21. PRELIMINARY GEOCHEMICAL STUDIES OF THE SEDIMENTS FROM DSDP LEG 26, SOUTHERN INDIAN OCEAN

A. J. Fleet, Department of Mineralogy, British Museum (Natural History), and Department of Geology, Chelsea College, University of London, London and

D. R. C. Kempe, Department of Mineralogy, British Museum (Natural History), London

ABSTRACT

The sediments collected on Leg 26 of the Deep Sea Drilling Project provide a varying suite of lithologies for a geochemical study. Preliminary analyses, by carbon-arc-emission spectrography, of 91 samples from the nine sites show that the overall geochemistry of the sediments is broadly the same as that of the ocean-bottom sediments of today, though the average manganese, strontium, barium, and molybdenum values are distinctly lower (for the lithogenous sediments 0.21%, 58 ppm, 414 ppm, and 7 ppm, respectively, compared with average values for ocean bottom sediments of today of 0.37%, 180 ppm, 2300 ppm, and 27 ppm). Variations in the elemental concentrations within the lithological units are present. Concentrations of the rare-earth elements are consistent with the suggestion that the Ninetyeast Ridge may be the surface expression of a former mantle plume. The rare-earth data for a sample from the Naturaliste Plateau, from the bottom of Hole 258, were found to follow the same trend as those for the Ninetyeast Ridge samples.

INTRODUCTION

There is little published work on the inorganic geochemistry of sediments collected by the Deep Sea Drilling Project. Analyses are presented in Lisitzen et al. (1971), Bostrom et al. (1972), and Donnelly and Nalli (1973), and standard laboratory reports of silicon, oxygen, aluminum, iron, and magnesium determinations by neutron activation analysis appear in early volumes of the Initial Reports. The basal ferruginous sediments of the eastern Pacific have been studied in detail (e.g., von der Borch et al., 1971; Cronan et al., 1972; Cronan, 1973; and Cronan and Garrett, 1973).

The calcareous and lithogenous sediments collected on Leg 26 of the DSDP, along with samples of an atypical volcanic ash sequence deposited in a shallowwater environment, provide a varying suite of sediments for a geochemical study which may be expected to show elemental variations at a site not only between differing lithologies but also with variation in depth in a particular lithology. They also provide data for geochemical comparison of buried sediments with those found on the ocean bottom today.

As a first step in such a study a survey using analyses of some of the collected samples obtained by carbonarc-emission spectrography was carried out, and the results are reported here. Certain samples were also analyzed for the rare-earth elements by neutron activation analysis. The purpose of this was twofold. First, to ascertain whether some basal sediments, thought to be derived from basalt, contained, as whole sediments, the rare-earth elements in concentrations similar to those found in ocean basalts; the probable origins of clay fractions from the central Atlantic have been indicated by such means (Copeland et al., 1971). Secondly, it was hoped to identify the geochemical affinities of the ash sequence at Site 253 and of the basalts from which any of the sediment samples might prove to have been derived.

Further work is being carried out using atomicabsorption spectrophotometry and neutron-activation analysis on these and other samples. Determinations of the H_2O+ and carbonate contents of the samples will also be undertaken.

GENERAL PREPARATION OF SAMPLES

Prior to preparation for specific analytical techniques, the samples were dried in an oven at $105^{\circ}-110^{\circ}$ C for sufficient time to enable them to be ground in an agate pestle and mortar to less than 195μ . The ground samples were stored in polyethylene tubes until required.

CARBON-ARC-EMISSION SPECTROGRAPHY

Method

Ninety-one samples representing the sediments cored at the nine sites of Leg 26 were analyzed by carbon-arcemission spectrography. First, they were chosen to be representative of the major lithological units, and second, to sample each hole at approximately uniform intervals. No consideration has been given to the ages of the samples at this stage, but these will be taken into account in future work

Direct-reading spectrography was used to analyze the samples. This was carried out using a quantitative system which must nevertheless be regarded as semiquantitative for the purpose of the present study. It is calibrated using argillaceous and siliceous standards. Computerized conversion of the results obtained by the spectrograph to elemental concentrations is based on controlling factors which relate to argillaceous and siliceous sediments. When a sample contains more than about 15% calcium, the conversion program does not allow sufficiently for the matrix and other effects, often causing the recorded concentrations, notably of silicon and aluminum, to be well below those which are considered to be within the useful working range for the element. Such samples are shown by an asterisk in Table 1. The results that are given for the calcium-rich samples will be affected by the unsuitability of the conversion factors of the computer program, but are given here for comparison at a particular site. Analysis of these sediments by other methods is planned, including analysis for sodium which is not determined by this method.

Results and Discussion

Table 1 shows the elemental contents of each sample, the average elemental contents of a particular lithology at a site, the average elemental contents of a particular lithology at all sites, and some published values for comparison. The values given for trace element concentrations have been rounded off to a whole number, except where the values obtained are less than 0.5 ppm and within the working range, when they have been rounded up to 0.5 ppm. Because of the analytical problems mentioned above, a rigorous examination of the results cannot be undertaken until the further analytical work using other methods is completed. However, the main geochemical features of the sediments are described below Site by Site, in most instances under three headings:

- 1) Major elements
- 2) Trace elements

3) Enriched trace elements, i.e., those trace elements in which the sediments, at a particular site, are enriched relative to near-shore sediments and igneous rocks. The measured values are compared with collected published data for pelagic sediments (Chester, 1965; Riley and Chester, 1971).

Site 250

1. Major elements: the titanium, aluminum, calcium, and magnesium contents of the detrital clay, the lower lithological unit, and all the manganese values, except at a depth of about 700 meters, are low compared with lithogenous pelagic sediments. The iron concentration decreases with depth, but has a relatively high value (6.9%) in the sample adjacent to the basalt.

2. Trace elements: the concentrations of beryllium, scandium, vanadium, chromium, gallium, silver, cadmium, tin, and lead do not vary significantly and are similar to published data. The strontium, barium, and zinc values vary, with zinc concentrated more in the upper lithologic unit; the average values of these elements and those of molybdenum are low compared to other deep-sea clays. 3. Enriched trace elements: cobalt, nickel, and copper, whose concentrations are greatest in the highest samples from each lithological unit, have relatively high values at about 700 meters, as does manganese.

Site 251

1. Major elements: all the sediments from this site are calcareous and contain over 15% calcium; therefore, the analyses are considered unreliable for the reasons explained above. Titanium, iron, and manganese are relatively enriched in the basal sample, probably as a result of the presence of metasomatic garnets in the basal micarb chalk, described elsewhere (Kempe and Easton, this volume, Chapter 25).

2. Trace elements: the lead and barium concentrations in the basal sample, relative to the other samples, are respectively enriched and depleted. The copper values are the only others to vary significantly.

Site 252

1. Major elements: the average aluminum (4.5%) and manganese (0.08%) contents are low compared to noncalcareous pelagic sediments (A1, 9.3%, Mn, 0.38%). The uppermost sample contains a high percentage of iron.

2. Trace elements: the lithium, beryllium, strontium, barium, scandium, vanadium, chromium, gallium, silver, cadmium, and tin contents of the samples are all consistent with the lithologic nature of the sediments, but the average value for molybdenum (3 ppm) is low compared with the published value (27 ppm).

3. Enriched trace elements: cobalt, nickel, copper, zinc, and lead, all of which, except zinc which is more highly enriched, are present in concentrations similar to those found in Atlantic deep-sea clays.

Site 253

The uppermost lithologic unit consists of nannoplankton oozes and chalks. The high calcium contents of the samples from this unit affect the analyses which include apparently consistently low manganese and titanium values. The lower unit is a sequence of altered vitric volcanic ash, the geochemistry of which is consistent with an igneous provenance and admixture of fossil fragments and is dealt with elsewhere (McKelvey and Fleet, this volume, Chapter 22).

Site 254

1. Major elements: as at Site 253, calcareous oozes make up the upper lithological unit and show low concentrations of manganese and titanium. Beneath these occur sediments which are considered to be volcaniclastic and of basaltic provenance. The presence of macrofossils causes low silicon and aluminum and high calcium concentrations in two of the upper three samples of this unit. The titanium and iron contents are consistently high, in the latter case increasing with depth, but the manganese values are very low, being highest in the sample adjacent to the basalt.

2. Trace elements: the average barium (30 ppm), molybdenum (2 ppm), and lead (1 ppm) concentrations

 TABLE 1

 Composition of DSDP Leg 26 Sediments Obtained by Direct-Reading Spectography^a

Lithology	Core-Section, Interval in cm	Depth Below Sea Floor (m)	Si (%)	Ti (%)	Al (%)	Fe (%)	Mn (%)	Ca (%)	Mg (%)	K (%)	Li (ppm)	Be (ppm)	Sr (ppm)	Ba (ppm)	Sc (ppm)	(mqq) V	Cr (ppm)	Co (ppm)	(mqq) iN	Cu (ppm)	Zn (ppm)	Ga (ppm)	(mqq) oM	(mqq) gA	Cd (ppm)	Sn (ppm)	Pb (ppm)	Strati- graphic Age
	Hole 250A																											
Nanno ooze and Detrital Silty Clay	1-3, 23-25 5-6, 28-30 8-4, 8-9 11-6, 119-121 Average	58 157 297 472	18.5 25.2 23.3 18.3 21.3	0.21 0.24 0.29 0.22 0.24	6.1 6.7 8.0 6.4 6.8	7.8 6.2 5.5 5.2 6.2	0.11 0.05 0.08 0.03 0.07	0.3 0.2 0.4 0.2 0.3	1.3 1.4 1.6 1.2 1.4	3.2 2.6 2,7 2.0 2.6	78 68 70 46 66	3 4 3 3 3	66 31 72 28 49	487 247 376 167 319	16 10 24 10 15	98 153 108 81 110	101 146 120 98 116	170 77 49 25 80	530 101 88 42 190	132 276 83 49 135	159 149 149 97 138	22 17 21 15 19	9 3 3 2 4	1 1 1 1	1 - 1 <1	12 9 14 - <9	41 34 33 11 30	Quaternary U. Pliocene U. Miocene M. Miocene
Detrital Clay	16-3, 102-104 18-2, 20-22 20-2, 80-82 22-4, 75-77 23-2, 73-75 25-1, 50-52 Average	638 655 674 696 703 720	25.4 25.5 19.6 23.9 26.1 27.9 24.2	0.36 0.29 0.26 0.11 0.14 0.24 0.23	5.5 5.9 4.3 1.4 3.0 4.6 4.1	4.7 4.3 4.4 3.3 3.1 6.9 4.5	0.04 0.10 0.04 0.52 0.52 0.04 0.21	0.3 0.2 0.1 0.2 0.2 0.2 0.2	1.6 1.4 1.2 1.3 2.2 1.6	2.9 3.1 3.2 1.3 2.0 3.2 2.6	53 46 29 19 5 63 36	2 3 2 2 3 3	45 44 30 66 144 28 60	141 121 83 + 52 >400	18 16 6 9 16 13	135 112 107 102 132 94 114	129 137 125 45 60 110 101	210 41 28 80 111 41 73	297 83 52 70 74 78 109	112 78 52 101 220 131 116	61 130 67 10 54 124 74	19 20 15 7 13 22 16	-1 1 1 6 - - - - - - - -	1.1.1.1.1.1	î î î î î î	12 13 9 5 18 17 12	25 28 9 87 215 29 65	L. Miocene L. Miocene ? Coniacian Coniacian ?
	Hole 251 2-1, 40-42 7-6, 46-48 Hole 251A	2* 58*		0.05 0.06	-	0.6 1.1	0.03 0.02	+ +	0.4 0.6	0.2 0.4	16 21	712 200	+ +	564 503	j.	1	- 6	4	6 14	39 38		2 3	2 3	1 1	1 1	19 22	111	Quaternary U. Pliocene
Nanno ooze and Chalk	5-6, 19-21 10-6, 24-26 13-5, 60-62 16-6, 140-142 20-6, 130-132 26-4, 142-144 27-2, 8-10 29-2, 130-132 Average Site 252	124* 171* 256* 343* 400* 454* 460* 480*		0.07 0.04 0.07 0.04 0.08 0.07 0.07 0.11 0.07		0.9 0.7 1.0 0.6 1.6 1.3 1.7 3.0 12.5	0.02 0.04 0.06 0.02 0.03 0.02 0.05 0.07 0.04	+ + 24.4 + 24.8 22.6 + +	0.7 0.6 0.7 0.4 0.9 0.8 1.2 0.9 0.7	0.5 0.4 0.5 0.3 0.7 0.6 1.4 0.2 0.5	69 35 18 37 52 31 43 30 35	医肾 医羊 的复数	* + + + + + +	373 324 469 340 538 476 769 54 441			11 5 9 6 19 16 27 19 <12	3 23 - 11 6 14 2 <7	10 39 15 5 22 16 34 24 19	35 105 50 27 62 28 40 33 46		4 2 4 - 5 3 6 7 <3	6 3 2 3 5 2 2 5 3	$ \begin{array}{c} 1 \\ - \\ 1 \\ 1 \\ - \\ 1 \\ < 0.5 \end{array} $		12 19 38 6 13 3 23 25 18	6 5 10 - 8 - 10 48 <7	L. Pliocene U. Miocene M. Miocene M. Miocene L. Miocene L. Miocene L. Miocene
Radio- larian Clay	2-6, 147-149 5-3, 120-122 7-2, 13-15 Average Site 253	9 150 239	28.6 17.5 29.8 25.3	0.40 0.56 0.53 0.50	4.2 4.9 4.4 4.5	7.0 3.2 4.5 4.9	0.06 0.07 0.10 0.08	1.3 1.3 1.6 1.4	2.0 1.5 1.6 1.7	1.6 2.3 1.6 1.8	34 33 20 29	3 - 1 <1	110 307 208 208	+ + 1000 +	13 21 16 17	109 127 116 118	75 89 77 80	97 59 73 76	85 60 81 76	163 73 185 140	212 82 135 143	18 14 15 16	5 3 2 3			13 23 18 18	40 45 38 41	Quaternary U. Miocene U. Miocene
Nanno ooze and Chalk	1-6, 145-147 5-6, 29-31 13-6, 80-82 16-6, 127-129 Average	9* 45* 122* 151*	1 1 1 1 1	0.02 0.02 0.03 0.06 0.03	1.1.1.1	0.6 0.6 0.7 0.6	0.01 0.02 0.02 0.02 0.02	+ + + +	0.3 0.3 0.2 0.1 0.3	0.2 0.2 0.2 0.2 0.2	9 15 8 3 9	0.1.20	+ + + +	345 325 203 13 221	0.1.1.1.1		1 1 1 1	10 1 U I I	8 7 5 7 7	36 32 27 27 31	- 11	1 1 1 1	- 1 2 <1			29 28 26 25 27	- - 3 -	Quaternary Miocene U. Eocene M. Eocene

543

٩	Л
	N
1	-
	0

Foram

ooze

5-1, 120-122

Average

43*

0.06

0.04 -

-

-

-

0.8 0.14 +

0.7 0.08 +

0.5 0.2

0.4 0.2

Lithology	Core-Section, Interval in cm	Depth Below Sea Floor (m)	Si (%)	Ti (%)	Al (%)	Fe (%)	Mn (%)	Ca (%)	Mg (%)	K (%)	Li (ppm)	Be (ppm)	Sr (ppm)	Ba (ppm)	Sc (ppm)	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	(mqq) nZ	Ga (ppm)	(mqq) oM	Ag (ppm)	Cd (ppm)	Sn (ppm)	Pb (ppm)	Strati- graphic Age
Altered	17-2 60-62	153	15.4	0.61	14	4.8	0.53	0.8	1.6	2.1	47		78	189	8	103	23	50	24	38	64	10	2			15		M Focene
Vitric	19-2, 9-11	172	2.4	0.24		4.4	0.11	10.9	1.7	1.9	35	23	213	153	4	61	66	18	31	40	43	7	1			18	11	M. Eocene
Volcanic	20-2, 90-92	182	-	0.12		3.8	0.05	13.5	1.6	0.7	53		349	85		24	16	17	22	38		5				18		M Eocene
Ash	21-2 58-60	192	18.2	0.02	1.5	3.5	0.02	0.3	2.5	0.9	83	2	33	9	1	24		2	22	6	24	6		20	12	5	100	M. Eocene
Ash	21-2, 50 00	195	18.4	0.50	27	3.4	0.02	2.8	2.5	1.9	119	Ť.	87	11	9	110	28	42	16	73	52	14				17		M. Eocene
	23-2 86-88	211	14 4	0.13	3.1	3.4	0.00	57	2.5	1.7	35	2	68	22	0	125	170	30	77	64	57	7		- 2	1	0		M. Eocene
	25-2, 00-00	211	25.5	0.15	4.2	2.0	0.10	1.0	2.5	1.7	35	2	40	10	17	123	175	21	77	141	127	20		~		22	16	M. Eccene
	20-2, 25-25	259	23.5	0.57	4.5	1.2	0.00	2.4	1.7	1.9	90	2	40	10	17	201	150	71	20	141	127	20	155	24	100	22	15	M. Eocene
	20-2, 10-19	252	5.4	0.10	-	1.5	0.18	3.4	1.7	1.1	45	1	22	9	_	109	07	20	26	19	13	1		-		-	-	M. Eocene
	30-1, 120-122	271	4.9	0.12	-	8.5	0.06	13.5	2.0	2.5	41	22	114	27		33	39	12	23	30	56	9	1	-	55	31	10	M. Eocene
	36-1, 93-95	327	24.0	0.09	3.0	2.0	0.01	0.6	2.5	1.3	23		461	+	775	-	10	62	5	35		-	1	-	-	3	-	M. Locene
	41-1, 100-102	375	19.3	1.17	3.2	7.3	0.10	2.2	2.2	2.3	28	1	+	+			10	33	10	37		4	3	1	-	14	_	M. Eocene
	44-2, 80-82	405	4.3	0.14	0.2	3.1	0.02	3.2	1.6	1.3	11	1	31	6	4	75	45	24	22	38	18	4	1				- 73	M. Eocene
	45-2, 110-113	415	16.7	0.49	1.7	8.3	0.05	2.4	2.6	1.4	49	1	+	190			14		10	33		5	4	2	-	30	8	M. Eocene
	46-5, 110-112	429	10.3	0.31	1.4	3.8	0.06	2.7	2.2	2.7	54	7	29	292	19	197	37	68	91	29	51	14	2	1	100	4	24	M, Eocene
	48-2, 91-94	443	16.2	0.18	2.2	2.4	0.07	1.1	2.6	1.9	32	1	44	156	10	93	77	18	20	20	51	10	1	-		15	52	M. Eocene
	52-2, 50-52	481	15.5	0.34	3.7	4.4	0.07	4.0	2.7	1.7	4		512	53	15	130	89	35	33	63	90	9	155	-	-	15	52	M. Eocene
	53-2, 137-140	491	16.0	0.10	2.5	6.6	0.11	2.1	2.4	0.3	-	2	8	9	10	91	91	35	58	78	114	6		-	-	1		M. Eocene
	54-5, 115-117	505	17.0	0.14		1.2	0.03	1.7	1.1	0.9	17	1	46	22	3	85	22	21	12	44	222	2	-	-	-	-		M. Eocene
	56-2, 50-52	519	18.0	0.14	3.4	2.5	0.05	0.8	2.9	0.9	16	3	26	16	13	212	209	57	99	110	25	11	-	7	ंत्र	11	2	M. Eocene
	57-2, 85-88	547	12.4	0.78	2.7	2.2	0.10	4.6	2.8	2.3	9		69	36	16	154	36	29	23	87	90	14	-	-	-	23	5	M. Eocene
	Average		<14.0	0.30	< 2.1	4.0	0.09	3.9	2.2	1.6	<40	<1	>244.2	>165	<8	<95	<60	<32	<34	54	<46	<8	1.77	77.5	- <	<13		
	Site 254																											
Foram	1-3, 110-112	4*	-	0.02	-	0.6	0.01	+	0.4	0.2	17	\simeq	+	86	$\simeq 1$		\sim	20	7	28	$\underline{-}$		1	<u></u>	122	27	\mathbb{Z}^{2}	Quaternary
Namo ooze,	7-6, 50-52	61*	-	0.02	-	0.7	0.01	+	0.4	0.2	-	\overline{a}	+	164	 2	-	0.00	-	7	34	22	-	-	1		44	2	M. Miocene
Calcite ooze,	18-5, 94-96	155*	-	0.07	2 - 245	0.6	0.01	+	0.5	0.3	27	-	+	77	-	-	-	-	4	24	-	-	3	0.5	5 -	18	-	L. Miocene
and	20-6, 130-133	176*	-	0.07	77.0	0.9	0.02	+	0.6	0.2	36	-	940	17		-	8	5	11	25	15	3	3	0.5	5 -	19		Oligocene
Namo ooze	Average		-	0.05	-	0.7	0.01	+	0.4	0.2	<21	<u>1</u>	+	86	-	-	-	-	7	28	<14	-	<2	<0.5	- 5	27	-	
Sandy and	24-1, 100-102	211	8.3	0.92	3.0	6.1	0.07	1.8	2.0	1.6	42	3	56	57	26	321	175	64	59	121	59	25	5	0.5	5 -	15	3	?
silty clays,	26-1, 140-142	230	16.1	1.24	5.8	8.6	0.06	0.3	1.6	1.5	60	3	130	26	29	332	298	74	71	151	154	29	1	0.5	5 -	25	527	?
and fine-	28-1, 130-132	249	4.9	1.51	4.2	6.1	0.07	7.3	1.8	1.6	31	-	238	4.5	4.0	226	176	33	45	82	76	18	3	0.5	5 -	40	-	?
grained	30-1, 130-132	268	17.9	1.06	7.3	9.6	0.04	0.6	0.9	0.5	19	10	15	17	43	562	192	122	111	139	82	30	1	\sim	-	22	3	?
silty sands.	32-1, 120-122	287	13.7	1.29	9.2	10.5	0.08	0.3	0.4	0.3	82	5	5	37	41	425	469	73	160	87	102	35	1	0.5	5 -	25	-	?
with some	33-1. 62-65	301	16.4	1.53	16.2	12.2	0.07	0.5	0.7	0.5	24	-	21	14	64	336	74	42	86	73	338	39	3	0.4	5 2	36	14	2
pebble	33-1, 67-69	301	15.5	1.39	8.2	6.7	0.12	0.3	1.0	0.7	21		15	11	43	330	401	77	150	83	97	22	<u> </u>	0.	5 -	21	_	?
conglom-	Average		13.3	1.28	7.7	8.5	0.07	1.6	1.2	1.0	40	<7	68	30	41	362	255	69	97	105	130	28	<2	<0	5 -	26		15
erate			1010	1.20		0.0	0.07	1.5	1.2	1.0	40		00	50	-1	502	200	09		105	150	20						
	Site 255																											
Nanno	3-1, 130-132	24*	-	0.02		0.6	0.01	+	0.2	0.1	33	20	+	71		-	4	-	8	27		3	2	1	-	25	2	Miocene

+

+

29 -

28

-

52

62

-

-

=

-

3 67

4 <34

92 36

50 31

TABLE 1 - Continued

÷

12

3 5 - -

3 3 <0.5 - 27 <10

28

18 Miocene

A. J. FLEET, D. R. C. KEMPE

Detrital Clay	1-5, 87-89 3-2, 95-97 4-2, 94-96 4-6, 127-129 5-4, 37-39 7-3, 78-80 9-1, 133-135 Average	7 50 88 94 128 216 248	17.2 10.2 18.5 22.9 27.7 28.8 9.8 19.3	0.16 0.14 0.29 0.29 0.29 0.29 0.11 0.24	2.8 5.1 11.5 9.7 9.1 2.8 0.1 5.9	6.8 1.4 5.5 9.3 6.7 5.4 2.5 5.4	0.53 0.18 0.53 0.53 0.37 0.10 0.18 0.35	0.6 0.3 0.5 0.6 0.4 0.2 4.2 1.0	1.4 1.3 1.6 1.7 1.8 1.4 1.3 1.5	1.9 1.7 1.6 1.5 4.4 2.5 1.2 2.1	73 167 372 489 161 35 22 189	6 4 9 9 2 <5	44 50 49 76 97 64 74 65	124 100 118 395 108 260 485 227	$ \begin{array}{c} 11\\ 11\\ 13\\ 24\\ 22\\ 9\\ -\\ <13 \end{array} $	182 168 264 271 727 69 26 244	92 69 114 99 98 57 27 80	200 53 103 301 86 65 19 118	225 64 146 270 116 74 20 131	224 129 147 165 148 109 58 140	47 23 112 186 323 25 - <98	20 20 32 29 26 8 2 20	37 11 39 39 4 0.5 3 19		- - 1 - - -	8 4 17 26 25 15 - <14	92 58 91 92 66 24 - <61	Pliocene Pliocene Pliocene ? U.Cretaceous L.Cretaceous
Detailed	Site 257		10.7	0.21			0.62	0.6	1.4	1.0	24	~	76	260	10	180	60	74	124	122	4	16	12			14	60	Quataman
Clay	2-2, 124-126 3-2, 94-95 4-4, 27-29	12 50 90	19.7 19.2 16.8 26.1	0.21 0.14 0.10 0.18	4.4 3.2 5.3 3.9	5.0 6.6 4.0 5.0	0.53 0.53 0.11 0.27	0.8	1.0 1.2 1.2 1.5	1.8 1.6 2.3 1.8	62 228 55	6 6 4	35 37 42	238 141 84 245	18 8 9 6	234 175 71	58 88 88 33	79 29 30	94 74 52	123 153 98 124	39 103 106	13 16 28 14	13 18 7 2	- 0.5 -	-	6 7 -	58 53 25	? ? Cretaceous
	5-2, 83-85	126	22.4	0.13	5.9	4.3	0.40	0.4	1.5	1.0	45	0	129	176	[4	134	03	01	69	107	74	17	10	_	-	,	47	Cretaceous
Coccolith Detrital clay, clayey coccolith oo	7-2, 96-98 8-2, 72-74 Average (2 samples ze	201 239)	15.4 17.5 16.4	0.12 0.13 0.12	3.3 4.5 3.9	3.5 2.7 3.1	0.22 0.46 0.34	2.0 3.9 3.0	1.4 1.9 1.7	1.5 2.5 2.0	56 124 90	4 2 3	68 107 87	281 139 210	6 6 6	105 103 104	82 51 66	62 69 65	64 124 94	77 134 105	36 65 51	16 14 15	2 2 2	E T	-	4 17 11	39 61 50	M. Albian M. Albian
Clayey cocco Chalk	olith																											
Detrital Clay	9-3, 63-65 10-1, 127-129 15-1, 29-31 Average (all 8 detrital clay s	251 258 298 amples)	22.4 22.4 14.1 20.4	0.10 0.08 0.08 0.13	3.3 1.6 0.6 3.5	1.2 7.3 7.4 5.2	0.04 0.14 0.10 0.27	0.1 0.7 2.2 0.6	1.4 1.4 2.8 1.6	1.1 1.1 1.4 1.6	58 46 40 71	14 6 5 7	22 23 35 50	124 270 832 266	5 15 9 10⊃	+ 201 151 >268	260 35 105 91	53 67 92 61	78 92 140 91	72 27 75 97	57 - 31 <60	14 12 13 16	 1 1 7	4	-	- - <6	10 15 6 34	? ? ?
	Site 258																											
Nanno oozes and Chalks	1-5, 105-107 3-6, 120-122 6-5, 130-132 10-2, 75-77 12-6, 90-92 Average	7* 56* 148* 202* 243*	- - - 14.5 -	0.04 0.04 0.04 0.04 0.03 0.04		0.8 0.6 0.7 0.9 0.7 0.7	0.02 0.01 0.02 0.01 0.09 0.03	+ + + 18.9 +	0.9 0.3 0.5 0.8 0.7 0.6	0.3 0.2 0.1 0.3 0.7 0.5	34 60 38 35 16 37	- 1 - 2 - - <	+ 710 369 639 <723	187 589 + + +	1 1 1 1 1	- 7 -	8 9 24 11 12	- 3 27 60 63 <31	8 9 34 9 13	27 28 37 132 45 54	- 17 - - -	3 4 4 10 2 4	3 3 4 2 1 2	- 1 - -	11111	25 17 6 - 16 16	3 - - - -	Quaternary Pliocene Coniacian Coniacian Turanian
Clays and Chalks	15-2, 105-107	285	15.6	0.09	2.2	1.5	0.04	1.0	0.9	1.4	57	2	85	+	Ξ.	57	78	28	37	116	13	13	-	17	-	-	7	U. Albian
Detrital Clay	16-2, 1-3 17-5; 68-70 18-4, 116-118 21-1, 130-132 22-5, 120-122 23-2, 123-125 24-2, 130-132	303 327 345 407 442 475 513	21.9 13.0 23.8 26.3 22.5 23.7 30.1	0.10 0.07 0.06 0.12 0.11 0.14 0.09	3.3 1.6 1.2 4.4 4.5 9.2 5.4	4.8 1.9 2.4 2.5 3.2 3.2 3.8	0.02 0.01 0.01 0.01 0.01 0.01 0.01	1.6 3.4 3.4 1.1 2.4 0.9 0.9	1.1 0.9 0.9 0.9 1.0 1.3 1.3	1.1 0.6 0.5 0.8 1.6 0.4	48 30 33 48 31 67 50	5 3 3 4 6 5	48 46 90 47 68 71 34	+ + 798 + 624 49	- - 3 - 12 5	105 34 49 65 91 165 64	107 43 50 66 87 138 76	50 27 31 28 29 36 20	106 31 37 44 42 69 52	90 61 60 48 61 109 67	76 33 34 431 41 105 114	15 8 9 12 16 25 15	- 0.5 0.5 0.5 - 2	0.5 - 0.5 0.5 0.5 0.5 0.5	- - - 1 1	- - - 8	20 - 13 23 51 22	U. Albian U. Albian U. Albian M. Albian M. Albian M. Albian M. Albian
	Average (7 detrital clay sam	ples)	23.0	0.09	4.2	3.1	0.01	2.0	1.1	0.8	44	4	58	+	-	82	81	32	54	71	119	14	<1 ·	<0.5	-	-	19	

Site 256

											TABLE	21 -	Cont	tinued	2													
Lithology	Core-Section, Interval in cm	Depth Below Sea Floor (m)	Si (%)	Ti (%)	Al (%)	Fe (%)	Mn (%)	Ca (%)	Mg (%)	K (%)	Li (ppm)	Be (ppm)	Sr (ppm)	Ba (ppm)	Sc (ppm)	V (ppm)	Cr (ppm)	Co (ppm)	Ni (ppm)	Cu (ppm)	Zn (ppm)	Ga (ppm)	(mqq) oM	Ag (ppm)	Cd (ppm)	Sn (ppm)	Pb (ppm)	Strati- graphic Age
Glauconitic Detrital Silty Clay	25-4, 58-60	525	12.5	0.77	6.8	8.6	0.03	0.6	1.1	0.8	192	6	23	2 45	33	299	281	77	79	111	27	23	1	-	32.	13	-	M. Albian
Average Val	ues																											
Nanno Ooze from Sites 2	s and Chalks 51, 253, 254, 25	5, 258 (25 sa	– mples)	0.05		0.9	0.03	+	0.5	0.4	<28	c	+	>377	-	-	<8	<12	16	41	7	<3	<3	<0.5	i –	21	22	
Nanno Ooze from Sites 2	and Clay, etc. 50, 257, 258 (7 s	amples)	19.1	0.18	5.3	4.6	0.14	1.2	1.4	2.3	71	3	65	>385	<11	101	97	87	141	124	95	17	3	-	<u>0</u> 9	<9	32	
Radiolarian from Site 25	Clay 52 (3 samples)		25.3	0.50	4.5	4.9	0.08	1.4	1.7	1.8	29	<1	208	+	17	118	80	76	76	140	143	16	3	-	5	18	41	
Detrital Clay from Sites 2	, 50, 256, 257, 25	8 (28 sample:	21.9 s)	0.17	4.4	4.6	0.21	1.0	1.4	1.7	86	<5	58	>414	<10	>182	88	70	96	105	<88	16	<7	2	æ	<9	<44	
Miscellaneou Altered Vitr	is ic Volcanic Ash	9	<14.0	0.30	<2.1	4.0	0.09	3.9	2.2	1.6	(40	<1	>244	>165	(8	(95	(60	(32	(34	54	(46	8>	-	-22	_	(13	12	
Sands, silts,	and clays		13.3	1.28	7.7	8.5	0.07	1.6	1.2	1.0	40	(7	68	30	41	362	255	69	97	105	130	28	(2	(0.5	i –	26		
Glauconitic from Site 25	silty clay 58 (1 sample)		12.5	0.77	6.8	8.6	0.03	0.6	1.1	0.8	192	6	22	45	33	299	281	78	79	111	27	23	1	34		13	94	
Published A	verage Chemical	Composition	of Deep	-Sea Se	edimen	ts (Rile	y and (Chester,	1971)																			
Major Eleme	ents						0.04																					
Calcareous s	ediments		25.9	0.20	4.8	5.80	0.26	20.40	2.12	2.71																		
Siliceous sed	liments		29.9	0.34	8.0	4.48	0.38	0.98	1.21	1.58																		
Oceanic Ave	erage		20.0	0.31	7.4	4.15	0.32	10.40	1.35	1.74																		
Trace Eleme	ents																											
Deep-sea car	rbonates										5	0.x	200	0 190	2	20	11	7	30	30	35	13	3	0.0	x 0.0	x 0.0)x 9	
Deep-sea cla	iys										57	2.6	18	0 2300	19	120	90	74	225	250	165	20	27	0.1	1 0.4	2 1.5	5 80	
Direct-Read	ing Spectograph:	Useful Work	ing Ran	ge																								
Upper Limi	t		46.0	2.0	15.0	15.0	1.0	25.0	3.5	5.0	1000	100	100	0 1000	100	1000	1000	1000	1000	1000	1000	100	100	100	100) 100) 1000)
Lower Limi	t		4.0	0.00	01 0.7	0.1	0.001	0.0	0.03	0.1	3.0	0 0	.4	2.0 5	.0 3.	0 5.	0 2.	0 1.0	2.0) 2.	0 10.0) 1.	5 0.	3 0	.2 0).5 3	1.0 2	2.0

Note: * Sample containing more than 15% Ca (See text);

+ Result greater than the upper limit of the useful working range for the direct-reading spectrograph (see above);

- Result less than the lower limit of the useful working range for the direct-reading spectrograph (see above);

> Prefix of average calculated using upper limit value of the useful working range for the direct-reading spectrograph in place of result(s) shown as above upper limit, hence actual average is greater than that shown;

< Prefix of average calculated using lower limit value of the useful working range for the direct-reading spectrograph in place

of result(s) shown as below lower limit, hence actual average is less than that shown; and

x An estimate of order of magnitude

^a For these sediments, this method must be regarded as at best semi-quantitative

in the volcaniclastic sediments are low and not typical of deep-sea sediments.

3. Enriched trace elements: the concentrations of vanadium, cobalt, nickel, copper, and zinc are typical of deep-sea sediments, but the chromium values and the higher vanadium values are unusual because chromium is not normally enriched in pelagic sediments, and, even in the Pacific, the average vanadium content is only 330 ppm.

Site 255

The two samples from this site which were analyzed are calcareous oozes and apparently contain titanium, iron, and manganese in low concentrations, with the two manganese values differing greatly.

Site 256

1. Major elements: typical deep-sea clays were sampled at this site, though the lowest sample is calcium rich and contains relatively little silicon, titanium, iron, and aluminum. The average manganese content is consistent with this view, but the manganese values of the samples vary between 0.53% and 0.10%.

2. Trace elements: beryllium, strontium, scandium, chromium, gallium, silver, and cadmium all occur in amounts to be expected in pelagic clays, but the average lithium concentration (189 ppm) is high compared with the average value for pelagic clays (57 ppm); also, the barium and molybdenum values are low and vary, as do those of lithium.

3. Enriched trace elements: vanadium, cobalt, nickel, zinc, copper, and lead are all enriched, and the values of the first four of these vary distinctly from sample to sample, vanadium attaining a high value of over 700 ppm in one sample. The degree of enrichment of vanadium and cobalt is similar to that in Pacific clays, but the other elements are enriched as in Atlantic clays.

Site 257

1. Major elements: the Site 257 samples, coming from a similar geologic setting, are like those of Site 256. In general, the titanium and aluminum values are low, the aluminum values being exceptionally so in the lowest two samples. The iron and manganese concentrations at the top and the iron concentrations at the bottom of the sequence are relatively high. Samples taken at 201 and 239 meters, with high calcium and low silicon contents, represent mixtures of clays and coccolith oozes.

2. Trace elements: the lithium, beryllium, scandium, chromium, gallium, silver, and cadmium values are typical, and, as at Site 256, the barium and molybdenum values are generally low, while the tin concentrations are lower than elsewhere.

3. Enriched trace elements: as at Site 256, vanadium, cobalt, nickel, copper, zinc, and lead are enriched, though beneath 250 meters the lead results are distinctly low. Vanadium obtains a higher maximum value than at Site 256 (>1000 ppm).

Site 258

1. Major elements: the upper lithological unit, as the calcareous sediments at other sites, contains low concen-

trations of titanium, iron, and manganese. In the underlying detrital clay the titanium, aluminum, iron, and manganese contents are low; the manganese values vary little and have an average value of 0.01%, compared with an average value for lithogenous pelagic sediments of 0.37%.

2. Trace elements: the results for lithium, beryllium, barium, chromium, gallium, and strontium are generally typical of deep-sea sediments, but those for scandium, vanadium, molybdenum, and tin are low compared with other sites. The barium concentrations vary, being atypically high in the calcareous sediments but very low in the bottom two samples. Nickel and lead are not enriched relative to near-shore sediments and igneous rocks.

3. Enriched trace elements: cobalt, copper, and zinc are enriched to a lesser extent at this site than at Sites 256 and 257, with the degree of enrichment being similar to that of the Atlantic.

4. Basal glauconitic sandy lithological unit: this is of basaltic provenance (B. C. McKelvey, personal communication) and is a geochemically distinct unit containing more titanium, iron, vanadium, chromium, cobalt, nickel, and copper than the overlying clays.

Conclusions

Because of their unreliability, little will be said here of the results for the nannoplankton oozes and chalks. However, it is worth noting the apparently low average iron and manganese contents of the oozes (0.8% and 0.4%, respectively), compared with average iron and manganese concentrations of calcareous pelagic sediments of (2.77% and 0.26%). The average major element concentrations in the other three major lithologic types, which are all basically clays, are generally similar, bearing in mind their somewhat variable components. The average compositions of these clays are in most respects the same as the average published analyses. Of the major elements, the determined titanium and aluminum average values are about half the published values. The average iron content is lower than that published (about 4.6% compared with about 6.0%) and there is, on the average, approximately 0.2% manganese in these samples compared with a published average of about 0.4%.

The measurements of the lithium, beryllium, scandium, chromium, gallium, silver, and cadmium contents yield average values similar to the published values, but those of strontium, molybdenum, and notably barium are low. The existing data concerning tin are inconclusive, giving values of about 1.0 or 20 ppm; the figures obtained here are generally between these values.

The clays are enriched in vanadium, cobalt, nickel, copper, lead, and zinc, relative to near-shore sediments and igneous rocks in the manner characteristic of pelagic clays (Chester, 1965; Riley and Chester, 1971). The average vanadium, cobalt, and nickel values are greater than those of the Atlantic but less than those of the Pacific, while the average copper and lead values are similar to those of the Atlantic. It would seem significant that these trace elements, normally considered to be associated with the hydrogenous components (e.g., ferromanganese nodules and iron and manganese oxides) of deep-sea sediments (Riley and Chester, 1971), and iron are present in the Leg 26 samples in concentrations similar to those in sediments from on and just below the present-day ocean bottom, while the average manganese concentration in the drilled samples is about half that of the ocean-bottom sediments.

In order to study the partitioning of the iron, manganese, and trace elements between the various components of the sediments, some of the samples will be subjected to chemical treatment as described by Chester and Hughes (1967). Continuing work will provide chemical analyses of these and other samples, together with specific mineralogical investigations. These studies will provide data for comparison with present-day pelagic sediments, and, hopefully, elucidate elemental variations at particular sites, with possible implications for the oceanic sediment pile as a whole.

NEUTRON ACTIVATION ANALYSIS

Method

Duplicate samples of the Leg 26 material and of USGS standard rock BCR-1 of known weight, along with elemental standards, were irradiated in the University of London Reactor at a thermal neutron flux of about 0.9×10^{12} n cm⁻² sec⁻¹. For the determination of cerium, neodymium, europium, gadolinium, terbium, holmium, thulium, ytterbium, and lutetium, the samples were irradiated for 15 hr and allowed to cool for about 3 weeks. For lanthanum and samarium, the irradiation was for 7.5 hr with a cooling period of 4 to 5 days. The activity, in the case of the former group of elements, was detected by means of a low-energy ultra-pure germanium detector (Princeton Gamma Tech.) with the following measured specifications: resolution (FWHM) of 538ev at 122 kev; active area 200 mm²; 5-mm thick; 5-mil Be window. The detector was coupled via a pulsed optical feedback preamplifier and amplifier to an Intertechnique SA40B 400 channel analyzer. For the determination of lanthanum and samarium, a germaniumlithium detector (Princeton Gamma Tech.), with the following measured specifications: resolution (FWHM) of 1.81 kev at 1.33 Mev; efficiency (relative to sodium iodide [T1] detector) 8.1%; 42-cm3 active volume; drift depth 16 mm, was used. This was connected via a preamplifier and a Tenelec 205 amplifier to an AEP 4096 channel analyzer based on a Nova computer. A pulse generator was used to enable a correction for dead time to be made.

Results and Discussion

The rare-earth contents of six samples are shown in Table 2, along with the enrichment factors relative to chondrites. Table 3 compares the values determined for the USGS BCR-1 standard with the published values (Flanagan, 1973).

The enrichment factors, relative to chondrites, for the rare-earth elements of oceanic sediments and ridge basalts are distinct; a plot of these factors (Figure 1) shows that, while the enrichment factors of the ele-

								R	T are-eart	ABLE th Elen	.2 nent Dat	ta										
Sample			H	Rare-ear	rth Con	itents o	f Samp	les (pp1	(u				Rare-e	arth En	richme	nt Fac	ors Rel	lative to	o Chon	drites ⁶		
	La	Ce	PN	Sm	Eu	Gd	Tb	Но	Tm	Yb	Lu	La	Ce	PN	Sm	Eu	Gd	Πb	Но	Tm	Yb	Lu
250A-25-1, 50-52 cm	17.1	27.9	18.3	2.9	6.0	4.1	0.8	1.5	0.5	1.6	0.1	57.0	33.2	31.6	13.8	12.2	12.8	16.3	20.5	15.2	9.4	3.2
253-26-2, 23-25 cm	7.1	19.8	16.0	3.0	1.0	4.3	6.0	1.1	0.7	2.9	0.4	23.7	23.6	27.6	14.3	13.5	13.4	18.4	15.1	21.2	17.1	12.9
253-57-2, 85-88 cm	13.7	36.3	27.5	5.3	1.9	6.0	1.1	2.0	1.0	3.2	0.5	45.7	43.2	47.4	25.2	25.7	18.8	22.4	27.4	30.3	18.8	16.1
254-33-1, 67-69 cm	8.3	29.5	15.4	6.5	1.8	5.0	1.2	1.4	1.2	4.6	0.8	27.7	35.1	26.6	31.0	24.3	15.6	24.5	19.2	36.4	27.1	25.8
257-10-1, 127-129 cm	1 23.7	84.2	27.8	4.5	1.4	T.T	1.3	1.4	0.7	2.5	0.01	0.97	100.2	47.9	21.4	18.9	24.1	26.5	19.2	21.2	14.7	0.3
258-25-4, 58-60 cm	14.5	34.7	29.2	7.2	3.6	12.0	2.2	2.0	2.6	6.0	0.8	48.3	41.3	50.3	34.3	48.6	37.5	44.9	27.4	78.8	35.3	25.8
^a Values used for the c	hondri	tes are	from H	askin e	t al. (19	968)					1											

I

	This Study	Published Value (Flanagan, 1973)
La	17.9	26 ^a
Ce	40.9	53.9
Nd	29.7	29
Sm	4.6	6.6 ^a
Eu	2.1	1.94
Gđ	6.2	6.6
Tb	1.0	1.0
Ho	1.4	1.2^{b}
Tm	0.8	0.6
Yb	3.2	3.36 ^a
Lu	0.2	0.55

TADIE 2

^aAverage

^bMagnitude

ments with atomic numbers greater than that of europium are of similar value, those factors of the elements with atomic numbers less than 63 have progressively divergent plots with decreasing atomic number. The results for the three analyzed basalt samples from Sites 250, 257, and 258 are shown in Figure 1. Those for Samples 250A-25-1, 50-52 cm and 257-10-1, 127-129 cm plot as oceanic sediments, but the trend of the results for Sample 258-254, 58-60 cm is different. In Figure 2 the results for the three samples from the Ninetyeast Ridge are plotted. Samples 253-26-2, 23-25 cm and 253-57-2, 85-88 cm are altered volcanic ashes (McKelvey and Fleet, this volume, Chapter 22), and Sample 254-33-1, 67-69 cm consists of volcaniclastic sediments. The Ninetyeast Ridge samples plot with trends similar to those obtained by Thompson et al. (in press) for basalts from Sites 214, 215, and 216; by Frey and Sung (Chapter 23, this volume) for basalts from Sites 253 and 254; and by Schilling (1973) for basalts from the Reykjanes Ridge near Iceland, and its extension over the island. Thompson et al. claim their results are consistent with the idea of the Ninetveast Ridge being the surface expression of a former mantle plume. This hypothesis is further supported by consideration of the ratio of the lanthanium and samarium enrichment factors (La/Sm) E.F. relative to chondrites. The ratios for the basalts studied by Schilling fall into three groups. The ratios for the ridge basalts over 400 km southwest of Iceland on the Reykjanes Ridge are less than 0.5, while those basalts from within 200 km of Iceland, on the ridge and from the landward extension of the ridge, have ratios between 0.8 and 1.4. In Figure 3 the (La/Sm) E.F. ratio ranges for these two groups of basalt, and an intermediate group from on the ridge are shown diagrammatically, along with the (La/Sm) E.F. range for the oceanic sediments analyzed by Wildeman and Haskin (1965). It can be seen that the (La/Sm) E.F. ratios for the Ninetyeast Ridge samples are similar to those for the basalts from Iceland and the Ridge within 200 km of Iceland, whose compositions are considered by Schilling (1973) to be influenced by a primordial hot mantle plume rising beneath Iceland. The (La/Sm) E.F. ratio of the sample from Site 258 is also within this group, but the basal sediments from Sites 250 and 257 have

Figure 1. Rare-earth element enrichment factors relative to chondrites of some basal sediments. Values for ridge basalts: Haskin et al. (1968). Values for oceanic sediments: Wildeman and Haskin (1965).

Figure 2. Rare-earth element enrichment factors relative to chondrites of samples from the Ninetyeast Ridge.

Figure 3. Diagram comparing [La/Sm]_{E.F.} ratios from published data with those obtained in this study. Values for oceanic sediments: Wildeman and Haskin (1965). Values for Reykjanes Ridge: Schilling (1973).

 $(La/Sm)_{E,F.}$ ratios consistent with their being normal deep-sea sediments, on the basis of whole sediment analysis.

Work is being carried out to verify the trends which are reported above and to fully evaluate the errors involved. Unfortunately, no basalt was obtained from Site 258 or from Site 264 (Leg 28) on the Naturaliste Plateau. Any further work must, therefore, be undertaken on the apparently volcanically derived sediments from the base of Site 258, and this is, in fact, planned.

Note added in press: These samples have been reanalyzed, together with six others. The trends reported above are confirmed. The enrichment factors for Sample 258-24-2, 130-132 cm plot as do those for sediments, but the sample from the clay interval in the basalt of Core 15 at Site 257 (Sample 257-15-1, 29-31 cm), which is of problematical origin, plots similarly to Sample 258-25-4, 58-60 cm. The new (La/Sm)_{E.F.} ratios fall into three groups:

>3.4	Samples:	250-25-1, 50-52 cm	
	2000-0000 8 .00000000	256-9-1, 133-135 cm	
		257-10-1, 127-129 cm	
		258-24-2, 130-132 cm	
1.6-0.9	Samples:	253-17-2, 60-62 cm	
		253-26-2, 23-25 cm	
		254-26-1, 140-142 cm	
		254-33-1, 67-69 cm	
		257-15-1, 29-31 cm	
		258-25-4, 58-60 cm	
2.3-2.5	Samples:	253-36-1, 93-95 cm	
		253-57-2, 85-88 cm	

The last two samples in this list are significantly enriched in lanthanum relative to cerium, as is the case with no other of the samples, and come from the lower magnesium-rich half of the Site 253 altered-ash sequence (see McKelvey and Fleet, Chapter 22, this volume).

ACKNOWLEDGMENTS

We would like to thank Miss S. J. Fishlock for her help and advice with the neutron activation analysis and also acknowledge the help of the director and staff of the University of London Reactor Centre, and Drs. T. W. Donnelly and P. Henderson for critically reviewing the manuscript. The receipt of a NERC Joint Research Studentship is also acknowledged.

REFERENCES

- Bostrom, K., Joensuu, O., Valdes, S. and Riera, M., 1972. Geochemical history of south Atlantic Ocean sediments since Late Cretaceous: Marine Geol., v. 12, p. 85.
- Chester, R., 1965. Elemental geochemistry of marine sediments. In Riley, J. P. and Shirrow, G. (Eds.), Chemical Oceanography: London (Academic Press), v. 2, p. 23.
- Chester, R. and Hughes, M. J., 1967. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments: Chem. Geol., v. 2, p. 249.
- Copeland, R. A., Frey, F. A., and Wones, D. R., 1971. Origin of clay minerals in a Mid-Atlantic Ridge sediment: Earth Planet. Sci. Lett., v. 10, p. 186.
- Cronan, D. S., 1973. Basal ferruginous sediments cored during Leg 16, Deep Sea Drilling Project. In van Andel, T. H., Heath, G. R., et al., Initial Reports of the Deep Sea Drilling Project, Volume 16: Washington (U.S. Government Printing Office), p. 601.
- Cronan, D. S. and Garrett, D. E., 1973. Distribution of elements in metalliferous Pacific sediments collected during the Deep Sea Drilling Project: Nature, v. 242, p. 88.
- Cronan, D. S. van Andel T. H., Heath, G. Ross, Dinkelman, M. G., Bennett, R. H., Bukry, D., Charleston, S., Kaneps, A., Rodolfo, K. S., and Yeats, R. S., 1972. Iron-rich basal

sediments from the eastern equatorial Pacific: Leg 16, Deep Sea Drilling Project: Science, v. 175, p. 61.

- Donnelly, T. W. and Nalli, G., 1973. Mineralogy and chemistry of Caribbean sediments. In Edgar, N. T., Saunders, J. B., et al., Initial Reports of the Deep Sea Drilling Project, Volume 15: Washington (U.S. Government Printing Office), p. 929.
- Flanagan, F. J., 1973. 1972 values for international geochemical reference samples: Geochim. Cosmoschim. Acta, v. 37, p. 1189.
- Haskin, L. A., Haskin, M. A., Frey, F. A., and Wildeman, T. R., 1968. Relative and absolute terrestrial abundances of the rare earths. *In Ahrens*, L. H. (Ed.), Origin and distribution of the Elements: London (Pergamon Press).
- Lisitzen, A. P. Serova, V. V., Zverinskaya, I. B., Lukashin, V., Gorbunova, Z. N., Gordeer, V. V., Zhunensko, V. V., Pchelintsev, A. M., Belejaev, Ju. I., Popov, N. I., Shishkina, O. V., Morozov, N. M., Jocese, A. P., Kozlova, O. G., Mukhina, V. V., Khodkevich, Yu. N., and Plyusnina, I. I., 1971. Geochemical, mineralogical and paleontological studies, Leg 6, Deep Sea Drilling Project. In Fischer A. G., et al., Initial Reports of the Deep Sea Drilling Project, Volume 6: Washington (U.S. Government Printing Office), p. 829.
- Riley, J. P. and Chester, R., 1971. Introduction to marine chemistry: London (Academic Press).
- Schilling, J. G., 1973. Iceland mantle plume: geochemical study of Reykjanes Ridge: Nature, v. 242, p. 565.
- Thompson, G., Bryan, W. B., Frey, F. A., and Sung, C. M., in press. Petrology and geochemistry of basalts and related rocks from Sites 214, 215, 216, DSDP Leg 22, Indian Ocean. *In* von der Borch, C. C., Sclater, J. G., et al., Initial Reports of the Deep Sea Drilling Project, Volume 23: Washington (U.S. Government Printing Office).
- von der Borch, C. C., Nesteroff, W. D., and Galehouse, J. S., 1971. Iron rich sediments cored during Leg 8 of the Deep Sea Drilling Project. *In* Tracey, J. I., Jr., et al., Initial Reports of the Deep Sea Drilling Project, Volume 8: Washington (U.S. Government Printing Office), p. 829.
- Wildeman, T. R. and Haskin, L., 1965. Rare-earth elements in ocean sediments: J. Geophys. Res., v. 70, p. 2905.