APPENDIX III. X-RAY MINERALOGY DATA, ARABIAN AND RED SEAS-LEG 23 DEEP SEA DRILLING PROJECT¹

J. C. Matti, I. Zemmels, and H. E. Cook, University of California,

Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples and 2-20 μ and $<2\mu$ fractions were performed according to the methods described in the reports of Legs 1 and 2 and in Appendix III of Volume IV. The mineral analyses of the 2-20 μ and $<2\mu$ fractions were performed on CaCO₃-free residues.

The X-ray mineralogy results of this study are summarized in Tables 1 through 11. The mineralogy data are presented in Tables 12 through 23. Sediment ages, lithologic units, and nomenclatures of the sediment types in Tables 1 through 11 are from the DSDP Leg 23 hole summaries and from a subsequent update supplied by O. E. Weser, DSDP. The stratigraphic position of samples submitted for X-ray diffraction analysis from Leg 23 are listed in Tables 1 through 11. The sample depth (in meters) below the sea floor in Tables 1 through 11 identifies the samples as they are reported in Tables 12 through 23.

No samples were submitted for X-ray diffraction analysis from Site 226. At the request of Leg 23 scientists, some bulk samples from calcareous sediments at Site 223 were not analyzed in order to allow for more analyses of the decalcified fractions.

Several unidentified minerals were detected in Leg 23 samples. Their abundances were determined on a semiqualitative basis using a hypothetical mineral concentration factor of 3.0. Unidentified minerals are reported on a ranked, semiqualitative scale as outlined below:

Trace: (>5%)-diffraction pattern was weak and identification was made on the basis of two major diagnostic peaks.

Present: (5-25%)—a number of peaks of the mineral are visible in the diffraction pattern.

Abundant: (25-65%)—diffraction peaks of the mineral are prominent in the total diffraction pattern but the peaks of other minerals are of an equivalent intensity.

Major: (<65%)-the diffraction peaks of the mineral dominate the diffraction pattern.

Although a certain quantity of the unidentified minerals is implied, their concentration is not included in the concentrations of the identified minerals, which are summed to 100 percent.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used on Leg 23 as follows:

Hole 219, between Cores 23 and 24; Hole 219A, before Core 1, and between Cores 13 and 14, and 20 and 21; Hole 220, between Cores 20 and 21; Hole 222, between Cores 18 and 19, 21 and 22, 25 and 26, 27 and 28, 28 and 29, 30 and 31, 31 and 32, 33 and 34, and 34 and 35; Hole 223, between Cores 24 and 25, 32 and 33, and 35 and 36; Hole 224, between Cores 4 and 5 and 10 and 11; Hole 227, between Cores 36 and 37; Hole 228, between Cores 17 and 18; Hole 229A, between Cores 3 and 4, and during Cores 10, 11, and 12.

Most samples submitted for diffraction analysis do not occur close to intervals in which drilling mud was used. In the cases of samples from Hole 222, Core 28; Hole 224, Core 5 and Core 11; and Hole 228, Core 18, drilling mud was used prior to coring. In all of these cases, however, the montmorillonite content is normal and barite is absent indicating that contamination by drilling mud is unlikely.

MINERAL NOTES

Dolomite was frequently detected in Leg 23 bulk samples but much less frequently in the 2-20 μ fractions. This apparent reduction in the occurrence of dolomite is the result of partial dissolution of fine-grained dolomite during the decalcification procedure.

Magnesian calcite (abbreviation MgCa) was detected at Sites 225, 228, 229 and 230 in the upper sedimentary units in the Red Sea. The presence of magnesian calcite is manifested as a distinct peak or a bulge to the lower *d*-spacing side of the pure calcite (211) peak position. The content of magnesian calcite in the sample was estimated by deconvoluting the peaks of magnesian and pure calcite. In cases where the peaks were well resolved, a peak position of 2.996Å was measured for magnesian calcite which corresponds to a MgCO₃ content of approximately 14 percent (Goldsmith, Graf and Heard, 1961).

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of Nicki D. Coursey in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr. in sample preparation.

REFERENCE

Goldsmith, J. R., Graf, D. L. and Heard, H. C., 1961. Lattice constants of the calcium-magnesium carbonates: Am. Min., v. 46, p. 453-457.

¹Institute of Geophysics and Planetary Physics, University of California Riverside, California, Contribution No. 73-31.

	Sample			В	ulk Sam	ple	2-:	20µ Fra	ction	$<2\mu$ Fraction			
Sample	Depth Below	2000 0		Major	Constit	uents	Major	Constit	tuents	Major	Constitu	ients	
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3	
Hole 219													
9-1, 45-47	69.4	Unit Ia	a	Calc.			Quar.	Plag.	Mica	Mica	Mont.	Paly	
14-5, 110-112	135.1	Unit II ^b	b	Calc.			Insuffi	cient res	sidue	Paly.	Mont.	Mica	
18-1, 45-47	183.4	Unit IIIc	c	Calc.			Quar.	Mica	Clin.	Mont.	Kaol.		
Hole 219A													
5-2, 80-82	319.3	Unit V	Late	Calc.	Plag.		Plag.	Clin.	Mont.	Mont.	Plag.	Pyri.	
11-2, 45-47	373.3	Limestone, sand-	Paleocene	Mont.	Plag.	Phil.	Mont.	Plag.	Phil.	Mont.	Phil.	0	
13-2, 60-61	389.1	stone, and silt stone with clay and glauconite		Mont.	Phil.	Plag.	Mont.	Phil.	Plag.	Mont.			

TABLE 1	
Summary of X-Ray Mineralogy Samples, Sample Depths, Lithol	ogy, Age,
and X-Ray Diffraction Results, Site 219	

^aUnit I consists of detrital silty clay nanno ooze becoming more clay-rich downhole and is Middle Miocene through Late Pleistocene in age. ^bUnit II consists of foram ooze and chalk, nanno-rich in upper part, and is Early Miocene in age.

CUnit III consists of foram and nanno ooze chalk and micarb chalk ooze and is Middle Eocene through Late Oligocene in age.

Sample	Sample Depth Below			B Major	ulk Samp Constitu	ole uent	2- Major	20µ Fran Constit	ction uent	<2 Major	μ Fracti Constitu	on uent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
4-1, 75-78	27.8	Unit I ^a	a	Calc.	Quar.	Mica	Quar.	Mica	Plag.	Mica	Mont.	Quar.
7-1, 45-47	102.4	Unit II ^b	b	Calc.			Insuffi	cient res	idue	Paly.	Mont.	Quar.
12-2, 41-43	233.9	Unit III ^c	с	Calc.			Insuffi	cient res	idue	Insufficient residue		
17-1, 80-81	297.8	Unit IV Micarb-rich nanno chalk and chert	Early Eocene	Calc.			Clin.	Cris.	Mont.	Mont.	Cris.	

 TABLE 2

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 220

^aUnit I consists of nanno detrital clay and detrital clay nanno ooze and is Middle Miocene through Late Pleistocene in age.

^bUnit II consists of nanno ooze and chalk and is Late Eocene through Early Miocene in age.

CUnit III consists of rad spicule-rich nanno ooze and chalk with thin ash beds and chert near top, and is Middle through Early Eocene in age.

-

	TABLE 3	3		
Summary of X-Ray Mineralogy	Samples,	Sample Dept	hs, Lithology,	Age,
and X-Ray D	iffraction	Results, Site	221	

Samula	Sample Sample				Bulk Sample)μ Fracti	on	<2µFraction		
(Interval in cm)	Sea Floor (m)	Lithology	Age	мајо 1	2	3	Majo 1	2	3	1 1	2	3
5-4, 33-35 8-2, 1-3 8-2, 29-31 8-2, 55-57 10-5, 87-89 10-5, 136-138	59.8 83.5 83.8 84.1 106.9 107.4	Unit I Carbonate detrital clay and silt nanno ooze with graded detrital sand and pelletal sand	Early and Late Pleistocene	Arag. Mica Mica Mica Arag. Arag.	Mica Quar. Quar. Quar. Calc. Calc.	Calc. Calc. Calc. Plag. Mica Mica	Quar. Mica Mica Mica Quar. Quar.	Plag. Quar. Quar. Quar. Plag. Plag.	Mica Plag. Plag. Plag. Mica Mica	Mont. Mica Mica Mica Mica Mica	Mica Quar. Quar. Quar. Mont. Mont.	Quar. Chlo. Chlo. Chlo. Quar. Quar.
12-2, 1-3 12-2, 63-65 15-3, 97-99	119.5 120.1 149.0	Unit II ^a Unit III ^b	a b	Mica Mica Mica	Quar. Quar. Quar.	Calc. Calc. Paly.	Mica Mica Quar.	Quar. Quar. Mica	Chlo. Chlo. Plag	Mica Mica Paly.	Quar. Quar. Mica	Chlo. Chlo. Quar.
17-2, 24-25 18-1, 45-46	216.7 252.4	Unit IV Micarb-rich nanno ooze chalk	Middle Eocene through Oligocene	Calc.			Insuffi Clin.	cient res Quar.	idue	Mont. Mont.	Kaol. Mica	K-Fe. Clin.

aUnit II consists of carbonate-rich detrital clay with graded beds of sand and silt and is Late Miocene and Miocene in age.

bUnit III consists of brown clay and is Late Oligocene through Miocene in age.

 TABLE 4

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 222

Sample	Sample Depth Below			Bulk Sample Major Constituent			2-20µ Fraction Major Constituent			<2µ Fraction Major Constituent		
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-1, 55-57	53.5	Unit I a	а	Calc.	Dolo.	Quar.	Quar.	Plag.	Mica	Mica	Paly.	Chlo.
3-2, 47-49	103.0	Unit II		Ouar.	Calc.	Mica	Quar.	Mica	Plag.	Paly.	Mica	Mont.
4-1, 78-80	119.8	Carbonate and	Late Mio-	Mica	Quar.	Calc.	Quar.	Mica	Plag.	Mica	Quar.	Chlo.
6-4, 112.5-		nanno-rich,	cene		2							
114.5	142.6	detrital silty	through	Mica	Quar.	Calc.	Mica	Quar.	Plag.	Mica	Quar.	Chlo.
8-4, 62-63	189.1	clay.	Pliocene	Mica	Quar.	Calc.	Quar.	Mica	Plag.	Mica	Mont.	Quar.
9-3, 84-86	216.8			Mica	Quar.	Calc.	Mica	Quar.	Plag.	Mica	Quar.	Chlo.
9-4, 11-13	217.6			Mica	Quar.	Plag.	Quar.	Plag.	Mica	Mica	Chlo.	Quar.
23-2, 43-44	748.9			Calc.	Mica	Quar.	Quar.	Plag.	Mica	Mica	Quar.	Mont.
24-2, 45-47	806.0			Quar.	Mica	Calc.	Quar.	Mica	Plag.	Quar.	Mica	Chlo.
28-5, 72-73	988.7			Mica	Quar.	Calc.	Quar.	Mica	Plag.	Mica	Quar.	Chlo.

aUnit I consists of detrital clay nanno ooze to nanno-rich detrital carbonate silty clay and is Pleistocene in age.

Sample	Sample Depth Below			B Majo	ulk Sam	ple tuent	2-2 Majo	20µ Frac or Consti	tion tuent	<2 Majo	μ Fractio r Constit	on tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-3, 41-42	31.4	Unit IA ^a	a				Quar.	Plag.	Mica	Paly.	Mica	Quar.
$14-1, 73.74 \\14-1, 89-90 \\14-1, 101-102 \\14-1, 104-105 \\14-1, 120-121 \\14-1, 133-134 \\14-3, 88-90 \\14-3, 103-105 \\14-4, 69-70 \\16-2, 42-44 \\19-2, 19-21 \\19-2, 69-60 \\16-1, 100 \\100 \\100 \\100 \\100 \\100 \\100 \\10$	366.7 366.9 367.01 367.04 367.2 367.3 369.9 370.0 371.2 385.9 412.7 412.7	Unit IC Diatom-rich detrital silt nanno chalk, nanno diatomite and chalk breccia	Middle and Late Miocene	Bu pro req shi	lk sampl ocessed a juest of l pboard p Quar. Mica	es not t Leg 23 party. Paly. Calc.	Quar. Quar. Quar. Quar. Quar. Quar. Insuffi Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag. Plag. Plag. Plag. cient res Plag. Mica Mica	Mica Mica Mica Mica Mica Paly. idue Pyri. Plag. Plag.	Paly. Paly. Paly. Paly. Paly. Paly. Paly. Mont. Paly. Mica	Mica Mont. Quar. Mont. Quar. Paly. Paly. Mica. Quar.	Mont. Mica Mica Mica Quar. Mica Quar. Quar. Chlo.
27-1, 86-87 27-1, 135-136 27-1, 147-148 28-1, 21-22 28-1, 80-81 30-1, 61-62	488.0 488.4 488.5 496.2 496.8 524.6	Unit II Micarb detrital silty clay rich nanno chalk	Early Oligocene through Mid Miocene	Bulk samples not processed at request of Leg 23 shipboard party			Quar. Insuffi Quar. Quar. Insuffi	cient res Plag. Plag. cient res	idue Mica Mica idue	Paly. Paly. Paly. Mont. Mont. Mont.	Mont. Mica Mica Paly. Paly. Kaol.	Mica Mont. Mont. Mica K-Fe. Paly.
34-2, 98-100 35-2, 48-49	592.5 611.0	Unit III Detrital silty clay-rich nanno chalk and rad-rich claystone	Late Paleocene through Late Eocene	Calc. Cris.	Mont. Calc.	Clin.	Quar. Cris.	Mont. Clin.	Plag. Quar.	Mont. Mont.	Kaol. Cris.	Paly.

 TABLE 5

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 223

^aUnit IA consists of detrital sandy silt-rich nanno ooze and carbonate detrital sand and is Early and Late Pleistocene in age.

	TABLE 6
Summary of X-ray Mineralogy	Samples, Sample Depths, Lithology, Age,
and X-Ray I	Diffraction Results, Site 224

Sample	Sample Depth Below	Lithology		Bi Major	ilk Samp Constit	ole uent	2-2 Majo	0μ Fract r Constit	tion	<2/ Major	u Fractio r Constit	on uent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-2, 37-38	95.9	Unit I ^a	a	Calc.	Dolo.		Quar.	Plag.	Mica	Paly.	Mica	Mont.
5-2, 75-76 8-5, 5-6 8-5, 32-33	352.3 638.0 638.3	Unit II ^b	b	Quar. Mica Mica	Mica Quar. Quar.	Calc. Calc. Calc.	Quar. Quar. Quar.	Mica Mica Mica	Plag. Plag. Plag.	Mica Mica Mica	Mont. Quar. Quar.	Chlo. Mont. Chlo.
9-1, 45-47 10-2, 49-50 11-1, 30-31	698.5 756.0 783.3	Unit III Micarb-rich clay nanno chalk	Early Eocene through	Calc. Mont. Calc.	Mont. Quar. Mont.	Paly. Kaol.	Quar. K-Fe. Quar.	Mica Mica K-Fe.	Plag. Quar. Plag.	Mont. Mont. Mont.	Paly. Kaol. Kaol.	Paly.
11-2, 44-45 11-2, 145-146	784.9 786.0	to nanno-rich claystone	Early Oligocene	Calc. Mont.	Cris. Calc.	Paly.	Cris. Quar.	Quar. Paly.	Clin. K-Fe.	Cris. Mont.	Mont. Paly.	Quar.

aUnit I consists of detrital clayey silt-rich nanno ooze chalk and is Early Miocene through Late Pleistocene in age.

^bUnit II consists of detrital silty claystone and detrital sand and clayey siltstone and is Early Oligocene through Early Miocene in age.

TABLE 7
Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age,
and X-Ray Diffraction Results, Site 225

Sample	Sample Depth Below			Bu Major	lk Samp Constit	ole uent	2-20µ Fraction Major Constituent			<2µ Fraction Major Constituent		
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-2, 53-55	2.0	Unit I		MgCa.a	Calc.	Quar.	Quar.	Plag.	Mica	Insuffic	cient resi	due
3-3, 100-102	22.0	Foram-bearing	Late	MgCa.	Calc.	Plag.	Plag.	Quar.	Mica	Mica	Mont.	Paly.
4-5, 119-121	26.4	micarb-rich	Pliocene	MgCa.	Calc.	Quar.	Quar.	Plag.	Mica	Paly.	Mont.	Mica
4-6, 20-22	26.7	detrital clay-silt	through	Calc.	Mica	Quar.	Quar.	Plag.	Mica	Paly.	Mont.	Mica
6-3, 80-82	39.6	nanno ooze	Late	Calc.	Dolo.	1	Quar.	Plag.	Mica	Mont.	Mica	Paly.
9-3, 77-79	57.8	chalk	Pleistocene	Calc.	Dolo.	Plag.	Quar.	Plag.	Mica	Mont.	Paly.	Mica
10-2, 100-102	65.5			Calc.	Plag.	Quar.	Plag.	Quar.	Mica	Mont.	Paly.	Quar.
13-6, 30-32	84.8			Calc.	Dolo.		Plag.	Quar.	Mica	Paly.	Mont.	Mica
14-2, 40-42	87.9			Calc.	Dolo.		Quar.	Plag.	K-Fe.	Paly.	Mont.	Mica
14-3, 120-122	90.2			Calc.	Plag.	Dolo.	Plag.	Quar.	Mica	Mont.	Paly.	Mica
14-4, 60-62	91.1			Calc.	Dolo.	Mica	Plag.	Quar.	Mica	Mont.	Paly.	Mica
15-1, 125-127	96.3			Calc.	Phil.	Mont.	Phil.	Mont.	Quar.	Mont.	Phil.	
17-2, 59-61	115.1	Unit II	Early and	Calc.	Dolo.		Plag.	Quar.	Mica	Mont.	Paly.	Mica
18-4, 76-78	127.3	Micarb-rich	Late	Calc.			Plag.	Quar.	K-Fe.	Mont.	Quar.	Plag.
22-3, 75-79	161.8	nanno detrital silty claystone	Pliocene	Calc.	Plag.	Quar.	Quar.	Plag.	Mica	Mont.	Paly.	Mica

aMgCa = magnesian calcite.

 TABLE 8

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 227

Sample	Sample Depth Below			B Majo	ulk Samp or Constit	ole uent	2-2 Majo	0μ Fract or Constit	tion tuent	<2 Majo	µ Fractic r Constit	on uent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
3-1, 120-122 6-2, 120-122 13-2, 50-52 16-2, 98-100	28.2 47.7 92.0 115.5	Unit I Micarb-rich detrital clay nanno ooze and chalk	Early Pliocene through Pleistocene	Calc. Calc. Calc. Calc.	Dolo. Dolo. Plag. Dolo.	Paly. Mica Plag.	Quar. Plag. Plag. Quar.	Plag. Quar. Quar. Plag.	Mica Mica Mica Mica	Paly. Mont. Mont. Mont.	Mont. Mica Mica Paly.	Mica Kaol. Chlo. Kaol.
18-2, 120-122 19-2, 15-17 20-3, 142-144 22-4, 68-70 25-2, 38-40	133.7 141.6 153.4 163.2 186.9	Unit II Micarb-rich nanno detrital silty claystone	Early Pliocene	Calc. Calc. Calc. Calc. Calc.	Mica Plag. Plag. Quar. Clin.	Plag. Mica Quar. Plag.	Plag. Quar. Quar. Quar. Clin.	Quar. Plag. Plag. Plag. Quar.	Mica Mica Mica Mica Mica	Mont. Mont. Mont. Mont. Mont.	Mica Paly. Kaol. Mica Mica	Kaol. Kaol. Mica Chlo. Clin.

Sample	Sample Depth Below			Bu Major	lk Samı Constit	ple tuent	2-2 Majo	20µ Fractor Fractor Constit	tion	<2 Majo	µ Fractio r Constit	on uent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
$\begin{array}{c} 1\text{-}3, 50\text{-}52\\ 5\text{-}3, 110\text{-}112\\ 10\text{-}6, 58\text{-}59\\ 11\text{-}4, 124\text{-}125\\ 14\text{-}2, 37\text{-}39\\ 16\text{-}3, 24\text{-}26\\ 18\text{-}1, 141\text{-}143\\ 20\text{-}4, 130\text{-}132\\ 22\text{-}3, 65\text{-}67\\ \end{array}$	3.5 37.1 77.1 83.7 106.9 126.2 142.2 160.8 176.6	Unit I Detrital silt-rich micarb nanno ooze and micarb- rich siltstone	Late Pliocene through Holocene	Calc. Calc. Calc. Plag. MgCa. ^a Plag. Calc. Mica	Plag. Plag. Plag. Kaol. Plag. Quar. Mica Plag.	Quar. K-Fe. Quar. Quar. Kaol. Mica Plag. Calc.	Insuffi Plag. Plag. Plag. Mica Mica Mica Mica Plag.	cient resi Quar. Mica Quar. Plag. Plag. Plag. Plag. Plag. Mica	idue Mica Quar. Mica Quar. Quar. Quar. Quar. Quar.	Mica Mica Mica Mica Mica Mica Mont. Mont.	Mont. Mont. Mont. Mont. Mont. Kaol. Mica Mica	Kaol. Kaol. Kaol. Kaol. Kaol. Mont. Kaol. Kaol.
24-3, 28-29 26-1, 130-133 27-3, 110-112 28-2, 101-104 30-1, 120-122 32-2, 120-121 33-3, 100-101 34-1, 69-70	194.3 210.3 222.1 229.5 246.2 265.7 272.0 277.7	Unit II Micarb siltstone Unit III Dolomitic detrital silty claystone	Late Pliocene Early Pliocene	Dolo. Plag. Calc. Plag. Calc. Plag. Calc. Dolo.	Plag. Calc. Mica Quar. Plag. Mica Plag. Plag.	Mica Quar. Plag. Mica Mica Quar. Mica Quar.	Plag. Mica Mica Mica Mica Plag. Plag.	Mica Plag. Plag. Plag. Plag. Quar. Quar.	Quar. Quar. Quar. Quar. Quar. Mica Mica	Mont. Mont. Mica Mont. Mont. Mont. Kaol.	Mica Mica Paly. Mont. Mica Kaol. Mica Mica	Kaol. Mica Kaol. Kaol. Mica Kàol. Mont.

 TABLE 9

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 228

^aMgCa. = magnesian calcite.

 TABLE 10

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 229A

Sample	Sample Depth Below			B Majo	ulk Samp r Constit	ole uent	2-2 Majo	20µ Frac or Consti	tion tuent	<2, Majo	µ Fractio	on tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-3, 30-32 5-4, 60-62	22.3 70.1	Unit I Calcareous ooze with detrital silt and clay	Late Pleistocene	Calc. Calc.	Plag. Quar.	MgCa. ^a Plag.	Plag. Quar.	Quar. Plag.	K-Fe. K-Fe.	Mont. Insuffi	Paly. cient res	Mica sidue

aMgCa. = magnesian calcite.

Sample	Sample Depth Below			B Majo	ulk Sam	ple tuent	2-2 Majo	20µ Fractor Fractor Constit	tion tuent	<2 Majo	μ Fraction r Constit	on tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-3, 140-142	4.4	Unit I Silty calcareous ooze	Late Quaternary	Arag.	Calc.	MgCa. ^a	Plag.	Quar.	K-Fe.	Mica	Mont.	Kaol

 TABLE 11

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 230

^aMgCa. = magnesian calcite.

Core	Cored Interval Below Sea Floor (m)	Sample Depth ^a Bėlow Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor	Mont.	Poly.	Clin.	Hali.
Bulk	Samples															
9	69-78	69.4	57.4	33.5	90.3	0.9	3.6		1.2		3.2	0.8				
14	128-137	135.1	50.1	22.1	97.7	-	0.8		-		1.5	-				
18	183-192	183.4	51.3	23.9	100.0	-	-		-		-	-				
2-20µ	Fraction															
9	69-78	69.4	82.1	72.0			46.7	12.2	19.0	2.6	15.7	3.7			-	
18	183-192	183.4	98.3	97.3			37.2		19.5	-	22.0	-			21.3	
<2µ I	Fraction															
9	69-78	69.4	81.7	71.4			13.3	2.2	1.0	4.9	30.3	9.7	24.8	13.9		
14	128-137	135.1	94.0	90.6			12.2	8.1	_	5.3	14.1	3.6	17.7	36.8	2.2	-
18	183-192	183.4	87.4	80.3			3.5	-	1.9	8.6	3.4	-	75.2		4.5	2.8

TABLE 12 Results of X-Ray Diffraction Analysis From Hole 219

TABLE 13 Results of X-Ray Diffraction Analysis From Hole 219A

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Quar.	Calc.	Plag.	Mica	Mont.	Clin.	Phil.	Pyri.	Anal.	Anat.
Bulk	Samples													
5	317-326	319.3	56.0	31.3		88.8	8.1		-	3.1	-		-	-
11	371-380	373.0	80.0	68.8		2.8	33.1		49.4	-	14.7		_	-
13	387-396	389.1	82.7	72.9		8.5	12.2		63.9	°=	12.8		1.1	1.4
2-20 μ	Fraction													
5	317-326	319.3	73.9	59.3	-		43.6		9.6	42.7		4.1		-
11	371-380	373.0	75.7	62.0	0.8		21.0	1.8	62.5	1.3	12.6	-		-
13	387-396	389.1	85.6	77.6	-		8.2	-	75.6	1.8	12.4			2.1
<2µ F	raction													
5	317-326	319.3	90.3	84.9	2.7		27.3		59.1	2.5	-	8.3		-
11	371-380	373.0	78.5	66.5	-		2.0		87.9	1.1	7.7	-		1.3
13	387-396	389.1	77.9	65.5	0.4		-		92.2	-	4.7	-		2.6

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Cale.	Dolo.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Trid.	Poly.	Clin.	Amph.	Hali.
Bulk	Samples																		
4	27-36	27.8	77.8	65.2	47.5	1.6	16.7		2.6	5.6	2.4	15.8	2.8	5.0			=		
7	102-111	102.4	50.1	22.1	100.0	<u></u>	-			0.00		_	2	<u> </u>			-		
12	232-241	233.9	56.4	31.9	100.0	-	-		\overline{a}	-	-		-	-			-		
17	297-306	297.8	50.8	23.2	97.5	-	1		<u> </u>	-	-	-	-	-			2.5		
2-20µ	Fraction																		
4	27-36	27.8	64.8	45.0			43.0	-	3.5	16.3		29.4	6.2	-	-		-	1.7	
17	297-306	297.8	87.5	80.4			3.9	27.2	-	3.6		-	-	23.3	4.4		37.5	-	
<2µ I	raction																		
4	27-36	27.8	82.9	73.2			19.1	-	2.1	3.6	2.7	26.8	7.0	25.1		13.7	122		-
7	102-111	102.4	86.6	79.1			17.9	777.0	-	2.0	2.5	16.1	7.4	22.7		31.5			-
17	297-306	297.8	86.8	79.3			1.3	13.8	-	-	-	-	-	80.6			1.9		2.4

TABLE 14 Results of X-Ray Diffraction Analysis From Site 220

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Anat.	Hema.	Pyri.	Amph.	U-la
Bulk	Samples																				
5	55-64	59.8	65.3	45.7	10.3	0.8	63.3	5.5	—	3.1	-	13.9	1.7	-	Ξ	0.6				0.7	
8	82-91	83.5 83.8 84.1	67.1 72.2 62.1	48.6 56.6 40.8	9.4 10.6 7.6	1.8 1.7 1.2	-	19.5 20.4 21.8	1.7 1.9 5.2	5.6 5.7 10.2		53.7 51.0 47.6	8.4 8.6 6.3								
10	100-109	106.9 107.4	64.8 63.1	45.0 42.3	15.9 9.5	1.3	68.4 77.6	4.1 4.1		$1.2 \\ 1.0$		7.9 6.6	$1.2 \\ 1.0$	-	_	-				-	
12	118.127	119.5 120.1	66.0 68.3	46.9 50.4	12.1 12.1	1.6 1.6	-	21.3 21.5	$^{-}_{1.2}$	4.6 3.8	-	51.4 50.6	9.0 9.2	-	-	-				-	
15	145-154	149.0	?	?	-	(=)	-	21.1	2.2	7.7	5.0	26.7	5.5	7.2	14.4						
18	252-261	252.4	54.3	28.6	95.0		-	0.5	-	-	-	-	-	-	-	4.5				-	
2-20µ	⁴ Fraction																				
5	55-64	59.8	73.0	57.9				47.0	\sim	27.2	-	19.7	3.7			<u></u>	0 <u></u> ¥		1.2	1.1	—
8	82-91	83.5 83.8 84.1	58.0 59.3 55.3	34.4 36.5 30.1		-		31.0 28.8 31.6	1.6 2.7 2.8	12.1 10.2 15.1	11	44.4 48.3 40.7	9.8 10.0 8.2			1.1.1	1		1.1	1.2 - 1.7	T T T
10	100-109	106.9 107.4	74.3 75.8	59.9 62.2		2.1		47.0 49.6	4.3 4.1	21.1 25.5	-	19.0 15.0	4.8 2.4			-	-		$1.8 \\ 2.1$	- 1.3	-
12	118-127	119.5 120.1	53.5 58.7	27.4 35.5		_		29.1 30.4	1.3 1.4	7.6 7.3	-	50.3 50.8	$\begin{array}{c} 10.6 \\ 10.0 \end{array}$			1			-	1.2	P T
15	145-154	149.0	?	?				34.4	5.6	16.2	4.0	32.0	7.9								
18	252-261	252.4	74.1	59.5		-		10.1	100	-		~	-			88.6	1.3		~	-	-
<2µ F	Fraction																				
5	55-64	59.8	80.2	69.1				10.2	3.6	3.1	4.1	20,8	7.7	50.6	-	-			-		
8	82-91	83.5 83.8 84.1	78.0 79.7 78.2	65.6 68.3 66.0				21.7 23.3 18.1	2.9 2.4 2.2	5.9 6.4 3.1	3.2 - 5.0	48.9 52.7 50.8	12.5 12.3 14.8	4.7 2.9 6.0	1 1	1 1		1.1.1	11		
10	100-109	106.9 107.4	84.3 82.2	75.4 72.1				14.4 13.4	2.4 2.4	1.9 1.7	3.3 5.0	36.2 37.4	12.1 12.5	29.7 25.4	-	-		-	2.2		
12	118-127	119.5 120.1	76.1 76.9	62.6 63.9				22.3 22.1	2.0 2.3	3.2 3.5	5.3	48.7 46.5	$\begin{array}{c} 14.0 \\ 10.3 \end{array}$	6.8 7.2	-	-		3.1 2.8	-		
15	145-154	149.0	?	?				18.9	4.8	6.1	4.1	23.5	5.0	11.1	25.0						
17	215-224	216.7	89.3	83.3				5.6	8.3	2.9	16.3	7.0	-	58.1	-	1.8		-	1		
18	252-261	252.4	85.0	76.5				5.6	5.1	2.3	-	8.6	0-0	71.7	-	6.7		-	-		

TABLE 15 Results of X-Ray Diffraction Analysis From Site 221

^aU-1 peak at 12.1 Å. T = trace; P = present.

X-RAY MINERALOGY

1145

				K	esuns c	n A-Ra	y Diff	action	Analys	S FIOD	n site .	644							
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Pyri.	Amph.	Anat.	U-la
Bulk	Samples																		
2	53-62	53.5	66.7	47.9	45.6	14.7	13.6	0.9	7.0	-	9.9	2.2	-	6.1		-	-		
3	101-110	103.0	76.4	63.1	19.8	5.6	21.3	-	12.3	-	19.3	3.3	4.3	13.1		-	1.1		
4	119-128	119.8	69.1	51.8	11.7	1.2	23.5	-	6.4	-	48.2	9.0	-	2			-		
6	137-146	142.6	68.1	50.2	12.0	2.0	26.6		7.5		44.0	7.9	-	0.00		777.	-		
8	184-193	189.1	70.3	53.7	8.9	1.4	24.0	2.3	8.7	-	45.9	8.7	-	-		-	-		
9	213-222	216.8 217.6	63.8 59.6	43.4 36.8	11.6 7.2	1.8 1.2	23.9 28.3	2.1 2.4	7.9 13.0	-	43.9 40.3	8.8 5.9		_		223 778	 1.6		
23	747-756	748.9	67.0	48.5	55.8	1.5	15.8	\sim	5.3	-	17.4	3.2	-	-		0.9			
24	804-813	806.0	71.4	55.3	18.9	2.9	31.3	-	9.2		29.9	7.8	-	-		-	-		
28	982-991	988.7	72.8	57.5	16.3	2.6	26.5	3.1	7.8	3.5	31.0	7.2	2.0	-			-		
2-20 μ	Fraction																		
2	53-62	53.5	70.0	53.1			49.2	4.5	22.8		16.7	4.8		-	-	2.0	_	-	-
3	101-110	103.0	72.0	56.3			46.9	-	22.0		22.2	5.7		-	—	1.7	1.4	-	
4	119-128	119.8	61.6	40.0			39.9	2.1	12.9		35.9	7.9			-	-	1.2	-	-
6	137-146	142.6	53.8	27.8			32.5	1.4	12.1		43.0	10.0				100	1.0	-	_
8	184-193	189.1	65.9	46.8			37.8	3.2	15.9		35.1	7.0		-	-	-	1.0	-	-
9	213-222	216.8 217.6	56.6 60.5	32.2 38.2			34.6 48.5	2.8 3.4	14.3 22.0		38.1 19.0	8.8 4.3		-	-	-		1.4 _	Т _
23	747-756	748.9	65.3	45.8			48.5	3.7	23.3		16.7	4.9		-	1.3		1.6	-	—
24	804-813	806.0	58.2	34.7			43.9	2.3	13.7		29.2	9.8		-	$\sim - 1$	-	1.1	122	_
28	982-991	988.7	60.1	37.7			40.3	1.7	12.7		31.0	7.8		6.4	-	-		्त	-
<2µ I	Fraction																		
2	53-62	53.5	82.0	71.9			10.3	-	0.2	-	36.6	12.0	11.6	28.4		1.0			
3	101-110	103.0	81.6	71.2			11.1	\sim	0.6	-	30.9	9.9	14.5	33.0		-			
4	119-128	119.8	77.9	65.5			23.5	-	2.0	-	52.4	13.8	8.2	-					
6	137-146	142.6	78.5	66.5			26.3	-	2.9	-	49.2	15.2	6.4	-		-			
8	184-193	189.1	75.1	61.1			20.6	2.4	6.9	—	36.0	13.3	20.7	-					
9	213-222	216.8 217.6	76.3 73.7	63.0 58.8			24.1 16.5	2.7	6.5 1.1	-	50.5 52.1	13.1 19.1	3.1 11.2	_					
23	747-756	748.9	78.9	67.1			22.5	-	2.3	\sim	39.0	17.2	19.0	-					
24	804-813	806.0	78.7	66.7			33.6	2.7	5.9	-	33.1	13.4	11.2	-		-			
28	982-991	988.7	75.6	61.9			25.1	2.6	5.8	1.4	38.8	14.0	12.4	100		<u></u>			

TABLE 16 Results of X-Ray Diffraction Analysis From Site 222

^aU-1 peak at 12.1Å. T = trace.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Trid.	Clin.	Pyri.	Amph.
Bulk	Samples																		
16	384-393	385.9	64.6	44.6	71.5	2.8	8.7	-	_	2.8	-	4.9	1.8	-	7.5	_		-	
19	411-420	412.7 413.0	75.8 70.8	62.2 54.4	15.2 18.3	2.3 2.4	28.8 31.7	1	-	6.9 11.7	-	25.8 22.3	7.9 7.5	2	11.6 6.1	1.1	_	1.6 -	
30	524-533	524.6	64.2	44.0	88.8	120	1.6		1.1	-			_	5.2	3.3	-	<u></u>	-	
34	590-599	592.5	74.2	59.7	41.0		4.4	-	1.7	2.2	6.4	2.1	1.3	36.9	3.1	-	0.9		
35	609-618	611.0	85.2	76.9	23.3	-	5.4	36.9	-	1.4		4.5	-	6.4	6.8	5.0	10.3	-	
2-20µ	Fraction																		
2	28-37	31.40	79.2	67.5			50.3	22	4.6	27.6		12.1	4.3	223	-	-	4	-	1.0
14	366-375	366.70 366.90 367.01 367.04 367.20 367.30 369.90 371.2	80.5 80.2 83.1 80.8 83.0 98.9 88.3 98.4	69.5 69.1 73.6 70.0 73.5 98.3 81.8 97.6			48.3 42.0 43.0 44.8 37.2 70.4 46.0 70.3	111111111	3.7 3.4 6.5 3.9 4.5 - 2.7 -	20.3 18.1 21.8 18.9 18.0 29.6 22.4 21.2	111111111	15.1 16.1 13.0 15.5 12.9 - 9.7 -	4.6 3.5 6.6 4.6 5.1 - 4.4 -		6.6 12.6 - 9.1 10.7 - 14.8 -	1111111		1.4 3.3 2.0 3.1 2.6 - 8.5	- 1.0 1.3 - 0.9 - - -
16	384-393	385.9	76.4	63.1			41.6		-	18.9	-	21.4	5.4	-	12.0	-	-	0.7	1777
19	411-420	412.7 413.0	64.0 63.4	43.8 42.8			45.4 54.8	1		15.5 21.1	-	31.4 17.4	7.7 5.6	_	-	1	-	- 1.1	-
27	487-496	488.4 488.5	74.0 97.1	59.4 95.4			55.5 58.7	-	7.5 7.5	17.2 21.2	-	15.7 9.3	4.2 3.3	-	-	- 1	-	-	-
34	590-599	592.5	80.8	70.0			32.3	1	14.5	15.3	4.4	11.2	0.8	17.3	_	-	4.3	_	-
35	609-618	611.0	84.4	75.6			8.1	55.2	2.1	3.6	-	2.1	-	4.1	3.6	6.6	14.7	-	÷.

TABLE 17 Results of X-Ray Diffraction Analysis From Site 223

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo. Quar.	Cris.	K-Fe	Plag.	Kaol.	Mica.	Chlor.	Mont.	Paly.	Trid.	Clin.	Pyri.	Amph.
<2µ I	raction																	
2	28-37	31.4	95.9	93.5		12.2	-	-	3.5	3.9	30.2	8.0	3.0	39.2	-	-	-	
14	366-375	366.7	84.6	76.0		12.6		-	0.3	-	25.1	6.5	15.6	39.9	\rightarrow		-	
		366.9	83.8	74.8		8.6	-	<u></u>	-	3.4	15.1	4.5	19.7	47.8	\rightarrow		0.9	
		367.01	86.7	79.3		9.5	-			3.9	19.4	5.4	18.5	43.3	-		-	
		367.04	86.4	78.8		10.4			-	4.3	14.7	4.9	25.9	38.9	\rightarrow	-	1.0	
		367.2	92.8	88.8		16.6	-	_	1.9	2.5	16.2	5.2	12.7	39.9	\rightarrow		5.0	
		367.3	89.0	82.9		20.1	-		4.2	2.8	15.5	5.1	21.5	30.8		-	_	
		369.9	94.8	91.8		15.1	\rightarrow		-	3.6	14.5	4.1	11.1	46.3	\rightarrow	-	5.4	
		370.0	95.5	93.0		10.8			_		10.7		51.5	27.0	_	_	-	
		371.2	80.8	70.1		7.1	-	100		2.7	7.1	2.9	55.3	25.0	\rightarrow			
16	384-393	385.9	87.0	79.7		14.8	-	-	1.4	-	22.6	7.2	9.8	44.2	_	-	-	
19	411-420	412.7	77.4	64.7		18.9	-	111	1.7	_	40.9	17.4	9.6	11.4	-	_	-	
		413.0	77.5	64.9		18.5	-		1.3		50.3	18.6	11.3				-	
27	487 496	488.0	82 1	72.0		57		1.57	0.5	6.1	174	3 5	10.0	46.8				
21	407-490	488.4	78.4	66.2		4 1	-		0.5	0.1	15.4	4.6	11.3	64.6		_		
		488 5	80.3	69.2		6.7	-	_	_	3.0	12.4	3.4	9.8	64 7			100	
		100.0	00.5			0.7			1.2	5.0	12.1	2.1						
28	496-505	496.2	86.2	78.5		8.2		2.2	1.1	7.2	13.0	2.7	41.6	24.0	-			
		496.8	94.9	92.0		1.4	-	11.2	-	_	6.5	77	57.9	17.0	550	572	-	
30	524-533	524.6	78.0	65.7		3.8		4.4	-	14.1	5.9	2.4	57.4	11.9		-		
34	590-599	592.5	78.1	65.7		3.6	~	-	-	24.5	3.4	\simeq	61.8	6.7	127	22	710	
35	609-618	611.0	89.4	83.5		3.8	30.7	-	-	-	5.9		39.3	16.7	2.7	0.9		

TABLE 17-Continued

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Trid.	Clin.	Anat.	Pyri.	Amph.	U-1a
Bulk	Samples																				
2	94-103	95.9	62.3	41.0	54.0	29.5	5.8	_		3.4	-	3.3	0.8	<u></u> :	3.1	-	-	_			
5	350-359	352.3	64.4	44.4	12.2	2.3	38.4	-	2.2	11.5	-	27.1	6.3	-	-	-	—	-			
8	632-641	638.0 638.3	65.4 65.5	46.0 46.1	9.7 9.8	2.3 2.1	27.1 27.1	-	2.2 3.2	6.0 6.4		42.1 40.1	8.7 6.4	2.0 2.2	T T	-	_				
9	698-707	698.5	63.6	43.1	83.1	-	2.0	-	_	-	1.2		-	7.7	6.0	100	-	-			
10	754-763	756.0	86.7	79.3	-	$\sim - \infty$	11.1	-	9.3	9.0	10.1	5.2	1.4	43.1	10.7	-		-			
11	783-792	783.3 784.9 786.0	74.8 72.4 82.0	60.6 56.9 71.9	55.6 53.9 24.8	1	5.8 5.8 10.3	29.0 _	2	1 - 1	7.9 - -	1.9 1.5 7.0		28.9 	- 3.5 16.6	5.5 -	 	_ 1,1			
2-20µ	Fraction																				
2	94-103	95.9	77.7	65.1			44.9	-	4.7	20.4	221	16.7	4.2		4.4		-		3.2	1.5	
5	350-359	352.3	57.1	32.9			43.9	-	2.9	15.7	-	28.6	7.9			-	$c \mapsto c$		-	1.0	Т
8	632-641	638.0 638.3	59.9 60.0	37.3 37.4			43.5 42.5	-	2.7 2.8	12.8 11.9	-	33.2 34.9	7.8 8.0		-	_	_		-	T T	T T
9	698-707	698.5	84.7	76.0			48.7	-	5.4	11.3		19.7	4.1		10.7	-	$\sim - 1$			1.000	$\sim - 1$
10	754-763	756.0	83.3	73.9			24.5	-	28.0	16.7	5.0	24.6	1.2		<u> </u>	_	-		-		_
11	783-792	783.3 784.9 786.0	92.8 79.1 89.2	88.7 67.4 83.1			63.9 34.0 54.6	37.0 _	13.0 2.0 12.7	9.7 5.2 8.5	6.1 - -	7.3 4.2 8.7	- 2.1		3.6 13.4	- 3.9 -	10.1 _			F 1 3	
<2µ I	raction																				
2	94-103	95.9	86.3	78.7			10.0	-	-	_	5.4	20.3	5.6	17.8	39.5				1.4		
5	350-359	352.3	81.7	71.5			16.3		-	2.4	-	41.1	18.7	20.5	-	-	-		1.0		
8	632-641	638.0 638.3	71.4 74.7	55.3 60.4			22.1 22.8	-	3.0	4.5 3.1	-	43.4 44.2	12.5 15.4	14.6 14.4	1 1		_		_		
9	698-707	698.5	84.0	74.9			5.8	-	-	_	3.6	<u></u>	1.8	71.0	17.8		-		-		
10	754-763	756.0	86.7	79.3			4.7	-	—	2.3	15.8	6.3	-	63.0	7.9	-	—		-		
11	783-792	783.3 784.9 786.0	71.8 84.6 83.7	55.9 76.0 74.5			3.0 12.1 5:4	39.4 _		1 1	21.4 	- 3.2 5.6		72.0 28.7 66.1	3.6 11.5 22.9		- 1.3 -		1		

TABLE 18 Results of X-Ray Diffraction Analysis From Site 224

^aU-1 peak at 12.1Å. T = Trace.

X-RAY MINERALOGY

1149

					Resul	ts of X	Ray D	Diffract	ion An	alysis F	rom Si	te 225								
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	MgCa	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Phil.	Pyri.	Amph.
Bulk S	Samples																			
1	0-9	2.0	67.0	48.4	19.7	2.0	-	59.9	7.1	2.1	4.6		3.5	1.2	-	-	_	-	<u></u>	-
3	18-23	22.0	68.8	51.3	25.5	5.7	0.7	35.6	7.8	3.1	9.7	1.8	6.7	1.5	-	—	-	=	-	1.8
4b	23-27	26.4 26.7	72.5 72.1	57.1 56.4	21.7 45.8	12.2 7.8		24.0	$\begin{array}{c} 12.2 \\ 10.0 \end{array}$	- 1.9	9.9 8.0	$1.0 \\ 2.1$	8.4 10.9	1.8 2.7	_	4.9 5.5	-	-	2.0	1.9 2.7
6	36-45	39.6	62.2	40.9	64.5	7.2	-	-	6.5	1.9	6.7	1.5	5.0	1.2	-	4.2	-	-	-	1.3
9	54-63	57.8	68.0	50.1	42.4	19.4		-	10.0	2.3	10.6	1.2	8.4	2.4	-	3.4	-	-	\rightarrow	
10	63-72	65.5	66.5	47.7	62.1	4.9	\simeq	22	8.9	3.2	10.2	1.8	7.3	1.5	_	-	100	2 <u>0</u> 20		111
13	77-86	84.8	64.1	43.9	54.3	17.3		-	5.3	1.3	6.7	-	6.5	1.7	-	4.7	-	-	2.2	
14	86-95	87.9 90.2 91.1	61.9 70.2 61.3	40.4 53.4 39.5	69.3 43.1 64.6	10.1 10.8 9.1	Ξ		3.7 8.9 4.5	1.0 1.3 3.2	2.4 11.6 3.9	0.7 - -	5.6 8.8 7.0	0.8 1.9 1.0	1.0 4.9	5.3 8.8 6.6		11		
15	95-104	96.3	82.0	71.8	38.7	2.5	~ -1	-	5.4		6.1	-	1.8	-	13.2	-	1.4	28.6	2.2	-
17	113-122	115.1	61.5	39.9	62.5	8.3	-		5.5	7.0	4.8	-	5.7	1.2	_	5.0	-	200	+	
18	122-131	127.3	63.4	42.8	82.6	1.9	-		2.7	2.2	3.0	-	2.7	1.3	0.9	-	-	-	2.7	
22	158-167	161.8	74.4	60.1	24.5	10.8	<u>-</u>	\sim	14.4	3.6	15.4	0.6	13.4	2.2	9.3		2.9	1 <u>—1</u>	2.9	-
2-20µ	Fraction																			
1	0-9	2.0	97.6	96.3					43.8	9.4	30.8		10.8	3.2			-		2.1	-
3	18-23	22.0	75.2	61.2					30.3	9.9	30.6	-	19.1	5.9						4.0
4	23-27	26.4 26.7	78.7 76.4	66.7 63.1					33.0 35.2	7.0 6.5	29.9 29.9	-	17.4 16.6	4.6 3.1	-		-	-	5.5 2.6	2.6 6.0
6	36-45	39.6	76.7	63.5					33.5	6.7	32.8		17.8	5.4			-	—	-	3.7
9	54-63	57.8	74.0	59.4					32.2	7.5	30.8	-	17.8	6.5				1.000	2.7	2.6
10	63-72	65.5	82.1	72.0					29.6	10.1	32.7	3.7	16.3	5.4	-		-	—	-	2.3
13	77-86	84.8	78.8	66.9					24.7	7.2	30.0		18.6	5.4	<u>11</u> 3		200	-	14.1	-
14	86-95	87.9 90.2 91.1	97.8 73.9 78.2	96.6 59.3 66.0					40.4 30.5 29.8	12.4 7.2 6.4	31.3 32.7 34.1	1 1	9.3 20.0 20.2	6.6 4.8 6.8	11		1 1	111	- 3.6 -	1.2 2.7

TABLE 19 Results of X-Ray Diffraction Analysis From Site 22:

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	MgCa. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Phil.	Pyri.	Amph.
15	95-104	96.3	73.8	59.1				1	13.0		7.5	्रत	6.1	2.0	13.3		4.1	52.0	1.9	-
17	113-122	115.1	84.7	76.1					35.2	5.1	38.5		13.7	3.3	-		-		0.9	3.3
18	122-131	127.3	85.0	76.6					23.7	18.7	27.6	-	11.3	4.1	-		7	-	14.5	(-)
22	158-167	161.8	67.9	49.9					22.6	6.9	22.4	-	21.8	6.5	10.9		1.4	-	7.5	$(-)^{*}$
<2µ F	raction																			
3	18-23	22.0	83.1	73.6					7.5	0.5	1.1	-	31.2	11.7	26.1	21.8		-	-	c = c
4	23-27	26.4 26.7	81.6 82.9	71.3 73.2					4.9 5.2		-	10.5	18.7 22.4	8.7 10.2	28.4 22.6	28.7 39.5		-	-	-
6	36-45	39.6	83.8	74.6					5.9	4.1	4.4	12.6	22.0	11.9	22.5	16.7		\simeq	-	5 — 7
9	54-63	57.8	82.2	72.2					5.2	1.7	0.9	8.6	14.3	10.6	30.1	28.6				-
10	63-72	65.5	98.2	97.2					11.5	8.7	7.3	10.5	10.4	3.8	25.2	18.4		-		4.3
13	77-86	84.8	82.3	72.3					5.4	1.4	1.5	+	17.3	12.8	25.6	34.9		-	1.0	-
14	86-95	87.9 90.2 91.1	80.0 84.2 82.0	68.7 75.3 71.9					4.3 4.1 2.8	1	1 1	3.4 	$10.1 \\ 16.9 \\ 11.0$	3.6 7.8 4.7	38.5 37.7 44.2	40.0 33.5 37.3		· 1	1.1.1	1 1
15	95-104	96.3	79.0	67.2					3.2		-	-	3.6	-	73.5	4.3		15.4	-	i = i
17	113-122	115.1	85.7	77.7					5.6	<u>.</u>	4.3	16.6	20.5	6.3	25.2	21.6		_		\sim
18	122-131	127.3	87.8	81.0					14.9	9.3	13.4	7.7	13.0	5.3	21.5	1.77		-	14.9	
22	158-167	161.8	82.7	72.9					8.6	-	5.5	5.4	12.8	7.7	45.9	13.2		-	0:9	-

TABLE 19-Continued

^aPeak at 2.996Å was multiplied by the calcite factor of 1.65 to determine magnesian calcite percentage. ^bTo fit in cored interval, depths of 30.2 meters and 30.7 meters were proportionately changed to 26.4 meters and 26.7 meters.

9.4 1.1

20

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Рупі.	Amph.
Bulk	Samples																
3	27-36	28.2	62.2	40.9	60.3	16.0	4.8	1.0	2.7	1.3	4.6	1.1		8.3	-	-	
6	45-54	47.7	67.7	49.5	57.1	12.3	6.6	1.7	6.8	1.1	6.8	2.3	-	5.4	-		-
13	90-99	92.0	72.8	57.5	32.9	2.6	14.3	2.9	18.4	1.1	11.4	3.2	7.2	4.0	2.0	_	
16	113-122	115.5	63.2	42.5	62.1	10.9	4.1		8.3	1.4	6.7	1.0	1.2	4.4	-	-	
18	131-140	133.7	72.5	57.1	31.6	10.1	12.8	5.0	15.9	-	18.2	4.5	2.0	-	-	3 — 3	<u></u>
19	140-149	141.6	69.6	52.6	42.2	6.2	10.6	5.1	13.0	2.0	11.3	2.5	1.6	3.2	-	1.3	1.1
20	149-158	153.4	77.2	64.4	29.2	3.1	16.8	4.6	19.9	3.7	14.6	2.8	5.2	-	. 	-	-
22	158-167	163.2	71.4	55.3	28.0	2.4	19.8	6.6	19.6	_	12.5	3.5	4.6	2.9	\sim		-
25	185-194	186.9	70.5	54.0	56.2	÷	6.0	-	2.8	-	6.0	1.9	5.6	—	18.7	2.8	-
2-20µ	I Fraction																
3	27-36	28.2	80.6	69.6			42.4	8.9	29.7	-	14.0	4.9			-	-	-
6	45-54	47.7	80.7	69.9			32.8	7.9	34.7	_	15.8	4.3			122	1.4	3.2
13	90-99	92.0	71.2	55.0			27.9	9.1	31.5	-	20.4	7.1			-	4.0	-
16	113-122	115.5	89.8	84.1			33.7	8.7	33.4	-	17.5	5.2			-	-	1.5
18	131-140	133.7	72.6	57.2			26.6	10.0	28.1	1.2	23.9	5.9			-	2.5	1.8
19	140-149	141.6	75.1	61.2			38.6	7.7	31.8	-	14.2	4.2			-	1.4	2.1
20	149-158	153.4	74.0	59.4			33.5	6.3	30.0	5.0	21.2	4.0			\sim	-	_
22	158-167	163.2	74.0	59.4			32.0	7.4	29.8	-	22.3	7.0			-	1.5	-
25	185-194	186.9	68.2	50.4			16.0	-	9.5	-	9.8	3.1			51.8	9.7	-
<2µ]	Fraction																
3	27-36	28.2	80.3	69.3			4.8	_	0.5	5.8	15.6	5.3	17.9	50.0	200	_	
6	45-54	47.7	86.0	78.1			10.3	6.7	6.6	15.3	15.6	6.8	24.7	14.0	-	-	
13	90-99	92.0	78.7	66.8			4.9	3.2	3.3	7.2	10.2	9.2	52.3	8.4	-	1.2	
16	113-122	115.5	76.3	63.0			4.0	-	0.9	13.9	11.9	6.2	32.9	30.3	-	-	
18	131-140	133.7	85.5	77.4			8.2		5.7	17.3	19.2	9.9	29.2	9.7	200	0.8	
19	140-149	141.6	84.7	76.1			6.2		2.4	17.6	7.4	5.1	43.3	18.1	$\sim =$		
20	149-158	153.4	81.9	71.8			10.4		5.3	23.5	14.6	6.0	40.3			-	
22	158-167	163.2	76.9	63.9			5.2	-	1.9	-	11.2	9.7	60.9	7.7	-	3.3	

4.2

-

6.4

10.9 4.9 63.0

78.8 66.9

186.9

25 185-194

TABLE 20 Results of X-Ray Diffraction Analysis From Site 227

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	MgCa.a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Anal.	Pyri.	Amph.	qI-N
Bulk	Samples																			
1	0-5	3.5	70.4	53.8	58.9	-	2.2		9.0	3.9	14.4	7.9	1.5	-	2.2			-	-	
5	33-42	37.1	66.8	48.1	40.1		1.7	6.0	11.0	11.1	13.8	8.7	1.5	3.9	2.3					
10	69-78	77.1	73.9	59.2	46.7	-	1.2	~ -1	14.2	4.2	17.0	11.6	2.0		3.1	-		-		
11	78-87	83.7	74.1	59.5	13.2	-	2.3	8.8	17.1	6.6	25.0	18.8	1.5	-	6.8	\sim			-	
14	105-114	106.9	69.8	52.8	15.8	0.8	-	22.2	14.4	6.1	19.1	16.2	2.0	-	3.4	-		-	-	
18	141-150	142.4	73.0	57.8	11.2	-	-	1.5	21.7	6.7	32.1	-	19.6	1.5				-	5.6	
20	155-164	160.8	74.1	59.5	40.8	-	6.3	7.0	7.5	2.8	8.6	2.1	13.7	2.4	5.8	3.0		-	_	
22	173-182	176.6	71.4	55.3	20.8		177	1.6	16.5	6.7	23.1	0.3	24.6	3.1		-			3.2	
24	191-200	194.3	67.6	49.4	8.7	26.1		-	15.2	4.3	20.2	-	18.2	2.8	-	-		3.0	1.3	
26	209-218	210.3	69.1	51.8	24.1		<u></u>	<u></u>	19.3	5.7	24.8	_	21.4	1.7	\sim	\sim		-00	3.0	
27	218-227	222.1	74.4	60.1	35.8	6.1	-	-	11.3	-	13.7	2.4	16.9	2.3	3.2	7.1		1.1	-	
28	227-236	229.5	70.9	54.6	16.3	3.0	-	—	21.9	6.4	28.1		19.1	1.3	-	-		-	3.8	
30	245-254	246.2	70.0	53.1	30.1	7.5		-	11.1	6.6	20.8	-	19.6	1.7	1.0	-		-	1.6	
32	263-268	265.7	76.2	62.9	-		-	-	25.8	9.8	29.4	\sim	25.9	3.0	4.6	$\tilde{c} \mapsto \tilde{c}$		-	1.4	
33	268-277	272.8	62.5	41.4	64.5	6.9	-	\sim	7.0	2.4	9.4	_	8.2	1.6	-	-		-	-	
34	277-286	277.7	66.0	46.9	-	37.3	-	1.77	16.9	5.7	20.8	1.7	14.0	2.6	177			0.9	(=)	
2-20µ	Fraction																			
5	33-42	37.1	76.4	63.1					26.8	7.6	34.0	-	21.7	5.2			-	_	4.7	
10	69-78	77.1	73.7	58.9		\sim			25.8	-	32.9	-	31.3	5.6			_	-	4.5	<u> </u>
11	78-87	83.7	69.7	52.7					24.7	8.5	33.4	$\sim - 1$	22.9	4.1			-	1.8	4.6	
14	105-114	106.9	72.2	56.5		-			23.9	8.6	27.8	-	28.3	6.7				1.4	3.3	= - 1
16	123-132	126.2	70.0	53.1					21.6	6.1	27.9	-	32.4	6.6			-	1.1	4.2	+
18	141-150	142.4	72.1	56.4		-			22.0	5.2	27.1	-	35.8	5.9				-	3.9	-
20	155-164	160.8	72.4	56.9					24.5	9.2	26.8		30.3	6.7			-	1.2	1.3	
22	173-182	176.6	71.6	55.6		100			24.1	6.8	32.5	-	28.6	5.0			-	-	3.0	-

TABLE 21 Results of X-Ray Diffraction Analysis From Site 228

1153

TABLE 21-Continued

Core	Cored Interval Below Sea Floor(m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	MgCa.a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Anal.	Pyri.	Amph.	u-1 ^b
24	191-200	194.3	70.5	53.9		1			22.1	7.4	28.0	-	27.2	6.0			-	8.2	1.1	-
26	209-218	210.3	69.3	52.0		-			22.5	4.2	27.2	-	34.6	6.5			-	1.1	3.8	-
27	218-227	222.1	71.9	56.2					25.6	8.4	28.3		27.1	6.3			4	3.2	1.1	-
28	227-236	229.5	72.5	57.0		-			26.4	4.7	28.4	-	32.7	5.1				-	2.8	
30	245-254	246.2	71.5	55.5		2-			25.2	7.1	28.7		31.5	6.1				-	1.4	-
32	263-268	265.7	75.2	61.2		_			23.2	5.1	26.9		36.4	6.8			12	1.7		т
33	268-277	272.0	71.7	55.7		_			26.9	8.2	29.5		23.1	6.0			4.1	2.3		
34	277-286	277.7	71.2	55.0		6.7			26.6	6.3	28.0	1.1	22.9	3.8			-	4.7	-	-
<2µ F	raction																			
1	0-5	3.5	87.1	79.9		-			9.9	6.1	7.2	13.9	24.9	11.9	24.9	Ξ.		1.2		
5	33-42	37.1	79.1	67.4		-			6.5	-	1.5	16.7	25.3	13.1	23.2	13.6		\sim		
10	69-78	77.1	84.2	75.3					7.4	÷	1.8	22.2	35.2	11.0	22.4	-		-		
11	78-87	83.7	85.9	77.9					6.8	-		17.6	35.5	15.0	25.1			-		
14	105-114	106.9	86.6	79.1		-			7.5	-	7.1	19.0	24.9	15.8	23.6	-		2.1		
16	123-132	126.2	81.1	70.4		$\sim 10^{-1}$			7.6	<u> </u>	4.1	19.8	34.6	6.9	24.9			2.0		
18	141-150	142.4	79.6	68.1		-			7.4	2.0	4.0	22.3	35.3	11.3	17.7			-		
20	155-164	160.8	77.9	65.4		\sim			7.9	4.9	5.7	12.7	21.9	7.9	32.1	5.4		1.6		
22	173-182	176.6	81.2	70.6		=			6.2	=	1.9	15.1	21.7	7.0	48.1	-		-		
24	191-200	194.3	79.3	67.6		$\sim -\infty$			7.9		6.3	16.9	27.9	10.8	30.1			++++		
26	209-218	210.3	82.2	72.1		1et			5.8		4.8	20.5	22.3	8.3	38.2					
27	218-227	222.1	83.4	74.1					4.6	-	2.2	12.2	15.2	7.9	40.2	15.7		2.0		
28	227-236	229.5	88.0	81.2		-3			5.4	2.9	6.1	11.7	37.7	9.2	27.1			-		
30	245-254	246.2	75.4	61.5		_			6.2	2.7	3.9	16.3	25.7	8.7	36.6					
32	263-268	265.7	80.1	69.0		-			5.2	_	-	21.6	14.3	7.7	51.2	-				
33	268-277	272.0	79.4	67.7					5.5	2.0	1.7	18.9	21.8	8.6	38.0			3.4		
34	277-286	277.7	82.8	73.1		1.6			5.0	2.9	1.5	28.2	24.6	10.0	18.6	5.8		1.9		

^aPeak at 2.996Å was multiplied by the calcite factor of 1.65 to determine magnesian calcite percentage.

bU-1 peak at 12.1A. T = trace.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo.	Arag.	MgCa.a	Quar.	K-Fe	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Pyri.	Amph.	U-1b
Bulk	Samples																		
1	19-28	22.3	76.6	63.4	26.1	2.0	13.1	13.7	13.5	2.8	14.2		5.7	1.4		4.9	0.9	1.7	
5	65-74	70.1	93.0	89.0	34.4	3.4	4.8	_	16.4	4.8	14.0		7.3	2.3		9.1	3.7	-	
2-20µ	Fraction																		
1	19-28	22.3	82.3	72.3		1.3			29.5	15.4	29.6		11.2	3.2		3.2	4.5	2.1	Т
5	65-74	70.2	95.2	92.4		_			31.5	14.6	29.6		10.5	2.3		_	8.9	2.7	-
<2μ I	Fraction																		
1	19-28	22.3	83.4	74.1					6.4		4.8	10.0	13.1	8.7	32.8	22.2	2.0		

TABLE 22 Results of X-Ray Diffraction Analysis From Hole 229A

aPeak at 2.996Å was multiplied by the calcite factor of 1.65 to determine magnesian calcite percentage. bU-1 peak at 12.1Å. T = trace.

					Resul	ts of X	-Ray D	iffract	ion An	alysis F	rom H	ole 230)					
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amorp.	Calc.	Dolo	Arag.	MgCa.a	Quar.	K-Fe	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Amph.	Pyri.
Bulk	Samples																	
1	0-9	4.4	65.9	46.7	36.2	3.1	42.0	8.4	2.3		1.7		2.3			2.6	1.0	
2-20µ	Fraction																	
1	0-9	4.4	85.2	77.0					30.2	12.1	32.8		11.9	5.8			3.3	3.9
<2µ I	raction																	
1	0-9	4.4	88.6	82.2					11.9	6.4	6.2	11.9	21.7	7.5	18.7	10.4		5.4

 TABLE 23

 Results of X-Ray Diffraction Analysis From Hole 230

^aPeak at 2.996Å was multiplied by the calcite factor of 1.65 to determine magnesian calcite percentage.