The Shipboard Scientific Party1

SITE DATA

Location: Challenger Plateau

Position: 40°30.48'S: 167°40.81'E

Water Depth:

PDR, from sea level: 1066 meters From drill pipe measurement from derrick floor: 1078 meters (adopted)

Dates Occupied: 15-16 April 1973

Depth of Maximum Penetration: Hole 284: 208 meters Hole 284A: 75 meters

Number of Holes: 2

Number of Cores: Hole 284: 22 Hole 284A: 3

Total Length of Cored Section: Hole 284: 208 meters Hole 284A: 28.5 meters

Total Recovery:

Length: Hole 284: 166.8 meters Hole 284A: 22.4 meters Percentage: Hole 284: 80.2 Hole 284A: 78.6

Age of Oldest Sediment Cored: Late Miocene

Summary: Entire section is late Miocene to latest Pleistocene foraminifera nannofossil ooze and nannofossil foraminifera ooze. Minor unconformity in mid Pleistocene, otherwise sedimentation continuous and uniform. Magnificent temperate late Cenozoic calcareous biostratigraphic sequence. Obvious climatic fluctuations in these southern subtropical waters 400 km north of subtropical convergence.

BACKGROUND AND OBJECTIVES

Site 284 was drilled in shallow water (1078 m) on the Challenger Plateau, a western extension of the New

Figure 1. Location of Site 284, DSDP Leg 29.

Zealand Plateau (Figures 1, 2). The sediment cover above basement was not known. The deepest reflector is about 600 meters subbottom, and is too coherent to be basement. One faint reflector occurs at approximately 250 meters subbottom (Figure 3). Because of the possibilities of hydrocarbons in the region, maximum penetration was only about 200 meters.

The primary objective of this site was to obtain a continuous late Cenozoic sequence of calcareous microfossils, especially planktonic foraminifera and calcareous nannofossils. Because this site occurs in the southern subtropical (southern temperate) water mass 400 km north of the subtropical convergence, the late Cenozoic section should be of importance in the correlation of the section at DSDP Site 207 (southern Lord Howe Rise) in warmer subtropical latitudes and Site 281 (South Tasman Rise) in subantarctic latitudes. Alternations of subtropical and subantarctic water within the late Cenozoic at Site 284 will also provide much information on paleoclimatic history.

OPERATIONS

The approach to Site 284 on the Challenger Plateau was from the west, crossing a previous *Eltanin*-34 track (Figure 4). The bottom hole assembly and drill pipe were run in to a very soft sea floor at 1078 meters. Hole 284 was spudded and continuously cored to a total depth of 1286 meters, 208 meters of penetration. Core

¹James P. Kennett, Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island; Robert E. Houtz, Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York; Peter B. Andrews, New Zealand Geological Survey, Christchurch, New Zealand; Anthony R. Edwards, New Zealand Geological Survey, Lower Hutt, New Zealand; Victor A. Gostin, University of Adelaide, Adelaide, Australia; Marta Hajós, Hungarian Geological Survey, Budapest, Hungary; Monty Hampton, University of Rhode Island, Kingston, Rhode Island; D. Graham Jenkins, University of Canterbury, Christchurch, New Zealand; Stanley V. Margolis, University of Hawaii, Honolulu, Hawaii; A. Thomas Ovenshine, U. S. Geological Survey, Menlo Park, California; Katharina Perch-Nielsen, Institut for Historisk Geologi, Copenhagen, Denmark.

Figure 2. Bathymetry at Site 284.

Figure 3. Profiler section at Site 284.

recoveries were very good on all but three cores (Table 1).

The drill string was pulled clear of the mudline and Hole 284A was spudded to recore these three intervals. Hole 284A was washed and cored to a total depth of 1153 meters, 75 meters of penetration. Details of the coring are included in Table 1.

LITHOLOGY

About 208 meters of relatively undisturbed calcareous biogenic sediment were recovered. The principal

TABLE 1 Coring Summary, Site 284

	Cored Interval			
	Below Bottom	Cored	Rec	overy
Core	(m)	(m)	(m)	(%)
Hole 284				
1	0.0-8.5	8.5	8.5	100
2	8.5-18.0	9.5	CC	(
3	18.0-27.5	9.5	6.7	71
4	27.5-37.0	9.5	0.0	(
5	37.0-46.5	9.5	9.0	95
6	46.5-56.0	9.5	6.0	63
7	56.0-65.5	9.5	9.3	98
8	65.5-75.0	9.5	CC	(
9	75.0-84.5	9.5	9.1	96
10	84.5-94.0	9.5	8.3	87
11	94.0-103.5	9.5	9.0	95
12	103.5-113.0	9.5	9.2	97
13	113.0-122.5	9.5	8.4	88
14	122.5-132.0	9.5	9.5	100
15	132.0-141.5	9.5	9.3	98
16	141.5-151.0	9.5	9.2	97
17	151.0-160.5	9.5	9.4	99
18	160.5-170.0	9.5	9.4	99
19	170.0-179.5	9.5	9.3	98
20	179.5-189.0	9.5	9.5	100
21	189.0-198.5	9.5	8.6	91
22	198.5-208.0	9.5	9.1	_96
Total		208.0	166.8	80.2
Hole 284A				
1	8.5-18.0	9.5	6.0	63
2	27.5-37.0	9.5	7.0	74
3	65.5-75.0	9.5	9.4	99
Total		28.5	22.4	78.6

biogenic components, in order of occurrence, are calcareous nannofossils (coccoliths and rare discoasters), foraminifera, and rare ostracod shell fragments. The entire sequence consists of varying percentages of these components and range from nannofossil-rich foraminiferal ooze to foraminiferal nannofossil ooze to a fairly pure nannofossil ooze. There are no trends in the proportions of components, although foraminiferal oozes are found in Core 1, while Core 22 consists of almost pure nannofossil ooze (Figure 5).

Detrital minerals are almost completely lacking. Acid residues of relatively large volumes of sediment (100 cc) yielded one or two rounded fine quartz sand grains, silicic volcanic glass shards, small amounts of fine mica, clay, and unidentified opaque minerals. Glauconite, pyrite, and manganese micronodules frequently occur as infillings of tubes, burrows, and foraminifera and ostracod tests.

The only sedimentary structures present are streaks, mottles, laminae, and burrows outlined by finely divided black material. This material most likely consists of manganese, pyrite, or organic material. These structures seem to be related to drilling deformation rather than lithology, with dark streaks being preserved in lessdeformed sections. The only significant variations of the sequence cored are with the colorations. Two subunits were defined in the sequence.

SITE 284

Unit 1 - Subunit A

40

Alternating very-light-gray, light-gray, grayishyellow-green, bluish-white, light-greenish-gray, pinkishgray, and light-olive-gray foraminiferal nannofossil ooze, with varying amounts of both components. Only trace amounts of detrital minerals are present. The subunit is locally streaked, mottled, and speckled with dark material believed to be manganese and organic material. Occasional tubes are found infilled with pyrite. Some foraminifera are filled with glauconite. The subunit is Pleistocene.

Unit 1 - Subunit B

Same as Subunit 1A in lithology, except colors are uniform bluish white, white, and very light gray. The subunit is late Miocene-late Pliocene.

Conclusions

This sequence is very consistent in its lithologic nature, and thus represents deposition in an environment which has changed little in depth and tectonic setting since the late Miocene. Lack of ice-rafted debris indicates that the site has been north of the iceberg limit since the late Miocene. The scarcity of terrigenous sediments indicates that bottom currents in this region have not been important, nor has the area been exposed to turbidity currents. The small amount of volcanic material present in sediments at this site indicates that the prevailing westerlies have existed since the late Miocene, and very little wind-blown volcanic debris has been transported from New Zealand. However, the mica and very fine-grained material may have been transported by prevailing westerlies from Australia, or by subaqueous suspension from the area of New Zealand.

The color changes which occur are interpreted as follows: Subunit 1A was deposited during a period of strongly fluctuating paleoclimatic conditions, resulting in alternating beds of light and dark colors. Subunit 1B, uniform in color, was deposited during the less rapidly fluctuating climatic conditions during the Pliocene and late Miocene.

GEOCHEMICAL MEASUREMENTS

Table 2 and Figure 6 show the variations in pH, alkalinity, and salinity in lithologic subunits 1A and 1B. The pH values are all uniformly lower than the surface seawater reference, with the punch-in values lower than

Figure 5. Lithologic sequence at Site 284.

the flow-through values. Alkalinity values in the sediments are all higher than the surface seawater reference value. Cores 1 and 22 have the lowest values. Salinity values are all lower than the surface seawater reference, and are all very close to the average $34.4^{\circ}/_{\circ 0}$.

BIOSTRATIGRAPHY

This highly biogenic latest Pleistocene to late Miocene sequence yielded common planktonic foraminifera and very abundant calcareous nannofossils throughout. Diversity is high for its mid-latitude position, and as might be expected in an upper bathyal sequence, the planktonic foraminifera show no indication of dissolution. A marked decrease in the preservation quality of the calcareous nannofossils near the base of the sequence recovered is attributed to incipient diagenesis. Obvious fluctuations in the climatic conditions prevailing near this site are indicated by both the planktonic foraminifera and the calcareous nannofossils. No siliceous microfossils were observed.

The late Pleistocene-early Pleistocene boundary, from the calcareous nannofossils, occurs between Samples 284A-1-2, 47 cm, and 284A-1-5, 43 cm. The Pleistocene-Pliocene boundary, from the planktonic foraminifera occurs between Samples 284A-2-3, 100 cm, and 284A-2-4, 20 cm. The last appearance of *Discoaster brouweri*, which is often taken as marking the Pleistocene-Pliocene boundary, occurs in Sample 284-5-5, 10 cm, 9 meters below the foraminiferal position. The late Pliocene-early Pliocene boundary, by the calcareous nannofossils, occurs between Samples 284-8, CC, and 284-9-1, 10 cm.

Foraminifera

A well-preserved late Miocene to Pleistocene sequence of planktonic foraminifera was obtained. Five zones were identified (Table 3). There is no evidence of solution at this relatively shallow water site, and even a few specimens of *Hastigerina pelagica*, very susceptible to solution, were recovered. The foraminiferal sequence records fluctuations in paleotemperatures, with left- and right-coiling populations of *Globorotalia* (T.) pachyderma.

Globorotalia (G.) truncatulinoides Zone

The faunas from the zone yielded relatively coolwater subtropical assemblages consisting of middle-high

		Sample	Interval	pl	H			
Core	Section	Top (m)	Avg. (m)	Punch- in	Flow- thru	Alkalinity (meq/kg)	Salinity (°/)	Lithologic Subunit
Surface	e Seawater	Reference	e	8.08	8.09	2.49	35.2	
1	3	0.0	3.95	7.30	7.39	3.42	34.4	1A
6	4	46.5	54.53	7.23	7.34	3.91	34.4	1B
11	6	94.0	102.03	7.23	7.28	4.01	34.4	1B
16	6	141.5	149.53	7.24	7.29	4.01	34.4	1B
21	6	189.0	197.03	7.24	7.26	3.71	34.4	1B
22	0	198.5	198.95	7.18	7.31	3.32	34.6	1B
Averag	e			7.24	7.31	3.73	34.4	

TABLE 2 Shipboard Geochemical Data, Site 284

Figure 6. Shipboard geochemical data versus depth, Site 284.

International Unit	Planktonic Foraminiferal Zones	Taxa Used to Delimit Zones
Pleistocene	Globorotalia (G.) truncatulinoides	
	Globorotalia (T.) inflata	I.A. G. (G.) truncatulinoides
Pilocene	Globorotalia (T.) puncticulata	T.A. G. (1.) injuita
	Globorotalia (G.) conomiozea	E. Globorotalia (G.) conomiozed
Miocene	Globorotalia (T.) miotumida miotumida	I.A. G. (G.) conomiozea

 TABLE 3

 Planktonic Foraminiferal Zones, Site 284

Note: I.A. = initial appearance; E. = extinction.

latitude taxa intermixed with a few warm-water specimens of *Globigerinella aequilateralis*, *Globigerinoides ruber*, and *Sphaeroidinella dehiscens*. Diversity is fairly high and preservation good. The zonal boundary between the G. (G.) truncatulinoides and G. (T.) inflata zones has been placed between Samples 284A-2-3, 100 cm, and 284A-2-4, 20 cm.

Globorotalia (T.) inflata Zone

Globorotalia (T.) tosaensis, ancestor of G. (G.) truncatulinoides, was not found in the upper part of the zone, therefore the latter taxon appears to be cryp-

togenic in this region. Warmer water taxa are mainly rare with a few specimens of *Globigerinella aequilateralis*, *Globigerinoides ruber*, *Globoquadrina altispira*, and *Hastigerina pelagica*. Diversity is fairly high and preservation good. The zonal boundary between the G. (T.) inflata and G. (T.) puncticulata zones has been placed between Samples 284-9-6, 100 cm, and 284-9, CC.

Globorotalia (T.) puncticulata Zone

A fairly distinctive fauna is found in the zone dominated by the zone fossil and with only *Globorotalia*

(G.) cf. miotumida representing the keeled Globorotalia. A few warmer water specimens of Globigerinella aequilateralis, Globigerinoides obliquus, and Hastigerina pelagica were found. Diversity is moderate and preservation good. The zonal boundary between the G. (T.) puncticulata and the G. (G.) conomiozea zones has been placed between Samples 284-12, CC, and 284-13-1, 110 cm.

Globorotalia (G.) conomiozea Zone

A number of keeled *Globorotalia* are present in the zone including G. (G.) explicationis previously only found in New Zealand and Morocco. Only a few warm water taxa were found in the upper part of the zone, including *Globigerina* cf. nepenthes, *Globigerinoides* cf. obliquus, and *Globoquadrina altispira*. Diversity is moderate and preservation good. The zonal boundary between the G. (G.) conomiozea and the G. (G.) miotumida miotumida zones has been placed between Samples 284-17-6, 20 cm, and 284-17, CC. The Miocene-Pliocene boundary is placed at the first appearance of G. puncticulata which occurs in 284-15, CC.

Globorotalia (G.) miotumida miotumida Zone

Keeled Globorotalia are fairly well developed in the zone with good numbers of the zone fossil and G. (G.) miozea conoidea. A few specimens of the warmer water taxa Globigerinella aequilateralis, Globigerinoides trilobus, and Hastigerina pelagica are present. Diversity is moderate and preservation good.

Calcareous Nannofossils

This upper bathyal sequence contains very abundant, moderately well preserved, and relatively diverse nannofloras which indicate the presence of a thick and apparently continuous latest Pleistocene to mid late Miocene succession. The Pleistocene to latest early Pliocene nannofloras of this site can be readily subdivided into relatively small biostratigraphic units. The underlying early Pliocene and late Miocene cannot be as finely subdivided. The biostratigraphy of this site more closely resembles that utilized for the southern DSDP Leg 21 sites, than that used for the other Leg 29 sites because of the site's geographically intermediate position.

The consistent common occurrence throughout this sequence of both the cool-water preferring Coccolithus pelagicus and the climatically tolerant Cyclococcolithina leptopora, Helicopontosphaera kamptneri, Rhabdosphaera claviger, and Syracosphaera hystrica, clearly indicates that deposition was associated with either a cool subtropical or mid subtropical surface climate. Furthermore, the distribution and variations in the abundance of warm-water preferring taxa such as members of Ceratolithus, Discoaster, Pontosphaera, Scaptolithus, Scyphosphaera, Sphenolithus, and Triquetrorhabdulus suggest that late Miocene and early Pliocene deposition was associated with a more or less mid subtropical climate, whereas the late Pliocene and Pleistocene was from a cool subtropical climate. For example Sample 284-9, CC (latest early Pliocene) contains both the highest occurrence of Ceratolithus and the highest common occurrence of Sphenolithus; Sample 284A-3, CC (basal late Pliocene) the highest common *Scyphosphaera*; Sample 284-6-4 ("mid" late Pliocene) both the highest common occurrence of *Discoaster* and the highest occurrences of *D. pentaradiatus* and *D. surculus*; and Sample 284-3-2 ("mid" Pleistocene) the highest occurrence of common *Pontosphaera*. This pattern may well have resulted from relatively minor paleocirculation changes, a consequence of the changing paleogeography of the New Zealand landmass. Compare Stanton (1969, fig. 10) with Fleming (1962, figs. 10, 11). Present day summer surface temperatures at this site range from about 15°-21° C according to Nasu and Morita (1973). Winnowing of the nannofloras was only very sporadically observed.

The late Pleistocene Coccolithus pelagicus Zone includes all of Core 284-1 and extends down to within the 284A-1-3 to 284A-1-4 interval. The mid-early Pleistocene Pseudoemiliania lacunosa Zone occurs between Sections 284A-1-5, and 284-5-4. Gephyrocapsa oceanica has its lowest occurrence within this zone at Section 284-3-1.

The latest Pliocene Discoaster brouweri Zone occurs between Sections 284-5-5, and 284-6-3. D. brouweri is rare, but no other discoasters were observed, so its presence is unlikely to be due to reworking. Definite Cyclococcolithina macintyrei occurs throughout this and the underlying sediments. The late Pliocene Discoaster surculus Zone occurs between Sections 284-6-4 and 284-8, CC. D. pentaradiatus, D. surculus and D. sp. have their highest appearances at the top of this zone.

The latest early Pliocene part of the Reticulofenestra pseudoumbilica Zone occurs between Sections 284-9-1 and 284-9-5. It represents the overlap of rare Pseudoemiliania lacunosa with upward decreasing numbers of Reticulofenestra pseudoumbilica. Sphenolithus has its highest unreworked occurrence (rare) within the upper part of this interval. The very large undifferentiated early Pliocene to late Miocene part of the R. pseudoumbilica Zone occurs between Sections 284-9-6 and 284-21, CC. It represents the interval between the first appearance of Pseudoemiliania lacunosa and the last occurrence of Triquetrorhabdulus rugosus. The upper part of this interval is almost certainly early Pliocene in age for the last appearance of Ceratolithus tricorniculatus occurs about Section 284-11-2. and rare Discoaster asymmetricus occurs in the 284-13-4 to 284-14-1 interval. Further study may result in the basal Pliocene key species Ceratolithus amplificus being recognized within this interval. However, so far this taxon has not been recognized south of the marginally tropical Leg 21 Site 208 where it has its base at Sample 208-10-5, 30 cm. Because the sequential positions of the base G. puncticulata and top G. conomiozea events are different at Site 284, it is not yet possible to extrapolate the Site 284 horizon which is equivalent to the first appearance of C. amplificus in Site 208.

The late Miocene part of the *Reticulofenestra* pseudoumbilica Zone occurs between the top and the base of Core 284-22, the lowest core taken at this site. The nannofloras of this interval differ from those of the overlying intervals in containing very rare *Tri*quetrorhabdulus rugosus. The late Miocene age inferred for this interval is supported by the presence of very rare *Ceratolithus*, which has its base within the late Miocene, and the absence, except for extremely rare and sporadic specimens attributed to reworking, of the pre-late mid Miocene key species *Cyclicargolithus neogammation*.

Siliceous Microfossils

The samples from the site are barren of diatoms and other siliceous microfossils: silicoflagellates, sponge spicules.

SEDIMENTATION RATES

Sedimentation rates within the early Pleistocene to late Miocene sequence at Site 284 are based on three biostratigraphic horizons that could be correlated with the paleomagnetically dated New Zealand sequence. The surfaces defined by the lowest occurrences of *Globorotalia conomiozea* and *G. puncticulata* are paleomagnetically dated in New Zealand at 4.7 m.y. and 4.3 m.y., respectively (Kennett and Watkins, in press). The age of the surface defined by the lowest occurrence of *G. truncatulinoides* is taken to be 1.8 m.y. (Berggren, in preparation). These three horizons fall near a straight line on an age versus depth plot (Figure 7). Thus the net sedimentation rate was probably constant at 4.7 cm/1000 yr in the late Miocene to early Pleistocene. A minor unconformity separates the early and late Pleistocene sediments (Figure 5).

Site 284 represents a sequence of nannofossil oozes that show relatively uniform, slow rates of sediment deposition throughout the sequence with only one minor apparent break in sedimentation. Increased bottom water in the region during the middle Pleistocene has removed that part of the sequence. The nannofossil ooze being deposited at the present time may well have a precompaction rate close to that of the older sediments.

Figure 7. Sedimentation rate curve at Site 284.

SUMMARY AND CONCLUSIONS

Site 284 located in shallow water (1066 m) on the Challenger Plateau was continuously cored to a depth of 208 meters to obtain a late Cenozoic biostratigraphic and paleoclimatic sequence. The sequence consists of nannofossil ooze and foraminiferal ooze of late Miocene to latest Pleistocene age. The sequence has been divided into two subunits on the basis of slight color differences.

Except for a minor disconformity in the middle Pleistocene, sedimentation was continuous throughout and at the rate of 4.7 cm/1000 years. This is moderately rapid for this type of sediment. There is essentially no detrital influence, and no ice-rafted quartz grains have been observed. This indicates that the northern limit of icebergs has been south of this site during the late Cenozoic.

Common well preserved planktonic foraminiferal faunas and very abundant calcareous nannofossils of varying preservation occur throughout, providing useful biostratigraphic information. Obvious paleooceanographic fluctuations over the site are indicated by both the planktonic foraminifera and the calcareous nannofossils. See Kennett and Vella (Chapter 19, this volume), and Shackleton and Kennett (Chapter 20, this volume).

REFERENCES

- Fleming, C. A., 1962. New Zealand biogeography. A paleontologist's approach: Tuatara, v. 10(2), p. 53-108.
- Kennett, J. P. and Watkins, N. D., in press. Late Mioceneearly Pliocene paleomagnetic stratigraphy, paleoclimatology and biostratigraphy in New Zealand: Geol. Soc. Am.
- Nasu, K. and Morita, J., 1973. Temperature and salinity fields in the vicinity of New Zealand. Oceanography of the South Pacific 1972: New Zealand Nat. Comm. UNESCO, Wellington, p. 81-93.
- Stanton, B. R., 1969. Hydrological observations across the Tropical Convergence north of New Zealand: New Zealand J. Marine Freshwater Res., v. 3(1), p. 124-146.

								X-Ray					CI	lassificat	ion	Ca	Carbon rbonate			
	Sample Depth Below Sea			B Majo	ulk Samp or Consti	ole tuent	2-2 Majo	0μ Frac or Consti	tion ituent	< Majo	2µ Fract	tion ituent	Sand	Silt	Clay		Total	Org.	CaCO ₃	
Section	Floor (m)	Lithology	Age	1	2	3	1	2	3	1	2	3	(%)	(%)	(%)	Classification	(%)	(%)	(%)	Comments
284-1-2	2.7	Unit IA	Pleistocene	Calc.	Mica	Plag.	Mica	Plag.	Ouar.	Mica	Ouar.	Plag.	23.3	30.6	46.2	Sand-silt-clay	10.5	0.1	87	Amph in 2-20µ
284-3-2	20.2-20.3	Foram/1	0.0000000000000000000000000000000000000	Calc.	Mica	Ouar.	Mica	Quar.	Plag.	Mica	Ouar.	Plag.	39.9	34.0	26.1	Sand-silt-clay	10.5	0.1	87	Kaol in $<2\mu$
284 A-2-2	29.6-29.7	Nannofossil		Calc	Mica	Quar.	Mica	Plag.	Ouar.	Mica	Plag.	Quar.	18.7	26.3	55.0	Silty clay	10.2	0.2	84	K-Fe in 2-20 & <2µ; Kaol in <2µ
284-5-3	40.7-41.0	Ooze		Calc.	Mica	Quar.	Mica	Plag.	Quar.	Mica	Plag.	Quar.	19.2	34.6	46.2	Silty clay	10.4	0.1	86	K-Fe and Kaol in $<2\mu$
284-6-2	48.6	Unit 1B	Late	Calc.	Mica	Ouar.	Mica	Plag.	Ouar.	Mica	Plag.	Ouar.	15.1	36.1	48.9	Silty clay	10.6	0.1	88	
284-7-2	58.1	Foram/1	Miocene	Calc.	Mica	Quar.	Quar.	Mica	Plag.	Mica	Quar.	Plag.	15.1	27.9	56.9	Silty clay	10.8	0.1	89	Pyri in 2-20µ
284-9-2	77.2	Nannofossil	to	Calc.	Mica	Quar.	Quar.	Plag.	Mica	Mica	Quar.	Plag.	15.4	24.8	58.9	Silty clay	10.9	0.1	90	Pyri in 2-20µ
284-10-2	86.6	Ooze	late	Calc.	Quar.	-	Quar.	Plag.	Mica	Mica	Quar.	Plag.	8.6	25.5	65.9	Silty clay	11.0	0.1	91	Pyri in 2-20 μ ; Gyps in $<2\mu$
284-11-2	96.1-96.2		Pliocene	Calc.	Quar.		Quar.	Plag.	Mica	Mica	Quar.	Plag.	7.7	23.0	69.4	Silty clay	11.4	0.1	94	Pyri in 2-20µ; Gyps in <2µ
284-12-3	107.1-107.2			Calc.	Quar.	-	Quar.	Plag.	Mica	Mica	Quar.	Plag.	8.7	29.5	61.8	Silty clay	11.4	0.0	94	Pyri in 2-20 μ ; Gyps in $< 2\mu$
284-13-3	116.5-116.6			Calc.	Quar.	-	Quar.	Mica	Plag.	Mica	Quar.	Plag.	8.6	25.7	65.7	Silty clay	11.3	0.0	94	Pyri in 2-20 μ ; Gyps in $<2\mu$
284-14-2	124.6-124.7		r 1	Calc.	-		Quar.	Plag.	Mica	Mica		Kaol.	6.9	25.9	67.2	Silty clay	11.6	0.1	96	*Quar, Plag. equal in abund. Gyps in <2µ
284-16-2	143.7			Calc.	Quar.	-	Mica	Quar.	Plag.	Mica	Quar.	Plag.	5.5	24.0	70.6	Silty clay	11.3	0.1	94	Kaol in 2-20µ; Gyps in <2µ; Pyri in <2µ
284-17-2	153.2			Calc.	~	-	Quar.	Plag.	Mica				7.9	31.6	60.4	Silty clay	11.4	0.0	95	Pyri in 2-20µ; *No results available
284-19-2	171.9			Calc.	Quar.	-	Mica	Quar.	Plag.	Mica	Quar.	Plag.	6.0	38.9	55.1	Silty clay	11.3	0.0	94	Pyri in 2-20µ, <2µ; Gyps in <2µ
284-21-2	191.1			Calc.	-	-	-	-	-	Mica	Quar.	Plag.	3.4	31.5	65.0	Silty clay	11.5	0.0	95	Pyri in <2µ; Gyps in <2µ; *No results avai
284-26-6	206.6			Calc.		-	Quar.	Plag.	Mica	Mica	Quar.	Plag.	3.4	28.4	68.2	Silty clay	0.2	0.0	2	Clin in 2-20µ

APPENDIX A Summary of X-Ray^a, Grain Size, and Carbon-carbonate Results, Site 284

^aComplete X-ray results - Site 284 will be found in Appendix I, Tables 13 and 14.

^bUnusual mica peak intensities throughout hole. Peak at 4.98Å is 1.4 × usual deep sea intensity as compared to 9.93Å intensity peak. Peak not normally present at 3.31Å is equal (approx.) in intensity to 9.93Å peak.

LATE PLEISTOCENE 4

284	Ho1	e		Co	re 1	Cored In	terv	al:0	0.0-8.5 m	Site
	F CH/	OSSI	TER	N	S		NOI.	IPLE		
ZONE	FOSSIL	ABUND.	PRES.	SECT 10	METER	LITHOLOGY	DEFORMAT	LITHO.SAM	LITHOLOGIC DESCRIPTION	AGE
	N	A	м		0.5		1		Core contains variations of NANNO FORAM 00ZE, i.e. a foram-rich nanno ooze, and nanno-rich foram ooze; ostracods generally 5% to a high of 20% at Sec. 2 (111 cm); core is soft, with Mn stains and streaks and color variations that include: very	EISTOCENE
	N	A	м	1	1.0		1		light gray (N7, N8), grayish yellow green (567 7/2), bluish white (58 9/1), light greenish gray (567 8/1), yellowish gray (57 8/1) and pinkish gray (5YR 8/1).	ATE PL
	N	A	M		111		Ť	130	<u>\$5 1-130 55 2-111 55 6-30 55 CC</u>	
	N	A	м		111		1		OST - 5% F -35% OST - 5% N -85% F -65% N -45% N -87%	
	N	A	м		1		1		G -TR Op -TR	Expl
	N	A	м	2	l.r.		1	111	<u>x-ray 2-119 (Bulk)</u> Calc - M Quar - TR Plag - TR	
	N	A	м	_			1		Mica - P Grain Size 2-117 (22 2 20 6 46 2)	
es	N	A	м	- 7	1111		1		<u>Carbon Carbonate 2-115</u> (10.5, 0.1, 87)	
ul i noi d us	N	A	м	ಿ	1111		1			
truncat	N	A	м	_			-			
6. (6.) C.	Ņ	A	м	4	1111	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$				
	N	A	м		1111					
	N	A	м				1			
	Ň	A	м		11	++++++++++++++++++++++++++++++++++++	-			
		1997		5						
	N	A	M-							
	N	A	м				1	30		
	N	A	м		111		1	~		
	N	A	м	6	1111					
	5	4	6		1111					
	DSR			C Ca	ore tcher			cr		
	1.11	M	1.0							

ite	284	Ho1	e		Co	re 2	Cored In	terv	a1:	8.5-19.0 m
		F CH/	OSSI	L	z			NOI	PLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTIO	METER	LITHOLOGY	DEFORMAT	LITH0.SAM	LITHOLOGIC DESCRIPTION
ELSIVUEN	ul fnoides sa	FDSRN	A	G M	C Cat	ore tcher				Core catcher only, a FORAM-BEARING NANNO OOZE, very light gray (NB). SS CC
1 107	G. (G.) truncat P. lacuno									F - 8% N -92% Ech -TR

lanatory notes in Chapter 1

Site	284	Hol	e		Core	3	Co	red In	ter	val:	8.0-27.5 m	Sit	e 284		Hole		Co	re 5	Cored In	iter	val:	37.0-46.5 m
AGE	ZONE	FOSSIL 2	OSSIL RACTI ONNBY	PRES. B	SECTION	METERS	LITH	OLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE		FO: CHAR TISSOJ	AGUND.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
EARLY PLEISTOCENE LATE PLEISTOCENE	G. (G.) truncatultnoides P. lacunosa	N N N N N N N N N N N N N N N N N N N	A A A A A A A A A A A A A A A A A A A		2 3 4 5 6					131	FORMA BEARING-RCID TO FORMA NANNO 002E light gray (N7) to very light gray (N8) with zones of OSTRACOD BEARING TO RICH FORAM NANNO 002E. Core is soft with color banding of: light olive gray (SY 6/2), light bluish gray (SB 7/1), light olive gray (SY 6/1), bluish white (SB 9/1), vellowish gray (SY 8/1), light gray (7.SYR 7/0) to (N7) and light gray (N7) swirled with olive gray (SY 6/3). Some Mm streaks occur throughout. <u>SS 131</u> <u>SS CC</u> - 10% F - 353 N - 45% N -45% 0ST - 33 HM -TR Q - TR Ech - TR MH - TR NM - TR Plag - TR Mica - P <u>Grain Size 2-73</u> (39.9, 34.0, 26.1) <u>Carbon Carbonate 2-72</u> (10.5, 0.1, 87)	LATE PLIOCENE	G. (T.) Inflata	V. lacunosa D. brouweri	N N N N N N N N N N N N N N N N N N N	A M M M M M M M M M M M M M M M M M M M	1 2 3 4 5 6 cat	0.5- 1.0-			80 60 CC	Core is a light gray (N7) FORAM NANNO 002T, soft with Mn streaks. Other colors noted are: bluish white (58 97/1). (with olive gray swirled deformation) and light bluish gray (58 77/1). Other lithologies include OSTRACOD-RICH FORAM NANNO 002E (SS 6-60) and a FORAM BEARING MANNO 002E in the core catcher. SS 1-80 SS 6-60 SS CC USIT - 5% OST - 20% OST - 2% F -40% F -35% N -92% M -TR 0P -TR Py -TR Ech -TR M -TR M -TR Ech -TR M -TR M -TR Ech -TR M -TR M Quar - TR Plag - TR Mica - TR Mica - TR <u>Grain Size 3-68</u> (19.2, 34.6, 46.2) <u>Carbon Carbonate 3-66</u> (10.4, 0.1, 86)

Core 4 Cored Interval: 27.5-37.0 m NO RECOVERY

Explanatory notes in Chapter 1

SITE 284

Site 284	Hole		Cor	ne 6	Cored In	terval	: 46.5-56.0 m	Sit	284	Ho	le		Co	re 7	Cored In	ter	val:	56.0-65.5 m
AGE ZONE	FOSSI CHARAC TUSSOJ	PRES. BIT	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL 2	ARAC	DRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
LÀTE PLIOCENE G. (T.) înflata	D, browerl D, surculus Navo 1 - N N N N N N N N N N N N N N N N N N	NMMM GNM MG	1 2 3 4 5 6 Cat	0.5			Core is basically a FORAM-BEARING NANNO 002E, light gray (N7) soft, with slight Mn dark streaks, mottles and bluish white (58 5/1) colors. A FORAM-NANNO 002E becomes dominant in Secs. 2 and 4. In Sec. 3 (141 cm) it is ostracod-rich. Other colors noted include: greenish gray (56Y 6/1) (with deformation swirling), light gray (N7) with greenish gray (56Y 6/1) mottles and slightly stiff-bluish white (58 9/1) to (N7). SS 2-100 SS 3-141 SS CC F -50x 0ST -25% F -5% N -50% F -25% N -92% N -50% I -2% N -92% N -50% I -2% Mi -TR 0ST -TR HM -TR 0P -TR X-ray 2-63 (Bulk) 0 Quar - TR Plag - TR Mica - TR Grain Size 2-61 (15.1, 36.1, 48.9) Carbon Carbonate 2-59 (10.6, 0.1, 88)	LATE PLIOCENE	6. (T.) fuflata D. surculus	N N N N N N N N N N N N N N N N N N N	A A A A A A A A A A	M M M G M M M M M M M M M M M M M M M M	1 2 3 4 5 6	0.5 1.0			44 CC	Core is basically a MICRONODULE BEARING, FORAM, OSTRACOD-RICH NANNO 002E light gray (N7) to bluish white (5B 9/1) in color with Mn streaks and mottles. Generally soft. Sec. 2 has fewer micronodules and is a FORAM AND OSTRACOD-BEARING NANNO 002E. <u>SS 1-44</u> SS CC F - 200 OST - 8% OST - 25% N - 8% N - 52% DE - 7R Di - 7R X-ray 2-61 (Bulk) Calc - M Ouar - 7R Mica - 7R Mica - 7R <u>Grain Size 2-59</u> (15.1, 27.9, 56.9) Carbon Carbonate 2-57 (10.8, 0.1, 89)

	1	CH	ARAC	IL TER	N	s		NOL	APLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTIC	METER	LITHOLOGY	DEFORMAT	LITHO. SAM	LITHOLOGIC DESCRIPTION
LATE PLIULERE	6. (T.) inflata	FDSRN	A	MG	Cat	ore ccher				No recovery except for core catcher which contains a OSTRACOD FRAGMENT-RICH FORAM NANNO 00ZE. SS CC 0ST -155 F -355 F -355 G -TR 0P -TR

Sit	e 284	1	Ho1	e		Co	re 9	Cored In	ter	al:	75.0-84.5 m
	Τ		F	OSSI	L				×	-	
	- 14	ġ.	CH	T	IER	ION	ß		VIIO	MPL	
AGE	208	107	SSIL	UND.	S.	SECT	METE	LITHOLOGY	CRM	HO.S	LITHOLOGIC DESCRIPTION
			FO	AB	PR				DEF	LIT	
			N	A	Μ		-		1		FORAM NANNO OOZE, bluish white (58 9/1). soft with some Mn
							0.5-		Ľ	90	mottles, streaks, and pyrite burrows appear. The core gets slightly stiffer in Sec. 6. The core catcher is a FORM and
			N	A	P	1	-				OSTRACOD-BEARING NANNO OOZE.
							1.0-				<u>SS 1-90</u> F -35% F - 7%
			N	A	P		3				N -65% OST - 5% DI -TR N -87%
			N	A	M	\vdash	-	+++++++++++++++++++++++++++++++++++++++	1		OP -TR M1 -TR
			1	1	1		3		1		X-ray 2-70 (Bulk)
			N	A	M		E	+++++	1		Quar - TR Mica - TR
						2	13				Grain Size 2-68 (15 4 24 8 50 9)
			N	A	м		1				Carbon Carbonate 2-66 (10 0 0 1 00)
	1						-				
	1		N	A	М		E		1		
							-	++++	1		
R	1	lica	"	A	"	3	Ŧ		1		
TOCE		Idmi	N	A	M			<u></u>			
Y PL		lopna					Ξ	+++++			
EARL		bsq .	N	A	м		1	++++	1		
		æ					1	++++	1		
	10		N	A	м	4		F###			
	flat		N			1	E				
	t (126	"	2		E	++++			
	(Τ.					-		5454	Ē		
	9		1	^	n		-		ň		
			N	A	М						
						5					
			N	A	M		Ξ	1	T		
							1	-+-+-+-	1		
			N	A	Ρ		-	+++++	T		
							Ξ		ř.		
	ta		N	A	M	6	11				
	cula		F	A	MG		1				
	incti		N F	A	MG		Ξ	=======			
) pu		DS				H	+++	1	Η	
	E.		RN	A	м	Cat	ore cher				
	ė.	-	-							CC	

Site	284	Hole		Co	re 10	Cored In	terv	val:	84.5-94.0 m	Site	284	Но	le		Core	e 11 C	Cored Inte	erval:	94.0-103.5 m
AGE	ZONE	FOSSIL FOSSIL	ACTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL D	ARAC . ONUBA	IL TER	SECTION	METERS	HOLOGY	DEFORMATION LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
		N	A M	1	0.5	┍┍┍┍┍┍┍ ┝┝┝┝┝┝┝┝ ┙┪┥┥┥ ┙┪┥┥┪┪			Bluish white (5B 9/1) FORAM-RICH NANNO 00ZE. Core is very soft with Mn specks, burrows, mottles, and traces of pyrite. The core catcher contains a OSTRACOD RICH FORAM/NANNO 00ZE. SS CC OST -20% F -30% N -50% OP -TR <u>X-ray 2-64 (Bulk)</u> Calc - M Ouar - TR			N	A	P	1	0.5			The core is a FORAM/NANNO 00ZE bluish white (SB 9/1) in color, a few dark spots of Mn. The core becomes white (2.5Y 8/0) in Sec. 4 with a few Mn streaks. The lithology changes to a FORAM-BERRING NANNO 00ZE in the core catcher. <u>SS CC</u> F - 5% N -95% <u>X-ray 2-67 (Bulk)</u> Calc - M Quar - TR
		N	A M	2	huuluulu		1		Grain Size 2-59 (8.6, 25.5, 65.9) Carbon Carbonate 2-58 (11.0, 0.1, 91)			N	A	м	2				<u>Grain Size 2-65</u> (7.7, 23.0, 69.4) <u>Carbon Carbonate 2-64</u> (11.4, 0.1, 94)
ARLY PLIOCENE)./ puncticulata seudoumbilica	N	A M	3	munnun					Y PLIDCENE) puncticulata	eucourio 1 1 1 Ca	A	м	3				
<u>م</u>	e. r.	N	A M	4	munu		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			EARL	6. (T.)	N N	A	м	4			 	
		N	A M	5								N	A	м	5			t T	
		N F D S R	A M A MG	6	ore	VOID						N FDSR	A	M MG	6 Cor			1	
		N	M	Cd I	ener.			CC		Expl	anato	y no	tes	in Cha	apter	r 1	근고	CC	

SITE 284

Sit	e 284	Hol	e	C	ore	12	Cored I	Inter	rval:	103.5-113.0 m	Site	284	Ho	le		Con	e 13	Cored I	nterv	val:1	13.0-122.5 m
AGE	ZONE	FOSSIL 2 m	OSSIL RACTE ONNBY	PRES. 2		METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL C	FOSSI ARACT ONNBY	PRES. 33	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
		N	A	м 1	0.					OSTRACOD-BEARING FORAM/NANNO DOZE blutsh white (58 9/1). Core is soft with intense deformation. The core catcher contains a FORAM AND OSTRACOD-BEARING NANNO DOZE. <u>SS CC</u> F - 5% OST - 5% OST - 5% N -90% <u>X-ray 3-67 (Bulk)</u> Calc - M Ouar - TB			F	м	MG	1	1.0				FORAM AND OSTRACOD-BEARING NANNO 00ZE, soft with a bluish white (5B 9/1) color and a few dark streaks. <u>SS CC</u> F - 4% 05T - 2% N -94% <u>X-ray 3-57 (Bulk)</u> Calc - M Quar - TR
		N	A	M 2						<u>Grain Size 3-55</u> (8.7, 29.5, 61.8) <u>Carbon Carbonate 3-63</u> (11.4, 0.0, 94)			N	A	м	2	and mathematic				<u>Grain Size 3-55</u> (8.6, 25.7, 65.7) <u>Carbon Carbonate 3-54</u> (11.3, 0.0, 94)
EARLY PLIOCENE	 (T.) puncticulata R. pseudoumbilica 	N	A	м		In the second second		+++++++++++++++++++++++++++++++++++++++			EARLY PLIOCENE	(G.) mídzea conomíozea R. bseudoumbílica	N	A	м	3	treatments				
		N	A	м								.9	N	A	P	4	den harden				
		N	A	м 6		the second s							N	A	м	5	entren handren				
		N FDSRN	A A M A	M MG M Ci	Core	e			cc				N FDSRN	A M A	M Ag M	Con	re ther			сс	

SITE 284

Site	284	Hole		Co	re 14	Cored I	nter	/a1:1	22.5-132.0 m	Sit	te 28	4	Hole	-	Co	re 15	Cored In	erval	: 132.0-141.5 m
AGE	ZONE	FOSCHAR CHAR TISSOJ	ACTER ACTER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE		ZONE	FOSSIL P	ABUND.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHOLOGIC DESCRIPTION
		N	A M	1	0.5				Core is soft, FORAM AND OSTRACOD-BEARING NANNO 002E, bluish white (5B 9/1) in color with a small amount of dark streaks which increase in Sec. 4. Secs. 4 and 5 show more dark streaking, burrowing, motting and faint laminations to distinct dark, thin, curved laminations. There is no noticeable increase in opaques. SS CC F -10% OST -8% N -82%				N	Α,	1	0.5			Core is typically a FORAM AND OSTRACDD-BEARING NANNO 002E, bluish white (5B 7/1) in color. There are some faint pyrite streaks, motiles and abundant dark stained burrows in Sec. 6. The core catcher is a FORAM-BEARING OSTRACOD-RICH NANNO GOZE. SS CC F -10% OST -25% N -65%
		N	АМ	2	the second se				<u>X-ray 2-65 (Bulk)</u> Calc - M <u>Grain Size 2-62</u> (6.9, 25.9, 67.2) <u>Carbon Carbonate 2-61</u> (11.6, 0.1, 96)				N	A 1	2	to and south			
SLY PLIDCENE	mfozea conomfozea oseudoumbilica	N	A M	3	the second s					ALY PLIOCENE		pseudoumbilica	N	A	3				
EAR	G. (G.) 1 R. 5	N	AM	4	to the second						- 101 - 0	6. (6.) mic R. pse	N	A	4	to be a best of the			
		N	AM	5									N	AM	5			1	
		N F D S R N	A M M AG A P	6 Ca	Core			cc					NFDRSN	A M A M	G G Ca	ore			c .

Site 284	Hol	le	_	Core	e 16	Cored In	nterval	: 141.5	5-151.0 m	Site	284	Hold	2	Co	orel	17 Cored In	terv	al:	151.0-160.5 m
AGE ZONE	FOSSIL 2.	OSSI ARACT ONNBY	PRES. B	SECTION	METERS	LITHOLOGY	DEFORMATION		LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL B	ABUND.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
LATE MIOCENE G. (G.) miozea	R. pseudoumbilice Navora N N N N N N N N	A A A A A A A A	M M P E M M G M	22 33 44 55 55	2.5. 1.0 Production of the product o			FOR (5B (5B OST N V-r- Quai <u>Grai</u> <u>Carl</u>	<pre>XAM AND DSTRACOD-EERRING MANNO DOZE, soft, and blutsh white 9/1) in color. There are Mn specks and laminations plus nt burrows and mottles of Mn and pyrite. CC - 5% - 905 av 2-72 (Bulk) c - M yr - TR in Size 2-69 (5.5, 24.0, 70.6) bon Carbonate 2-68 (11.3, 0.1, 94)</pre>	EXEL	 (G. (G.) mtotumida mtotumida S. (G.) mtotea conveninga R. scendounbilita 	N N N F N HDVRN	A F A F A M A M A M A M	1 2 3 4 5 6 ca	0.5	╴┍╴╦╶┍╷┅╷┅┍┿┅┍┝┅┍┙┅┙┅┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙		30	Core is typically a FORAM AND OSTRACOD-BEARING MANNO 002E, soft and bluish white (56 9/1) in color with a small amount of pyrite streaks and stains. The core becomes slightly stiffer in <u>Sec</u> . 4 with Mn mottles and curved laminations in <u>Sec</u> . 6. <u>SS CC</u> F - 55 OST - 4% N -915 <u>X-ray 2-72 (Bulk)</u> Calc - M <u>Grain Size 2-69</u> (7.9, 31.6, 60.4) <u>Carbon Carbonate 2-68</u> (11.4, 0.0, 95)

SITE 284

ite 284	Hol	le		Co	re 18	Co	red I	nterv	al:	160.5-170.0 m	Site	284	Hole	È.,	C	ore 1	19 Cored In	terv	a1;	170.0-179.5 m
ZONE	FOSSIL 2	FOSSI JARAC	LER .Say	SECTION	METERS	LITH	DLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL P	VSSI RACT	PRES. 23	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
	N	A	м	1	0.5			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		FORAM AND OSTRACOD BEARING NANNO 00ZE, bluish white (58 9/1) with very few Mn and dark streaks, except <u>Sec</u> . 4 which shows an increase in dark streaks and mottles. <u>Sec</u> . 6 shows an increase in wavy lamination of dark material. The core catcher is a FORAM AND OSTRACOD RICH NANNO OOZE. <u>SS CC</u> F OST -10% OST -15% N -75% OP -TR			N	A	P 2	0.5		0 0 0 0		FORAM/NANNO 00ZE, bluish white (58 9/1). There are swirle areas of Mn streaks and greenish gray (56Y 6/1) streaks. core catcher is a FORAM AND OSTRACOD BEARING NANNO 00ZE. SS CC F - 5% OST - 3% N -92% X-ray 2-42 (Bulk) Calc - M Quar - TR <u>Grain Size 2-39</u> (6.0, 38.9, 55) Carbon Carbonate 2-37 (11.3, 0.0, 94)
niotumida miotumida	pseudoumbilfca ∞	٨	м	3							TE MIOCENE	fotumida miotumida Mudoumbilica	N	A	р Р					
С. (G.) m	N K	A	м	4							LA	G. (G.) m P nee	N	A	Р 4					
	N	A	м	5									N	A	м					
	N F D S R N	A A A	P MG M	6 C Cat	ore								N F D S R N	A A A	р мg м Са	Core			cc	

SITE 284

Site	284	Hol	e	C	ore 20	Cored I	nterv	a]:1	179.5-189.0 m	Sit	e 284	3	lole		Co	ne 21	Cored In	nterv	erval: 189.0-198.5 m
AGE	ZONE	FOSSIL D	OSSIL RACTEL ONNEY	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE		FOS: CHARA TISSOJ	SIL CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	NDITANDARY LITHOLOGIC DESCRIPTION
		N	A I	2	0.5				Core is typically a FORAM AND OSTRACOD-BEARING NANNO 00ZE, bluish white (58 9/1), soft, only slight dark streaking increasing in <u>Sec</u> . 2. <u>Sec</u> . 6 shows wavy laminations of faint dark material. The core catcher is a FORAM BEARING NANNO DOZE. <u>SS CC</u> F - 3% N -96% M -TR Q -TR				N A	i P	2	0.5		00000	Solution Solution Solution Constraint FORAM-BEARLING NANNO 002E, bluish white (58 9/1), soft, with no dark streaking except toward bottom of core. The core catcher is a OSTRACOD AND FORAM BEARING NANNO 002E. Constraint SS CC OST - 10% F - 10% N - 80% N1 - 7R OP - 7R X-ray 2-61 (Bulk) Calc - M Grain Size 2-58 (3.4, 31.5, 65.0) Carbon Carbonate 2-56 (11.5, 0.0, 95)
LATE MIDGENE	G. (G.) miotumida miotumida R nsoudoumbilica	N	A P	3						LATE MLOCENE	G. (G.) mfotumida mfotumida	R. pseudoumbilica	N A	P	3				
		N	A P	5									N A	Р	5	ation maturation at			
		N F D S R N	A F A M A M	6 G 1 Ca	Core			сс					N A F A S R N A	P MG M	6 Cat	ore			1 1 20

ite	284	Hole		Con	re 22	Cored In	terv	a1:1	98.5-208.0 m	Site	284	Ho1	e A	C	Core	1 Cored In	terval	1:8.5-18.0 m
AGE	ZONE	FOS CHAR TI SSOJ	SSIL ACTER BRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL 2	OSS ARAC	LL TER	SECTION	LITHOLOGY	DEFORMATION	LITHOLOGIC DESCRIPTION
		N	A P	1	0.5		000		FORAM-BEARING NANNO 00ZE bluish white (58 9/1), soft, with some Mn, pyrite and organic streaking. <u>Secs</u> . 4-6 show dark mottles and laminations. Core catcher lithology: NANNO 00ZE. <u>SS CC</u> F - 2% N -98% Mn -TR <u>X-ray 6-62 (Bulk)</u> <u>Calc - M</u> <u>Grain Size 2-59</u> (3.4, 28.4, 68.2) <u>Carbon Carbonate 6-58</u> (0.2, 0.0, 2)			N	A	M	0. 1 1.	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000	Core is typically a FORAM, NANNO 00ZE, very light gray (N8) to light gray (N7) in color. Sec. 5 shows a light gray with light olive gray (5Y 6/1) deformation (swirling). The core catcher contains a OSTRACOD, FORAM, NANNO 00ZE. <u>SS CC</u> <u>OST</u> -30% F -30% N -40% Ech -TR
		N	A P	-			1					N	A	м				e er
NC.	mi otumi da Mi î î î ca	N	A P	3	and marked in					PLEISTOCENE					3	++++++++++++++++++++++++++++++++++++++	*	
THE MINE	 (G. (G.) mfotumida R. pseudoumb 	N	A P	4						EARLY					4			
		N	A P	5	interior in							N	A	м	5		0	
		N F D S R N	A P A MG A M	6 Cat	ore		1	cc				N FDSRN	A A A	M G M	Core	e e e e + + + + + + + + + + + + +	000000	

Site 284	1	lole	A	¢	ore 2	(Cored Int	erva	1:2	27.5-37.0 m	Sit	e 284		Hole	A	Co	ne 3	Cored Ir	terv	terval:65.5-75.0 m
AGE ZONF		FOS: CHARA TISSOJ	STL CTER	SECTION	METERS	LIT	THOLOGY	DEFORMATION	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	70NE	1074	FOS CHARA TISSOJ	SIL CTER	SECTION	METERS	LITHOLOGY	DEFORMATION	NOTITINO DESCRIPTION
EARLY PLEISTOCENE G. (G.) truncatulhoides	cunosa	N / / / / / / / / / / / / / / / / / / /	A B A B A B A B A B A B A B A B A B A B	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5					Core is a FORAM-RICH/FORAM-NANNO 002E light gray (N7) in color. Other color variations occur and include: light gray (2.5Y 7/0) with a small amount of Mn and pyrite streaks in Sec. 2; olive green (5Y 6/4) (pale olive) with light gray (2.5Y 7/0) in Sec. 3; swiried olive and gray with light gray (2.5Y 7/0) in Sec. 4; Mn burrows, light gray (N7) with light olive bands (ST 6/1) in Secs. 4 and 5. The core catcher contains a FORAM AND OSTRACOD RICH NANNO 002E. SS CC F -20% OST -25% N -35% G -TR OP -TR Y-ray 2-67 (Bulk) Galc - M Mica - TR Grain Size 2-65 (18.7, 26.3, 55.0) Carbon Carbonate 2-63 (10.2, 0.2, 84)	LIOCENE		urculus	N J N J N J N J N J N J N J N J N J	L M L M L M L M L M	1 2 3	0.5			Core is typically a FORAM NANNO 00ZE, bluish white (58 9/1), soft, with dark streaks, burrows and mottles of Mn. SS CC F -35% A -65% Ech -TR
LATE PLIOCENE G. (T.) inflata	P. 1ac	N F F N N N N N N N N N N N N N N N N N	A P A P A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A A P A A A P A		Core						LATE P		D. s.	F DR SN A	MG	4 5 6	re			

SITE 284

