III. X-RAY MINERALOGY DATA, AUSTRAL-ANTARCTIC REGION, LEG 28, DEEP SEA DRILLING PROJECT¹

H. E. Cook, I. Zemmels, and J. C. Matti, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, $2-20\mu$ m, and $<2\mu$ m fractions were performed according to the methods described in the appendix of this volume.

The X-ray mineralogy results of this study are summarized in Tables 1 through 11. The mineralogy data are presented in Tables 12 through 26. Sediment ages, lithologic units, and nomenclature of the sediment types in Tables 1 through 11 are from the DSDP Leg 28 Hole Summaries and from a subsequent update supplied by Dr. Ansis Kaneps, DSDP. The stratigraphic position of samples submitted for X-ray diffraction analysis from Leg 28 are listed in Tables 1 through 11. The sample depth (in m) below the sea floor in Tables 1 through 11 identifies the samples as they are reported in Tables 12 through 26.

The method of sample preparation, in brief, is as follows: Bulk samples are washed to remove seawater salts and are ground to less than 10μ m under butanol. A portion of the sediment is decalcified in a sodium-acetate-buffered, acetic-acid solution (*p*H 4.5). The residue is fractionated into 2-20 μ m and <2 μ m samples by wet sieving and centrifugation. The 2-20 μ m samples are ground to less than 10μ m. These three preparations are treated with trihexylamine acetate to expand the smectities. All samples are X-rayed as random powders.

The amorphous content (largely consisting of biogenous silica, volcanic glass, allophane, and organic matter) is computed from the diffuse scatter of a sample. This method assumes that the diffuse scatter in excess of the diffuse scatter from the crystalline materials is a measure of the amorphous content. The diffuse scatter of the crystalline minerals is determined from the mineral calibration standards. Ideally the amorphous content varies between 0 and 100%, but, in cases where the minerals in the sample have a higher degree of crystallinity than the calibration standards, negative values can result. The negative values are reported as blanks; these samples can be assumed to contain little or no amorphous material.

The crystalline minerals are quantified by the method of mutual ratios using peak heights and concentration factors derived from ratioing the diagnostic peaks of minerals with the major peak of quartz. Unquantifiable minerals, i.e., unidentified minerals and minerals for which standards are not available, are tentatively quantified using a hypothetical concentration factor of 3.0 which is applied to the major peak of the mineral. The concentrations of the quantifiable minerals is summed to 100%. The amorphous content and the unquantifiable minerals are not included in the total. The unquantifiable minerals are reported on a qualitative scale as trace (less than 5%), present (5-25%), abundant (25-65%), and major (greater than 65%).

The precision of the mineral determination is approximately ± 1 weight percent of the amount present. Because of differences in the crystallinity between the mineral calibration standards and the minerals in the samples, the accuracy of the reported concentrations is often less than the precision of the method allows. In terms of the reported concentration, smectites may vary \pm 50%; micas, chlorites, cristobalite, tridymite, goethite may vary $\pm 20\%$; kaolinite, amphibole, augite, the feldspars, the zeolites, palygorskite, sepiolite, apatite may vary $\pm 10\%$; the minerals which have stable crystal lattices and are not members of solid-solution series or typically have limited crystal-lattice substitution in the sedimentary environment such as quartz, lowmagnesium calcite, aragonite, dolomite, rhodochrosite, siderite, gibbsite, talc, barite, anatase, gypsum, anhydrite, halite, pyrite, hematite, magnetite will vary less than $\pm 5\%$.

The user of the X-ray mineralogy data should bear in mind that (1) the reported values are not absolute concentrations and some adjustment has to be made for the amorphous content and the unquantifiable minerals, (2) in a homogeneous system of minerals, the mineral concentration trends are reliable because of the precision, but when comparing mineral concentrations between different geographic regions or lithologic units additional information regarding the crystallinity of the minerals is required, (3) the representativeness of the samples selected for X-ray diffraction analysis is the responsibility of the shipboard scientists, and any questions pertaining to this aspect should be directed to them.

DRILLING MUD USAGE

Drilling mud, containing montmorillonite and barite, was used as follows:

Mud was used at Site 270 between Cores 39 and 40; at Site 272 between Cores 19 and 20, after Core 36, after Core 41, and after Core 43; in Hole 273A after Core 10; and at Site 274 after Core 43 and after Core 44. Most samples submitted for X-ray diffraction analysis do not occur close to intervals in which drilling mud was used. Barite does not occur in samples potentially contaminated by drilling mud and montmorillonite abundances are not inordinate in any of these samples.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of Nicki D. Coursey in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr. in sample preparation.

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 74-10.

Sample	Sample Depth Below			H Maj	Bulk Samp or Constit	le uent	2- Ma	20µm Frac ojr Constit	tion tuent	<2 Ma	2µm Fracti jor Constit	ion tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
8-3, 55-59	105.1	Unit 2 Nanno ooze to nanno chalk	Eocene	Calc.			Clin.	Mont.	Quar.	Mont.		
10-2, 109-112 10-3, 30-32 10-3, 142-144	161.1 161.8 162.9	Unit 3 Clay-rich nanno chalk	Eocene and Paleocene	Calc. Calc. Calc.			Clin. Clin. Clin.	Quar. Quar.	Mica	Mont. Mont. Apat.	Paly. Paly.	Mica Mont.
11-2, 17-20	169.7	Unit 4 Altered volcani- clastic rocks	Campenian or Santanian	Calc.			Clin.	Quar.	Bari.	Paly.	Mont.	Clin.

TABLE 1 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 264

 TABLE 2

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 265

Sample	Sample Depth Below			l Maj	Bulk Samp jor Constit	le uent	2- Ma	20µm Frac ijor Consti	ction tuent	< Ma	2µm Fract jor Constit	ion tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-6, 100-102 2-6, 122-124	27.0 27.0	Unit 1 Clay-bearing diatom ooze	Pleistocene	Calc. Plag.	Mont.	K-Fe.	Ins Plag.	ufficient re Augi.	esidue K-Fe.	Ins Mont.	ufficient re Plag.	sidue K-Fe.
5-5, 130-132 7-4, 120-122	111.3 166.7	Unit 2 Micarb-bearing diatom ooze, with forams and nanno	Pleistocene	Mont. Calc.	Plag.	K-Fe.	Plag. Ins	Augi. ufficient re	K-Fe. esidue	Mont. Inst	Plag. ufficient re	K-Fe. sidue
14-6, 130-132	369.3	Unit 3 Clay-bearing diatom ooze	Pliocene	Mica	Plag.	Quar.	K-Fe.	Plag.	Quar.	Mont.	K-Fe.	Mica
15-4, 78-80	403.8	Unit 4 Clay and diatom- bearing nanno ooze to chalk	Middle Miocene	Calc.			Quar.	Plag.	K-Fe.	Quar.	Mont.	Mica

Sample	Sample Depth Below			Ма	Bulk Samp jor Constit	ole tuent	2-2 Ma	20µm Frac jor Constit	tion	<: Ma	2µm Fract jor Constit	ion tuent
(Interval in cm) Se 2-3, 95-97	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-3, 95-97 5-5, 101-103 6-4, 70-72 8-3, 60-62 9-3, 54-56	29.0 89.0 106.2 133.1 142.5	Unit 1 Diatom ooze; minor micarb-bearing and clay diatom oozes	Pliocene and Pleistocene	Plag. Mica Mica Mica Calc.	K-Fe. Plag. Quar. Plag. Mica	Mica Quar. Plag. Quar. Quar.	Piag. Piag. Quar. Piag. Quar.	K-Fe. Quar. Plag. Quar. Plag.	Augi. K-Fe. K-Fe. K-Fe. K-Fe.	Mont. Mont. Mica Mont. Quar.	Piag. Mica Mont. Quar. Mica	K-Fe. Quar. Quar. Mica Plag.
10-4, 82-84 10-5, 110-112 15-3, 92-94 16-2, 120-122	153.8 155.6 237.9 246.2	Unit 2 Mixed nanno oozes, nanno clay, diatom ooze, and diatom- rich clay	Middle and upper Miocene	Calc. Calc. Calc. Quar.	Mica Quar. Mica	Quar. Mica Calc.	Quar. Quar. Quar. Quar.	Plag. Plag. Mica Plag.	Mica Mica Plag. Mica	Quar. Quar. Quar. Quar.	Mica Mica Mica Mica	Plag. Plag. Plag. Plag.
17-5, 85-87 21-3, 110-112	259.9 333.1	Unit 3 Nanno chalk, minor ooze, and nanno claystone	Early Miocene	Calc, Calc,	Міса	Quar.	Quar. Quar.	Plag. Mica	K-Fe. K-Fe.	Mica Quar.	Quar. Mica	Plag. Plag.

 TABLE 3

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 266

		, or it ituy initiorinogy o	ampres, sampre	Dopuis, 2		-8-,						
Sample	Sample Depth Below			Ма	Bulk Samp jor Consti	ole tuent	2- Ma	20µm Frac jor Consti	tion tuent	<2 Ma	2µm Fract jor Consti	ion tuent
(Interval in cm)	Sea Floor (m) Lithology A	Age	1	2	3	1	2	3	1	2	3	
Hole 267												
3-4, 78-80	94.8	Unit 1 ^a	а	Mica	Quar.	Plag.	Quar.	Mica	Plag.	Quar.	Mica	Plag.
4-4, 77-79	132.8	Unit 2 ^b	b	Calc.	Quar.	Mica	Quar.	Mica	Plag.	Quar.	Mica	Plag.
Hole 267A												
1-6, 30-32	11.8	Unit 1 ^a	а	Mica	Quar.	Plag.	Quar.	Plag.	K-Fe.	Mica	Quar.	K-Fe.
3-2, 100-102	63.5		0	Mica	Quar.	Plag.	Quar.	Mica	Plag.	Quar.	Mica	Plag.
Hole 267B												
1-1, 105-107	106.1	- Arreno	201 B	Mica	Quar.	Plag.	Quar.	Plag.	K-Fe.	Mica	Quar.	Plag.
3-2, 146-148	146.0	Unit 1	Early	Mica	Quar.	Plag.	Quar.	Mica	Plag.	Quar.	Mica	Plag.
4-2, 102-104	164.5	Clay and silty	through	Mica	Quar.	Plag.	Quar.	Mica	Plag.	Mica	Quar.	Plag.
0-0,40-42	217.4	and mixed clay	Farly	Mica	Quar.	Plag.	Quar.	Mica	Plag	Mica	Quar.	Mont
8-5, 78-80	273.3	diatom sediments	Pliocene	Ouar.	Mica	Plag.	Quar.	Plag.	Mica	Mica	Ouar.	Plag.
9-5, 110-112	302.1	Section Section 15		Quar.	Mica	Plag.	Quar.	Mica	Plag.	Quar.	Mica	Plag.

TABLE 4 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 267

^aUnit 1 in Hole 267 and Hole 267A consists of clay and silty clay, clay diatom ooze, and intermediate mixed clay diatom sediments. Unit 1 is early Miocene through Quaternary in age.

^bUnit 2 in Hole 267 consists of nanno ooze and chalk and micritic limestone. Unit 2 is middle Oligocene through early Miocene in age.

Sample	Sample Depth Below			Ma	Bulk Samp jor Consti	ole tuent	2-2 Ma	20µm Frac jor Constit	tion	< Ma	2µm Fract jor Consti	tion tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
2-4, 57-59 2-4, 73-75	33.1 33.2	Unit 1 Clay, silty clay, sand, and diatom ooze	Late Miocene through Pleistocene	Quar. Quar.	Mica Mica	K-Fe. Plag.	Quar. Quar.	K-Fe. Plag.	Plag. K-Fe.	Mica Mica	Quar. Quar.	K-Fe. Plag.
8-1, 45-47 8-1, 71-73	170.9 171.2	Unit 2 Clay, silty clay, and clay nanno ooze	Late Miocene	Quar. Quar.	Mica Mica	Plag. Plag.	Quar. Quar.	Plag. Plag.	K-Fe. Mica	Mica Mica	Quar. Quar.	Plag. Plag.
10-2, 40-42 13-1, 80-82 13-1, 75-77 13-1, 98-100 17-1, 140-142 20-2, 83-84	229.4 304.3 304.3 304.5 380.9 467.3	Unit 3 Silty clay, laminated silty clay and clayey silt, and chert	Late Miocene or older	Quar. Cris. Mica Quar. Quar. Quar.	Mica Quar. Quar. K-Fe. Mica Mica	K-Fe. Mica Plag. Plag. K-Fe. K-Fe.	Quar. Insu Quar. Quar. Quar. Quar.	Plag. afficient re Mica Plag. K-Fe. K-Fe.	K-Fe. sidue Plag. K-Fe. Plag. Plag.	Mica Ins Mica Mica Quar. Quar.	Quar. ufficient re Quar. Quar. Mica Mica	Plag. esidue Plag. Plag. K-Fe. K-Fe.

 TABLE 5

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 268

Sample	Sample Depth Below	Transform of the] Ma	Bulk Samp jor Constit	le uent	2-2 Maj	20µm Frac jor Constit	tion uent	< Ma	2µm Fracti jor Constit	ion uent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
Hole 269 2-2, 12-14 3-2, 55-57 6-4, 75-79	47.6 95.6 203.3	Unit 2 Clay and silty clay, some diatom- bearing; silt and fine sand beds and laminae	Late Miocene through Pliocene	Mica Quar. Quar.	Quar. Mica Mica	Plag. Plag. Plag.	Mica Quar. Quar.	Quar. Mica Mica	Plag. Plag. Plag.	Mica Mica Quar.	Quar. Quar. Mica	Mont. Plag. Plag.
9-1, 68-70 9-2, 67-69 11-2, 13-15	331.7 333.2 389.6	Unit 4 Clay and silty clay, some diatom-bearing; some chert and very fine sand beds and laminae	Middle and Early Miocene or older	Quar. Quar. Quar.	Plag. Mica Mica	K-Fe. Plag. Plag.	Quar. Quar. Quar.	Plag. Plag. Plag.	K-Fe. Mica Mica	Quar. Quar. Quar.	Plag. Plag. Plag.	Mica Mica Mica
Hole 269A							1			í		
2-2, 86-88	428.4	Unit 4 ^a	а	Quar.	Plag.	Mica	Quar.	Plag.	Mica	Quar.	Plag.	Mica
3-2, 20-22 3-2, 114-115 4-2, 54-56 4-2, 103-105 8-1, 101-103 8-2, 46-48 8-2, 60-63 10-2, 77-82 12-4, 148-150 13-4, 135-139	475.2 476.1 523.0 523.5 702.5 703.5 703.6 808.3 907.0 954.3	Unit 5 Clay and silty clay with silt laminae; beds (some graded) of clayey silt, silt, and very fine sand; some carbonate cementation	Early Miocene or older	Cris. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Mica	Quar. Mica Cris. Mica Mont. Plag. Mont. Plag. Mica Quar.	Mica Plag. Mica Plag. Mica Plag. Plag. Plag. Plag.	Quar. Insu Quar. Quar. Quar. Quar. Quar. Quar. Quar. Mica	Plag. ifficient re Plag. Mica Mont. Plag. Mica Plag. Mont. Quar.	Mica sidue Mica Plag. Mica Plag. Mica Mica Plag. Plag.	Cris. Insu Cris. Quar. Quar. Quar. Quar. Quar. Mica	Quar. Ifficient re Quar. Plag. Mont. Plag. Mont. Plag. Mont. Mont.	Plag. sidue Mica K-Fe. Plag. Mica Mica Mica Plag. Quar.

 TABLE 6

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 269

^aUnit 4 in Hole 269A is identical to Unit 4 in Hole 269, and is middle and early Miocene or older.

Sample	Sample Depth Below			B Maj	ulk Samp jor Consti	le tuent	2-: Ma	20µm Frac jor Constit	tion tuent	< Maj	2µm Fract jor Constit	ion tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
		Unit 1										
1-1, 90-92	0.9	Diatom-bearing to		Mica	Quar.	Plag.	Quar.	Plag.	Mica	Mica	Quar.	Plag.
1-2, 26-28	1.8	diatom silty clay	Holocene	Quar.	Mica	Plag.	Quar.	Plag.	Mica	Mica	Quar.	Plag.
1-2, 121-123	2.7	with scattered gran- ules and pebbles		Quar.	Mica	Plag.	Quar.	Mica	Plag.	Mica	Mont.	Quar.
6-1, 147-150	36.0			Cris.	Quar.	Plag.	Cris.	Quar.	Plag.	Cris.	Mica	Plag.
9-2, 135-137	65.8			Cris.	Quar.	Plag.	Quar.	Cris.	Plag.	Cris.	Mica	Plag.
14-2, 98-100	113.0			Quar.	Plag.	Mica	Quar.	Mica	Plag.	Cris.	Mica	Plag.
15-2, 128-133	122.8			Quar.	Plag.	Cris.	Quar.	Plag.	Mica	Cris.	Mica	Plag.
19-2, 92-94	160.4			Quar.	Plag.	Mica	Quar.	Plag.	Mica	Cris.	Mica	Quar.
19-4, 77-79	163.3	Unit 2		Quar.	Plag.	Mica	Quar.	Mica	Plag.	Cris.	Mica	Plag.
22-1, 148-150	188.0	Silty claystone	Oligocene	Plag.	Quar.	K-Fe.	Plag.	Quar.	K-Fe.	Plag.	Quar.	Mont.
24-2, 14-17	207.1	and clayey	through	Quar.	Mica	Plag.	Quar.	Plag.	Mica	Mica	Quar.	Plag.
28-4, 20-23	248.2	siltstone with	?	Quar.	Plag.	Mica	Quar.	Plag.	Mica	Mica	Quar.	Plag.
31-3, 7-10	275.1	scattered granules	Pliocene	Quar.	Plag.	Mica	Quar.	Plag.	Mica	Mica	Quar.	Plag.
33-3, 0-3	294.0	and pebbles		Quar.	Plag.	Mica	Quar.	Plag.	Mica	Mica	Quar.	Plag.
35-4, 60-64	315.1			Mont.	Quar.	Chlo.	Quar.	Plag.	Mica	Quar.	Mica	Plag.
37-3, 54-55	332.5			Quar.	Mica	Plag.	Quar.	Mica	Plag.	Quar.	Mica	Plag.
40-5, 11-13	363.6			Quar.	Mica	Plag.	Quar.	Mica	Plag.	Mica	Quar.	Mont.
41-2, 120-121	369.7			Quar.	Mica	Plag.	Quar.	Mica	Plag.	Mica	Quar.	Mont.
43-2, 66-68	378.7			Quar.	K-Fe.	Plag.	Quar.	Plag.	Mica	Quar.	Kaol.	Mica
43-5, 123-126	383.7			Quar.	Mica	Kaol.	Quar.	Mica	Kaol.	Mica	Quar.	Kaol.
		Unit 5										
44-1, 134-136	387.3	Sedimentary breccia with well-developed regolith	Oligocene or older ?	Quar.	K-Fe.	Mont.	Mica	Kaol.	K-Fe.	Mont.	Mica	Kaol.

TABLE 7 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 270

 TABLE 8

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 271

Sample	Sample Depth Below			Ма	Bulk Samp jor Consti	ole tuent	2-2 Ma	20µm Fra jor Consti	ction tuent	< Ma	2µm Fract jor Consti	tion tuent
Sample Depth Below Sea Floor (m)Sample Lithold5-1, 107-109 24-2, 128-13069.6 158.3Unit Clayey sil silty clay scattered g and larget	Lithology	Age	1	2	3	1	2	3	1	2	3	
5-1, 107-109 24-2, 128-130	69.6 158.3	Unit 1 Clayey silt and silty clays with scattered granules and larger clasts	Pliocene	Quar. Mica	Mica Quar.	Plag. Plag.	Quar. Quar.	Plag. Plag.	Mica Mica	Chlo. Mica	Mica Plag.	Quar. Mont.

Sample	Sample Depth Below			Ma	Bulk Samp jor Consti	ole tuent	2-2 Ma	20µm Fra jor Consti	ction ituent	< Ma	2µm Fract	ion tuent
(Interval in cm)	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-1, 60-62 1-3, 79-81	4.6 7.8	4.6 Unit 1B 7.8 Diatom-bearing silty clay with scattered granules and larger clasts	Pleistocene	Mica Quar.	Quar. Mica	Plag. Plag.	Quar. Quar.	Mica Plag.	Plag. Mica	Mica Mica	Quar. Mont.	Plag. Quar.
9-3, 134-136 12-1, 107-109 15-2, 103-105	84.3 109.6 139.5	Unit 2A Silty claystone with scattered clasts	Late Miocene?	Quar. Quar. Quar.	Mica Mica Mica	Plag. Plag. Plag.	Quar. Quar. Quar.	Mica Mica Plag.	Plag. Plag. Mica	Mica Mica Mica	Plag. Plag. Plag.	Quar. Quar. Quar.
19-6, 76-78 22-3, 58-60 30-2, 24-26 38-2, 83-85	183.3 207.1 281.2 357.8	Unit 2B Diatom silty claystone with silty clay diatomite rare clasts	Middle Miocene	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag.	Mica Mica K-Fe. Mica	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag.	Mica Mica Mica Mica	Mica Mica Plag. Cris.	Plag. Plag. Mica Mica	Quar. Quar. Quar. Plag.
41-1, 50-51 41-1, 146-148	384.5 385.5	Unit 2C Silty claystone with rare clasts	Middle and early	Cris. Cris.	Quar. Quar.	Plag. Plag.	Quar. Insu	Plag. officient re	Mica esidue	Cris. Ins	Mica ufficient re	Plag. sidue

 TABLE 9

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 272

Sample	Sample Depth Below			Ма	Bulk Samp	le uent	2-2 Maj	20µm Fra jor Consti	ction tuent	< Ma	2µm Fract jor Constit	ion uent
(Interval in cm) So Hole 273	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
Hole 273		Unit 1B Diatom-bearing										
2-4, 90-92 4-2, 110-112	9.9 26.1	pebbly silty clay, unbedded	Pliocene	Quar. Quar.	Mica Plag.	Plag. Mica	Insu Quar.	fficient re Plag.	esidue Mica	Mica Mica	Quar. Quar.	Plag. Plag.
6-2, 55-57	44.5	Unit 2A ^a	а	Quar.	Plag.	Mica	Quar.	Plag.	Mica	Mica	Quar.	Plag.
Hole 273A												
6-2, 85-87 7-2, 51-55 7-2, 104-108 9-1, 91-95	139.9 149.0 149.5 166.9	Unit 2A ^a	а	Quar. Dolo. Quar. Quar.	Mica Quar. Plag. Plag.	Plag. Plag. Mica K-Fe.	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag.	K-Fe. K-Fe. Mica K-Fe.	Quar. Quar. Plag. Mica	Mica Plag. Quar. Quar.	Plag. Mica Mica Plag.
13-3, 127-130 17-2, 79-82 22-1, 78-81 25-2, 112-115	198.8 234.8 273.3 301.6	Unit 2B Pebbly silty clay, some diatom-bearing, unbedded		Quar. Quar. Quar. Quar.	Plag. Plag. K-Fe. Plag.	Mica Mica Plag. Mica	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag.	Mica Mica Mica Mica	Mica Mica Mica Mica	Quar. Quar. Plag. Plag.	Plag. Plag. Quar. Quar.

 TABLE 10

 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 273

^aUnit 2A in Hole 273 and Hole 273A consists of pebbly silty clay, diatom-bearing, sparsely bedded. Unit 2A is middle and late Miocene in age.

Sample	Sample Depth Below	201220		Ma	Bulk Samp jor Consti	ole tuent	2-2 Ma	20µm Frac jor Consti	ction tuent	< Ma	2µm Fract jor Constit	ion tuent
(Interval in cm) 1-4, 120-122 2-3, 68-70 5-3, 130-132	Sea Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1-4, 120-122 2-3, 68-70 5-3, 130-132 6-2, 130-132	5.7 13.2 42.3 50.3	Unit 1 Diatom-rich silty clay with pebbles	Age Early Pliocene through Pleistocene	Mica Mica Mica Mica	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag.	Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag. Plag.	Mica Mica Mica Mica	Mica Mica Mica Mica	Mont. Mont. Mont. Mont.	Quar. Quar. Quar. Quar.
10-3, 90-92 13-2, 110-112 13-6, 110-112	89.4 116.6 122.6	Unit 2 Diatom detrital silty clay with pebbles and manganese nodules	Middle Miocene and early Pliocene	Quar. Mica Quar.	Mica Quar. Mica	Plag. Plag. Plag.	Quar. Quar. Quar.	Mica Plag. Plag.	Plag. Mica Mica	Mica Mica Mont.	Mont. Mont. Mica	Quar. Quar. Quar.
14-2, 90-92 17-2, 82-84	125.9 154.3	Unit 3 Diatom-rich silty clay	? Early and middle Miocene	Quar. Mica	Mica Quar.	Plag. Plag.	Quar. Quar.	Plag. Plag.	Mica Mica	Mica Mica	Plag. Quar.	Quar. Plag.
20-3, 90-92 21-6, 70-72 23-2, 140-142 26-3, 90-92 29-2, 33-35 32-4, 140-142	184.4 198.2 211.9 241.4 267.8 300.4	Unit 4 Diatom-detrital silty clay and minor silty clay diatom ooze, mostly non-bedded	Early and middle Oligocene	Mica Quar. Quar. Quar. Quar. Quar.	Quar. Mica Mica Mica Mica Mica	Plag. Plag. Plag. Plag. Plag. Plag.	Quar. Quar. Quar. Quar. Quar. Quar.	Plag. Plag. Plag. Plag. Plag. Plag.	Mica Mica Mica K-Fe. K-Fe. Mica	Mica Quar. Quar. Mica Mica Mica	Mont. Mica Mica Quar. Quar. Mont.	Quar. Plag. Plag. Plag. Plag. Quar.
39-2, 107-110 42-2, 137-139	363.6 392.4	Unit 5 Silty claystone locally chert-bearing	?Cretaceous through Eocene	Quar. Cris.	Mica Mica	Cris. Mont.	Quar. Cris.	Plag. Quar.	Mica Mica	Cris. Cris.	Quar. Mont.	Mica

TABLE 11 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Site 274

 $1 \to T_{\rm AF}$

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Plag.	Mica	Mont.	Paly.	Clin.	Apat.	Bari.	Hali.	
Bulk S	amples													
8	101.5-111.0	105.1	-	97.6	0.3		-	1.6	-	0.5		5		
10	158.5-168.0	161.1	-	98.2	0.4		-			1.4	1			
		161.8	20 	98.5	0.4		\rightarrow	—	-	1.1	-	—		
		162.9	2.3	77.6	0.8		1.3	-	1.4	11.6	5.7	1.7		
11	168.0-177.5	169.7	-	98.0	0.2		$\overline{}$	7.0		1.3	(1,1) = (1,1)	0.5		
2-20µm	n Fractions													
8	101.5-111.0	105.1	20.7		18.9	-	17.0	24.6		39.5		-		
10	158.5-168.0	161.1	4.7		12.8	_	11.8	11.0		64.3		-		
		161.8	19.6		11.4		6.4	-		82.2		-		
		162.9	7.2		6.4		3.6			85.3		4.7		
11	168.0-177.5	169.7	17.1		15.0	3.3	6.4	-		62.5		12.8		
<2µm	Fractions													
8	101.5-111.0	105.1	60.5		5.2		3.6	80.7	5.5	2.7	-		2.2	
10	158.5-168.0	161.1	49.3		4.1		5.6	86.2	_	1.9	_		2.3	
22		161.8	41.8		3.8		8.8	73.9	10.0	2.1	$\sim -\infty$		1.4	
		162.9	65.6		2.8		-	12.4	14.3	6.5	56.6		7.3	
11	168.0-177.5	169.7	57.4		5.1		_	36.2	40.7	14.3	_		3.6	

TABLE 12 Results of X-Ray Diffraction Analysis From Site 264

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Mont.	Pyri.	Bari.	Augi.	U-1 ^a
Bulk S	amples													
2	18.5-28.0	27.0 27.2	51.4 92.0	92.4	0.5 16.9	1.3 17.7	1.4 28.6	1.3 5.5	1.8 11.5		-	1.4	1	P
5	104.0-113.5	111.3	82.6	-2	11.0	11.7	24.5	3.8	10.3	25.4	1.9	=	11.4	_
7	161.0-170.5	166.7	65.3	99.0	1.0		-	-		-	-	-	-	Т
14	360.5-370.0	369.3	92.9	—	19.4	17.6	21.2	3.5	27.3	11.1	-	-	-	-
15	398.5-408.0	403.8	19.8	98.7	1.3	_	_	_	-	-	с <u>—</u> Г	-	_	Т
2-20µ1	m Fractions													
2	18.5-28.0	27.2	89.0		13.6	19.1	26.9	3.1	7.0	10.1	_		20.3	
5	104.0-113.5	111.3	82.8		11.6	16.5	30.4	3.0	5.3	8.7	3.6		20.9	
14	360.5-370.0	369.3	94.1		23.3	38.2	27.7	2.0	8.8					
15	398.5-408.0	403.8	92.2		38.4	18.5	33.1	3.3	6.7	-	1.00			
<2µm	Fractions													
2	18.5-28.0	27.2	87.7		10.5	12.0	17.5	4.7	9.0	46.3	-		<u> </u>	
5	104.0-113.5	111.3	79.4		8.5	9.6	13.3	4.6	6.4	50.6	1.3		5.7	
14	360.5-370.0	369.3	92.0		16.1	19.0	16.8	5.6	18.6	23.9			-	

TABLE 13 Results of X-Ray Diffraction Analysis From Site 265

^aU-1 peaks at 5.76Å, 3.63Å, 2.357Å, among others.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Paly.	Hema.	Bari.	Amph.	Augi.
Bulk S	Samples															
2 5 6 8 9 10 15 16 17 21	25.0-34.5 82.0-91.5 101.0-110.5 129.5-139.0 139.0-148.5 148.5-158.0 234.0-243.5 243.5-253.0 253.0-262.5 329.0-338.5	29.0 89.0 106.2 133.1 142.5 153.8 155.6 237.9 246.2 259.9 333.1	94.5 79.4 88.3 84.3 76.2 16.2 61.7 49.0 64.1 9.4 46.6	29.5 94.1 47.6 52.8 20.3 96.7 62.8	14.4 17.7 22.7 18.2 18.1 2.3 13.4 16.4 29.1 1.9 13.2	22.0 15.3 15.4 15.0 9.8 - 6.8 4.7 7.8 - 2.9	28.4 17.8 15.5 19.6 11.5 1.2 8.2 8.3 12.0 - 5.7	4.5 3.7 3.2 - - - -	$\begin{array}{c} 16.3\\ 28.8\\ 33.5\\ 26.6\\ 23.1\\ 2.5\\ 14.5\\ 14.8\\ 26.6\\ 1.4\\ 13.6\end{array}$	- - 1.7 - 2.1 1.5 2.1 - 0.8	9.8 11.0 9.2 15.8 5.0 - 2.2 1.4 2.1 - 1.0		- - 5.2 -		- 1.4 - 1.5 1.3 - - - - - -	9.2 3.4 - - - - - - -
2-20 μτ	m Fractions															
2 5 6 8 9 10 15 16 17 21 <2μm	25.0-34.5 82.0-91.5 101.0-110.5 129.5-139.0 139.0-148.5 148.5-158.0 234.0-243.5 243.5-253.0 253.0-262.5 329.0-338.5 Fractions	29.0 89.0 106.2 133.1 142.5 153.8 155.6 237.9 246.2 259.9 333.1	95.0 77.5 92.6 83.7 80.8 82.9 77.5 51.5 56.4 71.7 57.9		18.4 26.3 38.2 28.0 34.8 39.6 44.7 46.1 51.9 46.2	24.5 19.9 17.9 21.3 20.2 12.2 12.1 14.2 12.5 13.5 15.5	32.9 30.2 27.7 29.8 25.1 22.6 26.0 17.2 17.4 19.7 17.1	2.3 5.3 2.2 - - - 0.4	5.0 11.4 10.9 11.1 15.4 19.8 17.7 17.9 16.3 10.8 17.3	- - 2.0 4.7 2.6 2.0 2.2 1.3 1.4	- 4.8 - - - - -			- - - 2.3 4.2 1.9	- 2.1 - 2.7 2.5 1.9 2.1 1.8 1.2 1.1 2.2	19.2 7.8 - - - - - - - - - - -
2 5 6 8 9 10 15 16 17 21	$\begin{array}{c} 25.0\text{-}34.5\\ 82.0\text{-}91.5\\ 101.0\text{-}110.5\\ 129.5\text{-}139.0\\ 139.0\text{-}148.5\\ 148.5\text{-}158.0\\ 234.0\text{-}243.5\\ 243.5\text{-}253.0\\ 253.0\text{-}262.5\\ 329.0\text{-}338.5\\ \end{array}$	29.0 89.0 106.2 133.1 142.5 153.8 155.6 237.9 246.2 259.9 333.1	89.0 80.7 87.1 86.4 82.6 76.2 75.0 69.7 72.3 76.3 69.5		11.5 18.3 19.7 22.8 26.0 31.8 28.0 31.6 33.4 31.6 31.6	18.7 14.3 12.7 13.6 13.6 7.9 6.2 11.1 10.2 8.8 11.0	19.6 14.5 19.3 14.8 19.9 16.5 17.0 17.8 16.0 15.3 17.9	4.3 7.0 3.3 4.1 - - - - -	11.4 20.6 23.1 20.9 24.0 28.7 24.2 25.0 28.2 32.5 25.8	- - 3.7 4.6 3.4 3.7 3.9 4.5 2.3	27.1 25.3 21.9 23.8 12.9 10.5 9.0 9.7 8.2 7.4 10.1	- - 12.3 - -			- - - 1.0 - 1.4	7.6

TABLE 14 Results of X-Ray Diffraction Analysis From Site 266

TABLE 15 Results of X-Ray Diffraction Analysis From Hole 267

												_
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Mica	Chlo.	Mont.	Amph.	
Bulk S	Samples											
3 4	89.5-99.0 127.5-137.0	94.8 132.8	59.8 37.5	68.1	30.8 12.4	8.9 3.2	17.1 5.3	32.9 10.3	2.1 0.8	7.3 -	0.9 -	
2-20µ	m Fractions											
3 4	89.5-99.0 127.5-137.0	94.8 132.8	39.5 48.2		42.4 47.2	12.7 9.7	20.7 17.2	20.7 21.9	1.8 1.9		1.6 2.0	
<2µm	Fractions											
3 4	89.5-99.0 127.5-137.0	94.8 132.8	62.7 65.3		30.9 36.5	10.9 9.9	17.6 18.4	30.6 26.7	2.5 3.2	7.4 5.2		

						T.					
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Amph.
Bulk S	amples										
1 3	4.0-13.5 61.0-70.5	11.8 63.5	76.4 59.4	29.5 37.6	14.8 _	16.5 17.1	_ 3.3	32.3 42.0	0.5	4.3	2.2
2-20µr	n Fractions										
1 3	4.0-13.5 61.0-70.5	11.8 63.5	73.3 45.1	45.8 41.3	18.6 12.8	25.2 19.5		10.5 22.8	_ 1.6		2.0
<2µm	Fractions										
1 3	4.0-13.5 61.0-70.5	11.8 63.5	81.4 68.8	27.6 29.6	17.8 11.3	16.6 15.9	_ 1.8	30.7 29.2	1.3 1.1	6.1 11.0	

TABLE 16 Results of X-Ray Diffraction Analysis From Hole 267A

TABLE 17 Results of X-Ray Diffraction Analysis From Hole 267B

	Corred												
Core	Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Rhod.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Amph.
Bulk S	amples												
1	105.0-114.5	106.1	71.1		22.8	15.2	18.1	1.2	34.5	0.6	5.4	-	2.2
3	143.0-152.5	146.0	71.3		26.5	12.2	17.1	2.1	32.4	1.5	6.6		1.6
4	162.0-171.5	164.5	70.5	12.1	23.6	9.3	12.5	1.5	33.2	2.1	1.1	3.6	1.0
6	209.5-219.0	217.4	66.9		29.7	9.8	16.1	2.7	33.1	2.2	5.3	-	1.0
7	238.0-147.5	246.1	63.0	-	31.1	10.6	16.6	1.4	33.5	1.2	5.5	-	-
8	266.5-276.0	273.3	59.5		33.1	10.8	16.9	-	31.8	1.6	4.7	-	1.0
9	295.0-304.5	302.1	58.2		34.5	11.4	17.1	-	30.4	1.6	3.7	-	1.4
2-20µr	n Fractions												
1	105.0-114.5	106.1	60.9		35.6	22.9	27.0		11.0	44			3.5
3	143.0-152.5	146.0	61.0		36.8	16.2	20.2		21.5	3.4			1.9
4	162.0-171.5	164.5	64.5		39.5	15.6	19.6		21.1	2.3			1.8
6	209.5-219.0	217.4	51.5		41.0	12.9	20.1		22.2	1.7			2.2
7	238.0-247.5	246.1	48.4		42.3	12.9	19.4		22.6	0.8			1.9
8	266.5-276.0	273.3	36.3		48.5	14.9	18.5		15.0	0.9			2.2
9	295.0-304.5	302.1	29.9		39.3	11.3	18.3		27.2	1.6			2.3
<2µm	Fractions												
1	105.0-114.5	106.1	78.6		21.9	14.2	21.0	2.7	19.0	0.6	8.3		2.2
3	143.0-152.5	146.0	76.1		24.8	13.3	17.8	4.7	24.3	1.7	13.3		-
4	162.0-171.5	164.5	74.2		24.3	10.3	15.4	4.6	31.0	2.3	12.3		
6	209.5-219.0	217.4	71.7		29.9	9.3	16.1	2.4	32.3	2.1	7.9		-
7	238.0-247.5	246.1	67.8		26.0	10.9	15.2	4.4	26.0	-	17.6		-
8	266.5-276.0	273.3	64.4		29.2	10.0	16.7	1.5	30.6	1.2	10.9		_
9	295.0-304.5	302.1	62.5		30.5	11.4	18.6	1.0	29.8	2.1	6.7		-

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Trid.	Hema.	Pyri.	Amph.
Bulk S	amples															
2	28.0-37.5	33.1 33.2	42.1	_	36.8	-	19.8	17.5	1.3	21.3	2.1	$\frac{-}{27}$		-	-	1.1
8	170.5-180.0	170.9 171.2	47.8 47.9	-	44.4 36.2	_	12.6	14.1 12.6	-	24.7 33.6	3.0 3.9			- 2.7	-	1.2 1.2
10 13	227.5-237.0 303.5-313.0	229.4 304.3 304.3	48.3 48.9 50.2	- 6.1	40.4 21.1 26.6	48.7	16.7 6.8 10.1	15.1 9.6 17.3	1	22.4 10.6 30.7	2.6 1.6 5.0	- 4.2		1.7 1.6 -	-	1.0 - - 1.2
17 20	379.5-389.0 465.0-474.5	380.9 467.3	33.6 41.2	Ξ	50.5 45.8	- -	15.4 14.9	12.4 10.8	-	18.6 17.4	2.0 2.4	-		-	- 8.7	1.2 1.1 -
2-20µ1	n Fractions															
2	28.0-37.5	33.1	11.8		45.9		19.6	18.4		12.0	0.5	_	-	_	-	3.6
8	170.4-180.0	170.9 171.2	19.0 13.4		55.2 55.4		15.1 9.5	17.5 16.5		8.8 12.2	1.4 2.4	-	-		-	2.0
10	227.5-237.0	229.4	17.2		49.9		13.3	17.3		11.3	1.5	-	5.4	1.2		-
13	303.5-313.0	304.3 304.5	22.1		42.2 56.8		9.9 13.9	18.3 17.5		22.3 8.1	5.3 1.2	0.9	_	_	-	1.1 2.5
17 20	379.5-389.0 465.0-474.5	380.9 467.3	2.2 15.8		57.7 53.1		15.2 13.7	12.7 13.1		$\begin{array}{c} 11.0\\ 11.1 \end{array}$	1.7 1.7	-	-	-	- 7.4	1.7
<2µm	Fractions															
2	28.0-37.5	33.1 33.2	59.2 70.5		27.7	_	16.5 11.9	15.2	5.7 4.5	30.5 31.8	1.7	2.7		-	Ξ	
8	170.5-180.0	170.9 171.2	55.8 56.4		33.4 30.9	_	9.4 10.5	13.0 15.2		36.5 34.6	6.7 4.7	-			-	1.0
10	227.5-237.0	229.4	65.3		29.7		11.3	15.7	-	33.2	5.0	3.4		1.6	-	—
13	303.5-313.0	304.3 304.5	59.1 55.1		26.6 27.2	- 7.7	8.7 12.0	21.7 14.8	_	28.6 30.9	6.0 4.3	8.6 3.1		-	-	_
17 20	379.5-389.0 465.0-474.5	380.9 467.3	54.2 64.2		40.3 33.7	-	14.3 13.2	12.8 11.9	-	27.5 30.4	5.1 4.5			-	- 4.2	Ξ

TABLE 18 Results of X-Ray Diffraction Analysis From Site 268

1

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Pyri.	Amph.	U-2a
Bulk S	amples												
2	46.0-55.5	47.6	49.5	23.0	3.2	9.7		52.9	4.4	6.7	122		
3	93.5-103.0	95.6	54.1	35.2	8.7	15.8		33.8	3.6	2.9	-	-	
6	198.0-207.5	203.3	52.8	32.6	11.9	18.4		31.6	4.5		-	1.0	
9	331.0-340.5	331.7	45.1	45.5	15.8	23.2		10.6	1.9	1.8	1.3	-	
		333.2	59.8	35.1	13.5	21.2		21.9	4.3	4.1		-	
11	388.0-397.5	389.6	53.1	35.1	7.1	20.7		27.8	4.6	3.8	-	0.9	
2-20µr	n Fractions												
2	46.0-55.5	47.6	16.2	32.1	4.6	14.9		42.3	6.2		\sim	22	Т
3	93.5-103.0	95.6	32.3	40.2	8.4	18.5		28.3	4.6			-	т
6	198.0-207.5	203.3	38.2	38.9	12.4	20.9		22.7	3.8		-	1.4	Т
9	331.0-340.5	331.7	28.2	46.6	16.6	22.8		9.0	1.9		1.2	2.0	_
		333.2	48.1	43.7	12.9	21.2		17.8	2.7			1.7	Т
11	388.0-397.5	389.6	27.8	46.6	11.5	21.6		16.2	2.3		-	1.8	Т
<2µm	Fractions												
2	46.0-55.5	47.6	65.1	26.2	5.9	10.0	4.1	35.8	3.1	14.8			
3	93.5-103.0	95.6	69.9	28.1	7.4	15.2	-	32.7	5.3	11.3			
6	198.0-207.5	203.3	73.3	29.6	14.1	19.1		24.2	5.9	7.1			
9	331.0-340.5	331.7	68.8	31.1	12.8	22.7	-	17.3	4.6	11.5			
		333.2	66.2	32.7	15.5	23.5		16.5	4.5	7.4			
11	388.0-397.5	389.6	67.4	36.4	10.0	24 5	_	15.8	36	9.8			

TABLE 19 Results of X-Ray Diffraction Analysis From Hole 269

^aU-2 peak at 12.1Å.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	Cris.	K-Fe.	Plag.	Mica	Chlo.	Mont.	Trid.	Clin.	Amph.	U-2 ^a	U-3b
Bulk S	Samples															
2	426.0-435.5	428.4	52.7	10.4	35.7	-	13.7	19.4	16.4	2.2	1.2	-		1.1		
3	473.5-483.0	475.2	51.9	_	28.1	29.3	7.0	13.5	15.3	1.9	4.9	_		_		
		476.1	51.5		32.2	11.9	10.6	15.8	19.6	2.6	5.2	2.1		-		
4	521.0-530.5	523.0	33.8		29.9	23.3	8.5	15.3	15.3	2.1	1.6	3.0		0.9		
		523.5	52.5	-	35.4	10.5	11.0	16.4	17.3	3.0	6.3	-		—		
8	701.5-711.0	702.5	32.9	-	38.6	-	7.9	13.1	16.8	3.2	20.3	-		-		
		703.5	28.2	-	43.9	-	11.8	18.6	18.1	2.4	5.2	-		—		
		703.6	23.5		38.8	-	8.7	16.4	16.0	2.2	18.0			-		
10	806.0-815.5	808.3	33.0		45.7	-	12.0	18.6	13.8	2.3	7.6	-		-		
12	901.0-910.5	907.0	39.5		42.4		* 5.8	16.1	17.2	3.0	15.5			-		
13	948.5-958.0	954.3	33.2	677.5	29.2	-	5.3	17.2	36.8	6.8	4.7	-		-		
2-20µ1	m Fractions															
2	426.0-435.5	428.4	33.1		40.9		15.3	21.7	18.1	2.7		-		1.3	Р	-
3	473.5-483.0	475.2	32.9		41.5	13.8	9.3	17.5	14.3	1.9	-	0.8	_	0.8		-
4	521.0-530.5	523.0	19.9		38.0	10.8	10.2	18.8	17.0	2.5	-	1.4	-	1.3	Т	-
		523.5	28.0		48.6	3777	10.2	18.2	19.6	3.4	-	-	-	_	P	
8	701.5-711.0	702.5	7.5		36.2		6.4	13.0	13.0	2.8	28.7	-	-	_	Т	
		703.5	2.8		51.5		11.3	19.2	14.5	2.5	_			1.2	т	
		703.6	4.1		43.8	-	10.5	17.0	17.2	3.1	8.4	-	-	÷	Т	Т
10	806.0-815.5	808.3	4.8		50.1	$\sim 10^{-10}$	11.5	17.2	12.7	1.9	5.7	-	-	0.9		Р
12	901.0-910.5	907.0	7.0		34.5	-	5.8	13.4	17.0	3.1	25.4	-	0.8	-	Т	-
13	948.5-958.0	954.3	4.9		29.1		5.1	15.9	31.4	7.1	11.3	(-,-)	-	-	Т	-
<2µm	Fractions															
2	426.0-435.5	428.4	71.7		28.9	-	12.4	22.0	17.8	3.1	15.8	_				
3	473.5-483.0	475.2	59.3		26.3	33.3	8.8	15.2	6.3	1.6	7.3	1.2				
4	521.0-530.5	523.0	51.2		11.1	56.0	4.6	7.9	10.3	1.3	5.4	3.4				
		523.5	61.3		36.1	10.9	12.5	16.8	10.4	2.9	10.3	-				
8	701.5-711.0	702.5	50.0		34.0	_	6.5	12.5	11.0	3.3	32.8					
		703.5	50.4		37.8	-	9.0	17.8	17.7	3.6	14.1					
		703.6	51.7		34.4		7.3	14.6	18.6	3.2	21.8					
10	806.0-815.5	808.3	49.6		34.7	-	10.6	19.4	16.2	3.1	15.9	<u></u> ;				
12	901.0-910.5	907.0	46.0		31.8	-	6.0	15.5	13.4	2.9	30.5	-				
13	948.5-958.0	954.3	45.2		18.4	-	4.0	16.2	29.3	5.3	26.8					

TABLE 20 Results of X-Ray Diffraction Analysis From Hole 269A

^aU-2 peak at 12.1Å.

^bU-3 peaks at 22.2Å and 11.25Å.

TABLE 21 Results of X-Ray Diffraction Analysis From Site 270

	Cored Interval Below Sea	Sample Depth Below Sea	10L.	с.	lo.a	e.	ar.		.e.	ьċ	ol.	n.	.0	nt.	ď.	ma.	-12	ps.	, hqr	2a
Core	Floor (m)	Floor (m)	Ат	Cal	Cac	Sid	Qui	Crit	K-I	Play	Kac	Mic	£	Mo	Tri	Hei	Pyr	Gy	An	<u>-</u> -
Bulk S	amples																			
1	0.0-6.0	0.9 1.8	49.6 33.2	-	-	1	33.0 35.8	1	9.3 14.3	17.3 21.3	1	37.6 24.4	2.8 1.9	2.4	-		-	÷ -	-	
	24 5 44 0	2.7	26.1				36.9		13.1	21.4		27.5	1.2	-			0.7	-		
0	54.5-44.0	30.0	29.7		-		25.1	28.4	11.8	18.8		10.8	1.5		2.4		0.7	-	0.7	
14	03.0-72.3	03.0	28.1	-	-	_	20.7	29.5	8.5	19.3		10.0	1.5	0.0	2.5		0.0	2.1	0.7	
14	110.5-120.0	113.0	33.4				20.7	15.1	1.9	25.5		14.2	3.5	0.0			0.0	2.1		
15	120.0-129.5	122.8	32.2		-	2.64	29.5	16.4	11.0	25.3	-	14.2	3.0				0.7	-	-	
19	158.0-167.5	160.4	29.0	-	1	-	31.4	11.9	9.2	23.4		19.4	3.0	1.2	-		0.0	-	-	
22	196 6 106 0	105.5	25.4	-	-	-	28.4	10.8	8.4	22.3	-	12.7	4.0	2.8	-		0.9	-	1 2	
24	205 5 215 0	100.0	10.0	-	1	10	29.9	100	13.1	30.2	0.4	21.1	3.0	-	- 57		0.0		1.2	
24	203.3-213.0	207.1	10.9	-		15	41.0	7	14.0	20.5	0.4	16.6	3.4		1		0.9			
20	243.3-233.0	240.2	20.2	-	100	52	45.0	5.0	14.9	22.0	5	10.0	2.1	2.5			1			
22	272.0-281.5	275.1	28.5	_	_		38.0	-	11.1	22.0		20.8	3.4	3.5						
35	291.0-300.5	294.0	20.5	_	_		39.4	_	13.0	21.8		19.1	20.0	25.2	_			-		
35	310.0-319.5	315.1	30.0	_	-		20.2	_	9.3	12.6	-	12.0	20.0	25.5	_		_	-	-	
37	329.0-338.3	332.5	28.4	-	-		33.1	-	1.0	19.0	-	30.2	3.2	3.0	-		-	_	-	
40	357.5-367.0	363.6	19.9	-	_		41.2	-	14.4	18.8		19.4	3.1	4.5	-		-		-	
41	307.0-370.0	369.7	25.8	-	2.2	2.2	41.4	-	9.9	10.1	1.5	23.5	3.0	4.2	_				-	
43	376.3-386.0	3/8./	12.8	8.0	3.2	2.2	48.7	-	10.0	13.9	3.1	4.3	-		-			_	-	
44	386.0-395.5	387.3	26.8 9.4	-	-	3.5	42.5	-	26.8	7.4	6.4	7.1	-	10.6	-		2.1	-	-	
2-20µn	n Fractions																			
	0060	0.0	22.6				10.0		0.0	25.5		20.4								
1	0.0-6.0	0.9	33.6		-	-	40.8	-	8.6	25.5		20.4	3.4	-	-		-		1.3	-
		1.8	22.1		-	1 7 7	41.5	-	12.1	26.1	1.000	16.8	2.3		-		-		1.3	-
1	24 5 44 0	2.1	16.8			-	31.3	-	9.1	22.4		26.3	3.4	-					1.4	1
0	34.5-44.0	36.0	18.9		-	-	24.0	27.9	6.5	19.6		16.7	2.2	_	1.7		1.3		-	1
	63.0-72.5	65.8	15.9		-	-	29.1	20.3	7.2	19.9	-	17.4	2.7	-	1.5		0.8		1.2	-
14	110.5-120.0	113.0	15.0		-	1.00	30.4	9.1	8.5	22.5	199	22.8	3.9	-	0.9		0.6		1.2	1.55
15	120.0-129.5	122.8	20.0		-	-	35.9	-	9.6	26.0		23.3	4.4	-	-		0.8		-	177
19	158.0-167.5	160.4	9.7			77	32.2	5.4	15.8	21.2	-	19.7	4.0	-			0.8		1.0	100
	104 5 104 0	163.3	6.1		-	100	29.9	3.6	9.3	23.3		26.4	5.2	-			1.3		1.1	-
22	186.5-196.0	188.0	13.2		-	-	35.6	17.1	11.1	37.2		9.7	2.3				1.9		2.1	
24	205.5-215.0	207.1	3.5		-	-	46.2	-	8.1	21.1	-	19.0	4.1	-			1.4		-	-
28	243.5-253.0	248.2	7.8			_	45.5		9.4	22.5	-	18.1	3.5	-	-		1.0		-	-
31	272.0-281.5	275.1	6.8		-	-	44.4		7.8	24.5	-	18.5	3.6		-		1.1		-	
33	291.0-300.5	294.0	2.9		-	-	45.5	-	9.0	22.3		19.2	4.0	-			-			-
35	310.0-319.5	315.1	8.2		-	2.000	43.0	-	7.6	24.7		19.7	3.9	-			1.0			-
37	329.0-338.5	332.5	5.2			-	41.6	-	8.0	21.5	-	24.7	4.1	-			-		-	
40	357.5-367.0	363.6	-		-		43.4	-	8.7	18.3	18 a	24.5	4.3	-	-		0.8		-	-
41	367.0-370.0	369.7	1.4			100	45.5	-	8.8	16.9	1.9	22.1	4.0	-	—		0.9		-	-
43	376.5-386.0	378.7	6.1		1.0	2.7	39.8		8.6	15.4	14.3	14.9	1.0		-		2.4		-	-
		383.7			-	1.3	46.3	-	8.5	10.6	12.5	18.7	\rightarrow	5	-		2.1		-	-
44	386.0-395.5	387.3	8.2			1	12.8	7	15.5	1.1	27.1	28.9	Ξ.	8.7	-		5.9		-	-
<2µm	Fractions																			
1	0.0-6.0	0.9	73.7				17.7	575.0	9.2	15.6		44.0	6.5	6.9		1.57	171	77.5		
		1.8	62.9				16.8	70	6.1	16.2	-	42.1	6.8	12.0	-	-		1		
121	20.000	2.7	63.6				15.5	-	4.8	14.5		43.3	5.2	16.6	-	-	-	-		
6	34.5-44.0	36.0	41.6				7.8	62.7	2.7	8.1		11.0	2.1	1.8	3.7	22	_	22		
9	63.0-72.5	65.8	36.5				8.0	60.8	2.6	8.4	_	11.8	2.0	2.2	4.3		-	-		
14	110.5-120.0	113.0	40.5				10.5	45.5	3.5	10.8	-	19.1	3.3	5.5	1.9	-	-	24		
15	120.0-129.5	122.8	45.4				13.7	29.6	6.3	15.4	-	22.6	4.2	5.9	1.0	1	1.4	-		
19	158.0-167.5	160.4	45.5				14.2	32.4	5.0	14.1	-	23.3	4.4	5.7	0.9	-	-	\simeq		
- 204 A		163.3	43.1				14.4	27.4	6.2	16.3	-	20.6	4.5	9.3	0.7	-	0.7	245		
22	186.5-196.0	188.0	55.7				20.1	-	10.7	33.6	_	14.9	4.8	14.3	-		1.5	-		
24	205.5-215.0	207.1	49.5				21.1	-	6.7	14.4		38.7	7.2	11.2	-	-	0.7	-		
28	243.5-253.0	248.2	52.2				23.6	-	6.3	18.5	-	34.4	6.8	10.5	-	-	-	÷0.		
31	272.0-281.5	275.1	49.0				23.0	-	7.7	16.1	-	35.0	6.5	10.2	-	-		1.4		
33	291.0-300.5	294.0	45.9				24.2	_	5.8	14.4		38.2	7.2	10.2		-	-			
35	310.0-319.5	315.1	33.8				36.7	_	11.2	19.2	-	21.4	3.7	7.8	-	-	-	-		
37	329.0-338.5	332.5	33.5				33.3	-	8.6	17.6	-	28.1	5.3	7.1			-	-		
40	357.5-367.0	363.6	49.7				20.0		7.3	11.0	2.2	39.8	6.9	12.8			-	-		
41	367.0-370.0	369.7	49.1				19.5	_	5.4	8.2	3.4	43.1	7.3	13.0			-			
43	376.5-386.0	378.7	45.1				28.1	-	3.0	2.9	26.2	25.5	-	7.5	-	5.1	1.7			
		383.7	43.0				24.4	-	4.9	2.8	20.3	36.2	-	7.9	-	2.7	0.8			
44	386.0-395.5	387.3	12.9				3.5	-	-	्राहरू स्टब्स्	36.3	15.1	-	44.0		1	1.1	7		

^aCado = calcium dolomite. ^bU-2 peak at 12.1Å.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quar.	K-Fe.	Plag.	Mica	Chlo.	Pyri.	Mont.	Amph.
Bulk S	amples										
5	68.5-78.0	69.6	34.1	33.0	18.1	22.5	23.0	2.3			1.1
24	255.5-265.0	258.3	39.2	23.8	10.5	21.8	31.1	2.2			10.5
2-20µ1	n Fractions										
5	68.5-78.0	69.6	24.3	38.5	13.1	25.1	19.1	2.6			1.7
24	255.5-265.0	258.3	36.2	40.2	10.0	28.9	13.5	2.6	1.7		3.1
<2µm	Fractions										
5	68.5-78.0	69.6	76.9	8.3	3.5	7.5	25.8	54.9		-	
24	255.5-265.0	258.3	80.9	17.4	6.9	20.5	27.7	9.8		17.7	

TABLE 22 Results of X-Ray Diffraction Analysis From Site 271

 TABLE 23

 Results of X-Ray Diffraction Analysis From Site 272

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Trid.	Pyri.	Gyps.	Amph.	U-2 ^a
Bulk S	amples															
1	4.0-13.5	4.6 7.8	56.0 32.5	31.1 39.4		9.0 15.0	16.9 16.4		39.5 25.1	3.4 1.9	2.2	-	_	_	_	
9	80.0-89.5	84.3	38.8	36.7	_	13.2	22.4		22.4	3.0		-	-	2.2	-	
12	108.5-118.0	109.6	37.6	34.0	-	17.2	22.1		23.8	3.0			_	_	-	
15	137.0-146.5	139.5	48.4	34.5	-	14.2	20.8		25.8	3.6	-	8000	Ξ.		1.0	
19	175.0-184.5	183.3	62.6	36.6	_	13.9	28.0		17.6	2.7	-		1.2		-	
22	203.5-213.0	207.1	70.1	41.4	-		32.5		20.3	3.6	-	-	2.2		-	
30	279.5-289.0	281.2	64.1	38.3	—	12.9	32.2		12.3	2.2	-	-	2.0	111		
38	355.5-365.0	357.8	61.3	36.5	7.3	12.1	24.1		17.4	2.6	-					
41	384.0-393.5	384.5	31.8	24.6	32.5	8.5	16.5		14.0	1.9	-	0.8	1.2	-	-	
2-20µ1	n Fractions	365.5	55.5	13.0	51.2	0.9	9.9		0.1	1.2	_		0.9			
1	4.0-13.5	4.6 7.8	31.9 19.7	41.3	-	8.7 9.6	22.8 26.0		23.2 21.9	2.9 1.9			-		$1.2 \\ 1.7$	T T
9	80.0-89.5	84.3	21.1	37.8	_	8.4	21.3		26.5	3.9					2.1	T
12	108.5-118.0	109.6	19.9	33.6	-	12.1	22.9		25.5	4.2			_		1.8	
15	137.0-146.5	139.5	39.9	42.8	-	9.7	25.3		16.7	3.1			1.3		1.2	-
19	175.0-184.5	183.3	55.7	41.2	_	10.5	28.3		15.3	3.2			1.6		-	-
22	203.5-213.0	207.1	67.6	41.9	-	9.3	27.6		14.4	3.0			2.4		1.4	
30	279.5-289.0	281.2	67.3	38.3	_	11.1	31.4		11.9	2.6			4.7			-
38	355.5-365.0	357.8	59.2	38.2	-	9.9	26.7		19.6	3.5			2.0		-	_
41	384.0-393.5	384.5	20.8	35.5	11.6	8.4	23.1		15.4	2.5			2.5		1.0	-
<2µm	Fractions															
1	4.0-13.5	4.6 7.8	72.8 63.2	15.3 14.3		5.1 4.4	12.3 12.0	3.8 4.0	47.7 40.0	6.7 8.1	9.0 17.2	1	-			
9	80.0-89.5	84.3	66.3	16.4	-	6.6	15.6		43.2	8.1	10.2		-			
12	108.5-118.0	109.6	66.3	17.1	_	6.0	16.4	_	46.6	8.8	5.2					
15	137.0-146.5	139.5	70.1	18.0	-	6.3	17.0	-	43.2	8.3	7.3		—			
19	175.0-184.5	183.3	79.0	18.6	-	11.3	23.7	-	31.2	6.7	8.5		—			
22	203.5-213.0	207.1	86.3	20.3	_	9.3	26.1		32.3	6.9	5.0	1	-			
30	279.5-289.0	281.2	83.4	18.9	-	7.0	28.6	-	23.5	6.1	9.3		6.6			
38	355.5-365.0	357.8	75.3	15.5	26.9	4.7	18.9		22.0	4.9	6.1	0.9	-			
41	384.0-393.5	384.5	41.1	6.9	65.3	2.6	8.3		8.6	2.1	3.7	1.8	0.7			

^aU-2 peak at 12.1Å.

TABLE 24 Results of X-Ray Diffraction Analysis From Hole 273

									_				_
Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chio.	Mont.	Pyri.	Amph.	Gyps.
Bulk Sa	amples												
2	4.5-14.0	9.9	51.6	38.2	16.0	20.6		23.2	2.0	-			1111
4	23.5-33.0	26.1	49.9	39.7	11.9	21.8		20.1	1.9	1.1	-		3.5
6	42.5-52.0	44.5	56.8	41.1	10.9	21.6		19.1	2.5	1.3	1.1		2.4
2-20µn	n Fractions												
4	23.5-33.0	26.1	40.8	44.9	10.8	25.9		13.6	2.4		0.9	1.5	
6	42.5-52.0	44.5	39.0	42.9	12.6	24.3		13.5	3.1		2.2	1.4	
<2µm	Fractions												
2	4.5-14.0	9.9	77.0	22.6	6.7	19.3	1.1	31.6	5.5	13.3	-		
4	23.5-33.0	26.1	79.6	22.3	7.5	17.9	-	30.7	6.0	15.5			
6	42.5-52.0	44.5	75.7	22.0	8.0	21.0	-	28.6	6.2	10.6	3.5		

TABLE 25 Results of X-Ray Diffraction Analysis From Hole 273A

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Pyri.	Gyps.	Amph.	U-3ª
Bulk S	Samples															
6	137.5-147.0	139.9	72.8	_		32.8	11.5	23.9		25.1	2.6	-	2.8	1.4	-	
7	147.0-156.5	149.0	53.7	4.4	30.3	28.2	10.5	18.8		6.9	0.9					
		149.5	55.1	—	-	40.4	14.0	26.7		14.6	1.6		1.7	-	1.0	
9	166.0-175.5	166.9	53.7			38.1	18.6	25.6	1.0	13.9	1.6	1.2	-		_	
13	194.5-204.0	198.8	53.1			38.5	14.2	24.4	-	15.2	2.2	3.6		1.9	_	
17	232.5-242.0	234.8	57.7		-	37.8	17.7	22.3		18.5	2.7	1.0			\rightarrow	
22	272.5-280.0	273.3	30.3			31.5	25.0	22.5		19.6	1.4	<u></u>		1.00	_	
25	299.0-308.5	301.6	51.7	1.6	0.8	40.2	10.2	23.9	\overline{a}	20.2	1.9	57			1.1	
2-20 μι	m Fractions															
6	137.5-147.0	139.9	65.3			37.3	17.0	22.5		12.7	2.4		5.9		2.1	
7	147.0-156.5	149.0	43.1		3.5	42.7	14.3	26.8		7.1	1.6		2.9		1.2	14
		149.5	40.2		-	38.4	12.3	26.0		14.0	2.2		5.4		1.8	
9	166.0-175.5	166.9	45.7		-	36.0	19.5	25.3		14.0	2.7		1.2		1.4	
13	194.5-204.0	198.8	45.9			39.0	12.6	27.4		15.8	2.1		1.4		1.7	P
17	232.5-242.0	234.8	56.2		-	44.0	11.3	25.8		12.6	1.8		3.2		1.3	P
22	272.5-280.0	273.3	22.2			34.4	13.2	27.1		18.6	2.5		1.8		2.2	P
25	299.0-308.5	301.6	42.0		—	38.3	12.2	24.9		18.9	3.0		0.9		1.8	Р
<2µm	Fractions															
6	137.5-147.0	139.9	85.1		-	24.8	9.3	22.4	-	24.5	5.6	9.8	3.6			
7	147.0-156.5	149.0	83.3		3.0	27.5	8.1	25.8		18.0	5.5	9.7	2.4			
		149.5	76.3		_	23.0	8.9	23.4		21.2	5.3	16.8	1.3			
9	166.0-175.5	166.9	76.9			22.8	9.6	22.0	3.1	24.2	5.4	12.9	-			
13	194.5-204.0	198.8	75.4		-	21.8	8.7	21.1	2.3	26.8	5.8	13.5	-			
17	232.5-242.0	234.8	78.0			20.6	10.7	19.3	1	30.3	6.8	10.9	1.4			
22	272.5-280.0	273.3	73.5		-	21.3	6.4	23.0	-	34.0	6.9	8.3	-			
25	299.0-308.5	301.6	66.8			16.3	6.9	21.7	-	41.0	5.5	8.6	-			

^aU-3 peaks at 22.2Å and 11.25Å.

Core	Cored Interval Below Sea Floor (m)	Sample Depth Below Sea Floor (m)	Amor.	Dolo.	Side.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Trid.	Clin.	Pyri.	Gyps.	Amph.	U-2 ^a	u-3 ^b
Bulk S	amples																			
1	0.0-9.5	5.7	54.3	-	-	28.1	-	15.3	18.1	21	29.8	2.5	4.8	-	20		- 22	1.4		
2	9.5-19.0	13.2	53.9	-	-	30.1		11.3	19.5	1.6	30.8	3.0	3.8	-	-	-		-		
5	38.0-47.5	42.3	67.0			28.3	-	11.2	21.2	_	35.2	2.3	1.9	-	-	-				
6	47.5-57.0	50.3	60.6	-	-	28.6	1.00	12.6	21.9	-	33.1	2.0	1.8	-	-	-				
10	85.5-95.0	89.4	69.1	-		30.7	-	10.5	22.1	-	30.3	1.5	4.8		-	-	-			
13	114.0-123.5	116.6	56.4		_	30.7	12	11.6	21.6		30.9	1.2	2.9			20		1.1		
0.000		122.6	58.5			32.7	_	11.4	21.9	-	28.3	0.7	3.6	-	-	14	1.24	1.2		
14	123 5-133 0	125.9	60.7	_	-	32.0		92	22.9	-	30.2	3.5	1.1		-			1.0		
17	152 0-161 5	154 3	57 1	_		29.4		84	21.5	_	35.2	4.2	_		-	-	-	1.3		
20	180.5-190.0	184.4	58.0			26.1		77	184	_	29.0	2.0	16.9	-	-	-	_			
21	190.0-199.5	198.2	77.5			35.7		9.9	19.5		27.2	37	2.0		100	2.0				
23	209 0.218 5	211.0	81.0	100		36.6		7.8	21.7	1000	27.7	2.8	2.0			2.5				
26	237 5-247 0	241.4	80.4		1.6	34.9		11.0	20.4		26.7	3.3				21				
29	266 0-275 5	267.8	83.7		1.5	33.5		8.0	10.8		27.7	3.0	23			33				
32	200.0-275.5	300.4	78.0		1.0	31.4		0.3	19.6		20 1	2.5	73			1.8				
20	361 0-370 5	363.6	14.0	4.1	2.2	26.2	12.0	85	11.6		21.0	2.2	6.4	0.8	0.9	2.1				
42	389.5-399.0	392.4	29.6			12.7	39.9	3.7	6.0		15.9	1.0	13.2	2.1	2.0		3.4	-		
2-20µr	n Fractions																			
	0.0.9.5	57	22.6			277		10.2	21.2		22.1	27						20		
1	0.0-9.5	12.2	33.0		_	31.1		10.2	24.5		20.7	2.1		_	_			1.7		D
2	9.5-19.0	13.2	21.9		-	40.2	-	9.9	24.9		20.7	2.0			_			1.5		D
3	38.0-47.5	42.3	55.9		-000	33.5		10.8	24.9		24.5	2.9			-			1.5		r
10	47.5-57.0	50.3	42.9			41.0	-	10.4	25.9		18.4	2.1		-				1.5		
10	83.3-93.0	89.4	49.0		_	33.5	-	10.0	25.5		20.1	1.0			_			2.2	-	
13	114.0-123.5	110.0	30.4		_	40.2		11.8	24.1		19.7	1.3			-			2.3	-	
	100 6 100 0	122.6	40.9		-	40.0	-	10.9	21.4		19.0	1.5			-	0.0		1.4		n
14	123.5-133.0	125.9	35.4		-	39.8	-	11.8	26.1		16.1	3.1				0.9		2.1		P
17	152.0-161.5	154.3	32.5		-	34.2	100	12.2	25.9		21.4	4.9		-	-	1		1.4	1	
20	180.5-190.0	184.4	56.8		-	44.6		9.3	26.8		17.5	1.7			-	7.		-		1
21	190.0-199.5	198.2	72.4		-	46.6	-	10.5	22.8		12.9	3.2		-	-	4.0		-	-	
23	209.0-218.5	211.9	76.5		-	49.2	-	9.7	22.6		11.2	3.8			-	3.5			-	P
26	237.5-247.0	241.4	78.3			47.1	1.00	11.7	22.9		10.9	3.6		-		3.8		-		
29	266.0-275.5	267.8	82.2			43.8	100	12.5	25.7		11.0	2.4		-		4.6		-	-	Т
32	294.5-304.0	300.4	71.7		-	49.3	-	10.7	22.8		12.0	1.7		-		3.4		100		P
39	361.0-370.5	363.6	21.6		1.8	37.6	4.9	10.9	19.4		16.5	2.6		0.6	0.9	4.7		\rightarrow	-	P
42	389.5-399.0	392.4	22.1		-	20.3	37.1	7.0	10.4		15.7	2.0		3.2	2.5	1.9		-		-
<2µm	Fractions																			
1	0.0-9.5	5.7	64.7			12.5	-	6.1	11.9	3.1	35.9	6.1	24.3	-		-				
2	9.5-19.0	13.2	66.5			12.7	1	6.5	12.0	4.5	34.8	6.2	23.2	-						
5	38.0-47.5	42.3	79.8			16.2		4.7	15.2	5.9	32.2	1.9	23.9		-					
6	47.5-57.0	50.3	73.9			15.7		7.6	15.5	3.8	30.3	2.1	25.0	-		-				
10	85.5-95.0	89.4	78.9			15.2		8.2	14.4	5.1	29.7		27.4							
13	114.0-123.5	116.6	72.8			19.2	122	7.5	183	3.1	28.2	1.5	22 3	-						
		122.6	70.7			17.5	-	10.9	16.7	3.2	24.3	1.3	26.2	-	-					
14	123.5-133.0	125.9	74.9			20.3	-	9.1	21.4		31.0	6.0	12.2	_	-					
17	152.0-161.5	154 3	72.8			21.4	-	7.8	21.1		376	7.2	49	-						
20	180.5-190.0	184 4	52.7			15.0	22	5.7	9.6	1.0	33.4	1.8	33 3							
21	190.0-199 5	198.2	80.0			31.2		7.8	20.8	1.0	25.3	4.7	91		-	12				
23	209.0-218 5	211.9	81.6			27.0		7.5	18 0		26.3	7.2	115			1.6				
26	237 5-247 0	2414	80.9			26.6		6.6	17.2	10.0	28.3	46	15.2			14				
29	266 0-275 5	267.8	79.6			23.5	23	8 2	18.1		30.3	4.9	13.2		24	1.8				
32	294 5-304 0	300.4	76.2			23.5		5.1	15.6		28.0	20	24 0			1.5				
20	361 0.370 5	363.6	47.0			21.6	22.8	5 1	10.5		19 1	2.0	14.9	0.7	13	1.8				
59			ALC: 1 1			- C 1 - D -	63.0	2 - C 2 - C - C - C - C - C - C - C - C			10.1		1.4.0	1.1.1		1.0				

TABLE 26 Results of X-Ray Diffraction Analysis From Site 274

^aU-2 peak at 12.1Å. ^bU-3 peaks at 22.2Å and 11.25Å.