5. SITE 214

The Shipboard Scientific Party¹

ABSTRACT

Site 214 is situated on the crest of Ninetyeast Ridge in a water depth of 1655 meters. The 490-meter-thick stratigraphic column comprises several distinct stratigraphic units which were deposited in environments ranging from pelagic to shallow water and subaerial. Uppermost of these is a thick pelagic foraminiferalnannofossil ooze, glauconitic at its base, which ranges in age from upper Pleistocene to lower Eocene. This grades down into a glauconitic carbonate silt of lower Eocene to Paleocene age which is underlain by pyritic lagoonal sediments and a complex of lignitic and volcanoclastic sediments and tuffs interbedded with differentiated igneous flows. A coarse amygdalar basalt occurs below a depth of 490 meters, possibly representing the basement of Ninetyeast Ridge. The stratigraphy of this site is in accord with subsidence of the area at or above sea level during Paleocene and possibly older times to its present depth.

SITE DATA

Date Occupied: 8 Feb 72 (2315)

Date Departed: 12 Feb 72 (0103)

Time on Site: 73 hours 48 minutes

Position: lat 11°20.21'S long 88°43.08'E

long 88 43.08 E

Water Depth (to rig floor): 1671 meters (Echo sounding) 1665 meters (Drill pipe)

Penetration: 500 meters

Number of Holes: 1

Number of Cores: 54

Total Length of Cored Section: 494.5 meters

Total Core Recovered: 346.0 meters

Acoustic Basement: Depth: 490 meters Nature: Vesicular basalt

Age of Oldest Sediment: Paleocene

Basement: Vesicular basalt

BACKGROUND AND OBJECTIVES

Prominent and distinctive east-west trending magnetic anomalies have been identified on either side of the Ninetveast Ridge (McKenzie and Sclater, 1971; Sclater and Fisher, in press). These anomalies have been identified as 23 through 32, spreading in opposite directions. The oceanic crust on the east of the ridge gets older to the north, while on the west the age increases to the south. Thus, the Ninetyeast Ridge and the Chagos-Laccadive Ridge to the west which marks a similar offset in the magnetics (McKenzie and Sclater, 1971) are the features left behind when India moved north during the Late Cretaceous and early Tertiary relative to a fixed Antarctica/Australia. In the middle Eocene (anomaly 21), Australia started to separate from Antarctica. The ridge between the triple junction, marking the junction of the central Indian Ridge and southeast and southwest branches, and the Tasman Fracture Zone became a long continuous feature, and motion on the Ninetyeast Ridge terminated. Australia and India became part of the same plate, and the spreading direction started to change from north-south to northeast-southwest. McKenzie and Sclater (1971) postulated that this change in spreading direction caused compression along the line of weakness-the long north-south fracture zone-and the Ninetveast Ridge was formed by uplift of the oceanic crust. The Ninetyeast Ridge has a basically north-south grain south of 12°S and an en-echelon nature north of this point. It is possible that the differences reflect the different tectonic process active in the ridge at the time of compression. The ridge to the north, being just a fracture zone and not an active transform fault, was offset in an en-echelon fashion, whereas the portion to the south, being part of the recently active transform fault, was formed by major outbursts of volcanic material.

¹C. C. von der Borch, Flinders University, Bedford Park, South Australia; J. G. Sclater, Scripps Institution of Oceanography, La Jolla, California; S. Gartner, Jr., Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, Florida; R. Hekinian, Centre Oceanologique de Bretagne, Brest, France; D. A. Johnson, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; B. McGowran, University of Adelaide, Adelaide, South Australia; A. C. Pimm, Scripps Institution of Oceanography; La Jolla, California; R. W. Thompson, Humboldt State College, Arcata, California; J. J. Veevers, Macquarie University, North Ryde, N.S.W., Australia; Lee S. Waterman, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.

Cretaceous and Eocene calcareous material has been dredged from the sides of the Ninetyeast Ridge, and calcareous cores of Eocene through present have been recovered from the crest. From this evidence is it presumed that the ridge has been above the carbonate compensation level since the Cretaceous. Thus sites on the ridge present a unique chance to obtain the complete calcareous biostratigraphic records for the post-Cretaceous sediments

Site 214 was chosen on an elevated region at the crest of the Ninetveast Ridge on the last section of the predominantly north-south grain before the ridge turns into a series of en-echelon north northeast-south southwest trending short ridges (Figure 1). In this region the ridge is thinner than to the south and has a roughly bell-like shape. However, it is not quite symmetrical having a steeper eastern slope. The Conrad 14 Site Survey (Figure 2) shows transparent sediment on top of stratified sediments with a smooth strong reflector at 0.2 sec with a strong probably basement reflector at 0.45 sec. Surface sediments consist of a coarse foraminiferal sand. An Eocene core was obtained not far from this site on Ninetyeast Ridge and may give the age of the smooth hard reflector. The seismic reflection record from the Challenger going towards and leaving the site are typical of the ridge in this area (Chapter 10).

The objectives of this site were to attain a continuous calcareous biostratigraphic section from above the carbonate composition depth in the Indian Ocean and to determine the basement age and method of formation and petrology of the Ninetyeast Ridge.

OPERATIONS

Site 214 was approached in a westerly direction along the seismic reflection profile of *Conrad 14*. The site is situated on the crest of the Ninetyeast Ridge, in an area where sediment thickness is about 0.5 sec over acoustic basement.

A spar buoy was dropped over the proposed drilling site, after which the seismic gear and magnetometer were secured, and the *Challenger* reversed course to the buoy. The beacon was dropped in a water depth of 1665 meters. The coring summary is given in Table 1.

The uppermost 330 meters of the hole was drilled in foraminiferalunconsolidated semiconsolidated to nannofossil ooze. A minor amount of hole caving was experienced in the uppermost few meters due to the loose foraminiferal sand. Hole conditions improved after Barrels 2 and 3, and drilling progressed through 53 meters of glauconitic chalk and 62 meters of lagoonal sediments and lignites to a basalt flow at a sediment depth of 445 meters. The basalt, 27 meters in thickness, was penetrated without mishap, after which 16 meters of semi-indurated volcanoclastic material was drilled overlying coarse amygdaloidal basalt. The lower basalt was penetrated for 12 meters before drilling was stopped. Flowage of sand-sized material from the layer between the basalts caused some hole problems. Fifty barrels of mud were pumped into the hole for stabilization, with successful results.

The bit used was a Smith 94 CJS, 4-cone type.

LITHOLOGIC SUMMARY

Hole 214 was continuously cored to a total depth of 500 meters. Pleistocene to Eocene calcareous biogenous ooze, 323 meters thick, overlies a Paleocene glauconitic silty calcarenite and a complex of presumably older Paleocene lignite and volcanogenic sediments which are intruded by a basaltic sill. Five lithologic units are recognized as shown in Figure 3 and below.

Unit	Depth Below Sea Floor (m)	Lithology	Age	Cores
1b	0 to 162	Foram-nanno ooze	Pleistocene to upper mid-Miocene	1-17
1b	162 to 219	Foram-rich nanno ooze	Mid-early Miocene	18-23
1c	219 to 323	Nanno ooze	Late Oligo- cene to Early Eocene	24-34
1d	323 to 333	Glauconitic foram- rich ooze and chalk	Early Eocene to Paleocene	35-36
2a	333 to 366	Glauconitic carbon- ate silt and sand with some shells	Paleocene	36-39
2b	366 to 390	Glauconitic shelly carbonate silt and limestone with volcanic components	Paleocene	40-41
3	390 to 490	Lignite, volcanic clay, tuff, and lapilli tuff interlayered with Unit 4	?	42-53
4	440 to 468	Intermediate differ- entiated rocks	?	48-51
5	490 to 500	Basalt, coarse grained, vesicular and amygdalar	?	53-54

Unit 1-Nannofossil Ooze (Cores 1-34)

All but a small part of Unit 1 is made up of calcareous nannofossils with variable amounts of foraminifera. Parts of subunit 1a contain as much as 50% of foraminifera, subunit 1b < 20%, subunit lc < 10%, and subunit ld < 13%. The other constituents are in trace quantities only and include radiolarians, diatoms, sponge spicules, and volcanic glass near the surface (0-66 meters) and a mottle of volcanic glass fragments at 263 meters. Except for subunit 1d, the entire unit is uniform in appearance, being a soft white (N9) to very pale orange (10YR8/2) ooze, and the only structures are color bands, streaks, and mottles. The top 95 cm are fairly regularly banded, either white (N9) and yellowish gray (5Y7/2), or dusky yellow green (5GY5/2) and grayish yellow green (5GY7/2). These bands probably reflect climatic effects. Subunit 1a and the top 30 cm of subunit 1b give off H₂S.

Subunit 1d is transitional to Unit 2 and includes pale yellow glauconite (<3%), some of it altered to limonite, and parts of it are lightly indurated to chalk.

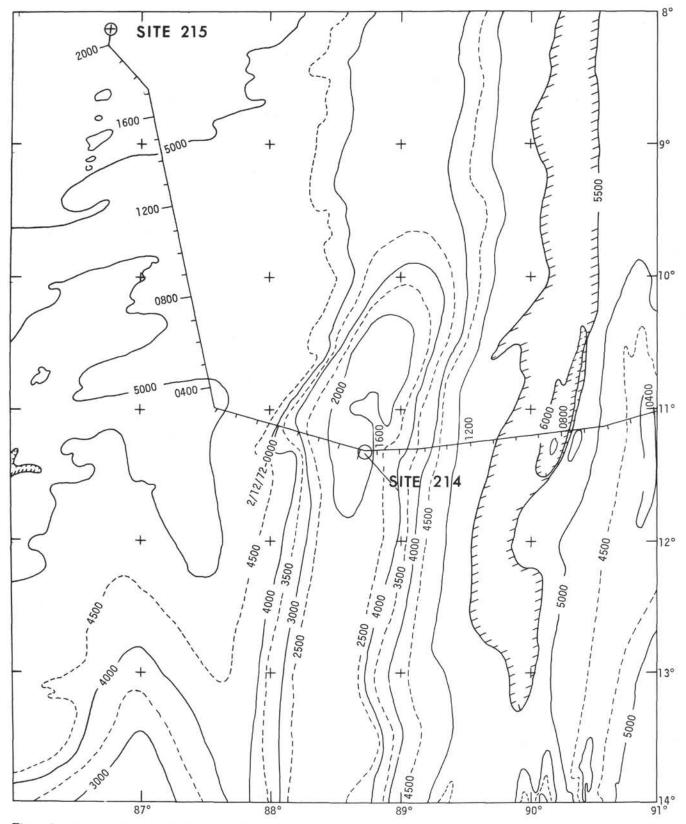


Figure 1. Bathymetry in vicinity of Site 214.

121

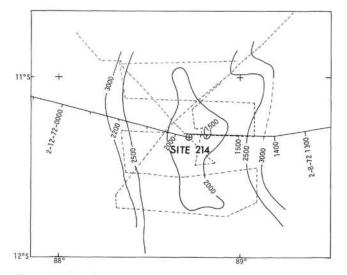


Figure 2. Presite survey and form lines for Site 214.

Unit 2–Glauconitic Carbonate Silt and Sand With Some Volcanic Components (Cores 36-41)

Unit 2 is an unconsolidated grayish olive green (5GY3/2) glauconitic carbonate silt and sand with gastropods and bivalves which in subunit 2b additionally contains abundant reworked volcanic components. The chief constituent is calcite, in grains <0.5 mm across, some of them identifiable as various fossils, including foraminifera and echinoderms, others as micrite pellets, but most grains are unidentifiable. Other constituents include glauconite, volcanic (basaltic) glass, fragments of volcanic rocks, feldspar, apatite, pyrite, and various amounts of calcareous nannofossils and siliceous fossils. The only structures are poorly developed bedding and imbricated bivalves. Near the base of Unit 2 is a 10-cm-thick bed of white recrystallized limestone.

Unit 3 – Lignite, Volcanic Clay, Tuff, and Lapilli Tuff (Cores 42-53)

Unit 3 is made up of an interbedded sequence of lignite and volcanoclastic material mainly pyritic volcanic clay, tuff, and lapilli tuff that overlies coarse-grained amygdalar and vesicular basalt, interpreted as basement. The sediments are interlayered with two bodies of fine-grained basalt, interpreted as differentiated rocks. The lignite is greenish gray, brown, or black, and impurities include sand-sized and larger grains of clay aggregates and pyrite. The thickest recovered lignite interval was 80 cm. Clay aggregates ranging in size up to 4 mm constitute most of the tuff; many of them stained with hematite and other iron oxides. Other constituents include variable amounts of pyrite, feldspar, volcanic glass, some of it identifiable as devitrified basaltic glass, chlorite, and apatite. The lapilli tuff is made up of clayey or glassy lapilli (>4 mm), in which relict feldspar laths are visible in a predominantly siliceous matrix. Three indurated beds (20-23 cm in thickness) of volcanic conglomerate occur in the volcanoclastic sequence. They consist of rounded volcanic rock granules and pebbles cemented by sparite. A crystal tuff bed was seen in Core 43. The volcanic clay consists mainly of montmorillonite and/or beidellite and K-feldspar (see X-ray results).

Unit 4-Intermediate Differentiated Rocks (Cores 48-51).

Unit 4 consists of a differentiated flow within volcanoclastic sediments (Figure 2).

This flow consists of fine-grained moderately fresh intermediate differentiated rocks (about 3 meters of recovery). The top and the bottom of this unit, where in direct contact with volcanoclastic material, show chilled margins with a decrease in the size of the minerals and an increase of glassy groundmass. The general textural feature is trachytic, with plagioclase laths being arranged in a parallel manner within a matrix containing few pyroxene granules, iron ore, and fresh light brown glass.

Unit 5-Basaltic Rocks (Cores 53, 54).

Unit 5 consists of partially weathered basaltic rocks. These basaltic rocks are subdivided into three categories according to their fabric: (1) vesicular bbasalt, (2) amygdalar basalt, and (3) crystalline basalt, which alternate with one another.

1) The vesicular basalt is fine grained and has a dark mesostasis made up of dark glass and iron-oxide aggregates. The size of the vesicles varies between 1 and 10 mm in diameter, and they comprise about 10% to 15% of the bulk rock.

2) The amygdalar basalts are medium-grained hypocrystalline rocks containing clinopyroxene, chlorite, phenocrysts, and microphenocrysts of plagioclase, iron ore, and small amounts of dark mesostasis. The amygdales are filled with calcite.

3) The crystalline basalts are coarse grained, holocrystalline, and porphyritic. Plagioclase phenocrysts are set in a subophitic matrix of plagioclase and clinopyroxene.

Preliminary Interpretation

Unit 1: Except for their variable proportions of foraminifera and calcareous nannofossils and their subtle color banding, Subunits 1a to 1c are uniform and from sedimentological evidence alone were deposited presumably in uniformly deep water above the carbonate compensation level similar to the present depth of 1665 meters. The appearance of glauconite in Subunit 1d probably indicates shallowing to a few hundred meters. The glauconite seems to be weathered, as shown by its pale amber color, and much of it is replaced by limonite, so the possibility that it is detrital (and not authigenic) must be entertained. Whatever the case may be, from its grain size alone the glauconite indicates deposition in shallower water.

Unit 2: Further shallowing is indicated by deposition of the carbonate silts and sands with large shells in Unit 2. The appearance of grains of feldspar, volcanic glass, and volcanic rock fragments reflects a volcanic provenance.

Unit 3: Sediments here lack marine fossils, and the only biogenous component is lignite which contains abundant terrestrial palynomorphs (Chapter 24). This unit is dominated by volcanoclastic material which was mostly deposited subaerially, but the three thin indurated volcanic conglomerates were water lain (Chapter 39).

Unit 4: The glassy margins and the freshness of the intermediated type of rocks of this unit indicate that they are sills.

Core	Date (Feb)	Time	Depth from Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recovered (m)	Recovery (%)
1	9	0705	1665.0-1674.5	0-9.5	9.5	9.5	100
2	9	0800	1674.5-1684.0	9.5-19.0	9.5	6.8	72
3	9	0900	1684.0-1693.5	19.0-28.5	9.5	9.5	100
4	9	0945	1693.5-1703.0	28.5-38.0	9.5	9.5	100
5	9	1030	1703.0-1712.5	38.0-47.5	9.5	9.5	100
6	9	1105	1712.5-1722.0	47.5-57.0	9.5	6.0	63
7	9	1145	1722.0-1731.5	57.0-66.5	9.5	9.5	100
8	9	1230	1731.5-1741.0	66.5-76.0	9.5	8.2	85
9	9	1315	1741.0-1750.5	76.0-85.5	9.5	9.5	100
10	9	1400	1750.5-1760.0	85.5-95.0	9.5	9.5	100
11	9	1445	1760.0-1769.5	95.0-104.5	9.5	9.5	100
12	9	1512	1769.5-1779.0	104.5-114.0	9.5	7.5	79
13	9	1600	1779.0-1788.5	114.0-123.5	9.5	8.3	87
14	9	1645	1788.5-1798.0	123.5-133.0	9.5	9.5	100
15	9	1805	1798.0-1806.5	133.0-141.5	8.5	8.5	100a
16	9	1850	1808.0-1817.5	143.0-152.5	9.5	9.5	100
17	9	1935	1817.5-1827.0	152.5-162.0	9.5	9.5	100
18	9	2045	1827.0-1835.5	162.0-170.5	8.5	7.5	100 ^a
19	9	2130	1836.5-1846.0	171.5-181.0	9.5	8.6	90
20	9	2215	1846.0-1855.5	181.0-190.5	9.5	9.5	100
21	9	2330	1855.5-1864.0	190.5-199.0	8.5	7.0	82 ^a
22	10	0020	1865.0-1874.5	200.0-209.5	9.5	9.5	100
23	10	0105	1874.5-1884.0	209.5-219.0	9.5	9.5	100
24	10	0200	1884.0-1893.5	219.0-228.5	9.5	9.0	95
25	10	0320	1893.5-1902.0				25 ^a
26	10	0320		228.5-237.0	8.5	2.0	
			1903.0-1912.5	238.0-247.5	9.5	8.7	90
27	10	0510	1912.5-1922.0	247.5-257.0	9.5	9.5	100
28	10	0635	1922.0-1931.5	257.0-266.5	9.5	9.0	95
29	10	0755	1931.5-1940.0	266.5-276.0	8.5	8.5	100 ^a
30	10	0843	1941.0-1950.5	276.0-285.5	9.5	9.3	98
31	10	0935	1950.5-1960.0	285.5-295.0	9.5	9.3	98
32	10	1035	1960.0-1969.5	295.0-304.5	9.5	9.3	98
33	10	1125	1969.5-1979.0	304.5-314.0	9.5	9.4	99
34	10	1215	1979.0-1988.5	314.0-323.5	9.5	9.2	97
35	10	1310	1988.5-1998.0	323.5-333.0	9.5	6.0	63
36	10	1405	1998.0-2007.5	333.0-342.5	9.5	4.7	49
37	10	1500	2007.5-2017.0	342.5-352.0	9.5	3.0	32
38	10	1540	2017.0-2026.5	352.0-361.5	9.5	5.0	53
39	10	1630	2026.5-2036.0	361.5-371.0	9.5	3.7	39
40	10	1725	2036.0-2045.5	371.0-380.5	9.5	3.8	40
41	10	1900	2045.5-2055.0	380.5-390.0	9.5	3.2	34
42	10	2000	2055.0-2058.0	390.0-399.5	3.0	0.8	26
43	10	2105	2058.0-2067.5	399.5-402.0	9.5	CC	1
44	10	2220	2067.5-2077.0	402.5-412.0	9.5	1.5	20
45	10	2330	2077.0-2086.5	412.0-421.5	9.5	1.0	12

TABLE 1 Coring Summary, Site 214

Core	Date (Feb)	Time	Depth from Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recovered (m)	Recovery (%)
46	11	0055	2086.5-2096.0	421.5-431.0	9.5	3.8	40
47	11	0205	2096.0-2105.5	431.0-440.5	9.5	1.1	13
48	11	0405	2105.5-2113.0	440.5-448.0	7.5	3.0	45
49	11	0745	2113.0-2122.5	448.0-457.5	9.5	1.9	20
50	11	1000	2122.5-2132.0	457.5-467.0	9.5	0.5	5
51	11	1145	2132.0-2141.5	467.0-476.5	9.5	0.8	8
52	11	1315	2141.5-2151.0	476.5-486.0	9.5	0.4	4
53	11	1545	2151.0-2155.5	486.0-490.5	4.5	2.6	57
54	11	1840	2155.5-2165.0	490.5-500.0	9.5	4.0	42
Totals					494.5	345.0	70

Note: Echo sounding depth (to drill floor) = 1671 meters; drill pipe length to bottom = 1665 meters.

^aHeat-flow run.

Unit 5: The coarse grain, the amygdalar and vesicular structures, and the weathering of this basalt indicate that it is made up of flows; the absence of pillow structure suggests that the flows were deposited on land or in shallow water.

CHEMICAL PROPERTIES

Twenty samples were collected for the interstitial water and inorganic geochemistry shipboard measurements program from the 54 cores recovered at this site. A total of 12 pairs of contiguous minicores was collected from the calcareous sediments. Samples were taken from oddnumbered cores between Cores 1 and 11 approximately every 20 meters to a depth of ~100 meters. Thereafter, pairs of minicores were removed from every fourth core through Core 31, 290 meters (approximately 40-meter intervals). A single 10-cm sample was taken from Core 35 which proved to be the bottom of the carbonate layer. Eight samples representing other lithologic units were collected from Cores 36 through 52 which was the last core containing sufficient sediment to sample (486 meters). Insofar as was practical, a single 10-cm minicore was removed; otherwise core-catcher samples were taken. It was possible to make resistivity measurements on 18 of these samples. The results are summarized in Table 2.

BIOSTRATIGRAPHIC SUMMARY

General

Good assemblages of Radiolaria, calcareous nannofossils, and foraminifera occur together in the Holocene to middle Miocene interval. It is noteworthy that Radiolaria disappear downsection at about the same level biostratigraphically in Sites 213 and 214. Foraminifera and nannofossils, variable in preservation, occur on down into the lower Eocene where firm dates are obtained almost to the Paleocene/ Eocene boundary. This carbonate ooze section is believed to be essentially continuous, variations in the quality of material notwithstanding. Poor returns of nannofossils and planktonic foraminifera indicate a Paleocene age for the basal marine section in which oceanic influence was restricted, as in a lagoonal or shallow shelf environment.

Sediment accumulation rates are variable, and the interval of slower accumulation matches well with the interval in which preservation of planktonic foraminifera is poor.

Foraminifera

Diverse and well-preserved assemblages were found in Cores 1 to 10 (Quaternary to Pliocene). Upper to middle Miocene assemblages (Cores 11 to 20) show increasing signs of chemical corrosion. Lower Miocene to upper Eocene assemblages (Cores 21 to 26) are recovered easily from the soft sediment, but the quality of preservation reaches a low over this interval: diversity is reduced, tests are badly fragmented and often recrystallized or overgrown with calcite, and robust Globigerina and Globoquadrina dominate. A striking increase in specimen numbers and in quality of preservation begins within the middle Eocene (Core 29) and continues into the lower Eocene (Core 34). Preservation falls off again (for different reasons) with the change to coarser, glauconitic carbonate in Core 35 (lowest two Eocene Zones). It is poor in the Paleocene assemblages down to the pyritic siltstone in Core 41.

At this stage of the investigation there is little evidence to suggest that the pelagic lower Eocene to Quaternary section is other than "low latitude" throughout; that is, absences can be ascribed to preservation. For example, the indications of "extratropical" faunas found (displaced) at Site 212 are not found here, while the sharply restricted late stages of the *Globorotalia fohsi* lineage are. The distinctive and short-ranging *Truncorotaloides (Morozovella) caucasica* occurs in noteworthy abundance in Core 33; this species does not figure in the detailed zonations of Trinidad or the Appennines, but occurs in

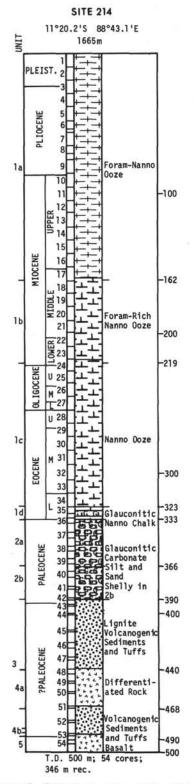


Figure 3. Lithologic units at Site 214.

New Zealand-facts which are not explained clearly but which require something more than a simplistic climatic interpretation,

The lowest material determinable biostratigraphically was found in Cores 37 and 38, where rare, poor specimens of *Planorotalites chapmani* suggest an age in the vicinity of

TABLE 2 Shipboard Chemistry Results

Core, Section, Interval (cm)	pH (flow-through)	pH (punch-in)	Water (%)	Porosity (%)	Density (gm/cc)
1-4, 143			43.82	-	
1-5, 130	7.54	7.30	-	_	-
3-1, 27 3-3, 70	-	-	45.36 41.07	72	1.63
3-5,0	7.40	7.17	47		-
4-2, 70	-		44	-	
5-4, 80 5-6, 0	7.17	7.14	43 43	64	
6-1, 96	-	-	41	68	1.65
6-3, 58	1777	-	42	67	1.59
7-3, 57	-		45	71	1.56
7-5, 0	7.32	7.10	44	72	1.63
8-3, 51	-	. 	40	70	1.73
9-1, 117		: _)	44	72 62	1.62
9-3, 118 9-5, 0	7.14	7.10	39 48	75	1.59 1.57
10-2, 113	_		41	66	1.59
11-5, 0	7.16	7.06	42	69	1.64
13-3, 96	-	-	35	57	1.63
15-2, 108	_		36	64	1.77
15-3, 0	7.14	7.04	43	72	1.67
16-1, 72	-	-	42	66	1.60
17-3, 98	-		32	56	1.75
18-3, 116	—	-	39	66	1.71
19-5, 0	7.16	7.02	37 36	64 63	1.74 1.73
19-5, 88 21-5, 55			28	52	1.86
22-5, 36	57. 122		34	62	1.85
22-3, 30			31	53	1.73
23-2, 95	7.44	7.04	32	60	1.87
27-5, 0 ^a	7.13	7.03	24	49	2.03
28-5, 83 ^a	-	-	28	55	1.96
29-6, 128 ^a	_		30	58	1.92
31-5, 0 ^a	7.22	7.05	-		-
35-3, 99 ^a	-	-	26	49	1.88
35-5, 0 ^a	7.32	7.31	-	—	-
36-4,0		1	31	-	-
37-2, 0	-	-	32	_	
39-3, 0		1	28	-	
41-CC 41-3, 0	_		25	_	
41-3, 0 42-CC	-	4	_		
46-3, 0			_	_	-
52-CC			_		_

^aThe water tended to rise in sediments on standing. The results, therefore, may be high.

56 to 58+ m.y. (upper Paleocene), and in Core 41, where benthonics are of Paleocene age; a single benthonic specimen in Core 52 could be too. This material is characterized by sponge spicules, poor foraminifera preservation, small specimen size, low diversity, and high but varying dominance (cibicidids, ostracodes, and buliminids dominate at different horizons). The foraminiferal evidence agrees with the lithological in suggesting a shallow environment into which planktonic organisms were washed. The lack of agglutinated benthonics may indicate negatively that the water was not significantly below normal salinity. There is no foraminiferal biostratigraphic evidence to oppose the concept of more or less continuous deepening from a Paleocene "lagoonal" or shelf facies, through lower Eocene shelf glauconite-carbonates, into lower Eocene deep-water ooze.

Nannofossils

Calcareous nannofossils were recovered in the sediments of Cores 1 through 41 at Site 214. The sediments range in age from late Pleistocene Holocene (Emiliania huxleyi Zone) at the top of Core 1 to the mid-Paleocene (Heliolithus kleinpelli Zone) at the top of Core 37, and possibly as old as the Cyclococcolithina robusta Zone in Core 41. The Pliocene-Pleistocene boundary is within section 2, Core 3, and the Miocene-Pliocene boundary is between Cores 9 and 10, or possibly in Section 1 of Core 10. The base of the Miocene is within Core 23, but it is difficult to determine this boundary precisely on the basis of calcareous nannofossils, as no unequivocal index species are present. The base of the Oligocene is more clearly determinable on the highest occurrence of Discoaster barbadiensis in Core 27, Section 6. The base of the Eocene again cannot be clearly determined as it is within a greatly attenuated section within Core 35, Sections 1 and 2, which contains parts of the early Eocene and late Paleocene interval. A more or less continuous record was recovered from the Holocene to the early Eocene (Discoaster lodoensis Zone) in Core 35. The record is considered continuous, although not all nannofossil zones of any one scheme are represented. This may be owing entirely, however, to the absence of certain provincial index species in this region. In addition, the middle Miocene discoasters are excessively calcified as are also many early and middle Eocene nannofossils. The early Oligocene seems somewhat compressed possibly as a result of loss during coring.

The late Miocene to Holocene nannofossil assemblage has, in general, an oceanic aspect, but backward from the late Miocene progressively stronger hemipelagic influences are present. The nonoceanic species Zygrhablithus bjugatus crassus is present throughout the Eocene-Oligocene interval, and in the early Eocene assemblages pentaliths are abundantly present. Much of the lower Eocene and upper Paleocene may not be present, and the interval below the top of Core 37 can be dated only as mid-to-late Paleocene because of the meager assemblage.

Radiolaria

Radiolaria at Site 214 are common to abundant and well preserved within Cores 1 through 20 (0 to 190.5 meters), which range in age from Quaternary to middle Miocene. In the lower part of this interval (Cores 17 through 20) the radiolarian assemblages show strong effects of corrosion; species are only moderately preserved. Below Core 20 no identifiable Radiolaria were encountered, although trace amounts of siliceous debris are present in some samples.

The following radiolarian zonal boundaries can be recognized within the cores at Site 214:

The base of the Quaternary lies between Samples 214-2, CC and 214-3-2, 70-72 cm. The base of the *Pterocanium prismatium* Zone lies between Samples 214-5-1, 70-72 cm and 214-5-3, 66-68 cm. The base of the *Spongaster pentas* Zone lies between Samples 214-9-6, 70-72 cm and 214-9, CC. The base of the *Stichocorys peregrina* Zone lies between Samples 214-13-3, 70-72 cm and 214-13-5, 70-72 cm. The base of the *Ommatartus penultimus* Zone lies between samples 214-14, CC and 214-15-2, 70-72 cm. The base of the *Ommatartus antepenultimus* Zone lies between Samples 214-16, CC and 214-17-1, 70-72 cm. The base of the *Cannartus petterssoni* Zone lies between Samples 214-18-2, 70-72 cm and 214-18-3, 70-72 cm. The base of the *Dorcadospyris alata* Zone occurs in the nonsiliceous interval, probably not far below Sample 214-20, CC.

All radiolarian assemblages appear to contain contemporaneous species, with no indication of reworking of species from older sediment.

CORRELATION OF REFLECTION PROFILE AND STRATIGRAPHIC COLUMN

Site 214 is on the crest of the Ninetyeast Ridge. The airgun seismic reflection profile of the area shows a sediment column approximately 0.5 sec in thickness and thickening westward, overlying the ridge basement.

Details of the reflection profile (Figure 4) suggest an upper draped sediment unit about 0.28 sec in thickness. This upper unit incorporates a zone of reflectors (1) at a depth of 0.13 sec which are concordant with surface topography. A stronger series of reflectors (2) appears at 0.28 sec, marking the upper level of possible ponding of the sediments against higher basement to the east. A coherent strong reflector (4) occurs at 0.47 sec, and the upper portion of a zone that wedges out appears at 0.40 sec.

The only obvious correlation with the stratigraphic column (Figure 4) is the upper surface of the fine-grained basalt flow and the upper surface of the carbonate sand. Though not obvious to the stratigraphic column, Reflector 1 corresponds to a level about 100 meters deep, Reflector 2 probably correlates with a level about 242 meters, and Reflector 3 at 356 meters to satisfy the constraints of interval velocities.

Depths of reflectors and interval velocities are as follows:

Reflector	2-Way Time (sec)	Depth (m)	Interval (km/	
0	0	0	1.55	
1	0.13	100	1.55	
2	0.28	242	1.90	1.9
3	0.40	356	2.40	
4	0.47	440	2.40 J	

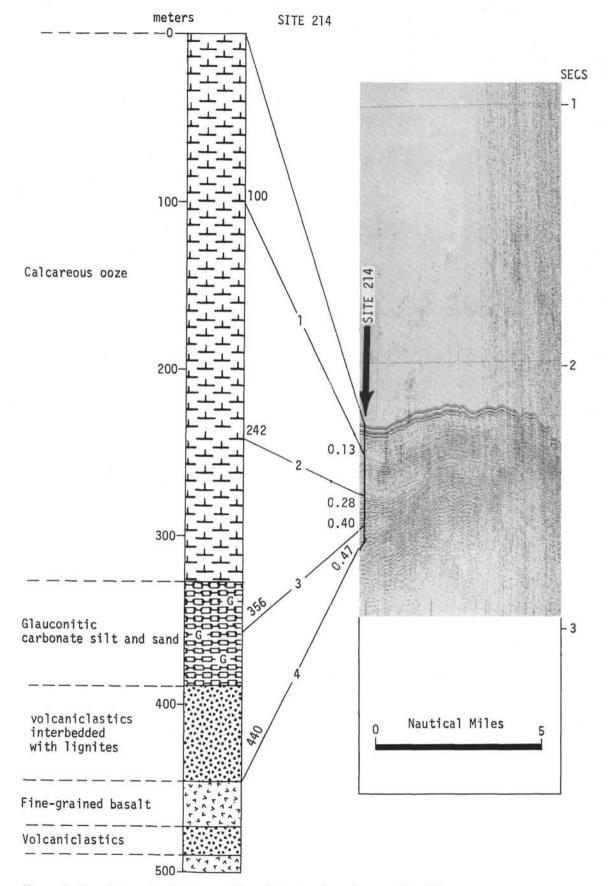


Figure 4. Correlation of reflection profile and stratigraphic column at Site 214.

SUMMARY AND CONCLUSIONS

Site 214 is situated on the crest of Ninetyeast Ridge in a water depth of 1655 meters. The airgun seismic reflection profile of the area shows an upper draped sedimentary unit, about 0.28 sec in thickness, overlying a series of reflectors that show evidence of ponding against acoustic basement. The site was chosen in a location which would enable sampling of the deepest of the ponded layers.

The section is composed of several distinct stratigraphic units ranging from subaerial and shallow water to pelagic. The lowermost unit below a depth of 490 meters consists of a series of highly vesicular, and nonvesicular basalts compositionally similar to basalts of oceanic volcanic islands. These basalts are overlain by tuffs which are succeeded by differentiated igneous rocks. The volcanics from Site 214 are similar to the mildly tholeiitic series of St. Paul and New Amsterdam islands' rocks. Above this level occurs a complex of lignites and volcanoclastic sediments which are overlain in turn by a Paleocene shallow shelf and open shelf sequence of glauconitic shelly carbonate silt and sand. The uppermost unit at Site 214 consists of 330 meters of foraminiferal-nannofossil ooze of early Eocene to Quaternary age which contains glauconite at its base.

The igneous, sedimentary and paleontological evidence indicates that Ninetyeast Ridge was once an emergent chain of volcanic islands which sank below sea level in Paleocene times at Site 214. A short history of shallow-shelf and open-shelf conditions was followed in the early Eocene by a deepening to oceanic depths as suggested by the upward disappearance of glauconite and transition of the sediment to a pelagic calcareous ooze. Oceanic pelagic sedimentation has persisted in the area to the present. Biostratigraphic and lithologic observations place possible constrictions on the paleolatitude of Site 214 during the Paleocene. The site at present is located at 11° south of the equator and lies well within the zone of reef-building coral. No fragments of reef coral were found in the cored shelf sediments, suggesting that during Paleocene times the area was at a higher latitude than at present. Palynological evidence (Chapter 24) is in accord with this suggestion.

The evidence presented for slow sinking of the Ninetyeast Ridge since the Paleocene would argue strongly against the McKenzie and Sclater (1971) compressional hypothesis for the origin of the ridge. In this hypothesis, the ridge would have been elevated in the middle Eocene and not the Paleocene as observed in the earliest sediment record.

REFERENCES

- McKenzie, D. P. and Sclater, J. G., 1971. The evolution of the Indian Ocean since the Late Cretaceous; Geophys. J. Roy. Astro. Soc., v. 25, p. 437-528.
- Sclater, J. G. and Fisher, R. L., in preparation. The evolution of the East Central Indian Ocean with emphasis on tectonic setting of Ninetyeast Ridge.

			OSSI				1	T	D-9.5 m
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION		DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
	Emiliania huxleyi Zone (N)	N R	A F	G M	1		1.	-20 -36	white (N9) D Forams B Nannos D Clay Z B B B: VOLCANIC GLASS BEARING D FORAM NANNO 002E P vellowish grav (SY7/2)
	Emi	R	F	6	2			-118	B Forams 40% A Forams 40% Nannos 52% Diatoms 2% Spicules 1% A and B interlaminated Clay 2% A C: EDRAM.RICH_NANNO_00ZE B C: EDRAM.RICH_NANNO_00ZE
	Zone (N)	R	c	G	3		TED BY DRILLING	-20	A with taminate of any strain taminate of any strai
PLEISTOCENE	Gephyrocapsa oceanica	R	c	м	4		WATERY BUT BARELY DEFORMED		Spicules 1% Silicoflag. 1% Clay 2% A Section 3 too watery to split. C with laminae (<1 cm) of A
		R	c	G	5		SEDIMENT WA	-135	A firmer than above, with mottles of C Section 5 too watery to split.
	Pseudoemiliania lacunosa Zone (N)				6			-0	Section 6 too watery to split <u>MANNO FORAM 002E</u> Mica Tr. Forams 55% Nannos 39% Rads 1% Spicules Tr. Clay 5%
	N22 (F)	RFN	C A A	666		ore 777			

		F	OSSI	L				N	щ	
AGE	ZONE	FOSSIL 2	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
		NR	AA	9.0	1	0.5	VOID			
					2				0	EORAM RICH NANNO OOZE Feldspar Tr. Clay 10% Volcanic glass (basaltic) Tr. Forams 15% Mannos 69% Diatoms 2% Rads 1% Spicules 2% Silicoflag. 1%
PLEISTOCENE	lacunosa Zone (N)	R	c	м	3					control in the
PLE	Pseudoemiliania lacunosa	R	C	м	4				0	FORAM NANNO GOZE Forams 40% Nannos 55% Clay 5%
		R	C	G	5	minim				
	N22 (F)	R F N	C A A	Mee		ore tcher				EORAM NANNO OOZE Forams 45% Nannos 50% Clay 5%

Explanatory notes in Chapter 1

te	214	Hol	e 0551	L	LO	ne 3	Lored In	1		19.0-28.5 m			Site	214	Hol	e OSSIL	1	ore 4	Г	-	: 28.5-38.0 1
AGE	ZONE	FOSSIL 2	VRAC . ONUBA	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITH	OLOGIC DESCRIPTION		AGE	ZONE	FOSSIL 2	RACTE	PRES. 20	METERS	LITHOLOGY	DEFORMATION	
PLEISTOCENE	Pseudoemiliania lacunosa Zone (N)	N	A	F	1	0.5		с с с с		A B A A mottles of 8 B	FORAM NANNO OOZE A: dominantly whi laminae (<1 cm) B: yellowish gray microlaminae (C: medium bluish g	ce (N9) with of (5Y8/1) and 1 mm) of uray (5B5/1)		Discoaster brouweri Zone (N)	N R	A C	F G 1	0.5			
nu l	Pseudoemilia	N R	A C	F	2	tert and a set			52 87	+VOID A B A C A B A	FORAM NANNO OOZE Forams Nannos Clay FORAM NANNO OOZE Volcanic glass	45% 50% 5%		01	N R		F G 2	and and a		ï	3 A E T cm A D A
		N R	A C	G M	3					B A B A	(basaltic) Forams Nannos Clay	Tr. 45% 50% 5%			R	c	G 3	and the f			E
	ri Zone (N) cium Zone (R)	R	с	G	4	Indentified of		1 1 1 1 1 1	-133	B A B A A and B mixed by deformation	FORAM NANNO QOZE Mica Forams Nannos Spicules Clay	Tr. 45% 50% Tr. 5%	PL I OCENE				4	than an beau		9	
	Discoaster brouweri Z Pterocanium prismatium				5			DEFORMED		GEO CHEM SAMPLE B A B A and B mixed by deformation				Discoaster surculus Zone (N) Pterocanium prismatium (R)	R	с	M 5	druhm mu			A
HLIULERE		R	c	G	6					A and B inter- laminated A B A in the few				Discoaste Pterocan	N	A	F 6	therefore the			dark gree
	N21 (F)	RFN	C A A	666		ore cher				laminae of B A hard X-ray at 19.30 m X-ray at 23.40 m	Calc 100 Calc 100			N21 (F	R F N	A		Core			NB:

		F	0551	L						5.5-30.0 m
J	ш.	-	ARAC	TER	NOI	RS	1.171001.0511	ATION	AMPL	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
	Discoaster brouweri Zone (N)	N R	A C	FG	1	0.5				
	10	N	A	F		Trift 1			-23	A A: <u>EORAM NANNO COZE</u> white (N9) 1 cm piece of pumice D: LAMINAE of dusky vellow
		R	с	G	2	titilitit.				A green (5GY5/2) D E: <u>FORAM NANNO 00ZE</u> laminae of grayish yellow green (5GY7/2) Forams 45%
ENE		R	с	G	3	and and and			-95	E Nannos 50% Clay 5% A Yolcanic glass Tr. Forams 30% Nannos 65% Clay 5%
FLUCENE	(N)				4	111111111111				C (as in core 3)
	Discoaster surculus Zone (N) Pterocanium prismatium (R)	R	с	M	5	1 minut				A
	Discoaster Pterocani	N	A	F	6	1				dark gray and light green mottles
	N21 (F)	R F N	CAA	NGG		ore				NB: gives off H ₂ S

Explanatory notes in Chapter 1

130

			OSSI		N	s		NOL	APLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
		N R	A C	F	1	0.5	11111111111111111111111111111111111111	WATERY, POSSIBLY DEFORMED	-80	A: <u>EORAM NANNO OOZE</u> white (N9) with rare mottles Mica Tr. Forams 353 A Nannos 603 Clay 53 B: <u>FORAM NANNO OOZE</u>
					2	mannan	11111111111111111111111111111111111111			Forams 40% Nannos 55% Clay 5% Section 2 too watery to split. A
CENE	culus Zone (N) pentas (R)	R	с	G	3	munnin		SLIGHTLY DEFORMED	—36 -100	A with a tinge of blue (bluish white 589/1) B A <u>FORAM NANNO OOZE</u> Forams 40% Nannos 55% Clay 5%
PLIOCENE	Discoaster surculus Zone Spongaster pentas (R)	R	F	м	4	ليبينينينين		POSSIBLY DEFORMED		Rads Tr. A with mottles of Spicules Tr. darker material
					5					Section 5 too watery to split.
					6		1	POSSIBLY DEFORMED		A with mottles
	N20 (F)	R F N	CAA	MGF		ore tcher		٩		

		F CH/	OSS	TER	N	s		NOL	APLE			
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITH	HOLOGIC DESCRIPTION	
	is Zone (N)	N	A	Р	1	0.5		/	-7	gray green gray gray and green gray green	FORAM NANNO DOZE white with green and laminae repeated at of every 30 to 50 cm Forams Nannos Clay Spicules	intervals
CENE	Discoaster surculus Zone	R	c	м	2	and and a first			-17	gray VOID green gray green gray	FORAM NANNO OOZE Forams Nannos Clay FORAM NANNO OOZE Forams Nannos Clay	40% 55% 5% 40% 55% 5%
PLIOCENE	pseudoumbilica Spongaster pentas Zone (R)				3					gray green gray green gray green		
	ra pseud Sponga Zone	N	A	p						gray		
	Reticuiofenestra pseudoumbilica Zone (N) Spongaster pent Zone (R)	R	F	м	4	hundut				gray and green gray vague mottles		
	N19 (F)	RFN	C A A	"G G F		ore tcher						

Explanatory notes in Chapter 1

	214	Hol	0551	L		re 7 Cored	-	T	57.0-66.5 m				e 214	Ho	FOSS
u.	ZONE		RAC	TER	SECTION	LITHOLO	MTIO	SAMPL		LITHOLOGIC DESCRIPTION	1		ZONE		ARAC
AGE	ZO	FOSSIL	ABUND.	PRES.	SECT	E CTINGEO	DEFORMATION	LITHO. SAMPLE		LINCOIL PLANTIN		AGE	ZO	FOSSIL	ABUND.
		N R	A F	G M	1		HHHHH		VOID	FORAM NANNO OOZE white with gray and green mottles				N	A
					2		<u> </u>		green gray green			ENE	pseudoumbilica Zone (N) pentas Zone (R)	R	F
NE	Reticulofenestra pseudoumbilica Zone (N) Spongaster pentas Zone (R)	R	c	м	3		HILL THEFT		green gray green pure white			PL IOCENE	Reticulofenestra pseu Spongaster pen		
PL IOCENE	lofenestra pseud Spongaster penta				4				dark gray green				R	R	F
	Reticu								green						
						GEO CHE SAMPLE	η = Τ						N19 (F)	RFN	C A
					5							Exp	lanatory		
		R	c	M	6		<u>┍┍┍┍┍┍┍┍</u>	-80	dark gray	FORAM NANNO OOZE Forams Nannos Clay Diatoms Rads	40% 55% 5% Tr. Tr.				
	N19 (F)	RFN	C A A	GGG		ore TTT tcher TTT				Spicules	Tr.				

		F CH/	OSSI RAC	IL TER	~				PLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFUNITION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
		N	A	G	1	0.5				Section 1 too watery to be split.
ENE	pseudoumbilica Zone (N) pentas Zone (R)	R	F	м	2	in the state		CAVINGS		
PL IOCENE	Reticulofenestra pseu Spongaster pen				3	111111111111			-90	FDRAM NANNO OOZE white with rare laminae and mottles Forams 45% Nannos 50% Clay 5%
		R	F	м	4	in tradition				as above
_	N19 (F)	RFN	C A A	GGG		ore tcher	[구귀소년]			

tes in Chapter 1

Explanatory notes in Chapter 1

132

Site 214		ole			re 9	,	Cored	Inte	rval	: 76	.0-85.5 m			Site	214	Hole		2.62	lore 1	0 Cored	Inter	val:8	5.5-95.0 m		
AGE ZONE		FOSS	T	101	MFTFRS	L	ITHOLOG	PERSONALTION	1 TTHO SAMPLE	LI INU. SHIPLE	LITHOLOGIC DESCRIPTION			AGE	ZONE		ACTE	PRES. 20	METEDC	LITHOLO	DEFORMATION	LITHO.SAMPLE	LITH	DLOGIC DESCRIPTION	
		n A			0.5	ŧ					<u>FORAM NAWNO OOZE</u> white with laminae as i Forams Namnos Clay gray and green	ndicate 45: 50: 5:	27 X				C	6 6	0,:	┿┿╂┿╓┺╬┿╌╓╢╷ ╞╴┝╺╴┙╶┙╶┙╶┙╶ ╛╼┾┿┿┿┿┿┿┿┿┿┿┿	H H H H H H H H H H H H H H H			FORAM NANNO 007E white	
	Zone (R)			2				<u> </u>							tricorniculatus Zone (N) s peregrina Zone (R)	R	c	g 2			H.H.F.F.F.II.F.F.F.F	-80	purple gray green	Forams Nannos Clay	45% 50% 5%
PL IOCENE	Spongaster pentas 7		G								gray green gray green			LATE MIOCENE	Ceratolithus tr' Stichocorys p	N		6 3 F					green lightly indurated		
Ceratolithus rugosus Zone (N)	R	٤C	G	5						*	GEO CHEM SAMPLE locally lightly indurated			LA1	Zone (N)			5	5		וריניניניניוור		gray mottles		
Cere	F	R A	G	6				FFFFFFFFFFFFFFF		31	lightly indurated Forams Nannos Clay Rads Spicules mottled with pale Forams red purple (SRP6/2) Nannos Clay Rads	301 651 57 Tr Tr Tr 55 55			Discoaster quinqueramus Z			6					gray gray gray		
N19 Explanat	N	(A	G	_	ore tche	r L		444			Rads	Tr	•	L	N19 (F) anatory		AA	FC	Core atche						

Explanatory notes in Chapter 1

AGE	ZONE	CHA	VIND VINDER	PRES. 2	SECTION	METERS	LITHOU	LOGY	DEFORMATION	LIT	HOLOGIC DESCRIPTION	AGE	TANE	. 1	CHAI	ABUND.	13	METERS	LITHOLOG	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
		N	A	G		0.5			SLIGHTLY DEFORMED		FORAM NAWNO OOZE white without color bands. Lightly indurated layers becoming harder and more frequent.				N R	A F C M	-	0.5-		WATERY, DEFORMED		<u>NANNO DOZE</u> white
		R	c	G	2	and contactor			=	03	Forams 40% Nannos 55% Clay 5% Forams 55% Nannos 40% Clay 5%	OCENE	quinqueramus Zone (N)	Zone				2				Section 2 too watery to
OCENE	eramus Zone (N) grina Zone (R)	R	c	G	3	(11) (11) (11)		드			Some color bands (pale gray blue 5PB7/2)	LATE MIOCENE	Discoaster quinqu	Stichocory				3 -			-90	Forams Nannos Clay
LATE MIDCENE	Discoaster quinqueramus Zone Stichocorys peregrina Zone (R	с	G	4	1.11.1.1.1.1.1.1.1	┍┲╔┙╸╘╺╘╺╘╺╘ ┍╸┍╻┝┍╴╘╴╘╺╘╺╘			pure white blue gray bands					R	C G		4				Section 4 too watery to
					5	altrulturd				blue gray		Exp			FN	_		Core Catcher				gray
		R	c	м	6	administration of the second s				blue gray blue gray												
	N17 (F	R F N	C A A	GFG	Co Cato	re	<u>+</u> {	는고 -														<u>.</u>

134

SITE 214

	214	Hol	0551	L		re 13		T		14.0-123.5 m		
AGE	ZONE	FOSSIL	ARAC . ONDAR	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOL	OGIC DESCRIPTION	
					1	0.5					Section 1 not split: 0-78 cm void 78-150 cm noze FORAM NANNO DOZE white	
	ramus Zone (N) rina Zone (R)	N	A	F	2	and and and						
ш	Discoaster quinqueramus Zone (N) Stichocorys peregrina Zone (R)	N R	A C	F	3	in trutter		WATERY	-100	very pale gray	Forams Nannos	40% 55%
LATE MIOCENE					4	11111111111					Clay Section 4 not opened.	5%
	atus Zone (N) imus Zone (R)	N R	A C	F	5					purple gray mottles purple gray mottles		
	Discoaster neohamatus Zone Ommatartus penultimus Zone	R	с	G	6	1 I I I I I I I I I I I I I I I I I I I						
	N17 (F)	R F N	C A A	G F F		ore tcher						

Ì		F CH	OSSI	TER	N	s		NOI	APLE			
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOL	OGIC DESCRIPTION	
		N	A	F	1	0.5		SLIGHT			FORAM NANNO OOZE white	
					2						Section 2 not opened.	
OCENE	amatus Zone (N) ltimus Zone (R)				3	minutur			-100		Forams Nannos Clay	40% 55% 5%
LATE MIDCENE	Discoaster neohamatus Ommatartus Penultimus				4	munun						
		R	A	G	5					gray purple mottles		
					6					purple gray mottles		
	N17 (F)	R F N	A A A	GFF		ore tcher						

1

Core14 Cored Interval: 123.5-133.0 m

Explanatory notes in Chapter 1

Explanatory notes in Chapter 1

Site 214 Hole

Site	214	Hole	_	_	Cor	e 15	Con	ed In	terv	a1:1	33.0-141.5 m			Site	214	Ho	_		Core 1	6 Cored	Inter	val:1	43.0-152.5 m
AGE	ZONE	CHA	VINDER PORT	CD	SECTION	METERS	LITHOU	.OGY	DEFORMATION	LITHO.SAMPLE	LIT	HOLOGIC DESCRIPTION	-	AGE	ZONE	FOSSIL 2	ARAC . ONUBA	TER	SECTION	LITHOLOG	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
					1	0.5	V01					FORAM NANNO 00ZE white (589/1) mottled very light gray (N8)				N	A		1				FORAM NANNO COZE white with rare short intervals of lightly indurated material.
		N	A	F	+														+		5		
		R	с	G	2	and more than				50		Forams Nannos Clay Rads Spicules	25% 70% 5% Tr. Tr.			R	F	м	2				
	ne (R)	R	с	G		1		MPLE							(N) he (R)								
OCENE	Discoaster neohamatus Zone (N) Ommatartus antepenultimus Zone (R)	ĸ	Ľ	a	3									DCENE	Discoaster neohamatus Zone (N) Ommatartus antepenultimus Zone (R)				3		555	-100	Forams 45% Nannos 50% Clay 5%
LATE MIOCENE	baster neoh											Section 4 not opened.		LATE MIOCENE	aster neoha tus antepen	<u>1</u> 21				<u>귀~</u> 는			Section 4 not opened.
	Disco				4	ener en									Disco				4				
						. Forest				-50	no mottling	Forams Nannos	40% 55% 5% Tr.							封守			
		R	c	G	5							Clay Rads	5% Tr.						5				
				Ī				立立															
					6	and a local													6				
	2 N16 (F)	RFN	C A A	G F F		ore cher									N15-1 (F)	6 R F N	C A A	G F F	Core Catche	F-1-	1,1,1,1,		

Explanatory notes in Chapter 1

136

it	e 214	Hol	_		Co	re 17	Cored 1	nterv	al:1	52.5-162.0 m
		CH	OSSI	TER	N	s		LION	APLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
I	matus	N	A	F		Ξ				FORAM NANNO OOZE white
Y	Discoaster neohamatus Zone (N)	R	c	6	1	0.5				Will Le
	(N)	R	F	м	2	and contrart				
ENE	Discoaster hamatus Zone (R)	R	F	м	3	unfrutun			-132	FORAM NANNO CHALK Forams 45% Nannos 50%
MIDDLE MIDCENE	rtus petterssoni Zone				4	undered				Forans 45% Nannos 50% Clay 5%
	Catinaster coalitus Zone (N) Cannartus	R	F	M	5	and market				
	Catinaste				6	and radian				
	N14 (F)	RFN	F A A	MFP		ore tcher				

		F	0SSI ARAC	IL.				z	w.	
AGE	ZONE	FOSSIL 3	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
	rssoni Zone (R)	N R	A C	F	1	0.5			-100	FORAM RICH NANNO OOZE white Forams 15% Nannos 80% Clay 5%
	Cannartus petterssoni Zone	R	с	м	2	nutration				
MIDDLE MIOCENE	(N) (R)	R	c	м	3					
	Catinaster coalitus Zone Dorcadospyris alata Zone				4	unhadan	++++++++++++++++++++++++++++++++++++			Section 4 not opened.
	Cati	R	R	P	5					
	2 N13 (F)	R F N	FCA	MFF		ore tcher				

Explanatory notes in Chapter 1

i te 214	Но			Co	re 19	<u> </u>	Cored	-	-	1:17	1.5-181.0 m		Site	214		ole	6.71		re 20	Cored I	iter	val:1	81.0-190.5 m
AGE ZONE	CH	ARAC	TER	SECTION	METERS	ι	.ITHOLOG	DEEDDWATTON	DEFURMALIUN	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION		AGE	ZONE	Cocesi O		SIL ACTER	12	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
MIDDLE MIOCENE Discoaster exi1is Zone (N) Dorcadospyris alata Zone (R)	R		Р	1 2 3 4	0.5						FORAM RICH NANNO OOZE white lightly indurated intervals 5 cm thick every 10 cm		MIDDLE MIDCENE	Discoaster exilis Zone (M) Doreadosovris alata Zone (R)			FM	1 2 3	0.5			-120	FORAM RICH NANNO ODZE white Forams 15 Nannos 82 Clay 3
N12 (F planator	N	A	L	Cat	ore tche			-	-1	00	Forams Nannos Clay	20% 75% 5%						5			- - - - - - - -		Last core with H ₂ S odor.

p

Core Catcher

N12 (F) F A P

	214	F	OSS	IL TER	2			<u> </u>	—	90.5-199.0 m
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
					1	0.5				Not opened.
						1111				FORAM RICH NANNO OOZE
	Zone (N)				2	hadan			80	Forams 15% Nannos 82% Clay 3%
MIDDLE MIDCENE	Sphenolithus heteromorphus Zone (N)				3	and and and				
	Spheno				4	and and a state of the state of				Not opened.
					5	and minimum				
	? N6-7 (F)	R F N	Ē A	PP	C Cat	ore cher				

			OSS		N			NOI	PLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
d	heteromorphus Zone (N)				1	0.5			80	EORAM RICH NANNO OOZE white Forams (all <100µ) 15% Nannos Clay 3%
					2	unitaria.		and the second sec		Color change to white (N9).
									-100	Forams 15% Nannos 82% Clay 3%
					3	Infin		Contraction of the second s	30 66 90	Forams 15% Nannos 82% Clay 3% FORAM RICH NANNO 00ZE
Ш	: Zone (N)					11111				pinkish gray (5YR8/1) Forams 15% Nannos 82% Clay 3%
EARLY MIOCENE	Sphenolithus belemnos Zone				4	11111111111				brownish gray (5YR4/1) stains white Not opened.
	Sph				5	Internet	······································			brownish gray mottles
					6	tin hun		10-10-10-00	-120	Forams 15% Nannos 82% Clay 3%
	N5 (F)	R F N	Ċ A	P P		ore cher				viay 34

Explanatory notes in Chapter 1

	214	Hole FOS	SIL	T	pre 23	Cored In	-		09.5-219.0 m			Т	1	Hole FO	SSIL	Co	re 24 Cored 1	TI			
AGE	ZONE	CHAR TISSOJ	ACTER	10	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION		AGE		ZONE	-	AGTER	Ĩ	SZ LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LI	THOLOGIC DESCRIPTION
	belemnos Zone (N)			1	0.5				Section 1 not split.				J			1	0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0				Section 1 not opened. <u>FORAM BEARING NANNO 002</u> pinkish gray (SYR8/1)
	Sphenolithus t			2				-75	brown with white flecks white mottles, bordered by brown brown brown Kannos Clay	15% 82% 3%						2			-50	white mottles	Forams Nannos Clay
IOCENE	(N)			3					brown mottles				s Zone (N)			3					Sections 3 to 6 not op
EARLY MIDCENE	carinatuy Zone			4	to the sector of the sector se				Section 4 not opened.		LATE OLIGOCENE		Sphenolithus ciperoensis			4					
	Triquetrorhabdulus			5	and so the second				brown laminae				Sp			5					
				6				-90	Forams Nannos Clay	15% 82% 3%		N	3 (F)	F	C P	6					
	N4 (F)		Ē P A P	1 6-	Core Atcher									R F N	C P A F	Cat					

SITE 214

5% 92% 3%

	FOSS	IL	Т			2	ω				F	OSSI	L				2	щ	
ZONE	FOSSIL FOSSIL		SECTION	METERS	LITHOLOGY	DEFORMAT ION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL 2	ABUND.		SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	
Sphenolithus cipercensis Zone (N)	R - A	F	1 2 3 4 5 6 Coc				0	Not opened (too wet) FORAM RICH NANNO OOZE Forans 10% Nannos 87% Clay 3%	MID OLIGOCENE	Cydococcol thina formosa Zone (N)	N RFR	A ICA	F	1 2 3 4 5 6	0.5			0	

SITE 214

LITHOLOGIC DESCRIPTION

Too wet to open.

EORAM BEARING NANNO OOZE Opaques Forams Nannos Clay

> Forams Nannos Clay

7r. 8% 89% 3%

1% 96% 3%

141

te 214	T	FOS CHAR	SIL	T	Core		Т			-	1	247.5-257.0 m				1 🗂	214	T	FOSSI HARAC	L	П	re 28	<u>г г</u>	1	-	57.0-266.5 m		
ZONE	_ E		- NDUAN		SECTION	METERS		LITHO	LOGY	DEFORMATION	LITHO. SAMPLE	1	ITHOLOGIC DESCRIP	TION		AGE	ZONE	Enecti	1	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LI I HU. SAMPL	LIT	HOLOGIC DESCRIPTION	
		N F	A	F	1).5		높		1.			Too wet to	open.							1	0.5					Section 1 too wet to oper	1.
					2	1.0											to P16) (F)	N F	AC	Fp	2						Section 2 too wet to oper	1.
formosa Zone (N)	- 10	F	c 1		3						-	2	NANNO OOZE Heavy m1 Forams Nannos Clay	nerals (goethi	te) Tr. 2% 95% 3%	ENE	Zone (N) nflata Zones (P15	F	С	P	3					white brown	<u>NANNO OOZE</u> Dominantly pinkish gray into vague bands of other as indicated.	(5YR8/1 color:
Cyclococcolfthina fo	iobigerina tapurie				4											LATE EOCENE	Discoaster barbadiensis ana to Cribrohantkenina i				4	dantanta					Section 4 too wet to oper	1.
0.6		R			5					-							Globigerapsis mexaca				5	and and an			12	mottle of brown ash	as in Section 3 NANNO RICH IRON OXIDE VO GLASS ASH Feldspar Iron oxide Volcanic glass (basalic)	5% 30% 50%
					+	-											19	F	c	P				-11	15	►WHITE ►WHITE	Nannos <u>VOLCANIC GLASS ASH</u> <u>FORAM BEARING NANNO OOZE</u> Forams Nannos Clay	15% 5% 92% 3%
1					6													F	c	P	6					mainly white white mottle white	NANNO OOZE Forams Nannos Clay	2% 95% 3%
P16	(F)	R F N		P F	Co Cato													RFN	Ē	P F		ore cher						

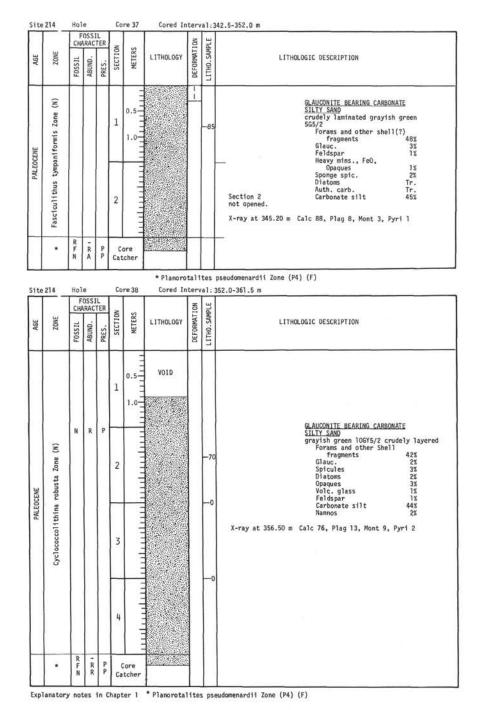
Site 214	н	lole		Co	re 29	Cored In	terval:2	66.5-276 m		S	ite 2	14	Hole		Core	30	Cored In	terval:	276.0-285.5	m	
AGE ZONF		FOS: CHARA TISSOJ	CTER	SECTION	METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE		LITHOLOGIC DESCRIPTION		AGE	ZONE	FOS: CHARA TISSOJ	CTER	SECTION	METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	
				1	0.5-				<u>NANNO 002E</u> pinkish gray (5YR8/1) Sections 1 to 4 too wet to open.				F	F	1.41	0.5			white	<u>NAWNO OOZE</u> pinkish gray	
		N A F C	F	2									FC	F	2	n i i i i i i i i i i i i i i i i i i i					
s grandis Zone (N)	(P14)	FC	P	3							747	(P12) (F)	FC	F	3						
MIDDLE EOCENE Chiasmolichus grandis	Truncorotalo1			4	The second se						MIDDLE EOCENE	Uniasmolithus grandis zone (N) Morozovella lehneri Zone (P12) (F)	FC	F	4						
	1	FA	P	5							10	Moro	FC	р	5	*****		-54	D	<u>NANNO_OOZE</u> Forams Nannos Clay	2% 95% 3%
Owhen I foot day	beckmann1 (P13) (F)	FΛ	F	6			-96	white	FORAM RICH NANNO OOZE				FC	F	6			-14	,	<u>NANNO OOZE</u> very bale orange (10 Forams Nannos	15
	-	R - F A N A		Cat	ore tcher								R F N A	_	Cor Catci	her			1	Clay	96% 3%

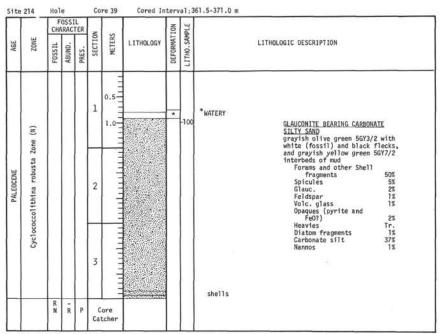
Explanatory notes in Chapter 1

Bite 214		Hole FOSS CHARAO TISSOJ	TER	NOI	WETERS		.ITHOLOGY	EFORMATION	T	285.5-295.0 m	OLDGIC DESCRIPTION		AGE	ZONE	FOSSIL P	ABUND.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
olithus grandis Zone (N)	Morozovella 1: hneri Zone (P12) (F)			1	0.5	Ì					NANNO 007E Very pale orange (10YR8/2 with mottles of white, br and dark gray) own,		eri Zone (Pll) (F)	F	A F	1	0.5				Section 1 too wet to open. <u>NANNO 002E</u> very pale orange (10YR8/2)
	Morozove			3	-				-11	white white with gray borders (smear slide)	NANNO OOZE Forams Nannos Clay	10% 87% 3%	MIDDLE EOCENE	notetrina alta Zone (N) a kugleri Globigerinatheka kugleri	F	A F R P A F A F	3	and an				
Zone (N)	Globigerinatheka kugleri Zone (P11) (F)			5		手				white white white white white				Nanno aragonensis Zone (P10) or Globigerinatheka Zone (P11) (F)	F	A F	5			-		
		R F C A	FF	6 Cat	are				-9		NANNO OOZE Forams Nannos Clay	5% 92% 3%		Hantkenina ar	RFN	- C F A F		ore		-	-135	Nannos 79-84% Sparry calcite 10-15% Forans 3% Clay 3% Opaques Tr.

Explanatory notes in Chapter 1

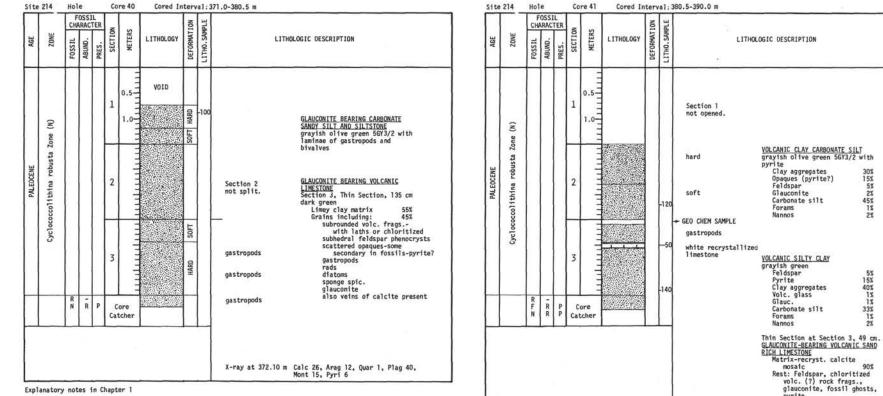
144


NO NO<	Site 214	Ho	1.00		Core	e 33	Co	ored In	iter	/a1::	304.5-314.0 m		Site	214	н	ole		Co	re 34	4 Cored Inter	rval:	314.0-323.5 m		
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	AGE ZONE			_	SELLION	METERS	LITH	IOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION		AGE	ZONE		HARA	CTER	110	METERS	LITHOLOGY	LITHO. SAMPLE	LITH	OLOGIC DESCRIPTION	
Explanatory notes in Chapter 1 Explanatory notes in Chapter 1	EARLY EOCENE Disconster subiodoensis Zone Acarintina densa Zone (79)	RF		F	1 1 2 3 4 5 5 6	re		┙┽╹┙╹┿┍┿┿┙┙┙┙┝┙┝┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙		-87	NANNO DOZE very pale orange (10YR8/2) Forams Nannos Clay	94% 3%		Morozovella formosa Zone (P7) Discoaster lodoensis Zone (N) to M. aragomensis Zone (P8) Acarinina densa Zone (P9)			F PF F F	1 2 3 4 5 6 cav	1.0		-105	creamy white, moderately firm	(N9) Forams Nannos Clay F <u>ORAM RICH NANNO OOZE</u> Feldspar Forams Nannos	


SITE 214

145

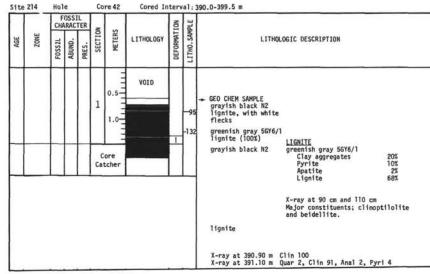
FOS: CHARA TISSOJ F A	BRES.	CTION	METERS	LITHOLOGY	M DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DE	ESCRIPTION		AGE	ZONE	CH	OSSIL ARACTE	TD I	ERS	LITHOLOGY	ATION	SAMPLE	7200		
FA	F		-	<u> </u>	121	_					ZG	FOSSII	ABUND.	PRES. 3	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHO	LOGIC DESCRIPTION	
FA	PF	1 2 3	1.0		ATER	-130	very 1 chalk ooze chalk cream ooze GlAUCO chalk cream ooze Gla chalk For ooze Nan chalk Cla ooze FORAM chalk Gla ooze FORAM	and white, speckled w succonite rams inos BY BEARING NANNO OOZE succonite rams inos	and and a second se	LATE PALEOCENE	thus kleinpelli Zone (N)	N		1 2 3	tion of the	VOID	WATERY	V1) 40	pale olive 10Y6/2 speckled grayish green 565/2 shells, including brachipod shell clay bivalves	GLAUCONITIC CARBONATE SA grayish green 10GY5/2 Glauc. Forans and other Shell fragments Carbonate silt (few mannos only) Clay Feldspar, Opaques GLAUCONITE BEARING CARBO dusky yellow 5Y6/4 Glauc. Carbonate silt Nannos Clay Feldspar, Apatite SILTY SHELL RICH GLAUCON Speckled yellowish gray Glauc. Forams and other Shell fragments Silt and Clay size inc. Carbonate material, Heavy mins. SAND FRACION Glauc. Apatite Apatite	251 201 301 157 101 0NATE SI 755 21 182 Tr. KITE SAN
F C	P	4	- Theorem			-90	spots Gla Fon Nan	of glauconite auconite rams nnos	3% 5% 82%		Helfol			4					Section 4 not opened.	Forams Mica Opaque Unidentified Other shells	7% 9% Tr. 4% 3% 1%
-	0	A P C P	A P 4	A P 4	A P 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A P 4	A P	A P 4 C P C	A P C P	A P 4 P 4 4 4 4 4 4 4 4 4 4	A P GLAUCONITE BEABING NANNO CHALK 4	A P 4 P 4	A P 4 P	A P 4 4 4 4 4 4 4 4 4 4	A P 4 P	A P 4 4 9 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A P 4 P 5 P	A P 4 P 5 P	A P 4 P 5 P	A P 4 P 5 P P P 5 P P P 5 P P P P 5 P P P P P P P P P P P P P P P P P P P	A P 4 P 4 P 4 P 4 P 4 P 5 C P Core C P C P C P C P C P C P C P C P C P C


Explanatory notes in Chapter 1

SITE 214

147

Explanatory notes in Chapter 1


148

SITE 214

30% 15% 5% 2% 45% 2%

5% 15% 40% 1% 1% 33% 1% 2%

pyrite X-ray at 384.50 m Calc 12, Quar 1, Plag 39, Mont 21, Pyri 27 X-ray at 384.80 m Calc 7, Plag 31, Mont 38, Pyri 24

Site			OSSI ARAC			re 43				93.0-402.0 m	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLI	LITHOLOGIC DESCRIPTION	
						ore cher	6242242243			green gray 56Y5/1 and light green N7 interbedded very light gray N8 Peldspar Clay Pyrite	60% 30% 10%

		OSSI		N			ION	PLE		
ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	
					0.5 1.0			-100 -124	TUEF interbedded light blui 587/1 and medium gray l TUEF light gray N7 Feldspar Clay (volcanic) Pyrite <u>PYRIIIC CLAYEY LIGNITE</u> black N1 Clay Lignite Pyrite	55 gray 15% 75% 10% 15% 70% 15%
									X-ray at 90 cm K-Feldspar Pyrite Plag. Feld. Gibbsite Kaolinite Beidellite Montmorillonite X-ray at 110 cm Quartz K-Feldspar Kaolinite Pyrite Beidellite	17% 14% 5% 4% Abundant 56% 13% 60% 21% 7% Abundant

			RAC		N	5		NOL	SAMPLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAM	LITHOLOGIC DESCRIPTION
					1	0.5	VOID		=105	UIGNITIC VOLCANIC CLAY yellow gray 5Y8/1 <u>PYRITIC CLAYEY LIGNITE</u> black N1 <u>VOLCANIC CLAY</u> light olive gray 5Y6/1
						ore tcher	0000000			- Weathered Lapilli Tuff?

Explanatory notes in Chapter 1

	_	e OSSIL	-	T	-		nter	1			Ē	T	14	Hole FOS:	112	T	re 47		—	-	31.0-440.5 m
ZONE		ARACTI	PRES. 20	METEDC	NCIENS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION		ACF.		ZONE	CHARA UNITED	CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
			1	0.1	-	VOID	E SE STA		pale blue green 5BG7/2 CLAY Clay pinkish gray 5YR8/1 CLAY interbedded purple and gray CLAY, with LAPILLI brownish gray 5YR4/1 (flecked Feld	dspar 1 y aggregates, Fe stained 9 dspar oxides	0% 0% 5% 5% 0%						0.5 1.0 ore tcher	VOID			Weathered L <u>APILLI TUFF</u> and LIGMIT matrix dark greenish gray 564/1, with white and dark clasts lignit as above LIGMITE as above <u>VOLCANIC CLAYSTONE</u>
			2		Ŧ		E	F'		dspar 4 stained clay 6	0% Si	te 21	14	Hole		Co	re 48	Cored In	terv	a1:4	40.5-448.0 m
					HUITIN	V010 494		14/15	black LIGNITE clay flake LAPILLI interbedded LIGNITE and CLAY CLAYEY LAPILLI TUFF CLAYEY LAPILLI TUFF	dspar	2%		ZONE	FOSS CHARA TISSOJ	CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
			3	5	THHIT			1	medium light gray N6. clasts dark greenis gray 5GY4/1 <u>CLAYEY</u> Felt LAPILLI TUFF; lapilli of not	stained clay 4 stained clay 3	2% 6% 2%					1	0.5				<u>GLASSY BASAL</u> T medium dark gray N4 fine-grained
				Core				Z	as above, but harder, grayish green 565/2, with grayish yellow green 56Y7/2 <u>LAPILLI</u> black <u>LIGNITE</u> interbedded with greenish gray 56Y6/1 <u>CLAYEY LAPILLI TUFF</u> black and brown <u>LIGNITE</u> black and brown <u>LIGNITE</u> subangular closely par siliceous cement in pu	-subrounded to cked with arts.						2	1.0				medium-grained <u>BASALT</u> vesicular and anygdalar <u>BASALT</u> fine-grained <u>BASALT</u> , medium dark gray N4, similar to 48/1.
									Thin Section, Section Lapili are all lava many strongly altered clay or dark brown vo fragments - all retai lath ghosts sim. sili	fragments- I to pale gray Dcanic glassy n feldspar							ore tcher				- medium dark gray N4 <u>BASALI</u>
									to thin section at 44	cm.	S	ite 2	214	Hole	_	C	ore 49	Cored I	nter	val:	448.0-457.5 m
												AGE	ZONE	CHAR	ACTER	TION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION

150

Explanatory notes in Chapter 1

.0

Core

Catcher

fine grained <u>BASALT</u> medium dark gray N4, very similar to Core 48 Section 1.

BASALT

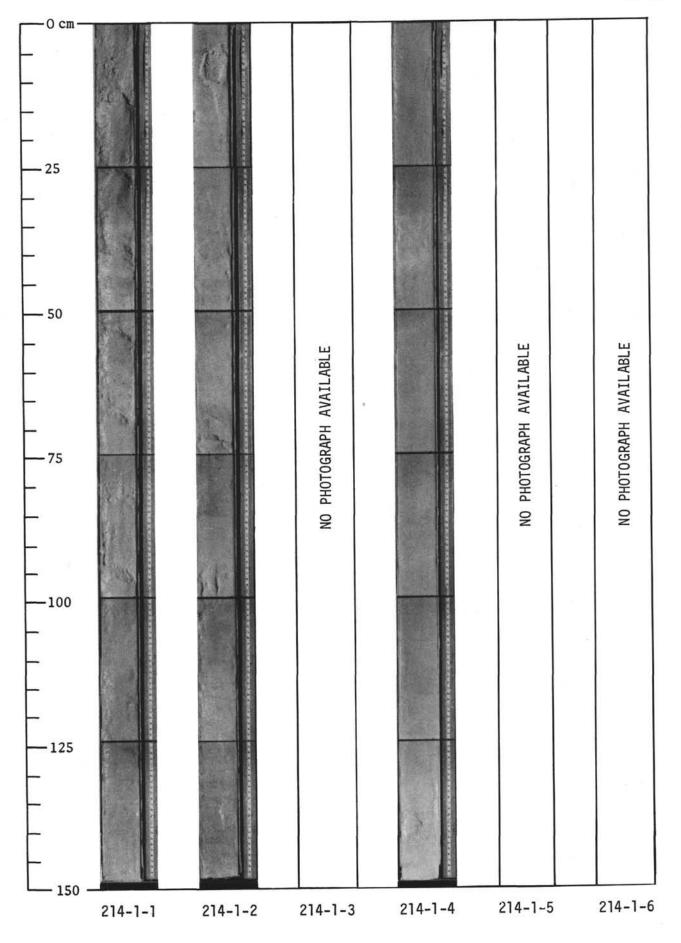
ite		-	e	-	-			-		
		CHA	RAC		z	s		NOI	APLE	
AGE	ZONE	FOSSIL	ABUND.	PRFS.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
					1	0.5	VOID			very fine grained <u>BASALT</u> , medium dark gray N4
						ore -				very fined grained <u>BASALT</u>
110	214	Но1				tcher	Cored Ir			167 D_476 5 m
Site	214		e OSS IRAC			ore 51	Cored Ir	1		167.0-476.5 m
Site	214 3NOZ	F	055				Cored Ir	DEFORMATION	LITHO.SAMPLE	167.0-476.5 m LITHOLOGIC DESCRIPTION
		F	OSS	TEF		ore 51		1		LITHOLOGIC DESCRIPTION

Site 214 Hole Core 52 Cored Interval: 476.5-486.0 m FOSSIL DEFORMATION LITHO.SAMPLE SECTION METERS ZONE AGE FOSSIL ABUND. PRES. LITHOLOGY LITHOLOGIC DESCRIPTION VOID 0.5-Collection (order not known) of LIGNITE and WEATHERED LAPILLI TUFF (grayish blue green 5BG5/2). 1.0--115 one spectmen no age -145
 RASALT debris: aggregates of Iron oxide and brown glass
 8

 Feldspar
 9

 Chlorite
 11

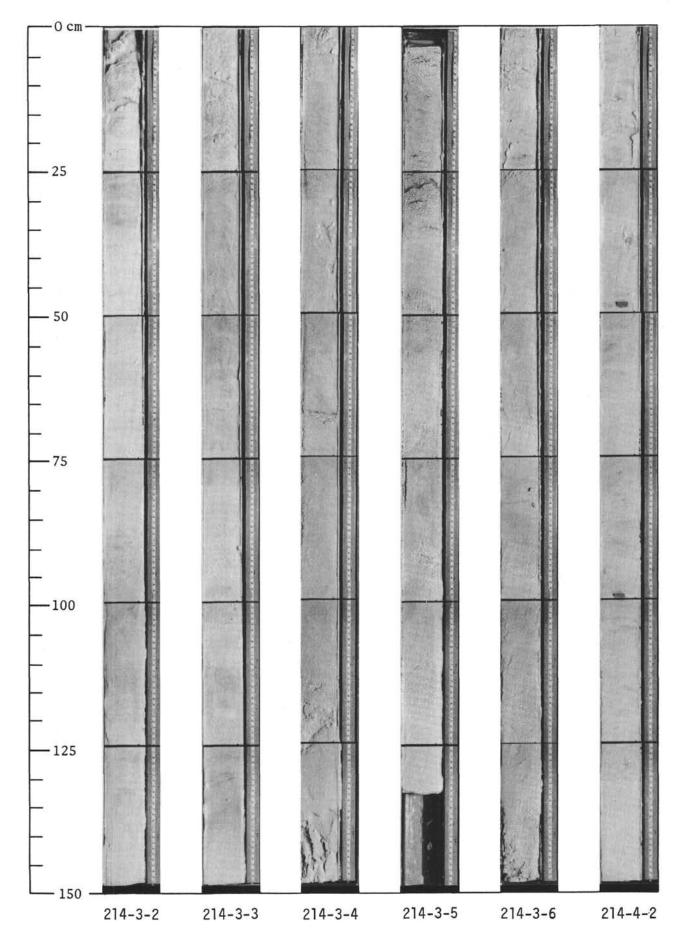
 Remainder
 11
 RP Core 83% 5% 10% 2% Catcher CHLORITIC CLAY: Fe stained clay Clay, clear Chlorite 45% 45% 10% X-ray at 130 cm 63% 23% Present 3% 5% 6% Montomorillonite K-Feldspar Beidellite Quartz Siderite Calcite Thin Section 120-123 cm. Variety igneous rock fragments and lignite. lavas - lath textures glassy lavas with spherulitic and perlitic cracks feldspar crystals 143-145 cm most fragments glassy lavas with perlitic textures VOLCANIC SILTY CLAY X-ray at 477.80 m Calc 6, Side 5, Quar 3, Feld 23, Mont 63

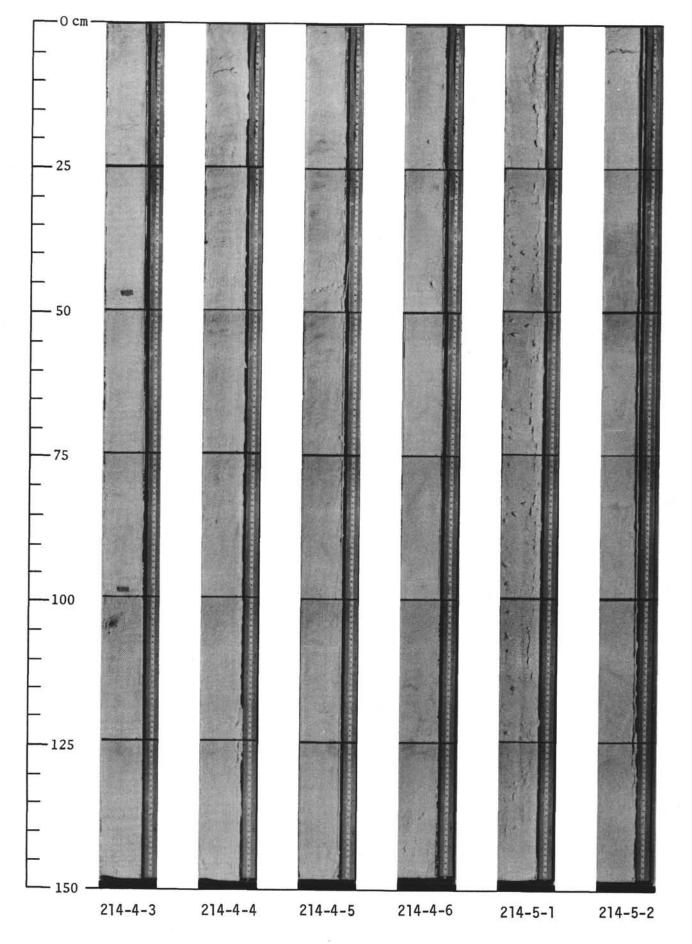

Explanatory notes in Chapter 1

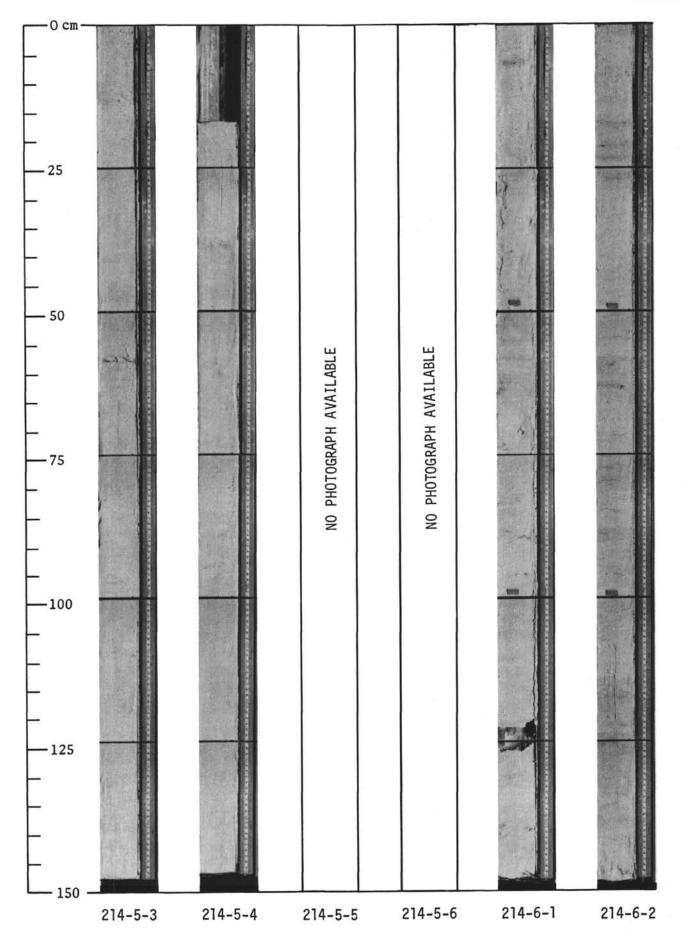
151

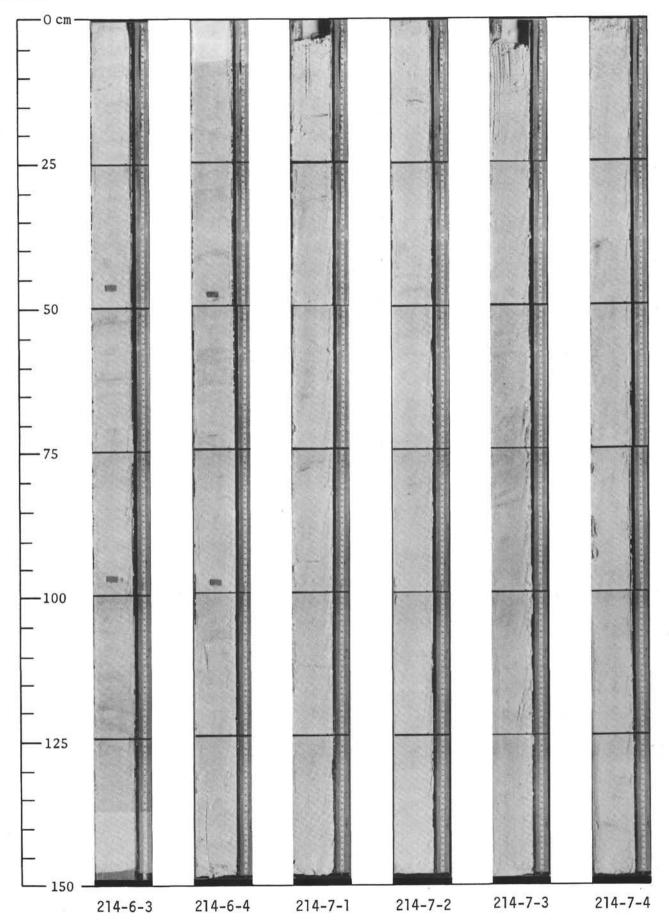
Site	214	Ho1	-	_	Co	re 53	Cored In	terv	al:	86.0-490.5 m		Site
AGE	ZONE		VRAC . ONUBA	TER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION		
					1	0.5		/	/	 greenish gray 5GY6/1 LAPILLI TUFF, hard chilled margin of fine grained <u>GLASSY BAS</u> gray N3 coarser grained 	ALT, derk	
					2	in the training	VOID	- 1 la star	-	loose pieces of basalt, probably chilled i dusky blue green 58G3/2 basalt debris cuttings, including chunks of basalt	margin Devitrified glass Chlorite Feldspar Clay	
		Core Catcher					Thin Section, Sectio glassy lava fragm vesicular, etc chloritic amydal cavities lined wi	ents-perlitic,				

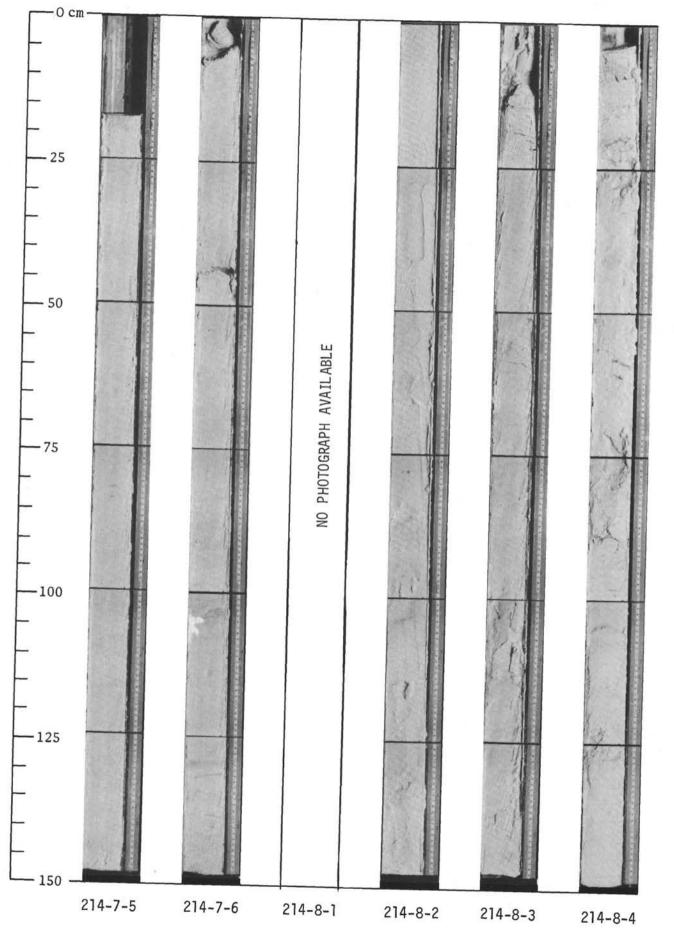
AGE	ZONE		FOSSIL CHARACTER					NOI	PLE			
		FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION		
					1	0.5	VOID			amygdalar <u>BASALT</u> , very coarse grained, dark greenish gray 5675/1; amygdales ⁻¹ -10 m, filled with calcite. Contact at point of disappearance of anygdalar very coarse grained basalt, dark greenish gray 56Y5/1: clinopyroxene plagioclase		
					2	ordered to 1				chlorite iron ore		
					3					vesicular <u>BASALT</u> , vesicles 3-9 mm in diameter amygdalar <u>BASALT</u> , amygdales 3-6 mm vesicular <u>BASALT</u> , vesicles 2-9 mm amygdalar <u>BASALT</u> , amygdales 1-5 mm coarse grained <u>BASALT</u> , dark greenish gray 5GY5/1, similar to Core 54, Sections 1 and 2.		
						ore tcher				vesicular <u>BASAL</u> I, vesicles 1–5 mm amygdalar basalt		

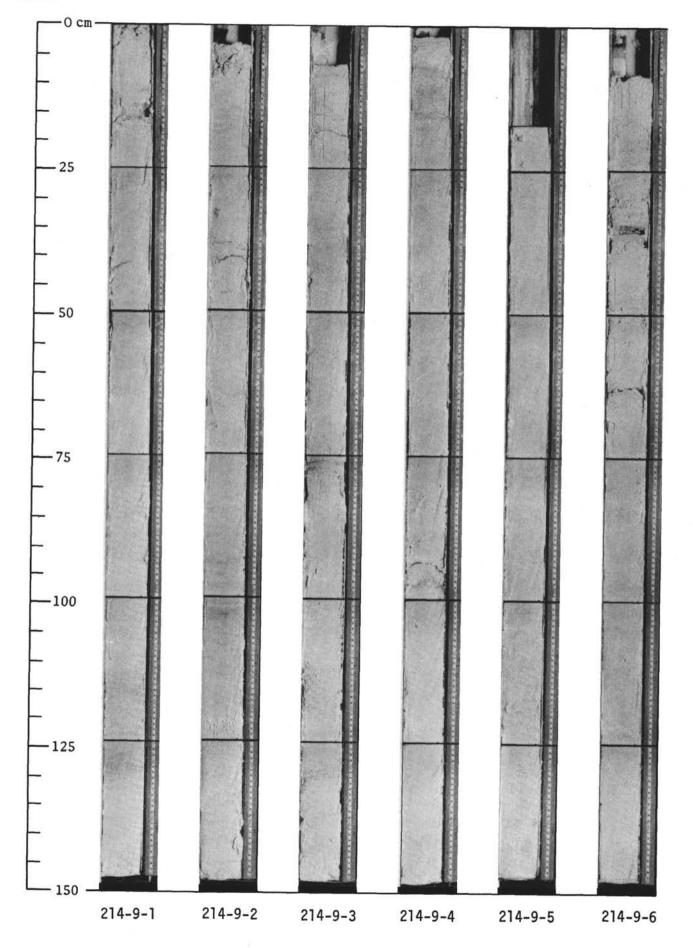

Explanatory notes in Chapter 1

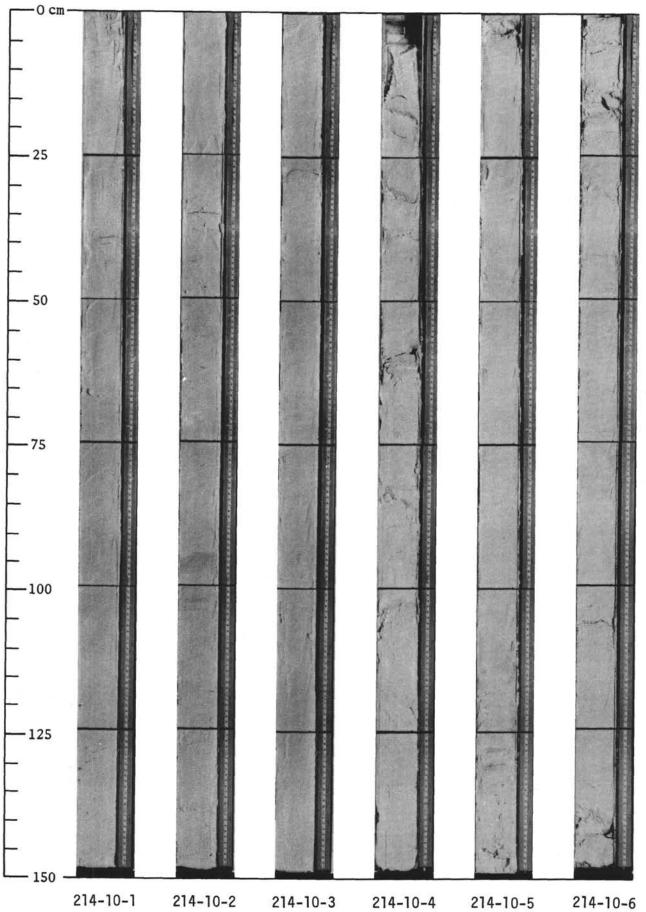


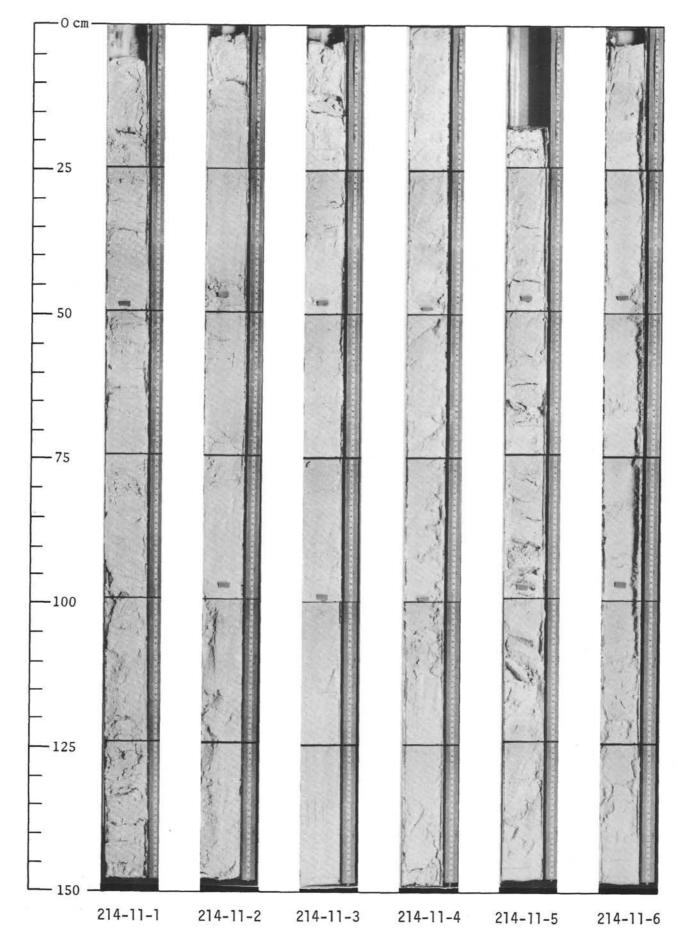

SITE 214

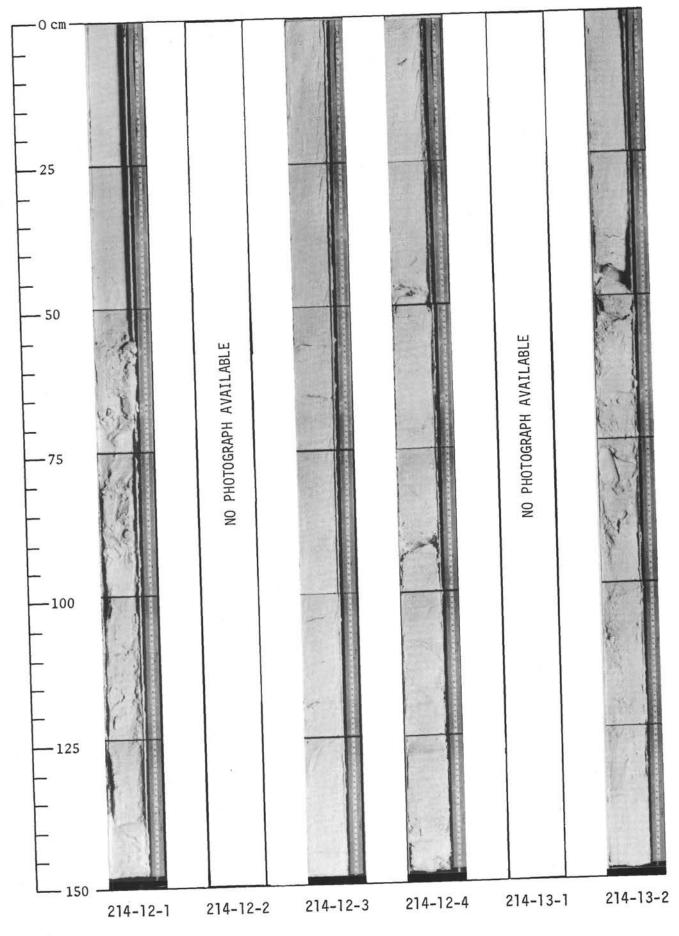

153

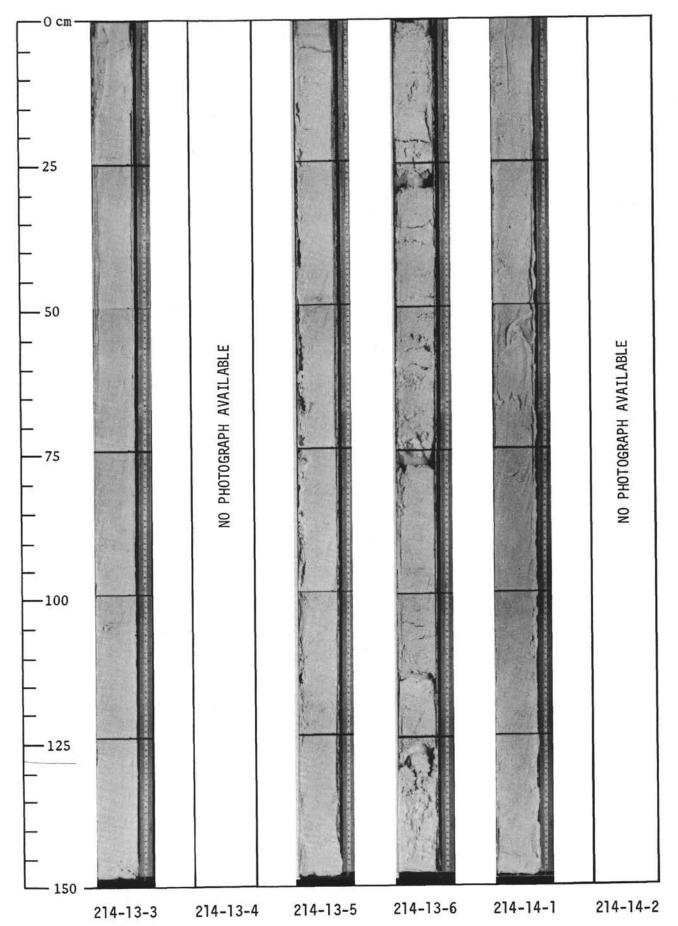

- 0 cm	NO PHOTOGRAPH AVAILABLE					
 	214-2-1	214-2-2	214-2-3	214-2-4	214-2-5	214-3-1

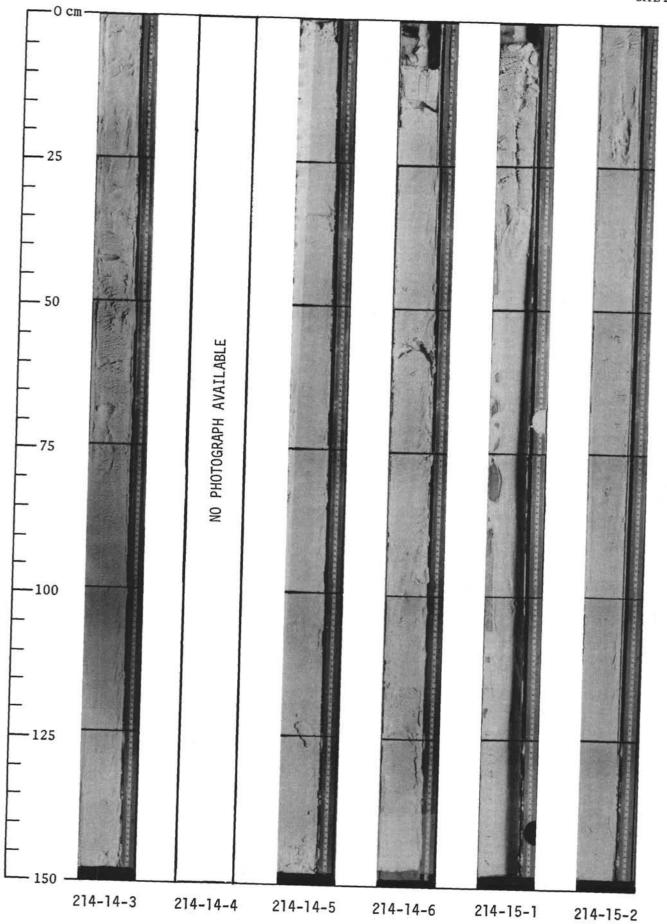


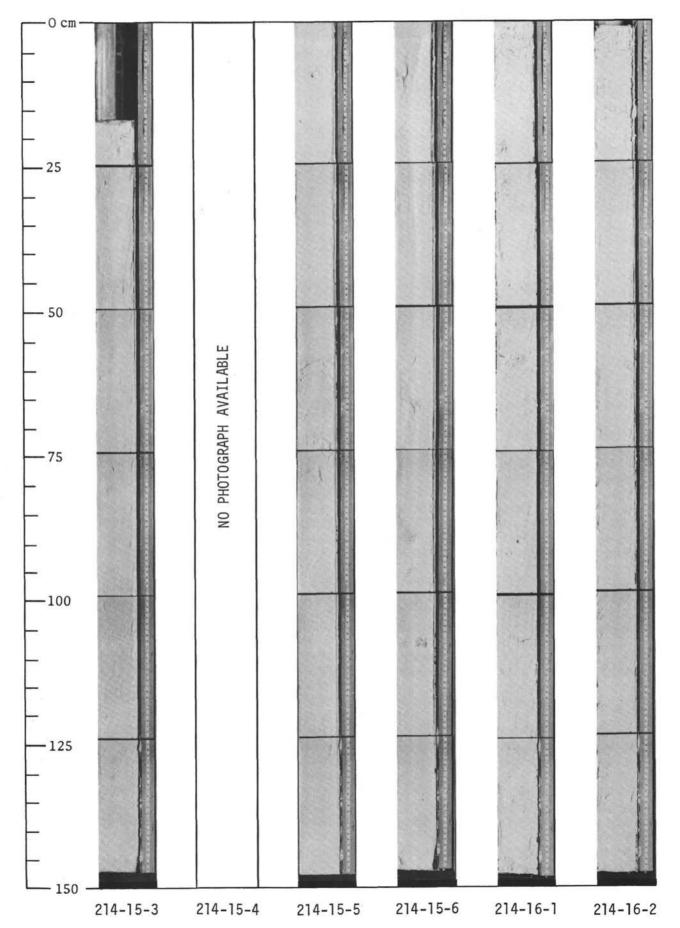


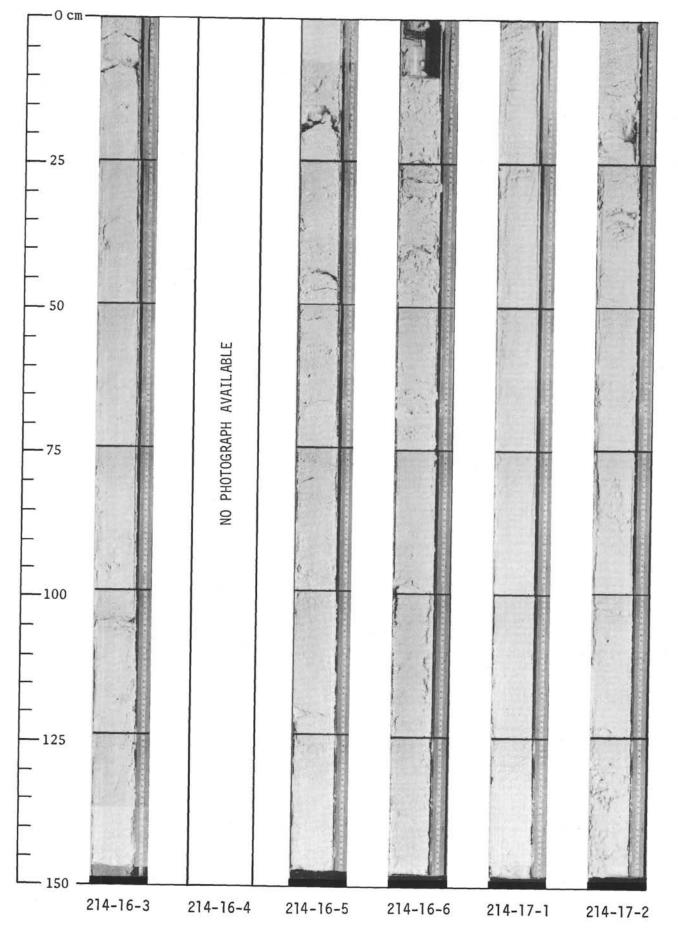


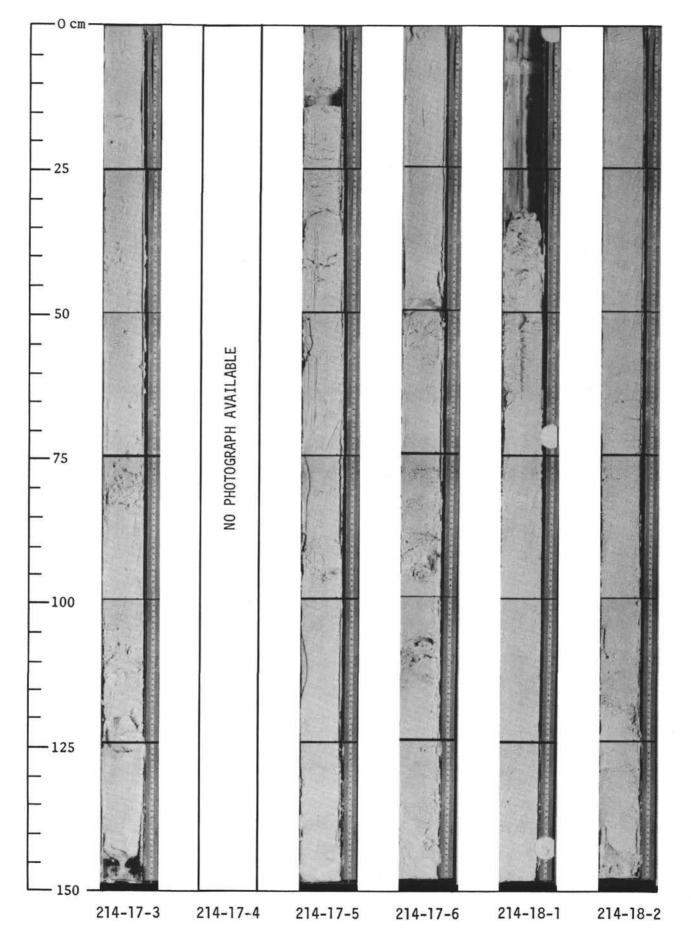


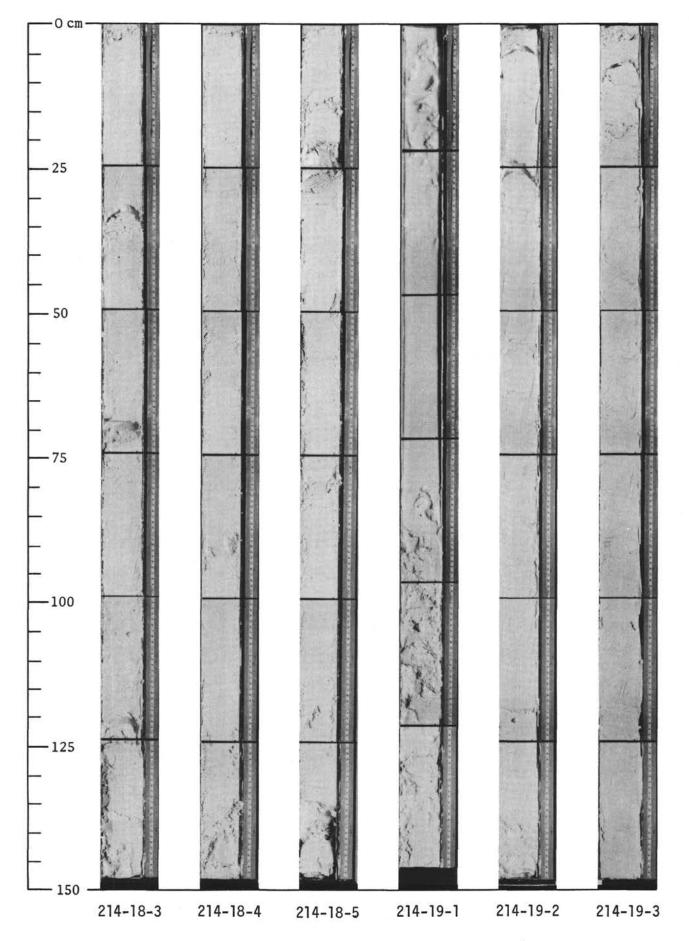


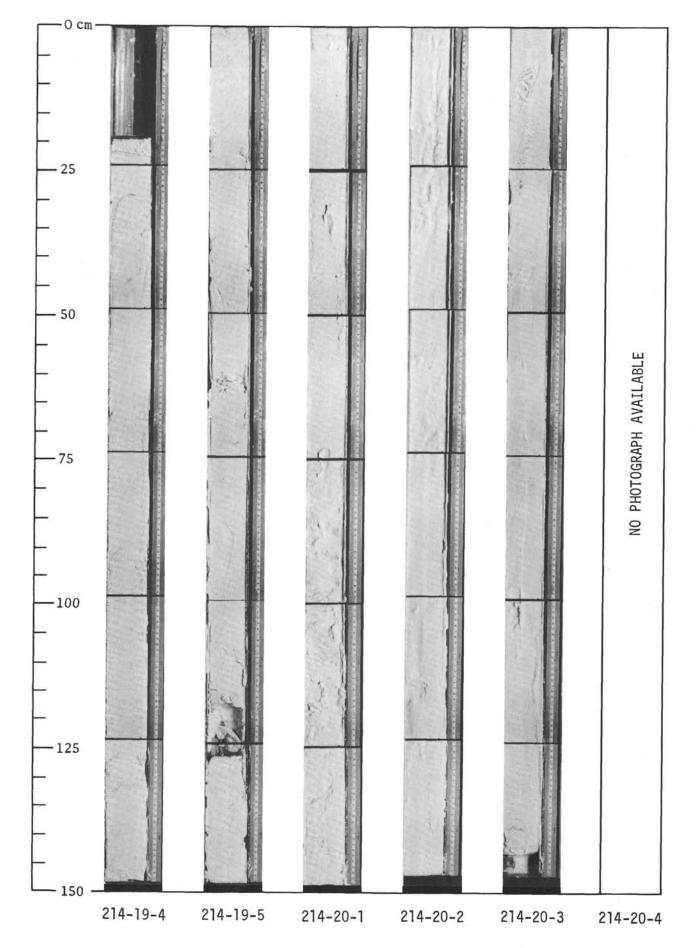


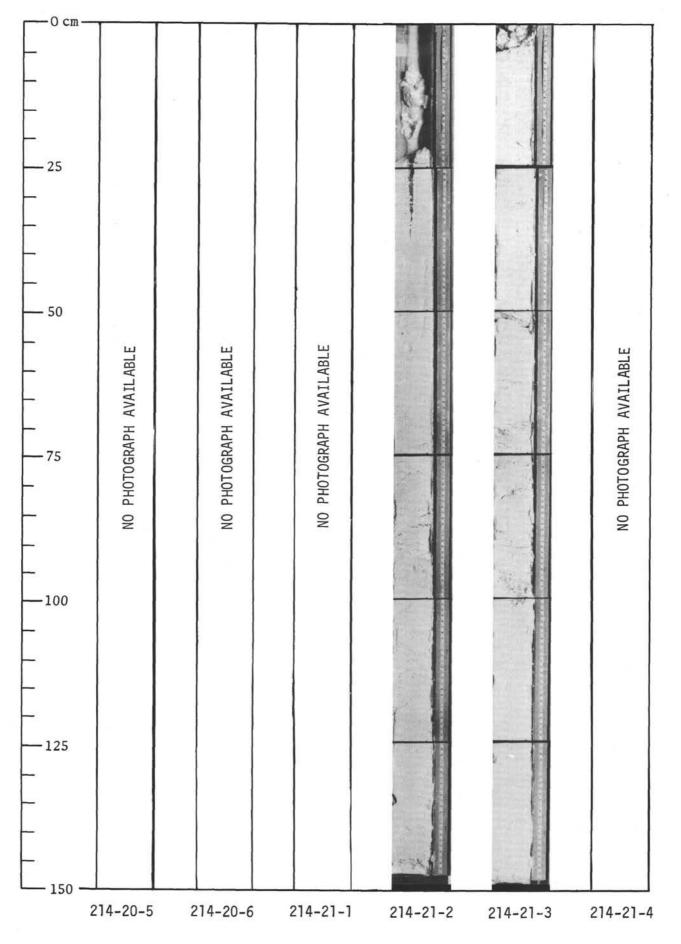


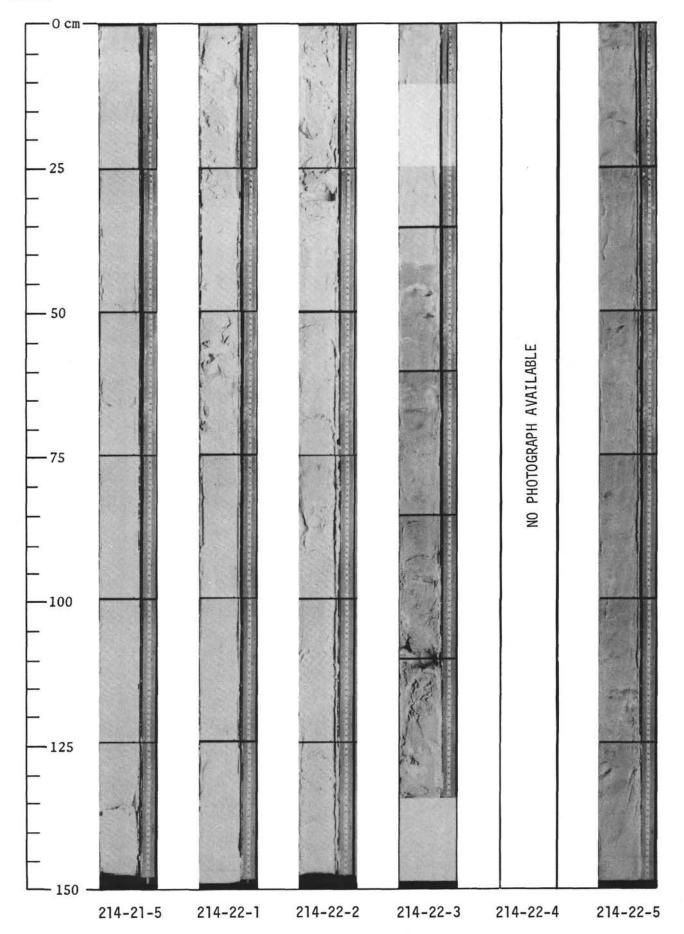


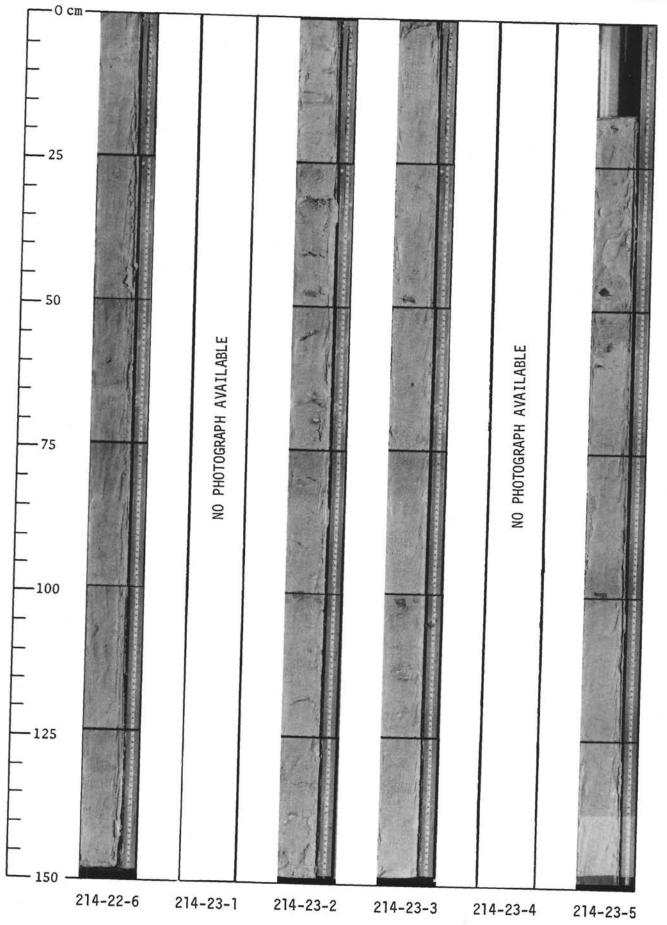


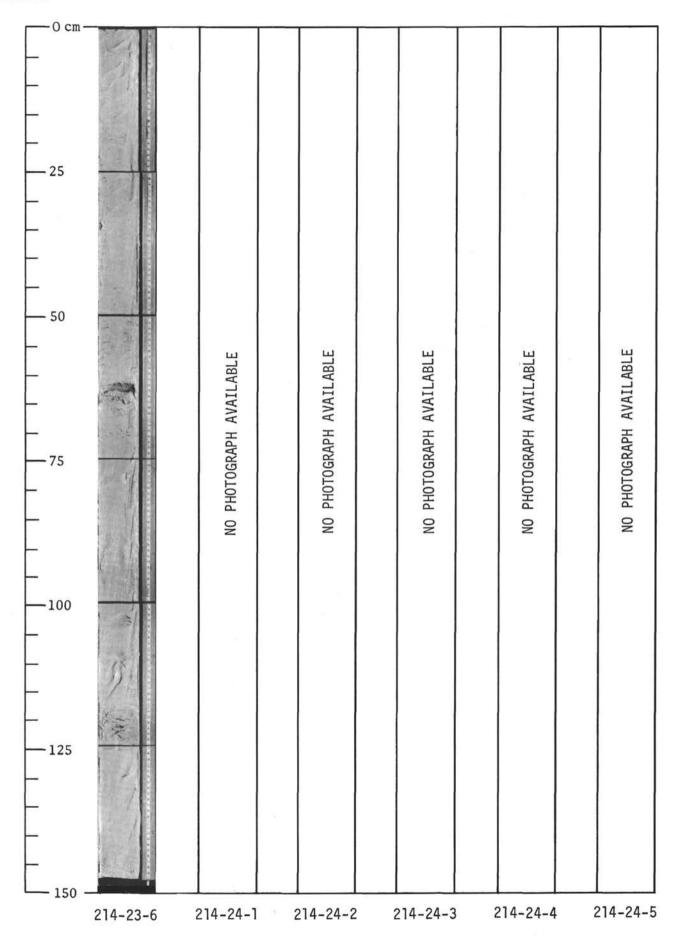


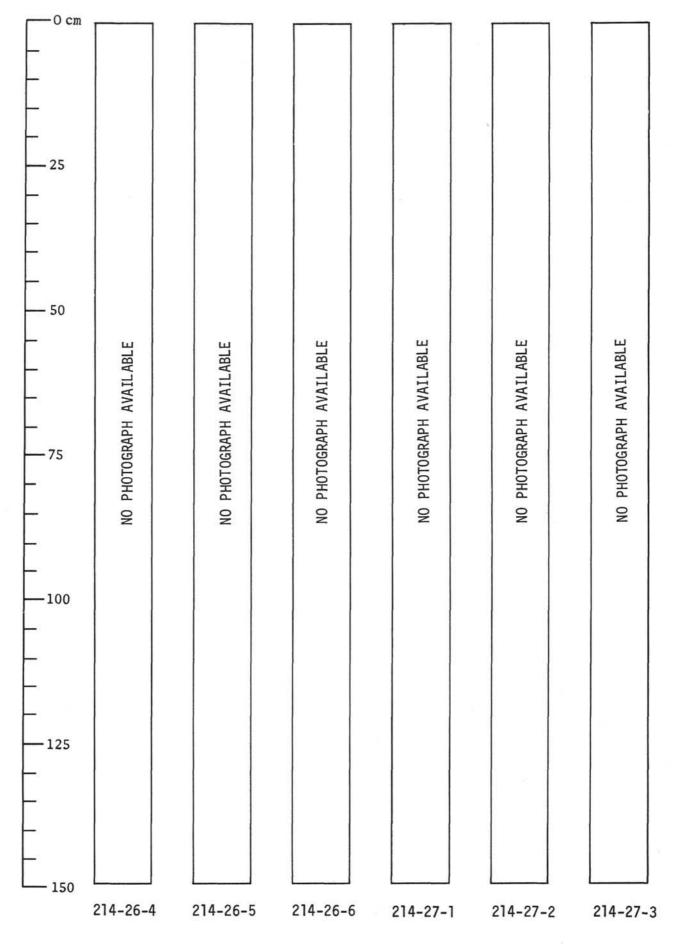


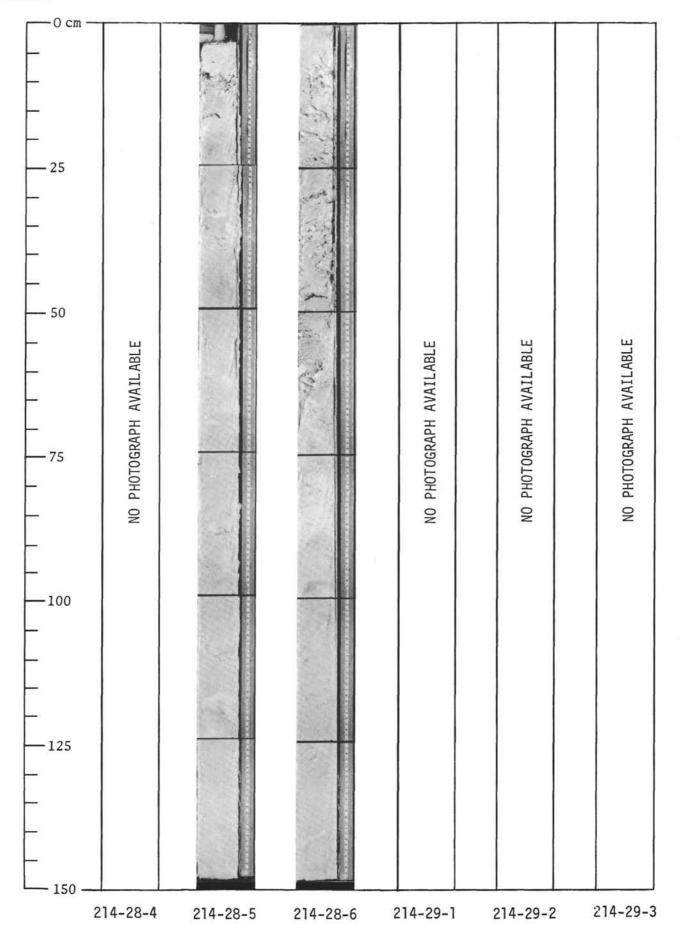


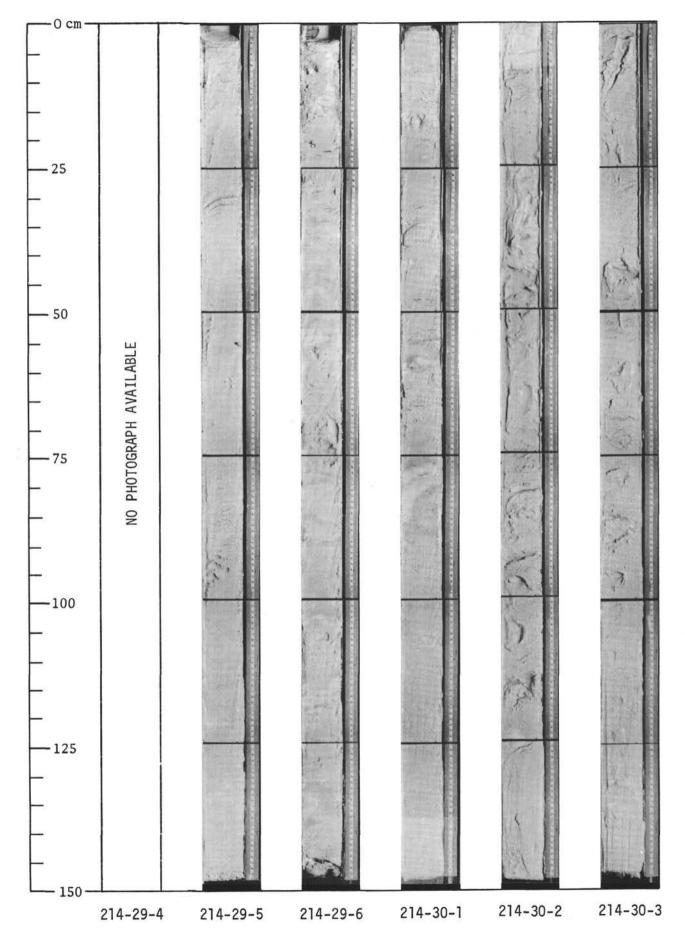


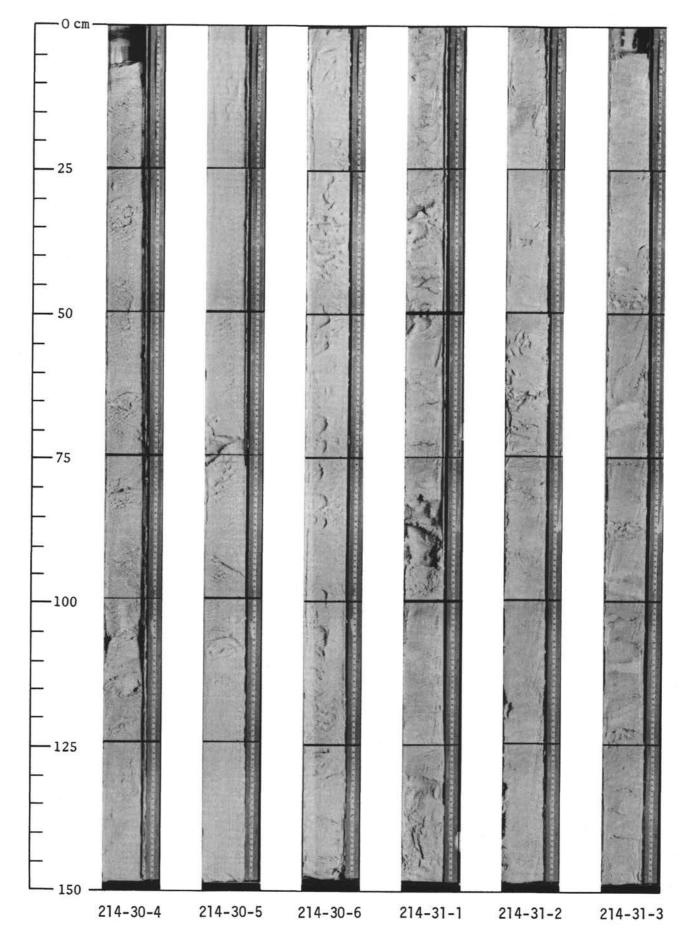


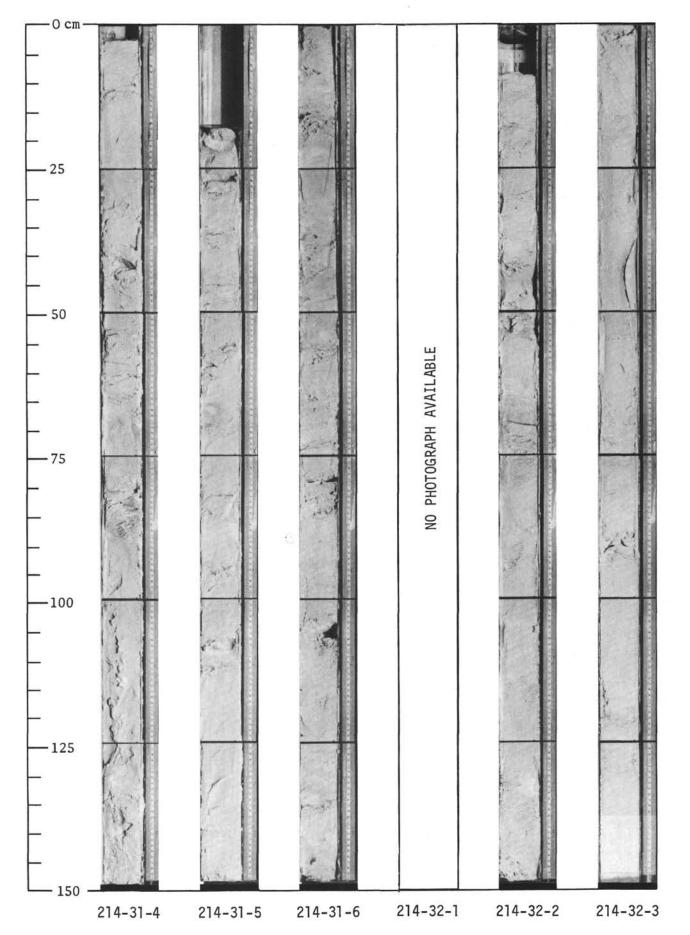


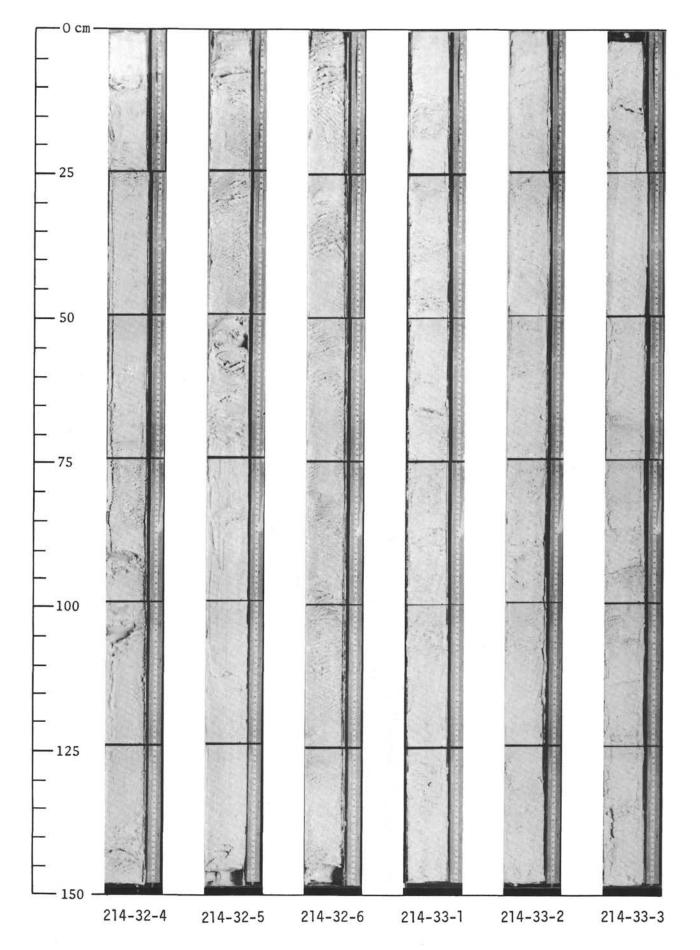


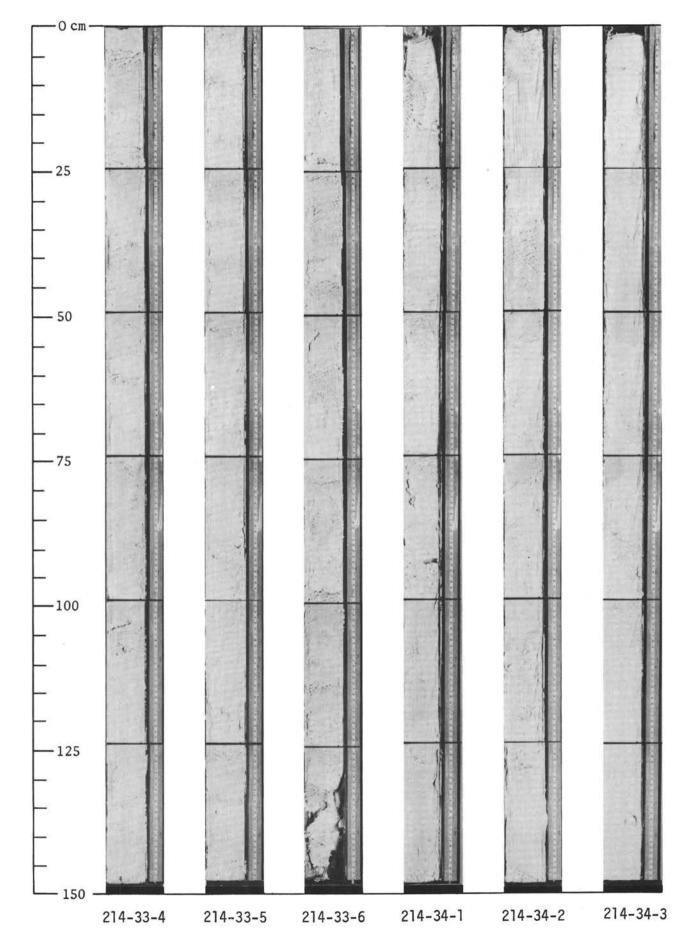


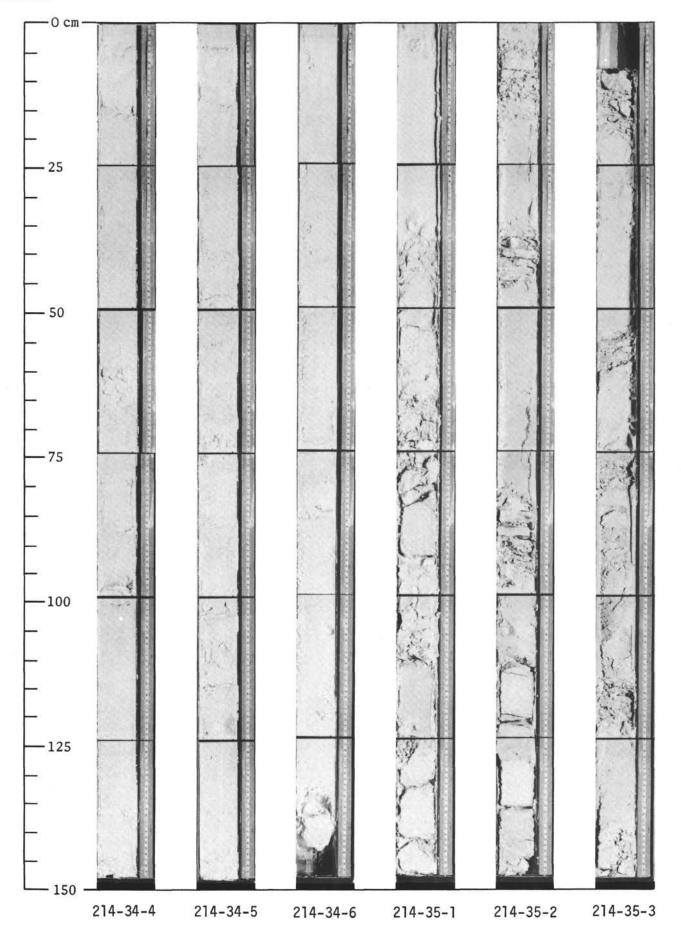


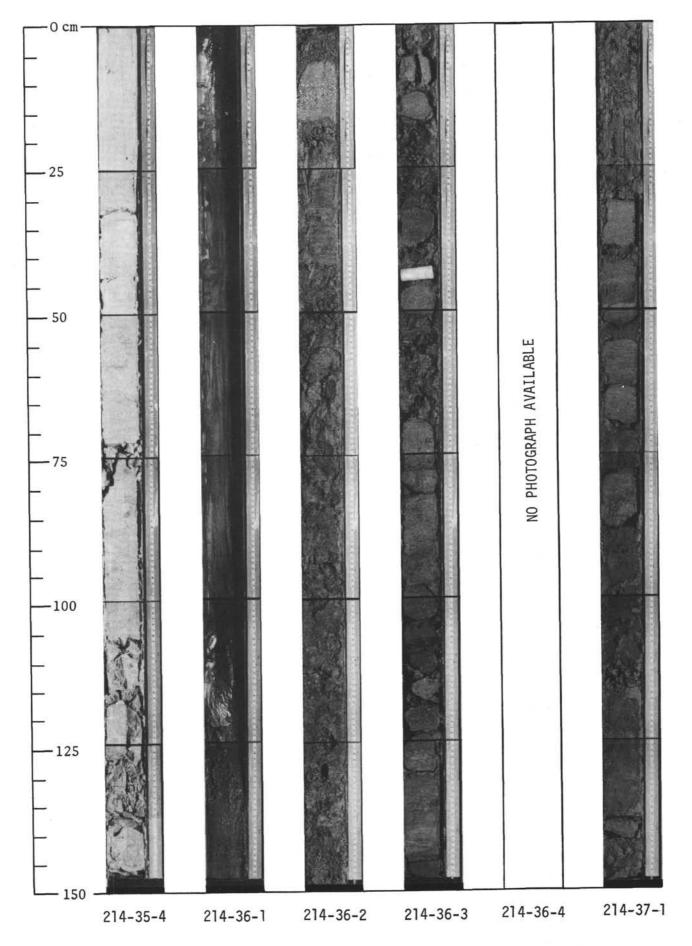


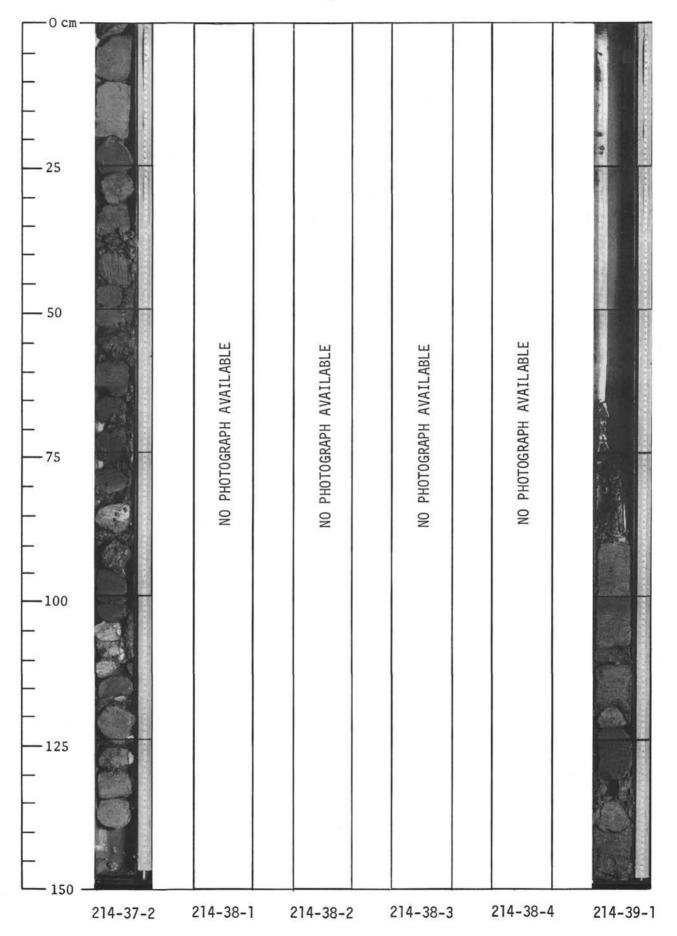

	NO PHOTOGRAPH AVAILABLE	NO PHOTOGRAPH AVAILABLE									
100 125 	214-24-6	214-25-5	5	214-25-	6	214-26-	1	214-26-	2	214-26-	3

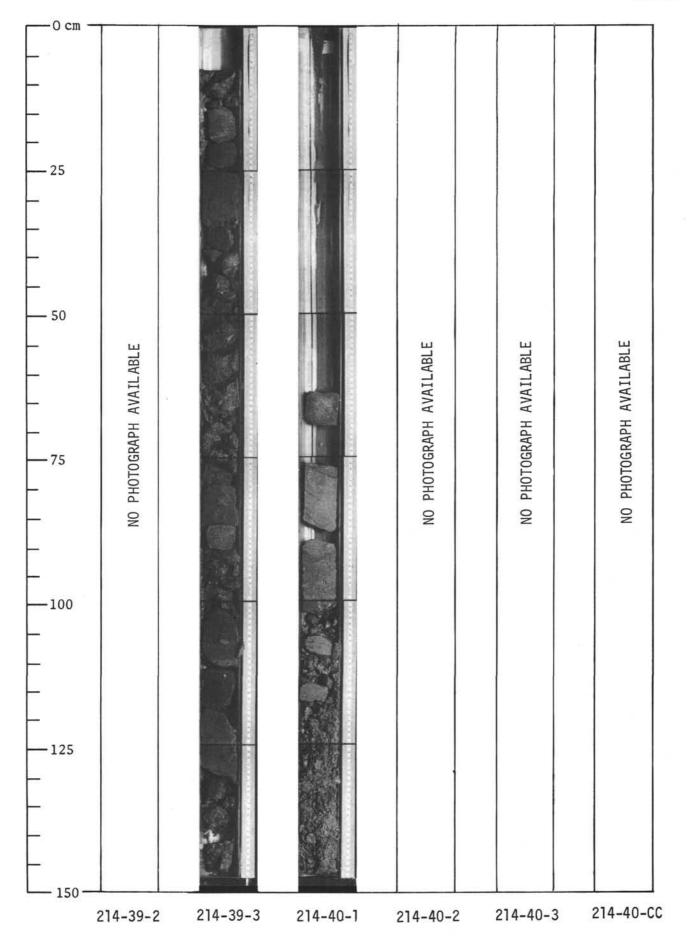


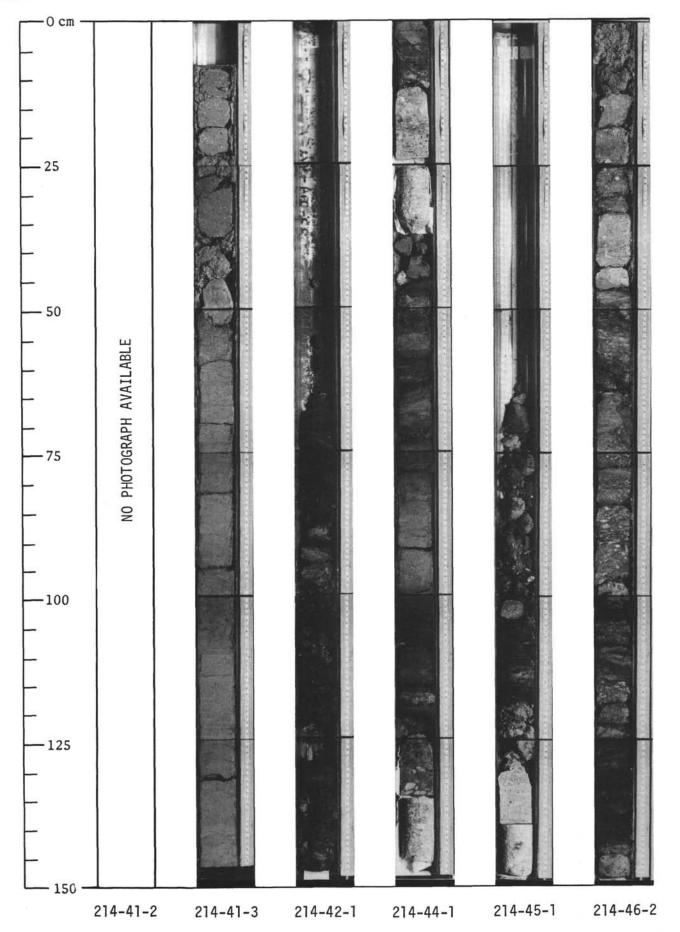


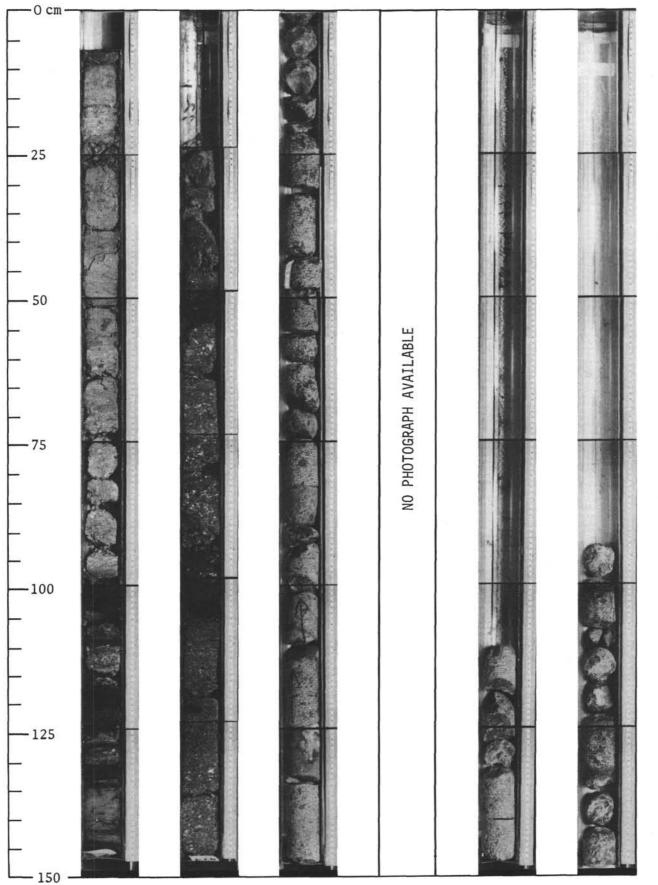




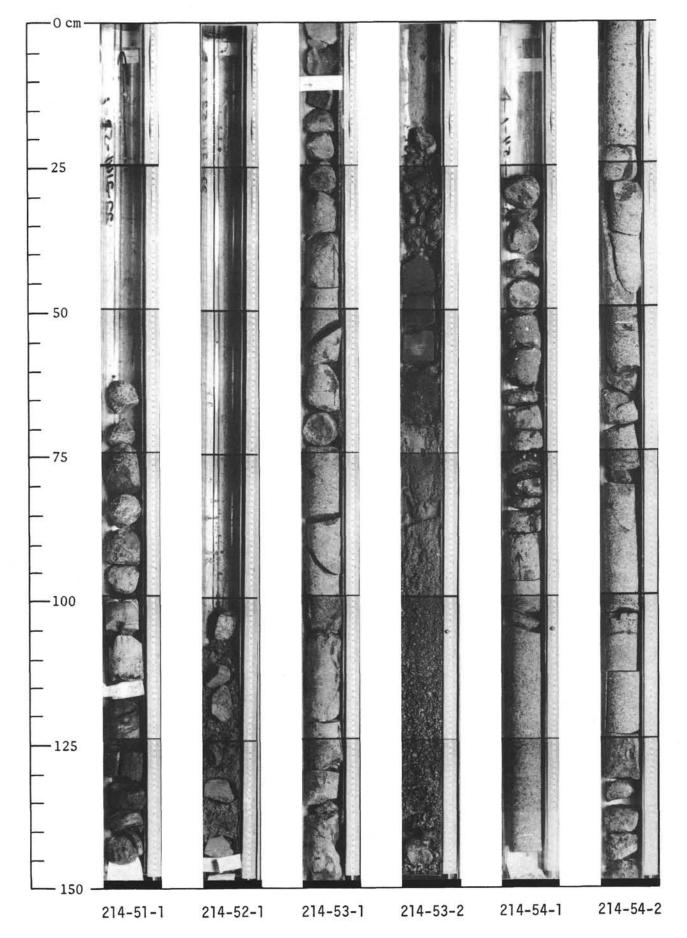


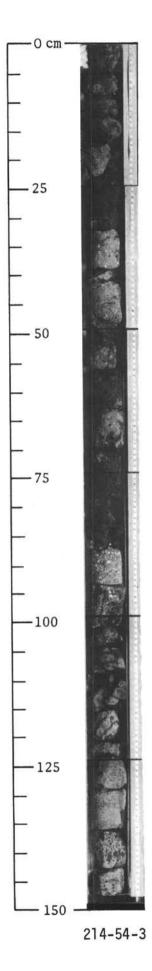






214-46-3


214-48-1


214-47-1

-1 214-48-2

214-50-1

214-49-1

