18. X-RAY MINERALOGY DATA, WESTERN INDIAN OCEAN-LEG 24 DEEP SEA DRILLING PROJECT¹

J. C. Matti, I. Zemmels, and H. E. Cook, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, 2-20 μ , and $< 2\mu$ fractions were performed according to the methods described in the reports of Legs 1 and 2 and in Appendix III of Volume IV. The mineral analyses of the 2-20 μ and $< 2\mu$ fractions were performed on CaCO₃-free residues.

The X-ray mineralogy results of this study are summarized in Tables 1 through 7. The mineralogy data are presented in Tables 8 through 15. Sediment ages, lithologic units, and nomenclature of the sediment types in Tables 1 through 7 are from the DSDP Leg 24 hole summaries and from a subsequent update supplied by Dr. Peter Supko, DSDP. The stratigraphic position of samples submitted for X-ray diffraction analyses from Leg 24 are listed in Tables 1 through 7. The sample depth (in meters) below the sea floor in Tables 1 through 7 identifies the samples as they are reported in Tables 8 through 15. No samples were submitted for X-ray diffraction analysis from Site 237.

Several unidentified minerals were detected in Leg 24 samples. Their abundances were determined on a semiqualitative basis using a hypothetical mineral concentration factor of 3.0. Unidentified minerals are reported on a ranked, semiqualitative scale as outlined below:

Trace: (<5%); diffraction pattern was weak and identification was made on the basis of two major diagnostic peaks.

Present: (5%-25%); a number of peaks of the mineral are visible in the diffraction pattern.

Abundant: (25%-65%); diffraction peaks of the mineral are prominent in the total diffraction pattern, but the peaks of other minerals are of an equivalent intensity.

Major: (>65%); the diffraction peaks of the mineral dominate the diffraction pattern.

Although a certain quantity of the unidentified minerals is implied, their concentration is not included in the concentrations of the identified minerals, which are summed to 100 percent.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used on Leg 24 as follows:

No mud was used at Sites 231, 232, 233, 235, or 236. Montmorillonite was used at Site 234 after pulling Core 14 and after pulling Core 15. Montmorillonite and barite were used at Site 237 after pulling Core 64 and before pulling Core 65. Core 67 at Site 237 got stuck so montmorillonite was used. Montmorillonite and barite were used at Site 238 prior to cutting Cores 58 and 59. Montmorillonite alone was used after pulling Core 61, after Core 62, and after Core 63. Most samples submitted for diffraction analysis do not occur close to intervals in which drilling mud was used. In the case of samples from Site 234, Core 15, the montmorillonite content is normal and barite is absent. This suggests that contamination by drilling mud is unlikely.

NOTE ON SUPPLEMENTARY SAMPLES

Many samples originally submitted for X-ray diffraction analysis by Leg 24 scientists were so calcareous that insufficient insoluble residue remained in the 2-20 μ and $<2\mu$ size classes following decalcification. In order to obtain more mineral data, Leg 24 scientists submitted a suite of supplementary samples for analysis. Large, decalcified 2-20 μ and $<2\mu$ samples were processed, and the results from the supplementary samples appear in Tables 16 through 19. In almost all cases the supplementary samples were taken a few centimeters above or below an original sample. Hence, a supplementary sample in Tables 16 through 19 will show the same depth (in meters) below the sea floor as original samples in Tables 8 through 15 for which there was insufficient residue.

The original and supplementary data are presented separately because during supplementary sample preparation some $< 2\mu$ size material was consistently introduced into the 2-20 μ samples by an inexperienced operator. This has resulted in inconsistencies between the original and supplementary data. The most obvious difference is a high montmorillonite content in the 2-20 μ fraction. The data are reported here to provide qualitative mineralogic information on the insoluble residue of the supplementary samples.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of Nicki D. Coursey in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data aquisition and data processing, and of Tom W. Halverson, Jr., in sample preparation.

¹Institute of Geophysics and Planetary Physics, University of California Riverside, California, Contribution No. 73-78.

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
2-2, 68-70	2.7	Unit I: clay-bearing nanno ooze	Holocene to Pleistocene	Calc. Quar. Plag.	Quar. Plag. Mica	Paly. Mica Mont.
4-2, 46-48	18.5	Unit II: nanno ooze with inter- calated sand horizons	Pleistocene to Pliocene	Calc. Arag. Quar.	Quar. Plag. Mica	Paly. Mica Kaol.
31-4, 69-71 44-1, 90-92 61-6, 127-129	278.2 397.4 565.8	Unit V: clay-bearing nanno ooze	Lower Miocene through Pliocene	Calc. Paly. Quar. Paly. Quar. Mont. Calc. Paly. Quar.	Quar. Mica Plag. Quar. Mica Plag. Quar. Mica Paly.	Paly. Mont. Kaol. Paly. Mont. Mica Paly. Mont. Mica

 TABLE 1

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 231

	TABLE 2
Summary of X-Ray Mineralogy	Samples, Sample Depths, Lithology, Age,
and X-Ray Dif	fraction Results, Site 232

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3		
Hole 232								
1-1, 94-96 13-1, 74-76 18-3, 50-52	0.9 107.1 158.0	Unit I: nanno ooze with occa- sional quart- zose sand layers	Late Miocene through Holocene	Calc. Paly. Quar. Plag. Calc. Calc. Paly. Quar.	Insufficient residue Mica Quar. Plag. Quar. Mica Plag.	Paly. Paly. Mont. Mica Paly. Mont. Mica		
Hole 232A								
1-4, 32-34 7-2, 112-114 9-5, 126-128 14-1, 110-112	163.8 218.6 242.3 283.6	Unit II: nanno ooze with occa- sional quart- zose sand layers	Late Miocene	Calc. Quar. Paly. Quar. Plag. Calc. Calc. Paly. Mica Quar. Plag. K-Fe	Quar. Plag. K-Fe Quar. Plag. Mica Quar. Mica Plag. Clin.	Mont. Kaol. Mica Paly. Mont. Kaol. Paly. Mont. Kaol. Mont. Paly. Kaol.		

 TABLE 3

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 233

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
2-4, 76-78	10.3	Unit I: clay-bearing nanno ooze	Pliocene through Holocene	Calc. Paly.	Quar. Plag. Mica	Paly. Mica Kaol.
8-4, 128-130 8-4, 130-132 11-4, 91-93	67.79 67.81 95.9	Unit II: micarb and clay-bearing nanno ooze	Pliocene and Pleistocene	Calc. Paly. Quar. Calc. Paly. Quar. Calc. Paly. Quar.	Quar. Plag. Mica Quar. Plag. Paly. Quar. Plag. Paly.	Paly. Mica Mont. Paly. Mica Paly. Mica
16-4, 43-45	142.9	Unit III: micarb and clay-bearing nanno ooze	Pliocene	Calc. Paly. Quar.	Quar. Mica Plag.	Paly. Mica Mont.

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
1-2, 89-91 1-4, 53-55	2.4 5.0	Unit I: clay-bearing nanno ooze	Plio-Pleistocene	Calc. Paly. Quar. Calc. Paly. Mont.	Quar. Plag. K-Fe. K-Fe. Plag. Quar.	Mont. Paly. Mica Mont. Paly. Mica
6-6, 140-142	84.9	Unit III: clay and nanno ooze	Middle Miocene	Paly. Mont. Mica	K-Fe. Quar. Plag.	Mont. Paly. Kaol.
10-4, 14-16	166.1	Unit V: clay and nanno ooze	Lower Miocene	Calc. Mont. K-Fe.	K-Fe. Plag. Quar.	Mont. Kaol.
15-3, 44-46	240.9	Unit VI: Clay ooze	Oligocene	Mont. Kaol. Paly.	K-Fe. Plag. Quar.	Mont. Kaol. Paly.

TABLE 4 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 234

TABLE 5
Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age,
and X-Ray Diffraction Results, Site 235

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
1-2, 94-96 4-3, 30-32	2.4 31.8	Unit I: nanno ooze and chalk	Pleistocene	Calc. Paly. Calc. Paly.	Quar. K-Fe. Plag. Quar. Plag. K-Fe.	Mont. Paly. Mica Mont. Paly. Mica
5-3, 60-62 5-6, 78-79 5-6, 89-90 5-6, 110-111 10-2, 108-110 11-3, 23-25 11-3, 38-40 11-3, 80-82	70.1 74.8 74.9 75.1 221.1 269.2 269.4 269.8	Unit II: nanno chalk mud to slightly calcareous clay mud	Upper Miocene through Pleistocene	Arag. Calc. Calc. Mont. Paly. Quar. Calc. Paly. Calc. Calc. Arag. Mont. K-Fe. Paly. Calc.	Insufficient residue Insufficient residue Quar. Plag. K-Fe. Insufficient residue K-Fe. Quar. Plag. Insufficient residue K-Fe. Plag. Quar. K-Fe. Plag. Quar.	Insufficient residue Mont. Paly. Mica Mont. Paly. Kaol. Paly. Mica Kaol. Mont. Paly. Kaol. Mont. Paly. Mont. Paly. Kaol. Mont. K-Fe. Paly.

	TABLE 6
Summary of X-Ray Mineralogy	Samples, Sample Depths, Lithology, Age,
and X-Ray Dif	fraction Results, Site 236

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
3-2, 68-70 3-2, 126-128 5-3, 41-43 5-3, 71-73 5-6, 118-120 6-2, 107-109 8-3, 88-90 9-3, 112-114 12-6, 40-42 12-6, 92-94 15-4, 94-96	18.2 18.8 38.4 38.7 43.7 47.1 67.4 77.1 109.4 109.9 135.4	Unit II: clay-bearing nanno-ooze	Lower Miocene through Pleistocene	Calc. Calc. Calc. Arag. Calc. Arag. Calc. Arag. Calc. Calc. Mont. Quar. Calc. Arag. Calc. Arag. Calc. Arag. Calc. Arag. Calc. Arag. Calc.	Insufficient residue Quar. Plag. Mica Insufficient residue Insufficient residue Quar. K-Fe. Plag. Plag. Quar. K-Fe Insufficient residue Insufficient residue Quar. Plag. K-Fe. Quar. Plag. Mica	Insufficient residue Mont. Mica Paly. Insufficient residue Insufficient residue Mont. Paly. Mica Mont. Paly. Mica Mont. Paly. Mica Mont. Paly. Mont. Paly. Mont. Paly. Mont. Paly. Mica Mont. Paly. Mica
16-5, 82-84 19-2, 88-90	146.3 170.4	Unit III: nanno-bearing clays	Miocene	Mont. Paly. Quar. Mont. Paly. K-Fe.	Quar. Plag. K-Fe. Phil. K-Fe. Quar.	Mont. Paly. Quar. Mont. Paly. Kaol.
20-5, 110-112 22-4, 89-90 25-4, 62-64	184.6 201.9 230.1	Unit IV: nanno ooze with minor forams, rads, and clay	Oligocene	Calc. Calc. Calc.	Clin. Paly. Insufficient residue Insufficient residue	Paly. Mont. Mont. Gyps. Insufficient residue
29-1, 140-142	264.4	Unit V: clay-rich nanno chalk	Eocene	Calc.	Clin. Quar.	Gyps. Mont. Paly.
33-1, 98-100	305.0	Unit VI: clay-bearing nanno chalk	Paleocene	Calc.	Clin. Mont.	Mont. Paly.

TABLE 7
Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age,
and X-Ray Diffraction Results. Site 238

Core, Section, Interval (cm)	Sample Depth Below Sea Floor (m)	Lithology	Age	Bulk Sample Major Constituent 1 2 3	2-20µ Fraction Major Constituent 1 2 3	<2µ Fraction Major Constituent 1 2 3
1-4, 82-84 5-4, 103-105 7-2, 110-112 7-2, 119-121 7-5, 12-14 14-2, 76-78 14-4, 90-92 15-5, 76-77	5.3 43.5 56.1 56.2 59.6 122.3 125.4 136.4	Unit I: nanno ooze to foram-rich nanno ooze with minor clay	Upper Miocene through Quaternary	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue	Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue Insufficient residue
38-5, 103-105 39-5, 97-99 41-2, 67-69 49-2, 100-102	355.0 364.5 378.7 455.0	Unit II: nanno ooze to foram-bear- nanno ooze	Upper Oligocene through Middle Miocene	Calc. Calc. Calc. Calc.	Insufficient residue Insufficient residue Insufficient residue Phil. Plag. K-Fe	Gyps. Hali. Mont. Insufficient residue Insufficient residue Mont. Phil. K-Fe.
51-2, 13-15 51-4, 70-72 52-1, 59-61 52-3, 2-3 52-3, 13-17 53-2, 6-8 53-3, 126-128 53-4, 67-69 54-1, 23-25 54-1, 84	473.1 476.7 481.6 484.0 484.1 492.1 494-8 495.7 500.2 500.8	Unit III: nanno chalk with inter- calated horizons of volcanic ash and zeolites	Lower and Upper Oligocene	Calc. Calc. Calc. Mont. K-Fe. Plag. Calc. Calc. Calc. Phil. Calc. Calc. Calc. Calc. Plag. Phil.	Insufficient residue K-Fe. Phil. Plag. Phil. K-Fe. Plag. K-Fe. Augi. Plag. Mont. Plag. K-Fe. Mont. Phil. Plag. Phil. Phil. Plag. Mont. Insufficient residue Insufficient residue	Mont. Phil. K-Fe. Mont. Phil. K-Fe. Mont. Phil. K-Fe. Mont. Mont. Phil. Mont. Phil. Mont. Mont. Phil. Plag. Mont. Gyps. Phil. Insufficient residue

TABLE 8 Results of X-Ray Diffraction Analysis from Site 231

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Pyri.	Amph.	U-1a
Bulk	Samples																	
2	0.5-7.0	2.7	72.8	57.5	61.4	2.6	_	10.0	3.0	7.6	1.4	5.7	1.2	-	6.0	-	1.2	
4	16.5-26.0	18.5	67.7	49.5	54.2	1.5	21.5	12.8	-	2.0	-	3.3	-	=	3.3	1.4	-	
31	273.0-282.5	278.2	70.3	53.6	62.3	3.4		7.9	2.5	2.3	2.0	5.4	0.9	1.2	11.2	0.9	-	
44	396.5-406.0	397.4	81.9	71.8	5.5	7.5		21.6	3.8	6.7	2.3	_	2.5	9.0	37.1	3.8	-	
61	557.0-566.5	565.8	78.6	66.5	42.4		-	10.4	2.9	3.8	-	5.8	1.1	3.8	29.9	-	-	
2-20µ	Fractions																	
2	0.5-7.0	2.7	75.5	61.7		3.4		36.4	10.9	24.4	1.4	16.1	3.5		-	1.1	2.9	
4	16.5-26.0	18.5	97.9	96.7		-		43.0	8.4	22.7		13.7	2.2		-	6.6	3.4	
31	273.0-282.5	278.2	69.1	51.7		-		35.9	12.7	17.8	2.1	20.4	3.8			7.3	-	
44	396.5-406.0	397.4	73.9	59.2		-		28.3	10.3	14.1	4.0	22.3	2.4		12.6	6.0	-	
61	557.0-566.5	565.8	74.0	59.3		-		35.7	10.6	13.9	-	20.8	3.2		14.8	1.1		
<2µ I	Fractions																	
2	0.5-7.0	2.7	91.1	86.1		1.0		9.6	-	1.7	11.0	16.2	4.4	13.5	41.3	1.2		Т
4	16.5-26.0	18.5	92.9	88.9		-		7.1		2.2	10.6	21.1	4.7	6.0	43.2	5.2		-
31	273.0-282.5	278.2	81.7	71.3		-		4.6	1.1	0.5	15.2	14.3	3.2	22.4	38.7	-		Т
44	396.5-406.0	397.4	87.9	81.1		-		5.0	-	-	8.0	9.8	2.3	21.5	52.4	1.1		-
61	557.0-566.5	565.8	85.4	77.2		\sim		3.7	-	-	_	8.5	1.9	21.6	64.3	-		_

aU-1 Peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Pyri.	Amph.	$U-1^{a}$
Bulk	Samples																
1	0.0-2.5	0.9	70.0	53.1	74.9	3.7	7.2	<u>,</u>	2.8	-	2.6	-	_	8.9	-	-	_
13	107.0-116.5	107.1	59.2	36.3	20.5	1.5	29.2	14.7	22.7		6.7	0.4	-	-	-	4.3	-
18	154.5-164.0	158.0	72.6	57.2	49.1	6.3	8.9	3.3	5.2	0.9	5.6	1.4	1.0	17.3	1.2	-	Т
2-20µ	Fractions																
13	107.0-116.5	107.1	73.1	58.0			22.2	9.2	16.3		24.7	4.5		11.3	9.1	2.7	
18	154.5-164.0	158.0	68.5	50.8			32.0	8.9	18.5		19.5	3.3		12.8	5.1	-	
<2µ I	Fractions														4		
1	0.0-2.5	0.9	90.9	85.8			3.7			4.9	5.4	1.9	5.8	78.2	_		Т
13	107.0-116.5	107.1	86.5	78.9			4.9			7.3	12.0	2.8	19.0	49.9	4.0		Т
18	154.5-164.0	158.0	85.0	76.5			3.0			8.5	10.3	1.4	16.6	60.2	-		Т

TABLE 9 Results of X-Ray Diffraction Analysis from Hole 232

 $^{a}U-1$ Peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

TABLE 10 Results of X-Ray Diffraction Analysis from Hole 232A

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Pyri.	Amph.	$U-1^a$
Bulk	Samples																	
1	159.0-168.5	163.8	80.3	69.2	49.2	3.9	13.2	4.1	8.0	-	7.6	0.7	-	12.4		1.0	-	Т
7	216.0-225.5	218.6	67.9	49.8	21.0	1.8	31.7	10.1	21.1		9.8	0.8				1.2	2.5	-
9	235.0-244.5	242.3	78.1	65.7	38.8	1.8	12.7	2.3	5.6	1.8	12.9	1.7	4.0	16.4		1.9	<u> </u>	\simeq
14	282.5-292.0	283.6	66.1	47.0	9.9	\sim	37.8	13.5	19.5	-	8.9	0.4		7.3		1.0	1.7	-
2-20 μ	Fractions																	
1	159.0-168.5	163.8	93.9	90.5			31.3	16.1	20.2		13.3	2.4		8.5	-	6.1	2.1	
7	216.0-225.5	218.6	57.8	34.1			32.6	9.3	25.2		21.8	2.7		200	-	5.9	2.6	
9	235.0-244.5	242.3	75.1	61.1			28.2	13.4	22.5	3.1	25.4	2.8		-	-	4.5	-	
14	282.5-292.0	283.6	71.0	54.6			1.5	0.7	1.0	-	1.5	0.2		<u> </u>	94.9	0.2	120	
<2µ 1	Fractions																	
1	159.0-168.5	163.8	89.3	83.3			11.7			20.6	15.0	8.4	38.7	-		5.7		576
7	216.0-225.5	218.6	81.2	70.7			5.1			14.0	6.9	3.9	24.8	43.8		1.5		-
9	235.0-244.5	242.3	84.8	76.2			4.7			11.8	10.2	1.7	30.8	39.7		1.1		Т
14	282.5-292.0	283.6	83.0	73.5			3.8			15.1	6.6	2.5	43.0	29.0		. 		

^aU-1 peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

			F	Results	of S-Ra	y Diff	raction	Analy	sis from	Site 2	.33						
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Pyri.	Amph.	U-1 ^a
Bulk	Samples																
2	5.0-14.5	10.30	63.0	42.2	74.2	4.0	5.9	1.5	2.3	-	3.1	-		9.0	-		
8	62.0-71.5	67.79 67.81	71.0 69.8	54.7 52.9	48.5 54.4	5.6 5.4	11.2 9.6	4.8 2.0	7.1 5.0	-	5.0 6.2	1.0 -		15.2 17.5	1.6 —		
11	90.5-100.0	95.90	64.1	43.9	50.5	4.7	11.6	1.6	5.9	\sim	5.7	1.1		18.9	\rightarrow		
16	138.0-147.5	142.90	71.3	55.1	58.4	3.5	8.8	2.1	4.3	1.6	7.2	-		12.5	1.4		
2-20µ	Fractions																
2	5.0-14.5	10.30	71.3	55.2		8.7	36.1	7.0	21.5		12.0	2.8		10.7	-	1.3	
8	62.0-71.5	67.79 67.81	71.7 73.7	55.9 59.0		-	31.9 31.6	8.0 7.6	21.7 20.3		17.3 15.5	4.3 3.0		11.0 15.7	4.8 5.3	$1.1 \\ 1.1$	
11	90.5-100.0	95.90	73.5	58.6			33.8	7.4	20.9		13.8	2.8		16.5	4.9	-	
16	138.0-147.5	142.90	73.5	58.5		-	29.4	8.3	19.5		22.4	3.8		10.3	6.3	-	
<2µ I	ractions																
2	5.0-14.5	10.30	89.6	83.7		1.2	4.8			8.0	12.9	2.9	6.9	63.4	—		Т
8	62.0-71.5	67.79 67.81	86.6 87.6	79.1 80.7		-	5.4 3.5			3.6 3.9	8.5 8.5	2.4 2.9	7.6 6.2	71.0 74.2	1.7 0.9		2
11	90.5-100.0	95.90	87.9	81.0		-	3.7			6.2	10.0	1.8	7.1	70.2	1.1		-
16	138.0-147.5	142.90	83.1	73.7		1.1	5.1			6.1	14.4	1.9	7.6	61.4	2.4		-

TABLE 11 Results of S-Ray Diffraction Analysis from Site 233

^aU-1 peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

-	Cored	Sample Depth																
Core	Below Sea Floor (m)	Floor (m)	Diff.	Amor.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Pyri.	Amph.	U-1 ^a	U-2 ^b
Bulk	Samples																	
1	0.0-9.5	2.4 5.0	78.6 82.1	66.6 72.1	60.0 59.7	2.4	9.4 7.4	2.0 6.9	3.6 4.4	2.3 0.9	5.9 -		4.6 8.1	9.8 12.6	-		Т _	-
6	76.0-85.5	84.9	89.2	83.1	-	2.1	12.1	6.1	3.2	9.5	12.9		24.1	26.4	3.6		Т	-
10	161.5-171.0	166.1	86.2	78.5	41.6	-	4.9	10.2	-	6.9	-		29.7	6.7	_		т	Т
15	237.5-247.0	240.9	85.1	76.7	-	-	9.4	4.9	4.9	16.0	8.9		43.5	12.5	$\sim - 1$		-	-
2-20µ	Fractions																	
1	0.0-9.5	2.4 5.0	79.2 77.3	67.5 64.5			41.4 24.3	17.6 36.4	25.2 26.3	-	12.5 9.7	2.3 1.6				1.0		
6	76.0-85.5	84.9	73.8	59.0			25.8	36.8	21.0	1.8	12.3	1.4			0.9	-		
10	161.5-171.0	166.1	90.8	85.7			17.9	49.8	23.4	2.3	6.6	\rightarrow			-	110		
15	237.5-247.0	240.9	79.1	67.4			22.2	31.3	23.0	3.4	20.1	-				-		
<2µ I	ractions																	
1	0.0-9.5	2.4 5.0	87.5 91.6	80.5 86.9		1.7 -	6.6 5.2	_ 7.2		8.2 7.4	11.3 19.1	1.7 _	37.1 30.3	33.4 29.3	_ 1.4		- T	
6	76.0-85.5	84.9	91.3	86.4		-	6.9	8.0		15.8	8.6	2.8	33.9	24.1	-		-	
10	161.5-171.0	166.1	87.9	81.1		-	2.2	3.9		23.5	_	-	70.5	-	-		-	
15	237.5-247.0	240.9	83.4	74.0		-	3.4	1.0		20.9	4.9	-	60.4	9.4	÷.		-	

TABLE 12 Results of X-Ray Diffraction Analysis from Site 234

^aU-1 peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

^bU-2 peaks at 3.16Å, 5.57Å, and 3.43Å.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Phil.	Pyri.	U-1 ^a	U-2 ^b
Bulk	Samples																		
1	0.0-9.5	2.4	72.4	56.8	88.1	-	-	3.1	-	-	1.3	-		100	7.5		-	Т	-
4	28.5-38.0	31.8	78.8	66.9	73.8	1.4	-	4.7	2.6	1.7	1.8	5.7		-	8.4		-	Т	-
5	66.5-76.0	70.1 74.8 74.9 75.1	64.5 72.0 89.1 73.6	44.5 56.3 83.0 58.7	37.8 86.9 13.4 82.2	2.3 - 3.5 1.3	59.9 - - -	- 1.8 14.1 2.6	1 1 1 1	- - 5.6 -	- 6.7 1.1	- 4.8 6.2 4.0		6.5 24.9 -	 23.8 8.9		- 1.7 -	T T P T	
10	218.5-228.0	221.1	73.8	59.0	77.9	-		3.2	5.0	3.6	1.3	-		4.9	4.1			-	
11	266.0-275.5	269.2 269.4 269.8	60.3 89.3 71.7	37.9 83.3 55.7	52.6 		47.4 	12.5 2.0	22.5 _	- 8.7 -	- 5.3 -	- 7.4 2.2		24.3 5.1	17.9 5.9		- 1.4 -	- - T	Ţ
2-20 μ	Fractions																		
1	0.0-9.5	2.4	86.1	78.2				28.6	21.7	19.4	3.7	6.2	_		17.4	-	3.0		
4	28.5-38.0	31.8	86.6	79.1				32.9	19.0	20.7	5.2	14.1	\overline{a}		7.1		1.1		
5	66.5-76.0	74.9	83.1	73.6				32.4	17.6	26.2	3.5	8.9	-		6.6	-	4.8		
10	218.5-228.0	221.1	79.2	67.6				20.4	34.0	19.5	3.3	10.2	-		6.6	-	5.9		
11	266.0-275.5	269.4 269.8	77.1 92.9	64.3 88.9				21.1 22.7	32.7 28.2	22.4 23.6	0.1	2.2 19.6			10.8	7.3 -	3.4 4.5		
<2µ]	Fractions																		
1	0.0-9.5	2.4	87.9	81.1		_		5.1	-		11.4	13.7		41.4	27.5		1.0		_
4	28.5-38.0	31.8	77.9	65.5		1.9		5.6	-		12.0	13.0	2.0	35.3	30.2		-	Т	$\sim - 1$
5	66.5-76.0	74.8 74.9 75.1	87.2 87.6 93.0	80.0 80.6 89.0		1 1 1		3.6 5.7 7.8			8.0 10.2 12.8	12.9 8.8 23.1	1.8 - 3.1	50.5 40.4 -	23.2 34.9 51.8		- - 1.4		T T
10	218.5-228.0	221.1	88.5	82.1		-		4.0	1.6		9.6	8.8	-	60.5	15.5		-	-	Т
11	266.0-275.5	269.2 269.4 269.8	88.5 86.3 88.5	82.0 78.6 82.0				3.4 4.6 3.8	_ 		7.3 12.4 7.4	6.5 - 9.2	1.5 - 1.7	52.2 53.1 41.1	29.1 28.7 17.7			T P	1 1

 TABLE 13

 Results of X-Ray Diffraction Analysis from Site 235

 $^{a}U-1$ peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace; P = present.

^bU-2 peaks at 3.16Å, 5.57Å, and 3.43Å.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Phil.	Anal.	Pyri.	Bari.	Gyps.	Hali.	U-1 ^a	U-2b	U-3c
Bulk	Samples																								
3	16.0-25.5	18.2 18.8	55.2 74.7	30.0 60.5	95.9 78.7	1.2	2.5 -	0.4 5.3		0.5	2.3	5.4		2.2	_ 5.8	-							T T	-	
5	35.0-44.5	38.4 38.7 43.7	58.6 57.6 59.0	35.3 33.7 36.0	69.1 85.6 69.2	2.3 2.5 1.1	28.6 11.3 29.7	6				1					1						T T T	_	
6	44.5-54.0	47.1	67.7	49.6	88.8	-	-	1.9	\rightarrow	-	-	2.6		2.7	3.9	-	-						Т		
8	63.5-73.0	67.4	85.9	77.9	53.7	1.6	_	8.2	3.9	4.7	2.9	7.2		11.2	6.6		$\underline{\cdots}:$						т	Т	
9	73.0-82.5	77.1	56.4	31.8	73.8	-	26.2	-	\sim	-		-		-	-		-						Т	-	
12	101.5-111.0	109.4 109.9	63.3 74.9	42.6 60.8	85.8 82.9	1	12.5	0.5 3.3	-1.1	- 1.1	- 1.0	1.2 3.2		2.2		1	_						T _	T	
15	130.0-139.5	135.4	76.3	62.9	77.6		-	3.6	1.1	1.9	1.5	4.2		4.6	5.5	$\sim - 1$							\sim	Т	
16	139.5-149.0	146.3	877	80.8	-	 :		13.6	8.7	4.2	6.7	8.4		30.6	27.9	$\sim - 0$	\rightarrow						-	-	
19	168.0-177.5	170.4	89.8	84.1	-	$\overline{}$	—	6.3	10.2	1.2	6.8	8.3		34.5	21.5	2.4	8.8						-	-	
20	177.5-187.0	184.6	55.0	29.6	98.8	te i		000	= 1 - 1		-	-		-	-	1.2	\overline{a}						-	-	
22	196.5-206.0	201.9	55.8	30.9	100.0	-	-	-			-	_		-	-	-							-	-	
25	225.0-234.5	230.1	49.9	21.7	100.0	-		-	-	-	—	-		-	-	-	-						-	-	
29	263.0-272.5	264.4	58.5	35.2	96.4	-	-	0.5	-		-	-		-	-	3.1							\sim	-	
33	301.0-306.5	305.0	63.5	42.9	87.3		-	0.3	V - N		-			6.5	\simeq	5.9	-						—	Т	
2-20µ	Fractions																								
3	16.0-25.5	18.8	98.3	97.3				40.9	14.7	18.4	6.2	16.0	3.8	-	-	-	-	-	1.77	-					
6	44.5-54.0	47.1	85.7	77.6				26.7	25.6	21.8	-	13.3	2.3	-	8.8	-	-	-	-	1.5					
8	63.5-73.0	67.4	90.5	85.2				26.5	23.6	27.8	3.3	17.1	1.7	-	-	—	-	-	_	-					
12	101.5-111.0	109.9	88.2	81.5				28.0	17.8	23.4	2.3	16.3	1.8	-	9.4	-	-	-	0.9	-					
15	130.0-139.5	135.4	90.4	85.0				29.9	14.5	18.2	1.7	17.0	1.9	-	14.8	-	\sim	-	\leftarrow	2.1					
16	139.5-149.0	146.3	82.9	73.3				27.8	23.9	25.5	-	11.9	2.0		8.9	-	-	-	-	-					
19	168.0-177.5	170.4	82.1	72.0				11.9	18.8	10.7	-	3.4	-	7.9	7.4	9.4	30.5	-	-	-					
20	177.5-187.0	184.6	72.0	56.3				6.5	3.4		-	-	-	_	12.8	76.0		1.2	-	-					
29	263.0-272.5	264.4	66.9	48.3				8.5	2.7		-	3.2	-	-	4.4	79.9	-	1.2	-	-					
33	301.0-306.5	305.0	61.1	39.1				1.9	-	-	<u></u>	~_ 0	_	22.0	-	76.1	-	-	-	-					

TABLE 14 Results of X-Ray Diffraction Analysis from Site 236

819

X-RAY MINERALOGY

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Dolo.	Arag.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Paly.	Clin.	Phil.	Anal.	Pyri.	Bari.	Gyps.	Hali.	U-1 ^a	U-2b	U-3c
<2µ I	ractions																								
3	16.0-25.5	18.8	86.8	79.4				8.0	-	-	11.6	21.9	2.0	37.4	19.1	-			-		-	-	-	-	-
5	35.0-44.5	43.7	94.1	90.8				3.5	-	-	5.7	11.0	-	65.4	14.5	-			-		-	-	-	-	-
6	44.5-54.0	47.1	87.8	81.0				4.3	-	-	9.2	14.3	-	51.6	20.6	-			-		-	-	Т		-
8	63.5-73.0	67.4	86.1	78.3				4.3	-	-	7.2	12.5	\sim	50.6	25.5	-			-		—	\rightarrow	Т	-	-
9	73.0-82.5	77.1	97.4	95.9				4.5	577.		7.5	6.6		62.7	14.7	-			4.0		-	-	1	-	
12	101.5-111.0	109.4 109.9	93.9 87.1	90.5 79.8				2.8 4.7	-	-	5.7 4.5	7.2 11.4		68.1 52.8	11.6 24.7	_			4.6 -		÷	_	Ŧ	T	1
15	130.0-139.5	135.4	86.6	79.1				7.0	-	-	5.9	16.0	2.6	50.3	18.1	-			-		-	-	Т	-	-
16	139.5-149.0	146.3	90.3	84.8				11.0	6.3	5.0	8.5	8.8	-	38.3	22.1	\rightarrow			-		-	-	-		
19	168.0-177.5	170.4	88.3	81.7				4.5	6.4	-	8.8	3.6		57.4	19.5	100			—		$\overline{}$	-	-		
20	177.5-187.0	184.6	90.5	85.1				1.0	-	-	-	-	~	35.8	61.7	1.5			())		-	-	-	-	-
22	196.5-206.0	201.9	91.7	87.0				1.2	\simeq	\simeq		_	\leq	74.9	-	227					20.7	3.2	-	Р	Р
29	263.0-272.5	264.4	89.1	82.9				4.2	-	-	-			28.3	21.4	-			-		35.5	10.5	-	-	-
33	301.0-306.5	305.0	79.9	68.6				0.5		-	-	-		86.0	9.1	4.5			-			-	\rightarrow		-

TABLE 14 - Continued

 $^{a}U-1$ peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace; P = present.

^bU-2 peaks at 3.16Å,5.57Å, and 3.43Å.

^cU-3 peaks at 2.50Å, 2.67Å, and 2.09Å·

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Anal.	Gyps.	Hali.	Augi.	U-1 ^a	U-2 ^b	U-4c
Bulk	Samples																			
1	0.0-9.5	5.3	55.3	30.2	100.0		-				-		-				-	-	Т	-
5	38.0-44.0	43.5	55.8	31.0	100.0	-	—	-			-	—	-				-	-	т	-
7	53.5-63.0	56.1 56.2 59.6	54.2 52.9 56.4	28.4 26.4 31.9	100.0 100.0 100.0	111		11			11	1.1					1 1 1	T T	T T T	
14	120.0-129.5	122.3 125.4	54.4 52.4	28.8 25.6	$100.0\\100.0$	-	-	_			_	300) 100	_					T T	T T	-
15	129.5-139.0	136.3	49.8	21.5	100.0	-	-	-			—	-	-				-	Т	Т	
38	348.0-357.5	355.0	51.2	23.8	100.0	\overline{a}	-	-			-	-	$\sim - 1$					-	-	
39	357.5-367.0	364.5	51.6	24.3	98.7	$\underline{\nabla}_{i}$	1.3	14			\simeq		_					Т		(=)
41	376.5-386.0	378.7	48.5	19.5	100.0		-	-			-	177	-				751		Т	-
49	452.5-462.0	455.0	49.5	21.1	99.5	-	-	-				0.5	$(1-1)^{-1}$				-	-	Т	-
51	471.5-481.0	473.1 476.7	51.2 64.1	25.1 1 44.0	100.0 84.5	23 20	_ 6.6				4.2	1	_ 1.8				-	T 	-	-
52	481.0-490.5	481.6 484.0 484.1	51.8 87.8 59.3	24.7 80.9 36.4	98.3 90.5	-		- 12.1 1.6			- 63.6 5.3	-	1.7 _ _				9.1 -			- - T
53	490.5-500.0	492.1 494.8 495.7	65.1 68.1 54.5	45.4 50.2 28.9	98.9 65.1 94.9	1					1.1 _ _		- 34.9 5.1				1 1 1	T	Т 	111
54	500.0-506.0	500.2 500.8	47.4 84.6	17.8 75.9	100.0 40.3	_ 1.5	-	28.0			- 11.1	Ξ	_ 19.2				-	-	-	-
<2-20	μ Fractions																			
49	452.5-462.0	455.0	87.8	80.9		1.2	15.9	22.1		-		8.0	52.8				-			-
51	471.5-481.0	476.7	82.5	72.7		2.0	46.4	13.7		1.6	8.3		28.0				-			Σ
52	481.0-490.5	481.6 484.0 484.1	90.3 93.4 90.0	84.9 89.6 84.4		0.7 _ 1.3	23.2 33.8 19.6	18.1 25.4 25.6				1.7 _ _	56.3 				26.9 			- P
53	490.5-500.0	492.1 494.8 495.7	89.0 70.6 77.4	82.8 54.1 64.7		- - 1.1		13.1 		11	70.9 	- - 7.0	15.9 100.0 47.5				111			

TABLE 15 Results of X-Ray Diffraction Analysis from Site 238

821

							1	02 10	con											
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Diff.	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Mont.	Clin.	Phil.	Anal.	Gyps.	Hali.	Augi.	U-1 ^a	u-2 ^b	U4c
<2µ H	ractions																			
38	348.0-357.5	355.0	93.8	90.4		3.7	-	_	-	-	22.1		-	-	39.9	34.3	-			-
49	452.5-462.0	455.0	86.9	79.5		1.7	8.5	4.7	_	2.2	64.6	1.6	16.8	-	-	-	-			_
51	471.5-481.0	473.1 476.7	97.8 71.3	96.6 55.1		4.4	14.6	7.2	-	-	46.9 83.7	-	26.9 15.2		-	-	-			-
52	481.0-490.5	481.6 484.0 484.1	90.2 83.8 88.1	84.7 74.7 81.4		0.8 - -	13.9 3.3 7.2	4.3 -	1 1 1	I F I	71.0 83.9 92.8	-	14.3 _ _			-	8.5			- - P
53	490.5-500.0	492.1 494.8 495.7	84.6 97.4 87.8	75.9 95.9 81.0				_ 7.5	1 1		95.3 41.5 74.0	_	4.7 58.5 10.1	1	- 6.9	_ 1.4	-			
54	500.0-506.0	500.2	90.1	84.6		2.1	-		\simeq		62.4		13.4	<u></u>	14.0	8.1				

TABLE 15 – Continued

^aU-1 peaks at 5.74Å, 3.62Å, and 8.02Å. T = trace.

^bU-2 peaks at 3.16Å, 5.57Å, and 3.43Å.

 $^{c}U-4$ broad peak at 3.56Å. P = present.

Core	Depth	Sample Depth Below Sea Floor (m)	Diffuse	Amorphous Scattering	Dolo.	Quar.	K-Fe.	Plag.	Mica	Chlor.	Amph.	Mont.	Paly.
2-20µ F	ractions												
1	0-2.5	0.9	65.9	46.7	12.2	37.6	6.8	21.0	16.6	4.7	1.2		
<2µ Fr	actions												
1	0-2.5	0.9	89.9	84.2		11.7			23.8	3.4		8.6	52.6

 TABLE 16

 Results of X-Ray Diffraction Analysis of Supplemental Samples from Site 232

	TABLE 17
Results of X-Ray	Diffraction Analysis of Supplemental Samples from Site 235

Core	- Depth	Sample Depth Below Sea Floor (m)	Diffuse	Amorphous Scattering	Dolo.	Quar.	K-Fe.	Plag.	Mica	Chlor.	Paly.	Pyri.	Amph.	Kaol.	Mont.
2-20µ	Fractions														
5	66.5-76.6	70.1	68.5	50.8	2.1	37.4	5.8	21.0	23.7	6.9		3.1			
5	66.5-76.0	74.8	70.6	54.0	16.8	39.1		18.6	17.5	5.4		2.7			
5	66.5-76.0	75.1	72.5	57.0	6.7	36.4	5.0	22.3	17.9	5.4		4.3	2.0		
11	266.0-275.5	269.2	74.0	59.4	14.6	25.4	2.0	13.7	16.5	4.8	20.3	2.7			
<2µ]	Fractions														
5	66.5-76.0	70.1	86.6	79.1		19.5		4.5	19.9	4.9	38.4	1.0			11.8
5	66.5-76.0	74.8	89.4	83.5	2.4	17.7		3.9	22.6	4.9	41.2				7.2
5	66.5-76.0	75.1	90.4	85.0		15.0		2.8	16.0	4.2	44.3	3.0			14.8
11	266.0-275.5	269.2	89.7	83.8	0.9	12.7		2.8	16.8	3.0	53.2	1.3		1.5	7.8

Core	Depth	Sample Depth Below Sea Floor (m)	Diffuse	Amorphous Scattering	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor.	Mont.	Clin.	Phil.	Pyri.	Bari.	Paly.	Hali.
2-20µ	Fractions																	
3	16.0-25.5	18.2	22	-		21.4	12.8	20.2	7.6	17.8		17.8	2.3					
3	16.0-25.5	18.8	77.6	65.1		33.4	13.1	18.7	2.2	22.9	4.3					5.3		
5	35.0-44.5	38.4	<u> 111</u>	-		12.7	18.2	19.1	4.8	14.1	2.8	24.0	4.4					
5	35.0-44.5	38.7	74.6	60.3	15.2	23.8	19.4	21.8	2.6	13.9	2.2		1.1					
5	35.0-44.5	43.7	-	-	1.2	19.8	22.0	31.6	5.8	8.2			11.5					
9	73.0-82.5	77.1	82.8	73.1	55.7	8.2	9.1	9.6		3.9			1.9	7.5	4.1			
12	101.5-111.0	109.4	89.6	83.8	34.6	16.1	13.8	12.3		5.5			2.4	7.7	7.7			
22	196.5-206.0	201.9	99.0	98.5		20.3		44.3								35.3		
25	225.0-234.5	230.1	96.0	93.8		6.4		16.3		13.9		14.8				48.6		
<2µ I	Fractions																	
3	16.0-25.5	18.2	89.9	84.1	3.2	9.4			8.0	10.7		50.9					17.8	
3	16.0-25.5	18.8	88.4	81.8		14.7	6.3	6.4	6.9	15.8	2.2	26.4				3.1	18.2	
5	35.0-44.5	38.4	90.6	85.3	10.4	5.5		4.5	7.8	13.0		40.0					18.7	
5	35.0-44.5	38.7	90.3	84.9	2.4	13.4	11.6	8.1	4.0	11.3	2.8	33.5					13.0	
5	35.0-44.5	43.7	92.6	88.5	7.9	6.0			7.0	11.7		38.1					20.3	9.1
9	73.0-82.5	77.1	93.3	89.5	5.2	5.4		3.5	6.7	8.6		40.2			8.5		18.4	3.4
12	101.5-111.0	109.4	89.7	83.9		5.5			6.5	8.7		50.1			5.2		14.0	10.1
22	196.5-206.0	201.9	88.8	82.5								98.1				1.9		
25	225.0-234.5	230.1	86.9	79.6		1.4			2.8	5.7		78.1			2.7	3.3		5.1

 TABLE 18

 Results of X-Ray Diffraction Analysis of Supplemental Samples from Site 236

Core	Depth	Sample Depth Below Sea Floor (m)	Diffuse	Amorphous Scattering	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlor. Mont	Clin.	Phil.	Bari.	Paly.	Gyps.	Hali.
2-20µ	Fractions																
1	0-9.5	5.3	93.6	89.9		23.1		17.5	6.3	15.0	3.1			35.0			
5	38.0-44.0	43.5	94.0	90.6		30.6		8.2	7.2	15.4			10.9	27.8			
7	53.5-63.0	56.1	92.4	88.1		24.9			4.7	16.2			21.5	32.7			
7	53.5-63.0	56.2	-	-		14.1			4.2	8.0	35	2 1.7	22.7	14.1			
7	53.5-63.0	59.6	96.3	94.2		18.9		12.8	9.7	13.7				44.8			
14	120.0-129.5	125.4		-	6.9	7.5				51.9			29.4	4.3			
38	348.0-357.5	355.0	94.9	92.1		11.5	15.5	25.2	4.3	12.6	22	6		8.3			
39	357.5-367.0	364.5	-	-		2.4		11.1		3.9	13	4 17.7	51.5				
41	376.5-386.0	378.7	-	_		4.2						36.0	59.8				
51	471.5-481.0	473.1		-		2.7						5.3	92.0				
54	500.0-506.0	500.2	-	-		2.0		26.6			14	2 11.0	46.1				
<2µ I	Fractions																
1	0-9.5	5.3	96.5	94.5		7.9			5.9	13.7	32	4 2.8		10.1	27.1		
5	38.0-44.0	43.5	96.3	94.2		9.4			11.3	11.1	55	7		12.5			
7	53.5-63.0	56.1	97.2	95.6		7.5			8.3	14.1	36	3	8.0	9.7	16.2		
7	53.5-63.0	56.2	90.8	85.7	3.5	2.5			4.0	10.0	71	3		6.1			2.6
7	53.5-63.0	59.6	97.5	96.0		8.9			16.4	32.8	29	1		12.8			
14	120.0-129.5	122.3	97.1	95.4		6.1		7.6	14.0		65	1		7.2			
14	120.0-129.5	125.4	95.3	92.6		5.2			12.5		73	1		9.2			
15	129.5-139.0	136.3	98.5	97.7							100	0					
38	348.0-357.5	355.0	89.6	83.7		3.2			2.2		86	9				1.9	5.7
39	357.5-367.0	364.5	88.2	81.6		1.4	6.3			16.2	69	5	6.6				
41	376.5-386	378.7	90.1	84.5		2.2	1.9			13.1	78	4	4.4				
51	471.5-481.0	473.1	12	_		3.5		7.7			59	0 3.1	26.7				
54	500.0-506.0	500.2 500.8	87.1	79.8		4.5 0.7	8.6	2.8 11.6			77 43	3 1.6 5	13.7 22.2				

 TABLE 19

 Results of X-Ray Diffraction Analysis of Supplemental Samples from Site 238