# 31. INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES, LEG 221

Frank T. Manheim, United States Geological Survey, Woods Hole, Massachusetts

and

Lee S. Waterman and Frederick L. Sayles, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

### ABSTRACT

Interstitial waters from Leg 22 in the Indian Ocean revealed two unique results: Site 214, on the Ninetyeast Ridge, penetrated through a 30-meter sequence of fine-grained basalt and reentered hard, silty clay containing carbonate skeletal debris. Such a basalt layer may well have been impervious and extensive enough to seal off underlying (fossil) seawater of Paleocene age. However, except for a marked increase in calcium and a slight increase in chloride, no appreciable changes in pore fluid chemistry could be confirmed. Site 217, at the northernmost end of the Ninetyeast Ridge, demonstrated record concentrations of interstitial calcium in clayey nannofossil oozes and a relatively small but significant increment in chloride with depth. Presumably, these increments signal the existence of evaporitic sediments or evaporiteinfluenced brines at considerably greater depth than penetrated.

### INTRODUCTION

A total of 125 sediment samples collected from eight Leg 22 sites was squeezed for interstitial water. Sediment samples were collected immediately following the recovery of the core by the removal of discrete segments of sediment-filled plastic liner (mini-cores). This sampling method is essentially the same as was used for the special geochemical studies carried out on Leg 15 (Horowitz et al., in press).

In most instances a 10-cm mini-core was cut from the top end of a 150-cm core section. This sample was first used for the resistivity measurements reported elsewhere in this volume (Chapter 32). Mini-cores were split lengthwise and one-half the available sediment was squeezed. All samples were squeezed at ambient room temperature. When soft sediments were encountered, two contiguous minicores were removed in order to make punch-in electrode pH measurements. pH measurements were also made on the squeezed, unfiltered pore water immediately following recovery. The fluid was injected directly from the receiver syringe into an Orion miniature flow-through electrode. The water content of all samples was determined from weight loss upon oven drying of approximately 1-g portions of sediment taken from the mini-cores prior to processing.

Analytical methods were identical to those outlined in earlier volumes of this series. Most of the analyses and data reduction were performed by John Mahoney. The analytical data are summarized in Tables 1 and 2.

#### RESULTS AND DISCUSSION

Rather than cover sites comprehensively, as in previous interstitial water studies, effort was concentrated on a few sites, from which a number of samples were analyzed to provide continuity of information. A total of 41 samples as selected from Site 212 in the Wharton Basin, about 1500 km northwest of Australia; Sites 214 and 217 on the Ninetyeast Ridge; and Site 218 in the southern portion of the Central Bengal Fan. A greater effort was made on this leg to squeeze pore fluid from consolidated sediment than previously. Sufficient water for analysis was obtained from moderately lithified sediments (water content as low as 18%). This may help account for the more marked evidence of diagenetic reactions, as discussed below.

### Site 212

At this site, in the Wharton Basin, clayey nannofossil oozes showed moderate depletion in K, Mg, and SO4 and a 2.5-fold increase in Ca. Alkalinity remained roughly constant at values little higher than in seawater when corrected for a systematic analytical error. The mean rate of accumulation for this site was 0.65 cm/1000 years.

### Site 214

Located on the crest of the Ninetyeast Ridge, in water depth of 1655 meters, this site revealed an upper sequence of foraminiferal and nannofossil ooze, becoming glauconitic toward the base of the Eocene at about 330 meters depth below the sea floor. A remarkable series of increasingly shallow water to possibly lagoonal sediments culminated in lignitic and volcanoclastic sediments interbedded with igneous extrusive rock. Interestingly, one sample was

<sup>&</sup>lt;sup>1</sup>Contribution No. 3100 of the Woods Hole Oceanographic Institution.

|              |              |                         |                                                            |                           | Major                     | ן<br>Constitu | CABLE 1<br>ents of Po | ore Fluids   |                              |              |               |                             |                            |           |                                      |                 |
|--------------|--------------|-------------------------|------------------------------------------------------------|---------------------------|---------------------------|---------------|-----------------------|--------------|------------------------------|--------------|---------------|-----------------------------|----------------------------|-----------|--------------------------------------|-----------------|
| Sample       | Depth<br>(m) | Age                     | Description                                                | Na <sup>a</sup><br>(g/kg) | Na <sup>b</sup><br>(g/kg) | K<br>(g/kg)   | Ca<br>(g/kg)          | Mg<br>(g/kg) | Total<br>Cations<br>(meq/kg) | Cl<br>(g/kg) | SO4<br>(g/kg) | Total<br>Anions<br>(meq/kg) | Sum <sup>c</sup><br>(g/kg) | Salinityd | н <sub>2</sub> 0<br>(%) <sup>е</sup> | рН <sup>е</sup> |
| Site 212 (19 | °11.3'S, 9   | 99°17.8'E, water        | depth 6243 m, Wharton                                      | Basin)                    |                           |               |                       |              |                              |              |               |                             |                            |           |                                      |                 |
| Surface ocea | an water     |                         |                                                            | 10.7                      | 10.5                      | 0.37          | 0.42                  | 1.27         | 591                          | 19.2         | 2.69          | 601                         | 34.9                       | 34.6      | -                                    | -               |
| 212-2-3      | 12           | Early Pliocene          | Medium brown iron-<br>bearing clay with<br>2-5% silt       | 10.9                      | 10.7                      | 0.46          | 0.45                  | 1.20         | 599                          | 19.5         | 2.54          | 607                         | 35.3                       | 34.6      | 58                                   | 7.1             |
| 5, CC        | 70           | Upper<br>Miocene        | Very pale orange,<br>foram-bearing nanno<br>ooze           | 10.9                      | 10.6                      | 0.40          | 0.42                  | 1.18         | 591                          | 19.4         | 2.44          | 602                         | 35.0                       | 34.1      | -                                    | 7.6             |
| 11-3         | 196          | Early middle<br>Miocene | Dusky yellow clay-<br>rich nanno ooze                      | 11.0                      | 10.7                      | 0.36          | 0.53                  | 1.06         | 586                          | 19.6         | 2.17          | 599                         | 34.9                       | 34.4      | 25                                   | 7.2             |
| 13-3         | 253          | Early middle<br>Miocene | Very pale orange,<br>foram nanno chalk                     | 11.1                      | 10.7                      | 0.33          | 0.61                  | 1.01         | 586                          | 19.6         | 2.28          | 603                         | 35.2                       | 34.1      | 32                                   | 7.2             |
| 25-5         | 389          | Middle<br>Eocene        | Very light gray and<br>pinkish gray nanno<br>chalk         | -                         | 10.7                      | 0.29          | 0.79                  | 0.98         | 595                          | 20.0         |               | -                           | -                          | 34.6      | 15                                   | 6.9             |
| 37, CC       | 506          | (?)                     | Medium brown to<br>dusky yellow brown<br>clay-rich zeolite | 10.6                      | 10.4                      | 0.29          | 1.01                  | 0.88         | 583                          | 19.2         | 2.15          | 591                         | 34.4                       | 33.6      | 13                                   | 7.0             |
| Site 214 (11 | °20.2'S, 8   | 88°43.1'E, water        | depth 1665 m, crest of M                                   | Vinetyeast                | Ridge)                    |               |                       |              |                              |              |               |                             |                            |           |                                      |                 |
| Surface ocea | an water     |                         |                                                            | 10.6                      | 10.3                      | 0.37          | 0.40                  | 1.26         | 583                          | 18.9         | 2.66          | 592                         | 34.4                       | 34.1      | -                                    | -               |
| 214-1-5      | 8            | Pleistocene             | White foram nanno<br>ooze                                  | 10.8                      | 10.6                      | 0.41          | 0.44                  | 1.26         | 595                          | 19.4         | 2.66          | 606                         | 35.2                       | 34.9      |                                      | 7.5             |
| 39-3         | 364          | Paleocene               | Grayish olive green silty sand                             | 11.0                      | 10.7                      | 0.32          | 1.19                  | 0.80         | 604                          | 20.1         | 1.90          | 610                         | 35.4                       | 34.6      | 28                                   | 7.8             |
| 41-3         | 384          | Paleocene<br>(?)        | Grayish green silty<br>sand                                | 10.8                      | 10.7                      | 0.28          | 1.33                  | 0.82         | 604                          | 20.3         | 1.64          | 610                         | 35.3                       | 35.5      | 25                                   | 7.1             |
| 42, CC       | 400          | Paleocene<br>(?)        | Grayish black<br>lignite                                   | 10.7                      | 10.6                      | 0.24          | 1.34                  | 0.82         | 601                          | 20.2         | 1.64          | 608                         | 35.1                       | 34.6      | 100                                  | 6.7             |
| 46-3         | 424          | Paleocene<br>(?)        | Dark greenish gray<br>clay pebble<br>conglomerate          | 10.0                      | 10.0                      | 0.22          | 1.56                  | 0.80         | 582                          | 19.6         | 1.34          | 585                         | 33.7                       | 33.8      | 36                                   | 7.1             |
| 52, CC       | 486          | Paleocene<br>(?)        | Grayish blue green silty clay, very hard                   | 9.6                       | 9.9                       | 0.14          | 3.19                  | 0.49         | 636                          | 21.3         | 0.97          | 623                         | 35.8                       | 37.1      |                                      | 7.2             |

# Site 217 (8° 55.6'N, 90° 32.3'E, water depth 3020 m, east flank of Ninetyeast Ridge)

| Surface oce  | an water   |                     |                                                                                | 10.3      | 10.1 | 0.36 | 0.40 | 1.22 | 569 | 18.5 | 2.58   | 579   | 33.6   | 33.3 | -  |     |
|--------------|------------|---------------------|--------------------------------------------------------------------------------|-----------|------|------|------|------|-----|------|--------|-------|--------|------|----|-----|
| 217-1-3      | 7          | Pleistocene         | Greenish gray foram-<br>bearing clay-rich<br>nanno ooze                        | 10.8      | 10.6 | 0.49 | 0.41 | 1.22 | 594 | 19.3 | 2.63   | 602   | 35.1   | 34.4 | 49 | 7.3 |
| 3-2          | 73         | Late Miocene        | Light bluish gray<br>foram clay-bearing<br>nanno ooze                          | 10.6      | 10.4 | 0.45 | 0.73 | 1.09 | 589 | 19.6 | 2.16   | 600   | 34.8   | 34.6 | 42 | 7.1 |
| 5-1          | 155        | Middle<br>Miocene   | Yellowish gray clay-<br>bearing nanno ooze                                     | 10.5      | 10.3 | 0.42 | 1.15 | 1.01 | 600 | 19.9 | 2.04   | 607   | 35.2   | 35.2 | 35 | 7.0 |
| 7-4          | 234        | Oligocene           | Very light gray<br>foram clay-bearing<br>nanno chalk                           | 10.1      | 10.0 | 0.38 | 1.55 | 0.98 | 603 | 20.0 | 1.91   | 606   | 35.1   | 35.5 | 25 | 7.0 |
| 10-4         | 348        | Late Eocene         | Yellowish gray<br>calcite Radiolaria-<br>bearing nanno chalk                   | 9.7       | 9.7  | 0.32 | 2.20 | 1.08 | 633 | 20.8 | 1.83   | 628   | 36.1   | 37.1 | 24 | 6.9 |
| 12-CC        | 383        | Paleocene           | Pale yellowish brown<br>foram-bearing nanno<br>chalk                           | 9.4       | 9.4  | 0.32 | 2.46 | 1.08 | 628 | 21.1 | 1.62   | 630   | 36.1   | Т    | 26 | 6.8 |
| 14-4         | 397        | Paleocene           | Yellowish gray<br>foram-bearing nanno<br>chalk                                 | 9.0       | 9.1  | 0.30 | 2.70 | 1.03 | 625 | 20.7 | 1.48   | 618   | 35.4   | 36.6 | 21 | 6.9 |
| 20-4         | 454        | Maastrichtian       | Yellowish gray nanno<br>chalk                                                  | (8.6)     | 8.9  | 0.28 | 3.32 | 0.99 | 640 | 21.2 | (1.4)  | (629) | (35.9) | 38.0 | 20 | 7.7 |
| 25-4         | 502        | Maastrichtian       | Light gray and very<br>light gray foram clay<br>calcite-bearing nanno<br>chalk | 8.1       | 8.6  | 0.28 | 4.52 | 0.82 | 673 | 22.0 | 1.37   | 651   | 37.2   | 39.6 | 18 | 6.7 |
| Site 218 (8° | '00.4'N, 8 | 6° 17.0'E, water de | epth 3759 m, Central Ber                                                       | ngal Fan) |      |      |      |      |     |      |        |       |        |      |    |     |
| 218-2-4      | 8          | Quaternary          | Light gray foram<br>clay-rich nanno ooze                                       | 10.9      | 10.6 | 0.44 | 0.32 | 1.15 | 584 | 19.4 | 1.87   | 595   | 34.6   | 34.1 | 36 | 8.0 |
| 3-2          | 20         | Quaternary          | Dark olive gray silt<br>with sand and clay                                     | 10.9      | 10.7 | 0.44 | 0.32 | 1.13 | 587 | 19.3 | 1.80   | 593   | 34.5   | 34.1 | 31 | 7.9 |
| 4-2          | 48         | Quaternary          | Dark gray graded silt                                                          | 10.6      | 10.6 | 0.35 | 0.25 | 1.00 | 565 | 19.5 | < 0.01 | 567   | 32.7   | 32.4 | 29 | 7.6 |
| 5-2          | 77         | Quaternary          | Dark gray clayey silt                                                          | 10.8      | 10.6 | 0.34 | 0.18 | 0.94 | 558 | 19.5 | 0.14   | 567   | 32.8   | 32.2 | 29 | 7.8 |
| 6-1          | 114        | Quaternary          | Very dark gray<br>nanno-bearing silty<br>clay                                  | 10.9      | 10.6 | 0.37 | 0.12 | 0.92 | 554 | 19.7 | 0.14   | 564   | 32.5   | 31.9 | 40 | 7.7 |
| 8-3          | 192        | Quaternary          | Gray clayey silt                                                               | 10.9      | 10.9 | 0.26 | 0.32 | 0.79 | 560 | 19.7 | 0.03   | 563   | 32.4   | 31.9 | 35 | 7.7 |
| 9,CC         | 232        | (?)                 | Dark gray clayey silt                                                          | 10.9      | 10.8 | 0.24 | 0.35 | 0.80 | 557 | 19.7 | 0.16   | 564   | 32.5   | 32.2 | 23 | 7.6 |
| 11-2         | 304        | Early Pliocene      | Dark gray silt                                                                 | 10.9      | 10.8 | 0.30 | 0.37 | 0.85 | 566 | 19.8 | 0.34   | 572   | 32.9   | 32.4 | 32 | 7.6 |
| 13-2         | 376        | Upper Miocene       | Grayish olive green<br>nanno ooze                                              | 11.6      | 11.4 | 0.18 | 0.44 | 0.77 | 586 | 20.8 | 0.19   | 595   | 34.2   | 33.6 | 25 | 7.5 |
| 14,CC        | 422        | Upper Miocene       | Olive gray clayey<br>silt and silty clay                                       | 11.4      | 11.4 | 0.14 | 0.52 | 0.68 | 581 | 20.6 | 0.01   | 583   | 33.4   | 33.0 | 23 | 7.9 |

INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES

|          |              |                   |                                                                   |                           |                           | TABLE       | 1 - Cont     | tinued       |                              |              |               |                             |                            |                       |                                      |                 |
|----------|--------------|-------------------|-------------------------------------------------------------------|---------------------------|---------------------------|-------------|--------------|--------------|------------------------------|--------------|---------------|-----------------------------|----------------------------|-----------------------|--------------------------------------|-----------------|
| Sample   | Depth<br>(m) | Age               | Description                                                       | Na <sup>3</sup><br>(g/kg) | Na <sup>b</sup><br>(g/kg) | K<br>(g/kg) | Ca<br>(g/kg) | Mg<br>(g/kg) | Total<br>Cations<br>(meq/kg) | Cl<br>(g/kg) | SO4<br>(g/kg) | Total<br>Anions<br>(meq/kg) | Sum <sup>c</sup><br>(g/kg) | Salinity <sup>d</sup> | Н <sub>2</sub> О<br>(%) <sup>е</sup> | pH <sup>e</sup> |
| 218-15-1 | 455          | Upper Miocene     | Dark gray clayey silt<br>and silty ćlay                           | 11.1                      | 10.9                      | 0.14        | 0.52         | 0.72         | 561                          | 19.8         | 0.45          | 571                         | 32.9                       | 32.7                  | 19                                   | 7.4             |
| 16-2     | 466          | Upper Miocene     | Dark gray clayey silt                                             | 11.3                      | 11.2                      | 0.14        | 0.54         | 0.71         | 575                          | 20.2         | 0.38          | 580                         | 33.5                       | 32.7                  | 21                                   | 7.8             |
| 18, CC   | 488          | Upper Miocene     | Dark gray silt                                                    | 11.4                      | 11.2                      | 0.11        | 0.56         | 0.65         | 573                          | 20.3         | 0.17          | 579                         | 33.4                       | 33.0                  | 21                                   | 7.4             |
| 21-3     | 542          | Upper Miocene     | Dark gray clayey silt<br>and silt intervedded                     | 11.4                      | 11.3                      | 0.11        | 0.60         | 0.67         | 579                          | 20.2         | 0.41          | 582                         | 33.6                       | 33.0                  | 18                                   | 7.4             |
| 22-2     | 580          | Upper Miocene     | Dark gray silt inter-<br>bedded with fine<br>sand and clayey silt | 11.3                      | 11.2                      | 0.14        | 0.64         | 0.64         | 574                          | 20.2         | 0.34          | 578                         | 33.4                       | 32.4                  | 23                                   | 7.4             |
| 23-2     | 618          | Upper Miocene     | Dusky yellow green<br>clay-bearing nanno<br>ooze                  | 11.8                      | 11.6                      | 0.08        | 0.73         | 0.61         | 594                          | 21.0         | 0.33          | 600                         | 34.6                       | 34.1                  | 21                                   | -               |
| 24-2     | 656          | Upper Miocene     | Dusky yellow green<br>clay carbonate-<br>bearing nanno ooze       | 11.6                      | 11.6                      | 0.08        | 0.76         | 0.57         | 591                          | 20.8         | 0.27          | 592                         | 34.2                       | 34.1                  | 19                                   | -               |
| 25-2     | 694          | Middle<br>Miocene | Dark gray silt and<br>sandy silt                                  | 11.4                      | 11.4                      | 0.11        | 0.71         | 0.56         | 579                          | 20.4         | 0.30          | 582                         | 33.6                       | 33.0                  | 25                                   | 7.9             |
| 26-2     | 732          | Middle<br>Miocene | Dark gray sandy silt                                              | 11.4                      | 11.3                      | 0.06        | 0.74         | 0.55         | 574                          | 20.2         | 0.25          | 579                         | 33.4                       | 33.0                  | 17                                   | 7.6             |
| 27-2     | 770          | Middle<br>Miocene | Dark gray clayey silt                                             | 11.4                      | 11.2                      | 0.08        | 0.72         | 0.54         | 571                          | 20.1         | 0.46          | 579                         | 33.4                       | 33.0                  | 20                                   | 8.0             |
|          |              |                   |                                                                   |                           |                           |             |              |              |                              |              |               |                             |                            |                       |                                      |                 |

Note: Alkalinities are not shown because of systematic contamination of the alkalinity subsamples in the laboratory. However, some remarks on qualitative changes in alkalinity are offered. Sites 212 and 214 showed relatively constant alkalinities on the order of sea-water values, except for the bottommost sample (below the basalt) in 214, where alkalinity is less than 1 meq/kg. Site 217 alkalinities decrease with increasing depth from seawater to very low levels in the high calcium waters. Site 218 alkalinities show an increase to about 15 meq/kg at 48 m depth, decrease thereafter to seawater levels or below at depths greater than 400 m. Sums and total anions were calculated using alkalinity values, which are believed to be too high by about 1.5 to 2 meq/kg.

<sup>a</sup>Sodium determined by difference between anions and cations excluding Na.

<sup>b</sup>Sodium determined by atomic absorption analysis.

<sup>C</sup>The sum incorporates the sodium values determined by difference.

dSalinity of pore fluids taken from heat-sealed sections of plastic pipe prior to subdivision of samples for analysis. Salinity values determined with Goldberg temperature compensated refractometer.

<sup>e</sup>pH and water content taken from shipboard summaries.

### INTERSTITIAL WATER STUDIES ON SMALL CORE SAMPLES

| TABLE 2<br>Si Determined Colorimetrically |              |                         |                                                              |             |  |  |  |  |  |  |
|-------------------------------------------|--------------|-------------------------|--------------------------------------------------------------|-------------|--|--|--|--|--|--|
| Sample                                    | Depth<br>(m) | Age                     | Description                                                  | Si<br>(ppm) |  |  |  |  |  |  |
|                                           |              | Site 212                | 1                                                            |             |  |  |  |  |  |  |
|                                           |              |                         |                                                              | < 0.1       |  |  |  |  |  |  |
| 212-2-3                                   | 12           | Early Pliocene          | Medium brown iron-<br>bearing clay with<br>2-5% silt         | 3.6<br>3.6  |  |  |  |  |  |  |
| 5, CC                                     | 70           | Upper Miocene           | Very pale orange,<br>foram-bearing<br>nanno ooze             | 2.9         |  |  |  |  |  |  |
| 11-3                                      | 196          | Early middle<br>Miocene | Dusky yellow clay-<br>rich nanno ooze                        | 4.2         |  |  |  |  |  |  |
| 13-3                                      | 253          | Early middle<br>Miocene | Very pale orange,<br>foram nanno chalk                       | 3.7         |  |  |  |  |  |  |
| 25-5                                      | 389          | Middle Eocene           | Very light gray and<br>and pinkish gray<br>nanno chalk       | 17          |  |  |  |  |  |  |
| 37, CC                                    | 506          | (?)                     | Medium brown to<br>dusky yellow brown<br>clay-rich zeolite   | 12          |  |  |  |  |  |  |
|                                           |              | Site 214                |                                                              |             |  |  |  |  |  |  |
|                                           |              |                         |                                                              | < 0.1       |  |  |  |  |  |  |
| 214-1-5                                   | 8            | Pleistocene             | White foram nanno<br>ooze                                    | 9.8         |  |  |  |  |  |  |
| 39-3                                      | 364          | Paleocene               | Grayish olive silty sand                                     | 7.1         |  |  |  |  |  |  |
| 41-3                                      | 384          | Paleocene<br>(?)        | Grayish green silty sand                                     | 6.5         |  |  |  |  |  |  |
| 42, CC                                    | 400          | Paleocene<br>(?)        | Grayish black lignite                                        | 4.2         |  |  |  |  |  |  |
| 46-3                                      | 424          | Paleocene<br>(?)        | Dark greenish gray<br>clay pebble<br>conglomerate            | 1.9         |  |  |  |  |  |  |
| 52, CC                                    | 486          | Paleocene<br>(?)        | Grayish blue green<br>silty clay                             | 2.4         |  |  |  |  |  |  |
|                                           |              | Site 217                | ,                                                            |             |  |  |  |  |  |  |
|                                           |              |                         |                                                              | 0.9         |  |  |  |  |  |  |
| 217-1-3                                   | 7            | Pleistocene             | Greenish gray foram-<br>bearing clay-rich<br>nanno ooze      | 12.0        |  |  |  |  |  |  |
| 3-2                                       | 73           | Late Miocene            | Light bluish gray<br>foram clay-bearing<br>nanno ooze        | 16.0        |  |  |  |  |  |  |
| 5-1                                       | 155          | Middle<br>Miocene       | Yellowish gray clay-<br>bearing nanno ooze                   | 15.0        |  |  |  |  |  |  |
| 7-4                                       | 234          | Oligocene               | Very light gray<br>foram clay-bearing<br>nanno chalk         | 20.0        |  |  |  |  |  |  |
| 10-4                                      | 348          | Late Eocene             | Yellowish gray<br>calcite Radiolaria-<br>bearing nanno chalk | 20.0        |  |  |  |  |  |  |
| 12, CC                                    | 383          | Paleocene               | Pale yellowish brown<br>foram-bearing nanno<br>chalk         | 12.0        |  |  |  |  |  |  |
| 14-4                                      | 397          | Paleocene               | Yellowish gray<br>foram-bearing nanno<br>chalk               | 13.0        |  |  |  |  |  |  |

| Sample   | Depth<br>(m) | Age            | Description                                                                    | Si<br>(ppm) |  |
|----------|--------------|----------------|--------------------------------------------------------------------------------|-------------|--|
| 217-20-4 | 454          | Maastrichtian  | Yellowish gray nanno chalk                                                     | 3.3         |  |
| 25-4     | 502          | Maastrichtian  | Light gray and very<br>light gray foram clay<br>calcite-bearing nanno<br>chalk | 2.4         |  |
|          |              | Site 218       |                                                                                |             |  |
| 218-2-4  | 8            | Quaternary     | Light gray foram<br>clay-rich nanno ooze                                       | 10.0        |  |
| 3-2      | 20           | Quaternary     | Dark olive gray silt<br>with sand and clay                                     | 5.5         |  |
| 4-2      | 48           | Quaternary     | Dark gray graded silt                                                          | 4.1         |  |
| 5-2      | 77           | Quaternary     | Dark gray clayey silt                                                          | 7.6         |  |
| 6-1      | 114          | Quaternary     | Very dark gray<br>nanno-bearing silty<br>clay                                  | 7.4         |  |
| 8-3      | 192          | Quaternary     | Gray clayey silt                                                               | 7.3         |  |
| 9, CC    | 232          | (?)            | Dark gray clayey silt                                                          | 2.7         |  |
| 11-2     | 304          | Early Pliocene | Dark gray silt                                                                 | 3.5         |  |
| 13-2     | 376          | Upper Miocene  | Grayish olive green<br>ooze                                                    | 2.2         |  |
| 14, CC   | 422          | Upper Miocene  | Olive gray clayey silt<br>and silty clay                                       | 2.5         |  |
| 15-1     | 455          | Upper Miocene  | Dark gray clayey silt<br>and silty clay                                        | 2.8         |  |
| 16-2     | 466          | Upper Miocene  | Dark gray clayey silt                                                          | 2.9         |  |
| 18, CC   | 488          | Upper Miocene  | Dark gray silt                                                                 | 2.1         |  |
| 21-3     | 542          | Upper Miocene  | Dark gray clayey silt<br>and silt interbedded                                  | 2.9         |  |
| 22-2     | 580          | Upper Miocene  | Dark gray silt inter-<br>bedded with fine<br>sand and clayey silt              | 2.8         |  |
| 23-2     | 618          | Upper Miocene  | Dusky yellow green<br>clay-bearing nanno<br>ooze                               | 1.6         |  |
| 24-2     | 656          | Upper Miocene  | Dusky yellow green<br>clay carbonate-<br>bearing nanno ooze                    | 2.0         |  |
| 25-2     | 694          | Middle Miocene | Dark gray silt and sandy silt                                                  | 2.4         |  |
| 26-2     | 732          | Middle Miocene | Dark gray sandy silt                                                           | 2.3         |  |
| 27-2     | 770          | Middle Miocene | Dark gray clayey silt graded with sandy silt                                   | 1.8         |  |

obtained from hard, clayey sediment below a 30-meter, fine-grained intermediate differentiated flow. This sample could represent isolated Plaeocene seawater if the flow is of appreciable lateral continuity and provides a relatively impermeable barrier to diffusion. While the cationic composition differs from present seawater, it is similar to overlying pore fluids (suprabasalt) except as regards Ca<sup>++</sup> (enriched to 3.19 g/kg). The observed compositional changes (relative to present-day seawater) are explainable in terms of previously observed diagenetic modification of pore fluids and cannot be attributed to different seawater composition during the Paleocene. This somewhat anticlimactic result should not, however, reduce the potential importance of igneous rock-sealed sediments for evaluating paleoceanic pore fluids.

### Site 217

This site was located on the extreme northern end of the Ninetyeast Ridge, less than 200 km west of the southernmost Andaman Islands. Notable at this site was the continuous increase in calcium with depth, reaching values of 4.52 g/kg, more than 10 times the mean value for seawater. Concurrent with this increase are substantial depletions in Mg, K, and Na. At 502 meters, the deepest sample, the difference between observed and surface water calcium (presumed original) is 205 meq/kg. About 40% of this increase is compensated for by a depletion in Na, which is assumed to be taken up in silicate minerals. However, as shown in Figure 1, even after subtracting from excess calcium all depletions in Mg, Na, and K, there still remains a net enrichment in Ca of 80 meg/kg. This excess Ca corresponds, within the agreement between cations and anions, to the net increases in chloride with depth. Diffusion of chlorides into sediment overlying evaporites has been previously observed; however, this has always been seen almost entirely as NaCl diffusion. It is difficult to explain solution and diffusion from an underlying evaporite of CaCl<sub>2</sub> without NaCl. A likely explanation is that NaCl diffusion is occurring rather than CaCl2, but the Na is taken up in silicate lattices. Reactions of this type, commonly referred to as "reverse weathering," consume alkalinity and thus could lead to the solution of CaCO3 as Na is incorporated in silicates. This would produce a CaCl2 enrichment. It should also produce CO2 but, as has been observed in earlier studies, the required quantities were not found. Although the pH values do drop as low as 6.7, this is not sufficient to account for the required CO<sub>2</sub>. Consequently, although diffusion of NaCl with consequent uptake of Na and release of Ca is believed to be the most likely, this interpretation is subject to uncertainty in the absence of an adequate explanation of the low CO<sub>2</sub> content.

### Site 218

This site, in predominantly terrigenous silts and clays of Neogene age, yielded a pore-water composition rather typical for continental rise sediments at similar relative positions. K and Mg are depleted to one-third and one-half mean seawater values, respectively. Ca at first is depleted to 114 meters; but then increases with depth. This trend has been explained by Manheim and Sayles (in press) as superimposition of precipitation of CaCO<sub>3</sub> on a basic trend



Figure 1. Dynamic changes in composition of interstitial waters from Site 217.  $\triangle$ Ca refers to difference between observed interstitial Ca and that originally buried with sediments.  $\triangle$ Na refers to corresponding loss of Na in silicate phases.  $\triangle$ CaCl<sub>2</sub> refers to incremental addition of chloride calcium to pore fluid residual calcium gain after compensation for exchange of Ca for Na, Mg, and K.

toward Ca enrichment in pore fluids with depth. An alkalinity peak occurs somewhat higher in the section. Sulfate is largely depleted below 20 meters, and it is conceivable that the remaining sulfate may be an artifact owing to oxidation of iron sulfides in the sediment in the period prior to squeezing the cores. If absence of the sulfate is assumed, then it is somewhat surprising that methane production was not detected. No separation of cores owing to exsolution of gas on lowering ambient pressure was observed onboard ship, and no methane was obtained in gas chromatographic probes of air associated with the cores. The accumulation rate of sediment was 5.9 cm/1000 yr; a rate which, in other DSDP cores, is associated with appreciable preservation of organic matter in the sediments.

#### REFERENCES

- Horowitz, R. M., Waterman, L. S., and Broecker, W. S., in press. New procedures and equipment. *In* Edgar, N. T., Saunders, J. B., et al., Initial Reports of the Deep Sea Drilling Project, Volume XV: Washington (U. S. Government Printing Office).
- Manheim, F. T. and Sayles, F. L., in press. Composition and origin of interstitial water of marine sediments based on deep sea drill cores. *In* Goldberg, E. D. (Ed.), The Sea. Volume 5, New York (Interscience).