The Shipboard Scientific Party¹

SITE DATA

Position:

Latitude: $3^{\circ}45.7'$ N Longitude: $175^{\circ}04.8'$ W.

Geography:

In central basin, between Magellan Rise and Canton Trough, about 400 km NE of Howland Island.

Water Depth:

PDR, to derrick floor: 4950 meters From drill pipe measurement from derrick floor: 4962 meters (adopted).

Date Occurpied: 19-22 Apr 71.

Time On Location: 86 hours, 30 minutes.

Depth of Maximum Penetration: 310 meters.

Cores Taken: 29.

Total Length of Cored Section: 237 meters.

Total Recovery: Length: 155.3 meters Percentage: 65.3.

Percentage of Penetrated Section Cored: 65.5

Principal Results:

Site 166 is located between magnetic anomalies M-7 and M-8 of the Phoenix anomaly pattern in the central Pacific basin near the equator (Larson et al., 1972). The drill met 190 meters of radiolarian ooze, ranging in age from late Eocene to Quaternary, overlying about 20 meters of interbedded chert and brown clay containing middle Eocene fossils, and then penetrated about 90 meters of Lower Cretaceous volcanogenic, marly, and cherty sediments resting on basalt. The oldest sediments above the basalt are tentatively assigned to the Hauterivian Stage. (See Figure 1.)

BACKGROUND AND OBJECTIVES

The main objective at this site was to date the crust so the age gradient in the region west of the Line Islands could be better defined. Because of poor fossil assemblages in the deepest sediment at Site 66 (Winterer et al., 1971), the limits of possible crustal age permitted the gradient to the

continuous across the Line Islands, but the presence of a group of magnetic anomalies with approximately an east-west trend in the vicinity of 0° to 4° latitude and 180° longitude (Larson et al., 1972) raised some question about a simple extension of gradient into this region.

Further objectives were to obtain an additional dating of the top of the seismic "opaque" layer and to seek evidence from sediment accumulation rate and paleomagnetic studies for latitudinal migration of this part of the Pacific plate.

OPERATIONS

The site was approached from the SSE and passed over at about 0630 hours on 19 Apr 71. The initial choice of site had been based on a N-S track of *Robert D. Conrad. Glomar Challenger's* track confirmed the presence of a large magnetic anomaly (~500 γ), and the site location is slightly south of the anomaly trough. After crossing the site area on course ~240°, we returned on the reverse course to a point with a favorable section displayed on the profiler record (Figure 2) and dropped the beacon while under way (Figure 3).

The first attempt to core was made in the interval 4945 to 4954 meters and recovered no sediment. The second attempt at 4954 to 4963 also recovered mostly water, but a few forams and rads were caught in the cloth sock. This sample was called Core 1 and official water depth adopted was 4962 meters.

On both these attempts, the bit was raised about 25 meters above bottom while the core barrel was being pumped down, in case our consistent finding of bottom with the drill string 15 to 30 meters below PDR depth had been due to jetting out the upper sediment with the pump. The test was not conclusive, but at least the disagreement was only 12 meters at this hole.

¹Edward L. Winterer, Scripps Institution of Oceanography, La Jolla, California; John I. Ewing, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York; Robert G. Douglas, Case Western Reserve University, Cleveland, Ohio; Richard D. Jarrard, Scripps Institution of Oceanography, La Jolla, California; Yves Lancelot, Universite de Paris, Paris, France; Ralph M. Moberly, University of Hawaii, Honolulu, Hawaii; T. C. Moore, Jr., Oregon State University, Corvallis, Oregon; Peter H. Roth, Scripps Institution of Oceanography, La Jolla, California; Seymour O. Schlanger, University of California at Riverside, Riverside, California.

Figure 1. Graphic log showing lithology, age, and rate of accumulation of sediments at Site 166.

Figure 2. Seismic profile recorded by Glomar Challenger while approaching Site 166.

Figure 3. Track of Glomar Challenger in the vicinity of Site 166.

The seismic section (Figure 2) consists of an upper transparent layer 0.255 sec thick with a moderately reflective zone at about 0.195 sec below sea floor. The opaque layer beneath is 0.115 sec thick. In the absence of a lower transparent layer, the basement reflector is not prominent, but is reasonably distinct.

The section was spot cored to a depth just above the opaque layer and was cored continuously from that point to basement. Penetration was fast and easy in the upper transparent layer with generally good receovery. The opaque layer was cherty in the upper part and difficult to core. The lower part contained volcanic claystones, sandstone, and an even harder chert. The bottom-most sediment, fortunately, was a dark brown clay, rich in nannofossils, and recovery was good, providing fossils for age determination.

Basalt was encountered at 307 meters below bottom. It was drilled for 1.5 hours, and a 3.5-meter core was recovered. The penetration was appreciably slower than had been achieved at Site 164 and 165 and may have been due in part to plugged water ports in the bit.

BIOSTRATIGRAPHIC SUMMARY

The first 38 meters of the section were cored continuously. These five cores contained Quaternary, Pliocene, and late to middle Miocene radiolarian ooze. Thereafter the section was spot cored, with samples recovered from the lower Miocene, upper and lower Oligocene, and upper Eocene parts of the section. Below the upper Eocene level, the section was cored continuously to basement; however, recovery was poor.

The Cenozoic part of the section is predominantly a radiolarian ooze with moderately well-preserved calcareous nannofossils occurring only in the top 10 cm of Core 1. Poorly preserved nannofossils are found in Cores 4 through 12. Foraminifera are found only in a thin Quaternary layer at the top of the section and as a few specimens in the Miocene (Core 6, CC). Radiolaria are abundant and moderately well-preserved throughout the section down to the lower part of the middle Eocene (Core 17). Stratigraphic breaks occur between the Quarternary and lower part of the Pliocene and within the upper Miocene.

Core 18 contains no identifiable nannofossils, and Core 19 contains only a few, very poorly preserved Radiolaria that are probably Cretaceous in age. Radiolaria are absent in Core 20 except for a few down-mixed specimens; however, several broken specimens of foraminifera suggest a Cenomanian or Albian age for this core. Thus, any lower Eccene and Paleocene that exists would be contained in the interval sampled by Core 18. Core 19 may represent the only Upper Cretaceous recovered at this site. Only radiolarians are found in Cores 21 to 25. The calcareous microfossils of Cores 26 to 28 indicate the basement age is late Hauterivian to early Aptian. However, the radiolarian assemblage in Cores 23 to 28 is comparable to that identified as late Albian to Cenomanian in age at other sites of this leg. This discrepancy in age might be accounted for by the down-mixing of a younger radiolarian fauna into the older calcareous sediments of Cores 26 to 28 during the drilling process. The fact that Core 22 contains a very well preserved radiolarian assemblage that is almost totally different from the underlying cores does not support his argument. There remains the explanation that the calcareous microfossils of Cores 26 to 28 are reworked during deposition from a nearby outcrop of older sediments. But if the radiolarians give the true basement age as no older than Late Albian, whence came the Hauterivian calcareous nannoplankton? The basalt "basement" sampled at this site might represent a widespread extrusion or flood of basalt which considerably postdates crustal formation. If this is true, the Late Albian age given by the radiolarians would be a minimum date for this event. The reworked Hauterivian nannofossils could have been preserved from the basalt flood on an isolated topographic high (such as the Magellan Rise). Thus, they provide an estimate of the minimum age of the actual crust.

The Tertiary radiolarian ooze has an average accumulation rate of 5 m/m.y. Because of the discrepancy in ages, no accumulation rate was established for the Cretaceous part of the section.

LITHOLOGIC SUMMARY

For convenience in describing the types of sediments and rocks cored at Site 166, the stratigraphic section may be divided into six units as follows:

1) radiolarian ooze (0-195 m);

2) interbedded porcellanite and brown clay (195-221 m);

3) brown mud (221-250 m);

4) altered ash (250-279 m);

5) nannofossil marl mudstone and porcellanite breccia (279-307 m);

6) basalt (307-310 m).

The top 195 meters at this site are radiolarian ooze and correspond to the Upper Transparent Layer recorded on continuous seismic reflection profiles in the central Pacific basin. For the most part, the siliceous ooze is dark yellowish brown, with lighter mottles and streaks. Diatoms are present in most of the section, though less common and locally missing below 120 meters. Nannofossils are common in most intervals and locally are so abundant that the sediment is a radiolarian nannofossil ooze. The lighter yellowish brown intervals and mottles have the higher calcareous contents. The sediment is almost wholly biogenous in origin. It usually contains a percent or so of yellow brown glass and of micronodules, whereas zeolite and feldspar and even rarer.

The uppermost 14 cm cored in Section 1 of Hole 166A confirmed what was suspected from the few grains adhering to the cloth placed in the core catcher of the top core of Hole 166, namely that the sea floor at this site is Quaternary sediment of partly dissolved foraminifers, delicate radiolarian spines, and has a greater percentage of nannofossils than the underlying lower Pliocene radiolarian ooze. The difference may reflect some late Cenozoic change in the lysocline, or possibly solution may continue in the upper part of the sediment column, in addition to solution of particles falling through the overlying water.

The Upper Transparent Layer commonly has a few faint and discontinuous reflecting horizons within it. A nodule of greenish gray porcellanitic chert, rather soft and only 3 cm in diameter, was cored at 160.2 meters. Some core barrels contained watery mud. The lumps of mud (caught in a collander) commonly were firmer than typical radiolarian ooze, suggesting that parts of the apparently homogeneous ooze do differ slightly in induration. Some of the less deformed parts of Core 10 (121-130 m) indicate that calcareous-rich and calcareous-poor beds alternate in that part of the section. Perhaps incipient chertification, subtle differences in induration, or compositional layering as evidenced above may provide sufficient differences in acoustic impedance to make them the faint seismic reflectors.

The top of the chert cored at 195.2 meters must represent the top of the Opaque Layer at this site. The chert is a moderate brown, dull-lustered, clay-rich, brittle porcellanite that is interbedded with a moderately zeolitic, brown clay of pelagic origin. The base of this unit is at least as deep as 214 meters, the lowest recovery in Core 19, and probably extends to 221 meters, the top of Core 20. The base, however, may be gradational, because the clay at the base of Core 19 was already quite zeolitic, and much of the evidence is missing; recovery of the unit was poor both in its slight quantity and in the disturbance of the fractured, hard porcellanite churned into the soft clay.

The unit between 221 and 150 meters is a pelagic brown mud, apparently without chert layers. The poor recovery in Cores 21 and 22 and the few centimeters of chert fragments at to top of Core 23 (250 m) that probably represent cavings force us to retain the possibility that some thin chert stringers may be in the unit. If so, this unit might be combined with the overlying chert and clay unit. The pelagic mud here is an ashy, zeolitic siltstone colored various shades of brown by its varying manganese content. Where not badly deformed it shows lamination clearly, as well as broader layering 1 to 12 cm in thickness that may be original bedding or merely the result of later Mn banding.

Between 250 and either 271 or 279 meters the rock is of volcanic origin. It most likely is altered ash, because so much of the glass is light colored and so may not have come from mid-oceanic basaltic volcanism. However, it may be altered hyaloclastite moved a shorter distance by slumping and currents to this site, or some combination of pyroclastic and reworked hyaloclastic glass. Now it is bluish gray volcanic sandstone, siltstone, and clay in graded beds that commonly are mottled. Montmorillonite and analcime are especially abundant, and some parts are rich in chlorite (clinochlore and possible antigorite) and zeolites, all of which are alteration products of the ash. Between 279 and 305 meters, coring recovered two lithologic types that apparently are interbedded. One is nannofossil marl mudstone, a calcareous, stiff, zeolitic mudstone stained dusky brown from Fe-Mn oxides. It has within it beds of zeolitic altered ash resembling parts of the overlying ashy unit. The other principal rock type is a breccia of lighter brown porcellanite that has been cemented by veinlets of limpid, drusy quartz. This chert apparently is the seismic reflector above the basement reflector at Site 166. The brown chert has a dull matte luster but is less crumbly and brittle than the higher ones. It was recovered as fragments studded within the stiff marly mudstone, and so the overall structural relationships of the chert in place aannot be known. It seems likely, however, that the fracturing of the porcellanite was not cataclastic, but rather it was probably formed during the development of secondary chemical structures, such as septarian nodules. As evidence, many of the quartz veins are wedge shaped, not passing completely through a piece of the rock, and the crustified quartz on opposite faces of chert commonly terminates into a central void in vein-like fashion.

Core 29 recovered basalt between 307 meters and the total depth of 310.5 meters. The rock is gray, with local shades of green and brown, and is heavily veined with white calcite. The veins, about 1 cm thick, mainly have thin centers of green celadonite. No vesicles were seen, but there are a few calcite amygdules to 1.5 cm in diameter that may have formed from ingested sediment rather than from escape of magmatic volatiles. Black selvages of brittle glass, partly altered to green montmorillonite, are evidence that the basalt was extrusive rather than emplaced as a sill. The glass may in fact mark pillow edges and successive thin flows broken into hyaloclastite. Some red brown inclusions adjacent to glass and to the more abundant calcite veins may represent included sediment. By trace-element criteria, this now-altered basalt resembles those from spreading ridges.

PHYSICAL PROPERTIES

Site 166 has only a few undisturbed sections, but the densities of these sections are not significantly higher than the densities of disturbed sections. Consequently, at least for the radiolarian oozes, the densities are probably fairly representative of in situ conditions. The top 190 meters has the characteristic radiolarian ooze low density of 1.1 to 1.2 and low gamma count of about 100. The usual Quaternary gamma high is missing or subdued. Below Core 19 the syringe grain densities are exceptionally high. Section weight densities for the basalt cores are too low because the diameter of the basalt samples was considerably smaller than that of the core liner, leaving large air spaces.

The clays, muds, mudstones, and ashes below 190 meters have high but erratic gamma counts due to the low amount of diluting biogenous material and the presence of zeolite and ashes. The highest average gamma count for a core is 1725 for Core 20. The reason for this very high value is unclear; montmorillonite and K-feldspar are abundant in this core but are present in lower amounts than in Core 23, which has a gamma average of only 525.

CORRELATION BETWEEN STRATIGRAPHIC SECTION AND SEISMIC REFLECTION PROFILE

The correlation diagram shown in Figure 4 is relatively uncomplicated. Only two distinct subbottom interfaces are recorded by the profiler and these can be correlated with the top of the opaque layer and with the basaltic basement. Two alternatives are possible - the one illustrated, in which the top of the opaque layer correlates with the first occurrence of chert at 190 meters, and one in which it correlates with a harder level at 200 meters. The second interpretation gives velocities of 1.57 km/sec for the transparent layer and 1.86 km/sec for the opaque layer. The drilling rate graph shows the first major break at 190 meters, and, unquestionably, this represents a significant lithologic change between the clays and the chert. However, the first 10 meters of chert was cut with a relatively small amount of weight (<5000 lbs) on the bit, while the interval below 200 meters was cut with 15,000 to 20,000 lbs weight. Among other things, the comparison of these two possible correlations shows the effect on calculated sound velocity when the thickness of a layer is uncertain or when correlation between reflector and lithologic change is uncertain. A 10-meter uncertainty in the water depth by drill string measurement would have a similar effect, and, if the upper layer is thin, the calculated velocity could be ridiculous - hence, our concern about the discrepancy between PDR and drill string depth.

A reflector 0.06 sec above the opaque layer was not identified by a lithologic change or associated with a drilling break.

A rather strong drilling break occurred at Core 25 (270 m) where hard layers of volcanic claystone and sandstone were recovered, but no corresponding reflector is observed in the underway seismic record. There is some indication of one at the approximate time in a record made while drilling, but this kind of evidence must be treated with

Figure 4. Correlation of lithology, seismic stratigraphy, drilling rates, and sediment accumulation rates at Site 166.

caution, as side echoes may appear much like bona fide echoes from subbottom interfaces in records made while the ship is stopped.

From a geophysical point of view, the principal results from this site are:

1) A good determination was obtained of the age of the cherts that appear in the basal part of the transparent layer, indicating that they are not seriously time-transgressive between this site and Site 165. Therefore, whether the prominent reflector A' recognized in seismic profiler records in this region corresponds to the Eocene cherts or to the hiatus just beneath them, it can be considered an important horizon for geological mapping.

2) A reasonably good determination was obtained of interval velocity in the upper transparent layer, which indicates that the average speed of sound in about 200 meters of clay and radiolarian ooze is little different from the speed in water.

3) The average speed of sound in the layer between reflector A' and basement is 1.9 to 2.0 km/sec.

4) A determination was obtained of crustal age (115-120 m.y.), which must be considered in any interpretation of the E-W magnetic anomaly pattern in this region.

CONCLUSIONS

The stratigraphic section at Site 166, judging from the reflection profiles available to us, is rather typical of the region and comprises four units:

1) An upper acoustically transparent layer consisting chiefly of brown radiolarian ooze of middle Eocene to Quaternary age. At Site 166 this unit is 195 meters thick.

2) An acoustically more or less opaque layer, consisting of interbedded brown porcellanite chert and yellow brown clay, about 25 meters thick. The unit is of middle Eocene age at the top and probably of Cretaceous age at its base.

3) An acoustically more transparent layer, consisting of brown zeolitic mud, altered volcanic ash, and near the base, nannofossil marl mudstone and brown chert. This unit is about 85 meters thick and ranges in age from late Hauterivian or early Aptian to at least Albian, and rests on basalt.

4) Extrusive basalt.

Rates of Accumulation

Rates of accumulation (uncorrelated for compaction effects) show a familiar pattern (Figure 1):

1) A very late Tertiary and Quaternary time of slow accumulation ($\sim 2 \text{ m/m.y.}$)

2) A somewhat faster rate from middle Eocene through middle Miocene time (~ 5 m/m.y.)

3) A pronounced break between Middle Eocene and Cretaceous times. At Site 166, no datable fossils were recovered in the 20 meters that separate Middle Eocene from Albian fossils. The average rate for this interval, using these end points, is only about 0.4 m/m.y. It is not possible on the basis of the evidence at hand to say whether any beds have actually been removed by post-Albian, pre-Middle Eocene erosion.

4) A time of faster accumulation (5m/m.y.) during the Early Cretaceous. The Cretaceous sediments are notably ashy, and the accumulation rate doubtless reflects the effects of regional vulcanism as well as that of biogenous pelagic sedimentation. The marly sediments near the base of the column may be associated with relatively shallow depths—above the compensation depth—when Site 166 was still near the risé crest.

Any interpretations of the significance of the time of very slow accumulation between the Cretaceous and Tertiary are still only speculation. The same break in the accumulation curve is seen at Sites 164 and 165, as well as at many other drilling sites in both the Pacific and Atlantic. It is doubtless closely related to the problem of the almost universal occurrence of cherts in the Middle Eocene. The effect appears to be independent of depth and latitude (or paleolatitude), and suggests that fundamental oceanographic conditions, e.g., the intensity of circulation and vertical mixing, were different. These conditions, in turn, must be a product of the gross patterns of distribution of land and sea. A more extended treatment of this problem is given in the chapter on Regional Problems.

The middle Eocene-Miocene radiolarian ooze includes small proportions of solution-resistant species of calcareous nannofossils, and in one core (Core 6) in the lower part of the middle Miocene, nannofossils are not only abundant, but are accompanied by a few planktonic foraminifera. Otherwise, the site has remained mainly below the lysocline for planktonic foraminifera, but above the compensation depth for calcium carbonate, since at least middle Eocene times. Aside from this one episode, the radiolarian ooze unit provides no clue as to the time of passage of the site beneath the equator. If the middle Miocene event is indeed that crossing, and records depression of the compensation depth beneath the higher fertility region beneath the equator, the latitude change since the equatorial crossing has been about 4 degrees in the last 16 m.y., or 2.5 cm/yr.

Age of Basement

Late Hauterivian or early Aptian nannofossils and foraminifera occur together in the last two cores just above the basalt, and, since the basalt appears to be extrusive, this puts a limit on the age of basement here.

The discrepancy between the ages obtained by Radiolaria (late Albian to Cenomanian) and by nannofossils and foraminifera (late Hauterivian to early Aptian) may be due to reworking of older calcareous fossils into younger sediments, or it may be due to our imperfect knowledge of the biostratigraphy of the several groups of microfossils. Foraminifera and nannofossils are of such grossly different sizes (and settling velocities) that their joint occurrence as detrital fossils would be somewhat surprising. If the calcareous fossils are of the age assigned to them, then original oceanic crust in the general vicinity of the site must be at least as old as those fossils. The east-trending magnetic anomaly pattern on which Site 166 was drilled (Larson et al., 1972) was presumably created by spreading at a rise crest at which oceanic crust was being generated in Hauterivian or Aptian times.

REFERENCES

- Larson, R. L., Smith, S. M. and Chase, C. G., 1972, Magnetic Lineations of Early Cretaceous age in the western equatorial Pacific Ocean. Earth Planet. Sci. Letters. 15, 315.
- Winterer, E. L., Riedel, W. R., Moberly, R. M., Jr., Resig, J. M., Kroenke, L. W., Gealy, E. L., Heath, G. R., Bronnimann, P., Martine, E. and Worsley, T. R., 1971, Site 66, *In* Winterer, E. L., Riedel, W. R. et al., 1971. Initial Reports of the Deep Sea Drilling Project, Volume VII. Washington (U. S. Government Printing Office). 725.

APPENDIX A Core Inventory – Site 166

	Dept	th Below a Floor m)	Total	Depth ^a	Cored	Recovered		
Core	Тор	Bottom	Тор	Bottom	(m)	(m)	Lithology	Age
1 2 3 4 5	0 1 11 20 29 38	1 11 20 29 38 47	4962 4963 4973 4982 4991 5000	4963 4973 4982 4991 5000 5009	1 10 9 9 9 9 8	CC 9 6 9 7 ash	Radiolarian foraminiferal ooze Radiolarian ooze Radiolarian ooze Nannofossil-radiolarian ooze Nannofossil-radiolarian ooze	Quaternary Pliocene Late Miocene Middle Miocene Middle Miocene
6	47	56	5009	5018 5027	9 W	CC	Nannofossil-bearing radiolarian ooze	Middle Miocene
7	65 74	74	5027	5036	9 W	ash 9	Nannofossil-radiolarian ooze	Early Miocene
8	84	93	5046	5055	9 w	9 ash	Nannofossil-bearing radiolarian ooze	Early Miocene
9	103	112	5065	5074	9 9	8.5	Nannofossil-bearing radiolarian ooze	Late Oligocene
10	112	121	5074 5083	5083 5092	9 9	asn 7	Nannofossil-bearing radiolarian ooze	Late Oligocene
11	130	140	5102	5102 5111	9	9	Nannofossil–and diatom-bearing radiolarian ooze	Early Oligocene
12	149 159	159 163	5111 5121	5121 5125	4 4	ash 9	Nannofossil- and diatom-bearing radiolarian ooze	Late Eocene
13 14 15	163 169 178 187	169 178 187 189	5125 5131 5140 5149	5131 5140 5149 5151	9 9 2	ash 9 9 0.1	Diatom-bearing radiolarian ooze Radiolarian ooze Diatomaceous radiolarian ooze	Late Eocene Middle Eocene Middle Eocene
16	189	198	5151	5160	9	8.5	Radiolarian ooze; minor chert	Middle Eocene
17	198	202	5160	5164	4	CC	Radiolarian ooze; minor chert	Middle Eocene
18	202	211	5164	5173	9	2.5	Chert and brown clay	Late Albian to
19	211	221	5173	5183	10	3.5	Chert and brown clay	Late Albian to
20	221	230	5183	5192	9	9	Brown clay	Late Albian to Cenomanian
21	230	240	5192	5202	10	0.5	Brown clay	Late Albian to Cenomanian
22	240	250	5202	5212	10	0.1	Brown clay and chert	Late Albian to Cenomanian
23	250	260	5212	5222	10	2	Zeolitic mudstone and sandstone with chert	Late Albian to Cenomanian
24	260	270	5222	5232	10	9	Zeolitic mudstone and sandstone	Late Albian to
25	270	279	5232	5241	9	1.5	Zeolitic mudstone and sandstone	Late Albian to Cenomanian
26	279	289	5241	5251	10	0.1	Nannofossil-rich mudstone	Late Hauterivian- Cenomanian
27	289	298	5251	5260	9	3	Nannofossil-rich zeolitic mudstone	Late Hauterivian- Cenomanian
28	298	307	5260	5269	9	2	Nannofossil-rich zeolitic mudstone, with chert	Late Hauterivian- Cenomanian
29 1A	307 0	310 9	5269 4962	5272 4971	3.5 9	3.5 6	Basalt Diatomaceous radiolarian ooze	Quaternary to Late Miocene

^aMeasured from the derrick floor.

APPENDIX B Physical Properties – Site 166

				GRAPE				nge						
	Section	Wet Bu	ılk Density		Po	prosity					Radia	tion	Sonic Ve	locity
Core- Section	Weight Wet Bulk Density (g/cc)	Total Range (g/cc)	Undisturbed (g/cc)	Assigned Grain Density (g/cc)	Total Range (%)	Undisturbed (%)	Interval Sampled (cm)	Wet Bulk Density (g/cc)	Grain Density (g/cc)	Porosity (%)	Total Count	Net Net	Interval Sampled (cm)	(km/sec)
2-1 2-2		1.1 1.1		2.4 2.4	94 94		53	1.09	1.49	84.6	1425	150		
2-3 2-4		1.1 1.13		2.4 2.4	94 92		- 24	1.13 1.09	1.87 1.58	87.4			18 72	1.48 1.47
2-5		1.13	1.13	2.4	92	92	71	1.12	1.71	85.6	an din n		117 38 81	1.49 1.48 1.46
2-6		1.1		2.4	94		52	1.13	1.99	88.9			144 11 76 118	1.40 1.47 1.46 1.53
3-2 3-3		$\begin{array}{c} 1.1 \\ 1.1 \end{array}$		2.3 2.3	94.0 94.0						1350	75	71	1.53
3-4 4-1		1.07-1.10 1.13		2.3 2.6	94.0-96.3 93.2						1400	125	28	1.47
4-2 4-3 4-4		1.10-1.14 1.13 1.13	1.10-1.14 1.13	2.6 2.6 2.6	92.8-95.1 93.2 93.2	92.8-95.1							115	1.49
4-5 4-6		1.13-1.17	1.13-1.17	2.6	90.7-93.2 93.9	90.7-93.2							43 104 30	1.46 1.46 1.48
5-1		1 10-1 15	1 10-1 15	2.5	91 4-94 8	91 4-94 8					1400	100	81 114	1.47 1.47
5-2		1.15	1.10 1.15	2.5	91.4	51,1 51.0					1100	100	69 104	1.47 1.47
5-3		1.14	i.	2.5	92.1		00		1.04	05.4			35 80 130	1.47 1.47 1.48
5-4 5-5	1.16	1.15		2.5	91.4 92.1		99	1.14	1.84	85.4	1425	125		
7-1 7-2	1.16	1.15		2.5	91.4 89.4-90.7					~	1425	125	33 100	1.48 1.48
7-3 7-4	1.17 1.19	1.16-1.20 1.16-1.20	1.16-1.20 1.16-1.20	2.5 2.5	88.0-90.7 88.0-90.7	88.0-90.7 88.0-90.7	52	1.12	1.69	84.4			37 104	1.46
7-5 7-6	1.21	1.17-1.21 1.15-1.21	1.17-1.21	2.5	87.3-90.1 87.3-91.4	87.3-90.1 87.3-91.4	51	1.18	2.03	84.4			28 92	1.46 1.46

				GRAPE				Syrin	nge					
	Section	Wet Bu	ılk Density	Assigned	P	orosity					Natural G Radiat	amma ion	Sonic Ve	elocity
Core- Section	Weight Wet Bulk Density (g/cc)	Total Range (g/cc)	Undisturbed (g/cc)	Grain Density (g/cc)	Total Range (%)	Undisturbed (%)	Interval Sampled (cm)	Wet Bulk Density (g/cc)	Grain Density (g/cc)	Porosity (%)	Total Count	Net	Interval Sampled (cm)	(km/sec)
8-1	1.16	1.15-1.18		2.4	88.6-90.8						1425	125	28	1.46
8-2 8-3 8-4 8-5	1.16 1.17 1.18 1.16	1.12-1.15 1.11-1.14 1.17-1.18 1.16-1.18		2.4 2.4 2.4 2.4	90.8-93.0 91.5-93.7 88.6-89.3 88.6-90.1		22 61	1.13	1.78	85 . 8			92	1.46
8-6		1.16-1.17		2.4	89.3-90.1		01	1.15	1.70	01.0				
9-1 9-2 9-3	1.16 1.17	1.13 1.15 1.16-1.18	1.15 1.16-1.18	2.4 2.4 2.4	92.2 90.8 88.6-90.1	90.8 88.6-90.1	48	1.14	1.81	86.4	1425	125	19 32 78	1.46 1.46 1.47
9-4	1.17	1.14-1.16		2.4	90.1-91.5		46	1.10	1.46	82.8			130 46 111	1.48 1.46 1.46
9-5 9-6	1.17	1.16-1.18 1.17-1.20	1.16-1.18	2.4 2.4	88.6-90.1 87.2-89.3	88.6-90.1	19	1.12	1.54	81.6			72	1.44
10-2 10-3		1.16-1.19 1.17-1.22	1.16-1.19 1.17-1 . 22	2.4 2.4	87.9-90.1 85.7-89.3	87.9-90.1 85.7-89.3	52	1.18	1.58	73.1	1400	100	48	1.51
10-4		1.19-1.23	1.19-1.23	2.4	85.0-87.9	85.0-87.9							101 56 113	1.50 1.51 1.50
10-5		1.18-1.25	1.18-1.25	2.4	83.5-88.6	83.5-88.6								
12-1 12-2 12-3		1.15-1.17 1.17-1.20 1.16-1.19	1.10	2.3 2.3 2.3	88.5-90.1 86.2-88.5 86.9-89.3	06.0	56	1.13	1.34	68.6	1350	75		1.50
12-4		1.19	1.19	2.3	86.9	86.9							21 72 95	1.50 1.53 1.51
12-5		1.20		2.3	86.2								41 84 123	1.53 1.48 1.53
12-6		1.18-1.20	1.18-1.20	2.3	86.2-87.7	86.2-87.7	52	1.13	1.38	71.7				
13-1 13-2 13.3		1.13-1.15 1.15 1.15-1.18		2.3 2.3 2.3	90.1-91.6 90.1 87.7-90.1		48	1.12	1.31	69.8	1375	100		
13.4		1.15		2.3	90.1								48	1.49 1.50
13-5		1.13-1.15		2.3	90.1-91.6		70	1.13	1.39	69.6			128 28 55	1.53 1.52 1.53
13-6		1.13-1.15		2.3	90.1-91.6		34	1.25	2.39	83.4				
14-2 14-3		1.13-1.15 1.12-1.15		2.3 2.3	90.1-91.6 90 . 1-92 . 4									

14-4 14-5 14-6		1.13-1.15 1.15-1.17 1.14-1.16	1.13-1.15	2.3 2.3 2.3	90.1-91.6 88.5-90.1 89.3-90.9	90.1-91.6	52	1.28	2.74	85.0			~	
16-2 16-3 16-4 16-5 16-6	1.16 1.16 1.16 1.31	1.14-1.16 1.12-1.15 1.12-1.15 1.15-1.40 1.25-1.35	1.15-1.40 1.28-1.33	2.3 2.3 2.3 2.3 2.3 2.3	89.3-90.9 90.1-92.4 90.1-92.4 70.5-90.1 74.4-82.2	70.5-90.1	8	1.37	2.87	81.6	1400	100		
18-2	1.58	1.48-1.57		2.65	66.4-71.9						1975	675		
19-2 19-3	1.60 1.58	1.45-1.55 1.45-1.62		2.65 2.65	67.6-73.8 63.3-73.8						2125	850		
20-1		1.43-1.46		2.75	74.7-76.4		40	1.73	4.33	78.9	3000	1725	44 77	1.48 1.52
20-2	1.55	1.45-1.52		2.75	71.2-75.3		96	1.77	4.64	79.9	ł		111 27 71	1.49 1.50 1.54
20-3	1.52	1.43-1.48		2.75	73.5-76.4								105 29 67	1.49 1.51 1.50
20-4 20-5 20-6	1.52 1.52 1.51	1.45-1.48 1.48-1.53 1.45-1.50	1.45-1.50	2.75 2.75 2.75	73.5-75.3 70.6-73.5 72.4-75.3	72.4-75.3	83	1.70	5.56	85.6			123	1.49
21-1		1.40-1.45	1.40-1.45	2.75	75.3-78.2	75.3-78.2					2600	1325		
23-2		1.35-1.50		2.75	72.4-81.1						1800	525		
24-1 24-2 24-3 24-4 24-5 24-6	¢	$1.40-1.47 \\ 1.40-1.47 \\ 1.35-1.45 \\ 1.35-1.45 \\ 1.35-1.45 \\ 1.40-1.50 \\ 1.40$		2.75 2.75 2.75 2.75 2.75 2.75 2.75	72.4-84.0 74.1-78.2 75.3-81.1 75.3-81.1 75.3-81.1 72.4-78.2		100	1.56	4.14	83.2	1700	400		
24-CC												2		2.04 2.06 2.19
25-1		1.40-1.75		2.75	57.9-78.2						2100	825		
27-1		1.55-1.70		2.75	60.8-69.5		73	1.83	5,66	83.2	1625	350		
27-2		1.60-1.65	a	2.75	63.7-66.6									
28	1.07										1350	75		
29-2 29-3	1.97	2.2-2.3	2.2-2.3				8				1525	250	90	5.10-5.35
1A-1 1A-2		1.07-1.11 1.07-1.11	1.07-1.11	2.3 2.3	93.2-96.3 93.2-96.3	93.2-96.3					1400	125		
1A-4		1.08-1.10	1.08-1.11	2.3	93.2-95.6	93.2-95.6								

SITE 166

STIE TOD LAT. 3°45.7'N	LONG. 175°04.8'W	DEPTH 4962 m	SHEET 3 OF 3
		BIOSTRATIGRAPHY	Y: PHYSICAL PROPERTIES*
	FORAMINIFERA	NANNOFOSSILS RADIOLARIA	
307 BASALT: gray, dense, non- vesicular, glassy in part, heavily calcite-veined; probably extrusive.		L. Hauterivian - E. Aptian	● ○ ○ ⊨

SITE 166 SMEAR SLIDE SUMMARY

Explanatory notes in Chapter 1

Site	166	Hol	е		Co	re 5	Cored In	terv	al:	29 to 38 m
AGE	ZONE	F CH/		L	CTION	ETERS	LITHOLOGY	IRMATION	D. SAMPLE	LITHOLOGIC DESCRIPTION
		FOSS	ABUN	PRES	SE	Σ		DEFO	LITHO	
		r n	C	G P	1	0.5	VOID		*	Nannofossil-Radiolarian Ooze to Radiolarian-Nannofossil Ooze: Moderate yellowish brown (10YR 5/4) and adjacent colors (10YR 8-4/6-2);
		n	F	Р	2				*	Locally with mottles, streaks, and diapiric laminae. Diatoms common.
LE MIOCENE	i soni	r n	C F	G P	3				*	
IDDIM	Discoaster kugler Cannartus petter	n	F	P.	4					
		n	F	Р						
		r	С	G	5				*	
		n r	F C	P G	C Cat	ore tcher			*	
C i + c	166	Hol	۵		(o	ra 6	Cored In	tory	a].	47 to 56 m

510	. 100		~		00		oorea m			47 60 55 m
	ш	F CH/	OSSI ARAC	TER	NOI	RS		ATION	AMPLE	
AGE	ZON	FOSSIL	ABUND.	PRES.	SECT	METE	LITHOLOGY	DEFORM	LITH0.S	LIIHOLOGIC DESCRIPTION
MTOCENE	S. hetero - morphus D. alata	n	F	Р	C Cat	ore tcher			*	Nannofossil-rich Radiolarian Ooze

Explanatory notes in Chapter 1

Site 1	66	Hole		Со	re 7	Cored I	nterv	al:	65 to 74 m	Site	e 166	Ho	le		Cor	ъ 8	Cored Inte	rva	val: 84 to 93 m
AGE	ZONE	FOS CHARA TISSOJ	SIL CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	EDSSTI	FOSS HARAC	LTER .	SECTION	METERS		UEF UKMAI TUN	LITHOLOGIC DESCRIPTION
EARLY MIDGENE	? Discoaster druggi Calocycletta virginis	n n n n	= P = P = P	1 2 3 4 5 6 ca	0.5			* * * *	<u>Nannofossil-bearing Radiolarian Ooze:</u> Dark to moderate yellowish brown (10YR 4/2 - 5/4); some lighter mottles and streaks. Local dark (Mn) streaks. Diatoms common.	EARLY MIDGENE	2Discoaster druggi	Lychnocanium biceps Calocycletta virginis	F C F C F	P P P P P P P P P P	1 2 3 4 5 6 cat	0.5			<pre>Radiolarian Ooze: Dark yellowish brown (10YR 4/2); slight grayish-orange (10YR 7/4) mottling of nanofossil-rich radiolarian ooze. Some dark brown (Mn) streaks. * * * *</pre>

Explanatory notes in Chapter 1

Explanatory notes in Chapter 1

Site 166	Hole		Core I	3 Cored I	nterval:	169 to 178 m	Site	166	HOI	e		Core I	4	Cored Int	erval	1:17	8 to 18/ m
AGE ZONE	FOS CHARA TISSOI	SIL CTER	SECTION	LITHOLOGY	DEFORMATION LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL 24	OSSIL RACT	PRES. 33	SECTION	LI	THOLOGY	DEFORMATION	L11H0.SAMPLE	LITHOLOGIC DESCRIPTION
LATE EOCENE	r n Ihyrsocyrtis bromia n u r n r n r r r r r r r r r r r r r r r r		2 3 4 5 6 Correc			<pre>Radiolarian Ooze: Dark to moderate yellowish brown (10YR 4/2 to 5/4); slightly mottled grayish orange (10YR 7/4).</pre>	MIDDLE EOCENE	Dodocuretic nostinasas	r n n r n n r	A B A B B A	G	22 3 4 5 Core Catche	$\left[\frac{1}{R_{c}} - \frac{1}{R_{c}} \frac{1}{R_{c}}$			*	<pre>Watery; not opened. Radiolarian Ooze: Moderate yellowish brown (lOYR 5/4); with slight mottling of pale yellowish orange (lOYR 8/6) and some streaks and layers of grayish orange (lOYR 7/4).</pre>
Explanat	ory notes	in Ch	apter 1				Site	166	Hol	e		Core 1	5	Cored Int	erval	1:18	3/ to 189 m
							E	ZONE	FOSSIL R	USSIL RACT . ONNBA	PRES. B	SECTION	LI	THOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
							M. EOCENE	P. goethean	n r	R A	P G	Core Catche	1111		,	*	Diatomaceous Radiolarian Ooze

SITE 166

Site	166	Hol	le		Co	re 16	Cored I	nterv	al:1	89 to 198 m	Sit	166	Hole	е		Co	re 18	Cored I	nter	val:	202 to 211 m
AGE	ZONE	FOSSIL 2	ARAC	L FRES. BI	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FO CHA	ABUND.	L TER BKES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
					1	0.5	VOID			Watery; not opened						1	0.5	VOID			Waterv, not opened.
		r	A	G	2					<u>Radiolarian Ooze</u> Moderate yellowish brown (10YR 5/4); some mottles.	ż					2					Fragments of <u>Porcelanitic Chert</u> (moderate brown; pieces; mainly <4 mm) in <u>Brown Pelagic Clay</u> (dark yellowish brown, thoroughly churned).
		r	A	м	7								r	R	P	Co Cat	ore cher				
					2	-					sit	166	Hole	a		Con	0 19	Cored I	nter	val	211 to 221 m
		<u>e</u>				-				Sect 5: 0 to 8 cm same as Sect. 2, 8 to 25 cm. Pelagic			FC	DSSI RACI	L		eis	coreu 1	N		
DDLE EOCENE	tic coethear	ris goenical			4					Brown Clay; 25 to 30 cm, Porcelanitic Chert, brown; 30 to 77 cm, Pelagic Brown Clay, moderate brown (5YR 4/4); 77 to 90 cm, Radfolarian Ooze; 90 to 110 cm, Pelagic Brown Clay; 110 to 140 cm, Radfolarian Ooze; 140 to 150 cm, Pelagic Brown Clay.	AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATI	LITHO. SAMP	LITHOLOGIC DESCRIPTION
IW	Dodocvir	Loool			5				-							1	0.5	VOID			
		r	A	м	6					0 to 47 cm <u>Pelagic Brown Clay</u> 47 to 150 cm Mixed <u>Brown Clay</u> and <u>Radiolarian Ooze</u>	E ALBIAN-CENOMANIAN					2		-2			Watery; not opened Angular fragments of Porcelanitic Chert:
		r	A	м	C Ca	ore		?	*	Fragments of <u>Porcelanitic Chert</u> in <u>Radiolarian Ooze</u>	LATE					3		2 2 -2 -2 -2			Commonly laminated light brown (5YR 6/4) with grayish brown (5YR 3/2); pieces to 9 mm diam., in Zeolitic mud: Yellowish brown (lOYR 4/2); thoroughly churned.
Sit	e 166	Ho	le FOSS:	IL I	Со	re 17	Cored I	nter	/a1:	198 to 202 m						H	-	-Z -Z			
AGE	ZONE	FOSSIL 2	ARAC	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	Exp	lanator	r y note	R es i	P in Cl	Cat	cher er 1	22 Z2		*	
M. ECCENE	Thyrsoc.	r	A	м	C Ca	ore tcher		141871	*	Porcelanite fragments, and <u>Ashy Radiolarian Ooze</u> .											

Site	166	Ho1	9	Co	ore 20		Cored In	terv	al:2	21 to 230 m	Sit	e 166	Hole			Core 21	Cored Ir	nter	val:	230 to 240 m
AGE	ZONE	FOSSIL D	ABUND.	SECTION	METERS	LI	THOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONF	F0 CHAF JISS0J	ACTE	CECTTON	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
		r	В	1	0.5				*	Pelagic Brown Clay: An ashy, zeolific siltstone; commonly thinly bedded pale brown (STR 5/2), grayish brown (STR 3/2), and light brown (STR 6/4) in layers 1-12 cm thick. Darker layers are richer in Mn micronodules, to 0.1 mm diameter. Layers now distorted by drilling.	LATE ALBIAN-CENOMANIAN				1 	0.5- 1.0- Core atcher	VOID		_	Pelagic Brown Ashy Mud: Ashy zeolitic siltstone; light brown (5YR 6/4), thinly bedded with pale brown (5YR 5/2); dense; stiff; Mn micronodules common.
				2							Sit	e 166	 rj	<u>k r</u>		ore 22	Cored In	ter	va1: 2	40 to 250 m
				3						e*	AGE	ZONF	LUSSIL	ACTE	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
ANIAN					-						1		r	FN	1 C	Core atcher	2 2 2			Porcellanitic Chert as fragments in <u>Pelagic Brown Clay</u> : zeolitic; stiff. 1. L. ALBIAN-CENOMANIAN
IAN-CENOM		r	В								Sit	e 166	 lole		(ore 23	Cored In	ter	val:	250 to 260 m
LATE ALB				4	-						AGE	ZONF	CHAR	ACTE	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
				5							AN				1	0.5				Sec. 1: <u>Cavings</u> ? (Chert fragments in watery mud).
				6							LATE ALBIAN-CENOMANI		r	F I	Р 2				*	Zeolitic Ashy Mudstone: Dusky yellowish brown (10YR 2/2) where heavily Mn stained; various greenish grays (5GY 6/1), light browns (5YR 5/6). Analcime locally to 60%; fragments of yellow-brown porcelanitic chert common. 132 to 138 cm Porcelanitic Chert:
Expla	natory	r note	R P s in C	Cat Cat	ore tcher er 1	# 18.9 0 L	1.2.2		*				r	F	p C	Core atcher		8-85 MT + 1	*	<pre>mouerate yellowish brown (IUTK 5/b). 138 to 150 cm <u>Zeolitic Volcanic Sandstone:</u> An altered ash; pale green (IOG 6/2), spotted grayish green (IOG 4/2); in graded beds fine sandstone to</pre>
																				siltstone.

Sit	e 166	Hole	е	Co	re 24	Cored In	terval:	260 to 270 m	Sit	e 166	Hole		Con	re 25	Cored I	nter	val:	270 to 279 m
AGE	ZONE	FO THE FO	ABUND.	SECTION	METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOS CHAR	SIL ACTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
				1	0.5	VOID	*	Zeolitic Volcanic Sandstone, Siltstone, and Clay: Altered hyaloclastite or altered ash; medium bluish gray (58 5/1), with patches of grayish blue-green (586 5/2), pale blue (58 5/1), etc.; chloritic. 80 to 90 cm <u>Ash</u> All sections only partly full, and badly disturbed by drilling.	LATE ALBIAN-CENOMANIAN		r	C P	1 Co Cat	0.5 1.0	V01D		*	Zeolitic Volcanic Sandstone and Siltstone: Altered ash, as pieces of fine sandstone and siltstone, commonly graded, in medium blue gray (5B 5/1) mud; homogenized by drilling. Same as Sect. 1: pieces not deformed; show graded beds 1-2 cm thick.
				2				Same as dominant lithology of Sec. 1.	Sit	e 166	Ноје		Cor	re 26	Cored In	nterv	/a]:2	279 to 289 m
				3		VOID			AGE	ZONE	FOS CHAR/ TISSOJ	BRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
NOMANIAN					-			Same as dominant lithology of Sect. 1.	1		f n (R P M P	Co Cat	ore cher		Ż	*	Nannofossil marl mudstone: Dusky brown (5YR 2/2); zeolitic.
BIAN-CE						VOID				100								
LATE A				4				Same as dominant lithology of Sect. 1.	AGE	ZONE	FOS CHAR/ TISSOJ	SIL CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
				5		VOID		Same as dominant lithology of Sect. 1.	, NANNOS)	(out)	f	R P C M	1	0.5			* *	Zeolitic Nannofossil Marl Mud: thoroughly churned by drilling. Several fragments of altered Ash at 30 to 60 cm: Grayish blue-green (5BG 5/2); with chlorite and analcime.
2				6	ore			Same as dominant lithology of Sect. l. Same as dominant lithology of Sect. l; pieces not deformed; show mottling and graded beds.	LATE HAUTERIVIAN (FORAMS		f n f	Р Р С М Қ Р	2					Same as dominant lithology of Sect. 1. Fragment of septarian nodule(?) at 130 to 140 cm; fractured chert veined with drusy quartz.
	lanator	r	R	Chant	tcher						n	M	Co Cat	ore tcher			*	Same as dominant lithology of Sect. 1.

Explanatory notes in Chapter 1

Site	166	Hole		Co	re 28	Cored In	iter	val:	298 to 307 m		
AGE	ZONE	FOSSIL 문과	RAC . ONDA	LER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	
RAMS, NANNOS)					1	0.5				Very watery. Angular fragments of Porcelanitic Chert:: Dusky yellowish brown (10YR 2/2); dense; dull matte luster; pieces of angular breccia, veined with crustose drusy quartz (septarian nodules?). Chert fragments are in Zeolitic Nannofossil Marl Mud: Dusky brown Ch(5YR 2/2).	
ATE HAUTERIVIAN (FOI LATE ALBIAN-CENOMAN		n	F	м	2	ritititititi	VOID			Zeolitic Nannofossil Marl Mud: Dusky brown (5YR 2/2); stiff in section 2 and corecatcher, but thoroughly homogenized. Same as Sect. 1; stiff in Sect. 2 and core catcher, but thoroughly homogenized.	
		f n r	R C F	P M P	C Cat	ore tcher			*		
Site	166	F	e DSSI	L	10	re 29	Cored In	terv	аl: ш	307 to 310.5 m	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATIO	LITHO.SAMPL	LITHOLOGIC DESCRIPTION	
					1	0.5	VOID			Basalt: Medium gray (N5, dry) to dark gray (N3, wet); locally tinged with green and brown shades; fine grained; no vesicules, but a few large calcite amygdules to 1.5 cm diam.; abundant veining of ~1 cm thick calcite with centers of celadonite; fractured black glass selvages at Sect. 1 at 125 cm, Sect. 2 at 110 to 125 cm, Sect. 3 at 12, 80, and 125 to 140 cm that may be edges of pillows. Possible ingested sediment: Sect. 1 at 125 cm and Sect. 3 at 124 to 130 cm, now baked red-brown. Interpreted as extrusive (a flow).	
					2						
					3						
				C Ca	ore tcher	· · · · · · · · · · · · · · · · · · ·					

Site	Site 166		Hole A		Core 1		Cored In	terv	al:	D to 9 m
AGE	ZONE	FOSSIL 2	ARAC . ONDA	BRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
PLIOCENE QUAT.	G. oceanica	r n r	C A C C	G G P M	1	0.5			* *	0 to 14 cm <u>Diatomaceous Foraminiferal Nannofossil Radiolarian Ooze</u> : Light olive gray (5Y 6/1); soft. 14 to 150 cm <u>Diatomaceous Radiolarian Ooze</u> : Moderate to dark yellowish brown (10YR 5/4 to 4/2); slight to moderate mottling and layering of orangish colors.
		n	в		2					Same as dominant lithology of Sect. 1.
E MIOCENE	corys peregrina	n	в		3					Same as dominant lithology of Sect. 1.
LATE	Sticho	n	В		4					Same as dominant lithology of Sect. l.
		n	В		C Cat	ore tcher			*	Same as dominant lithology of Sect. 1.

с.