-	3.9			
12	99-108	105.03	89.3	83.2	10.	4 6	9 9.6	-	-	68.8	-			-	4.3			
13	108-117	114.02	92.9	88.9	14.	3 7	7 10.1	7.8	2	57.1	-	-		3.0	-			
14	117-126	123.03	99.8	99.7	36.	5 -		275	-	63.4	_	-		-	-			
15	126-135	130.54	96.2	94.0	6.	4 8.	7 –	-	7.3	69.6	-	-		_	8.1			
16	135-144	142.53	94.1	90.8	8.	2 2.	7 7.4	7.5	_	53.2	15.8	-		-	5.3			
17	144-153	151.54	96.7	94.9	10.	9 8.	6 6.2	-	-	61.6	-	-		4.1	8.6			
18	153-162	160.52	94.4	91.2	6.	4 4.	9 7.4	-		71.8	-			-	9.6			
19	162-171	169.52	92.6	88.4	7.	8 7.	6 5.3	-	_	67.7				3.8	7.8			
20 21	171-180 180-189	178.52 186.03	94.6 93.9	91.6 90.5	3. 3.	1 7. 0 4	1 – 1 –	-	_	79.7 85.0	-	-		$10.1 \\ 2.7$	5.2			
22	189-198	196.52	91.9	87.3	2.	6 5	4 –	-	$\overline{\mathbf{T}}$	86.3				1.7	4.0			
23	198-207	204.02	99.7	99.6	-	-	_	-		-	-	-		-	-			
24	207-216	209.41 210.02	98.9 98.5	98.2 97.7	11.	9 3 –	9 8.4	-	-	52.6 88.7	-	-		10.4	18.7 _			
25	216-225	223.52	99.4	99.0	-	-	-	-	-	100.0	-	-		-	-			
26	225-234	225.00	99.9	99.8	100.	0 –	-	-	-	-	122	-		-	-			
27	234-243	241.53	94.0	90.6	3.	6 7	.6 –	-		80.3	-	i = i			8.8			
28	243-252	249.02	99.9	99.9			-		-	-	24			-	-			
29	252-261	255.02	96.6	94.7	4.	1 4	1 –	11.4		67.0	100	-		4.5	8.8			
30	261-270	268.54	98.0	96.9	-	13	.6 –	0=3	-	48.7	-	-		37.7	-			
32	279-287	283.53	96.6	94.8	1.	8 –	-	13.5	-	73.0	122			7.6	4.2			
33	287-296	288.52	89.8	84.0	16.	1 6	.6 6.8	26.3	2.6	20.1	21.4			1	177			

^aMeters below sea floor. ^bRelative intensities of peaks are quite variable – 3.80A (broad), 4.41A, and 4.59A. ^cOnly one peak observed – 14.4A.

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Gyp ş .	Bari.	Hali
Hole	159: Bulk	Samples														
1	0-9	4.36 6.03	89.3 91.0	83.2 85.9	-	30.9 22.6	15.8 4.7	30.9 37.9	3.2 5.6	5.4 11.6		_	9.0 15.2		4.9 2.4	
2	9-18	10.01 16.54	90.1 89.5	84.6 83.6		20.8 16.4	22.4 13.2	16.9 10.2	-	18.1 17.4		1.9 6.5	15.3 29.0		4.6 7.4	
3	18-27	24.04 24.13	90.0 90.8	84.4 85.6	5.5 2.3	14.2 13.9	25.6 29.3	10.8 10.5		4.4 6.8		4.0 4.8	30.6 27.3		4.8 5.2	
4	27-36	29.51 34.52	86.9 92.0	79.6 87.5	69.3 48.4	3.6 6.3	9.5 15.0	4.4 10.6	_	4.1 7.6		-	5.4 9.2		3.7 2.9	
5	36-45	43.53	84.3	75.4	70.0	2.5	8.4	4.0		4.7		-	8.0		2.3	
6	45-54	48.04 49.01	77.2 83.5	64.3 74.2	86.6 77.9	1.6 2.4	3.2 2.7	3.4 2.9	-			2.1 1.5	3.2 6.8		2.3	
7	54-63	58.01 60.03	81.6 75.4	71.3 61.5	78.6 88.9	1.5 0.9	4.8 1.4	2.8 2.9	-	3.9 -		- 1.4	5.3 3.0		3.1 1.4	

TABLE 4 Results of X-Ray Diffraction Analyses from DSDp 159

Cored Sample Deptha Interval Below Sea Below Sea Floor Core Floor (m) (m) Diff. Gyps. Bari. Hali. Amor. Calc. Chlo. Clin Phil. Quar. Plag Mica Mont. Paly. 1.7 8 63-72 68.51 68.4 50.6 0.9 93.4 1.6 1.3 1.0 70.52 73.6 58.8 89.3 0.5 1.7 2.2 _ 1.8 1.0 1.7 1.7 9 79.53 44.2 72-81 64.3 99.5 0.5 -_ _ 99.6 10 81-90 88 52 65.0 45.4 0.4 89.81 75.2 61.3 89.7 0.9 1.5 2.9 1.4 2.2 1.4 12 99-107 105.03 71.3 55.2 100.0 106.01 72.9 57.6 98.4 0.4 1.2 _ _ _ _ _ -Hole 159: 2-20µ Fraction 1 0-9 4.36 81.8 71.5 39.2 20.9 29.2 3.1 7.6 6.03 81.8 71.6 37.0 17.7 29.5 4.4 1.1 8.6 1.8 -2 9-18 10.01 82.7 72.9 28.5 29.3 17.6 2.9 1.8 17.1 2.9 _ 9.8 16.54 83.3 73.9 23.3 36.3 15.0 -14.5 1.1 3 24.04 80.2 69.1 39.7 18-27 16.1 22.4 15.1 6.6 _ _ -24.13 82.7 72.9 17.9 27.2 10.5 5.3 39.1 _ _ 4 27-36 29.51 92.3 87.9 15.6 53.1 9.4 14.1 7.7 34.52 92.3 87.9 45.5 5.4 12.9 8.2 16.7 11.3 --5 22.0 36-45 43.53 90.5 85.1 8.9 37.2 13.1 7.8 5.7 5.4 6 45-54 48.04 87.8 81.0 8.4 7.5 24.6 23.9 2.8 8.0 24.6 11.5 21.0 49.01 89.7 83.9 26.8 13.4 14.5 8.2 4.6 _ 7 54-63 58.01 92.3 87.9 8.5 29.3 10.6 20.8 2.0 21.8 7.0 _ 22.8 88.3 7.2 21.9 15.5 13.0 60.03 81.8 12.1 7.6 -8 63-72 68.51 92.1 87.7 86 22.1 116 -20.9 6.9 23.2 7.1 70.52 90.8 85.7 7.0 24.2 10.9 12.7 14.9 19.1 11.2 17.2 24.9 7.4 9 72-81 79.53 86.7 79.3 8.1 20.6 14.7 7.2 _ -10 81-90 88.52 90.4 85.1 9.2 25.6 15.4 26.3 21.1 2.6 _ 20.4 16.7 26.7 89.81 93.8 90.3 _ 12.6 7.5 16.1 _ -_ 12.2 12 99-107 105.03 94.2 91.0 _ 6.6 30.5 9.2 _ 5.5 _ 36.0 ----94.4 _ 38.6 _ 106.01 96.4 17.8 43.6 Hole 159: <2µ Fraction Pres 1 0-9 4.36 89.8 84.1 4 24.4 12.1 337 6.0 23.7 _ 1 _ 6.03 90.3 84.8 -47.4 15.8 2.2 20.1 8.7 5.8 47.5 11.0 2 9-18 10.01 89.7 84.0 _ 11.2 13.7 3.3 13.3 92.2 87.8 -13.2 9.0 41.5 1.8 34.5 16.54 _ --24.04 93.3 89.5 6.9 62.2 14.6 4.9 3 18-27 4.5 6.9 _ -2.0 20.2 92.0 2 10.9 1.8 9.5 24.13 87.5 _ 55.6 _ _ -_ 29.51 6.2 4.6 4 27-36 94.1 90.8 -12.4 13.9 54.3 8.6 _ -_ 3.5 34.52 92.2 87.7 -5.3 11.8 _ 71.1 _ _ 8.3 _ _ 9.1 5.8 5 43.53 93.8 90.3 9.2 71.2 _ 36-45 _ 4.6 _ --_ _ 7.5 4.1 6 45-54 48.04 94.6 91.6 6.2 16.2 66.0 _ _ _ _ _ -49.01 93.6 90.1 6.2 9.4 10.1 62.4 11.9 -_ 6.0 7 58.01 90.7 85.5 2.9 5.5 7.4 78.3 54-63 _ _ _ _ 89.7 4.5 20.2 3.3 9.0 1.0 6.0 60.03 93.4 56.0 -6.9 2.2 8 63-72 68.51 91.1 86.0 3.0 4.3 82.1 _ 1.4 _ -5.1 4.5 93.4 89.7 18.3 14.8 51.7 70.52 _ 5.7 _ _ _ -9 72-81 79.53 93.9 90.5 4.3 14.0 60.6 8.5 2.8 4.6 5.3 --_ _ 10 81-90 88.52 93.8 90.3 7.2 14.3 45.3 4.8 13.1 9.0 6.3 _ -_ 9.1 _ 1.7 89.81 90.9 85.8 _ 4.1 3.2 _ 81.8 -93.6 90.0 18.5 43.8 8.7 21.8 12 99-107 105.03 7.3 -_ -_ _ -----106.01 93.7 90.2 3.9 6.4 _ 86.9 -2.8 --_

^aMeters below sea floor.

TABLE 5 Results of X-Ray Diffraction Analyses from DSDP 160

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Pyri.	Bari.	Hali.
Hole 1	160: Bulk S	amples													
1	0-9	0.40 1.54	91.1 88.5	86.1 82.1		14.6 8.3	26.6 29.9		13.7 12.4	11.7 24.6	7.1 8.8	21.6 12.7		4.7 3.4	
2	9-18	9.61 13.54	89.6 88.4	83.8 81.9	-	17.4 11.6	21.9		10.3 12.4	13.8 24.5	3.1 8.3	55.3 17.6			
3	18-27	18.61 25.54 16.11	91.6 91.4 90.3	86.9 86.6 84.9	- 1.1 8.2	9.4 11.2 14.1	26.5 27.1 2.2		16.7 8.9 15.3	21.7 18.9 24.4	5.8 13.7 14.1	10.4 8.3 21.7		9.4 10.7 -	
4	27-36	33.04	65.7	46.3	97.9	0.5			1.6	-	-	-		$(1-1)^{2}$	
5	36-45	43.54	67.1	48.6	94.7	0.8	1.7		2.1		$\underline{\nabla} \mathcal{T}^{(i)}$	1 <u>0-1</u> 1		0.7	
6	45-54	51.04	61.8	40.3	99.6	0.4	-		-	-		-		-	
7	54-63	61.53	57.3	33.2 1	0.001	-	-		-	-	-	-		-	
8	63-72	64.54	58.2	34.7	98.5	-	-		1.5	-	-	-		-	
9	72-81	76.53	56.5	32.1	0.001	-	-		-	$\sim - c$		-		-	
10	81-90	88.52	55.5	30.5	0.001	2=5			-	-	-	-		-	
11	90-99	97.53	54.8	29.3 1	0.001		-		-	-	_	-			
		98.11	55.3	30.2 1	0.001	-			-			-		277	
12	99-108	106.53	58.5	35.2 1	0.001		-		-		-	-		-	
Hole	160: 2-20µ	Fraction													
1	0-9	0.40 1.54	82.7 78.9	73.0 67.0		17.1 13.1	34.5 33.2		12.9 14.5	10.9 5.8	8.4 17.2	16.3 12.3	-		
2	9-18	9.61 13.54	81.4 80.3	70.9 69.2		12.2 14.1	26.6 47.3		9.9 13.1	5.5 5.2	2.4 10.4	43.4 6.7			
3	18-27	18.61 25.54 26 .11	87.2 87.8 86.1	80.0 80.9 78.3		13.5 13.7 11.9	27.2 36.5 23.9		10.5 15.1 10.8	25.1 8.1 23.8	7.2 9.2 15.1	16.6 11.5 10.5		- 6.0 4.0	
4	27-36	33.04	93.8	90.3		18.5	36.7		18.3	-	-	6.9	-	19.5	
5	36-45	43.54	91.6	86.9		16.4	37.4		18.0		<u>111</u> 7	8.1	-	20.1	
6	45-54	51.04	94.2	90.9		18.8	45.9		18.0	-	-	6.8	-	10.5	
7	54-63	61.53	92.3	88.0		18.2	39.6		15.3	-	1.8	9.8	0.8	14.5	
8	63-72	64.54	93.0	89.1		23.8	41.9		16.2		\simeq	7.7		10.3	
9	72-81	76.53	93.9	90.5		19.6	35.2		18.5	-	<i></i>	9.7		17.0	
10	81-90	88.52	93.3	89.5		16.5	34.4		16.9	-	-	9.6	\rightarrow	22.7	
11	90-99	97.53	95.3	92.6		20.7	41.3		19.9	-	<u></u>	5.8		12.4	
12	99-108	106.53	96.0	93.7		18.4	43.0		9.8	2=3	-	10.7	-	18.0	
Hole	160: <2µ I	Fraction													
1	0-9	0.40 1.54	89.3 90.0	83.3 84.3		5.7 9.9	8.9 22.2	-	7.1 10.5	65.7 45.4	2.6 2.6	10.1 9.3		Ŧ	-
2	9-18	9.61 13.54	91.9 90.8	87.4 85.6		9.4 6.8	9.7 13.5	_	14.0 8.5	50.5 62.2	3.8 2.1	12.6 6.9		1	-
3	18-27	18.61 25.54 26.11	89.7 91.6 88.8	84.0 86.9 82.5		3.7 6.7 3.8	5.7 14.0 8.8	1.1.1	6.7 4.0 4.8	72.5 67.9 74.5	2.0 	9.4 3.7 6.8		- 3.7 -	
4	27-36	33.04	94.7	91.7		8.2	12.8	-	11.5	51.0	-	13.0		3.6	-5
5	36-45	43.54	94.6	91.5		11.3	20.2	-	10.5	34.5	-	13.2		10.3	-
6	45-54	51.04	93.6	90.0		7.6	9.4	-	15.0	55.7	-	9.4		3.0	

							00111	maca					
Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Pyri.
Hole	160 <2µ Fi	raction - Conti	nued										
7	54-63	61.53	92.1	87.7		9.7	13.8	7.1	11.0	48.0	-	6.7	

8.3 10.9

7.6 14.5

6.3

1.7

10.3

4.7

10.5

8.6

7.4

6.9

4.9

-

4.6

-

-

-

14.0 51.9

11.9 48.0

13.1 48.2

17.8

10.5

11.1

51.5

63.5

60.8

Bari.

3.7

3.0

5.2

4.5

1.9

3.4

7.0

18.1

7.4

15.1

13.1

6.4

-

-

_

_

-

_

Hali.

-

-

-

_

5.3

-

_

TABLE 5 - Continued

^aMeters below sea floor.

63-72

72-81

81-90

90-99

99-108

64.54

76.53

88.52

97.53

98.11

106.53

93.5 89.8

93.0 89.0

93.8 90.2

93.4 89.6

93.3 89.6

92.0 87.5

8

9

10

11

12

TABLE 6 Results of X-Ray Diffraction Analyses from DSDP 161

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Kaol	L. Mica	Mont.	Clin.	Phil.	Bari.	Hali.	Unkn. ^b
Holes	161 and 16	51A: Bulk Samp	oles													
1	0-9	0.61 0.91 1.53 7.53	93.1 95.9 69.8 63.6	89.3 93.6 52.9 43.2	- 96.9 99.7	12.4 10.9 0.9 0.3	1111	15.3 17.3 	1 1 1	16.8 18.1 2.2	17.9 19.4 -		21.0 14.7 -	16.7 19.6 -	1 1 1	
2	9-18	15.04	69.7	52.7	97.2	0.7	_	1.1	_	_	-	-		1.1	-	_
3	18-27	21.03	63.6	43.1	99.7	0.3	_	_	_		-	_	-	-		2
4	27-36	34.54	62.5	41.4	99.6	0.4		-		-	-		_	_	_	_
5	36-45	40.04	73.0	57.8	96.7	0.7	_	-	_	2.5	-		-		-	_
6	45-54	46.46	66.0	46.9 1	00.0	-	_	22	-	_	222		0	<u></u>		
7	54-63	57.04	62.9	42.1 1	00.00	_	_	_	_	_	_		-		-	_
1A	63-72	70.21 70.54	56.7 68.1	32.3 1 50.1	00.0 99.5	0.5		-	-	-	-	-	-	-	-	-
9	72-81	76.54	59.1	36.2 1	00.0		-	-			-	-	$\sim - 1$	-	-	
10	81-90	84.04	60.2	37.8 1	00.00		-			-	-		-	-	-	_
11	90-99	97.54	57.7	33.9 1	00.00	-	-	-	-	-	-	-	_	<u></u>	_	-
12	99-108	106.54	59.1	36.0 1	00.00	-	-	-	-	-	-	-	-	-	-	-
13	108-117	112.54	56.9	32.6 1	0.00	_		-	-	\rightarrow	-	_		-	_	
2A	128-137	135.54	59.4	36.5 1	0.00	-	-	-	-	÷	-				-	-
3A	137-146	140.04	61.3	39.5 1	0.00	-	-	-	-	-	-	_	-	-	-	-
4A	146-155	153.54	63.0	42.2 1	0.00	-	-	-	-	-	_					
5A	155-164	162.54	58.6	35.3 1	0.00		-	177		11	-	-	(-)	-	-	-
6A	164-173	171.54	60.2	37.9 1	0.00	-	-	-	-	-	-	-	$(1-1)^{-1}$	-	-	-
7A	173-182	180.54	62.5	41.4 1	0.00	-	-	-	111	-		_			_	-
8A	182-191	185.04 185.91	67.9 63.8	49.8 43.5 1	99.7 00.0	0.3	-	-	-	-	-	-	-	-	-	_
9A	191-200	194.04	65.3	45.9 1	0.00	-	-	-	-	-	-		-	<u>11</u>	-	
10	200-209	207.54 208.31	89.9 85.3	84.2 77.1	90.1 92.3	2.5 1.3	-	5.0 4.1	-	_	_	-	_	2.5 2.2	-	-
11	209-218	213.54	87.7	80.8	90.7	0.7	-	1.8			3.2	-	-	3.5		-
12	218-227	219.34	96.3	94.1	27.8	4.5	-	10.3	-	9.6	26.0		8.2	13.4	-	-
14	235-244	237.27	75.0	61.0	96.2	- <u></u>	-	1999 B.	122		3.6	-	-	-	-	+

540

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Bari.	Hali.	Unkn.b
Hole	s 161 and 1	61A: 2-20µ Fi	action													
1	0-9	0.61 0.91 1.53 7.53	90.6 94.7 93.9 96.1	85.3 91.7 90.5 93.9		14.0 15.1 17.9 16.2	1.1.1	19.6 17.1 33.5 38.2	1 1 1 1	11.1 12.1 13.2 16.3	23.8 18.5 _	1 1 1	15.8 19.1 16.2 12.0	15.7 18.1 19.2 17.2	1 1 1 1	1111
2	9-18	15.04	96.4	94.3	-	15.0		39.9	77	17.4	-	-	6.7	20.9	\simeq	1
3	18-27	21.03	95.8	93.5	-	17.0	-	39.8	-	16.3	-	-	8.8	18.1	-	-
4	27-36	34.54	95.7	93.3	-	17.9	_	43.0	<u></u>	14.5			9.1	15.4		-
5	36-45	40.04	98.2	97.2	-	25.1	-	32.4		23.2	-		12.5	6.8	-	-
6	45-54	46.46	97.6	96.3		20.0	-	49.7		12.6	_	-	7.6	10.2		-
7	54-63	57.04	98.1	97.0	_	21.1	-	35.0	_	15.0	-	—	15.5	13.4		_
1A	63-72	70.21 70.54	97.2 90.1	95.6 84.5	-	23.2 17.2	_	38.2 29.5	_	18.9 17.3	-	_ 1.8	11.6 19.1	8.1 15.2	_	Abund
9	72-81	76.54	97.3	95.8	-	23.6	-	45.1	-	15.5	-	-	7.0	8.9	-	-
10	81-90	84.04	97.1	95.5	-	18.3	-	34.4		14.5	-	-	10.3	22.5		-
11	90-99	97.54	97.1	95.5	_	16.8	-	36.9	-	19.7	-	-	8.8	17.7	-	-
12	99-108	106.54	98.1	97.0		19.6	-	32.1		22.0	-	-	10.4	15.8	-	-
13	108-117	112.54	98.6	97.8	-	17.7	18.3	38.4		11.6	-	-	9.0	4.9		-
2A	128-137	135.54	96.5	94.6	_	13.2	-	36.1	<u></u>	19.0	-	_	11.2	20.5		_
3A	137-146	140.04	98.7	97.9	-	14.5	-	34.8	-	20.7	-	-	13.6	16.5	-	-
4A	146-155	153.54	98.9	98.2	-	9.8		28.8	-	18.2	-	-	25.7	17.6		-
5A	155-164	162.54	97.6	96.3	-	19.4	-	31.0	-	17.6	-	-	9.3	22.7	-	-
6A	164-174	171.54	97.1	95.5	_	16.6	-	40.0		20.8	-	-	13.4	9.3	100	-
7A	173-182	180.54	98.5	97.6	-	16.5		26.6	-	21.3	\simeq	-	18.6	17.0	-	
8A	182-191	185.04 185.91	98.7 99.2	97.9 98.7	-	7.2 22.5	-	25.0 34.8	-	12.2	-	_	23.0 27.6	32.6 15.1	T T	Pres
9A	191-200	194.04	98.0	96.9		18.3	-	41.3		16.6	-	2 <u>—</u> 2	6.7	17.1	-	-
10	200-209	207.54 208.31	97.2 97.2	95.6 95.7	_	19.0 19.8	_	43.0 45.4	_	12.4	_	-	12.8 20.6	12.8 14.2	-	_
11	209-218	213.54	98.0	96.8	-	12.8	-	23.2		17.7	-	-	16.7	29.6	-	
12	218-227	219.34	96.0	93.7	-	12.0	-	35.1	-	-	21.0	-	10.8	21.1	-	-
14	235-244	237.27	96.9	95.2	_	7.5	-	31.9	-	-	29.0	$\sim - 1$	17.6	13.9	-	Major

TABLE 6 – Continued

1 0	-9	0.61	92.1	1000												
			14.1	87.7		7.9	-	11.7	222	15.6	54.8	-	7.4	2.7	-	-
		0.91	93.6	90.1		8.9	-	14.0	-	11.5	51.8		7.0	6.8	-	_
		1.53	93.0	89.1		9.1	-	17.3	-	6.1	55.1		8.7	3.7	-	
		7.53	94.8	91.9		7.2		13.3	_	8.9	60.2	-	7.6	2.8	-	-
2 9	-18	15.04	95.1	92.4		10.1	-	17.7	-	9.7	43.7	-	13.8	5.0	-	-
3 18	-27	21.03	94.4	91.3	-	6.8	-	12.8	-	14.5	52.2	-	8.8	4.8	-	-
4 27-	-36	34.54	94.4	91.2	-	8.6	-	15.5	—	9.9	47.3	-	12.5	6.3		-
5 36	-45	40.04	96.4	94.3		9.1		11.8	-	13.4	43.9	-	12.6	4.6	4.5	-
6 45	-54	46.46	96.3	94.3	-	8.7	-	19.2	2.1	11.1	47.7	~ -2	9.4		1.8	-
7 54	-63	57.04	95.6	93.1		6.8		10.8	_	11.6	58.0		9.0	3.8	<u></u>	-
1A 63	-72	70.21	94.3	91.0	221	12.6		13.4	-	20.2	39.1	-	11.4	3.3	-	-
		70.54	92.8	88.8		7.7		13.9	-	7.0	52.7		13.3	5.4	-	-

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Kaol	Mica	Mont.	Clin.	Phil.	Bari.	Hali.	Unkn. ^b
Holes	161 and 16	1A: <2μ Frac	tion – (Continu	eđ											
9	72-81	76.54	94.3	91.0		11.9	-	14.8	7.5	20.9	42.9	-	-	_	2.0	-
10	81-90	84.04	95.6	93.2	_	8.2		12.3	-	18.0	44.6	-	12.8	4.1	-	-
11	90-99	97.54	95.1	92.3	-	7.0	—	12.5	-	7.7	58.9		9.4	4.6	V — 2	_
12	99-108	106.54	96.1	93.8	_	7.3	-	10.4	6.4	12.9	40.8	-	12.2	5.0	5.1	-
13	108-117	112.54	95.2	92.5	_	7.1	5.9	6.5	6.6	22.2	43.7		-	-	8.0	_
2A	128-137	135.54	94.8	91.8	=	8.7	-	7.9	-	14.0	52.2	-	12.2	5.0	-	-
3A	137-146	140.04	96.6	94.7		12.7	-	20.0	<u></u>	19.3	40.3	-	-	7.7	-	
4A	146-155	153.54	96.6	94.7		6.7	-	9.0	\simeq	16.7	67.5		-	-	_	127
5A	155-164	162.54	96.1	93.9	-	7.8	-	10.1	3.3	15.5	46.5		9.4	4.6	2.7	
6A	164-173	171.54	94.1	90.9		6.1	-	10.2	-	9.1	59.8		12.9	1.9		
7A	173-182	180.54	93.3	94.2	<u></u>	9.8	121	13.5	\sim	13.5	56.9		6.4	-	_	-
8A	182-191	185.04 185.91	96.1 96.1	93.9 94.0	_	7.3 8.2	-	11.4 9.8	-	 13.0	71.6 68.9	-	-	9.6 -	-	-
9A	191-200	194.04	95.0	92.3	-	6.6	-	9.4	-	7.2	65.9	-	7.7	3.3	_	
10	200-209	207.54 208-31	93.5 93.9	89.8 90.5		5.5 10.2	-	7.8 14.8	2	6.3 13.0	73.6 62.0	-	6.7 -	_	-	-
11	209-218	213-54	93.0	89.1	-	2.3	-	8.8		13.5	59.9	-	11.4	4.2	-	-
12	218-227	219-34	92.4	88.1	-	2.1	-	3.9	-	7.8	78.7	-	5.5	2.0	-	-
14	235-244	237.27	90.9	85.8				-	7.8	-	92.2		-	-	-	<u></u>

TABLE 6 - Continued

 a Meters below sea floor. b Relative intensities of peaks are quite variable – 3.80A (broad), 4.41A, and 4.59A.

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Phil.	Gyps.	Bari.	Hali.	Goet.	Unkn. ^b
Hole	162: Bulk	Samples																
1	0-9	0.81 5.41 7.54	77.6 93.6 80.1	65.0 90.1 69.0	86.8 - 82.6	2.0 26.3 2.0		1 1	2.3 26.9 2.8	1 1 1	2.4 8.6 1.7	1 1 1	6.4 26.0 5.5	111	10.6	Г 1 1		
2	9-18	16.54	76.7	63.7	87.9	2.2	0.8	-	3.2	-	1.5	-	4.5	-	-	-		
3	18-27	25.54	91.2	86.2	71.4	3.8	6.8	_	-	-	9.4	-	8.6	\sim	-	-	-	_
4	27-36	31.53	96.1	93.9	46.0	9.8	23.5		-	-	10.1	-	10.7	3 -2	-	-	22	-
5	36-45	38.41 43.54	97.1 97.8	95.4 96.5	10.8 11.4	10.8 10.9	33.7 31.3	_	18.6 17.2		26.1 14.6	-		_		-	-	_
6	45-54	49.54	98.3	97.3	-	13.4	21.1	-	25.2	177	18.9	-	21.4	_	-			—
7	54-63	57.91 61.54	99.1 99.2	98.5 98.8	-	18.7 10.0	35.2 40.1		-	-	32.8 39.3	1		-	_	13.3	-	-
8	63-72	70.54	79.0	67.1	97.6	0.4	2.0	-	-	-	-	-	-	-		-		-
9	72-81	79.54	94.3	91.1	77.4	3.3	8.4	-	_	-	10.9	-		-	-	-		-
10	81-90	85.54	97.1	95.4	84.8	3.6	11.6	-	-	-	—	-	-	$\sim - 1$	-	-	-	-
11	90-99	96.03	98.6	97.8	46.9	5.2	16.9	-	-	-	31.0	-	-	÷	-	-		_
12	99-108	105.04	87.7	80.7	99.3	0.7		100	_	~	-	-	-	$\sim - 1$	440) 	-	-	-
13	108-117	115.54	83.1	73.5	100.0	-	-	-				-	-		-	-	-	_

TABLE 7 Results of X-Ray Diffraction Analyses from Hole 162

TABLE 7 – Continued

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Phil.	Gyps.	Bari.	Hali.	Goet.	Unkn. ^b
Hole	162: Bull	k Samples – Co	ntinued															
14	117-126	124.54 125.41	89.7 89.0	83.9 82.9	92.4 87.3	_ 1.1	2.2 3.0	-	-	-	5.4 8.7	L	-	-	-	2	-	-
15	126-135	131.41 133.54	92.1 80.5	87.7 69.6	85.8 99.4	1.3 0.6	3.9 _	-	-	-	9.0 -	-	-	_	_	20 72		
16	135-144	136.53	97.4	96.0	25.4	-	\sim	-	-	-	74.6	_	-		i = i	\rightarrow	-	~
17	144-153	144.54 147.03 149.90	73.0 81.0 70.3	57.7 70.4 53.6	97.1 86.0 100.0		1 1 1		1 -	-	12.1	2.9 1.9	111	-		1 1 1	Trace	
Hole	162: 2-20	μ Fraction	_															
1	0-9	0.81 5.41 7.54	93.0 90.3 91.6	89.1 84.9 86.9		18.8 23.4 14.4	36.9 22.8 30.5	- 1 -	12.8 20.0 14.5		13.9 	2.1 1.8	15.5 28.8 29.9			111		-
2	9-18	16.54	91.5	86.7		21.1	31.0	\sim	16.1	-	-	1.6	30.1	-	-		-	-
3	18-27	25.54	96.3	94.3		12.9	51.7	-	13.8	-	6.9	-	9.8	-	4.9			-
4	27-36	31.53	95.9	93.6		13.0	54.1	-	10.1	_	8.6	_	11.0	-	3.2	-	-	-
5	36-45	38.41 43.54	95.7 96.5	93.3 94.6		12.7 16.9	44.1 58.3	-	10.5 7.7	-	14.2 7.3	_	16.0 9.8		2.5 -	-	-	-
6	45-54	49.54	98.3	97.3	-	19.5	52.6	-	15.7	-	-	-	12.1	-	-	-		-
7	54-63	57.91 61.54	98.9 98.9	98.2 98.3		7.6 16.5	39.8 47.3	-	$\begin{array}{c} 10.6 \\ 15.0 \end{array}$	-	20.5	Ξ	21.5 21.2	-	-	-	_	-
8	63-72	70.54	97.7	96.4	\sim	19.8	68.0		-	<u>.</u>	-	-	12.2		-			
9	72-81	79.54	98.3	97.4	-	18.7	45.1	$\widehat{f} = \widehat{f} = \widehat{f}$	14.2	\sim	-	-	21.9	-	-	-	-	-
10	81-90	85.54	99.0	98.5	<u></u>	12.6	49.5	-	19.5	=	-	-	18.4		-	-	222	-
11	90-99	96.03	99.0	98.5	${\bf x}_{i} = {\bf x}_{i}$	17.3	46.3	-	-	$\sim - 1$	17.6	-	18.8	-		-	-	-
12	99-108	105.04	99.2	98.8	—	12.6	87.4					-	_	-	-		-	Abund
13	108-117	115.54	99.6	99.3	-	14.3	54.0		-		-	-	31.7		-		-	1
14	117-126	124.54 125.41	99.2 97.6	98.8 96.3		20.2 12.0	50.6 29.3		1		29.1	-	29.2 29.6	-	-	-	-	1
15	126-135	131.41 133.54	96.9 99.3	95.2 98.9	-	$\begin{array}{c} 10.0\\ 10.8\end{array}$	41.6 33.5	-	33.7	_	24.9	-	23.5 22.0	_	-	-	-	Abund
16	135-144	136.53	99.9	99.8	3 <u>-11</u>	200	—	-	-		_	\subseteq	-	-	-	-	_	-
17	144-153	144.54 147.03 149.90	87.7 95.5 93.5	80.8 93.0 89.8	5 I I	1.4 2.6 2.9	5.9 23.1 7.5	1	4.5 11.2 -	-	6.1 - 51.9	72.8 46.3 25.6	9.3 16.9 12.1		1		Pres - Trace	Pres
Hole	162: <2µ	Fraction							A									
1	0-9	0.81 5.41	93.8 93.3	90.3 89.5		13.0 15.2	-	-	12.3 16.5		46.3 37.7	-	28.4 30.5	-		-	-	1 1
		7.54	92.5	88.2		5.9	11.1	-	-		70.0	_	13.0			-		~
2	9-18	16.54	92.2	87.8		12.1	8.4	4.7	18.5		39.5		16.8			-		-
3	18-27	25.54	91.9	87.4		4.5	10.4	-	\sim		74.0	4	11.0	-		-	-	-
4	27-36	31.53	93.8	90.4		6.0	14.7				79.2	-	-	-		-	—	-
5	36-45	38.41 43.54	94.2 92.4	90.9 88.1		5.9 3.7	13.3 9.9	_			80.8 74.6	_	-			2	-	
6	45-54	49.54	91.9	87.3		2.7	6.6		-		89.6	777	-	1.1		-	-	-
7	54-63	57.91 61.54	94.0 95.1	90.6 92.3		3.2 6.4	7.2 9.6	-	-		89.4 84.0	_	-	_		-	_	
8	63-72	70.54	96.0	93.8		11.5	28.3	-	-		50.3	-	9.9	-				-
9	72-81	79.54	91.1	86.2		1.4	5.2	-	-		93.4	-	-	—		-	-	-
10	81-90	85.54	93.3	89.5		-	-	-	77		97.5	—	-	2.6		-	-	-

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Phil.	Gyps.	Bari.	Hali.	Goet.	Unkn,b
Hole	162: <2µ	Fraction - Con	ntinued															
11	90-99	96.03	93.2	89.3		2.6	6.6	-	-		90.8	-	-	-		-	-	-
12	99-108	105.04	92.7	88.7		3.5	7.2	6.3	-		82.9		~	\rightarrow		-	-	$\sim - 1$
13	108-117	115.54	94.0	90.7		2.5	5.1	+			92.3	-	-	-		-	-	
14	117-126	124.54 125.41	97.6 92.8	96.3 88.8				-	-		52.4 91.8		-	200 1775		47.6 3.2	_	
15	126-135	131.41 133.54	92.9 91.8	88.9 87.1		2.1 2.1	3.7 —	3.8 6.7	1		90.4 91.2		1			-	_	
16	135-144	136.53	93.7	90.2		-	$\sim - 1$		-		91.6	-	~	1.4		7.0		
17	144-153	144.54 147.03 149.90	95.7 89.3 91.8	93.2 83.3 87.2		3.1 - -	1.1.1	1 1 1	1.1.1		87.9 96.0 100.0	9.0 - -	111	- 4.0 -		1 1 1	Abund Pres	1

TABLE 7 - Continued

^aMeters below sea floor. ^bRelative intensities of peaks are quite variable - 3.80A (broad), 4.41A, and 4.59A.

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Bari.
Holes	163 and 16	3A: Bulk Sam	ples													
2	1-10	5.01 5.54	92.7 93.8	88.5 90.4	13.2	10.3 8.0	5	23.4 12.8	12.8 11.0	-	16.1 18.4	-	2	37.4 36.7	-	-
3	10-19	10.59 14.54	96.0 96.4	93.7 94.4	-	16.5 15.3	-	9.7 15.5	21.2 15.5	_	10.2 13.5	1		35.1 40.2	_	7.3 -
4	19-28	25.04	96.1	93.9	-	12.7	-	26.5	20.0	-	29.4		\rightarrow	11.4		-
6	37-46	44.54	90.8	85.6		9.4	-	14.7	13.5		46.7		15.8		-	-
7	46-55	47.54	99.4	99.0	-	11.4	-	32.2	-	-		-		-	-	56.4
10	73-82	77.46	99.5	99.2	-	18.8	-		-			-			-	81.2
11	82-91	89.01 89.54	99.6 99.5	99.4 99.2			-	_	1	_	-	-	1	-	- -	_
1A	140-146	142.95 144.01 144.54 145.51	86.1 84.2 85.3 85.7	78.2 75.4 77.1 77.7	1 1 1	8.3 5.5 5.7 5.4	1 1 1	4.8 - 14.3	10.0 4.5 - 5.6	3.2 - 5.0	18.6 23.5 23.5 23.4	4.3 - -	40.6 29.5 37.3 27.2	10.0 28.6 33.6 12.7	1111	4.5 4.1 - 6.3
15	162-171	162.36 170.98	81.3 65.4	70.7 45.9	77.5 95.1	6.3 1.7	-	_	6.7 1.8	-	-	5.4 -	4.1 1.4	-	-	-
16	171-180	173.51 177.04 179.61	61.3 69.1 78.1	39.5 51.8 65.8	98.8 90.8 71.8	1.2 1.7 6.0	11	1	- 5.3		-	6.6 13.9	- 0.9 3.0		111	
17	180-189	184.01 187.01 187.54	63.8 65.3 68.6	43.4 45.7 50.9	91.0 94.3 96.2	1.7 1.8 0.9	1.1.1	1 1 1	2.5 2.6 1.9	-		3.6 _ _	1.2 1.3 1.0		1 1	1 []
18	189-198	190.01 193.01 196.52	66.2 71.4 70.4	47.1 55.3 53.7	87.6 80.2 87.9	2.1 3.7 1.3			4.2 6.9 3.9		1 1	4.8 7.7 5.3	1.2 1.5 1.6		11	1 1 1
19	198-207	199.01 202.01 204.04	60.7 60.1 67.8	38.5 37.7 49.7	96.2 93.6 85.0	1.4 1.2 1.8	1 1 1		2.4 2.3 4.2		1	- 2.9 8.2	- - 0.8	-	1 1	

TABLE 8 Results of X-Ray Diffraction Analyses from Holes 163 and 163A.

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Bari.
Holes	s 163 and	163A: Bulk Sam	ples –	Contin	ued											
20	207-216	209.51 211.54 215.51	62.6 63.1 60.7	41.6 42.4 38.7	90.6 95.2 95.7	1.4 0.8 1.2	1 - 1		3.2 1.4 1.2			4.8 2.6 1.9			1 1 1	1
21	216-225	218.51 220.54 224.51	60.6 62.0 61.4	38.5 40.6 39.7	84.6 99.5 94.1	15.4 0.5 1.4		-	- 2.0	-		- 2.5	1 1 1		1 1 1	
22	225-234	227.61 231.03 232.89	63.0 58.4 57.7	42.2 34.9 33.9	97.3 94.6 99.5	1.1 0.7 0.5		-	1.6 2.0	1 1	1.1			1 1	1 - 1	1 1 1
23	234-243	236.51 239.51 241.54	57.5 60.7 73.2	33.6 38.6 58.1	95.2 95.3 75.0	1.7 1.4 2.7		1	2.1 1.6 6.5	117	-	 12.9	1.1 1.8 2.9	-		11
26	261-270	263.51	54.0	28.1	99.5	0.5		777	-			7	-	-		
Holes	2/0-2/0	2/1.19	58.2	34.0	98.1	0.9		-	-	-	-	-	1.0			
Holes	105 and 1	103A: 2-20µ FTa	iction	10.1		0.14										
2	1-10	5.01 5.54	89.4 92.2	83.4 87.8	-	11.3 10.8	-	24.3 26.4	6.7 9.1	_	5.7 8.1	-	-	52.0 45.7	_	_
3	10-19	10.59 14.54	95.1 95.7	92.3 93.2	_	14.9 16.8	_	19.1 24.1	11.5 12.4	-	8.8	-	-	45.6 46.8	_	-
4	19-28	25.04	96.5	94.5	-	15.8	-	34.1	10.3		19.5	-	-	20.4	<u> </u>	-
6	37-46	44.54	82.9	73.2	-	11.4	$\sim - 1$	39.4	15.4	=		-	30.2	-	-	3.6
7	46-55	47.54	99.7	99.6	-	21.3	-	51.5	-	-	-		-	=	-	26.2
10	73-82	77.46	99.7	99.6	-	40.9	-	-	-	-	-		-	-		59.1
11	82-91	89.01 89.54	99.7 99.8	99.6 99.7	_	100.0	-	_	_	-	-	_	_	_	Ξ	-
1A	140-146	142.95 144.01 144.54 145.51	72.9 72.8 76.3 73.8	57.6 57.5 62.9 59.0	1111	9.6 6.1 7.0 5.6		5.8 10.1	- 3.6 -	1 1 1	- - 6.3	1 1 1	52.7 31.4 40.8 31.2	31.9 59.0 52.2 46.7	1.1.1.1	
15	162-171	162.36	73.9	59.2	-	29.5	12.0	10.2	12.2	-	-	6.3	29.8	_	_	= 1
16	171-180	173.51 177.04 179.61	76.2 77.9 77.3	62.8 65.5 64.6	1 1	32.6 34.7 31.0	11.5 13.0 6.6	7.0 8.7 9.1	15.8 11.1 24.6	1 1 1	-	7.5 7.9 11.2	25.6 24.7 17.5			1 1 1
17	180-189	184.01 187.01 187.54	79.4 80.3 81.8	67.8 69.2 71.6	111	31.2 31.3 27.9	8.9 11.4 9.5	9.1 7.5 7.6	24.3 24.5 21.8	-		7.0 7.5 13.9	19.5 17.9 19.3	-	111	1 1 1
18	189-198	190.01 193.01 196.52	77.2 80.1 83.0	64.4 68.9 73.5	_	31.7 32.5 26.9	8.4 6.3 7.4	8.2 8.5 7.3	22.0 25.4 25.5	1 1 1		7.9 9.2 13.2	21.8 18.1 19.8	1	-	1 1
19	198-207	199.01 202.01 204.04	80.2 78.1 76.6	69.1 65.8 63.5		31.9 30.0 33.2	5.7 6.2 11.6	8.9 9.3 9.8	23.4 22.5 19.6	-		7.1 6.9 7.6	23.1 25.0 18.2			1.1.1
20 21	207-216 216-225	209.51 211.54 215.51 220.54 224.51	76.1 75.6 74.1 80.0 73.6	62.7 61.8 59.6 68.8 58.7	1 1	35.5 33.9 35.3 28.6 36.2	5.8 8.9 6.3 8.4	9.2 9.1 9.9 7.0	14.7 16.1 17.9 18.3	1	1111	6.8 8.7 6.6 14.7 4 9	28.0 23.3 24.0 23.0 26.2	1111	-	1 1 1 1
22	225-234	227.61	78.1 78.8	65.8 66.9		30.4 30.0	2.9	9.0 7.0	18.9		-	6.9 9.9	31.9 27.9			_
23	234-243	236.51 239.51 241.54	78.1 75.6 79.7	65.8 61.8 68.2		28.3 29.8 32.0	4.9 3.0 7.3	8.5 9.0 8.0	17.9 15.9 17.6			6.7 6.5 9.9	33.8 35.8 25.3	1 1 1		

5.7 25.7

23.9

7.1

27

270-276

271.19

75.4 61.6

TABLE 8 - Continued

-

37.6

-

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe	Plag.	Mica	Chlo.	Mont.	Paly.	Clin.	Phil.	Pyri.	Bari.
Holes	163 and 16	53A: <2µ Fra	ction													
2	1-10	5.01 5.54	90.4 89.9	85.0 84.2		5.9 6.3	-	-	6.6 9.5	-	67.4 60.8	-	-	20.1 23.4		-
3	10-19	10.59 14.54	94.3 94.2	91.1 91.0		13.5 7.5	_	2.3	14.2 8.2	_	50.9 61.3	-	_	21.4 20.8		-
4	19-28	25.04	91.8	87.2		5.5		4.5	5.4	-	72.5		-	12.1	-	(TT)
6	37-46	44.54	89.0	82.9		7.0		8.1	9.5		61.2	-	3.8	10.4	-	
7	46-55	47.54	95.2	92.6		6.0	-	6.3	22.9	-	61.6	-	-	-	3.3	2
10	73-82	77.46	94.9	92.0		3.2		9.0	-	-	87.8	-	-	-		-
11	82-91	89.01 89.54	97.7 96.6	96.4 94.7		20.1 4.8	_	_	20.4	_	79.9 74.8	Ξ	-		-	1 1
1 A	140-146	144.01 144.54	86.1 89.7	78.4 83.9		4.1 8.6	_		13.2	Ξ	66.2 58.5	14.7	5.1 7.8	8.7 11.8	_	1.1 -
15	162-171	162.36	93.8	90.3		6.2	-	-	18.0	$\sim -$	42.0	30.8	3.0	-		-
16	171-180	173.51 177.04 179.61	90.8 90.2 92.3	85.7 84.7 87.9		7.7 16.0 9.3	1 11	1 1 1	21.6 22.3 12.9	1.1	19.8 14.7 31.5	48.3 41.8 46.3	2.7 5.1 -			
17	180-189	184.01 187.01 187.54	93.4 93.1 93.0	89.7 89.2 89.0		9.3 11.2 14.9	1 1 1	1 1 1	16.9 - 16.5	1.1.1	45.6 45.3 33.2	28.2 43.5 31.8	- - 3.5			-
18	189-198	190.01 193.01 196.52	91.8 91.5 92.2	87.2 86.7 87.9		9.4 10.8 9.6	1	1 1 1	17.3 11.0 35.4	-	25.2 26.4 14.1	48.1 50.7 39.7	- 1.2 1.2		1.10	1
19	198-207	199.01 202.01 204.04	92.2 89.8	87.8 84.1		8.1 8.1 7.9	-	-	17.3 15.4 27.4	-	15.3 21.1	58.0 53.9	1.2 1.5	-	Ē	-
20	207-216	209.51 211.54 215.51	89.1 93.2 89.9	83.0 89.4 84.2		10.5 6.1 10.8			23.9 18.1 28.5	+	19.6 14.3 20.0	45.0 60.9 39.1	0.9			-
21	216-225	220.54 224.51	91.1 89.2	86.0 83.1		7.6 8.7	-	-	19.6 22.2	-	45.2 17.0	27.6 50.8	- 1.3		-	
22	225-234	227.61 231.03	91.4 92.5	86.6 88.3		9.0 8.3	-	-	13.0 21.3	1	49.0 38.0	25.1 30.3	4.0 2.1	_	-	-
23	234-243	236.51 239.51 241.54	93.8 91.4 91.4	90.3 86.5 86.5		14.3 11.9 8.3	2.1 _ _	1 1 1	22.6 10.8 26.9	1.1.1	23.3 52.6 8.2	30.3 24.8 54.7	7.3 - 1.9	11		
26	261-270	263.51	91.7	87.0		11.3	-	-	10.0	1.8	30.0	41.3	5.6	-	—	-
27	270-276	271.19	92.7	88.6		12.1	\sim	127	11.8	-	21.4	49.3	5.4	-		-

TABLE 8 – Continued

^aMeters below sea floor.

TABLE 9 Sediment Samples Submitted for X-Ray Diffraction Analyses

TABLE 9 - Continued

Hole	Core	Section	Depth in Section (cm)	Depth Below Sea Floor (m)	Hole	Core	Section	Depth in Section (cm)	Depth Below Sea Floor (m)
155	1	4	49-51	439.00		4	4	49-51	466.00
		6	0-6	441.53			6	0-7	468.54
		6	49-51	442.00		5	5	49-51	476.50
	2	4	49-51	448.00			6	0-8	477.54
	2	6	0-8	450.54			6	49-51	478.00
	3	5	49-51	458.50		6	4	0-5	483.52
	5	6	0-7	459.54		7	2	0-5	489.52

TABLE 9 - Continued

IADLE 9 – Continued	TABLE 9	- Continued
----------------------------	---------	-------------

Hole	Core	Section	Depth in Section (cm)	Depth Below Sea Floor (m)	Hole	Core	Section	Depth in Section (cm)	Depth Below Sea Floor (m)
	0	2	106-108	499 57	-	25	6	0-5	223 52
	0	cc	-	506.00		26	ŏ	20-25	225.00
	9	CC		515.00		27	6	0-6	241.53
157	1	2	0-10	11.55		28	5	0-3	249.02
	2	4	0-10	23.55		29	3	0-4	255.02
	3	1	0-10	28.05		30	6	0-7	268.54
	4	2	140-150	39.95		32	4	0-6	283.53
	5	3	0-9	49.04		55	2		200.52
	6	1	142-150	50.40	159	1	3	135-137	4.36
	0	1	0-3	73 02		2	5	100-102	10.03
	0	2	90-92	75.41		2	6	0-9	16.54
	9	5	90-92	88.91		3	5	0-8	24.04
		6	0-8	89.54			5	12-14	24.13
	10	1	0-9	91.04		4	2	100-102	29.51
	12	5	0-10	114.05			6	0-5	34.52
	14	3	0-8	129.04		5	6	0-6	43.53
	15	5	0-9	141.04		6	3	100 102	48.04
	10	6	0-9	151.54		7	3	100-102	58.01
	18	4	0-6	166.53			5	0-6	60.03
	19	6	0-8	178.54		8	4	100-102	68.51
	21	5	0-5	195.02			6	0-5	70.52
	23	5	0-5	213.02		9	6	0-6	79.53
	25	4	145-150	230.98		10	6	130-132	88.52
	27	3	0-6	246.03		10	6	0-6	89.81
	28	5	0-6	258.05		12	5	100-102	105.05
	30	6	0-6	277.53	1.00			100-102	100.01
	31	6	0-5	286.52	160	1	1	39-41	0.40
	32	6	0-6	295.53		2	2	60-62	9.61
	33	6	0-8	304.54		2	4	0-9	13.54
	35	1	135-140	316.38		3	1	60-62	18.61
	36	3	0-6	327.03			6	0-9	25.54
	39	1	145-150	340.48		2	6	60-62	26.11
157A	1	6	0-8	7.54		4	5	0-9	33.04
	2	1	145-150	10.48		5	6	0-8	43.54
	3	5	0-9	24.04		7	5	0-6	61 53
158	1	3	0-9	3.04		8	2	0-7	64.54
	2	1	90-92	9.91		9	4	0-6	76.54
		2 5	90-92	11.41		10	6	0-5	88.52
	3	6	0-8	25.54		11	6	0-6	97.56
	4	4	0-6	31.53		10	6	60-62	98.11
	5	3	0-7	39.04		12	6	0-6	106.53
	6	4	0-6	49.53	161	1	1	60-62	0.61
	7	5	0-9	60.03			1	90-92	0.91
	8	5	0-8	69.04			2	0-6	1.53
	9	6	90-92	79.53		2	5	0-9	15.04
	10	6	0-6	88.53		3	3	0-6	21.03
	11	5	0-5	96.02		4	6	0-8	34.54
	12	5	0-5	105.03	161	5	3	0-7	40.04
	13	5	0-5	114.02		6	1	143-150	46.46
	14	5	0-6	123.03		7	3	0-8	57.04
	15	4	0-8	130.54		9	4	0-8	76.54
	16	6	0-6	142.53		10	5	0-8	84.04
	17	6	0-8	151.54		12	6	0-8	106.54
	10	6	0-5	160.52		13	4	0-8	112.54
	20	6	0-5	178 52	1614	1	E	120,122	70.21
	21	5	0-6	186.03	101A	1	5	0-8	70.21
	22	6	0-5	196.52		2	6	0-8	135.54
	23	5	0-3	204.02		3	3	0-9	140.04
	24	2	90-92	209.41		4	6	0-8	153.54
		3	0-5	210.02		5	6	0-8	162.54

TABLE 6 - Continued

TABLE 6 – Continued

Hole	Core	Section	Depth in Section	Depth Below Sea Floor	Hala	Com	Section	Depth in Section	Depth Below Sea Floor
Tione	core	beetion	(cm)	(III)	поте	COIE	Section	(cm)	(11)
	6	6	0-8	171.54		4	5	0-9	25.04
	7	6	0-8	180.54		6	6	0-7	44 54
	8	3	90-92	185.04		7	2	0.9	47.54
		3	0-8	185 91		10	2	141 150	77.46
	9	3	0-8	194 04		10	5	141-130	90.01
	10	6	0-8	207.54		11	5	100-102	89.01
		6	80-82	207.54		10	0	0-9	102.34
	11	4	0.7	208.51		15	1	35-36	162.30
	12	1	122 125	213.54			6	147-148	170.98
	14	2	155-155	219.34		16	2	0-9	173.51
	14	2	/0-/8	237.27			5	100-102	177.04
162	1	1	80-82	0.81			6	110-112	179.61
		4	50-52	5.41		17	3	100-102	184.01
		6	0-8	7.54			5	100-102	187.01
	2	6	0-9	16.54			6	0-8	187.54
	3	6	0-9	25 54		18	1	100-102	190.01
	4	4	0-6	31 53			3	100-102	193.01
	5	2	90-92	38 41			6	0-5	196.52
	-	6	0-8	12 54		19	1	100-102	199.01
	6	4	0-8	45.54		12	â	100-102	202.01
	7	3	0-8	57.01			5	0-8	204.04
	,	6	00.02	57.91		20	2	100 102	209.51
	8	6	0.92	01.54		20	2	100-102	211.54
	9	6	0-0	70.54			*	100 100	211.54
	10	0	0-8	79.54			6	100-102	215.51
	10	4	0-8	85.54		21	2	100-102	218.51
	11	2	0-6	96.03			4	0-8	220.54
	12	5	0-8	105.04			6	100-102	224.51
	13	6	0-8	115.54		22	2	110-112	227.61
	14	6	0-8	124.54			5	0-6	231.03
		6	90-92	125.41			6	38-40	232.89
	15	4	90-92	131.41		23	2	100-102	236.51
		6	0-8	133.54			4	100-102	239.51
	16	2	0-6	136.53			6	0-7	241.54
	17	1	53-55	144.54		26	2	110-112	263.51
		3	0-6	147.03		27	1	118-120	271.19
		4	139-141	149.90					
163	2	3	100-102	5.01	163A	1	2	144-146	142 95
		4	0-9	5.54		-	3	100-102	144.01
	3	1	58-60	10.59			4	0-8	144.51
		4	0-9	14.54			4	100-102	145.51

	CORE	ACE	1.17100		AMORPHOUS SCATTERING	CALC.	MONT.	QUAR.	CRIS.	K-FE.	PLAG.	CLIN.	MICA.	CHLO.	PYRI.	BARI.	HALI.
NO.	DEPTH (m)	AGE	LITHUL	061	100%	100	D%	50	r		25%				10%		
1	434			12 1*				1 .		-	-	_	-	-	-		_
2	452 —	ene	no marl, arly clay.	2 1		-	-	-		F	-	-	-		-		_
3	461	Late Mioc	erbedded nar stone and mu	33		-		_		<u> </u>	F	=			-	_	
4	470		Inte clay	3 3		-	-	_		-	-	-			-		
5	479 —			333	_	_	=	=		F	-		-	Ŧ	=	_	
6	488			4 4				-		F					_		-
7	497 —	e Miocene	m chalk														
8	506 —	Mi dd	Nanno fora	4						-							
9	515	xt of	Site 155	for	sediment de	escription											

Figure 1. DSDP 155 bulk samples.

	CORE				AMORPHOUS SCATTERING	QUAR.	K-FE.	MONT.	PLAG.	CLIN.	PYRI.	BARI.	MICA	CHLO.
NO.	DEPTH (m)	AGE	LITHOL	OGY	100%		100%		50	0%	3	25%	10	9%
,	434			*										
	443			12 1		-	-		—		F			_
2		ne	marl, y clay	-		-	-	F	_		L			
3	452 457	e Mioce	nanno nd marl	33 2		_	E	F	E		E	L		
	461	Lati	rbedded tone al											
4	470		Inte	3 3		-	F	F		-	F	-	-	
5								L			L			_
	479	_		33			Ē	Ē	=		F			
6	400			4			F		ſ			F		
7	488	ene	alk	4			F				F	<u> </u>		
	497	le Mioc	oram ch											
8		Mi dd	Nanno f	4		_								
9	506			4				ſ			Γ			
	515			4							L			_

*See text of Site 155 for sediment description Figure 2. DSDP 155-2-20µ fractions.

C	ORE				AMORPHOUS SCATTERING	OUAR.	CRIS.	MONT.	K-FE.	PLAG.	MICA	CHLO.	CLIN.	PYRI.	BARI.
0.	DEPTH (m)	AGE	LITHOLO)GY	100%		100%					10%	1		
	434		arly clay	121*		-							-	-	
	452	ene	/stone and m	21				<u> </u>	-	_			-		
	461	Late Mioc	o marl, clay	3.3		-		=							
	470 —		bedded nanno	3 3		F		<u>–</u>					-	-	
8	479		Inter	333		_		-	=	F	-	-			
8	488	-		4 4					_					-	
	497	Miocene	ram chalk	4											
	506	Middle	Nanno fo	4		-									_
	515			4											

Figure 3. DSDP 155 <2µ fractions.

-	CORE	NZ.	LETHOLOGY	AMORPHOUS SCATTERING	PLAS.	QUAR.	PTR1.	BAR1.	MICA	CLIN.	PHIL.
NÚ.	DEPTH (n)		-	1005	1001	-	501	-		255	-
14					_	L	ŀ				
ZA		alacere			_	F	-	-	_		
1	10				-	-	ł	-	1	(
	19-18-1								1		
34	₹2—4					\vdash	-	-			
2		tocene				-	-		-		
1	28	ate Piets									
	37	1			_		-				
	46										
5					_						_
6					_		Γ				
7	64	Istocene			_	L	L	L			
	73-	Early Pl			_	E	Ł	F	-		
•	82		6								
,	97		9200		=	_	_	-	_		
10			mofoss11								
2	108		feral nan								
	126=		foramini					Γ			
4	135-		accous.				Γ		(
15			to diato		-	L		Ļ			6 3
16	144-		grading								
	153-	ocene	il chula		-		F	F			
"	162	Late P15	Pannofoss		_	-	H	-			
18	171-		Treeus		-	F	F	F			
19			ightly st								
8	180		15		-	Γ		Γ			
	198					-		F			
r3					-		-	-			
5	225										
	234 243										
1	252										
NR.					-	-	-	-	_		
9	(0)	,			-	-	-	F			
0	270	y Filoce									
	279-	Earl	ł		-	-		\vdash			
	258				-		_				
12											
10	297		[
	306 315		ł			E	F				
5	- 46	aus									
6		ate Mioci	ł		-	-	F	\vdash			
0	333 345	-	ł		-	L	-	-	-		

Figure 6. DSDP 157 $< 2\mu$ fractions.

	CORE				AMORPHOUS SCATTERING	CALC.	DUAR.	PLAG.	KAOL .	CHLD.	MONT.	CLIN.	PYRI.	BARI.
NO.	DEPTH (m)	MA.		THOLOGY	100%	100%					101			
1		acene							-			-2		
	9	19k		ALM.				L						
2				eral.										
	18	z		minif										
3		elstoce		for										
	27	Pla						Γ						
1					-		-	-			-			
	×						-							
	45			-										
6				nifera	_		L.							
	54	ocene		foram										
7		14												
	63		9200											
8			chalk		_									
	12		fossil											
9			Namo											
	81						1							
10														
	90			2										
1	99			script										
12				nosda										
	106			ssive.										
13				1										
	112-													
14					_		. 1							
	126													
15					-	-								
	135	11	-											
16					_									
17	171			mittio										
	153			al tra	-									
18		ene		Jation		1 1	0							
1	162	e Mioc		2g	- 1									
19		tut												
	171-	3 8			-									
20														
	180	ŝ.												
21				Pa	-									
22	109-			ndura										
"	198			Semt-1	- 1									
23				gray.										
	207-	100		olive										
24				Inght										-
	216			put n	0 1									
25				r yelle										
	225			pals									(
26			Chall											
22	234-		10551											
1	243-		Name		_	-								
28	10000													
	252													
29				aut										
	261			tion										
30		ocene		transi										
	270-	Sie Mid												
32		N. N			_									
	287			31.	_		i i	-						
33	-			yel]										
- 2	296	5.3	1	1.13	S - 3	90 - 98	10					V	51 – R	90° - 12

Figure 7. DSDP 158 bulk samples.

	CORE	115			AMORPHOUS SCATTERING	BARI.	PLAG.	QUAR.	PYRL.	MICA	CHLO.	MONT.	PHIL:	CLIN.	ANPH.	TALC.
ND.	DEPTH (m)	NJC		nucuur	100%	1	200	5	05.		3	251			101	
1		ecene .													-	-
	9-	101		Ause.							L .					
2				feral.			E		t	E	E				E	E I
	18-	ocene		rantas												
3		letsto		4											l., 1	
	27-									-	ſ			_	Γ	
4							-	<u> </u>		-	-	-		-	Har i	•S
	36-		1				-			2	L			_	L	
5	45-			-												
	100			atters			L									
	54-	scene		forant												
,		114									1					
	63						F									
							L		Ļ		L					
	12-	+					L									
9			8200				L									
	81 —	1	Cha1k													
10			11550			-			-		_					
	10-10	1	Nanno	ot												
<u> </u>	99			descri		-		-	-0 	-	-					
12				e, 100												
	108-			wisse						_	-					
13										_	L					
	117 -												1			
14							_	<u> </u>	-	<u> </u>	_					
	126-	1														
15	1.4					7			-							
												1 3				
16	144			5		-	-	-	-		_					
12				ransit												
1	153-			nal t		-	-	-	-		-					
18		eue		adacto												
	162	te Mioi		à				-	-	1 8						
19		Lei														
	171			-1						6 6						
20				ļ		_			_							
	180-									9						
21	189			ted		-		-	-							
22	144			indura												
-	198-			Seat.				-	- 1							
23				e gray.		_										
	207-			111												
24				11911		-	-		_							
	216			Dat Ted												
25	200		-	e yel		_										
	225-		il cha	led			- F	- 1	-							
26			No foss													
	<34		Nant													
**	243-					_	-		_							
28	243															
	252-			Γ		-	- 1		-							
29				, F		-	-	ł								
	261			02 UD												
30		ocene		remit					_							
	279	fle His		-		-	1	t	- 1							
35		Wide		H			-	ł								
	287-		Ē	ated		- 1	-	ł								
23	296		an	yel i gre												

Figure 8. DSDP 158 2-20µ fractions.

	CORE	MI		HOLOCX	AMORPHOUS SCATTERING	QUAR.	HONT .	HICA	PYRI.	PLAG.	KAQL.	PALT.	BARI,	DE.O.	CLIN.
ND.	DEPTH (m)	-		NULUUT	1005	1	200	5	05		21	52		1	01
,		lacene			-	-	-			-	-				
	9	2		Alte		-				L .					
2				(fera)		F		-		_	E				-
	18	tocene		orante							1 8				
1	27-	Plets				-	_	-			-				
				-		-	<u> </u>	-		_					
	36					~	_						<u>.</u>		
5						7							-		
	45			feral											
1	54	ocene		oriantint		-				-					
e		i.	9200	e											
	63-		chalk			-									
ß			113503			-		_		L			-		
	<i>n</i> —		Namo			-		-		_	.			_	
	81-					-	-	<u></u>							
,	01														
	90-					÷.	-	70		-	-		-		
				riat		-		-		_			-		
	99—			ondesc											
1				stve. n		2				-	-		-		
	108			E PE											
	117-					-		-		-	-				
						_		2) – Q			, J			
	126-														
5	240									-			-		
	135-								1						
2	144-			s		S	_			-	-		- 1		
				insiti c											
	153-			nal tr		1	-			-	-	1	-		
в		Certe		redetio											
	162-	ate Mic	1	3											
	171	1								-	- 1	ā	-		
	180								-	-					
1				2						_			-		
	159			ndurate											
	198-			semi-t			<u> </u>			-		8	-		
3				gray.											
	207			olive									_		
•				d Tight											
	216		8002	Tow an) i							
리	225-		1 challs	ale yel											
6			ofossi	đ											
	234		Name												
2													_		
	243-		1												
	252														
,								-		-			-		
	261														
0		ocene		ansitio											
	270-279-	ddle M		te											
2	287	Nic						-	-				-		
				brated		2		-		-				-	
1	296-			Ilow-g											

Figure 9. DSDP 158 <2µ fractions.

	CORE	AGE	LITHOLOGY	AMORPHOUS SCATTERING	CALC.	QUAR.	PLAG.	MICA	PHIL.	MONT.	CHLO.	CLIN.	BARI.
NO.	DEPTH (m)	AUL	LITHOLUGI	100%	100%		5	0%		25%		10%	
1	9	Quaternary	rown arian clay				-		_			_	-
2	18	l Late Miocene	B radiol				_	_					
3	27——	Mi ddl e Mi ocene	boze		-	_		_	-	_			
4	36		nd marl (-	Ē.	_	Ē	_			_
5			us clay a										
6	45		calcareo				-	-	Ę	_		=	
	54		ng clay,										
7	63	Miocene	lternati				-		F			-	
8	72	Early	P	_				-	÷	-		=	=
9			0 ooze										
10	81—		ikton marl										
	90 99	e ne(?)	Nannoplan			č.			-			-	-
12	107	01 i goce										F	

Figure 10. DSDP 159 bulk samples.

	CORE	ACE	LITHOLOGY	AMORPHOUS SCATTERING	PLAG.	QUAR.	MI CA	CLIN.	PHIL.	MONT.	BARI.	CHLO.
NO.	DEPTH (m)	AUL	LIMOLOGI	100%	100%		5	0%		2	25%	10%
1	9	Quaternary	Srown arian clay		=				=		-	_
2	18	Late Miocene	Eradiole			n	_	_	_		-	
3	27	e Mi ocene	ze		-	_	_	_				
4	36	Middle	and marl oc			_	_		_	_		
5	45		eous clay d			_	_	-		_	_	•
6	4		ay, calcar		=	_	=		_		=	
7	54	cene	ernating cl		_	F	-		_			
8	63	Early Miod	Alt		=	_	=				_	
9	72		00.Ze		_							
10	81—		ıkton marl									
12	90 9 9 1	ate bcene(?)	Nannoplan		-	-	_					
	107	01ig(F	F		—	F		

Figure 11. DSDP 159 2-20µ fractions.

1	CORE		1.17101.00%	AMORPHOUS SCATTERING	MONT.	MICA	PHIL.	QUAR.	PLAG.	PALY.	GYPS,	CHLO.	CLIN.	BARI.	HALI.
NO.	DEPTH (m)	AGE	LITHOLOGY	100%	100%	5	02		2	5%			1	0%	
1	9 <u>—</u> 18—	Late Quaternary Miocene	Brown radiolarian clay			-							_		
3	27—	Middle Miocene	y and marl ooze.			-	-		_		-		_		
5	45		clay, calcareous cl <u>a</u>			_	-		_			×		_	
7	63—	Early Miocene	Alternating			_	-	-			-		_		
8	72					-	-	-	F		-		-	_	
9	81—		n marl ooze				-	-			-				
10	90 99 — ⊐	ne(?)	Nannoplankto		<u> </u>	-		_					_		
12	107	Late						F	<u> </u>				<u> </u>		

Figure 12. DSDP 159 < 2µ fractions.

	CORE	ACE		AMORPHOUS SCATTERING	CALC.	PHIL.	PLAG.	QUAR.	MICA	MONT.	CLIN.	BARI.
NO.	DEPTH (m)	AGE	LITHOLOGY	100%	10	0%	50%			25%		
1	9	Pleisto-	wn clay								-	Ξ
2	18	- 7 -	itic, bro									-
3	27	Miocene -	Zeo1		-	- 						
4		Early							Ļ			
5	36											
	45			<u> </u>				-	-			-
6	54			-								
7			k ooze									
8	63		cton chal	-					-			
	72	01igocene	annop1 anl									
9	81		z									
10	90			_								
11	99			_								
12	108											

Figure 13. DSDP 160 bulk samples.

	CORE	ACE		AMORPHOUS SCATTERING	PLAG.	MONT.	PHIL.	QUAR.	MICA	CLIN.	BARI.	PYRI.
NO.	DEPTH (m)	AGE	LITHOLOGI	100%		50%			2	5%		10%
1	9	Pleisto- cene	m clay			-			_	_	-	
2			dc, brow			-	L				-	
3	18	- ? -	Zeolit				-			-		
	27	'ly Mioce					=				-	
4	36	l Ear					-					-
5												
	45						_					
6	54						-				-	
7			łk ooze				_		<u></u>	_		_
8	63	ene	ton cha				-					
	72	01 igoc	nnoplank									
9	91		Na				-					
10	01										×	
	90						-					
11	99						-					
12	100						_					

Figure 14. DSDP 160 2-20µ fractions.

	CORE	ACE	LITHOLOGY	AMORPHOUS SCATTERING	MONT.	QUAR.	PLAG.	MICA	PHIL.	BARI.	KAOL.	CLIN.	HALI.
NO.	DEPTH (m)	AUC	LITHOLOGY	100%	100%			25%				10%	
1	9	Pleisto cene	own clay					_					
2	10	2	itic, br			_		-	_			-	
3	27	Miocene	Zeol			_	_	=	_	-		_	
4	27	Early				_				_			
5	36												
	45												×.
6	54									_			
7	62		¢ 00Ze			_				-			
8	03	Jocene	cton chall							-			
9	72	0119	lannop1 ank		en		_			_			
	81		2										
10	90					_			_				
n	99					_							
12	108						_			-,			

Figure 15. DSDP $160 < 2\mu$ fractions.

1	CORE		LITHOLOGY	AMORPHOUS SCATTERING	CALC.	MONT.	QUAR.	PLAG.	MICA	PHIL.	BARI.
NO.	DEPTH (m)	AGE	LITHOLOGY	1001	1001	50%			25%		
1			clay.								
	9 —	ere	arian ze	-							
2		y Mino	alk oo				ļ				
	18	Earl	frous ton ch								
3			Ferrug top1 ank								
4	21-		ed nanr								
	36 —		ŝ	-							
5				-			-		-		
	45										
6	122										
7	54										
	63 —										
14		2									
	72	01 igoce					Ì				
9		Late (8	-					1 8		
	81		halk oo	_							
10	90		ikton cl								
11			nnop1ar						1 1		
	99 —		ite na	_							
12			5								
13	108										
	117-										
2A	128										
	137			-							
3A											
	146										
4A	155			_							
5A	100-	cene									
	164	01190		-	-						
6A		Early	chalk								
	173		ankton				-				
/A	182		lannopl	_							
8A			White r	_							
	191		0								
9A	122-3										
	200								3		
OA	209						F				-
114		Eocene	te			-					_
	218	Late	diolari		_		_		_		
12A			wn rat								
	227 235	به به	Bry							-	
14A		Mi dd1 Eocene									
- 8	244	1 1			52 J	. 8	6 S	1	4	, 1	

Figure 16. DSDP 161 bulk samples.

į.	CORE		1.17101.001	AMORPHOUS SCATTERING	QUAR.	PLAG,	MONT.	PHIL.	BARI.	K-FE.	MICA	CLIN,
10.	DEPTH (m)	AGE	LITHOLOGY	100%			50%			2	5%	10%
,			À.		-		_	-			-	
	9		rian c		-			H	F			
2			adiola k ooze									
	18-		ous r		_			Γ	Г			
3			anktor		-			F	F			
	27	-	Fennop									
4			ti xed r					L	L			
	36							Γ				
5								Γ	Γ			
	45	1						F	F		-	
1	54											
,								F	+			
	63											
A		ocene										
	72	01190	i j		-	-			F		_	F
,		Late						F	F			
	81—		azo					L				
0			halk o									
	90		kton c									
1	99		noplan		-			-	L- 1			
2	10 dia man		te nan									
	108		ŝ					F	+			
3					_			F	ŀ	<u> </u>	-	
	117											
A	Hen .											
	137				-			F	F			
A						<u> </u>		F	F			
	146											
^					_							
	155	2		1				1				
	164	11goce						-	F			
		arly 0	×									
1	174	a	on cha		-			F	-			
A			plankt									
	182		nanno			-		H-	-			
A			White			-		=	-		-	
	191											
A								t	F		_	
	200											
A								L	L			
	209-	ocene							Γ			
A	310	ate Ec	rite									
	218	-	adiola	<u> </u>			-	F				
1	227		T MAD									
	235-	alle	æ	<u> </u>	-			-	F			
1		Foce										

Figure 17. DSDP 161 2-20µ fractions.

	CORE	ACE	L THOLOGY	AMORPHOUS SCATTERING	MONT.	QUAR.	PLAG.	MICA	PHIL.	K-FE.	KAOL.	BARI.	HALT.
NO.	DEPTH (m)	AGE	CTHOLOGY	100%	100%		2	51			1	D%	
1			¢ A		_	-			-				
	9	a	an cla	<u> </u>		-		-	-			-	
2		Mioce	iiolari ooze						1				
	18	Early	us rad chalk					Γ					
3			rugino	-	<u> </u>	-	-		-			-	l
	27	_	Fen										
4			ed na										
	36												
5					_		—	-				-	
	45-			<u> </u>		-	<u> </u>	-	-		-		
6	1.3857												
	54					_	L	_	_			_	
7	63												
	63	y											
IA	72	igocer					_		_			_	
	12	ate 01											
1	81	1	oze										
10			alk o	<u> </u>		-	<u> </u>					-	
	90	4	cton cl										
11			oplank						6 I		V		
	99		unan a			-	-		-			-	
12			the										
	108	5			-	F	F	-	-				
13				<u> </u>		-	-				-		
	117-128-							1					
2A											(
	137												
3A													
	146												
4A													
	155	e											
5A		igocer				L	L		L				
	164	rly 0											
6A	172	Ea	n chall			_		L_				-	
74	1/3-		anktor										
1	182	Į	Idoune					-	-				
84	10.07		of te n			_	=						
	191		R										
9A						-	-	-	-			-	
	200			1									
TOA													
	209-	e		===	-	-	-	F	F				
11A		E Eoce	arite		-	-	-	-	-			-	
	218	Late	radiol			-	L	-	_			L .	
12A			mous										
	227		-										
14A		Middle											
	244			1			1	1	1	1			

Figure 18. DSDP $161 < 2\mu$ fractions.

	CORE	105			AMORPHOUS SCATTERING	CALC.	MONT.	QUAR.	PLAG.	MICA	PHIL.	BARI.	HALI.	CLIN.
NO.	DEPTH (m)	AGE		JGY	100%	1	00%		50	0%		2	5%	10%
1	9	igocene	halk ooze	2 1 3*			-	-	-	-	-	_		
3	18	Early 01	Nanno c	3 2			-	-	-	_	-			
4	36		larian ooze	3			-	-			_			
5	45	ate Eocene	clayey, radio	5		-	_	_		_	_			
7	54	-	Ferruginous,	2			_							
8	63			4 5							_			
9	81			с.			_	-	_					
10	90		l marl ooze	6					-					
11	99	ne	, nannofossil	с.			_	-	_					
12	108	Middle Eoce	, radiolariar	е.							,			
14	117		Clayey	с.										
15	126			3 3 33			-							
16	144	-	elitic tone	2		_							-	_
17	153-	fSit	e 162 go fo	r se	diment desci	ription.	-						Ī	-

Figure 19. DSDP 162 bulk samples.

	CORE	ACE		GV	AMORPHOUS SCATTERING	PLAG.	MONT.	CLIN.	MICA	PHIL.	QUAR.	CHLO.	BARI.
NO.	DEPTH (m)	AGE	LITHOLD	ui -	100%		100%		5	0%	25%		10%
1		ene)2e	2 1 3*		_			_				
2	9	arly Oligoce	nno chalk oo	2		_			_				
3	07	ш	Na	3			_			_			
4	21		an ooze	e			-		_	_			-
5	36	ocene	. radiolari	5 5			-		_	<u> </u>			-
6	45	Late E	us, clayey,	5						-			
7	54—		Terrugino	5 5			_						
8	63												
9	72												
10	81—			3					_				
IJ	90		l marl ooze	3		_				_			
12	99—		nannofossi	3									
13	108 —	ddle Eocen	adiolarian,										
14	117	Ψ	Clayey, r	e									
15	126			3 33		_							
16	1 35			5 3									
17	144		Brown Zeolitic claystone	777		-	-		-	-	-		
L.	153-	*Se	e text of	S	ite 162 for	l sediment des	cription	L I	I.	I.	L.	1	£

Figure 20. DSDP 162 2-20µ fractions.

	CORE	AGE		GY	AMORPHOUS SCATTERING	MONT.	PLAG.	PHIL.	HALI.	QUAR.	MI CA	KAOL.	CLIN.	GYPS.
NO.	DEPTH (m)	nac	CITIOL		100%	100%		50%		2	5%		10%	
1				3*										
	0	ene	ooze	2 1			<u> </u>	_		-		2		
2		ligoc	halk									1.1.1		
C I	10	irly 0	nno c	2		<u> </u>	L .			<u> </u>	· · · · · · · · ·			
3	18	Ea	Na											
	27			0			_	_		L-				
4	27		oze	_										
	26		rian o											
5	30	e	diola	5			-			-				
	AF	Eoce	ey, ra	5			-			-				
6	45	Late	claye							L				
	54		snou,	4,						Γ				
7	54		errugi	2			L			L				
Ĺ	~		1º	5			L			<u> </u>				
0	63													
Ů	70			4		I		_		<u> </u>				
	12													
,	01			e			-			-				
10	01		oze						E E					_
	00		arl o											
11	90		ssil n									į.		
	00		nnofo	e.			-			-				
12	99	ane	an, na											
	100	e Eoce	olarie	e			-			-				
13	100	Middl	, radi											
	117-		layey	6			F			-				
14			0											
	126-			33			-			-				
15														
	135-			3 3			Γ			F				
16	1.4.41			5					-					-
	144		litic	-										
17	A.A.A.		n zeol laysto	1										-
	153		Brow	2			1							
*See	text of :	Site	162 for	sedi	ment descrip	tion								

	CORE	ACE	L TTHOLOGY	AMORPHOUS SCATTERING	CALC.	BARI.	QUAR.	PLAG.	MONT.	CLIN.	PHIL.	MICA	PALY.	CHLO.
NO.	DEPTH (m)	HUL	LINOLOGI	100%	100	92			50%			25	泛	10%
2	10	Late Oligocene	olitic brown clay		-	-	=	-	-					
4	28 37	Early	Ze				_				_			
6	46	cene)ze with chert				-	_		_		-		
10	55 73	Middle Mio	y radiolarían o				-							
11			Claye											
1A	91 140	Unknown I	Cherty Zeolitic brown clay					-			-	E	-	_
15	171-	Maestrichtian										-		
16	180	Early !	-				[-		-	_	
17	189—						-					-	-	
	198		halk	=								Ē		
19	207		ofossil c	F			ŀ					F		
20		e Campiar	led nann	-			ŀ					F	E	
21	216	Lat	Mott	=			-							
22	225—			F								F	Ī	
23	234—			Ē			[-			Ē	Ī	-
26	243 261			_			-							
27	270	Early Campian	-	-										

Figure 22. DSDP 163 bulk samples.

	CORE	AGE	I THOLOGY	AMORPHOUS SCATTERING	QUAR.	PLAG.	CLIN.	PHIL.	BARI.	MICA	K-FE	MONT.	PALY
NO.	DEPTH (m)	AUL	ETHOLOUT	100%			100%			50%		25%	
2	1	te Oligocene	rown clay		=	— -		_		-			
3	19	Early La	Zeolitic b										
6	28 37	10	ch chert		-		_			_			
7	55 73	ddle Miocene	olarian ooze wit		-								
10	82	łW	Clayey radio										
1A	91 140	tian Unknown	Cherty Zeolitic brown clay		-	-		-		-		_	_
15	171	Early Maestrich			_	-	E				_		_
17	180												
18	198		nnofossil chalk										
20	207	Late Campian	Mottled na		Ē	F					-		
21	225										-		_
23	234 — 243 —	u.					Ē				-		_
27	276	Early Campia			Γ	ſ	Γ						

I. ZEMMELS

Figure 23. DSDP 163 2-20 µ fractions.

	CORE	ACE		AMORPHOUS SCATTERING	MONT.	PALY.	MICA	QUAR.	PHIL.	K-FE.	PLAG.	CHLO.	CLIN.	PYRI.	BARI.
NO.	DEPTH (m)	HOL	LINOLOGY	100%	10	10%	50%	2	5%			10	0%		
2	10	Late Oligocene	tic brown clay				-				_				
4	19	Early 01igocene	Zeolí				-	-	-						
6	46	Je	with chert				-	-	-					_	
10	55 73	Middle Mioce	radiolarian ooze					-							
n	82	ų	y Clayey				_								
1A 15	146 162	an I Unkno	Zeolit brown brown		_	-	-	-	_				_		-
16	171—	Early Maestrichti			_	_		_							
17	180						E						_		
18 19	198		alk												
20	207	Campian	l nannofossil ch		-	=		E					-		
21	225	Late	Mottle												
22	234				-					_			-		
26	243 261				-	-	-	F				-			
27	270	Early Campian			F		F								

Figure 24. Site 163 < 2µ fractions.