20. MINERALIZATION AND TRACE ELEMENT VARIATION IN DEEP-SEA PELAGIC SEDIMENTS OF THE WHARTON BASIN, INDIAN OCEAN

Anthony C. Pimm, Scripps Institution of Oceanography, La Jolla, California

INTRODUCTION

Several features of the cores recovered from Leg 22 indicated varying degrees and kinds of mineralization in pelagic sediments. The nature of this mineralization could not be resolved by the routine microscopic examination of smear slides onboard the ship. It was therefore decided to use analytical methods to investigate vertical variations in the chemical composition of the three sites (211, 212, 213) drilled in the Wharton Basin (Figure 1). In particular, the main features of interest which were to be investigated included:

1) basal iron-oxide facies (Sites 211, 212, 213)

2) possible effects of intrusion of sill (Site 211)

3) chemistry of reduced zones in clay adjacent to chalk units (Site 212)

4) dark banding in siliceous oozes (Site 213)

5) trace element composition of typical brown clays (Sites 211, 212, 213).

METHODS OF INVESTIGATION

Using the visual core descriptions made onboard ship, 58 samples were selected for a rapid reconnaissance study using the X-ray fluorescence technique of Fitzgerald and Gantzel (1971). Photographs of the energy dispersion spectra for each sample were compared with U.S.G.S. standard W1, and a semiquantitative estimate of the relative abundance of various elements was made by directly comparing the peak heights. For the analysis of Fe and Mn the samples were counted for 100-sec intervals, but for the trace elements counts over 30-min intervals were necessary. Photographs of all the energy dispersion spectra obtained during this study are stored with the Curator of the Deep Sea Drilling Project, La Jolla, California.

Based on the results of this preliminary study, 28 of the original 58 samples, which showed higher values (compared with W1) of one or more elements (Table 1), were prepared for atomic absorption analysis. This analysis was carried out on a Perkin-Elmer 403 Atomic Absorption Spectrophotometer using the digital concentration readout. For Ni, Cu, Pb, Zn, Mn, Fe, and Cr an air-acetylene flame was used with the standard burner head (4 in, single slot); for V and Ti a nitrous-oxide acetylene flame was used with the nitrous-oxide burner head (5 cm, single slot). Suggested Perkin-Elmer standard conditions and instrument settings were followed, except that the burner head was set perpendicular to the light path in the analysis for Mn and Fe because of the high sensitivity of the instrument to these the Perkin-Elmer Deuterium-Arc elements. Also. background corrector was used in the Ni determination.

All dried and ground samples were weighed to 0.5 g, placed in Teflon decomposition bombs, and wetted with distilled water. Approximately 1 ml of concentrated aqua (3 HC1:1 HNO₃) was added to the samples, and then 6 ml of concentrated HF was added. The vessels were then tightly covered and placed in the oven for 1 hr at 110°C. When cooled, samples were transferred to 50-ml polyethylene volumetric flasks and diluted to the mark with a solution of distilled water and ~2.2 g boric acid. The solutions were then mixed and stored in polyethylene bottles.

Standards were prepared from commercial 1000 ppm solutions to the following concentrations:

Cr	2.0, 1.0, 0.5 ppm	Pb	5, 2, 1 ppm
V	2.0, 1.0, 0.5 ppm	Zn	2.0, 1.0, 0.5 ppm
Ti	100, 50, 10 ppm	Mn	100, 50, 10 ppm
Ni	10, 5, 4, 2, 1 ppm	Fe	100, 50, 10 ppm
Cu	5, 2, 1 ppm		- 125 - 240 - 257 0

A set of U.S.G.S. standards was prepared and analyzed using the same instrument setup and method of preparation as for the samples. The values obtained agreed with the reported range of values for the U.S.G.S. standards, with one exception. The nickel values obtained were much higher than the reported range of values, but when the D_2 background correcter was used the results were within the reported range. Hence, it was concluded that the D2 background corrector removed interferences for Ni, and the sediment samples were rerun using this corrector. The element concentration values obtained and the reported range of values for the U.S.G.S. standards W1, G2, and BCR-1 are given in Table 2.

Ranges of error are recorded in Table 2 for each element. The error was determined by choosing random, duplicate samples and weighing, decomposing, and analyzing these samples along with the others and by comparing the difference between duplicate samples.

RESULTS AND DISCUSSION

The results of the reconnaissance semiquantitative analysis are given in Table 1 and of the detailed quantitative analysis of some of these same samples in Table 2. Most of the samples in the latter analysis are from Sites 212 and 213, and downhole plots of the results against lithology are shown in Figures 2 and 3, respectively.

In addition, some further analytical results were generously made available by R. Hekinian. These are major element analysis of nine sediment samples selected from Sites 211, 212, and 213 (Table 3) and trace element analysis of four igneous rock samples from Sites 211 and 213 (Table 4).

Figure 1. Location of DSDP Leg 22 sites in Wharton Basin.

Basal Iron-Oxide Facies

Many sites drilled during the course of the Deep Sea Drilling Project have shown the presence of an iron-oxideenriched sediment facies at the base of the sediment column immediately overlying basalts, which were presumed to have been generated from a mid-oceanic ridgetype spreading center. Descriptions of these iron-rich facies have been given by Peterson et al. (1970, p. 421), von der Broch and Rex (1970), von der Borch et al. (1971), Drever (1971), Lancelot et al. (1972, pp. 911-916), and Cronan (1973).

The iron-oxide-rich facies in Leg 22 sites was recognized on the basis of color and an abundance of iron-oxide-rich clayey aggregates and high relief grains seen in smear slides. Visual estimates show that the iron-oxide-rich clayey aggregates make up at least 15% and may range as high as 80% in places of the sediment. At Sites 212 and 213 the iron-oxide facies is about 30 and 40 meters thick, respectively (Figures 2 and 3). However, the analyses show that only the lowermost sample (probably within 5 meters of the basalt) in each site contained more than 10% total iron. Samples higher in this facies did not contain significantly greater (i.e., more than double) amounts of total iron normally present in more typical pelagic brown clays much higher in the succession.

Major element analyses (Table 3) confirm the existence of an iron-rich basal facies at Site 212, Core 38 and Site 213, Core 16. It should be noted that if the analyses were recalculated on a dry weight basis, the Fe_2O_3 content would be higher than that shown in Table 3. The Fe_2O_3 major element and Fe element analyses made by different laboratories and techniques show a good agreement: for example, the higher iron content at Site 213 than 212 and

TABLE 1 Semiquantitative X-Ray Fluorescence Analyses

	Corra							
	Core,							
Lab D	Section,							
Lab P.	Interval		0	-	TM			Other
NO.	(cm)	N1	Cu	Zn	Pb	Mn	Fe	Elements
Site 211	l.							
1	1-1 14-16	+	=	+	=	+	-	
2	10-CC	+	=	+	=		=	
3	11-CC	=	=	+	=	_	=	
4	11-CC	_	-	+	=	-	-	
5	12-1,11-13	=	=	+	=	-		
6	12-2,122-124	+	-	=	=	-	-	
7	12-2,136-138	-	-	+	=	_	-	
8	13-1,68-69	=	=	+	=	-	=	
9	13-1,69-70	=	=	+	=	-	-	
10	13-1,138-139	=	=	+	=	-		
11	14-1,18-20	=	=	+	=	-	-	
12	14-1,28-30	=	=	+	=	27.1		
13	14-1,61-63	=	-	=	=	-	-	7.0.
14	15-1,118-120	=	=	+	=	_	+	Zr+ Sr+
Site 212	2							
15	2-1,114-116	+	+	+	=	+	+	
16	2-3,111-113	+	+	+	=	+	-	
17	4-1,122-123	+	=	+	++	+	-	
18	10-1,32-33	+	+	+	+	+	—	
19	10-2,84-86	(-, -)	-	=	=	-	\sim	Sr+
20	10-4,79-80	=	-	=	=		-	Sr+
21	15-1,63	++	++	=	=		=	Rb+ Sr=
22	15-1,67-68	+	+	+	+	1	+	Sr=
23	15-1,97-100	+	+	+	++	+	+	Sr=
24	10-2,	+	+	+	+	+	+	
25	10-2,3-0	т 	-	- -	Ŧ	Ŧ	Ŧ	
20	26-2 81-82	-	11	+	-			Sr+
28	27-1 102-104	=	2	+	++	1	_	Sr=
29	27-1 128-130	++	+	+	++	-	_	Rb+
30	27-4.31-32	=	+	+	+	-	-	025.1
31	27-6,66-68	=	=	+	=	-	-	
32	28-1,55-57	=	=	+	=	-	_	Cr=
33	28-1,61	+	+	+	=		-	
34	29-1,57	=	=	+	=	-	-	Cr+
35	29-1,71	+	+	+	+	_	-	
36	35-3,80-82	=	=	=				Sr+
37	35-4,80-82	=	=	+		-	-	Sr+
38	35-5,10-12	=	+	+	=	-	-	Sr= Cr=
39	35-5,40-42	7	+	+	=	177	774	Cr=
40	30-1,107-108	+	-	+	=			
41	38-1 73-74	+	Ŧ	т +	-	-	-	
42	38-27	÷		+	-	2	+	7r = Cr + Ti + +
44	38-2.14	+	+	+	+	2	-	LI- CIT IIII
45	38-2,31	+	-	=	+	+	+	
Site 212	i anti anti anti anti anti anti anti ant							
Site 215			1203130					-
46	1-1,5-7	+	++	+	=		-	Br+
47	1-1,/0-/2	+	+	+	=	-		Br+
48	2-5,49-51	+	+	+	-	-	-	Br+
49	3-1,30-32	Ť.,	+	+	-	_		Br+
51	8-3 10-12	+T	+	+	-	TT	_	CITT
52	8-6 140-142	+	+	+	_	~		
53	9-6.80-82	+	+	+	=	_	_	
54	10-3.70-72	+	+	+	=	-		
55	11-4.72-74	++	+	=	+	+	-	
56	13-3,80-81	+	+	+	+	+	+	
57	14-2,70-72	+	+	+	-	_	_	
58	16-4 145-147	+	+	+	+	++	+	

Note: Value compared to U.S.G.S. standard W1; semiquantitative symbols used in table: - not detected, = same as W1; + higher than W1; ++ much higher than W1.

the low iron contents at Site 211 and in Core 37 at Site 212.

A comparison of the Mn and trace element content in Table 2 with other analytical results reported by Drever (1971, p. 966), Cronan (1973, p. 603), and Bostrom et al. (1969), shows there is no consistent enrichment of these elements in every instance, though some enrichment of one or other trace elements is apparent if the total iron content is particularly high. So far as Sites 212 and 213 are concerned, the only possible enrichment of another element in the most iron-rich zone is the higher Zn value at Site 212. All other element values in the basal iron-oxide facies are comparable with those of more typical deep-sea clays higher in the sedimentary column.

At Site 213 the iron enrichment is restricted to clay beds, and the interbeds of calcareous ooze show no more visually detectable iron oxide than is typical for such material. At Site 212 slightly metamorphosed limestone trapped between basalt pillows shows no iron enrichment. At Site 211 clayey calcareous ooze was recovered from a 16-meter interval (Cores 12-14) between basaltic basement and a sill (see Chapter 2), and this sediment shows a pronounced reddish to orange brown fine banding on a 1-5 mm scale. However, two samples analyzed from this interval showed no evidence of any mineralization; even the sample (Core 12) taken from the dusky red zone immediately below the sill was not enriched in iron.

The K_2O content in this zone is particularly high (Table 3) and may be genetically linked to the relatively high K_2O content in the diabase sill compared with the other basalts at Sites 211, 212, and 213 (Hekinian, Chapter 17).

All the authors listed previously who have described basal iron-oxide facies in DSDP cores have attributed their origin to volcanic hydrothermal exhalations following the Bostrom and Peterson (1966) model for the East Pacific Rise. A similar explanation is invoked for this facies in the Leg 22 sites.

The absence of significant iron enrichment in the calcareous sediments at the base of Site 211, in the metamorphed limestone between basalt pillows at Site 212, and in interbeds of calcareous ooze at Site 213 supports the hypothesis that the ferruginous material in the clay beds is syngenetic with the sediment and thus has not been introduced by permeation from below. Also, if the original source of the iron was in the basalts, a depletion of Fe might be expected in the latter. The analyses of igneous rocks given in Table 4 certainly do not show evidence of such a depletion. However, so few analyses may not be conclusive because Corliss (1970) has pointed out that a depletion of Fe, Mn, Co, and rare earth elements only occurs in the holocrystalline interiors of submarine flows relative to the rapidly cooled margins. The two samples analyzed from Site 213 did, however, come from the fresher phaneritic portion of pillow lavas (see Hekinian, Chapter 17, fig. 2). The sample from the diabase in Site 211 came from the center of the sill, but that from the amphibolite in Core 15 of Site 211 was from the aphanitic zone. In all instances, though, the iron content is remarkably uniform. This provides strong support to the argument that the iron of the basal sediment facies has not been derived directly from the closely associated volcanic rocks.

Contact Zones Between Chalk and Clay in Site 212

One sample from each of the three reduced grayish blue-olive green clay intervals adjacent to chalk units in Site 212 was analyzed (Cores 15-1, 23-5, 27-1 in Table 2). Details of the stratigraphic sequence of each sample can be seen on the core forms given in the site report (Chapter 3). These clays show very low Mn values, but no other characteristics are common to all three. Most striking is the high nickel content of 2730 ppm in one sample, and associated with this are slightly higher Cu and Pb values.

In addition to the sample in the reduced zone in Core 15, a sample was also analyzed from the more typical brown clay 34 cm below. Comparing the two analyses, the reduced zone is depleted in Fe and Mn and enriched in Cr, Cu, Ni, Pb, and V.

Dark Brown Mn-rich Layers in Site 213

Cores 3 through 6 recovered from 18 to 50 meters below the sea floor at Site 213 contain common thin layers of dark to very dark brown intervals within the diatom ooze sequence. These layers are mostly in the 10 to 30 cm thickness range and are described on the core forms in the site report (Chapter 4) as Mn-Fe-rich layers. The analysis of one sample from such a layer in Core 3 compared with two other samples of siliceous ooze from Cores 1 and 2 confirms that these layers are very rich in Mn-nearly 8% compared to <1%. The iron content is, however, lower than usual, as is the Ti value. Along with the high Mn, considerable enrichment of Cu and V is evident (Table 2 and Figure 2).

Variation Downhole of Fe, Mn, and Trace Elements

With the exception of the samples taken in unusual sediment types for the specific studies mentioned above, the brown clays analyzed show very little variation in the relative proportions of the trace elements and Fe and Mn contents downhole. Typical ranges of values for the three sites (in ppm) are:

_					
Site	Cr	Cu	Ni	Pb	Ti
211	40-50	100-300	100-150	50	6000-7000
212	50-90	100-400	100-400	30-100	6000-8000
213	35-60	200-500	100-500	30-70	3500-6000
	Site	v	Zn	Fe	Mn
	211	200-300	150-160	4.0-7.0	<1
	212	200-350	150-200	4.5-8.5	<2
	213	150-250	100-200	3.0-7.0	<2

ACKNOWLEDGMENTS

The X-ray fluorescence and atomic absorption analyses were carried out in the Scripps Institution of Oceanography analytical facility under the supervision of R. Laborde. The author would also like to extend his appreciation to R. Fitzgerald for time on the X-ray fluorescence unit used in this study. Particular thanks are extended to M. Sangstrom who prepared all samples and also operated the atomic absorption unit.

TABLE 2 Atomic Absorption Analyses ^a											
Lab No. P	Site, Core, Interval (cm)	Cr	Cu	Fe	Mn	Ni	Pb	Ti	v	Zn	Visual Core Description
Site 2	211										
1 2 6 12	1-1,14-16 10-CC 12-2, 122-124 14-1,28-30	44 51 65 77	302 123 44 86	40,500 72,500 48,500 52,000	10,900 602 2,630 950	150 130 100 30	47 51 24 19	6,200 6,800 8,280 9,400	216 311 146 154	157 155 107 131	Dark yellowish brown diatom-rich clay Moderate brown and dusky yellowish brown clay Dusky red nanno-rich clay adjacent to sill Moderate brown nanno-rich clay 35 cm above basalt
Site 2	12										
15 17 18 21 23 24 25 26 29 33 35 40 41 44	2-1,114-116 4-1,122-123 10-1,32-33 15-1,63 15-1,97-100 16-2, shaving 18-2,5-6 23-5,105-107 27-1,128-130 28-1,61 25-1,71 36-1,107-108 37-1,108-110 38-2,14	86 81 84 108 91 60 52 68 61 70 78 47 73	378 158 369 868 424 358 221 168 505 164 217 119 163 347	59,500 67,000 86,000 53,000 80,500 79,000 80,500 68,000 67,000 75,000 59,500 44,000 11,000	10,900 12,000 17,300 628 21,900 18,100 15,500 1,260 4,85 4,320 3,610 9,370 9,180 3,270	250 230 320 2,730 390 31 185 65 460 140 120 140 140 150	59 95 79 118 85 76 63 13 56 46 48 33 12 12	7,400 5,960 6,480 7,150 7,060 7,430 6,400 5,170 7,330 6,430 8,650 7,260 6,200 7,180	284 264 285 495 337 330 313 203 389 263 214 184 348	148 154 176 134 172 184 175 162 334 189 211 177 153 210	Moderate brown clay with iron-oxide aggregates Mixed nanno ooze and clay Dark brown iron-oxide-rich clay Grayish blue green claystone mineralized (contact zone below chalk) Iron-oxide clay Dusky brown iron-oxide claystone Dusky brown iron-oxide claystone Grayish olive green zeolite-rich clay (contact zone below chalk) Medium bluish gray (reduced zone 50 cm below contact zone) Dark yellowish brown clay Dark yellowish brown clay Moderate yellowish-brown claystone Moderate reddish brown with brown banding Grayish brown clay
Site 21	13				-1						
46 48 50 52 53 54 55 56 57 58	$\begin{array}{c} 1\text{-}1,5\text{-}7\\ 2\text{-}5,49\text{-}51\\ 3\text{-}6,19\text{-}21\\ 8\text{-}6,140\text{-}142\\ 9\text{-}6,80\text{-}82\\ 10\text{-}3,70\text{-}72\\ 11\text{-}4,72\text{-}74\\ 13\text{-}3,80\text{-}81\\ 14\text{-}2,70\text{-}72\\ 16\text{-}4,145\text{-}147\\ \end{array}$	36 45 33 47 36 35 57 39 50 39	292 232 1,046 466 480 466 490 346 228 523	34,000 39,500 20,100 47,500 44,000 45,000 59,500 64,000 70,500 162,000	6,430 1,140 78,200 9,500 12,800 13,900 21,400 18,400 11,400 32,000	130 130 290 260 240 280 500 420 210 280	39 31 214 60 55 52 70 54 61 168	3,600 4,550 2,490 4,650 4,000 4,080 5,050 6,040 6,270 5,000	162 173 675 225 188 194 238 257 244 713	116 108 108 140 148 137 175 201 194 350	Medium brown clay siliceous ooze Light brown reddish yellow clay siliceous ooze Very dark brown manganese-rich diatom ooze Dark brown clay Dark brown clay Dark brown clay Dusky yellowish brown clay (zeolite-rich) Dusky brown iron-oxide-rich clay Moderate brown iron-oxide-rich clay Grayish brown clay-rich iron oxide
Error											
		±2%	±2%	±2%	±3%	±5%b	±2%c	±7%	±2%	±2%	
U.S.G.	S. Standards										
W1	found range	118 90-160	121 80-150	73,500 77,200	1,550 1,310	56 55-88	11 5-10	8,500 6,300	240 120-320	94 20-95	
G2	found range	12 5-29	12 2-17	19,500 18,100	286 250		35 15-43	3,500 3,000	53 26-60	90 42-138	
BCR-1	found range	16 8-45	18 7-33	87,100 89,800	1,410 1,375		18 4-35	16,500 13,000	136 120-700	136 94 278	

^aAll values in ppm.

^bExcept for values less than 200 ppm, perhaps ±10%.

^cExcept for values less than 20 ppm.

472

A. C. PIMM

REFERENCES

- Bostrom, K. and Peterson, M. N. A., 1966. Precipitates from hydrothermal exhalations on the East Pacific Rise: Econ. Geol., v. 61, p. 1258.
- Bostrom, K., Peterson, M. N. A., Joensuu, O., and Fisher, D., 1969. Aluminum poor ferromanganoan sediments on active oceanic ridges: J. Geophys. Res., v. 74, p. 3261.
- Corliss, J. B., 1970. Mid-ocean ridge basalts: Ph.D. thesis, University of California, San Diego.
- Cronan, D. S., 1973. Basal ferruginous sediments cored during Leg 16, Deep Sea Drilling Project. In Initial Reports of the Deep Sea Drilling Project, Volume XVI: Washington (U. S. Government Printing Office), p. 601-604.
- Drever, J. I., 1971. Chemical and mineralogical studies, Site 66. In Initial Reports of the Deep Sea Drilling Project, Volume VII: Washington (U. S. Government Printing Office), p. 965-975.
- Fitzgerlad, R. and Gantzel, P., 1971. X-ray energy spectrometry in the 0.1 to 10 A° range. In Energy dispersion

X-ray analysis: X-ray and electron probe analysis: Am. Soc. Testing Materials, STP 485, p. 3-35.

- Lancelot, Y., Hathaway, J. C., and Hollister, C. D., 1972. Lithology of sediments from the western North Atlantic, Leg 11 Deep Sea Drilling Project. In Initial Reports of the Deep Sea Drilling Project, Volume XI: Washington (U. S. Government Printing Office), p. 901-949.
- Peterson, M. N. A., Edgar, N. T., von der Borch, C. C., and Rex, R. W., 1970. Cruise leg summary and discussion. In Initial Reports of the Deep Sea Drilling Project, Volume II: Washington (U. S. Government Printing Office), p. 413-427.
- von der Borch, C. C. and Rex, R. W., 1970. Amorphous iron oxide precipitates in sediments cored during Leg 5, Deep Sea Drilling Project. In Initial Reports of the Deep Sea Drilling Project, Volume V: Washington (U. S. Government Printing Office), p. 541.
- von der Borch, C. C., Nesteroff, W. D., and Galehouse, J. S., 1971. Iron-rich sediments cored during Leg 8 of the Deep Sea Drilling Project.

Figure 2. Elemental variation downhole in Site 212.

Figure 3. Elemental variation downhole in Site 213.

Core, Section, Depth in Core (cm)	SiO ₂	Al2O3	Fe ₂ O ₃	MgO	CaO	Na ₂ O	к20	TiO ₂	P2O5	Ignition $(CO_2 + H_2O)$
Site 211										
12-2,124-128 14-1,65	46.15 44.36	12.47 11.30	6.79 6.94	2.16 3.71	9.00 7.84		7.53 3.62	0.90 0.99	0.27 0.25	13.49 18.30
Site 212										
18-1,105-107 35-5,44-45 37-1 90 91 38-2 98	41.70 47 12 54.73 45.50	15.21 16.08 13 15 11.85	$10.84 \\ 10.44 \\ 6.84 \\ 14.69$	2.49 2.96 3.31 3.26	0.77 0.66 0.88 0.94	- - 1.41	2.04 2.68 2.96 3.47	0.70 0.71 0.72 0.87	0.36 0.25 0.29 0.38	22.59 17.90 16.24 14.32
Site 213										
9-6 84 85 16-4,138-139	44.92 38.39	13.83 8.86	5.94 19.57	3.60 3.48	1.32 4.19	-	1.62 2.49	0.46 0.56	0.53 1.14	19.96 19.92

 TABLE 3

 Major Element X-Ray Fluorescence Analyses of Sediments^a

^aAnalysis by P. Cambon, Centre Oceanologique de Bretagne, Brest, France. All values given in percent.

Ti	v	Cr	Fe	Co	Ni	Cu	Zn	Rock Type
15,100 13,280	115 140	75 275	63,600 73,800	55 65	110 155	21 31	70 80	Amphibolite Diabase
6,060 6,180	235 235	280 380	74,000 73,800	90 90	135 115	80 80	75 85	Basalt Basalt
	Ti 15,100 13,280 6,060 6,180	Ti V 15,100 115 13,280 140 6,060 235 6,180 235	Ti V Cr 15,100 115 75 13,280 140 275 6,060 235 280 6,180 235 380	Ti V Cr Fe 15,100 115 75 63,600 13,280 140 275 73,800 6,060 235 280 74,000 6,180 235 380 73,800	Ti V Cr Fe Co 15,100 115 75 63,600 55 13,280 140 275 73,800 65 6,060 235 280 74,000 90 6,180 235 380 73,800 90	Ti V Cr Fe Co Ni 15,100 115 75 63,600 55 110 13,280 140 275 73,800 65 155 6,060 235 280 74,000 90 135 6,180 235 380 73,800 90 115	Ti V Cr Fe Co Ni Cu 15,100 115 75 63,600 55 110 21 13,280 140 275 73,800 65 155 31 6,060 235 280 74,000 90 135 80 6,180 235 380 73,800 90 115 80	Ti V Cr Fe Co Ni Cu Zn 15,100 115 75 63,600 55 110 21 70 13,280 140 275 73,800 65 155 31 80 6,060 235 280 74,000 90 135 80 75 6,180 235 380 73,800 90 115 80 85

TABLE 4 Trace Element Analysis of Igneous Rock Samples

Note: Values given in ppm.