The Shipboard Scientific Party1

SITE DATA

Date Occupied: 1 December 1972 Date Departed: 6 December 1972 Time on Site: 128 hours Position: lat 23°19.43'S long 110°58.81'E Water Depth (from sea level): 5048 corrected meters (echo sounding) Water Depth (from drill floor): 5058 corrected meters (echo sounding) Bottom Felt At: 5065 meters (drill pipe) Penetration: 746 meters Number of Holes: 1 Number of Cores: 29 Total Length of Cored Section: 271 meters Total Core Recovered: 163.5 meters Percentage Core Recovery: 60.33 **Oldest Sediment Cored:** Depth below sea floor: 746 meters Nature: Quartz-bearing clay Age: Albian Measured velocity: 2.4 km/sec Measured velocity: 2.4 km/sec Basement: Not penetrated

Principal Results: Beneath 100 meters of Quaternary and upper Pliocene turbiditic foram nanno ooze, which shows in the seismic profile as a well-stratified layer, is an acoustically transparent layer of lower Paleocene to Cretaceous sediments. Those sediments comprise poorly fossiliferous clayey nanno ooze and black claystone that overlie Albian (?) to Hauterivian (?) black kaolinitic guartz-bearing clay.

BACKGROUND AND OBJECTIVES

This site (Figure 1) was chosen with two main objectives in mind:

1) to determine the age of the basement, and

2) to determine the history of sedimentation in this part of the Indian Ocean.

Other sites drilled on Leg 27 and sites drilled on Legs 22 and 26 indicate a general increase in basement age from west to east in the eastern Indian Ocean. This site would fill an important gap in basement ages on the most easterly side of the Indian Ocean adjacent to the Australian continent. There is a good probability that the ocean floor off Western Australia is composed of several small tectonic plates. The scattered earthquake epicenters, the lack of easily correlatable magnetic anomalies, and the prominent topographic features support this idea. To delineate these plates, drill sites must be fairly closely spaced and carefully located. This site should help to identify some of the oldest ocean floor in the Indian Ocean and show that this area is distinct from marginal plateaus, such as the Wallaby Plateau.

Site 263 is located on the edge of the Cuvier Abyssal Plain. Its proximity to the continental slope is such that it should have a top layer of terrigenous sediments, yet yield a full record of paleo-oceanographic conditions since the time Australia rifted from the continent, then to its immediate west. The sediment column should show some resemblance to that of Site 259 further south but may have older sediments in addition.

SITE SURVEY

The drill site was first approached from the north with a track laid out to intersect an existing *Diamantina* track. The seismic airgun began erratic operation as the *Diamantina* line was approached. Rather than risk complete failure of the seismic system just at the time of beacon dropping, it was decided to turn and run parallel to the *Diamantina* track but north of it. The idea was to pick a drill site under the assumption that structures probably strike north-south so an equivalent site could be found just to the north of the site sought. This turned out to be the case, with a basement reflector at a depth of 0.8 sec about 2.4 km (1.5 mi) from the base of the continental rise. The ship reversed course and dropped the beacon at 0856Z, 1 December 1972, in the flatbottomed Cuvier Abyssal Plain in 5055 meters of water.

The 0.8-sec basement drops away slowly beneath the floor of the abyssal plain to the west (see Figure 2). Flatlying stratified reflectors, probably turbidites, wedge out against the continental rise. The depth to the bottom of these reflectors is shown by the dotted line in Figure 2.

An on-site sonobuoy was run and additional seismic coverage was obtained as the ship left the site and headed for Fremantle.

¹James R. Heirtzler, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, Co-Chief Scientist; John J. Veevers, Macquarie University, Sydney, Australia, Co-Chief Scientist; Hans M. Bolli, Swiss Federal Institute of Technology, Zurich, Switzerland; Alan N. Carter, University of New South Wales, Kensington, Australia; Peter J. Cook, Bureau of Mineral Resources, Canberra, Australia; Valeri Krasheninnikov, Geological Institute of the Academy of Sciences of the USSR, Moscow; Brian K. McKnight, University of Wisconsin, Oshkosh, Wisconsin; Franca Proto-Decima, Istituto di Geologia dell'Universita, Padua, Italy; G. W. Renz, Scripps Institution of Oceanography, La Jolla, California; Paul T. Robinson, University of California, Riverside, California; Karl Rocker, Jr., Civil Engineering Laboratory, NCBC, Port Hueneme, California; Paul A. Thayer, University of North Carolina, Wilmington, North Carolina.

Figure 1. Location of Site 263 and generalized stratigraphic columns of Site 263 and adjacent sites.

Figure 2. Site survey for Site 263. Long dashes show depth of basement reflector, in sec, and short dashes show depth to bottom of flat-lying surface reflectors, in sec. A nearly transparent layer exists between these two depths.

OPERATIONS

Site 263, on the eastern edge of the Cuvier Abyssal Plain was approached from the northeast. The intent was to proceed until the track intercepted a *Diamantina* track, then to turn and follow it along a southeasterly course.

The seismic airgun began intermittent operation before the intersection with *Diamantina*'s track. Rather than lose seismic record and not know where to drill, it was decided to turn immediately and parallel *Diaman*tina's track with the idea that a suitable drilling site, comparable to the original one could be found. This was done a few miles north *Diamantina*'s track. A site with apparent basement at 0.8 sec was found. The ship reversed course and dropped the beacon while underway at over 9 km/hr (5 knots) at 0856Z. 1 December 1972.

Survey gear was retrieved and the ship returned to and positioned over the beacon. The bottom hole assembly and drill pipe were run in and a relatively firm bottom tagged at 5065 meters. The hole was spudded at 2200, 1 December, and drilled and intermittently cored to a depth of 5811 meters or 746 meters below sea floor.

Details of the coring are included in the coring summary, Table 1.

Operations were more or less routine with erratic core recoveries and relatively slow penetration to the final depth of 5811 meters. After recovering Core 29 at this depth, something failed in the drawworks at 1700, 5 December, and dropped the traveling block and drill string. Suspected to be in either the hydromatic or overriding clutch, the actual cause had not been determined when we departed the site. When the string dropped, the Bowen power sub was jammed into the rotary table elevator bushings and the weight of the traveling block forced the outer case of the swivel down onto the top of the Bowen sub, stripping the bearings out of the swivel. The momentum of the free-wheeling drum parted the $1\frac{1}{2}$ in. drilling line at the drum clamp. The free end of the drilling line came over the crown fast sheave and piled up on top of the traveling block. Fortunately, the traveling block remained in the guide rails and did not fall to the rig floor.

The free end of the drilling line was restrung over the crown and new drilling line pulled through to the drawworks drum. The debris was cleared up and the swivel was partially re-assembled to pick up the drill string. At 0100, 6 December, the string was picked up and found to be free and was pulled out of the hole.

Damage to the swivel and Bowen sub were too extensive for shipboard repair, aborting any further drilling at Site 263.

Weather conditions and positioning were generally good. The computer failed once and the ship was positioned in manual mode without difficulty. The beacon weakened and failed as we departed the site at 1700, 6 December, enroute to Fremantle for repairs.

TABLE 1 Coring Summary, Site 263

Core	Date (Dec 1972)	Time	Depth From Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recov- ered (m)	Recov- ery (%)
1	1	2340	5065.0-5070.0	0.0-5.0	5.0	4.9	98
2	2	0215	5117.5-5127.0	52.5-62.0	9.5	5.0	53
3		0415	5155.5-5165.0	90.5-100.0	9.5	9.5	100
4		0605	5174.5-5184.0	109.5-119.0	9.5	9.5	100
5		0810	5193.5-5203.0	128.5-138.0	9.5	0.6	6
6		1010	5212.5-5222.0	147.5-157.0	9.5	8.6	91
7		1310	5241.0-5250.5	176.0-185.5	9.5	2.6	27
8		1540	5269.5-5279.0	204.5-214.0	9.5	1.0	11
9		1755	5288.5-5298.0	223.5-233.0	9.5	6.0	63
10		2030	5307.5-5317.0	242.5-252.0	9.5	4.1	43
11		2240	5326.5-5336.0	261.5-271.0	9.5	5.7	60
12	3	0115	5345.5-5355.0	280.5-290.0	9.5	5.4	57
13		0345	5364.5-5374.0	299.5-309.0	9.5	6.4	67
14		0610	5383.5-5393.0	318.5-328.0	9.5	7.5	79
15		0835	5402.5-5412.0	337.5-347.0	9.5	4.5	47
16		1120	5421.5-5431.0	356.5-366.0	9.5	1.5	16
17		1430	5450.0-5459.5	385.0-394.5	9.5	9.5	100
18		1720	5478.5-5488.0	413.5-423.0	9.5	7.0	74
19		2120	5516.5-5526.0	451.5-461.0	9.5	8.0	84
20	4	0000	5545.0-5554.5	480.0-489.5	9.5	9.5	100
21		0300	5583.0-5592.5	518.0-527.5	9.5	6.4	67
22		0700	5621.0-5630.5	556.0-565.5	9.5	4.1	43
23		1135	5659.0-5668.5	594.0-603.5	9.5	6.8	72
24		1600	5697.0-5706.5	632.0-641.5	9.5	8.6	91
25		2145	5735.0-5744.5	670.0-679.5	9.5	4.7	50
26	5	0425	5763.5-5773.0	698.5-708.0	9.5	63	66
27		0840	5773.0-5782.5	708 0-717 5	95	0.2	2
28		1325	5792.0-5801.5	727.0-736.5	95	4 5	47
29		1655	5801.5-5811.0	736 5-746 0	9.5	5.0	53

Note: Echo-sounding depth = 5058 meters; drill-pipe length to bottom = 5065 meters.

LITHOLOGY

Site 263 was drilled to a total depth of 746 meters. Approximately 100 meters of upper Pliocene to Recent and 646 meters of Cretaceous sediments were penetrated. Basement was not reached due to a drilling equipment malfunction. The sequence may be divided into four lithological units, the major characteristics of which are summarized in Table 2.

Unit 1 (0.0-100.0 m)

Unit 1 consists of approximately 100 meters of greenish-gray soft detrital foram-nanno ooze, with minor nanno ooze and a single lamina of quartz-rich detrital foram sand. Nannoplankton are abundant throughout, generally forming 45% of the total sediment. Foraminifera (predominantly pelagic) range from 35% in the nanno oozes to 45% in the foram sand; micarb (fragmentary calcareous material generally of uncertain affinities though in this unit it is believed to be predominantly of biogenic origin) ranges from 15% to 25%. Grain-size analyses indicate that these sediments range from clayey sand and sand-silt-clay to silty clay. Clay minerals, minor amounts of quartz, and traces of feldspar, heavy minerals, glauconite, dolomite rhombs, and fish fragments are present throughout. The coarse fraction consists overwhelmingly of foraminiferal tests and minor-to-trace quantities of ?ostracods, molluscs, sponge spicules, detrital grains (quartz, feldspar, heavy minerals), and authigenic minerals (glauconite (?), pyrite, and iron oxide).

Bedding ranges from thickly bedded or apparently unbedded in the finer-grained intervals, to laminated or thin bedded in the coarse units. A single graded bed 188 cm in thickness was penetrated in Core 1. The lower boundary of Unit 1 is sharp and defined by a marked color change from gray to black. This boundary corresponds to the boundary between sediments of Pliocene and lower Paleocene ages and consequently, represents an important, though possibly local, disconformity.

Unit 2 (100.0-195.0 m)

Units 2-4 are all black organic-rich claystone in marked contrast to the overlying light-colored coarser grained sediment of Unit 1. Each of the three claystone units does, however, have characteristic lithologic features which allow the 3-fold division to be readily made.

Unit 2 consists of approximately 95 meters of darkgreenish-gray and olive-black stiff clay, nanno-bearing clay, and clayey nanno ooze, with the proportion of nannoplankton decreasing down the section from 50% nannos at the top to only 5% at the base. Montmorillonite is the dominant clay mineral; illite is minor; chlorite and kaolinite are present in trace amounts. Minor amounts of silt-size feldspar (up to 12% in the upper part of the unit), quartz, opaques, and glauconite are present throughout. Traces of zeolites, dolomite rhombs, heavy minerals, and fish fragments are also in evidence. In the coarse fraction, arenaceous

TABLE 2 Major Lithologic Units of Site 263

Interval (m)	Unit	Description	Age	Thickness (including gaps) (m)	Cores
0.0-100.0	1	Greenish-gray detrital foram- nanno ooze with abundant micarb and minor clay and quartz. Graded in places. Lower boundary is sharp.	Quaternary – upper Pliocene	100	1-3
100.0-195.0	2	Greenish-gray to olive-black, stiff, clayey nanno ooze, nanno clay and nanno- bearing clay, with the proportion of nannos increasing up the unit	Lower Paleocene or younger Core 4. Lower Cretaceous (upper Albian) Cores 5-7.	95	4-7
195.0-470.0	3	Greenish-black semilithified claystone, with minor pyrite and trance amounts of quartz, feldspar, zeolites, nannos, fish fragments, and kaolinite	Lower Cretaceous (upper Albian based on nannoplankton)	275	8-19
470.0-746.0	4	Olive-black semilithified silty quartz-bearing to quartz-rich kaolinitic clay. Pyrite and calcite nodules and veins are common. Burrows, mottles, and shell fragments are common	Lower Cretaceous	276	20-29

foraminifera, pyrite, glauconite, and quartz are the dominant constituents. Foraminifera in this fraction are commonly replaced by glauconite or pyrite. Dolomite nodules are common in Unit 2. The cores are highly deformed throughout and consequently the original nature of the bedding is not evident. The base of Unit 2 is placed midway between Core 7 which contains 5% nannoplankton and is greenish gray in color, and Core 8 which contains only trace amounts of nannos and is greenish black in color.

Unit 3 (195.0-470.0 m)

Unit 3 is a greenish-black semilithified claystone with a total thickness of 275 meters. Lenses and laminae of olive-black and grayish-black claystone are common throughout. Clay, (mainly montmorillonite but with minor illite and kaolinite and trace quantities of chlorite) generally makes up more than 90% of the sediment; minor constituents include quartz, feldspar, kaolinitie, opaques, and pyrite. Trace amounts of nannos, heavy minerals, zeolites, dolomite rhombs, glauconite, and fish fragments occur sporadically throughout the unit. Quartz, muscovite, kaolinite, pyrite, and arenaceous foraminifera are abundant in the coarser fractions. Dolomite and barite occur as veinlets and nodules, particularly in the upper half of the unit. Bedding consists of some poorly defined, contorted laminae and lenses, up to 1 cm in thickness, but bedding is not visible in much of Unit 3. In the lower part of the claystone, splitting is apparent along irregular partings at intervals of 1-10 cm. The boundary between Units 3 and 4 is placed at the change from greenish-black claystone (Unit 3) to olive-black silty claystone. This change occurs between Cores 19 and 20. The boundary is probably gradational, as silty layers do occur sporadically between Cores 16 and 19. Grain-size analysis indicates that there is a change from clay to silty clay at about 420 meters.

Unit 4 (470.0-746.0 m)

Unit 4, which was penetrated to a depth of 276 meters, is an olive-black semilithified silty quartzbearing to quartz-rich silty claystone. The claystone is generally composed of 70%-80% clay, 10%-30% silt-size quartz with minor silt-size feldspar, opaques, pyrite, dolomite rhombs, heavy minerals, zeolites, muscovite, nannos, and fish fragments. In the coarser fractions, muscovite, foraminifera (both arenaceous and benthonic), quartz, mollusc (particularly *Inoceramus*) fragments, pyrite, and kaolinite are present. Many of these sediments exhibit bioturbidation (Figure 3).

Calcite and dolomite nodules and veinlets are common throughout Unit 4; pyrite nodules are also moderately abundant. Small white spherules and blebs of kaolinite occur in a calcitic cement at a number of horizons throughout Unit 4. A kaolinite sandstone composed predominatly of well-rounded green clasts set in a sparry calcite cement occurs at the base of Core 28 (Figure 4). It is uncertain whether the kaolinite is of primary of secondary origin.

The claystone splits approximately parallel to the bedding plane at about 10-cm intervals. Bedding ranges from thin to laminate; it is commonly lenticular and frequently disturbed by bioturbation. Mottles are also

Figure 3. Sample 21, CC. Irregular contact between lightcolored calcitic bioturbated mudstone and the underlying dark lenticular mudstone. Core diameter, 6 cm.

abundant. Burrows range in direction from horizontal to vertical. Greatly inclined bedding (?cross-bedding) is apparent in the kaolinite sandstone at the base of Core 28. The base of Unit 4 was not penetrated.

Interpretation

Unit 4, the lowest unit encountered, is distinguished from the other units by its comparative abundance of terrigenous silt-size grains of quartz, feldspar, muscovite, and heavy minerals (particularly zircon and tourmaline), the occurrence of calcareous and arenaceous foraminifera, the abundance of burrowing organisms, and particularly the presence of a well-sorted cross-bedded kaolinite sandstone. All these features are consistent with comparatively shallow-water conditions, undoubtedly above the carbonate compensation depth, and perhaps on the outer part of the continental shelf or possibly the upper portion of the continental slope. Conditions both above and below the sediment-water interface appear to have been sufficiently aerated for a poor-to-moderate biota to develop. The comparatively high organic-carbon content is probably an indication of comparatively shallow water, allowing little time for oxidation of fine organic material. The abundance of quartz and mica and the lack of volcanic glass and

Figure 4. Sample 28, CC. Calcitic kaolinite sandstone. Slightly inclined bedding is evident. Core diameter, 6 cm.

zeolites suggests local continental provenance for the majority of the Unit 4 sediments. During the deposition of Unit 3, the sea floor apparently subsided, perhaps below the lysocline as these sediments are now devoid of calcareous foraminifera and mollusc fragments; the infauna is also impoverished and the organic carbon content is lower. Despite this gradual subsidence of the sea floor, there was apparently little change in the sediment source, as the mineralogical assemblage is predominantly continental, though montmorillonite (possibly of volcanic origin) is still fairly common. Conditions may once again have become somewhat shallower later in the Cretaceous as there is a gradual increase in the percentage of nannoplankton towards the top of Unit 2. As in the two previous units, sedimentation is still overwhelmingly terrigenous in Unit 2.

Thus, throughout much of the Cretaceous, the picture is one of continuous terrigenous sedimentation with a minimal biogenic contribution. The rate of sedimentation was comparatively rapid with approximately 600 meters of sediment being deposited during the Lower Cretaceous. There is no lithologic evidence that mass transport was important in the deposition of these sediments, although there is paleontological evidence to suggest that some reworking (perhaps as a result of turbidity flows or maybe some other form of bottom current) occurred in Unit 3. The most viable model would seem to be that of a comparatively large though sluggish river debouching onto the continental shelf with the suspended load being carried over the edge of the slope. Marine deltaic influences were evident throughout the time of deposition of Unit 3 despite increasing water depth. Later in the Cretaceous there was possibly some uplift which elevated the sea floor above the lysocline. A modern analogy to this Cretaceous situation is perhaps the northern end of the Gulf of California where the Colorado River delta is prograding into a marine gulf which is also an activespreading center.

At Site 263, there is no record of the depositional conditions prevailing between the Paleocene and the Pliocene though the sharpness of the contact between Units 2 and 1 suggests a pre-Pliocene erosive phase. Site 263 has probably been located on an abyssal plain, at or below the lysocline, from at least the Pliocene to the present day. Despite this, calcareous sediments predominate. This is probably due to mass transport of biogenic calcareous sediments from the slope into the abyssal plain by turbidity flows.

BIOSTRATIGRAPHY/PALEONTOLOGY

General

Four spot cores were taken in the post-Cretaceous section, all consisting of turbidites rich in planktonic foraminifera and nannoplankton, with the material apparently carried down below lysocline from the nearby Australian shelf and slope area. Cores 1 and 2 at 0.0-5.0 meters and 52.5-65.0 meters are Quaternary with reworked older material. Core 3 (90.5-100.0 m) which also shows considerable reworking of older Pliocene Miocene fossils is dated as upper Pliocene or Quaternary. The foraminiferal fauna of sample 4-4, 55-57 cm is heterogeneous. It consists of lower Paleocene planktonic and calcareous benthonic foraminifera; the arenaceous species appear to be identical with those from the underlying cores dated as Lower Cretaceous. This is confirmed by the nannoplankton association which consists of a mixed flora of these two ages. All Radiolaria present in Core 4 are of Cretaceous age and are reworked. The fairly frequent fish debris present indicates deposition below lysocline.

The possibility exists that the sediments of Core 4 are younger than Paleocene with not only the Lower Cretaceous but also the lower Paleocene components being reworked. Of the Core 4 samples examined, that of Sample 4-4, 55-57 cm is the only one with a Paleocene fauna and flora in addition to the Lower Cretaceous elements, which are also present in the other samples of this core. The question thus remains whether or not at least some part of the section immediately below Core 4, with the same kind of Lower Cretaceous fauna and flora as in Core 4, may in fact also be reworked and the sediments be younger. The exact top of the Lower Cretaceous, therefore, is uncertain.

The Cretaceous interval, Cores 5-29, is difficult to date precisely because the different fossil groups present indicate different ages. In the upper part of the interval, Cores 5-10, the possible ages are upper Albian, lower Albian, and upper Aptian. In the lower part, Cores 11-27, ages of upper Albian, Aptian or older, Barremian, and Neocomian are suggested by the different fossils.

The fossil evidence for these diverging age interpretations comes from nannoplankton, benthonic foraminifera, palynomorphs, and molluscs. Radiolaria, which are infrequent in Cores 5-18, allow only for a Cretaceous s.l. dating; they are absent altogether in Cores 19-29.

The stratigraphic ranges of benthonic foraminifera on which some ages are based are still somewhat uncertain. Ages based on the nannoplankton are difficult to dispute because of the presence, particularly in the lower part of the section, of *Eiffelithus turriseiffeli*, an index fossil generally acknowledged to first appear in the upper Albian. It is of interest to note that of all Leg 27 Cretaceous sections drilled, only Site 263 contains upper Albian based on nannoplankton. However, the nearby Sites 256 and 258 of Leg 26, situated west and south of Site 263, also contain upper Albian intervals with *Eiffelithus turriseiffeli*.

If the nannoplankton evidence is accepted, nearly all of the Cretaceous sediments at Site 263 are upper Albian (610 m). Foraminifera and palynomorphs, on the other hand, extend this long interval from Barremian to lower Albian. Figure 5 summarizes the biostratigraphy of Site 263.

Quaternary: Cores 1, 2 (0.0-5.0, 52.5-65 m). *Globorotalia truncatulinoides truncatulinoides* Zone. Rich planktonic foraminiferal fauna with reworked Pliocene species, particularly in Core 2.

Upper Pliocene or Quaternary: Core 3 (90.5-100.0 m). The heterogeneous planktonic foraminiferal fauna includes *Globorotalia truncatulinoides tosaensis* which, in absence of the Pleistocene *G. truncatulinoides truncatulinoides*, is likely indicative for an upper Pliocene age of the sediment.

Lower Paleocene or ?younger: Core 4, (109.5-119.0 m). ?Globigerina eugubina Zone; Cruciplacolithus tenuis Zone. There is a slight discrepancy in the foraminiferal and nannoplankton zonal assignment: The Globigerina eugubina Zone which is lowermost Paleocene corresponds to the lower part of the Markalius inversus Zone, while the Cruciplacolithus tenuis Zone compares with the upper part of the Globorotalia pseudobulloides Zone. Globorotalia pseudobulloides may in fact be absent for environmental reasons, resulting in dwarfed faunas. It is possible that the Paleocene fauna and flora, like the Lower Cretaceous elements present, are reworked into a still younger sediment.

Lower Cretaceous: Core 5-29 (128.5-746.0 m). Ages within the Lower Cretaceous of this long interval vary considerably, and on the data available now it is not possible to resolve the different age assignments. Based on the presence of *Eiffelithus turriseiffeli* in Cores 22-27, this interval is dated as upper Albian. The upper part of Core 28 is middle Albian (based on nannoplankton), and its lower part and Core 29 are Lower Cretaceous s.l. Benthonic foraminifera on the other hand indicate a sequence ?lower Albian (Cores 5, 6), ?upper Aptian (Cores 7-10) and Aptian or older (Cores 11-29). Dinoflagellates and pollen and spores give ages similar ÷,

FORAMINIFERA		NANNOPLANKT	ON	RADIOLARIANS	AGE	COF DI NO.	RES EPTH (m)	L	ITHOLOGIC DESCRIPTION
Globorotalia trunoat- ulinoides, G. arasaa- formis, G. tumida, G. dutertrei, G. aultrata, Globigerina calida, G. rubeaone (pink). Globigerinoides ruber (pink). Mixture of G. trunwat- ulinoides, Sp. dehis- oens, Sph \$15	Globorotalia truncatulinoides tr.	G. oceanica P. lacuncea H. kamptneri C. leptopora C. crititue C. pelagicus U. mirabilis E. Lidai R. olavigena P. discopora D. brouweri Reworked: Cretaccous Paleogene Neogene Species	Gephyrosapsa oceanica	Radiolaria rare; include Pyloniidae group. Lamprocyolae maritals, Pterocanium trilobum Reworked Cretaceous	QUATERNARY	1	0 5 52.5 57 62		Unit 1. Greenish-gray detrital foram nanno ooze with abundant micarb, minor clay, and quartz.
Mixture of G. toesen- sis, G. inflata, G. margaritae, Gg. al- tiepira, G. nepenthes, Sph. dehiscens.	Globorotalia Losaensis	Barren			QUATERNARY or UPPER PLIOCENE	3	90.5	++++ ++++	Graded bedding is present in places.
	rinîa eugubina 🗝	Hatanaueria Sp. S. oruz P. aaper C. oorious C. surrivellus G. diplogrammus	lithus terris -	Radiolaria are patchy;	MER PALEOCENE	4	100 109.5 119 128.5 137.4 138		Unit 2. Greenish-gray.to olive- black, stiff clayey nanno ooze, nanno clay, and nanno-bearing clay with the proportion of nannos increasing up the unit. Abundant dolomite nodules.
Peau acception of	(?) Globige	Watznaueria sp. P. asper	Cruotplaco		9 10	6	147.5 148.4 157		
Poor assemblage of arenaceous foramin- ifera: Ammodiscus, Bathysiphon, Giomo- spira, Textularia, Hormosina, Reophax, Trochammina.		Barren		where present, rare and very poorly pre- served.		8	182.9 185.5 204.5 203 204		Unit 3. Greenish-black semilithified claystone with minor pyrite and silt-size quartz and foldener. Three reliter
		Watanauerid Sp.				9 10	223.5 227 233 242.5 247.9 252		relogar. Iragments. Slightly kaolinitic, particularly in the lower half of the unit. Nodules of calcite, dolomite, and barite common in upper half.
						11	265.3 271 280.5 284.6 290		
		Barren				13 ; 14	299.5 303 306.5 309 318.5 320.5 328		
						15 16	337.5 342.5 347 356.5 364.5		

Figure 5. Biostratigraphic zones, Site 263.

	Barren	falt				
	P. asper P. splendens C. conicus S. ratalosus Watsnaueria sp.	fellithus turiseif		385 17 394.5		
		112		413.5 18 416 423		
			TACEDUS	451,5 453 19 461	No.	
Assemblage of calcareous and arenaceous benthonic foraminifera <i>Gentioulina</i> , <i>Modosaria</i> , <i>Marginulina</i> ,	Barren		LOWER CRE	480 20 489.5		lint 4
Saraaemaria, Ramilina, Trochamrina, Textilaria, Olomoapina, Bathysiphon, Ammodiasus, etc.	Watzmauerta Cretarhabdue			518 21 521.1 527.5		Olive-black semilithified silty quartz-bearing to quartz-rich clay. Pyrite, calcite modules, and veins are common. Kaolinite is present throughout, and is particularly abundant at the base of the unit. Trace amounts of muscovite, dolomite rhombs, zeolites,
	S. mataloewe E. turriseiffeli G. diplogrammus P. asper P. splendens			556 22 561.4 565.5	XX	and fish fragments. Burrows and mottles and shell (?pelecypod) fragments are present throughout.
	C. decorus C. decorus C. orenulatus			594 23 596.7 603		
				632 632.9 24 641.5		
				670 25 674.8 677.5		
			ETACEOUS	698.5 26 701.7 708 27 717:3		
			LOWER CRE	727 28 732 736.5 29 739.5 746		736.3-736.5 meters have a medium-grained well- sorted kaolinite sandstone.

Figure 5. (Continued).

to the benthonic foraminifera; Barremian for Cores 19-29, Aptian to probably lower Albian for Cores 5-18; Barremian on dinoflagellates; upper Neocomian-upper Aptian (Cores 11-28) and Neocomian (29) on pollen and spores.

The Ammonite fragment in Core 18 and the Belemnite in Core 26 on the other hand, support an upper Albian age, as also indicated by nannoplankton. The few ostracods, several *Pithonella* species and fish debris are undatable at present. It is possible that *Eiffelithus turriseiffeli* may be older than upper Albian, but no valid evidence for an older age has so far been offered. Noteworthy for the Leg 27 Sites is the fact that Eiffelithus turriseiffeli was encountered only in Cores 22-27 of Site 263. Contamination from above or from previously drilled Lower Cretaceous sections in Sites 259-261 can therefore be excluded. The upper Albian age of Eiffelithus turriseiffeli is in accord with its occurrence in the neighboring Sites 256 and 258. At Site 258 the species comes in only above the middle Albian Prediscosphaera cretacea Zone, and in Site 256 it occurs in cores just above basement.

At this stage, the biostratigraphic value of the benthonic foraminifera used in subdividing the Lower Cretaceous of Site 263 is also uncertain. Mostly primitive arenaceous species are present in Cores 5-16; in Cores 17-29 arenaceous and calcareous benthonic species are more frequent and diverse.

The most important species stratigraphically are *Textularia anacooraensis* in Cores 7-16, *Spiroplectammina cushmani* (Cores 6-29), *Trochammina minuta* and *T.* cf. *minuta* (Cores 19-27), and *Verneuilinoides crespinae* (Cores 11-29). *Textularia anacooraensis* is known from the Aptian of the Canning and Great Artesian basins, and *Spiroplectammina crespinae* from the marine Lower Cretaceous, especially the Aptian, of the Great Artesian Basin. No mention is made, nor any evidence given, that these species must, in fact, be restricted to the Aptian. On the data available now it may therefore be possible that they have more extended ranges, which may also include the Albian.

An ?upper Aptian to ?lower Albian age is assigned to the interval of Cores 5-10 which contains a poor, almost exclusively arenaceous fauna. This age is based on not yet reliably established index fossils such as a Lenticulina sp. 1, which is similar to forms known from the Cenomanian of South Africa. Shipboard interpretation of the paleoenvironment for the Cretaceous foraminifera in Cores 5-29 suggested deposition of Cores 17-29 above the lysocline, with gradual deepening from the base upward. Some fluctuation in the upper part of the interval below the lysocline was thought to be indicated by the entirely arenaceous fauna in Core 20. Cores 5-16 with the generally poor, primitive arenaceous fauna (Hyperammina, Bathysiphon, Ammodiscus, Glomospira, etc.) were regarded as deposits that accumulated below the lysocline.

After examining and describing the faunas in more detail, Scheibnerova (this volume) concluded that the Cretaceous foraminiferal assemblages of Site 263 indicate a shallow to extremely shallow-water environment. Identical or similar inner-shelf faunas occur in sediments of the Canning Basin and the Great Artesian Basin. The absence or scarcity of calcareous forms in the upper part is attributed to CaCO₃ solution shortly after burial, due to a low oxygen content and acid reaction in the sediment. Water temperature during the period of deposition was probably comparatively cool.

Paleontology

For more information on the individual fossil groups briefly discussed below, refer to the special reports in this volume.

Foraminifera

Core 1 (0.0-5.0 m) contains a very rich, predominantly Quaternary-Recent planktonic fauna with *Globorotalia truncatulinoides truncatulinoides*, *G. menardii s.l., G. tumida*, *G. crassaformis*, *G. inflata*, and *G. dutertrei*. A few shallow-water calcareous benthonic foraminifera are also present.

Core 2 (52.5-65.0 m) is very rich in predominantly Quaternary-Recent planktonic species that include *Globorotalia truncatulinoides truncatulinoides, G. tumida tumida, G. tumida flexuosa, G. menardii s.l.,* and *G. inflata.* Also present are reworked Miocene-Pliocene species including *Globorotalia margaritae* and *Sphaeroidinellopsis seminulina.*

Core 3 (except for lower part of the core catcher) contains a very rich, very heterogeneous planktonic foraminiferal fauna with *Globorotalia truncatulinoides* tosaensis, G. tumida tumida, G. menardii s.l., G. inflata, G. margaritae, Globoquadrina altispira and Globigerina nepenthes.

A minute, well-preserved, fairly rich, predominantly planktonic foraminiferal fauna of lower Paleocene (?Globigerina eugubina Zone) age was recovered from Sample 4-4, 55-57 cm. Associated with it, but infrequent compared with the planktonic foraminifera, are small benthonic forms. The most common are *Bathysiphon* sp.; rare are *Ammodiscus* sp., *Textularia* sp., *Lenticulina* sp., and *Vaginulina* sp.. The arenaceous forms are regarded as reworked Lower Cretaceous.

The planktonic foraminifera fauna has tentatively been determined as follows:

Globigerina trivialis Subbotina, (0.1-0.15 mm); Globigerina cf. fringa Subbotina, (0.1-0.125 mm). The chambers of the Site 263 specimens are more globular and the test higher trochospiral compared with the holotype figures.

Globigerina cf. *sabina* Luterbacher and Premoli Silva, (0.1-0.125 mm). Compared with the holotype, the chambers, in particular the last, increase less rapidly in size. These five-chambered specimens vary from low to medium trochospiral. The specimens figured by Olsson (1969) as *Globigerina edita* Subbotina also seem to compare closely with the Site 263 specimens.

Representatives of the family Heterohelicidae, Subfamily Guembelitriinae are also numerous in the sample. The specimens vary from medium trochospiral forms about 0.1 mm in size to distinctly high trochospiral forms of up to 0.25 mm. They appear to be triserial in the very early stage, becoming rapidly quadriserial. The chambers are distinctly globular throughout, sutures between chambers deep and distinct; the aperture in the last chamber small but high arched, occasionally with a faint lip. The specimens are here tentatively placed in the genus *Gubkinella*.

The *Guembelitria* ?sp. figured by Bang (1970) appears close or identical to the smaller of the Site 263 Heterohelicidae specimens.

All the above-listed species were described from the Danian, or lowermost Paleocene. Because the planktonic foraminifera of Sample 4-4, 55-57 cm were found only during the very late stage of preparation of the Laitial Report, there was not time to figure and describe them in more detail.

The Lower Cretaceous interval, Cores 5-29, can be divided into an upper part, Cores 5-16, with an often poor, almost exclusively arenaceous fauna containing predominantly primitive genera such as *Hyperammina*, *Bathysiphon*, *Glomospira*, *Ammodiscus*, *Textularia*, and *Haplophragmoides*, and a lower part, Cores 17-29, containing a rich arenaceous and benthonic calcareous fauna with, in addition to the above listed genera, *Lenticulina*, *Marginulina*, *Dentalina*, *Nodosaria*, and *Frondicularia*.

Nannoplankton

Abundant, moderately preserved Pleistocene nannoplankton are present in Cores 1 and 2, (0.0-5.0 m and 52.5-65 m). Reworked species of Eocene and Upper Cretaceous age are also present. The heterogeneous association of Core 3 indicates Pliocene or younger.

The assemblage of Sample 4-4, 55-57 cm consists of two distinctly different ages: Lower Cretaceous, including Watznaueria barnesi, W. communis, Vagalapilla stradneri, and Glaucolithus elegans, and lower Paleocene with Cruciplacolithus tenuis, Markalius inversus, Ellipsolithus macellus, Coccolithus crassus and C. group pelagicus.

From Cores 5-29 (128.5-746.0 m), the sediments are very rich in organic matter and pyrite suggesting a reducing sedimentary environment. The uniformity of the sediment facies of this interval indicates a persistence of such environmental conditions. The calcareous nannoplankton are rarely abundant and show a low specific diversity.

Eiffelithus turriseiffeli is common to rare in Cores 22-27, but seems almost completely absent in Cores 5-21, the upper part of the Cretaceous section. Some Albian markers such as Tranolithus exiguus, Cretarhabtus coronadventis, Broinsonia signata, and Vagalapilla matalosa are rare to common in scattered samples of this interval. Some assemblages are composed of long-ranging species only, which do not provide any significant stratigraphic information. Cores 5-27 are here referred to the upper Albian. They either contain the marker species Eiffelithus turriseiffeli or lie above its last appearance and are at the same time lacking in species appearing in the post-Albian. Some samples contain older species, such as Nannoconus bucheri, Cretathurbella rothi, Reinhardites fenestratus, and Micrantolithus hoschulzi that, based on their known stratigraphic ranges, are considered reworked.

The possibility of a pre-Albian appearance of *Eiffelithus turriseiffeli* in the Indian Ocean region is not supported by evidence from Sites 259 and 260 where this species is not present in the better preserved and more

diversified assemblages of middle Albian age. That the species makes its first appearance in the upper Albian in this general area is shown by its occurrence at Sites 256 and 258.

Core 28, Section 2 contains *Vagalapilla matalosa* and hence is not older than middle Albian. No detailed stratigraphic dating is possible for Core 28, Section 9 to Core 29, Core Catcher which contain *Watznaueria* exclusively and very rare long-ranging species.

Radiolaria

Radiolaria are very rare in Site 263 material. Samples from the top three cores contain sparse Quaternary specimens.

Cretaceous radiolarians are present, though patchy and rare, in Core 4-18. Preservation is extremely poor, making any age determination beyond Cretaceous and any identification beyond Radiolaria impossible.

Palynomorphs

Dinoflagellates: Cores 19-29 are dated Barremian on ?Cordosphaeridium fascinatum, Senoniasphaera sp. A., Muderongia n. sp., and Phoberocysta neocomica; Cores 5-18 are Aptian, probably ranging into upper Aptian to lower Albian based on subspecies as Muderongia tetracantha, M. mcwhaei, M. simplex, Gonyaulacysta episoma, and G. muderongensis. The following species suggestive of upper Albian to lower Albian occur in Cores 5-8: Cleistosphaeridium ancoriferum, Hystrichoidinium oligacanthum, Hystrichosphaera speciosa, and Exochosphaeridium striolatum var. truncatum.

Spores and pollen: They comprise a minor part of the microflora assemblage in the upper part of the Cretaceous at Site 263. Cores 8-11 are assigned to the Microcachryidites Assemblage with the same species as at Site 259, Cores 20-33, together with *Murospora florida* and *Reticuloidesporites arcus*. The occurrence of *Murospora florida* and *Krauselisporites linearis*, and the top of the range of *Contignisporites cooksonii* indicate correlation of Cores 12-29 with lower part of the *D. speciosus* Zone, upper Neocomian to upper Aptian.

Calcisphaerulidae

Pithonella is rare in number of specimens and species and occurs only very sporadically in the Cretaceous cores. Specimens have in fact been observed only in Sample 3, CC and Core 5, both with *P. patriciagreelayae*; Sample 3, CC, in addition, with *P.* sp. A. The specimens in Sample 3, CC are considered reworked from Albian. *P. helentappanae* and *P. nonarenzae* occur in Core 17.

Ostracods

A few ostracods, all poorly preserved, were recorded from four of the Cretaceous samples examined. Among indeterminate forms present are the genera *Bairdia*, *Arcullicythere*, and *Pontocyprella*. Though not characterisitc, they seem to have similar ecologic characters as those of Sites 259 and 260.

Cephalopods

Belemnites: A single belemnite was obtained from Sample 26-2, 108-110 cm and was determined as cf. *Parahibolites* sp. indet. The genus first appeared in the Aptian, but species of this age are known only from Germany. During its main evolution in the Albian, *Parahibolites* moved southward and migrated during this time along the Tethyan seaways. The presence of *Parahibolites* at Site 263 can be interpreted as being due to the influx of Tethyan immigrants that occurred in upper Albian time in the northwestern and western regions of Australia. Further, because *Parahibolites* had its main development in the Albian and because it occurs in southern India in the upper Albian, the Site 263 specimen is probably of upper Albian age.

Ammonoides: One test fragment and an internal mold of ?cf. *Prohysteroceras* (Goodhallites) *richardsi* was extracted from Sample 18-5, 105 cm. The genus is known from southern India, South Africa, Madagascar, southern England and Texas. This distribution can be interpreted, like that of *Parahibolites*, as being due to migration along the Tethyan Seaway (its interconnected routes into the Indo-Pacific,) in the upper Albian.

The few available characters of the fragment in fact suggest its placement in the subfamily Mortoniceratinae of the upper Albian and lower Cenomanian.

Bivalves: Bivalve fragments occur in Sample 17, CC.

Fish Debris

Fish debris is absent in the turbidite Cores 1-3, fairly frequent in Core 4, rare in the Cretaceous Cores 5-19, and absent to rare in Cores 20-29. The remains consist almost exclusively of bone fragments.

GEOCHEMICAL MEASUREMENTS

Geochemical samples at Site 263 were somewhat irregularly spaced, as coring was only attempted for one section in three and recovery was frequently poor in the section cored. It was not possible to obtain samples below 458 meters as the sediment is too indurated. The shipboard geochemical data for Site 263 are summarized in Table 3 and in Figure 6. The analytical procedures used are detailed in the discussion on Site 259.

Alkalinity

As at all previous sites, there is a trend of decreasing alkalinity with increasing depth. This is believed to be primarily a function of post-depositional changes within the sediment. Overall values are low: however, some moderately high values occur at the top of the hole, with a maximum of 6.06 meq/kg at a depth of 59 meters (cf. an alkalinity of 2.35 for surface seawater). This is consistent with a comparatively rapid rate of sedimentation in the upper portion of the section.

pH

As only one "punch-in" *pH* reading was obtained, this discussion will be limited to consideration of the "flow-through" determinations.

Values obtained at Site 263 are in general higher than those at previous Leg 27 Sites, with a maximum of 8.46 occurring at a depth of 326 meters. This is significantly higher than values obtained for similar sediments at Site 259. The factors responsible for producing these high pH values are unknown at the present time. The comparative lack of calcareous sediments throughout most of the lower part of Site 263 suggests that carbonate solubility is unlikely to be a major factor.

As at Site 259, subsequent to the initial decrease in pH immediately below the sediment-water interface, there is an irregular but marked increase in pH down the hole. This is believed to be the result of diagenetic changes within the sediment.

Salinity

All salinity values for interstitial water are significantly below the values obtained for surface seawater at this site (as low as $31.4 \, ^{0}/_{00}$ in the sediments, compared with $35.5^{0}/_{00}$ in the surface seawater). This suggests that some "desalting" of the interstitial brines may have taken place as a result of the formation of diagenetic minerals or alternatively there is some fresher water flowing in form the continent via a regional aquifer such as the Birdrong Formation. No apparent regular change of pH down the hole is evident. There may be a negative correlation between pH and salinity at this site, i.e., salinity decreases as pH increases. No correlation between salinity and lithology is apparent.

SUMMARY OF THE SHIPBOARD GEOCHEMICAL PROGRAM, LEG 27

The basic aim of this program was to obtain samples of interstitial waters from all sites, at approximately 50meter intervals, for subsequent onshore analyses. This aim was met. Alkalinity, pH, and salinity determinations were also carried out on all these samples. In addition, a program of detailed sampling (one water sample being obtained from each core) was successfully undertaken at Site 262. All data are presented in tabular and graphical forms in each of the site reports. Consequently, it is necessary here to consider only the broad trends.

Alkalinity

At most sites, alkalinities are low, being equal to or less than the alkalinity of seawater. This is consistent with a low rate of sedimentation. A moderately high alkalinity at the top of Site 263 is suggestive of a slightly higher-than-average rate of sedimentation in the upper sediments of that site. However, the only markedly high alkalinities are at Site 262, particularly in the upper part of the hole. This, together with sedimentologic and paleontologic evidence, is indicative of a very rapid rate of sedimentation in this portion of the Timor Trough.

At all sites there is a tendency for alkalinity to decrease down the hole; this is believed to be a diagenetically induced feature, totally independent of any change in the depositional environment.

pН

No consistent picture of pH variation emerged from the Leg 27 analyses. There appears to be no relationship between pH and sediment type or between pH and depth in the hole. Whereas pH decreases with depth at some sites, it increases at others. The only consistent feature appears to be that there is a marked decrease in pHimmediately below the sediment-water interface. Even this feature is of doubtful validity as no pH readings are available for seawater immediately above the sedimentwater interface at the various sites. It is believed that

Figure 6. Geochemical analyses of interstitial water at Site 263.

		pI	H			
Sample (Interval in cm)	Depth Below Sea Floor (m)	Punch-in	Flow- through	Alkalinity (meq/kg)	Salinity (°/00)	Remarks
		8.39	8.17	2.35	35.5	Reference seawater
2-3, 0-6	59.00-59.06	7.24	7.32	6.06	34.9	
4-6, 0-6	117.50-117.56	-	7.63	4.59	31.9	
6-6, 0-12	155.50-155.62	0.000	8.16	1.37	31.4	
9-4, 144-150	232.94-233.00		8.36	1.47	31.6	
11-3, 144-150	269.44-269.50		8.13	1.08	35.2	
13-5, 144-150	307.44-307.50		8.29	1.17	31.6	
14-5, 0-6	326.50-326.56	-	8.46	0.98	32.4	
17-1, 0-6	385.50-385.56		7.71	0.78	33.8	
19-4, 144-150	457.94-458.00	-	8.10	1.08	32.4	
		8.32	8.22	2.35	35.5	Reference seawater

TABLE 3 Summary of Shipboard Geochemical Data

diagenetic changes within the sediment are the primary control of pH variations in the Leg 27 sediments, but the nature of these changes is unknown at the present time.

Salinity

At most sites there is no marked deviation of pore water salinity from seawater salinity. There is also no consistent correlation between salinity, depth in the hole, and lithology. There is a suggestion from Site 263 of a negative correlation between salinity and pH. Clear trends emerge only from Site 262 where there is a marked increase in salinity (reaching a maximum of 53.1 $^{0}/_{00}$) with increasing depth. The most reasonable explanation for this increase is that an evaporite unit is present at some depth below (perhaps hundreds of meters below) the bottom of the hole. As there has been no previous geologic indication of salt in the Timor Trough area, this conclusion is somewhat unexpected. It would perhaps rank as the most important conclusion resulting directly from the geochemical program on Leg 27.

PHYSICAL PROPERTIES

Bulk-density, sound-velocity, and porosity measurements were made on sediments recovered at Site 263. Vane shear tests were not run due to excessive disturbance of the small amount of soft sediments recovered. Infrequent coring over the upper 100 meters and disturbance of recovered materials limited determination of physical properties within this depth range. Below 100 meters a profile of density and sonic velocity is shown although coring was not continuous. Density, porosity, and sonic velocity are plotted alongside the site summary sheets. Continuous GRAPE density (and porosity) are plotted alongside the core photographs. A description of the testing procedure, and discussion of wet bulk-density determinations and vane shear results are included in later chapters in Part IV.

Density and Porosity

Wet bulk density was determined at Site 263 by continuous GRAPE, syringe, and water-displacement methods. Density remains constant at about 1.75 g/cc at 65-185 meters although sediment changes from a coarse detrital foram nanno ooze to a clayey nanno ooze (void of forams) at 100 meters and then to a nanno clay between 130 and 150 meters. The sediment becomes a clay and bulk density increases more rapidly to 1.9 g/cc at 220 meters then steadily to a value of 2.2 g/cc at about 600 meters. Below 600 meters wet bulk density remains about 2.2 g/cc. Dolomite nodules of considerably higher density are abundant through some regions of the hole.

The site-summary density profile is drawn to waterdisplacement test values, considered the most accurate measurements. Most data shown are from 27 samples taken in stiff clay, or claystone, from Cores 8 to 29. Each sample was cut into an elongated block with parallel sides to permit static GRAPE testing and sonic velocity measurements in perpendicular directions. Two waterdisplacement density measurements were made on each block prior to the GRAPE measurements. A comparison of these methods for determining relative density is made in later chapters in Part IV.

Porosity data plotted on the site summary sheets are primarily from continuous GRAPE readings. Most sediments were too stiff to permit syringe sampling. Because of the few changes in sediment composition, porosity is nearly a reflection of bulk density. A continuous plot of porosity is available from the GRAPE data by using the variable porosity scale to read the GRAPE density trace. Sediment mineral grain density determines the appropriate porosity scale.

Sonic Velocity

Sonic velocity shows a marked increase from 1.5 km/sec at the surface to about 2.5 km/sec (horizontal) and 2.2 km/sec (vertical) at 746 meters. Velocity was measured both parallel (horizontal) and perpendicular (vertical) to the bedding planes on the 27 specially prepared samples below 200 meters. There is a marked difference between these values with horizontal velocity being consistently higher than vertical velocity by 6%-9%. Site summary velocity profiles were drawn using

both velocities to illustrate this difference. Moderate variation is noted in horizontal velocity where multiple measurements were made on the same sample. Also, in some locations, the special sample horizontal velocity appears atypically higher or lower than the average for the core. This behavior is suspected to reflect real variation of sonic velocity in adjacent claystone laminae.

CORRELATION OF SEISMIC PROFILE WITH DRILLING RESULTS

Only two coherent reflectors were seen in the vertical incidence (Figure 7) and on-site sonobuoy (Figure 8) profiles: the base of the well-stratified surface layer/top of transparent layer, at 0.12 sec and the base of the transparent layer/acoustic basement at 0.78 sec. The base of the well-stratified layer is a sharp geological boundary at 100 meters; this thickness yields an interval velocity for the layer of 1.67 km/sec compared with onboard determinations of core from this interval of 1.51-1.59 km/sec (see above). Since basement was not reached, deeper correlation must depend on extrapolation from this level using the onboard determinations of velocity. Empirical observations at other sites give in-situ velocities that are approximately 5% greater than the onboard values. A greater in-situ value would be expected since in situ pressures are higher than ambient laboratory pressures. Using these adjusted onboard values of velocity, we calculate the acoustic basement at the site to be as shallow as 750 meters.

SUMMARY AND CONCLUSIONS

Site 263 is located in 5065 meters of water at the eastern edge of the Cuvier Abyssal Plain, immediately at the foot of the continental rise, and about 300 km from land. Near the site, a seismic profile obtained by the University of New South Wales shows the same two acoustic lavers seen at Sites 260 and 261: (1) a transparent layer, 1.0 sec or thicker, draping acoustic basement in most parts of the Cuvier Abyssal Plain, slightly thinner on the eastern edge; and (2) a horizontal well-stratified layer that thickens westward, unconformably overlying the transparent layer. Site 263 was chosen at a spot where basement was about 0.8-sec deep, within practical reach of the drill, and the surface stratified layer was thin (about 0.1 sec). The hole penetrated the entire transparent layer but only the upper part of the well-stratified layer. A total of 746 meters of sediment was drilled before a mechanical breakdown intervened. The oldest sediment reached is probably Albian but may be as old as Barremian.

Four sedimentary units are recognized. The top 100 meters consist of greenish-gray detrital foram nanno ooze with abundant micarb and minor clay and quartz. Some beds are graded. The contact with the underlying unit is marked by a sharp color and compositional change. The second unit is 95 meters of greenish-gray to olive-black stiff, clayey nanno ooze, nanno clay, and nanno-bearing clay, with the proportion of nannos increasing upwards. The third unit is 275 meters of greenish-black semilithified claystone, with minor pyrite and trace amounts of quartz feldspar, zeolites, nannos, fish fragments, and kaolinite. The fourth unit, which was

Figure 7. Seismic profile at Site 263.

penetrated to a thickness of 276 meters, consists of oliveblack semilithified silty quartz-bearing to quartz-rich clay. Pyrite nodules, veins of calcite, burrows, mottles, and shell fragments are common. Kaolinite is particularly abundant at the base.

Microfossils show that the top 100 meters are upper Pliocene to Quaternary with some reworked, sorted, and shallow water benthonic foraminifera. Core 4 is lower Paleocene or (?) younger and the rest of the section is Cretaceous. Based on nannoplankton, the Cretaceous section is upper Albian to 717.5 meters and middle Albian-Lower Cretaceous s.l. from 717.5 meters to the base of the hole at 746.0 meters.

Nannoplankton are poorly preserved throughout, but benthonic calcareous and arenaceous foraminifera are fairly frequent and diverse from 385 meters to the bottom of the hole. Radiolaria are rare.

Estimated accumulation rates are 40 m/m.y. in the upper Paleocene to Recent and 17m/m.y. in the Lower Cretaceous (Figure 9).

At the total depth reached at Site 263, in the Lower Cretaceous deposition was in comparatively shallow water, perhaps near the outer edge of the neritic zone in sufficiently well-aerated water for a moderate biota to develop. The provenance of the sediment was

Figure 8. On-site drifting sonobuoy profile of Site 263.

overwhelmingly continental. Later in the Cretaceous, the sea floor subsided, perhaps even below the lysocline, but the sediment provenance remained continental. Still later in the Cretaceous, as shown by a gradual increase in the percentage of nannoplankton toward the top of Unit 2, some shallowing may have occurred. From lithological evidence, mass transport has not been an important depositional process (though tentative paleontological data suggest limited reworking of fossils in Unit 3), and we tentatively conclude that deposition during the Cretaceous took place at various depths in a region some distance from, but still subject to, the sedimentary influences of a comparatively large river. This phase was followed, at the latest, in the upper Pliocene at Site 263, but probably earlier in the Cenozoic in the middle of the Cuvier Abyssal Plain, by the mass transport of calcareous turbidites from the continental margin to the abyssal plain.

SITE 263

Figure 9. Sediment accumulation rates for Site 263.

Site	263	Но	le	_	C	ore 1	_	Cored In	nterv	al:(: 0-5 m	Site	263	Но	e		Co	re 2	Cored In	terva	1: 52.5-65.0 m	
AGE	ZONE	CUDAMS	FOS CHAR SONNUNI	RAD I OLARIA 25	OTHERS 2	METERS	LI	THOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FORAMS	FOS CHAR SONNYN	SIL ER STOLARIA SADIOLARIA	SECTION	METERS	LITHOLOGY	DEFORMATION	LI THO. SAMPLE	LITHOLOGIC DESCRIPTION
ATERIARY	catulinoides truncatulinoides	ocapsa oceanica		RG	1	2 0.5- 1.0-				-60 117 129 -6Z -80 130	Chiefly greenish gray, soft sandy namo and foram oozes. Numerous white specks and black fragments. Greede bed 188 cm thick in Sections 3 and 4. Some thin beds of detrital silt and silty clay. 9 5Y4/1 <u>DETRITAL FORAM NANNO 00ZE</u> 5Y4/1 <u>DETRITAL FORAM NANNO 00ZE Clay 53% Nannos 45% Silt 2% Forams 35% Sand 45% Micarb 15% Sand 45% Micarb 15% Sand 45% Micarb 15% Clay 3% Quartz 13 74 Feldspar, heavy minerals, glauconite, pyrite, sponge spicules and fish remains. Tr.</u>	UATERNARY	ulinoides truncatulinoides			RM	1	1.0	V01D	S	56Y6/1 56Y6/1 32 74 56Y6/1	Chiefly greenish gray soft, sandy boze with some grading. Only slight deformation. A few thin beds of black clay and a few black calcareous clay lumps or nodules in lower part. DETRITAL FORAM NANNO ODZE Smear Slides 2-75, 3-75 Texture Composition Sand 51% Nannos 45% Clay 31% Forams 35% Silt 18% Micarb 12% Clay 4% Quartz 11% Feldspar 1% Feldspar 1% Glauconite, dolomite rhombs, mollusc fragments Tr.
nb	(F) Globorotalia trun	(N) Gephyr	G AM	NONE	3	3 4				-XR 100 130	R 29-31' Texture Composition Forams 45% Sand 80% Micarb 25% Silt 20% Quartz 12% Mollusc fragments 7% Nannos 7% Feldspar 2% Heavy Minerals 2% Pyrite 1% Glauconite, sponge spicules, ascidions Tr. 56Y6/1 Coarse fraction chiefly forams with small amounts of quartz, feldspar, glauconite, rads, and sponge spicules. BULK X-RAY (3.3 m) Calcite 7% Quartz 3% 56Y6/1	ð	(F) Globorotalia truncat	- Dodan Jul		NONE NONE	4	administration in the second sec			75 26 5Y2/1 1ayer N2 nodule 30 5GY6/1	Smear slides 1-105, 4-26 <u>Composition</u> Clay Nannos 5-10% Quartz 1-15% Forams 118 Mica, glauconite, opaques, micarb Tr. Coarse fraction chiefly forams with lesser amounts of micarb, iron oxides, sponge spicules and mollusc fragments. BULK X-RAY (55.7 m) Calcie 88% Quartz 6% Aragonite 2% Mica 2% Kaolinite 1%
					C	Catche	rt++	**			10.50%			AM	AP	RM	Ca	tcher		T	cc	

SITE 263

e 263	Hole	_	_	C	ore	3	Core	ed In	ter	al:9	0.5-100.0 m							Sit	e 263		Hole	Acct		Core	e 4	Cored In	ter	/al:1	09.5-119.0 m				
ZONE	FORAMS	SONNAN	L TER WTWYNTO	SECTION	METERS		LITHOL	.0GY	DEFORMATION	LITH0.SAMPLE		LITHOLOGI	C DESCR	RIPTION	9			AGE		ZONE	FORAMS 2-	ARAC SONNAN SONNAN	OTHERS 31	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOG	IC DESCR	IPT ION	
(F) Globorotalia tosaensis		interest of the second s	15 Note Note Note		0.5 1.0					-75 -75 -75 -75 -75 -75 -75 -75 -75	N6 clay ball 74 26-28 N7 74	Slight] ooze. S apparen in core <u>DETRITA</u> Smear s Sint Clay Coarse of glau Forams CLAYEY Smear s BULK X- Calcite Quartz Mica	y defor t gradi catche <u>FORAM</u> 11des 1 <u>5</u> 4% <u>24%</u> <u>22%</u> fractio conte _e <u>6</u> 5 4% <u>22%</u> fractio conte _e <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u> <u>74%</u>	rmed. 111) intern ing. 011-75, 2-75 Comp Nann Fora Clay Mica Quar Comp Feld Feld Comp Mica Quar Soroken a 0027E Comp Mica Quar Soroken a 0027E Comp Mica Quar Soroken a 0027E Comp Mica Quar Soroken a 0027E Comp Mica Nann Na	ight graynal beddi ive black 00ZE -75, 3-75 position nos y arb trtz dispar, gl pyrite, d rhombs fly foram e, quartz and abrad <u>position</u> nos y y 95% 4% 1%	r (N7) sa ing and n c (5Y2/1) 5. 4-75. lauconite lolomite as with t t and mus led.	ndy 00 002e 5-75, 45% 35% 10% 1% 1% Tr. traces scovite. 48% 5% 2% Tr.	LOWER PALEDCENE or ?younger	261obiderina evoubina	Cruciniucolithus tenuis	poor arenac. (reworked L. Cret.), 1m core 4/4/55-57 Lower Paleocene plankforams	reworked L. Gret., in 4/4/55-5/ Lower Faleocene		0 1 1 2 3 4 5 6				-75 113 -65 -62 -XR -75 -87 -87 -75 -75 -75 -75 -75 -75 -75	nodules dolomite 577/2 N3 dolomite nodules 577/2 dolomite 577/2 557/1 80 dolomite 577/2 557/1 80 dolomite 577/2 26-28 557/1 80 dolomite 577/2 26-28 557/1 80 577/2 26-28 557/1 80 dolomite 577/2 26-28 577/1 80 dolomite 577/2 26-28 577/1 80 dolomite 577/2 26-28 577/1 80 dolomite 577/2 26-28 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 577/1 80 dolomite 577/2 577/2 80 dolomite 577/2 577/2 80 dolomite 577/2 577/2 80 dolomite 577/2 577/2 80 dolomite	Chiefly gray, S with cc origina Smears <u>Texture</u> Clay Silt Silt BULK X. Montmor Calcite Quartz Mica K-felds Chlorif Pyrite	RICH CLA RICH C	disturbed, dark y and nanno clay is of olive black. Number of the second sec	greenish . Possible merous 4-55, CC s dolomite dolomite arb, se

296

55% 40% 2% 1% 1%

78% 12% 4% 2% 1%

Tr.

SITE 263

Site	e 263	Hole			Cor	5	c	Cored I	Inter	val:	128.5-138.0 m		Si	te 2	63	Hol	B		Core	₽ 6	Cored In	terva	1:1	47.5-157.0 m	
AGE	ZONE	FORAMS	SONNAN	DTHERS DTHERS	SECTION	METERS	LIT	THOLOGY	DEFORMATION	LITHO, SAMPLE		LITHOLOGIC DESCRIPTION	AGF		ZONE	FORAMS	FOSS HARA SONNAN	OTHERS	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
LOWER CRETACEOUS	(N) Eiffellithus turriseiffeli(Pm) Barremian-L. Albian	R Poor arenaceous	AP AP	DPn	1 1 Co Cat	.0 .0 .0 .0 .0		VOID			5GY4/1 & 5Y2/1 5GY4/1 & 5Y2/1	Strongly deformed, stiff nanno clay; chiefly dark greenish gray and olive black. Dolomite nodules. NANNO CLAY					CP	NONE	0 1 1		VOID		- 90	5Y7/2 nodules 5Y7/2 nodules	Strongly to weakly disturbed stiff clay. Chiefly olive black (SY2/I) and dark greenish gray (56Y4/I) with lenses and laminae of olive black. Many dolomite nodules, spots, streaks and wisps. One barite nodule. <u>QUARTZ RICH NANNO BEARING CLAY</u> Simear Sides 1-90, 3-70, 4-75, 5-65, 6-70, CC <u>Texture</u> Clay 83% Clay 70% Silt 17% Quartz (microcrystalline) 20% Feldspar 4% Nannos 5%
																		NUNE	2	ومليريونولي			-GZ	5Y7/2 nodules 120	Opaques 1% Heavy minerals, glauconite, pyrite, zeolite, dolomite rhombs, chlorite, and fish fragments Tr.
													RETACEOUS	nuor? Alkian	uter: Allowing the set of the set	arenaceous	AP	NONE	3				-XR	26-28 5Y7/2 wisp 5Y7/2 wisp 5Y7/2 wisp & nodules	
													LOWER	(E) 1	(N) Eiffel	Poor		NONE	4				-59 -75	5Y7/2 wisps nodule of barite 5Y7/2 specks	Coarse fraction chiefly micarb, pyrite and glauconite with lesser quartz, feldspar, muscovite and fish remains. BULK X-RAY (150.8 m) Montmorillonite 47% Quartz 19%
																DM	AP	NUNE	5				69 GZ	5Y7/2 nodules 74 5Y7/2 spots 5Y7/2 nodule	Mica 16% K-feldspar 10% Calcite 3% Chlorite 3% Plagioclase 2% Pyrite 2%
																ALL .		AAAA	6				-70	5Y7/2 spots & nodules 5Y7/2 wisps	
																RM	CP	Fd	Cor Cato	cher		ł	-cc		

Site 263		Hole			C	ore	7	1	ored 1	Inter	val	176.0-185.5 m		Sit	e 263	3	Но	le			Core	9	Cored I	nterv	al:	223.5-233.0 m	
AGE	ZONE	FORAMS	SOUNTH	UTILER STATE	SECTION	METEDS	LILLING	LIT	HOLOGY	DEFORMATION	L ITHO. SAMPLE		LITHOLOGIC DESCRIPTION	AGE		ZONE	FORAMS	FOS CHAR SONNAN	RADIOLARIA STOR	OTHERS N	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
LOWER CRETACEOUS (F) Upper? Aptlan	(N) Eiffellithus turiseiffeli	With Poor Arenaceous With Poor Arenaceous	CP RP FP	NONE RVVP	1 2 m	0.1	e her		01D 01D		- G - 3	nodule 5Y5/2 5Y5/2 nodule Z 40 3 5Y7/2 specks R 32-34 5Y7/2 streak 5 5Y7/2 nodules	Highly deformed stiff clay. Greenish black (552/1) to olive black (572/1) with lenses and laminae of grayish black (N2). Numerous dolomite nodules. <u>QUARTZ RICH NANNO BEARING CLAY</u> <u>Smear slides 2-38, 3-85 Texture Composition</u> 63% Silt 16% Quartz (microcrys.) 25% Nannos 55 Feldspar 45% Opaques 15% Micarb 11% Glauconite, pyrite, 15% and fish remains Tr. Coarse fraction chiefly clay aggregates with small amounts of micarb, pyrite, forams, muscovite, quartz and feldspar. BULK X-RAY (179.3 m) Montmorillonite 44% Quartz 25% Mica 15% K-Feldspar 9% Calcite 2% Plagioclase 2% Pyrite 1%	LONER CRETACEOUS	(F) Upper? Aptian	(N) Eiffellithus turiseiffeli	Door arenaceous	NONE	P RVVP RVVP RVVP	D Pm	2 3		••• ••		- 43]20 - 62 - 75 - 75	5Y6/4 barite nodule 74 30-32 5Y7/2 nodules	<pre>Weakly deformed to undeformed semi-lithified claystone. Chiefly greenish black (562/1) with lenses and laminae of N2. QUARTZ RICH CLAY Simear Sildes 1-log, 2-75, 3-75, 4-80 Texture Composition Clay 50% Silt 15% Quartz (microcrys.) 40% Opaques 4% Feldspar 3% Chiorite? 1% Muscovite, glauconite, pyrite, dolomite rhombs, zeolite, nanos, and fish fragments. Tr. Coarse fraction chiefly clay aggregates, glauconite, micarb, quartz, forams and pyrite with small amounts of feldspar, muscovite. sponge spicules and fish remains. BULK X-RAY (226.8 m)) Quartz 43% K-Feldspar 65% Kaolimite 2% Chiorite 2% Plagioclase 1% Pyrite 15</pre>
Site 263	_	Hole	FOCC	71	0	ore	8		Cored	Inter	rval	:204.5-214.0 m		_					FVVI			1			-8	D	
AGE	ZONE	FORAMS	HARA	RADIOLARIA	OTHERS	JEVITOR .	METERS	LII	HOLOGY	DEFORMATION	I TTHO SAMPIE		LITHOLOGIC DESCRIPTION				c	1 RM	VVP	Fd	Co	re	***** ****B		13	D 5GY2/1 sandy layer	
LOWER CRETACEOUS (F) Upper? Aptian	(N) Eiffellithus turiseiffeli	Roor arenaceous	NORE	RVVP RVVP	D I	0. 1. Cor	5 0 0 her		/01D		۵ 9 ۵	5Y5/2 nodule 3 5Y7/2 nodules 562/1	Highly deformed, semi-lithified black (N1) to greenish black (562/1) clay. CLAVSTONE Smear slide 1-93 <u>Composition</u> Clay 98% Opaques 2% Quartz, glauconite, pyrite, micarb, nannos, and fish remains. Tr. Coarse fraction chiefly clay aggregates and micarb fragments with traces of guartz, feldspar, heavy minerals, pyrite and fib remains.	Exp	Jana	atory	note	s in	l cha	apte	• 1	k			-		

SITE 263

		FOS		_		_	the second se															the second se	
AGE ZONE	FORAMS	CHA! SONNVN	RADIOLARIA	SECTION	METERS	LIT	THOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE		ZONE	FORAMS	SONNAL SONNAL	OTHERS 3	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
LOWER CRETACEOUS (F) Upper? Aptian	(N) Effeilithus turiseiffeli S Poor areasceuts	BNON RM	RVVP FVVP RVVP	1 2 	0.5- 1.0-		Y01D		-83 -GZ -75 -XR -60 -87	Weakly disturbed, semi-lithified claystone with abundant dolomite nodules. Chiefly greenish black (SGV2/1) with lenses and Taminae of olive black (ST2/1) to grayish black (N2) up to 1 cm thick. Pyrite crystals abundant. QUARIZ RICH CLAY Smear slides 1-83, 2-75 Texture Composition 29 Clay 60% 5Y7/2 Silt 22% Quartz (microcrys.) 30% 5Y7/2 Silt 22% Quartz (microcrys.) 30% 5Y7/2 Opaques 1% 2 60% 5Y7/2 Quartz, muscovite, 1% 1% prite 1% 2 1% 1% SY7/2 Quartz, muscovite, 1% 1% SY7/2 Quartz, muscovite, 1% 1% podules notaconte with small amounts of feldspar, 1% souther instals and fish fragments, 1% glaucontte with small amounts of feldspar, pyrite, iron oxides, forams, and fish fragments. BULK X-RAY (245.6 m) 1% Montmorillonite 46% 2% </td <td>LOWER CRETACEOUS</td> <td>(F) Aptian or older</td> <td>(N) Eiffellithus turiseiffeli</td> <td>Poor arenaceous</td> <td>AVP EVVP EVVP BVVP</td> <td>Pm D Fd</td> <td>2 3 Corr Catc</td> <td></td> <td>410V 400 40 40 40 40 40 40 40 40 40 40 40 40</td> <td></td> <td>-80 108 -6Z -80 -51 -70 129 -75</td> <td>dolomite cemented area 562/1 & 5V7/2 10Y7/2 5Y6/4 72 10YR7/2 10YR7/2 10YR7/2 228-30 N9 5Y8/1 Pyrite N8 dolomite(?) veinlet N4</td> <td>Semi-lithified, undisturbed claystone. Greenish black (56Y2/1) with lenses and laminae and contorted layers of olive black (5Y2/1) and grayish black (N2). <u>QUARTZ RICH CLAY</u> Smear slides 1-80, 2-80, 3-130, 4-75, CC <u>Texture</u> <u>Clay</u> 50% Silt 7% Quartz (microcrys.) 43% Opaques 3% Feldspar 2% Nannos 1% Heavy minerals, pyrite, dolomite rhombs, zeolite, and chlorite Tr. Coarse fraction chiefly micarb. clay aggregates. forams, quartz, and glauconite with small amounts of muscovite, pyrite, and iron oxides. BULK X-RAY (264.8 m) Quartz 49% Montmorillonite 17% Mica 16% Siderite 4% K-feldspar 4% Kolinite 3% Plagioclase 2% Pyrite 2%</td>	LOWER CRETACEOUS	(F) Aptian or older	(N) Eiffellithus turiseiffeli	Poor arenaceous	AVP EVVP EVVP BVVP	Pm D Fd	2 3 Corr Catc		410V 400 40 40 40 40 40 40 40 40 40 40 40 40		-80 108 -6Z -80 -51 -70 129 -75	dolomite cemented area 562/1 & 5V7/2 10Y7/2 5Y6/4 72 10YR7/2 10YR7/2 10YR7/2 228-30 N9 5Y8/1 Pyrite N8 dolomite(?) veinlet N4	Semi-lithified, undisturbed claystone. Greenish black (56Y2/1) with lenses and laminae and contorted layers of olive black (5Y2/1) and grayish black (N2). <u>QUARTZ RICH CLAY</u> Smear slides 1-80, 2-80, 3-130, 4-75, CC <u>Texture</u> <u>Clay</u> 50% Silt 7% Quartz (microcrys.) 43% Opaques 3% Feldspar 2% Nannos 1% Heavy minerals, pyrite, dolomite rhombs, zeolite, and chlorite Tr. Coarse fraction chiefly micarb. clay aggregates. forams, quartz, and glauconite with small amounts of muscovite, pyrite, and iron oxides. BULK X-RAY (264.8 m) Quartz 49% Montmorillonite 17% Mica 16% Siderite 4% K-feldspar 4% Kolinite 3% Plagioclase 2% Pyrite 2%

Site 263	Но	le		C	ore 1	12	Cored I	nter	val:	280.5-290.0 m	Site	263	Ho	e		Co	re 13	Cored In	terv	a]:2	299.5-309.0 m
AGE ZONE	FORAMS	FOS CHAR SONNYN	RADIOLARIA	OTHERS 2	METERS		LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FORAMS	FOS: CHAR/ SONNYN	RADIOLARIA 25	OTHERS SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
LOWER CRETACEOUS (F) Aptian or older	(N) Effeilthus turiseiffeli Poor aremaceous	RONE	RWVP RWVP RWVP	D D Pm	0.5 1.0 2 5		void		130 - 75 - 31 - 75 - 28 - 111 - 62 - 45 - 75 - 125	Weakly deformed semi-lithified greenish black (562/1) claystone with dolomite nodules. Some lenses of olive black (572/1). Strike Abundant pyrite specks. Sandy and sity clay near base. This is greenish gray (564/1) to grayish green (1064/2). QUARTZ RICH CLAY Smear slides 1-130, 2-75, 3-80, 4-75, CC Composition Clay & microcrys.qtz. 94% Opaques 2% Feldspar 1% Pyrite 1% Quartz, muscovite, heavy minerals, zeolite and micarb Tr. Strike CLAYEY SAND TO SANDY CLAY Smear slides 3-111, 4-45, 4-125 Texture Composition Clay 3% Clay 20-40% Saeao N3 barite module Texture Composition Clay 73% Clay Saeao 20-40% Silt Strike Texture Composition Tr. 20-40% Glauconite 10-20% Glauconite 10-20% Silt Sof4/1 sandy layer Opaques 1% Opaques 1% Sof4/2 Tr. Sof4/1 to worm tubes(??) and forams with lesser 1064/2 Tr. Sof4/1 to 00000 Worm tubes(??) and forams with lesser 1064/2 Sam Sof2/1 Montmorillonite 20% Siz/1 Sag Sof2/1 Montmorillonite 20% Siz/1 Sag Sof2/1 Montmorillonite 20% Siz/1 Sag Sof2/1 Chiorite 2% Pyrite 2% Sag	LOWER CRETACEOUS	(F) Aptian or older (N) Effeilithus turiseiffelj	Poor arenaceous	NONE NONE	NONE RVVP RVVP RVVP	I 2 	0.5	voib	DDDD DDD DDD DDD	105 - 51 100	Seni-lithified, moderately to strongly deformed and brecclated claystone. Greenish black (55/2/1) with laminae, lenses and streaks of oilve black (52/2/1) and grayish black (N2). Abundant dolomite nodules. GUARTZ RICH CLAY Streak GUARTZ RICH CLAY Streak GUARTZ RICH CLAY Streak GUARTZ RICH CLAY Streak Filespar SY6/1 dolomite SY7/2 nodules SY7/2 Coarse fraction chiefly micarb, glauconite, worm tubes(??), clay aggregates with some quartz, muscoute and pyrite. 48-50 BULK X-RAY (303.0 m) Quartz 51% Montmorillonite 14% SG12/1 K-Feldspar SY6/4 Gypsum SY6/4 Gypsum SY6/4 Digital Streak SY6/4 Digital Streak SY6/4
																		V2258	E.		5Y7/2 nodule

NONE

NONE

Core Catcher

* 8 ×

Δ

5Y7/2 nodule -85

300

SITE 263

Site	263		Hole			Cor	e 17	Cor	ed Inte	erval	:385.0-394.5 m				Site	263	Hole	£		Cor	e 18	Cored Int	erva	1:41	13.5-423.0 m				
AGE	70ME	2005	FORAMS	SONNAH	OTHERS B	SECTION	METERS	LITHO	LOGY	DEFORMATION	L1110.340FLC	LITHOLOGIC DESCRIPTION			AGE	ZONE	FORAMS	FOSSI HARAC	RADIOLARIA T	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE		LITHOLOGIC DE	SCRIPTIO	N	
				NONE	WITE	1	1.0			-,	'5 NB	Semi-lithified, little o uniform black (N8) clays QUARTZ-RICH CLAY Smear slides 1-75, 2-75, Composi Quartz Feldspa Opaques Pyrite	listurbed, very tone. 3-75, 4-75, 5- <u>tion</u> (microcrys.) r	-75 50% 42% 4% 2% 2%					NONE	1		VOID		-75	NB	Semi-lithifi (NB) in uppe black (5Y2/1 QUARTZ RICH Smear slides <u>Texture</u> Clay 76 Silt 22	ed, und r part). <u>CLAY</u> 1-75, <u>CLAY</u> 1-75, <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u> <u>CLAY</u>	eformed clayston grading down int 3-72, 5-75 mposition ay artz(microcrys.) dspar	50%
			es	HONE	D Pm	2	Letter de la contrate				75 N8	BULK X-RAY (388.1 m) Quartz 57 Montmorillonite 18 Mica 5 K-feldspar 4 Pyrite 2 Chlorite 2	કર્ત કરે પર થયે છે.			1	nic species	RM	NONE	2				1	NS	Coarse frac glauconite, muscovite, i	ion is quartz,	aques scovite, heavy minerals, zeoli and glauconite chiefly clay agg and micarb with and fish fragmen	te, Tr regates, 1esser
CEOUS	an or older	us turiseiffeli	ceous benthonic speci	NONE	CINAL	3	In the other			-7	IR 10-12				OWER CRETACEOUS	Aptian or older iffellithus turiseiffe	and arenaceous benthor		NONE	D m 3				- XR -72	33-37 N8	BULK X-RAY (Quartz Montmorillor Mica K-feldspar Pyrite Kaolinite Chlorite	416.8 m ite) 58% 22% 12% 3% 2% 2% 2% 2% 2%	
LOWER CRETA	(F) Aptie	(N) Eiffellithu	Calcareous and arena	anna	- INAME	4	Trutter 1111			-7	⁵ _{N8}					(F) (N) E	Calcareous	см	NONE	4				-67	5Y2/1				
				NONE	NUHE	5	trul trul tru		¢		75 NB								NONE	(Armonite) S	eres eresteres			-75	5Y2/1				
				-	NUNE	6	111111111111				'5 N8				Exp	anatory r	CM	RM in c	hapt	Ca Ca	ore				5Y2/1				
			АМ	FM		Ca	ore tcher				118																		

SITE 263

Site 26	3	Hole			Core 21	Cored In	nterv	a1:5	518-527.5 m	Site	263	ł	lole			Core	22 Cored Int	erva	556-565.5 m	
AGE	ZONE	FORAMS 2	ARACT VINNOS	OTHERS	SECTION METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE		FORAMS 2 H	ARACT VILLAR INTERNET	OTHERS 3	SECTION	오 브 브 브 니THOLOGY	DEFORMATION	LITHOLOGIC DES	CRIPTION
LOWER CRETACEOUS (F) Aptian or older (F) Aptian or older	<pre>(N) Eiffellithus turiseiffeli</pre>	2 GCalcareous and arenaceous benthonic species	SNUN SNUN SNUN SNUN SNUN SNUN SNUN SNUN	D Pm Ms Ms	0.5- 1 1.0- 2 3 4 5 Core Catche			-79 -79 -78 -113 -18	Semi-lithified, undeformed claystone. Grayish black (562/1) to olive black (572/1) with streaks and laminae of black (M2), somewhat silty clay. Splits parallel to layering at 10 cm intervals. 562/1 to Smear slides 2-80, 3-79, 4-65, 5-96, CC 575/2 calcitic layer Clay Composition Sty/2 calcitic layer Clay GIX worm tubes? Opaques 3% 562/1 to 572/1 FeldSpar 1% Nanos 1% Muscovite, heavies, clay spot 573/2 glauconite, pyrite 3% Nanos 1% Notiling Coarse fraction clay aggregates with traces of quartz, glauconite, pyrite, micarb, forams, molluse fragments. pyrite nodule BULK X-RAY (522.0 m) N2 to 562/1 Kaolinite 22% pyrite nodule BULK X-RAY (522.0 m) N2 to 562/1 Kaolinite 22% pyrite nodule BULK X-RAY (522.0 m) N2 to 562/1 Kaolinite 1% N2 to 562/1 Kaolinite 1% N2 to 562/1 Kaolinite 1% N2 to 562/1 Solinite 5% pyrite nodule 5% Syf/2 tube? Syf/2 tube? Syf/2 tube? Syf/2 tube? Syf/2 tube? Syf/2 tube? Syf/2 tube? Sig worm tubes? Soattered white specks of kaolinite 5% Solinite 5%	dx3 LOWER CRETACEOUS	(F) Aptian or older (N) Eiffellithus turriseiffeli (Upper Albian)	r no	and arenaceous benthonic species	and	D	2 3 Corr Cate	5 VOID		white kaolinite 5Y6/1 Semi-lithifi 5Y6/1 Semi-lithifi 5Y7/2 worm structures? QUATZ RICH SY6/4 worm Structures? Texture Clay 63 Silt 37 NG to N7 calcite- rich limestone 7/1 white kaolinitic Stringers BULK X-RAY (Quartz SY7/2 dolomite SY7/2 dolomite SY7/2 dolomite SY7/2 with NG to N7 calcite- SY7/2 dolomite SY7/2 dolomite SY7/2 dolomite SY7/2 with mottles on SY7/2 with mottling of SY5/2	ed, undisturbed silty claystone, > greenish black (SGY2/1). Some ig - shell fragments. <u>SILTY CLAY</u> 5 Clay Composition 5 Clay 2 Quartz (microcrys.) 30% Feldspar 7 Dolomite 4% 0 Daques 2% Pyrite 2% Muscovite, heavies, zeolite, nannos, and fish fragments Tr. fon - clay aggregates with trace orams, and muscovite. 559.7 m) 36% 25% 3% 3% 2% 1% 1%
							-	1.0	WYIM LUDGS:											

SITE 263

Site	Site 263 Hole Core 23 Cored Interval: 594-603.5 m								Site 263			Hole			ore 24	Cored In	terv	a1:6	32-641.5 m		
AGE	ZONE	FORAMS	FOS CHAR SONNAN	RADIOLARIA DE	OTHERS 2	METERS	LITHOLOG	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	CODANC	FO CHA SUNNYN	SSIL RACTER VINE NOTORN	OTHERS 2	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
LOWER CRETACEDUS	(4) Eiffellithus turriseiffeli (Upper Albian)	Calcareous-and arenaceous benthonic species	CP	RIONE NOWE NOWE NOWE	1 2 3 9 9 0 4	0.5			-XR -75 -75 -6Z	Semi-lithified, undisturbed slightly silty claystone; olive black (5Y2/1); no bedding; slightly calcareous; pyrite specks common; white kaolinite specks. <u>OUARTZ RICH SILTY CLAY</u> Smear Slides 2-75, 3-75, 4-75, 5-75 <u>Calcite</u> White streak of kaolinite SY2/1 72 pyrite nodule 20-23 bedding? SY2/1 SY2/1 SY2/1 SY6/1 calcite- Tich SY6/4 dolomite with calcite SY2/1 SY6/4 dolomite with calcite SY2/1 SY6/4 dolomite with calcite SY2/1 SY6/4 dolomite with calcite SY2/1	LOKER CRETACEOUS	(F) Aptian or older	(W) Eiffellithus Turriseiffeli (Upper Albian)		NONE NÓNE NONE NONE NONE	1 2 0 3	0.5	VOID		-75 -65 -77 -75 -70 (2)	Semi-lithified, undisturbed slightly silty claystone. Olive black (572/1) with a few streaks of black (N2) and light gray (N7). Pyrite common; white calcenous specks, may be fossils. <u>OUARTZ RICH SILTY CLAY</u> Smear slides 1-75, 2-65, 3-75, 4-70, 6-75 <u>Texture</u> Clay 512 Clay 61% Silt 49% Quartz (microcrys.) 33% Feldspare 1% Sore 1% Silt 49% Quartz (microcrys.) 31% Feldspare 1% Opaque 1% Guartz (microcrys.) 31% Feldspare 1% Silt 49% Quartz (microcrys.) 31% Feldspare 1% Opaque 1% Guartz (microcrys.) 31% Feldspare 1% Opaque 1% Guartz (microcrys.) 31% Feldspare 1% Silt 49% Quartz (microcrys.) 31% Feldspare 1% Sore 1% So
		RM	CP	HONE	C	Core atche				512/1				1.3		6				-75	5¥2/1
													R	м	NONE						5Y7/2 calcitic layer

RM CP

Core Catcher 5Y2/1

$\frac{1}{90} \frac{1}{90} \frac$	Site	263	Hole	e	_	Cor	e 25	Cored I	nter	val:	570-679.5 m	Sit	e 263	H	ole	-		Core	26 Cored Int	terva	1:6	698.5-708 m
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	AGE	ZONE	FORAMS	FOSS	OTHERS 23	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	CODANC	FO CHA SOUND	SSIL RACT VI UL	OTHERS 2	SECTION		DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
NTN/1. Chiciteseich	LOWER CRETACEOUS	(F) Aptian or older(N) Eiffellithus turriseiffeli (Upper Albian)	Z Calcareous and arenaceous benthonic species	RP RP RP CP	NONE NONE NONE NONE	2 3 4	0.5			74 xR' -105 CC	Semi-lithified, undisturbed slightly silty claystone; olive black (572/1); no bedding; slightly calcareous, pyrite common. Dolomite and calcite nodules and layers. <u>QUARTZ BEARING CLAY</u> Smear slides 2-74, 3-105, 4-75, CC <u>Composition</u> Clay 97% Quartz 3% Opaques 2-15% (aurtz 3% Opaques 2-15% SY2/1 Feldspar, heavies, glauconite, dolomite rhombs, micarb, and fish fragments Tr. dolomite nodule SY7/2 for any fish fragments. SY2/1 SY2/1 bit N-3 mg white spheres of kaolinite Northor Hica 1% kaolinite SY2/1 with 1-3 mg white spheres of kaolinite Northor Hica 1% kaolinite SY2/1 with 1-3 mg white spheres of kaolinite SY2/1 dolomite	LOWER CRETACEOUS	(F) Aptian or older (M) Eiffellithus turrtseiffeli (Upper Albian)	Cateswakite and swanscoolie handfhonfe encetee		NONE NONE NONE	o ₹0 (Belemnite)	2 3 4	5- VOID		-75 -75	Semi-lithified, undisturbed, slightly calcareous, slightly silty claystone. Olive black (5YZ/1) Pyrite comon, streaks and nodules of calcite and dolomite present. <u>QUARTZ BEARING CLAY</u> Smear slide 2-75, 3-75, 4-75, CC <u>Composition</u> Clay 085% Quartz 1-20% Opaques 3% Feldspar 2% Pyrite 2% fossil sinte shells SY4/1 Coarse fraction - clay aggregates, a few forams and traces of quartz, feldspar, 5Y5/2 glauconite, pyrite, and fish fragments. nodule and veinlet calcite veinlet calcite kaolinitic spheres in calcite-rich matrix

Core Catcher

-CC 5Y2/1

SITE 263

263-1-1 263-1-2 263-1-3 263-1-4

SITE 263

263-21-1263-21-2263-21-3263-21-4263-21-5

263-24-1 263-24-2 263-24-3 263-24-4 263-24-5 263-24-6

263-25-1263-25-2263-25-3263-25-4

