13. CALCAREOUS NANNOFOSSILS FROM THE SOUTHERN SOUTHWEST PACIFIC, DEEP SEA DRILLING PROJECT, LEG 29

Anthony R. Edwards, New Zealand Geological Survey, Lower Hutt, New Zealand

and

Katharina Perch-Nielsen, Institute for Historical Geology and Palaeontology, Østervoldgade 10, 1350 Copenhagen K, Denmark¹

ABSTRACT

Calcareous nannofossils were obtained from all sites drilled in the southern southwest Pacific on Leg 29 (Figure 1). They occur in mid Paleocene to late Pleistocene sediments and show highly variable states of preservation. Diversity is generally low, as might be expected from the high southern latitudes of the sites drilled. Consequently the biostratigraphic resolution is much lower than that in subtropical and tropical areas, especially the mid Oligocene to early Pliocene part of the column. Great similarity was found between the high southern and high northern latitude assemblages of the same age, although a number of species seem to occur only in the north whereas only very few seem to be restricted to the south. Observations on the fine structure of coccoliths and nannoliths, and comparison with their northern high latitude equivalents, showed a surprisingly high degree of morphological agreement. Three new species, Ericsonia tasmaniae, Helicopontosphaera? subantarctica, and Hornibrookina australis are described.

INTRODUCTION

The calcareous nannofossils (coccoliths and nannoliths) of DSDP Leg 29 were studied from several points of view for this report:

1) Age determinations were deduced from the biostratigraphic studies and the results of these studies are summarized in the appropriate site report chapter.

2) Species distribution of most species observed (using the light microscope) is listed in tables with an outline of the biostratigraphic framework employed in this high latitude region (Tables 1-12).

3) Some paleoecological observations have been made.

4) Nannofossil structure is discussed emphasizing the fine structure of some of the nannofossils in order to compare them with the structure of the same species in the equivalent northern hemisphere environment (Plates 1-21).

Calcareous Nannofossil Biostratigraphy

The low-diversity nannofloras found in the Neogene and Oligocene do not allow a high-resolution biostratigraphy to be used in this subantarctic region. However, somewhat more diverse assemblages do occur in parts of the Eocene and Paleocene. The biostratigraphic events used for age assignment on Leg 29 are summarized in

Figure 1. DSDP Leg 29 site locations.

Table 1. Table 2 includes the definition of the calcareous nannofossil biostratigraphic units used on Leg 29, their correlation with New Zealand stages, and their adopted age. The age distribution of the cores and sections, according to their coccolith and nannolith content, is summarized in Table 3. In Tables 4 to 12, the species distribution in all samples studied is given.

Species identification in many samples was often difficult due to heavy overgrowth on the coccoliths and nannoliths. Also the authors each having their own

¹Present address: Department of Geology, Swiss Federal Institute of Technology, Zurich, Switzerland.

J	Foraminifera and Radiolarians	Series	Epoch		Calcareous Nannofossils
Т. В.	Saturnalus circularis (Site 278, subantarctic) Globorotalia truncatulinoides	Late Pleis Early Plei	tocene T stocene	Γ.	Pseudoemiliania lacunosa (not Site 278
T.	(Site 264, temperate) Eucyrtidium calvertense (Site 278, subantarctic)	1.8 m.;	y.		
		Late Plioc	ene T	r.	Reticulofenestra pseudoumbilica
B.	Globorotalia puncticulata	Early Plio	cene		renoulojonosnu pseudoumoniou
T.	Triceraspyris sp. (Site 278, subantarctic)	4.3 m.	у.		
T.	Globorotalia mayeri mayeri	Late Mioc	ene		
B.	Praeorbulina glomerosa curva	Mid Mioco	T	Г.	Discoaster deflandrei
		22.5 m	n.y. T	٢.	Reticulofenestra bisecta
т	Globigeransis index	Late Mid Early Olig	gocene T ocene	٢.	Reticulofenestra placomorpha
1.	olongerapsis index	Late Eoce	ne B	3.	Reticulofenestra bisecta
		Late Paleo	T	Γ.	Discoaster multiradiatus
		Mid Paleo	cene	3.	Discoaster multiradiatus
		Early Pale	ocene		Hornibrookina teuriensis
		Late Creta	iceous		

 TABLE 1

 Biostratigraphic Events Used for Age Assignment in DSDP Leg 29 Sites^a

Note: B = first occurrence of a species; T = last occurrence.

^aDifferent events define the Plio/Pleistocene and Miocene/Pliocene boundaries in temperate and subantarctic sites. Late Cenozonic radiometric ages based on paleomagnetic dating of New Zealand marine sediments (Kennett et al., 1972; Kennett and Watkins, 1972). Older ages according to Berggren (1972).

"tradition" and opinion about species names and generic assignments often had to adopt a mutual compromise on the names to be used in this report. Selected species are illustrated on Plates 1-21.

PALEOECOLOGY

Several paleoenvironmental factors can be reconstructed with reasonable confidence if wellpreserved nannofloras from samples dated by at least one other fossil group are available. In the material examined here, coccoliths older than late Pleistocene are usually only moderately or poorly preserved. Furthermore, coccoliths were often the main basis for determining the age. Thus conditions for paleoecological studies were far from ideal.

The factors influencing a coccolith assemblage from its living state to the sample which is studied are numerous and include:

1) Solution during sinking. This is documented by the fact that only about one third of the living species are

found in Recent sediments. Solution at this stage evidently affects different species differently.

2) Sorting of the assemblage according to size by currents (winnowing), both during sinking and in the young sediment.

3) Solution of some species and overgrowth on others as a result of diagenesis. Solution removes part of the assemblage, while overgrowth renders another part nearly or wholly indeterminable. Generally small species are dissolved so the resulting assemblage might be taken for a residual assemblage after winnowing, if the state of preservation of the remaining assemblage is not taken into consideration. Diagenesis, however, affects coccoliths differently at comparable depths (i.e., in a 9-m core) depending on the lithology of the sample (i.e., the presence of clay, zeolites, siliceous organisms, and organic material). Thus, in interbedded lithologies, the presence of different coccolith assemblages or differences in diversity need not indicate major differences in climate, but might result from different

TABLE 2	
Calcareous Nannofossil Biostratigraphic Events and Zones, DSD	P Leg 29

Adopted	Age	New Zealand Stages	Nannofossil Z	ones	Biostratigraphic Events (Regional reliability in brackets)
	Late		Coccolithus p	elagicus	
Pleistocene	Early	Castlecliffian Nukumaruan	P. lacunosa P.	lacunosa	T. Pseudoemiliania lacunosa (high) -B. Gephyrocapsa oceanica (moderate to low) -T. Discoaster brouweri (low to very low)
Dissans	Late	Waitotaran	D. D.	surculus	T. Discoaster surculus (low to very low)
Phocene	Early	Opoitian			-B. Ceratolithus amplificus (very low)
	Late	Kapitean — — — — — — — — — — — — — — — — — — —	Reticulofer pseudouml	nestra bilica	-T. Triquetrorhabdulus rugosus (low to very low)
Miocene	Mid	Waiauan Lillburnian Clifdenian	Cyclicargol neogamma	ithus ttion	–T. Cyclicargolithus neogammation (high) –T. Discoaster deflandrei (moderate)
	Early	Altonian Otaian	Discoasi defland	ter Irei	
		Waitakian			T. "Reticulofenestra" bisecta (high)
	Late	Duntroonian	"Reticulofer	iestra''	
Oligocene		Late	bisect	ta	
	Mid	Whaingaroan —	-		
		Early	R. placome	orpha	-1. ReticuloJenestra placomorpha (moderate)
	Early		Blackites r	ectus — — —	T. Isthmolithus recurvus (moderate to low) B. Discoaster deflandrei (low)
		Runangan	R. oamaru	ensis	- T. Discoaster saipanensis (low to very low) - B. Reticulofenestra gamaruensis (moderate)
	Late		Discoast saipanensis I. recurv	er and us	-T. Cyclicargolithus reticulatus (high) -T. Zygolithus (low?)
		Kaiatan	C. oamaru	ensis	-B. Isthmolithus recurvus (high) -B. Chiasmolithus oamaruensis (high)
Focene			"R. " bise	ecta	-B "Reticulatenestra" hisecta (high?)
Locene	2		D. tani noo	lifer	B. Cvelicargolithus reticulatus (high)
		Bortonian	D. distinctus & R. H	hampdenensis	B. Reticulofenestra hamndenensis (moderate)
	Mid	Porangan	C. cristatus D. elegas	s and ns	-B. Reticulofenestra placomorpha (moderate)
		Heretaungan	Reticulofen	nestra	—T. <i>Discoasteroides kuepperi</i> (moderate)
		Mangaorapan	D lodog	ncic	B. Reticulofenestra dictyoda (high)
	Early	Waipawan Hid	C. grandis M. tribrach	and niatus	B. Discoaster lodoensis (low-very?) B. Discoasteroides kuepperi (high) T. Discoasteroides multimediatus (moderate)
	Late	Early	R. cuspis, mediosus D. multiraa	, D. and liatus	(also base Discoaster diastypus) (high?)
Paleocene	Mid	Teurian Mid	Unname	ed	-B. Discoaster multiradiatus (high)
	(part)	(part)	H. kleinp	elli	T. Heliolithus kleinpelli (high?)

Note: B = first occurrence of a species; T = last occurrence.

					Site	Hole			
Adopted	Age	275	276	277	278	278A	279	279A	280
Pleistocene	Late	"1-2 to 2,CC"	0.0000	1-1 to 1-2	1-1 to 1-4	1,CCand 2,CC	1-1	1-1 to 1-3	1-1
·	Early		1, CC	1-2, 110 cm to	2-1 to		1-1,100 cm	7777	///////
Pliocene	Late			1-3, 110 cm	8, CC (top)	-	1////	(////	"Barren"
rnocene	Early			V////	fffffff	-	////	/////	1 T
				////			////	////	66
		/////			8, CC		////	(////	urg 1-4
	Late	/////		1////	to		////	{////	to to
		/////		////	15, CC		////	////	1, CC
				1////			1////	////	X
				(////			hilling	1.2 10 14	
	Mid	/////		1///	16-1 to	-	1-1 10 1, CC	1-4, 110 cm	
Miocene		/////		1///	25-3			to 3-6, 30 cm	
Milocome		/////		1///		1		MILLI	
				////					
		/////		1////	25-4			3-6, 110 cm	
	Early	////		(///)	to			to	
				////	30, CC			11, CC	
				1////					
		11/1		1////					
		////	Т	philip		-			
				I I				BASALT	
		////	(s						
	Late	$///\Lambda$	L	0					
		////	ed si	au 2 1-4 10 cm	31-1				
		////	elect	E to	to				
Oligocene		////	of se	·5 15-4	34 CC				
			lges	- Wa					
	101	////	(rai						
	Mid	////							
		////		1					
		$\langle \rangle$	L	15-5	BASALT	1			
	Early	////		to 21-2					
-		////	T	21-3 to					
		/////	1	21, CC					
		////	т	22-1 to 22-5					
	Late	////		26-3					
		$\langle \rangle$		26-4 to					
				20,00					
Eocene		////	1'	30, CC					
			1 _	31-1 to 35 CC					
	Mid			36-1 to 37-2					
		$///\Lambda$		37-3 to 35, CC					
		////	TIII	38-1 to					
		////		40, CC					
	Early	1///	TTTT	43-1 to 43, CC					
		////	1	44-1 to 44-2					
		////	T n	44-2, 120 cm					
Paleocene	Late	1///	mple	45, CC					
	Mid	(////	it Sa	46-2 to 46-4					
	MIG	1////	B	46, CC					

 TABLE 3

 Calcareous Nannofossil Correlations DSDP Leg 29

Note: Crosshatched areas indicate unconformities. B = first occurrence of a species; T = last occurrence.

TABLE $3 - 0$	continued
---------------	-----------

280A	281	281A	282	283	283A	284	284A	Nannofossil Events
	1, CC to 2-2	1-1	1-1 to 1-4	7/////	111111	1-1 to 1, CC	1-1 and 1-2	T P lacurosa
1	2-3 to	1-2 to	TTTTT	1.00	I, CC	2,CC and 3-1	1-5 to 1,CC 2, CC	B.G. oceanica
	3-5	1, CC	1////		2-1,40 cm	5-5106-3	3.00	T. D. brouweri T. D. surculus
	3-6 to	2, CC	1/////	Barren	Barren	9-1 to	3,00	T. R. pseudoumbilica
	5, CC	and 3. CC	V/////					
			//////			2000000000000		-B. C. amplificus
			(/////	f		21, CC		T. T. rugosus
						22-1 to 22,CC		1
	6-2 to		1-5, 18 cm					
	9. CC		1 CC					
	0.000		mm	. (
	1		Y/////					
	10.2.1		1/////					-T. C. neogammation
/	10-3 to		¥/////	3				
3	12-3		/////					-T. D. deflandrei
ight			/////					
or h			1/////	1 1				
l sec	12-4		1/////	1 1				
/ Ised	to		11/1	1 1				
nder /	10 100		man	1 ~ 1				
cor	13-3, 106 cm		2 CC	/ light				
P /			to	h nem				
1			5-1, 136 cm	sed /	1			
1111	10.0.100		m	sed				-T. "R." bisecta
	13-3, 130 cm		Y //////	den				
	TITT		V/////	ou /				
	/////		V//////	, 5 /				
	11/11		HULL	1, 1				
	(///)			1, 1				
3-2, 30 cm	1////			V, /				
1-5, 30 cm	11/1		5-1, 148 cm	1, 1				
	////			/ /				
	/////		10					
	1////		13-5, 110 cm					
	1////							
	/////			Barren				
	/////			Darren	0 1			
	/////		13,CC to 14,CC	4				-T. R. placomorpha
	13 CC (base)			1				-T. I. recurvus
	177717		15-1 and 15-2	8 5-2				B. D. deflandrei
	/4 . P/			Ran				1. D. supunensis
, 110 cm	Ling at /		15-2 and 15-3	in to				-B. R. oamaruensis
, 127 cm	h ng		15.2 20	W 5, CC				-T. C. reticulatus
	/ 2000//		to to					-T. Zygolithus
	Tinth		15, CC	1				-B. I. recurvus
	14-1 to 17-3.6 cm			6-1 to				
, CC to	"Poster"		16-1 to	Press				-B. C. oamaruensis
11, CC	Barren		18-1, 115 cm	Barren				B "R " hisecta
			BASALT					B. C. ratioulature
								D D k-made
17.00								B. R. nampaenensis
to								B. R. placomorpha
20, CC								-T. D. kuepperi
								A 1.54 Sec. 4
								-B. R. dictyoda
								-B. D. lodoensis
								B. D. kuepperi
Barren								-T. D. multiradiatus
								(- B. D. aussypus)
ASALT	SCHIST			BASALT				B D multiradiatus
nont I	Schist			DASALI				D. D. mattradiatus
				I ↓ 0				T H kleinpelli

TABLE 4A Calcareous Nannofossil Distribution, Site 277

Adopted Age	Late H	leist	toce	ne	Mid I to La	Pleis ate P	toce	ne																La	te to	o Mi	id (Oligo	ocen	e																
Zone	C	pela	gicu	s	<i>P</i> .	lacu	nose	1													-			Ret	icul	ofer	iest	ra b	isec	ta																
Lithology	Foram	F	oran rich lann ooze	m- 1 10	Fora	m N	fora rich lanr ooz	m- 1 10 e																For	am-	rich	Na	nno	007	e																
Depth Below Sea Floor (m)						0.0	-7.0									7.0)-16	.5		Τ		16	.5-2	6.0				2	6.0-	35.5	5				35.	5-4	5.0					45	.0-5	54.5	5	
Sample (Interval in cm)	1-1, 31	1-1, 131	1-2, 10	1-2, 50	1-2, 110	1-3, 10	1-3, 53	1-3, 110	14,10	14, 30	1-5 12	1.5 57	1, CC	2-1,50	2-2, 50	2-3, 50	2-4, 50	2-5, 50	2-6, 50 2 CC	2.1 110	3-2, 110	3-3, 110	3-4, 110	3-5, 110	3-6, 110	3, CC	4-1, 110	4-2, 110	4-4 110	4-5, 110	4-6,110	4, CC	5-1, 110	5-2, 110	5-3, 110	5-4, 110	5-5, 110	5-6, 110	s, cc	6-1, 110	6-2, 110	6-3, 110	6-4, 110	6-5, 110	6-6, 110	6, CC
Overall Abundance Overall Preservation	A A M M	A M	A G	A G	CA PM	C	A M	C M	A A	A A M N			A I M	A	A M	A M	A M	A M	A A M N		A A	A	A M	A M	A M	A	A M	A A	A A M N	A A A	A	A	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M
Chiasmolithus altus C. eopelagicus "Coccolithus" minutulus C. pelagicus	R C C	C	c	c	f f F A	x	C	x		R F F	2 F	F	R	FR	?	F	C R	C F	C C R		C C	C	C R	C R	C R	C R	C R	CO	C C R F	C C R R	C	C R	C R	C	C R	C R	C R	C R	C R	F	C	C	C	C R	C	C
Cyclicargolithus neogammation					c	_	-		A	A	A A	1 (C	C	С	F	F	F	FF	1	C	С	С	С	F	F	С	C	c (C	С	C	C	С	С	F	С	С	С	С	С	С	С	С	С	С
Cyclococcolithina leptopora C. macintyrei Discoaster deflandrei s.l. Discoaster brouweri s.l. Emiliania huxleyi	F F R F	F	F	R F	F R r	C	С	F C	x I X I	F R	< >	(F	t	R	х	1		R	RF	2 1	Ē	F				1		R											1						1	
Ericsonia alternans E. ovalis s.l. E. fenestrata s.l. Gephyrocapsa operta G. caribbeanica	F			C	c				A	C		. (c c	с	С	F	с	С	сс	c	сс	с	F	С	с	F	С	C (СС	c c	с	с	с	с	с	С	с	С	F	с	с	с	с	с	с	с
Helicopontosphaera kamptneri Helicopontosphaera sp. Isthmolithus recurvus Neococcolithes dubius Pontosphaera sp.	RF	F	x	R	x x	x x	с	x x	1	R	. ,	1	R	R	R		1	r 1	1	1	L	R	R	1				R	1	1		1							R		1 1					
Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra bisecta R. placomorpha	AA	A	A x	A	C R f	A R	A R	C A	A I F x	A / F I	F C		C F	F F	C	C	С	с	сс		c c	с	С	С	с	C R	C 1	C (сс	c c	с	F	с	с	с	с	C 1	C	с	C	с	c	с	с	С	F
Reticulofenestra sp. Rhabdothorax regale Sphenolithus moriformis	1 R	x			r r		R		x	R	R I	1 5	F R	F	F	F R	F R	F R	F F 1 R F	F I I R I	F F R R	F 1 F	F	F	F R	F R	F R	F R	F I R I	7 F	?	F R	F R	F R	F R	F R	F	F	F	R R	R R	R R	R R	F	F R	F
Syracosphaera hystrica Thoracosphaera sp. Zygrhablithus bijugatus	R 1 R	R	F	R	X f	5	R	x	R	R R R I	7 1	2 1	R	F	F	R F	R	R	сс	2 1	FF	R	R	R	F	F	R R	R R	RI	7 R	t F	R	R R	R R	R	F	R	R	F	R	R	R	R	R	F	R

Note: A=abundant; C=common; F=few; R=rare; X=1-5 specimens; 1=1 specimen; +=present trace; and -=absent. These symbols are in lower case when specimens are thought to be reworked or contaminated. G=good; M=moderate; and P=poor preservation.

TABLE 4A - Continued

Adopted Age																_						La	te te	o M	id C	ligo	ocer	ne																_			
Zone																					1	Reti	cule	ofer	iesti	a b	isec	ta																_			
Lithology	1					_						_		_				_			1	Fora	m-	rich	Nat	nno	002	ze																			
Depth Below Sea Floor (m)			54.	5-64	4.0				64	4.0-	73.5	5				7	3.5-	83.	0				83	3.0-	92.5					92.	5-10	02.0)				102.	.0-1	11.	.5			1	115	.5-1	21.0	0
Sample (Interval in cm)	7-2, 110	7-3, 110	7-4, 110	7-5, 110	7-6, 110	7, CC	8-1, 110	8-2, 110	8-3, 110	8-4, 110	8-5, 110	8-6, 110	8, CC	9-1, 110	9-2, 112	9-3, 110	9-4, 110	9-5, 110	9-6, 110	9, CC	10-1, 110	10-2, 110	10-3, 110	10-4, 110	10-5, 110	10-6, 110	10, CC	11-1, 110	11-2, 110	11-3, 110	11-4, 110	11-5, 110	11-6, 110	11, 00	12-1, 140	12-2, 110	12-3, 110	12-4, 110	12-5, 110	12-6, 110	12, CC	13-1, 110	13-2, 110	13-3, 110	13-4, 110	13-5, 110	13, CC
Overall Abundance	A	A	A M	A	A	A	A	A M	A M	A M	A M	A	A	A	A M	A	A M	A	A	A	A	A	A	A	A	A	A	A	A	A	A	Ам	A	A	A	A	A	A	AM	A	A	A M	A	A	A	A	AA
Chiasmolithus altus	C	C	F	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	F	C	F	C	C	E	C	C	C	C	C	F	C	C	C	C	C	C	F	C	C	C	C	C	C	CC
C. eopelagicus "Coccolithus" minutulus C. pelagicus		C		R	R	R		C	C	R	R	R	R		R	R	R	R	R	R		R	c	1	R	R		C		C	R	R	R			R	R	R	Č	R		C	C	C	R	R	RR
Cyclicargolithus neogammation	C	С	C	С	A	Α	C	F	С	Α	A	A	Α	C	С	С	С	C	С	С	C	F	С	F	С	С	A	C	С	С	F	С	F	R	С	С	С	С	С	С	C	F	С	С	С	С	FC
Cyclococcolithina leptopora C. macintyrei Discoaster deflandrei s.l. Discoaster brouweri s.l. Emiliania huxleyi						1				90																																					
Ericsonia alternans E. ovalis s.l. E. fenestrata s.l. Gephyrocapsa operta G. caribbeanica	F	с	С	C	C	С	с	С	с	С	1 C	C	С	F	C	C	C	C	1 C	С	С	F	С	с	С	C	с	С	C	С	с	с	С	с	C	С	с	С	С	С	с	с	С	С	с	С	сс
Helicopontosphaera kamptneri Helicopontosphaera sp. Isthmolithus recurvus Neococcolithes dubius Pontosphaera sp.						1		1		1	R 1		1							1						1			1 1 1									1	1							1	
Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra bisecta R. placomorpha	c	c	с	с	с	с	с	c	с	с	с	с	с	с	c	с	с	с	с	с	с	F	с	F	с	с	с	с	с	F	с	F	с	F	с	с	с	с	C 1	F	F 1	с	с	F	с	F	RC
Reticulofenestra sp.	F	F	F	R	F	F	F	F	F	F	F	F	F	F	F	F	F	R	R	F	F	R	R	F	F	R	F	F	F	F	R	F	F	R	F	F	F	R	R	F	F	F	F	F	F	F	FF
Rhabdothorax regale Sphenolithus moriformis Syracosphaera hystrica	R	R	F	R	R	R	F	R	R		F	R	R	F	R	R	R	R	F	F	R	R	1 R	R	F	F	R	R	F	R	R	R		R	R	R	R	R		R	R	R	R	1 R	R	R	RR
Thoracosphaera sp. Zygrhablithus bijugatus	R	R	R	R	R	R	R	R	R	R	F	F	F	F	F	F	F	R	R	F	F	R	R	F	F	R	F	F	F	F	R	R F	F	R	R	R		R		R	R R	R R	R	R	R	R R	R R R

Adopted Age		L	ate	tol	Mid	Oli	goc	ene	5									E	arly	01	igo	cene	2									Lat	te E	oce	ne	+	
Zone		R	etic	uloj	fene	stra	bi	sect	a				t	op I	Ret	icul	ofer	iest	ra p	olac	om	orpi	ha t	to b	ase	Rei	ticu	lof	enes	tra	oar	nari	uen.	sis			
Lithology	+		_							-	-		_				1	Van	no	ooz	e								-								
Depth Below Sea Floor (m)		12	21.0)-13	0.5		1	130	.5-1	40.	0		14	0.0	-14	9.5			14	9.5	-15	9.0		15	9.0	-16	8.5	16 1	8.5		178	.0-1	187	.5	1	187 197	.5- 7.0
Sample (Interval in cm)	14-2, 114	14-3, 110	14-4, 110	14-5, 110	14-6, 110	14, CC	15-2, 110	15-3, 110	154, 110	15-5, 110	15, CC	16-1, 110	16-2, 110	16-3, 124	164,110	16-5, 110	16, CC	17-2, 110	17-3, 115	17-4, 110	17-5, 110	17-6, 110	17, CC	18-1, 135	18-2, 110	18-3, 110	18. CC	19-2, 111	19, CC	20-3, 110	20-4, 144	20-5, 143	20-6, 110	20, CC	21-2, 110	21-3 110	21 CC
Overall Abundance Overall Preservation	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A P	A M	A M	A M	A M	A M	A M	A M
Chiasmolithus altus C. expansus C. grandis C. oamaruensis Chiasmolithus sp.	C	С	С	с	C	С	C	C	C	С	С	С	C	C	С	C C	c c	F F	C R R	С	C F	C F	c c	C R	C F	C F	C R	C F	c c	R	F	F	F	с	С	С	С
Cyclicargolithus neogammation C, reticulatus Cyclococcolithina leptopora Discoaster barbadiensis D, deflandrei	C	С	F	F 1	C R	C	F 1	F R	F R 1		R					1							1														
D. saipanensis D. tani s.l.	1							1																								R				R R	
Discoaster sp. Ericsonia eopelagica E. fenestrata s.l.	R	R	1 R R	R	R	R	R	R	R	R R	R	R R	R F	R R	R R	R C	R	R C	С	F F	R	R F	R R	R	R R	R	R R	R	R R	R R							
E. ovalis Helicopontosphaera salebrasa	С	С	C	A	A	С	C	С	C	F	F	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	F 1	C	C	C
Markalius inversus Neococcolithes dubius			R	R	1		R		K					K	г	r	ĸ				R		R	K	R	г	г	r	x	Ĺ	R	r	K	г			
Pontosphaera ? sp. Reticulofenestra bisecta R. hampdenensis R. oamaruensis R. placomorpha	C F	C F	C C 1	C F R	C F	C F X	C F	C F	c c	C F F	C F F	C F C	C F C	C R C	C R C	C F C	C F C	C F	C R F	C F F	C F C	c c c	F C C	C C C	C C C	C F C	C F C	C F C	C F C	C F C	C F R C	C C R C	C F R C	C F R C	C R R C	C F C	C R C
R. cf. R. bisecta R. cf. R. dietyoda Rhabdolithus sp. Rhabdothorax regale Sphenolithus moriformis	F	R	R R	R	R F	R R	F R R	F	F R R	F	F	F	F R	F	F	F	F	F 1 F	R F	F	F	F	F	R R	R R	R R	F	R	F R		R	R	F	F	F	R	F
S. radians Thoracosphaera sp. Zygrhablithus bijugatus	с	с	F	R R	R F	R R	F	R R	R	R	R	F	с	F	F	F	R F	C	F	с	с	с	с	с	с	F	F	F	F	F	R	R	R	R	R R	R F	F

TABLE 4B Calcareous Nannofossil Distribution, Site 277

Note: See Table 4A for explanation of symbols.

lithologically controlled diagenetic effects. It is then necessary to attempt to determine the reason for the deposition of different lithologies.

4) Drilling and coring, especially in the usually soupy or very soft uppermost layers, can produce mixed coccolith assemblages. These are sometimes not recognized as such, resulting in incorrect conclusions.

5) The preparation of smear slides varies from scientist to scientist. A certain amount of sorting during drying of the sample often cannot be avoided. Thus a slide may have a "residual" winnowed assemblage with mainly large forms in the central part, surrounded by a more or less normal, "true" assemblage, with an assemblage consisting mainly of smaller forms towards the edges of the slide.

Some of the ecological factors which affect the vertical and horizontal distribution of living calcareous nannoplankton are well known. Certainly others are still unknown. However, most species occurring in sediments older than Pliocene are extinct. Our conclusions about the paleoecological significance of these species are, of necessity, based on analogy with the results of previous investigations in areas where certain ecological conditions were assumed to be present.

The presence of more or less common Zygrhablithus bijugatus is considered to indicate deposition in water depths well above the lysocline, as this species seems to dissolve easily. Edwards (1973c) came to similar conclusions regarding DSDP Leg 21 material. However, the writers cannot yet explain why the possibly related Late Cretaceous species Lucianorhabdus cayeuxi is among the species most resistant to diagenesis in the Baltic chalk. Z. bijugatus was found to be consistently present and often common in the late Paleocene to Oligocene sediments of Site 277 on the Campbell Plateau (present depth, 1222 m). It is very rare in a very few Eocene-Oligocene samples at Site 280 south of Tasmania (present depth, 4181 m), and rare to few Z. bijugatus occur in the Oligocene of Site 281, just north of Site 280 (present depth, 1591 m). The presence of few to common Z. bijugatus in selected samples only of Oligocene and Eocene age at Site 282 (present depth, 4207 m) is at-

Adopted Age	Γ	_			_										-	Late	e Ec	ocer	10								-					_			N	Aid	Eoc	ene	
Zone	ba to	se F	R.O.		t	op (Cyc. F	lica Reti	rgo	lith	us r iesti	etic ra l	ula bised	tus ta	to b	ase		1	bas	e R	. bi	sect	a to	o sis	b	ase	C. (oam C. re	aru	ens ulat	is to	o ba	ise	ba bas	e R.	C. ro ha	etic	ulat	a to
Lithology	1			-		-	-		Nat	nno	007	ze			-	-	-								_	-		N	ann	o cl	halk						-		
Depth Below Sea Floor (m)	19	7.0	-20	6.5	20)6.5	-21	6.0	T	216	.0-		225.	5- .0		235	.0-2	44	.5	24 25	4.5-	2	54. 263	0- .4	26	3.5	-27	3.0		273	.0-2	282.	.5	2	.82. 292	5- .0	2	292. 301	0- .5
Sample (Interval in cm)	22-1, 138	22-2, 110	22-3, 110	22, CC	23-1, 110	23-2, 110	23-3, 110	23, CC	24-2, 110	24 3, 110	24, CC	25-1.108	25-2, 110	25, CC	26-1, 144	26-2, 110	26-3, 110	26-4, 110	26, CC	27-1, 101	27, CC	28-1, 110	28-2, 110	28, CC	29-1, 110	29-2, 110	29-3, 110	29, CC	30-2, 110	30-3, 110	30-4, 110	30-5, 110	30, CC	31-1, 110	31-2, 110	31, CC	32-1, 110	32-3, 137	32, CC
Overall Abundance Overall Preservation	A M	A M	A M	A M	A M	A M	C P	A M	AM	A M	A M	AM	A M	A M	AM	A P	A M	A P	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	C P	C M	A M	A M	A M	A M	A M	A M	C M
Chiasmolithus altus C. expansus C. grandis C. oamaruensis Chiasmolithus sp.	F		F	F	R	F	F	F	F	F	F	F	с	F	F F	F F F	CR	с	R F R	R F F	R F R	F F R	F	F F R	R	R	F	F R R	R	F	R	F	R	R	R	R R	R	F	R R
Cyclicargolithus neogammation C, reticulatus Cyclococcolithina leptopora Discoaster barbadiensis D, deflandrei				R	R	F	F	с	С	С	C	F	F	С	C R	C R	C R	С	C	F	С	C	C R	F	С	C	C	С	С	C R	C	F	F	1		K	R	R	R
D. saipanensis D. tani s.l. Discoaster sp. Ericsonia eopelagica E. fenestrata s.l.	R	FR	F	R	R F	R	R	R R F	F	1 F R	R F	R F	FF	F R	R R R	R R R	1 R	1 F R	R R	R F R	R R R	FR	R F R	1 R R F	R F R	R R	R R R R	R R R	R R R	R F R	R R R F	R R F R	R F R	R R F	F R F	R	1 R R	R R	R
E. ovalis Helicopontosphaera salebrasa Isthmolithus recurvus Markalius inversus Nerococolithes dubius	C R	C R R	C R	C F R	C F R	C R R	C R	C R	C R R	C R R	C R	C R	C	C	F	C 1 R	C 1 R	C R P	C R	C 1	C	C R	C R F	C R E	C R F	C R F	C R	C	C	C R	C	C R R	C R R F	C R R F	C R R	C	C R R	C R R F	C R P
Pontosphaera ? sp. Reticulofenestra bisecta R. hampdenensis R. oamaruensis	С	C F	C F	C F X	C F	C F	C F	C F	С	C F	c	C	С	C F	C F	с	R R	F	R R	C	C	c	c	c	R C	c	R C	R	R	R	R	RF	RC	RC	c	C	F		1
R. cf. R. bisecta R. cf. R. dictyoda Rhabdolithus sp. Rhabdothorax regale	R	R	C	R	R	F	F	R	R	F	c	F	F	F	F	F	R	F	F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C F	C R	с
Sphenolithus moriformis S. radians Thoracosphaera sp. Zygrhablithus bijugatus	R R F	R F F	R F F	F F	F R F	R F F	R F F	R R F		R F F	R F	R F F	R F F	R R F	R F F	R F F	F R	R C F	R R C	F F	R 1 F C	F C	R F C	R F F	R F F	R F F	R F C	R F C	F	F F	F F F	F I F F	F F C	F F F	F F F	F C	R F F	F R F	F R C

TABLE 4B – Continued

tributed to occasional rapid transport and burial of coccoliths and nannoliths from the nearby shelf of Tasmania and southern Australia. Z. bijugatus is missing at Site 283 (4746 m, present depth), although coccolith-bearing Eocene sediments were found.

At most sites of Leg 29, representatives of the Pontosphaeraceae (except *Helicopontosphaera*) are rare or absent. This is also true of the Braarudosphaeraceae. Both are well known for their preference for nearshore environments. These conclusions are consistent with New Zealand and DSDP Leg 21 experience (Edwards, 1968; 1973b). Pontosphaerids often occur as few to common in samples containing common Braarudosphaeraceae, as well as when the latter are rare.

The ratio between discoasters, considered to be warm water forms because of their abundance in sediments deposited in tropical seas, and *Chiasmolithus*, representative of cooler conditions, has been used as an indication of changing climates (Bukry, 1973). *Chiasmolithus* occurs from the Paleocene through to the Oligocene whereas discoasters last until the end of the Pliocene (by definition) in warm areas, but are absent earlier in cool water areas. No counts were made of discoasters and *Chiasmolithus* in Leg 29 samples. Some trends, however, can be extracted from the observations made so far and are tabulated in Tables 4-12.

In the late Paleocene of Site 277, discoasters are initially more frequent than Chiasmolithus but a reversal occurs near the top. Above this Chiasmolithus dominates over discoasters until both groups reach similar frequencies in the late early Eocene to early mid Eocene interval. Discoasters are rare or usually absent throughout the remainder of the Eocene and the Ohgocene, whereas various species of Chiasmolithus flourish. This pattern is considered to indicate a temporary cooling of the climate across the late Paleocene-early Eocene boundary, relatively warmer conditions again in the late early Eocene and early mid Eocene, and finally cooler conditions for the remainder of the Eocene and most of the Oligocene. These conclusions are consistent with the distribution of warm water nannoliths excluding discoasters and the cosmopolitan Sphenolithus moriformis group. In the entire Paleogene sequence of Site 277 these nannoliths are only represented by Fasciculithus tympaniformis (common in the late mid Paleocene to mid late Paleocene interval), and Sphenolithus radians (rare in the early to mid early Eocene and rare to few in the late early Eocene and early mid Eocene). A similar

TABLE 4C Calcareous Nannofossil Distribution, Site 277

Adopted Age						N	1id I	loce	ne															Ea	rly I	Eoce	ene											1	ate	Pale	eoce	ne				M	id Pa	leocene
Zone	b ba	ase (ise R	ne ha	ticula mpde	ta to enens	o sis	b de R.	ase nen pla	R. h sis t con	to ba	n- ise ha	base R.p. to to D.K.	e	t	op I	D. kı R.	uepj dici	peri tyod	to b	base			ba	se R	. dic D. k	tyot uepj	da t peri	o ba	se	k D	b uepp), mu	ase l eri t ltira	D. o to diat	p us			Di	scou	ister	· mu	ltira	diat	us			ba	to to H.k.	m. p H.k
Lithology							-						255						Nar	по	chall	k																										
Depth Below Sea Floor (m)	311. 320.	0- .5	33 33	0.0- 9.5	34	19.0- 58.5		36) 37	8.0- 7.5		37 38	7.5-		38 39	7.0-		39	96.5 06.0		406	5.0- 5.5	4	15.5	5	425 434	.0-	43	34.0-	444.	0				444.	0-45	53.5						453	.5-4	63.()	4	63.0	-472.5
Sample (Interval in cm)	33-1, 120 33-2, 110	33, CC	34-1, 104	34, CC	35-1, 105	35-2, 104 35 CC	36-1, 126	36-2, 108	36-3, 108	36, CC	37-2, 102	37-5, 112 37-CC	38-1.120	38-2, 110	38-3, 112	38, CC	39-2, 110	39-3, 120	39, UU 40.0 110	40-3, 117	40, CC	41-1, 113	41-2, 111	41, CC	42-2, 119 42-3, 114	42, CC	43-1, 112	43-2, 126	43-3, 121	43, UL	44-2, 20	44-2, 60	44-2, 90	44-2, 107	44-2. 130	44-2, 140	44-3, 18	44-3, 80	44-3, 112	44, CC	45-1, 102	45-3, 127	45-4, 126	45-5, 111	45-6, 122	45, UC 46-2 118	46-3, 114	46-4, 111 46, CC
Overall Abundance Overall Preservation	A A M M	A P	A A	A A A M	A M	A A M N	A	A M	A M	A P	A O	C A P P	A	A	A M	A M	C P	A A M I	A A M N	A A M M	I M	A M	C M	A P	A A M N	A A	AP	A M	A M	A (P 1	C C M M	A M	A M	C P		C A M	C M	C M	C M	A P	C C M I	C C	C M	C P	C M	C O	C C P P	C C P P
Biscutum panis Chiasmolithus eograndis C. expansus C. grandis	F R R	R	RI	; F	F	F R R	F	F	R R	R R	R R I	F F	R	f R R	R	F R	R	RI	R F	2		1 R	F F	R F	R F F F	R R F	R F	с	C	R	C F	с	с	F	FF	R R	R C	R C	R C	R F	C F I	1 RR	R	R		R	1 R	
C. solitus + C. sp.	CC	F	F (C	C	CC	S	C	С	C	C	CC	C	С	F	F	F	F (2 0	F	F	F	F	F	FF	F	-			-					_				_	1						_		
Concoccolithus? sp. Cruciplacolithus staurion Cruciplacolithus sp. Discoaster barbadiensis D. diastypus	?	?	1	RR	R		1				1		R	R			1 1	1	I) L	F	С	F	С	F	FF	R	F	R	R	RI	R R R R R	R R R	R	R														
D. kuepperi D. lodoensis D. multiradiatus D. sublodoensis-?		1			1						R		R R ?	R C F?	F	R F	R R ?	R 1	F I R I	7 R R R	F F ?	F R 1	F R	F R	F F 1	R R R	R	R	R	F	R	R		ł	X F	R R	R	R		R	F (c c	F	F	R	R		
D. weemnetensis Discoaster sp. Ellipsolithus macellus Ericsonia alternanus E. eopelagica	R R R F	R R R	F R I R I	F R R F F	F R F R	R F F R R R R R	R	F R R	R	1 R R R	1	F R R 1 R F	F 1 R R	C F	F 1 F	I F F	F F	F 1 1 F 1	F I	F R R	C R	C F	F R						R	1	l R R	R	R	R	R	R			R	1	1	RR	8					
E. fenestrata s.l.	FR		R I	RR	F	RF		F	R			F	t R	R	F	R	F	F 1	FI	Ξ	F	R	R	R	FF	F				_		R			_					_						_		
E. ovalis Fasciculithus tympaniformis Heliolithus kleinpellii Hornibrookiana australis Machelius attaana	CC	C	с (1	C C	C	C C	c	C	C	C	С		C	С	C 1	С	С	C			C	C 1	C	C 1		1 C	C	С	C		CC sp. sp	C o. sp R	C . sp.	C F	R R	F	C 1 F	C 1 C	C R F	C R R	C I F (F (F C	F C	F C	R	F CC sp. 1	RC C F 1
Narkalus astropolas Neochastozygus concinnus N. distentus Neococcolithes dubius s.l. Pontosphaera sp. Marthasterites tribrachiatus	FR	R	RI	7 F	F	FF	c	С	C	F	F	C C	C	C	C 1	с	F	F	FH	FF	F	F	R	F	R F	F	FR	F	R R	R	R R R 1	I R	R	R R	R R	R	F	R F	F R	F	F (R	R F	R			R I R	FR	R
Reticulofenestra cf. R. bisecta R. cf. R. dictyoda R. hampdenensis R. placomorpha Rhabdolithus sp.	F F A C R R C C F R	F F R C	F C C C C C C C C C C C C C C C C C C C	R R C F F F F R	F A F F R	F F A C F F F F R F	R	F A F R	F A R R	F A R R	F C R	F F C C	F C	с	с	с	с	C (c	C F	c																											
Sphenolithus moriformis S. radians Thoracosphaera sp. Toweius? sp., large Zygrhablithus bijugatus s.l.	F	F R R	R R F	R F F F F F	F R R	R F C	R	R F	R R R	F R F	R R R	R F R F		F F R C	R F R C	R R R	F R C 1 C	F F F C	F 1 F 1 F 1 1 C 0	F F F F F F F C C	FFR	R R F R A	F R F R C	R R F A	C F R F F F	F F F F F F	F R F	R F R A	F R R	F I R I	F F R X R R A C	F R C C	F R C C	F R F A	F F F C F C	F R R R C R C F	F F C F	C R C F	C F C C	C F C C		FF FR	F F C	R F C	F R F	F F F	FR	R

Note: See Table 4A for explanation of symbols.

Adopted Age				1	ate	Ple	eiste	ocen	e				_		_	_						Mi	d P	leis	toc	ene	to 1	Late	e Pl	ioce	ene	i										
Zone		-	- 1	Co	col	ithu	is p	elagi	icus													_	Ps	euo	loer	nili	mia	lac	un	osa	1				_			_		-	_	
Lithology																			Di	iato	m c	oze	1																			
Depth Below Sea Floor (m)				0.0)-6.	0			~17	~31					1	.01.	0-1	10.5	5						1	10.:	5-12	20.0			12	20.0 29.0)-)		5	129	.5-1	39.	0		13	9.0
Sample (Interval in cm)	1-1, 120	1-1, 131	1-2, 30	1-2, 110	1-3, 20	1-3, 118	1-4, 150	1-4, 150	1A, CC	2A, CC	2-1,30	2-1, 110	2-2, 30	2-2, 110	2-3, 30	2-3, 110	24,30	24,110	2-5, 30	2-5, 110	2-6, 30	2-6, 110	2, CC	3-1, 110	2-2, 110	3-3, 110	34,110	3-5, 110	3-6, 110	3 CC	4-1, 110	4-2,110	4, CC	5-1, 110	5-2, 110	5-3, 110	54,110	5-5, 110	5-6, 110	s, cc	6-1, 110	6-2, 56
Overall Abundance Overall Preservation	R P	R M	C M	C M	C M	F M	R M	R P	R M	R M	C M	C P	C M	C M	C M	F P	F P	F P	C P	C P	C P	F M	F P	F P	C P	FP	C P	C P	C P	C P	C M	C P	F P	C P	F P	C P	F P	F P	F P	R P	C M	C M
Coccolithus minutulus C. pelagicus Cruciplacolithus cf. C. neohelis	F	x	x	F	x	F	x	С	R		R C	F C	c c	F C	C F	R R	R C X	R F	R C	F	R C	R R	R R	R F	R F R	R	R R	R F	F	R F	F R	F	X R	F	F	F	F	R	F		F	F
Cyclococcolithina leptopora C. macintyrei	F	R	A	С	A	С	х	F	F		F	C	С	F	C	F	F	С	F	С	F	С	C	С	C	F	F	C R	C R	C R	С	С	F F	C	F	С	F	F	R	x	F	F R
Emiliana huxleyi ? Gephyrocapsa spp., small G. cf. G. occanica Helicopontosphaera kamptneri Pontosphaera spp.	F	F X X	A R X R	C F F	F R X F	F F F	F X	R	X X X	x x	x		x		C X X		x x		x		x x	R		R	R						x	R	R	F F	R	F					R	R
Prinsiaceae, small Pseudoemiliania lacunosa	F			С		C		С	R	F	RC	FC	A A	A F	A R	C F	C R	C C	A X	C F	A X	C C	F R	C F	C F	C C	C	A C	C F	C	C	C	C F	C F	C R	A R	F	R	R	C	F	A F

TABLE 5A Calcareous Nannofossil Distribution, Site 278

Note: See Table 4A for explanation of symbols.

pattern has been observed in New Zealand and southern DSDP Leg 21 samples.

At Site 278, *Chiasmolithus* is common to abundant in the mid and late Oligocene; discoasters are usually absent. Very rare specimens (visitors) occur in a few samples in the latter part of the Oligocene. This site at present underlies the Antarctic Convergence.

In the poorly dated Oligocene and Eocene at Site 280, *Chiasmolithus* is absent or occasionally rare to common. Discoasters are absent. Here, the absence of *Chiasmolithus* is probably due to deposition just above the calcite compensation depth. As discoasters are known to be more resistant to dissolution than coccoliths, it can reasonably be concluded that the absence of discoasters is a primary feature, probably resulting from adverse climatic conditions.

At Site 281, *Chiasmolithus* is common in the early late Eocene, early Oligocene, and late Oligocene whereas discoasters only occur in low numbers in a short late Oligocene interval which follows a hiatus.

At Site 282, *Chiasmolithus* is as rare as the discoasters in the late Eocene but they become more frequent through the Oligocene where chiasmoliths dominate over the discoasters which are rare or, more usually, absent.

Where Paleogene calcareous nannofossils are present in reasonable numbers at Site 283 (early late Eocene) *Chiasmolithus* dominates over the very rare discoasters.

These observations on the frequency relationships of discoasters and *Chiasmolithus* strongly support the use of this ratio as a tool to detect changes in paleoconditions, possibly in terms of paleotemperatures.

Observations on the Neogene Leg 29 occurrences of discoasters show the following. (1) Discoasters are conspicuously common in the early Miocene sediments of Sites 279, 281, and 282, but much rarer in the underlying

and overlying assemblages (see Site Reports, Chapters 6, 8, and 9, this volume). This pattern is so pronounced at these sites that the simple observation that a sample of unknown age contains common discoasters is sufficient to date it as early Miocene! A similar but less pronounced pattern occurs in equivalent age sediments in New Zealand, and at the southern DSDP Leg 21 sites. This pattern coincides with the strongest indications for warm climate in New Zealand (Hornibrook, 1971). (2) This pattern does not extend as far south as Site 278. At this site, which at present underlies the Antarctic Convergence, discoasters are very rare and sporadic throughout the entire sequence. Even the cosmopolitan Sphenolithus moriformis group s.l. is rare and sporadic in its Neogene occurrences. At this site it would seem advisable to consider all discoasters as "visitors." (3) In Leg 29 sediments the last appearance of discoasters, which in warm water areas is considered to coincide with the Plio-Pleistocene boundary, is clearly climatically controlled. For example, at Site 284 (40°S) their last appearance appears to approximate their extinction in warm water areas, but at Site 281 (48°S) their last occurrence (more than one specimen observed) occurs in the basal Pliocene, and at Site 278 (56°S) their last occurrence probably occurs in the early mid Miocene. A similar but less extreme pattern has been observed in both the North Atlantic (Perch-Nielsen, 1972), and New Zealand.

Southern and Northern High-Latitude Calcareous Nannofossils in the Cenozoic

Calcareous nannofossils are currently widely used for intercontinental and interoceanic correlations of marine sediments. Several zonal schemes have been proposed for different areas and a "standard Tertiary and Quaternary calcareous nannoplankton zonation" was

Adopted Age		_			M	Mid	Ple	isto	cen	e to) La	ate l	Plio	cen	e																			
Zone			_				Pse	udo	em	ilia	nia	lacu	inos	sa			_					_												
Lithology	11				- 22		_				Diat	tom	00	ze						_		_			_			_	_	-	_			
Depth Below Sea Floor (m)		13	9.0	-14	8.5			1	48	.5-1	58.	0		_		15	58.0	0-16	7.5					16	7.5	-17	7.0		_		3	177	.0-1	86.5
Sample (Interval in cm)	6-2, 135	6-3, 126	6-4, 120	6-5, 110	6-6, 110	6, 110, CC	7-1, 110	7-2, 110	7-3, 110	74,110	7-5,110	7-6, 110	7, CC	8-1, 143	8-2 110	8-3, 110	8-4.106	8-5, 110	8-6, 30	8, CC	8, CC	9-1, 30	9-1, 110	9-2, 110	9-3, 110	9-4, 110	9-5, 110	9-6, 110	9, CC	10-1, 110	10-2, 110	10-3, 110	10-4,110	10-5, 110
Overall Abundance Overall Preservation	C M	C M	F M	R P	F P	F P	F P	F P	F P	F P	F P	F P	R P		-	R P	4	2	C P	R P	C P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P
Coccolithus eopelagicus s.l. C. pelagicus group Cyclicargolithus neogammation Cyclococcolithina leptopora	FR	F F	F F	R R P	F R	R R	F R	F R	F	R	R R	F F P	R R						C R	R	C R	R	F R R	R C F	R R	R F	F R R	R R	C R	R		R F	R	R
Discoaster pentaradiatus Discoaster sp. Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra pseudoumbilica	A R	A R	C R	F R	C F	C F	с	С	R C	С	F	F	F			R				X X R X	x c c	X A A	A	R A A	A	A A	A	X A A	A	A	A A	A A	A A	A A
Sphenolithus abies S. neoabies Thoracosphaera sp.								R															R	R R	R			R	x					

TABLE 5B Calcareous Nannofossil Distribution, Site 278

Note: See Table 4A for explanation of symbols.

suggested by Martini (1971). The degree of biostratigraphic resolution obtainable using calcareous nannofossils is highest in the lower latitudes where diversity is high, and gradually decreases to the north and south with the decrease in diversity. The association of two authors having different experiences with southern and northern high-latitude calcareous nannofossils provided a valuable opportunity to consider the following:

1) How far south and north can the "tropical" zonations be used? It was noted by Perch-Nielsen (1972) that in the north Atlantic, the "tropical" zones were generally useful to almost 60°N in the Paleogene, while similar correlations in the Neogene became increasingly more difficult as the sediments became younger. Although the index species were usually present, they were often extremely rare. Biostratigraphy could be based mainly on nannoliths such as discoasters, sphenoliths, and ceratoliths. In the southern high-latitude sites drilled on Leg 29, the "tropical" zones could hardly be used in the Paleocene and early Eocene. By mid Eocene the marker species of families other than Coccolithaceae and Prinsiaceae began to disappear south of about 50°S. Only a few low-ranging discoasters are present, and the Prinsiaceae (Reticulofenestra, Dictyococcites, Cyclicargolithus, Pseudoemiliania, Gephyrocapsa, and finally Emiliania) constitute the greatest part of the assemblage. This assemblage also includes Coccolithus pelagicus s.l., and occasional occurrences of warmer species as "visitors." Thus the "tropical" zones can be recognized farther north than south. This situation is easily explained by the effect of the warm Gulf Stream on that portion of the northern Atlantic in which the sequences studied have been recovered.

2) Is there a difference in the relative levels of the first and/or last occurrences of different species in northern and southern high latitudes? Some examples of reversed events were observed. For example, the first occurrences of Reticulofenestra bisecta and Chiasmolithus oamaruensis change their relationship to each other. In Denmark and at Site 277, C. oamaruensis occurs before R. bisecta whereas in New Zealand R. bisecta appears before C. oamaruensis (Edwards, 1971). Details of this and eventual other "reversed" first occurrences will, however, have to await further, more detailed, investigation before they are understood. It is well known that, for example, Isthmolithus recurvus is not a "reliable" taxon in low latitudes. Also, Discoaster saipanensis, the last occurrence of which marks the Eocene-Oligocene boundary in low latitudes, is unreliable in high southern and northern latitudes. Such examples illustrate the uncertainties involved in the age assignments. They also demonstrate the idealistic nature of the assumption that first and last occurrences occur at the same time all over the world. Diachronous first and last appearances are far more frequent in the high southern and northern latitudes than in the "tropical" regions.

3) Are there species in one region that do not occur in other high latitude regions? No detailed survey has yet been attempted to find the complete assemblages of southern high latitudes for different stratigraphic levels. Such studies need well-preserved material and sufficient time to study it extensively under the electron micro-

_					E	arly	Pli	oce	ne	to la	ate	Mid	Mi	oce	ne																					Ea	rly	mic	d M	ioc	ene
						Rei	ticu	lofe	enes	tra	pse	udo	um	bili	ca																					0	yci ne	licar	rgol mn	ithunation	is on
_		_	_						_	Sili	ceo	us i	iani	10 0	ooze	2						_							_			-					S	ilice	ou	s oc	ze
_			1	86.	5-1	96.0	0			1	96.	.0-2	05.	5			20	5.5	-21	5.0			4	215.	.0-2	24.	5			2	24.	5-2	34.(0			23	4.0	-24	3.5	
10-6, 110	10, CC	11-1, 110	11-2, 110	11-3, 110	11-4, 110	11-5, 110	11-6, 110	11, CC	12-1, 110	12-2, 110	12-3, 110	124, 110	12-5, 110	12-6, 140	12 CC	13-2, 110	13-3, 110	13-4, 110	13-5, 110	13-6, 108	13, CC	14-1, 110	14-2, 70	14-4, 118	14-5, 84	14-5, 110	,14-6,110	14, CC	15-1, 140	15-2, 110	15-3, 110	15-4, 110	15-5, 110	15-6, 110	15, CC	16-1, 30	16-1, 110	16-2, 110	16-3, 115	16-4, 110	16-5, 110
A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	C P	A P	A P	F P	A P	C P	R P	-	-	F P	R P	C P	A P	C P	-	A P	C P	R P	-
R	R	R	R	R	R F	F	R	F				R		R			R				x		R R		R	R R	R R	R R	R					R	R	X R		F F	F F	F	
	F					R	R	x						R		R							R	R	R			R								x					
A	X A	A	A	A	A	A	A	X A	A	A	A	A	A	A	A	A	A	A	A	A	C	с	С	C	с	F	F	x	F			R	R	с	X C			A	С	R	
A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	С	A	A	A			R		A	A	A	A	_	A	A		
	x																																		x						

scope in order to find and examine the rare and very rare species. Generally it can be said that truly oceanic assemblages have, in both the southern and northern high latitudes, a lower diversity than assemblages known from shelf regions.

While many species seem to be common to both northern and southern high latitudes, some seem to be restricted to the northern latitudes and a very few to the southern latitudes. This certainly is partly due to the fact that far less studies have been made from the southern high latitudes and thus fewer species have been found. Selected species found only in the southern high latitudes are therefore of more interest here as if they occurred in the north they should have been found and described by now. In the Paleocene, we note the presence of the genus Hornibrookina in New Zealand and at DSDP Sites 206, 207, 208, and 277. Only one of the two species of this distinctive genus has so far been found in the north (H. australis, in the Crimea, U.S.S.R.). In the Eocene we note the presence of Reticulofenestra hampdenensis from New Zealand and the Eocene of different sites of Legs 21 and 29. This species is very closely related to, and perhaps identical with, Dictyococcites onustus Perch-Nielsen, and Cribrocentrum foveolatum (Reinhardt). The new species described in this paper from the Oligocene of Site 277, Helicopontosphaera? subantarctica, is so large and easily recognizable in the light microscope that it should have been found earlier in the northern hemisphere, if it existed there. Apart from Hornibrookina teuriensis it might be the only really southern taxon found so far. The occurrence of the Ilselithina sp. in the Miocene is also noteworthy, and might be another indication of a coccolith with a restricted southern distribution. However, this small and delicate form might have been overlooked in other samples.

4) Is the fine structure of species the same in northern and southern high latitudes, or are there differences that exceed the usual species concept, but which cannot be distinguished using the light microscope? The fine structure of a limited number of species, mainly of the Paleocene to Oligocene of Site 277, has been studied with the scanning electron microscope (SEM) for comparison with the fine structure of calcareous nannofossils studied from DSDP Leg 12 (Perch-Nielsen, 1971a, b, and 1972) in the North Atlantic and from Denmark (Perch-Nielsen, 1971b, c). So far the differences observed in the fine structure found in the same species from the northern and southern high latitudes can readily be attributed to differences in preservation. Solution and/or overgrowth have affected the fossils beyond recognition of possible differences in their structure if they ever existed.

SYSTEMATIC PALEONTOLOGY

No attempt has been made in this report to update the names of calcareous nannofossils listed on the tables or plates. From this study it was evident that the members of the Prinsiaceae family will have to be studied very closely with both the light microscope and the SEM if a reliable and relatively finely subdivided high-latitude zonation is to be established. In the following, three new species from the late Paleocene, early Oligocene, and early Miocene, respectively, are described.

Genus ERICSONIA Black 1964

Ericsonia tasmaniae n.sp. (Plate 20, Figures 5-12)

Holotype: Plate 20, Figure 5; distal view. Paratype: Plate 20, Figure 11; proximal view.

TABL	E 5C	
Calcareous Nannofossil I	Distribution, Si	te 278

Adopted Age	Γ																					Ear	ly n	niđ	Mio	cer	ne							_					_		_	_	_	_		_		
Zone					1												_			C)	clic	arge	olith	hus	nco	Ran	nma	ttio	ù.		_				_			_	_		_						_	_
Lithology	S CE OF	li- ous ze			1	Nan	no	002 an	e, s d si	ilice lice	eou	s n.	inn- ze	0 00	ze,	ç		1									}	Rad	iola	rian	-Di	ator	n an	d S	ilic	eou	5 0	oze	18									
Depth Below Sea Floor (m)	24	3.5	13	24.	3.5-	253	0.1		_	23	5.0-	262	.5			26	2.5-	272	2.0		27	2.0	-28	1.5			28	81.5	-29	1.0		291	0-3	00.3	5		_	_	_		100	5-3	10.	5	_	_		
Sample (Interval in cm)	16-6, 110	16. CC	17-2,110	17-4 110	17-5, 110	17-6 110	17 00	18.1 110	18.2 110	10.1 101	16.4 110	18.6 110	11.4.110	18. CC	19.7 60	19-2 110	19-3.13	19.3.54	19. CC	20-1, 125	20-3, 126	20-5, 110	20-6, 25	20-6, 110	20, CC	21-2, 125	21-5, 110	21-4, 140	21-5, 110	21-6, 110	21. CC	22-1, 110	22-2, 110	1111-1-77	77. 66	23-1, 10	23-1, 110	23-2, 25	23-2, 140	23-3, 53	23-3, 110	23-4, 10	23-4.65	23-5.30	23-5, 110	23-6, 30	23-6, 110	23.00
Overall Abundance Overall Preservation	C P	CP	R P	F	-	C P	C P	CP	C P	1				C C	F	F P	C P	C	C	CP	2	A P	A P	C P	R P	A P	A P	A P	A P	A P	AP	A M	RC		-	C i	C P	F	C P	F P	R P	F	R P	C p	F P	C P	C P	CP
Chiasmolithus altus Coccolithus copelagicus Cyclicargolithus neogammation Cyclococcolithina macintyrei Discoaster adamanteus	F	FX		F	ż	R	C C	F	C	1	2		3	R A X	E	F	R R C	F	R I	F		с	с	c	R X	s C	с	с	с	с	X F		1	к 1 У	F	c x	F	x c x	R	X F	R	R		F		X R	F	F X X
D. cf. D. aulakos D. cf. D. boliii D. challengeri D. deflandrei D. drugsi?						1	1		1 F	ł	1			t						1		1		1	R 1 1							efX		ct y	rx x	x	rx	x	cfX	x	arx	x		X		R	c	fX X
D. exilis D. variabilix Discoaster sp. indet. Eriesonia ovalis group Prinsiaccue, small	I R A	l R	R R	R F R		R R C C	I R A C	I F F C C		1					F	R F F	R C R	R R C R	X C A	R R F C		R R R C	R F A	R R C	X F	FC	RC	RRC	RC	C C	X C A	R A C	RC		X	R I	R C A	X R C	C A	X X C	R F	FC	R R	R A C	R F A	R C	R C A	XAC
Reticulofenestra hisecta R. pseudoumbilica Reticulofenestra sp. Sphenolithus moriformis Thoraeosphaera sp.		A															F R	R	R			A	A			C	R	R	F	F	A R		5	2				E		x		?R		?C		?F X	? R	F

Note: See Table 4A for explanation of symbols.

TABLE 5C - Continued

Adopted Age Zone	+		_	_	_	_	Cve	E	arly	mi	d M	ioce	ne	ath	on	_	_	_	_	1				_		_	_	_	_	_	_	_	_		Die	Ear	rly I	fiod	ene	lee	1	_	_	_			_		_		_	_	_	-	_
Lithology	-				-	_										-		-		-			_	R	i.d.i.	olar	inn.	Dia	tom	38/	I Sil	lice	0116	007	200	11.174	r si e	uty	10(7.5	M/C	-	-	-	-	-	_	-		-	_	-	_	-		_
Depth Below Sea Floor (m)	1			_	-	3	10.	5-3	19.	5	_	-	-	T	_	_		319	9.5-	329	0.0	_	_	- Na		onar	IAL II		329.	0-3	38.5	5	ous.	000	T	-		338.	5-3	48.	.0	_	Τ					348	8.0-	357	1.5	_	_	-	
Sample (Interval in cm)		0.1-42	04 1-67	24-2, 39	24-2, 110	24-3, 30	24-3, 110	24-4.25	24-4, 110	24-5, 35	24-5, 110	24-6, 35	24-6, 110 24 CC	36.1.07	16 1.52	02 0.50	011 636	25.3 30	25.3 110	25.4 30	25.4.110	25.5.35	25-5, 110	25, CC	26-2.26	26-2.94	26-3, 38	26-3, 114	26-4, 74	26-4, 135	26-5, 28	26-5, 111	26-6, 30	26-6, 110	26,00	27-3, 100	27-4,68	27.4.110	07 . 6.17	211.0.12	27-6,76	27 60	39.1 60	011 1.80	18.5 32	28.2 110	86 2.80	28-3 110	28.4.30	28.4 110	78.6 20	28-5, 110	28-6.30	28-6, 110	28 CC
Overall Abundance					C	C	c	C	C	C	F	R	F F	1	F	F	C	F	R	0	F	R	F	С	C	F	C	C	F	R	C	F	C	R	- 1	R	÷ .						+	+	+			+	+	1		4	-	+	+
Chiasmolithur altur	+	-			r	r_	r	P	<u>r</u>	P	P	r i	r 1	1 1		<u> </u>	_ P	P	P	· P	P	P	P	P	P	P	P	P	P	P	P	P	<u>P</u>	P 1	- 1	P 1	<u>r</u>	P	-	P	<u>.</u>	P	10	P	P	-	-	P	P	1	-	-	-	P	P
Coccolithus copelagicus Cyclicargolithus neogammation Cyclococcolithina macintyrei Discoaster adamanteus	n 1		2 1	R I	R	R	R F		FR		R	i	RX	B	R 8	R	R	R	R	R F	R F		R F	X R	c	F	F	F	F	R	C		C	(-	c				>	¢														x
D. cf. D. aulakos D. cf. D. bollit D. challengeri D. deflandrei D. druggi*		- cl	x -	, ,		R		-		 X	rX	- c1	rx -	-				9.		x	R			~	x		x		x		x		x		x																				
D. exilis D. variabilis Discoaster sp. indet. Ericsonia ovalis group Prinsiaceae, small				K .	A	R C C	C A	X A F	AC	X A F	R	X I R (F R		R	X R C	F	X C F	F	AC	C	R	RCC	R F C	cc	FC	C C	c c	X F C	R R	C A	C A	C	R (2						R		R			x	6						R	
Reticulofenestra hisecta R. pseudoumbilica Reticulofenestra sp. Sphenolithus moriformis Thoracosphaeta sp.	2	K F	.)	¢	122	x		x	R	x			x	x			R	ł		x	į.		R	x							x		x		5	R F	R	R		x	,	R	R							2			x		R

Diagnosis: Ericsonia with a perforated central area surrounded directly by the distal shield in distal view.

Description: The distal shield, which is larger than the proximal shield, consists of about 30 to 40 elements lying side by side. No other elements are inserted between them, and the elements spanning the central area. These are platey on the distal side, and perforated by few to common small, more or less well defined holes. The proximal shield consists, as usual of Ericsonia, of two cycles of elements.

Remarks: E. tasmaniae is very similar to the mainly late Eocene and Oligocene Ericsonia fenestrata group. However, E. fenestrata is usually larger and shows an additional ring of elements (in distal view) between the distal shield, and the central area.

Occurrence: The holotype and paratype of E. tasmaniae were obtained from the early Miocene of Site 282, west of Tasmania. This species seems to be quite common in the high-latitude Pacific Miocene. E. tasmaniae is the youngest perforate Ericsonia known to date. Due to its minute size, the perforations are difficult to distinguish in the light microscope, where it more closely resembles a very small Chiasmolithus or Cruciplacolithus than a perforate Ericsonia.

Genus HELICOPONTOSPHAERA Hay and Mohler 1967

Helicopontosphaera? subantarctica n. sp.

(Plate 14, Figures 1-7; Plate 15, Figures 1-3, 7, 8)

Holotype: Plate 15, Figures 3 and 8; distal view.

Paratype: Plate 15, Figure 7; proximal view. Diagnosis: An essentially elliptical proximal shield is connected by "tubus" to a usually very asymmetrical distal shield forming a flange. Central area elliptical and (?) open.

Description: By far the most conspicuous feature of this new species is its (often) enormous flange on the distal side of the coccolith. It consists of elements which are oriented almost radially but which converge towards each other where the flange is largest. The flange includes one length of the coccolith, while the opposite side is built by a

	TABL	E 5D		
Calcareous	Nannofossil	Distribution,	Site	278

Adopted Age Zone						l Dise	Early	y Mi	ocei lefla	ne mdre	i		_		1											L	ate	to N	fid	Olig	ocei isec	ne ta					_		_	_			-
Lithology				R	adio	olari	an-c	liato	mo	ooze			1	Nann	0											S	ilice	ous	nar	ino	Cha	lk											
Depth Below Sea Floor (m)				- 8	357	.0-3	67.	D				367.	0-38	36.0	Τ		39:	5.5-	405.	.5					405	.5-4	14.5	5				4	15.	5-4	24.	0			4	24.	0-42	29.0	
Sample (Interval in cm)	29-1, 30	29-1,88	29-2, 46	29-2 110	29-3, 17	29-3, 110	29-4, 10	29-4, 130	20,0-42	29, CC	30-1, 103	30-1, 130	30-2, 30	30-2, 110 30 CC	31-1 20	31-1 134	31-2.17	31-2.110	31-3, 30	31-3, 110	31, CC	32-1, 30	32-1,99	32-2, 110	32-3, 30	011 6-26	32-5, 30	32-5.110	32-6.110	32, CC	33-1, 30	33-1, 110	33-5, 30	33-5, 110	33-6, 25	33-6, 110	33, CC	34-1, 12	34-1 134	34-2, 15	34-2, 125	34-3, 25	34. CC
Overall Abundance Overall Preservation	-	+ P	-	-	-	+ P	-			+ C P P	C P	C P	C P	C C P F		A C	P	A	AP	A M	A P	A P	A P	A P	A P	A /	A A	AP	AP	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A P	A A P H	A A P P
Chiasmolithus altus C. sp. (altus?) Coccolithus eopelagicus sp. Cyclicargolithus neogammation										x	R	3	x c	F F	2 1	F	R F	R	C A F	C R	A R	A C	C F	C R F	C F	RI	A A	F	C F	A X R	A F	C F	A R	C F	A F	C F	C R	A R	c c	A R	F	C C	C C R X
Discoaster adamanteus D. deflandrei D. deflandrei sp. indet. Ericsonia ovalis group Helicopontosphaera recta										x x c	X F		с	FF	2	r c) F	t t F	x	F	F	x	с	с	R	c (X C R	c	с	x x	с	с	с	с	F	с	с	FX	с	F	с	сс	C F
Prinsiaceae, small Reticulofenestra bisecta R. sp. Sphenolithus moriformis Thoracosphaera sp. Triquetrorhabdulus carinatus		x				x)	<u>X</u> R	A X	1	A	A / 2		R F A K F	R F A A	R A A C R	R A	F A R R	F A	R A X	R A	R A	R A	R I A / R I	R R A A R X	R	R	R A X	R A X	R A	F A X X	R A	F A X	F A R	C A X	R A X X	C A R	F A X	C A R R	F I A / X I	F R A A R X

Note: See Table 4A for explanation of symbols.

TABLE 6 Calcareous Nannofossil Distribution, Site 279

	-	_	_	_	_		_			_				_	_	_	_			_		_	_				_	_	-	_	_	_	_	_	_	_	_				_	_	_	_		-
Hole					279										_												2	79 A	2								_				_	_				
Adopted Age	L.	Ple	ist.	M.I t L. P	P. o lio	la M	te l	did ene			La	te F	leis	toce	ene		2	M. P to L. P	lei	late Mio	Mi	1							e	arly	Mid	Mic	ocer	ne							3	Ear	ly N	diod	ene	
Zone	pe	C.	icus	P.I		Re fe p	tici nes seu nbi	ilo- tra do- lica		С	occ	oliti	hus	pela	ngic	us		P.I		R pse uml	et. udo bilic	a					0	ycl	ican	golíi	hus	neo	gan	ıma	tio	2										
Lithology	1		002	e		Nan	no	ooze	F	ora	ma	nd	Nan	no	ooz	es		_	_							_	_			Na	nno	007	e				_								_	_
Depth Below Sea Floor (m)			_	0.0)-1.	0										1	3.0	-20.0	0								9	9.0	108	.5						10	8.5-	118	.0	_	_			11	27.5	ĩ
Sample (Interval in cm)	1-1,60	1-1,80	1-1,90	1-1.100		1-1, 105	111,110	1. CC	1-1, 25	1-1,60	1-1,75	1-1,97	1-1, 120	1-1, 147	1-2, 108	1-2, 146	1-3, 35	1-3, 110	001 01	1-3, 130	1-3, 1430	14 110	14, 135	14.150	1,00	2-1.65	2-1, 103	2-2, 30	2-2, 110	2-2, 118	2,00	3-1, 103	0+1 1-0	2.2 56	3.3 147	3-4 30	34, 110	3-5, 30	3-5, 110	3-6, 30	3-6, 125	3-6, 140	3, CC	4-1, 113	4-2,92	4, CC
Overall Abundance Overall Preservation	A P	C M	A M	C N		A M	A	A A M M	A	C M	C M	A M	A M	A M	A M	A M	A M	A M		A P	A A			AA	A	A	AM	A M	A M	A P	AP	A	A A	A A		AA	P	A P	A M	A M	A M	A M	A M	A M	A M	A M
Coronocyclus prionion Coccolithus eopelagicus C. pelagicus group Cruciplacolithus cf. C. neohelis	X R	C R	X R	R A R		R F X R	R	R X R R C C	R C R	R R	C R	C R	F	F R	r R A R	R	R	F		R C R	с	F		c c	с	C C	R C	X X C	с	R C	x	AC	R 1	7	F A C	2 2 A	F	A	F C	X A	F C	F C	R X C	R C	RC	F C
Cruciplacolithus sp. Cyclicargolithus neogammation Cyclococcolithina leptopora C, macintyrei Discoaster adamanteus D, aulakos	x R x	С	F x	R x		FR	F	F R F F	R r	F x	x	R	R r	R	r r	x				R C) F 1	: F	R F 7 F	R 7 R ?	R	C R	C R	A X	C	A R	A X	C C	C C	C C	C C	C C	C C R F R	C R	C F R	C F X	A R F R ?	A R X	A F R	R C R F R	R C F R	C C R
D. hrouweri D. challengeri D. deflandrei group D. divaricatus Discoaster druggi s.l.								х															>	¢			?		x		x R x	F	R	2	r	ł	R		R x R	x	F	R	R	F ?	C R R	F
D. variabilis Discoaster spp. indet. Discolithina segmenta et aff. Gyphyrocapsa spp., small G. oceanica	x A	A R	A X	c x		R	R	X X X R R A R	AC	A R	AR	A R	A R	R	A R	A	R		A	RA	X X	K F) ()	¢	x	R	R	R X X		F	R X X	X X	R 1) ()	((x x x	C R	R	R	x	R	x x	x	с	с	F
Helicopontosphaera euphratis H. kamptneri H. sellii H. wallichi Pontosphaera spp	x	F R X	R R	x	į	R	X R R	X R R	FR		R	R R	X R		x	x	R	R R	R	R	R 2	R F	R F	ł	R	x	R	R	x	R	1	FI	RI	7 1	F	2 X	C F	đ.	R	x	x		R	F		
Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra abisecta Reticulofenestra pseudoumbilica	A	A	A r	F		C A	C A	C A	- -	A - x	A - x	A - x	A - r	A - r	C - r	A - r	A - x	A R r		A	A .		•		C	A	C	С	C R	A	с	2	A (2	(3	C	15	С		C			C	С	c c
rnapaolithus sp. Sphenolithus ables S. cf. S. belemnos S. heteromorphus (?) S. moriformis S. neoables	x					R	R	R R X R												с	R	R I	2	R F	R		?	x	R		x	R I	R I R I R I	R J R J R	F K ? K F	2	9 9 9 9 9		R		? R R	x	R	R R R	? R R R	F
Sphenolithus sp. Thoracosphaera sp. Triauetrorhabdulus rugosus								xx						R										F	x	x	R		R R			1	1	R	F	R			R					1	R	

Note: See Table 4A for explanation of symbols.

TABLE 6 – Continued

Hole	1				-					-				_		_					_		27	Q A				_		_					-		_	-	-				-			
Adopted Age	-			_				-	-	-	-	-	-	-	-	_	-			-		Fa	rlv N	fior	ene	-		_		-				-												-
Zone	+				_			_			_			-		-		_			D	ieco	actor	r de	flan	troi	2		-					-							_					-
Lithology	-									-						_			_		-	N	ann	0.00	70			-					_	-	-	-					-					-
Denth Below Sea Floor (m)	12	7 6 1	27.0	1	12	7.0	146	e	1	1	16 4	1.5	6.0	-	15	6.0	165	5		16	5 5 1	175	0	T	nec.	17	5.0	194	5	T							19/	1 5	104	0						-
Deput below sea Ploor (iii)	12	1.5-1	57.0	-	15	7.0-	140.		-	-	40	5-15	0.0		1.5	0.0	-105			10.	5.5-	175.	0	-	_	17	5.0-	104.	2	+	-	_	_	-			104	1.3-1	194.	0	-		_			_
Sample (Interval in cm)	5-2, 141	5-3, 110	5, CC	6-1,110	6-2, 125	6-3, 127	6-5, 137	6, CC	7-1, 109	7-2, 128	7-3, 130	7-5 110	7-6, 110	7. CC	8-1, 114	84,110	8-5, 109	8-5, 150	9-1,109	9-3, 110	94,116	9-5, 113	9-6, 110	9, CC	10-1, 130	10-2, 110	10-4, 114	10-5, 115	10-6, 110	10, CC	11-1, 49	11-1, 137	11-2, 25	11-2, 130	11-2, 140	11-3, 23	11-3, 119	114,75	11-4, 112	114, 137	11-5, 50	11-5, 110	11-5, 130	11-6. 110	11-6, 140	11, CC
Overall Abundance Overall Preservation	A M	A	A A M M	AM	A M	A . M	A A M P	A	A M	A P	A M	A A	A A M P	AA	AM	A P	A M	A M	A / M I	A A M M	A	A M	A M	A M	A . M I	A A M N	A A M M	A M	A M	A M	A A P M	A	A P	A P	A P	A / P F	A A	A P	A P	A P	A P	A P	A	A A P F	AA	A P
Coronocyclus prionion	R	R I	R	R	R	R	R	F	1		R	RI	RF	2	R	R	R	R	R J	RF	R	R	R	R	1	RI	RR	R	F	R	R		X	F	x	XI	X	(R	_		R		F	2	X
Coccolithus eopelagicus C. pelagicus group	с	с	c c	с	с	F	сс	с	c	с	с	с	c (F	c	с	с	c	с	сс	с	С	с	c	с	с	c c	с	с	A	c c	с	R	с	F	с	: c	F	с	С	с	с	c (сс	A	A
Cruciplacolithus ci. C. neohelis																			- 9	202									1.22																	
Cruciplacolithus sp.	-	-		-	0	-	0.0		1	-	0				-	0		-	1	RH	1	-	-	-	R			R	R	-	0	-		0					0		0	0	D I		E	
Cyclicargolithus neogammation	C	CO	C	C	С	C	CC	C	C	C	C	F F	. (C	C	C	C	A	0 0	CH	F	С	C	F	FO	0 0	C	C	C	A	R C	F	F	C	R	F	2 F	F	C	F	C	C	F 1	r A	A F	A
Cyclococcolithina leptopora	R	RI	< 	R	D	n	D	~	n		D		<	D	R	R	R	R			R				R	ĸ	K		R	R																vo
C. macintyrei	R	RI		R	ĸ	ĸ	K	C	K	D	ĸ	K I		R	K	R	R	K	D 1	K D D	K D	12	12	n		n 1	n n	T.	12	D /	2 12	D	D	C	D	DI	a r	A	C	C	E.	0		CT	0	A:
Discoaster daamanteus	F	KI	. 1	K			D	R		R		- 23			F	K	K	r n	RI	K P	K	P	L.	K	K	K I	- R	P	г	R	- F	R	R	C	R	K I	R	. г	C	C	r	C		~ F	c	-
D. autakos	+	- 1	κ	-	-	-	R	_	+	K	_	_	_	6	+		-	ĸ	_		_	-		+		K	R	K		+						- 1	-				_	_	_	_	_	-
D. brouweri																																														- 1
D. doflandroi group	C	C (- C	C	E.	C	CE	E	D	T.	D				C	C	D	c.	E 1	C L	C	F	C	C	R I	r (T E	C	C	ch	- C	C	C	C	C				C	C	C	C	C (c (C	c
D. diparioatur	10	DI	5	D	r	C		1	K		D		ſ	•	10	C	D	D	r 1	r r	C	r	C	-	r 1		, L	C	C	~ l		C	C	C	C	a (< f		C	C	C	C				~
Disacastar druggi s l		DI	2	D		D	DD				D						D	D	D						D		D																			1
Discousier uruggi s.i.	-	K I	×	IN	-	K	K P		+	-	N	-	_		-	-	K	K	K	-		-	_	+	IX.	-	N	_	_	+			_	-									-			-
Discoaster spn_indet	1																																													
Discolithing segments at aff	F	P	P	P	P	3	PE	F	P	R		- 3	2 1	P	P	P	P	p	R I	D D	P	p	P	P	E I	P	P	P	P	P	P	x	v	R		1	2	x	έ.			P		T	2	
Genhvrocansa enn small	1.	K	K	A	IX.		K I		K	K			x 1	1	1 m	K	K	N	IX I	IX I		K	IX.	N	ю	K	-IX	K	K		1		A	K			×.	A	÷.			K				
Georganica																																														- 1
Helicopontosphaera euphratis	2			+					R	-				-	1			R	_					-	2				-	R	_															-
H kamptneri	R	9	RF					F	F			R I	r r	R R			R	x	R		R	R	R		R			R	R	R			x					X	(x	F	2	
H sellii									<u> </u>									1						- 1						~									ł.							
H wallichi	1 .																																													
Pontosphaera spp.	1			1														-1												-1																- 1
Prinsiaceae, small	C	C	C A	C	F	C	CC	C	C	C	C	C	2	A	C	С	C	C	CI	CO	C	C	C	A	C	C	CC	C	C	C	A C	A	A	C	A	A	2 A	A	C	A	A	C	A	A	A	C
Pseudoemiliania lacunosa	00	873 - S							181						12			24												S 1																20
Reticulofenestra abisecta			F				RO	C	C	F	F	RI	R	C		R		F			R						F	R	R										R			R				
Reticulofenestra pseudoumbilica				1					100						1			<u> </u>																												
Rhabdolithus sp.						R									1									- 1	R																					- 1
Sphenolithus abies				1		1			R																?						R															
S. cf. S. belemnos						?									L			?						R																						- 1
S. heteromorphus (?)	R	R	RR			R	RI	2							R	R	R	R						1	?F ?	C																				
S. moriformis	R		RF	R	R	F	F	F	R	R	R	1	RI	RF	R	R	R	R	F I	RI	R	R	R	C	C	R	C F	F	F	F	X F	R	R	F	х	XI	<u>х</u> У	(R	R	х	х	R	XC	ΧF	XX	x
S. neoabies	R	R		R	R	F	R		R		R		R I	R		R	R	R	R	RI	R	R	R		R	1	FF	F	F	1	F			R		1	2		F			F		F	7	
Sphenolithus sp.	?			R		?	?			1			1	?			?			I	R	R	R			R		F								1	2		R			F				
Thoracosphaera sp.			RR	R	R		R			R		1	R					- 1				R		R						R	R											R				
Triquetrorhabdulus rugosus			_					_				_			1		_			_					_																					x

normal distal shield. A layer of nearly vertical elements forms a wall between the distal shield and the central area on the distal side of the coccolith. The proximal shield consists of radial oriented elements. A suture is visible where the proximal shield ends and the bend to the vertical "tubus" begins. The latter is built by a continuation of the elements of the proximal shield towards the central area. Thus the pattern known from the forms of *Discolithina/Pontosphaera* and *Helicopontosphaera*, with a proximal side consisting of radial elements and a distal side with concentric elements, seems to be repeated in *H*? *subantarctica*. In this form the distal side of the central area, when present, also is found to consist of concentric elements. In none of the many specimens found of the new species was the central area completely covered or spanned by a bridge.

Remarks: Some doubts exist as to the generic position of this new species. It seems most likely, however, that it evolved from a *Helicopontosphaera* and is therefore tentatively placed in this genus. Apart from the asymmetrical flange, this species has nothing in common with the Late Cretaceous genus *Kamptnerius*. The species of *Pontosphaera* and *Discolithina* have walls with an elliptical outline and do not develop a proximal shield or comparable structure.

Occurrence: *H*? subantarctica was found in the early Oligocene of Site 277 on the Campbell Plateau, where it is common. The finding of such an easily recognizable and large new species in the early Oligocene, which has been closely studied in many widely separated parts of the world, is surprising. It is concluded that the species probably has a rather restricted distribution.

Genus HORNIBROOKINA Edwards 1973

Hornibrookina australis n. sp.

(Plate 2, Figures 1-3, 6, 9, 12; Plate 5, Figures 6, 9, 12)

Hornibrookina sp., in Edwards, 1973a, p. 77, fig. 82.

Hornibrookina n. sp., in Edwards, 1973b, pl. 9, fig. 1-3.

Holotype: Plate 2, Figure 9; distal view.

Paratype: Plate 2, Figure 6; proximal view.

Diagnosis: Hornibrookina with a slightly elongate to rhomboedrical outline and relatively narrow proximal and distal shields forming a convexly arched coccolith.

Description: The body has a somewhat asymmetrical outline (elongate to rhomboedrical) and is convexly arched. The distal shield consists of about 20 elements lying side by side and continuing into the large central area as parallel, elongate bars. The proximal shield is much smaller than the distal shield and very narrow. Its elements continue to the distal side, where they form the wall around the central area, overlapping each other considerably.

Remarks: *H. australis* differs from *H. teuriensis* Edwards by its more irregular outline, smaller size, and narrower shields. *H. australis* is remarkably well preserved in samples where most of the other coccoliths show signs of solution and/or overgrowth.

Occurrence: *H. australis* was first found in the Late Paleocene of New Zealand and subsequently in the late Paleocene of DSDP 207A on Lord Howe Rise (Edwards, 1973a, b). During Leg 29 this species was observed in the late Paleocene of DSDP Site 277 on the Campbell Plateau, where it is "few to common". It has also been found in the late Paleocene of the Crimea, U.S.S.R. (Perch-Nielsen, unpublished).

ACKNOWLEDGMENTS

The Scanning Electron Micrographs were made at the Institute for Historical Geology and Palaeontology, Copenhagen. The participation of KPN in Leg 29 was made possible by a grant from the Danish National Science Foundation. ARE acknowledges the support given by the New Zealand Department of Scientific and Industrial Research and by N. de B. Hornibrook of the New Zealand Geological Survey. Both authors thank our shipboard colleagues for many useful discussions. Finally we wish to state our appreciation of the assistance freely given by the shipboard personnel, particularly Mrs. P. Paluso and Mrs. S. Thompson.

REFERENCES

- Berggren, W. A., 1972. Cenozoic Time-Scale: some implications for regional geology and paleobiogeography: Lethaia, v. 5, p. 195-215.
- Bukry, D., 1973. Coccolith and silicoflagellate stratigraphy, Tasman Sea and Southwestern Pacific Ocean, Deep Sea Drilling Project Leg 21. In Burns, R. E., Andrews, J. E., et al., Initial Reports of the Deep Sea Drilling Project, Volume 21: Washington (U.S. Government Printing Office), p. 885-893.
- Edwards, A. R., 1968. The calcareous nannoplankton evidence for New Zealand Tertiary marine climate: Tuatara, v. 16(1), p. 26-31.
- Edwards, A. R., 1971. A calcareous nanno-plankton zonation of the New Zealand Paleogene. *In* Farinacci, A. (Ed.), Plankt. Conf. 2nd, Roma, 1970, Proc. (Tecnoscienza), v. I, p. 381-420.
- Edwards, A. R., 1973a. Key species of New Zealand calcareous nannofossils: New Zealand J. Geol. Geophys., v. 16, p. 68-89.
- Edwards, A. R., 1973b. Calcareous nannofossils from the southwest Pacific, Deep Sea Drilling Project, Leg 21. In Burns, R. E., Andrews, J. E., et al., Initial Reports of the Deep Sea Drilling Project, Volume 21: Washington (U.S. Government Printing Office), p. 641-691.
- Edwards, A. R., 1973c. Southwest Pacific regional unconformities encountered during Leg 21. *In* Burns, R. E., Andrews, J. E., et al., Initial Reports of the Deep Sea Drilling Project, Volume 21: Washington (U.S. Government Printing Office), p. 701-720.
- Hornibrook, N. de B., 1971. New Zealand Tertiary climate: New Zealand Geol. Surv. Rep. 47, p. 1-19.
- Kennett, J. P. and Watkins, N. D., 1972. The biostratigraphic, climatic and paleo-magnetic record of late Miocene to early Pleisto-cene sediment in New Zealand: Internatl. Geol. Congr., 24, Montreal, p. 538 (Abstracts).
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation: *In* Farinacci, A. (Ed.), Plankt. Conf. 2nd, Roma, 1970, Proc. (Tecnoscienza), v. II, p. 739-785.
- Perch-Nielsen, K., 1971a. Einige neue Coccolithen aus dem Paleozän der Bucht von Biskaya: Denmark Geol. Soc. Bull. 20, p. 347-361.
- _____, 1971b. Neue Coccolithen aus dem Paelozän von Dänemark, der Bucht von Biskaya und dem Eozän der Labrador See: Denmark Geol. Soc. Bull. 21, p. 51-66.
- _____, 1971c. Elektronenmikroskopische Untersuchungen an Coccolithen und verwandten Formen aus dem Eozän' von Dänemark: Det Kogelige Danske Videnskabernes Selskab Biologiske Skrifter, v. 18(3), p. 1-76.

TABLE 7 Calcareous Nannofossil Distribution, Site 280

Hole			-	2	80						_	-		-		_		_			_						1	-		_	28	0A	_			_	_						_			_	_	_	_			_	
Adopted Age	La Plei	st.	?	Plioc	ene?	2	N	?Lat	ene						?OI	goce	nc?					1			OI	igoc	ene	or l	Late	Eoc	ene			F						E	arly	Oli	toce	ne o	r La	te E	ocene	e					
Zone or Interval	Coci lith pel gici	0- 45 7- 15	Inde	termi	inate	1	Rei fer pse um	icul testr vudo bilic	0- a a					b	ndete	ermi	nate					1			h	nter	val v	vith	R. b	isec	ta			1			Inte	rval	wit	h Re	etica	ılofe	enes	tra b	isec	a an	ıd R.	plac	come	rpha	1		
Lithology	Nan 002	no e	Detr	ital S	ilty	Cla	y	Nan	no e																			Si	ty to	Cla	yey	Silt	Diat	om (Doze	1																	
Depth Below Sea Floor (m)				0.0	0-6.0	0					38	.0-44	0.1	T			53.5	-63.	0		Γ		7	2.5	82.0			T			82.	0-91	.5				91.5	-101	1.0			10	1.0-	110.	5			1	120.0	0-12	9.5		
Sample (Interval in cm)	0.00, 000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.00,000	38.0, 000	0.0	0.0	0.0	44.0,000	53.5,000	0.0	0.0	0.0	0.0	0.0	72.5,000	0.0	0.0	0.0	0.0	0.0	0.0	82.0,000	82.0,000	0.0	0.0	0.0	0.0	0.0	91.5,000	91.5,000	0.0	0.0	0.0	101.0, 00	101.0, 00	0.0	0.0	0.0	0.0	110.5,00	120.0, 00	0.0	0.0	0.0	0.0	0.0	129.5, 00
Overall Abundance Overall Preservation	A M	A + M P	R P	R P	- 1	R /	A A P P	A P	A P	-	-			+ P	-	- + P	+ P	-	+ P	+ + P P	-	+ P	+ P	+ P	+ P	+ P	+ P	R P	+ + P P	+ P	+ P	R P	+ P P P	R	-	RI	R + P P	F M	FP	+ P	F P	R P	R +	R	R P	+ P	+ R P P	+ P	+ P	- 1	RR	R	R P
Chiasmolithus altus C. oamaruensis C. solitus Coccolithus eopelagicus	R								x										x			?						?				?	>	5		F	x	F	C X		R	x	0	C	R				R	1	R X		F X
C. pelagicus group Crucipfacolithus cf. C. mechelis Cyclicargolithus cf. C. mechelis Cyclococcolithina leptopora C. macinityrei Discoaster variabilis pansus Discoaster spp. indet.	C R F	c c	r				X F	F	R F X					x								x			x			x ?				x x)	<u>{</u>		F	x x x	F	F		F	x x								1	R X	R	F
G. oceanica Helicopontosphaera kamptneri Prinsiaceae, small Reticulofenestra bisecta R. placomorpha (small center) R. pseudoumbilica Sephyrocapsa spp., small Sphenolithus neoabies Syracosphaera hystrica	R F A r F R	X <u>A</u> x A x	x x x	R	1	R /	A A A A	<u>А</u> А	c A X					x		x ? x	x x		x	x) ?		x	x	,	x	x	x	F	x	<u>(x</u>	X	R X	X F X	R R R		C R R	<u>R X</u> X	C	C R	x	F R	R X	F	<u>[</u> F	C R	x	<u>X R</u> X	x x x	F		F R X X	F	F
Transversopontis obliquiporis Zygrhablithus bijugatus																										x													X X												x		

Note: See Table 4A for explanation of symbols.

									-	280A								-	-	-	_	-	_							_	
Adopted Age	Early Oligoo or Late Eoc	ene			?	Early Olig	ocene or L	ate Eocene	?	10.000			i	7	Eocene	?				-				fid to E	arly	Eocene	ŝ.				
Zone or Interval	Interval with Re fenestra bisect R. placomor	ticulo- ta and pha	1	Interval	with <i>R</i> .	bisecta		Inc	deter	rminate			?	Ir	ndeterm	inate				Inter	rval wi	ith Cl	hiasm	olithus	olith	hus	1	Ir	ndeter	mina	te
Lithology		Clayey Si	Itstone an	nd Silty (Claysto	ne	Gree San	n d								Claye	y Silt	tone	and 3	Silty	Clayst	tone									
Depth Below Sea Floor (m)	139.0-148.5	167-17	196.0	0-205.5	215	.0-224.5	234-243	262.5-272	.0 2	291.0-200	.5 3	319-32	9 348	-357	3	376.5-3	86.0		405-4	14		443.	.0-45	2.5	4	81.0-49	0.5	509.	.5-512	.5	512.5- 519.0
Sample (Interval in cm)	139.0, 00 0.0 0.0 0.0 148.5, 00	167.0, 00 0.0	196.0, 00	0.0 0.0 205.5.00	215.0, 00 0.0	0.0 0.0 224.5.00	234.0, 00 0.0 243.0, 00	262.5, 00 0.0 0.0	272.0,00	0.0	300.5 00	0.0,0.215	348.0,00	357.0,00	376.5,00 0.0	0.0	0.0	386.0, 00	405.0, 00 0.0	414.0,00	443.0, 00 0.0	0.0	0.0	0.0 0.0	452.0, 00	0.0	490.5 00	509.5,00	0.0	512.5,00	0.0 519.0.00
Overall Abundance Overall Preservation	R R R R + P P P P P	+ + + P P F	+ + P P	+ + + P P P	+ + P P	+ R R P P	+ + - P	+ P	+ - P	- + - P	+ + P F	+ + 1 > P 1	R – +	+ - P	- + P	9 G		R P	R R P P	+ P	- + P	+ + P F	+ -	<u>1</u> 7	-		R P	+ + P F	,	+ - P	P
Chiasmolithus altus C. oamaruensis C. solitus Coccolithus eopelagicus C. pelagicus group	X R R X X ? X R X R X	R ?		х	R	х			x		x	3	x					R X	x x	x		x			R		x				
Cruciplacolithus cf. C. meohelis Cyclicargolithus cf. C. meohelis Cyclococcolithina leptopora C. macintyrei Discoaster variabilis pansus Discoaster spp. indet. G. oceanica Helicopontosphaera kamptneri Prinsiaeae, small	R	R	? ? x x x x	RX	R	? X R X	XR	? X	? X	R	x	xx	R	R	x	2		xR	x	x	x	,	x	R	R		? R	хх	R	x	RX
Reticulofenestra bisecta R. placomorpha (small center) R. pseudoumbilica Sephyrocapsa spp., small Sphenolithus neoabies Syracosphaera hystrica	XXX	R	c	? ?	?	Х							x											1	R					?	
Transversopontis obliquiporis Zygrhablithus bijugatus																															

TABLE 7 - Continued

TABLE 8A Calcareous Nannofossil Distribution, Site 281

Zone Lithology Depth Below Sea Floor (m)	Cocc pela ~0	olith Igicu	us s		I	Pseu	doe	milı	iania	lac				0	20.00																						
Lithology Depth Below Sea Floor (m)	~0			_						iuc	uno	sa		-	pela	olitti igicu	ius is			Р	seuc	loen	iilia	nia	lacu	nos	a			Re	tici	ulof	enestra	pseu	lour	nbil	ica
Depth Below Sea Floor (m)	~0							_		_				F	ora	m oc)ze	and	For	ram-	nan	no o	oze	-							_		_		_		
							0.0)-9.	5								7	7.5-1	7.0							1	7.0-	-26	.5				~27	~27	36	.0-4	5.5
Sample (Interval in cm)	1, CC	1A-1,40	1A-1, 145	1A-2, 150	1A-2, 145	1A-4, 13	1A4, 33	1A-4, 50	1A-4, 70	1A4,90	1A4, 110	1A-4, 131	1A CC	2-1, 30	2-1, 110	2-2, 110	2-2, 130	2-3, 30	2-3, 110	24,110	2-6, 110	2, CC	3-1, 110	3-2, 110	3-3, 30	3-3, 110	34,110	3-5, 110	3-5 130	3-6, 30	3-6, 110	3, CC	4, CC	2A, CC	5-1, 110	5-2, 110	5, CC
Overall Abundance Overall Preservation	A M	A M	A A M I	A C M I	СА	C I M	A P	A P	A P	A P	A P	A A M N	A C M N	A A P	A P	A M	A M	A M	A M	A A M N	A A A N	A I M	A M	A M	A M	A M	A M	A M	C M	C M	C P	A M	C M	A M	A M	A M	C M
Ceratolithus amplificus Ceratolithus sp. Coccolithus cf. abisectus C. eopelagicus C. pelagicus group	C	R F	R F	FI	R F F	R F	R F	R C	R F	F	F	R F I	F F	C	1 C	C	F	F	С	сс	1	C	C	С	F	С	1 C	C	F	C	C	с	1 C	C	1 F	F	X F
Coronocyclus prionion Cruciplacolithus cf. C. neohelis Cyclicargolithus neogammation Cyclococcolithina leptopora C. macintyrei	с	F R	R F 1	R	R C F F	R R R	R C R	C F	R C F	C F	C F	C C R I	C F R F	R	F F	F	R x	R x	R C	I C C	R R C C	R F 1	с	R F	R	R F	R F R	R C R	R F	R	R C F	F R	R R	x X 1	1 C C	1 R C F	R C R
Discoaster adamanteus D. brouweri D. deflandrei D. surculus D. variabilis																							1			1	1				1		1	1	1	1	1
Discoaster sp. Emiliania huxleyi ? Gephyrocapsa spp., small G. oceanica Helicopontosphaera kamptneri	C C R C	F R	F R R	FI	A F R	A R F	F F	F R F	R R F	R F	F R F	F I I R I	FF II FF	F? C C	? F F R	C F C	c x	C X X	C R C			R F	R	F		R	R	R		x	С	1 R	R	F	R	1 R	R R
H. sellii Pontosphaera sp. Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra pseudoumbilica	R A	A R	A	A R I	A R F K	R A 7 R	R A R 1	R A F	R A R	R A R	R A R	A R I	A A R F R F	A A	A	R A	A	X A R x	R A R	R I A / C C		R R A F	R A F	F R A F	R A R x	F R A F	R R A R R	R C A C	A X x	A F	C A R F	R F A F	R A 1 A	R A R	C A	C C	C A
Rhabdosphaera claviger R. stylifera Scyphosphaera sp. Sphenolithus heteromorphus S. moriformis	R		R				R						F			F R	X									R		R R	R F	R	R R R	R R R				?	R
S. neoabies Syracosphaera hystrica S. pulchra Thoracosphaera sp. Triquetrorhabdulus rugosus Umbilicosphaera? sp.	R	R	F F		F	R	R	R R	R		R	R	F	x	R	F	R		R	RI	R F	4 F 1	R R	F F	R	R	R 1	R R R	R F	X R	R	1 R 1	x x				

Note: See Table 4A for explanation of symbols.

A. R. EDWARDS, K. PERCH-NIELSEN

TABLE 8A - Continued

Adopted Age	. E Plic	arly ocen	e							La	ate a	nd	late	e Mi	id Mio	cen	e											ear	ly I	Mid	Mi	oce	ne						Ea	rly I	Mio	cen	ie
Zone							ŀ	Reti	cul	ofe	nes	tra	psei	udo	umbil	ica										С	ycli	can	goli	thu	s ne	eog	amr	nat	ion					Disc left	oas and	ter Irei	
Lithology	For	am	002	e a	nd	For	am	nai	nno	00	ze				-						_			Fo	ram	-na	nno	00	ze										-				
Depth Below Sea Floor (m)	36 4.	5.0- 5.0			1	15.:	5-55	5.0			5	5.0-	-64.	.5	65.0			74	.0-8	3.5	ŝ			8	3.5	93.	0				93	.0-1	102	.5				102	2.5-	112	.0		
Sample (Interval in cm)	3A-1, 110	3A-2, 110	24, LL	6-2, 30	6-2, 110	6-3, 110	64,110	6-5,110	6-6, 110	6, CC	7-2, 131	7-3, 110	74,110	7, CC	8, CC	9-1,96	9-2,110	9-3, 110	94,110	9-5,110	9-6, 110	9, CC	10-3, 63	10-3, 110	10-4, 110	10-5, 89	10-6, 114	10, CC	11-1, 110	11-2, 110	11-3, 110	114, 111	11-5, 110	11-6, 110	11, CC	12-1, 110	12-3, 110	124,30	12-4, 110	124, 130	12-6, 110	12, CC	1
Overall Abundance Overall Preservation	A . M	AA		A .	A	A	A M	A M	A M	AM	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	A M	AM	A M	A M	A M	A P	A M	A M	
Caratolithus amplificus	INT 1	1	4 1		MI .	WI .	IVI.	TAT.	TAT	144	141	TAT	141	TAT	M	TAT	141	TAT	141	141	IVL	TAT	TAT	IVI	141	141	TAT	IVI.	TAT	141	7.47	141	14T	141	TAT	144	141	147	147	*	144	141	-
Ceratolithus amplificus Ceratolithus sp. Coccolithus cf. abisectus C. eopelagicus C. pelagicus	F		2	1	C	F	F (c c	F C	F	F	F 1 C	F 1 C	F C	C 1 C	F C F	F F C	R F C	С	R R F	R C	R C	A	A	R C	R C	С	с	R C	R F	R C	С	R C	R C	с	C	С	А	С	с	С	А	
Coronocyclus prionion	-		+		R	_	-	R	-	-	-	R				-	-	F	R	-	R	R	-	F	R	R	R	R	R	R	R	R	R	R	R	R		1			F		-
Cruciplacolithus cf. C. neohelis Cyclicargolithus neogammation	1	R										~								1 1	1		с	c	F	F	R	R	с	c	c	c	С	с	с	F	F	A	C	C	c	С	
Cyclococcolithina leptopora	C	2 (. 3	F 1	F.	R	R	R	R	R	R	R	R	R	F	F	F	R	F	R	R		C	С	С	С	-	30				1	12	114	1	01221				1200		
C. macintyrei	C	FI	3 11	R	R	R	R	F	R	R	R	F	R	R	F	R	С	С	F	F	F	F	R	F	F	F	F	F	R	R	R	R	F	R	R	R	R			_	R		_
Discoaster adamanteus																														1		R		R	R	F	F	R	F	R	С	С	
D. brouweri				1																								?															
D. deflandrei										- 1																										cf	cf	cf	R	С	F	С	
D. surculus		1																																									
D. variabilis		1		1			1	R	1	R			1	_					_						_			?			_	_				-		_					
Discoaster sp.						1		1		R	1				1	1		1	R	1		1		1	R	F	1	R	1	1	R	R	1	R		1		Х					
Emiliania huxleyi ?																																											
Gephyrocapsa spp., small																																											
G. oceanica																																											
Helicopontosphaera kamptneri	R? F	? I	2	XI	R	- 8	R		R	R	R							R		R	R	R		F	R	R		R	R		R	R	R	R	R	R			R				
H. sellii										1				0.0																						1							
Pontosphaera sp.		RI	2				R	1														1								1	1		1		1								
Prinsiaceae, small	Α.	A			A	С	C	A	С	C	С	C	C	С	C	C	С	С	С	С	Α	A	C	A	Α	Α	A	A	A	A	Α	Α	C	C	C	C	C		C		C	C	
Pseudoemiliania lacunosa																																											
Reticulofenestra pseudoumbilica	A	C /	1	Α.	A	A	С	A	A	Α	Α	A	A	A	A	A	С	A	A	A	Α	Α	A	С	С	Α	Α	A	С	С	С	С	С	С	Α	A	Α	Α	Α	Α	Α	Α	
Rhabdosphaera claviger	R	R X	<																																								
R. stylifera																																											
Scyphosphaera sp.		3	< l																		1												1										
Sphenolithus heteromorphus	1														l																		1			1	1		1			1	
S. moriformis											1	F	F	F	R	R		R	R	R	F	R	R	F	R	R	R	R	R	R	R	R		R	R	R		х	F	F	F	R	
S. neoabies				1													F	С	F	C	С	F			F	F		F	R	R	R	R		R	R		F		F	F	F		
Syracosphaera hystrica	1															1																											
S. pulchra																																											
Thoracosphaera sp.	R								R		1					1				1		1		1	1	1				R		R		1									
Triquetrorhabdulus rugosus					?		?	?	?	?				R	?		cf1	cf1			(cf1																					
Umbilicosphaera ? sp.				_		_																_																					

TABLE 8B Calcareous Nannofossil Distribution, Site 281

Adopted Age	M	Earl	y ene	La	ite	or n	nid	Oliį	goce	ne	-	-Ea	rly (Olig	goce	ne									Ea	arly 1	late	Eo	cene	e													1	1	?
Zone	Dis def	coa lan	ster drei	ĩ	Re	etici l	uloj bise	^f ene cta	stra		-	-Bl	acki	tes	rect	us							(Chia	smc	olith	us c	am	arue	ensi	5												d	owr	hole?
Lithology		G	laud	For	am ite-	Na	nnc de	oo trita	ze al sa	nd				Sar	ndy	silts	s an	d si	lty	clay	/s w	ith	vary	ing	amo	ount	s o	f sili	ceo	us a	nd	calo	are	ous	mi	crof	loss	ils		1	Lith cla	nifie stic	sd s	Sch	iist ccia
Depth Below Sea Floor (m)					112	2.0-	121	.5								12	1.5-	131	.0					13	1.0-	-140	.5		1			14	0.5	-15	0.0	0						150	.0-c	.15	3
	1			-		-	-	-											-				-	1																+					
Sample (Interval in cm)	13-2, 110	13-3, 57	13-3, 106	13-3, 130	13-4, 110	13-4, 130	13-5, 30	13-5,40	13-5, 127	13, CC (top)	13, CC (base	14-1, 42	14-1, 110	001 011	14-2, 120	14-3 110	14-4 15	14-4 110	14.5 25	14-5 112	14-6.40	14-6, 107	14, CC	15-2,40	15-2, 114	15-3, 40	15-3, 110	16-1, 40	16-1, 112	16-2, 35	16-2, 110	16-3,40	16-3, 107	16-4, 40	164, 110	16-5,40	16-5, 107	16-6, 40	11 0-01	10, 11	17-1, 20	17-1, 29	11-5,0	17.6, 26	17-6, 85
Overall Abundance	A	A	A	A	A	A	A	A	С	F	c	F	с		C I	- 0	C A	A 4	1	A /	A A	A	C	A	A	A	A	A	A	A	A	A	A	С	A	A	A	A /	4 /	AI	FI	FI	R F	R R	+
Overall Preservation	M	M	M	M	M	M	P	M	P	M	M	P	P I	, 1	P F	• P	<u>P</u>	• F	' F	PI	<u> </u>	1 M	I M	P	Р	M	M	M	M	M	M	M	M	M	M	M 1	M	MN	A I	? F	2 1	<u>P</u>]	<u>P</u>	N	I P
Chiasmolithus altus				F	F	F	A	С	С	F											cf	R																							
C. expansus												a 1	XI		I	1	5 7/2		20 SB	10 FR	cfl	R	1 1423		0.255	0.02		1000		1252	1001		21.3				-		an 1			a - 1	1		
C. oamaruensis											C	R	1	5	ł	S F	S F	S F	S F	RI	R R	R	R	F	R	R	F	С	F	F	F	С	C	С	F	C (С	CC	2 1	8	- 1	1	1	1	
Coccolithus abisectus			F					R	F	R																																			
C. eopelagicus	F	Х	F	_	F		1	F		R	R	R	F 1	5	ł	5 1	F	S F	F	F I	F C	F	R	R	R	R		R		R	_							R		R		1			
Coronocyclus prionion	f		R		R			1																																					
Cyclicargolithus neogammation	C	Х	F	C	F	С	C	C	F	C	R					1	Ľ							1000			-																		
C. reticulatus												F	C I	F 1	FI	- (C F	FI	F	F (C	C	C	C	C	C	C	С	C	Α	A	A	C	С	С	C (С	CC	2 (2 F	R (CI	2	P	8 I
Cyclococcolithina leptopora																																													
Discoaster adamanteus	F				F	X		F		R			_					_				-	_		_				-									_			_				
D. deflandrei	R	F		X		Х	X	cfF			X																																		
Discoaster sp.			1					F		F																																			
Ericsonia ovalis group	A	С	С	F	С	С	C	С	С	С	F	F	RI		RI	S I	f I	F	? F	F I	7 F	R F	F	F	R	R	R	R	R	R	R	R			R	R	R	RF	5 1	RI	R	1			1
Isthmolithus recurvus											R																																		
Markalius inversus	-	_				_		_			_		_		_		_	-		_		_				_	_				_	_	_			_	_	RI	2	_					
Neococcolithes dubius																																		R				R							
Prinsiaceae, small	C	Α	A	A	A			C	F	С	A	Α	A I	1 (С	(C (2 1	A /	A /	A A	A	A	A	A	Α	A	Α	A	A	A	Α	A	A	Α	A.	Α	A A	A	AI	R (CI	FF	S C	1
Reticulofenestra bisecta		х		F	R	R	F			х	F	R	RI	5	RI	RI	RI	7 I	8 I	F I	FF	F	R	C	F	R	F	F	F	F	F	F	F	F	F	F	F	FI	8 I	F	1	1		>	0
R. hampdenensis												С	CI	-	RI	F (CI	- (2 (C (CO	C	A	C	С	F	C	C	С	С	С	С	C	F	С	C (C	CC	2 1	A	(C	1	F	19
R. oamaruensis	_			_						x	F					R	?				F	?	R	?																\downarrow					
R. placomorpha											C	С,	F I	\$	RI	RC	C I	7 H	RI	FI	FF	F	R	C	F	F	C	C	R	R	R	F	F	R	R	F 1	F	FF	8 I	F		X	1	1	
Rhabdolithus sp.	1.000		F		F							1																R								R		R							
Sphenolithus moriformis	F	R		R		X	X			1	X																							R		1	R	F	8						
S. neoabies			F		F			?	?																																				
Thoracosphaera sp.	-		R					R	R		X	_	R	R	R		ł	S I	8 1	FJ	RF	R	1	R			R	R		R	R	R		R	R	R	R	FI	2	1	R	1	1		
Transversopontis pulcher																																		R					1	F				1	
T. pulcheroides																					F	5	R		R				R			R			R	R		RI	F J	R				>	6
Triquetrorhabdulus milowi?			R		R			R																						14251 - 1						1257 D		-							
Zygrhablithus bijugatus								R		R		R								_				R	5		_		R	R	R	_		R	R	R	R	FI	R I	R					

Note: See Table 4A for explanation of symbols.

TABLE 9A Calcareous Nannofossil Distribution, Site 282

						-					-			_						_			
Adopted Age	La	te Pleistocene		?Late	Miocene		Earl	y early M	liocen	e						Mid to	Late Oli	gocene	:				
Zone	Cocc	colithus pelagicus	2	R. pseu	doumbilica		Disce	oaster de	flandro	ei -				-		Reticulo	fenestra	bisect	a	_			
Lithology	Nanno bry	o, foram, micarb and rozoa-foram oozes		Nan	no ooze	De	trital si	ilty clay	Nanno	ooze				Na	inno detri	tal silty c	lay						
Depth Below Sea Floor (m)		0.0)-9.0			6~	612	28.0-34	.0		5	3.5-56.5		~57	66.0-75.	5 75.5	5-85.0	85.	.0-94.5	95	104	.0-113.5	113.5- 123
Sample (Interval in cm)	1-1, 75 1-1, 101 1-1, 140 1-1, 29 1-2, 83	1-2, 141 1-3, 8 1-3, 37 1-3, 80 1-3, 145 1-3, 145	14, 26 14, 125 14, 130	1-5, 18 1-5, 20 1-5, 50 1-5, 80	1-5, 120 1-6, 152 1-6, 54 1-6, 108 1. CC	2, CC	3, UL 4-1, 30	4-1, 110 4-2, 50 4-3, 80	4-4, 7 4, CC	5-1, 127	5-1, 148	5-2, 41 5-2, 81 5-2, 110	5-2, 140 5, CC (T)	6, CC	7-1, 110 7-2, 110 7. CC	8-1, 140 8-2, 110	8-3, 110 8-4, 130 8. CC	9-1, 140	9-3, 110 9. CC	10, CC	11-1, 136	11-3, 110 11-4, 110	12-1, 140 12-2, 115 12-3, 132
Overall Abundance Overall Preservation	A A A A A M M M M P	A F A A A F P P P M M P	A A A M M M	AAAA PPPP	A A A A A P P P P P	AA	AAA	A A A G M M	A A M M	A A M C	A A A	A A A M M M	A A M G	A A M G	A A A M M P	A A M M	A A A P M P	AA	ААА МММ	A M	ССММ	ССС	A A A M M M
Chiasmolithus altus C. oamaruensis Coccolithus eopelagicus C. pelagicus group Coronocyclus nitescens C. prionion	R F R C C C C C	CACCFR	x F C F F	X R R R R R R	RRFFR	R I C I X I	R F C R F C	R X C C C R X X R	R C F X X	F C C R J C	C C	CCC R FFF XR	Ř R R F R R X	C A ef F F R	CCA cCC R	C C f cf F C R	FFC		c c ef F C	A R F C R	C C E X R F F	C R R C C R R	C C C F F F F C C
Cruciplacolithus cf. C. neobelis Cyclicargolithus neogammation Cyclococcolithina leptopora C. macintyrei	R X X C A A F A X X X	R R R R x A F A C C F	R X X C C C X R	F F R R F C F	R R R C F C C F		A A G	СЛА R	A A	c /	A A (ссс	CA	c	ССF	FF	FFF	FI	FF	F	F		ссс
Discoaster adamanteus D. deflandrei D. druggi ? D. saundersi D. formosus	x					X X X X	K X C K F R	ххх F FC	R R R F C	F) C - F C 1	< - 1 ₹ X 1	F F R	R	FR		R		x			RR	F	
D. tani D. tani D. variabilis Discoaster sp. indet. Emiliania huxleyi Fricconja tasmeniae	A? A	r A A	r F A	x x x x x	X R X X R F X	x					- 1			R	X	R	RR	R	R R R	R R	R X		R
Gephyrocapsa sp. small G. oceanica Helicopontosphaera ampliaperta H. euphiatis H. komptaeri	ACCAF RFRXR	FAFCCA FRR	F C F F X F			X Z	x I R X I	FX FXR	R) 	R R	RR	RR							F			
H. oblique H. oblique Jsthmolithus recurves Orthozygus aureus Pontosphaeria sp.	XR	<u>F X C F F K</u>	<u>e</u> r r			R I		F	r x x	R	R X R R R R R	F R R F R F F	R X F X R X	F		R	-		R	R	r R R R R	r c R F	R C
Prinsiaceae, small Reticulofenestra bisecta R. placomorpha R. pseudoumbilica		ACAAA	A C	FFC		A	AA	CAA	A A	CO	F	AAA	A A F C	A A C F	A A C C C	A A C C	AAA CCC	F	A A C C r	A C	A A C C f	A C C C f	A A A C A A
Reticulofenestra sp. Rhabdolithus sp. Rhabdosphaera claviger Sphenolithus abies S. cf. conicus n. sp.	RFFX		x			RI	RF	XF	FX	c c	<u>x</u>	ссс	CA R X	A A R	<u>A A A</u>	I A A	<u>A A A</u> 1	A C J	ARR	R 1	A A F F F	ARRF	
S. heteromorphus S. moriformis S. predistentus Sphenolithus sp. Syracosphaera hystrica S. predistentus	r r r x x RFF R	r r r R R	f x F X R		x x	R I F	FF	C R R C	C F	C F	FR	CFC	CR	F F R	R F	FF	1	7 F	R F F	R R F	F F R	F	R
Thoracosphaera sp. Transversopontis obliquipons Triquetrorhabdulus carinatus Zverhablithus biugaths	x	R						x	F		R	R R I R	R R C R	-		R	1	R		R	RC	FC	

Note: See Table 4A for explanation of symbols.

CALCAREOUS NANNOFOSSILS

														_	-					_				_							
Zone or Interval				R.	bise	ecta				pli	aco	R. mor	rphi	2	top top	I. r o C.	ecu reti	ruu icul	s to ata		to ret to rec	op (icui bas	C. lata se I. vus			F	R. b	isec	ta		
Lithology				Nat	nno	det	trita	l sil	ltv	clav										-		Silt	v c	av	and	cla	vev	sil	Ĕ.		
Depth Below Sea Floor (m)				13	2.5-	-142	2.0				1	61. 170	0- .0				18	9.5-	199	9.0				~	218	25	6.0	-26	5.0	~2	294
Sample (Interval in cm)	13-1, 130	13-2, 110	13-3, 110	13-4, 23	13-4, 31	13-4, 34	13-4, 44	13-4, 110	13-5, 110	13, CC	14-2, 110	14-3, 107	14, CC	15-1, 132	15-2, 63	15-2, 66	15-2, 70	15-2, 95	15-3, 5	15-3, 10	15-3, 20	15-3, 110	15, CC	16-1, 110	16, CC	17-2, 115	17-3, 110	17-4, 110	17, CC	18-1, 82	18-1, 115
Overall Abundance Overall Preservation	A M	A M	C P	A M	A M	+ P	F P	A M	C M	A M	A M	A M	A M	A M	A M	A M	A M	A M	+ P	A M	A M	C P	F M	F P	R P	C P	A M	A M	C P	C P	F P
Braarudosphaera bigelowi Chiasmolithus altus C. cf. C. expansus C. oamaruensis Chiasmolithus sp.	C	C		F	C F	R	F	C F	F	C	C R	F	A	C F	R F F	F C	F C	F	R	R C	R F	R	R	R	R R	I R	R	R	R	x	x
Coccolithus eopelagicus Cyclicargolithus neogammation C. reticulatus Daktylethia punctulata Discoaster cf. D. barbadiensis	R C	R F	R	R C	С	R	R	R C	R C	F F	F	R F	С	F	F	С	F	F		F	F F	R F F	R F	F	F	R F R R	F F	C R I	R F C R I	R C R R	R
D. saipanensis D. tani Discoaster sp. Ericsonia fenestriata E. fenestrata, small		R		R F	F				R		R	R F	R	R C	F	R F F	F	I C		I C	I R R	R R R	R I R	I	R R	R R	R R	R R R R	R R I	X X R	X F
E. formosa E. ovalis Isthmolithus recurvus Lanternithus minutus Markalius inveirsus	С	F	F	С	С	R	F	С	С	R F	F	С	С	R C F	R C F R	R F C	R F C F	R F C R		F C C F	R C R I	R R F R	R R R R R	R F R	R R	R	R F R	F R R	R C R	x c x	R
Pontosphaera sp. Prinsiaceae, small Reticulofenestra bisecta R. daviesi	R A C	A C	C F	R A C	A C	R	C F	F A C	R C C	R A C	A C	R A C	A C	F A C	R A F	R A C	F A C	F A F	R R	F A F	R C C	R C C	R C C	R C R	R F R	R C F	R F C	R A R C	F A R F	R A R F	F R
R. c1. R. dictyoda R. hampdenensis llaevis R. placomorpha C. reticulatus Sphenolithus moriformis S. predistentus	F F R	F		F F R	F R	R	R	F 1 F	F 1 F	F R F	F	R R R	F F	C C F	C C F	C C F	C C F	C C F	R	C C F	R C F R	R C F R	R F F F R	F F F	R R F	F C F R	F F F F	F F C F R	F C C F	C C C R	R R R
Thoracosphaera sp. Transversopontis obliguipons T. pulcher T. pulcheroides Zverhablithus bilugatus	R			R R R				R R	R	F	R	R R R		R R R	R R R	R	R F R F	R F R	R	R R R	F	R R F	R R R	R R F	R	R R R	R R R	F R R	R R F F	R R	R

TABLE 9B Calcareous Nannofossil Distribution, Site 282

Note: See Table 4A for explanation of symbols.

Adopted Age	Mid t Pleis	o early tocene		⊷La	te P	lioce	ne	?	Lat	e N	eoge	ne						1		?La	ate E	Eoce	ene?		_	_				E	Early	y la	te E	oce	ene										Eo	cen	e o	r ol	der			
Zone	Pseu	doemil	iania							A)	Inde	tern	nina	ate																Cl	ias	mol	ithu	is o	ami	rue	ensi	is				1			Inc	dete	erm	ina	te			
Lithology	-	+ Mai	ngan	ese N Ze	lodu	les cla	v a	nit	14				Si	lty : (L	zeol Jnit	litic 1B	cla	y								D	iato	m c	oze	(Un	it 2	.)													Silty	cla	ay (Uni	it 3	,	-	
Depth Below Sea Floor (m)	1.5	0.5*	Γ	11.0	-20.	5				_	1	0.0	19.	5		-		-		29.0	57	.5	8	36.0	-95.	5	1	124	0-1	33.5	Т	-	_		152	.5-1	162	.0				15	90.	5-20	0.0	Т	-	21	9.0-	228	3.5	-
Sample (Interval in cm)	IA, CC	1, CC	2A-40, 1	2A-30, 2	2A-40.4	2A, CC	2-14,1	2-31, 1	2-53,1	2-90,1	2-98	041-7	2.3 30	2-3 110	4.4 30	011 7-6	011.42	2 00	3-1	3, CC	4. CC	221	5-1, 14	06 1-0	5-2.117	5. CC	6-1,100	6-1, 145	6-2, 35	6-2, 117	6, 00	7-1, 4	7-1, 135	C71 '7-1	7-3, 49	7 5, 148	7-5, 92	7-5, 147	7-6,40	7-6, 145	7, CC	8-1, 36	8-2, 30	8-3, 30	8-3, 55	8,00	9-1,64	9-2,10	9-30, 3	9-30, 4	9-5, 30	9. CC
Overall Abundance Overall Preservation	C P	C P	A P		+ P	+ P		•	•	•	+ - P	-		•		•	+ F	+ P	-	•	+ P		- 3-		+ P	+ P	C P	C P	C P	C P	C P	C P	A (N I	C P	C P	C P	C P	C P	C P	C P	C P	•	-	•	-	X P		-	-		-	XP
Chiasmolithus altus C. oamaruensis Coccolithus pelagicus Cyclicargolithus reticulatus Cyclocolithina lentonora	X x C	F	c		x	x					x							x									F A	F C	R C	F C	R C	R C	F I	R A	x c	F F	F A	F F	R C	R F	F X				;	x						
C. macintyrei Dactylethra punctulata Discoaster asymmetricus D. pentaradiatus D. sainanensis			F X X																								x		x	-	x	x	x	x	x	x	x				x											
D. tani nodifer Discolithina multipora D. pulcheroides Ericsonia ovalis Centurocanta spa small	4	R				ž											x	2			x						R	R	~	F	x	X X R	x x	X X F	X X X F	x c	X R	x c	X R	с	x				;	x						x
G. oceanica Helicopontosphaera kamptneri Markalius inversus Neococcolithes dubius N. minutus	R	x x	R																								x				x						x	x			x x											
Pontosphaera multipora Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra bisecta R. daviesi	A R x	A X	A R			r x x											х	x			x				R	x	с	C R	F	C F	с	с	C (F	C	с	C F	A	C F	с	C F	с				;	x						
Reticulofenestra hampdenensis Reticulofenestra sp. cf. minutulus R. placomorpha Reticulofenestra, small Rhabdolithus sp.	A	с	с			x					x						х				x				R	R F	A C A X	C A X	X F A	C A X	R C A X	R C A X	A G A A X	R C A	F A X	A A F	C F A X	A A X	C F A X	A A X	F C A X					x						
Thoracosphaera sp.																											X		Х		×	x	R	Ă.	X		X	X	X		X											

 TABLE 10
 Calcareous Nannofossil Distribution, Site 283

Note: See Table 4A for explanation of symbols.

	TABL	E 11		
Calcareous	Nannofossil	Distribution,	Site	284

*

1.35	0	0-8	us p	lagio	cus				Ps	eudo	emili	iania	lacu	nosa			11	Viena	A	hear			In	ircoa	eter a	merul	110	-				-	Retic	rulofe	nest	ra ps	eude	ouml	vilica				
1.35	0	0-8		_													14	nsco	aster	Droi	weri		1.U	130.00	1111.0	1117 2 147	13				_											_	_
1.35	0	0-8			_		_			-		-			_				1	Fora	n and	i Nan	ino c	ozes		-										_	_			_			_
1.35	-	10.00	.5			8.	5-18.	0		1	8.0-2	7.5		-35		37	.0-46	.5		4	6.5-5	6.0		56	.0-65	5.5	65 70	5.0-		75	.0-84	1.5			84	.5-94	.0			9	4.0-	103.	5
	F2.110	1-3, 110	14, 110	1. CC	1A-1.56	1A-2,47	1A-6, 16	1A, CC	1A-2, CC 3-1 110	3-2, 110	3-3, 110	3-5, 110	3, CC	2A-CC	5-1, 110	5-3, 114	54, 110	5-6, 110	5, CC	6-1, 110	6-3, 110	6-4, 85 6-CC	7-1, 110	7-2, 110	7-4, 110	7-5, 110	3A, CC	8, CC	9-1, 110	9-2, 110	94, 110	9-5, 110	9, CC	10-1, 135	10-3, 110	10-4, 110	10-5, 110	10-6.90 10.CC	11-1, 110	11-2.110	11-3, 110	11-5, 110	11-6, 110
A A M N	A A	A M	A A	A A M M	AM	A M	A A M M	A M	A M	A A A M	A M	A A M M	A	A M	A A M M	A	A M	A A P P	A M	A / P M	A M	A / M M	A A	A	A A M N	A A A M	A A M M	A	A P	A A M M	A M	A M I	A A P M	A	A A M N	A	A M	A A M C	AP	A M	A A M M	AA	A
F F	F	F	F I R	F F R				X C R	c	F	R F	FF	R C	c x	R R F C	F	R A	F C R	с	с	с	c c x	c	c x	сс	c x	c c	c x	F	C F	F X	F	X F F	FI	R F I	R F	R F	F F	R F	R C	R F	R R	R C
сс	C	С	CI	FC				С	CO	C C	С	СС	С	C C	сс	C R	F	C C R F R R	F X R	C C F I R I	C F X	C C F I R I	C C C	C C R	C C C F R	C C R	C C F C cf R F	C C F	C F R R	CC FF R R	C F	C (F	C C F F R R	C C F I	R F	C C R	C C	CC FF X	F	C F	C C F I H		C
																						R R F	R R R F R	R	R F F R F	R R R R R R R R R R R R R R	R R R cf F	R F R	R R R	R X X X R		R	R R R R	RI	R F F	F	R R R F	R F X F F F	x	X R	R	RR	R
с с F С	F F	C F	C I R I R	FF FF RF R				F C X	x c	C C F	R	FC	C F	FRC	F F R R	C F	R R	F R C	XCR	F I R I	FR	F I R 2		F R	F F F F	F R R	R F F R F	F R F	F	F F R	F	F 1 R	FF	FI	E F	F	F	FF	F	F	FI	F F	с
R F R F A A	R R A A	R A	A	R A A			сс	R A C	A	R A A F	R A C	R F A A C C	XACX	X A C	F C A A C C	F A C	C A C	F F A A C C	X A C	R I A A C C	F A C C	F I A / F (F F A A C F	A F	F F A A R F	F A A F	X F F F	F F A R	C A R	CF AA RR	F A R	C A R	F A A	F I A	F F	F	FA	C F	C A	F A	F I A /	F F	FA
R F	R F R R	F R	R	FC				F	R	R R R	R R	R" F	R	F	F	F	F	C R	F	R I R	R	R	T X F R	F	F F R	R	X F	τ R F	R F R R	R F R R C F R R R	F R R	C I R F R	СС FF R	RI	F F	R R	C R R	C C R F I	C R F	C R F R	C C R I	R F	F
C F	R R R	F	R	x F F				R F	x	R R F C R	F	F F F	x	F	R R	F	R	сс	R	F I R I	R R X R R	R I F I R I	R B X F R B	τ F	R F I R F	R F R R	X F N F C	F F R	F F R	C F R R F C R R	R C R	F R F	F F F F F R X	F R F R	R I R I F I R I	F F F F F R R R	F F F R	C I F I F I R I F	F F F	F F C R	F I F I C I R I	F F F F F F	R F F
		A A A A A A A A A A A A A A A A A A A	A A A A M M M M F F F F C C C C C C C C C C C C F C F F R R R R R R R R R R R	A A A A A M M M M M M F F F F F R C C C C C C F C F F C R R R R R R R R R R	A A A A A A A A M M M M M M M M F F F F F F R R R C C C C C C C C C F C F F C F F R R R R R R R R R R R R R R R R R R R R R R R R R R R	A A A A A A A A A M M M M M M M M F F F F F F R R R C C C C C C C C F C F F C F F R R F R R R R R R A A A A A A A A A A A A A A A A C R F F R F C R R R R R R R R R R R R R R R	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

Adopted Age				Ear	lv Pl	iocer	ne					_			_												Und	iffere	ntiat	ed ea	urly P	liocen	e to	iate !	Mioc	ene		_										1	L	ate N	lioce	ne	
Zone	L	_		_	_	_				_		_	_	_		_		_	K	eticu	lofe	nestr	a pse	udoi	umbi	ica		_	_						_					_	_							-					_
Lithology														_						F	oram	and	Nani	no o	ozes													_					-					_					_
Depth Below Sea Floor (m)		103.5	-113	.0		11	3.0-1	22.5			122.	5-132	2.0			132	.0-14	1.5		1	141	.5-15	1.0			151.0	-160	.5		16	0.5-1	70.0			170.0	-179	.5		1	179.5	-189	.0		1	89.0	198.	5			198.	5-208	1.0	
Sample (Interval in cm)	12-1, 110	12-3, 110	12-5, 110	12-6, 110 12. CC	13-1, 110	13-2, 110	134, 110	13-5, 110	13-6. 110 13. CC	14-1, 110	14-3, 110	14-4, 110	14-6, 110	14, CC	15-1, 110	15-3, 110	15-4, 110	15-5, 110	15 CC	16-2, 110	16-3, 110	16-5, 110	16-6, 133	16, CC	17-2, 110	17-3, 110	17-5, 110	17-6, 110	18-2, 110	18-3, 110	18-4, 110	18-6, 110	10.1 140	19-2, 110	19-3, 110	19-5, 110	19-6, 110	20-1, 120	20-2, 100	20-3, 110	20-5, 110	20-6, 110	21-1. 140	21-2, 110	21-4, 110	21-5, 110	21-6, 110	22-1.135	22-2, 110	22-3, 110	22-5, 110	22-6, 110	22'CC
Overall Abundance Overall Preservation	A A M N	A	A A M M	A / M M	AM	A M	A A M P	A M	A A M P	AM	A A M M	A	A A M N	AA	A M	A A M N	A	A M	A / M M	A	A M	A A M N	A	A	A A M M	A M	A A M N	A		A	A	A A M P	A	A A P P	AP	A A P M	AP		A	A P	A A P P	A P	A A P P	AP	A A P P	A	A	A A P P	AP	A	A A P P	A	A
Ceratolithus spp. Coccolithus eopelagicus C. pelagicus Cruciplaeolithus ef. neohelis	R F	R C	R R F F	R I I C C	RR	R C	R R F F	R C	R R C C	R F	R C C	R C	C I	с	F	FF	F	с	со	F	R F	X F F	F	F	x c c	X F	R C F	F	X F F	R F	F I	R R F C	F	R R C C	F C	R F C C	R C	R C C	R C	X F	X F F	F	X F F	F	X F F	F	R J	X R F C X X	R F	FI	х F C	x c x	R
Cyclicargolithus et. neogammation	1. 1			<i>c</i> 1	- 11	0	0.0	0	0.0	0	0.0	0	r c							-		r o	0	0	0.0	0	0.0						-	XX	0	r. r.		0.0		0	0.0		FF	X	F F	X		X		x		0	_
C. macintyrei, >15µ Discoaster asymmetricum	i i	R	FF	FI	F	c	FFR	c	C C R	C R	c c	c	CI	c	F	FC	F	F	FO	F	F	FF	R	R	C F R	c	FF	F	FF	R	RI	RF	R	FF	F	RF	F	C F	R F	F	FF	R	RR	R	RR	R	RF	RR	F	RI	RR	RI	Ř
D. brouweri D. challengeri	RH			R	R	R	RR		RF		RR	R							- 3	5		R	2					R	F	5				x			R	F	2	R	R	x	RX										×
D. pentaradiatus	RR	R	R	R)	R	F	FR	R	RF		RR	F	R	R	R	RX			R	(_		X											1			х			х				
D. surculus	RX		x			R	RR		X			R	RB	5					RI	-						R	R	R	RF	1	RI	RF	F		R	R		FR	t		RX		R			х					x		
D. variabilis Discoaster sp.	H		R	R R F	RR	F	FR	R	RF	R R	R R R F	R	RF	R	R	F	R	F	FI	R	R	X R R	R	R	R R F F	R F	RF	R F		R	RI	R R F R	X I R I	R R F F	R F	R R R F	R F	RR	R	R R	FR	R R	FR	R R	R R F F	R F	R F		R F	RF	RR	R T X	R
Gephyrocapsa oceanica Helicopontosphaera euphratis II. kamptneri group H. sellii Pontosphaera discopora	F F	F	R F R	F	F	c	F F	F	R F F R F	F	R F F	R F	FF	F	R F	FF	F	с	X X F I	F	R F	FR	R	X R	F F F F	R F	R F F	F	FF	R	R R I	FF	R I F I	R R R F	R F	FF	R F	R F F	F	F	FF	F	FR	R	FF	F	RF	R	R	RF	RR	RI	R
P. japonica					+								-			-			-	1				-	-			-	+	-			+	-		-	-	+		_		-	+		_	-	-	+				-	-
Pontosphaera sp. Prinsiaceae, small Pseudoemiliania lacunosa Reticulofenestra hisecta	FF	F	FFAA	F I A /	F A A	F A	F F A A	F A	FFAA	F A	FF AA	F A	R F A C	R A X	F A	F F A A	RA	R A	R H	R C	F A	R R A A X	RA	R I A I	F R A A x	F A	R R A A	A		A	R A	A A	A	R A A	R A	R F A A	R A	AA	A	R A	A A	X A	A A	R A	R R A A	R A	R F A A	R R A A	R A	AA	R R A A	R A /	•
R. pseudoumhilica Rhahdolithus sp	CA	C	C C	CO	C	F	FF	F	RF	F	FF	С	CC	C	A	A A	A	A	A (A	C	CC	A	A	A C	A	A A	A	A /	A	A /	A A	C	A A	A	A A	A	AC	A	A	A A	A	AA	A	A A	С	A A	AA	A	A (С	C /	4
Rhabdosphaera claviger Rhabdothorax regale	FF	F	FR	FI	F	R	FR	F	FF	R R	RR	R	RF	F	F	R	R	R	RI	R	R	RR	R	R	RR	R	R	R	x		R	R	1	RR	R	RF	R	F					R						х	R	ĸ		
Scapholithus sp.	R		R	RI	4	R	KR		R		11 X	R		R		1 1 1		in the		-	n	0 0										-		n r		0. 5			-			X	DIV	_				1				-	1
Scyphosphaera sp.	1. 1	P	KR	1 1		P	r f	P	r F	P	F F	K	RI	F	1 D	r F	R	ŀ	F 1	R	R	K R	P	R	r R	F D	KR	F	KIF		R	R	R	K R	R	K F	K	K	K	R	K	ĸ	KX		AR	R	KF	R	F	RI	RR	RF	X
Sphenolithus ables	12 1	R	E D	D 1	K	E	DF	R	r N	K	RR	F C	K I	F F	R	K F T	K	D	KI	R	D	DE	R	P	RR	K	K P	R		R	RI	KK	K	KK	R	RR	F	F	A D	÷			RK	R	K F P	R	K B	F	R	E F	F	FF	4
Surveyenhagen hustring around		K	FR	K I		P	R F	F	r r	P	гU	C	r 1		r.	r 1	r	ĸ	L I	K	ĸ	K F	r.	ĸ	K F	r,	C F	1.	r	R	KI	r r	r i	r C	r	r C	r	r.	ĸ	~			RF	F	r R	K	KI	10	C	r i	F	r i	1
Thoracosphaeta sp	1 1		P	P	1.	R	r r	r	P	R	p	p	p	v	P	-				-	P	D		P	p	D	D		v .	D	E I	DD	E 1	DE	P	D P	D	DE	0 0	D	D	- 14-3	DD	D	P	D	DE	+		D		_	-
Triguetrorhabdulus rugosus Trochoaster sp.				ĸ								ĸ		^	Ĩ.						R	, P		n	K	R	ĸ			ĸĸ		n n		n r	N		R.	R P	ĸĸ	R	N.	5	K	ĸ	ĸ	ĸ	K P	R	R	RI	RR	RI	R

TABLE 11 – Continued

TABLE 12 Additional Species Observed but not Listed in Tables 4-11

Site 277 (see Table 4)

- Braarudorphaera bigelowi-R in Samples 40, CC; 41-2, 111 cm; 43, CC.
- Camphylosphaera dala-R in Sample 43-3, 121 cm.
- Cruciplacolithus mustahus-R in Sample 36-2, 108 cm.
- Discoaster mecliosus-R in Samples 44-1, 101 cm; 44-2, 130 cm; 44-3, 127 cm.
- D. taris-R in Samples 34-2, 110 cm; 34, CC.
- Helicopontosphaera salebrosa-R in Sample 33-1, 120 cm.
- H. seimnulum-R in Samples 38-2, 110 cm; 39, CC; 40-2, 110 cm; 40-3, 117 cm.
- Lophodolithus mochloporus-R in Samples 40-3, 117 cm; 40, CC; 41-1, 113 cm.
- L. nascens-R in Samples 42-3, 114 cm; 42, CC.
- Markalius reinhardtii-R in Samples 44-2, 20 cm; 45-5, 111 cm.
- Micrantholithus sp.-R in Sample 40-3, 117 cm.
- Nannotetrina cristata-R in Samples 35-1, 105 cm; 35-2, 104 cm; 36, CC.
- Neochiastogugus junctus-R in Samples 44-2, 20 cm; 44-2, 90 cm. N. perfectus-R in Sample 46-2, 118 cm.
- Neococcolithes minubus-R in Samples 44, CC; 43-1, 117 cm.
- N. protenus-R in Samples 45-3, 127 cm; 46-2, 118 cm.
- Rhabdolithus tenuis?-R in Samples 38-3, 122 cm; 39-2, 110 cm; 39-3, 120 cm.
- Transvesophonhis puleheroides-R in Sample 40-3, 177 cm.
- Zygodiscus plectopons-R in Sample 41-2, 111 cm.
- Z. sigmoides-R in Sample 45-3, 127 cm.

Site 278 (see Table 5)

- Discoaster brouweri-1 in Sample 18-2, 110 cm; R in Sample 18-1, 110 cm.
- D. cf. D. calcaris-1 in Sample 18-2, 110 cm; R in Sample 17, CC.
- D. druggi-kugleri group-1 in Samples 26, CC; 23, CC; 23-5; 110 cm. 23-1, 110 cm.

D. lodoensis-1 in Sample 17, CC.

- Ericsonia tenestrata s.l.-1 in Sample 32-3, 110 cm.
- Helicopontosphaera kamptneri-1 in Samples 20, CC; 16-6, 110 cm.

Site 279 (see Table 6)

- Chiasmolithus alhus-1 in Samples 279A-6-4, 56 cm; 279A-3-6, 125 cm; 279A-9, CC.
- Helicopontosphaera ampliaperta-R in Sample 279A-5, CC.

Hornibrookina australis-1 in Sample 279A-8-1, 114 cm.

- Micrantholithus sp.-1 in Sample 279A-6-4, 56 cm.
- Rhabdosphaera skylifer-1 in Sample 279-1-1, 80 cm.
- Rhabdothorax regale-1 in Sample 279-1-1, 80 cm.
- Sphenolibluis cf. S. capricornutus 279A-6-4, 56 cm.

Triquetrorhabdulus milowii-1 in Sample 279A-3-1, 140 cm.

Zygrhablithus bijugatus-1 in Sample 279A-3-4, 110 cm.

Note: See Table 4A for explanation of symbols.

Site 282/I (see Table 9)

Blackites rectus?-1 in Sample 11-1, 136 cm; 11-3, 110 cm; F in Sample 11, CC.

D. divaricatus-F in Sample 2, CC; 3, CC; 4, CC.

Helicopontosphaera compacta-1 in Sample 12-2, 115 cm.

H. obliqua-F in Sample 5, CC.

- Lanternithus minutus-R in Samples 11-1, 130 cm; 11-2, 110 cm.
- Reticulofenestra abisecta-C in Sample 5, CC. R. oamaruensis?-1 in Sample 11-2, 110 cm.
- Rhabdosphaera skylifer-F in Sample 1-1, 75 cm; R in Sample 1-1,
- 101 cm.
- Scapholithus sp.-R in Sample 1-1, 75 cm.
- Sphenolithus abies-F in Samples 2, CC; 5-1, 127 cm; 5-2, 40 cm. S. heteromorphus-1 in Sample 1-4, 130 cm.
- Transversopontis sp.-R in Samples 11-1, 136 cm; 11-2, 110 cm.
- Trachoaster sp.-1 in Sample 11, CC. Umbilicosphaera mirabilis-R in Sample 1-1, 75 cm.
- omoticosphaera miraottis-K în Salipie 1-1, 75 cm.

Site 282/II (see Table 9)

Chiasmolithus solitus-F in Sample 17, CC; R? in Core 18 (top). Coramulus germaincus?-Sample 16, CC.

Coronocyclus uifescens-R in Samples 13-5, 110 cm; 14-3, 107 cm. Cruciplacolithus sp.-1 in Samples 15-2, 66 cm; 15-3, 30 cm; 15, CC. Discoaster binodosus binodosus-R in Core 18 (top).

- Helicopontosphaera dinesenii-1 in Samples 17-3, 110 cm; 17-4, 110 cm.
- H. lophota-1 in Samples 17-3, 110 cm; 15-2, 63 cm.
- H. cf. H. salebrosa-1 in Sample 17-4, 110 cm; R in Sample 17, CC. Helicopontosphaera sp.-F in Sample 13-4, 23; 1 in Sample 14-2, 110 cm.
- Neococcolithites dubius-R in Samples 17-3, 110 cm; 17-4, 110 cm.
 N. minutus-1 in Samples 17-3, 110 cm; 17-4, 110 cm; R in Sample 17, CC.
- Orthozygus aurcus-R? in Sample 13-1, 130 cm; 1 in Sample 16-1, 110 cm.
- Reticulofenestra oamaruensis-F? in Sample 15-2, 66 cm.

Rhabdolitus vitrea-R in Sample 13-4, 23 cm.

- Sphenolithus sp.-R in Samples 15, CC; 17-3, 110 cm.
- Trausversopontis sp.-1 in Samples 16-1, 110 cm; 17-3, 110 cm; 17, CC.

Holococcolith-1 in Sample 17-3, 110 cm.

Site 283 (see Table 10)

Table 10 includes all coccoliths and nannoliths observed down to Sample 9, CC. At least one sample per section was searched for calcareous nannofossils down to Sample 17, CC. While most samples proved to be barren, the following included very rare and poorly preserved small *Reticulofenestra*, and occasionally *Ericsonia ovalis*: Samples 10, CC; 11-2, 117 cm; 13-2, 111 cm; 13-5, 104 cm; 14-2 114 cm; 14, CC; 15-31, 114 cm; and 17-5, 35 cm.

Calcareous nannofossils from Sample 277-46-2, 118 cm; Paleocene. (Figures 1-9, 11 \times 5700; Figures 10, 12-15, \times 11,500)

Figure 1	Sphenolithus sp. Side view of specimen reminiscent of S. primus Perch-Nielsen; heavy overgrowth.
Figures 2-8	 Fasciculithus tympaniformis Hay and Mohler. Varying degrees of solution and overgrowth. 2, 3. Distal views. 4, 5, 7, 8. Side views. 6. Proximal view.
Figure 9	Neochiastozygus junctus (Bramlette and Sullivan). Proximal view; damaged specimen.
Figure 10	Neochiastozygus sp. 1. Distal view; some selective overgrowth.
Figure 11	Neococcolithes protenus (Bramlette and Sullivan). Distal view; heavy overgrowth in center.
Figure 12	Neochiastozygus sp. 2. Distal view; overgrowth in center.
Figures 13-15	Neochiastozygus cf. N. modestus Perch-Nielsen. 13, 14. Distal views; some overgrowth in center. 15. Proximal view; some overgrowth in center.

499

Calcareous nannofossils from Sample 277-45-2, 118 cm; Paleocene.

Figures 1-3, 6, 9, 12	Hornibrookina australis n. sp. $\times 11,200$. 1-3, 12. Distal views.
1999 1999	6. Paratype; proximal view.
	9. Holotype; distal view.
Figures 4, 7,	Chiasmolithus danicus (Brotzen). ×11,500.
11	4, 11. Distal views; little overgrowth
	7. Heavy selective overgrowth.
Figure 5	Ericsonia? sp. Distal view; ×11,500.
Figure 8	Chiasmolithus bidens (Bramlette and Sullivan).
	Distal view; diffuse overgrowth; \times 5700.
Figure 10	Chiasmolithus cf. C. eograndis Perch-Nielsen.
	Distal view, some overgrowth: $\times 5700$.

Calcareous nannofossils from Sample 277-45-3, 127 cm; Paleocene. (Figures 1-11, ×11,400; Figures 12, 13, ×5700)

Figures 1, 2, 4, 5, 7, 10	Neochiastozygus distentus (Bramlette and Sullivan). 1. Proximal view. 2, 4, 5, 7. Distal views; overgrowth. 10. Distal view; first wall visible.
Figures 3, 6, 8, 9	<i>Toweius craticulus</i> Hay and Mohler. 3, 6. Proximal views; etching and overgrowth. 8, 9. Distal views.
Figure 11	Neococcolithes protenus (Bramlette and Sullivan). Distal view; center heavily overgrown.
Figure 12	Toweius callosus Perch-Nielsen. Distal view; some overgrowth.
Figure 13	Toweius cf. T. occultatus (Locker). Distal view of specimen which could be either T. occultatus with an additional central net, or T. craticulus with an additional set of radial elements (due to over-

growth only?).

Calcareous nannofossils from Sample 277-45-3, 127 cm; Paleocene (All figures $\times 12,000)$

Figures 1, 2	Neochiastozygus distentus (Bramlette and Sullivan). Distal views; some overgrowth.
Figure 3	Discoaster? sp. 1.
Figure 4	Toweius eminens (Bramlette and Sullivan). Distal view; specimen badly damaged.
Figure 5	Discoaster multiradiatus Bramlette and Riedel. Distal view; selective overgrowth.
Figure 6	<i>Toweius craticulus</i> Hay and Mohler. Distal view; some overgrowth in center.
Figure 7	Zygodiscus sigmoides Bramlette and Sullivan. Proximal view.

Paleocene calcareous nannofossils. (Figures 1-8, 10-12, Sample 277-45-3, 127 cm; Figure 9, Sample 277-45-2, 118 cm)

Figures 1-3	Fasciculithus tympaniformis Hay and Mohler. \times 5700. Some overgrowth.						
Figures 4, 7, 10	 Discoaster multiradiatus Bramlette and Riedel. ×5700. 4. Distal view; heavily overgrown. 7, 10. Proximal views. 						
Figure 5	Chiasmolithus danicus (Brotzen). \times 5700. Distal view; overgrowth in center.						
Figures 6, 9, 12	Hornibrookina australis n. sp. ×11,400. 6. Proximal view. 9, 12. Distal views.						
Figures 8, 11	Chiasmolithus eograndis Perch-Nielsen. ×5700. Distal and proximal views; diffuse overgrowth.						

CALCAREOUS NANNOFOSSILS

Calcareous nannofossils from Sample 277-44-2, 20 cm; early Eocene.

Figures 1, 4	<i>Neochiastozygus</i> sp. 3. \times 5200. Distal and proximal views; overgrowth.							
Figure 2	Sphenolithus sp. 2. \times 5200. Distal view; overgrowth.							
Figure 3	Chiasmolithus cf. C. danicus (Brotzen). \times 5500. Distal view; diffuse overgrowth in center.							
Figure 5	<i>Ericsonia robusta</i> (Bramlette and Sullivan). \times 5200. Proximal view; diffuse overgrowth.							
Figures 6, 10, 14, 15	Chiasmolithus eograndis Perch-Nielsen. ×5200. 6, 10, 15. Distal views; varying overgrowth. 14. Proximal view.							
Figures 7, 8	Neococcolithes protenus (Bramlette and Sullivan). \times 5500. Distal views; center heavily overgrown.							
Figure 9	Toweius callosus Perch-Nielsen. \times 5200. Distal view; some overgrowth on second wall.							
Figures 11, 13	Discoaster robustus Haq. ×5200. Proximal views.							
Figure 12	"Chiasmolithus" consuetus (Bramlette and Sullivan). ×5200. Distal view; selective overgrowth.							

PLATE 6

509

Calcareous nannofossils. (Figure 1, Sample 277-45-3, 127 cm; Paleocene. Figures 2-9, Sample 277-43-3, 121 cm; early Eocene)

Figure 1	Chiasmolithus sp. \times 12,000. Distal view; dissolution.					
Figure 2	Discolithina sp. 1. ×6000. Distal view.					
Figure 3	Sphenolithus radians Deflandre. \times 12,000. Side view; overgrowth.					
Figures 4, 7	Chiasmolithus eograndis Perch-Nielsen. $\times 6000$. Proximal and distal views; specimens damaged.					
Figure 5	Markalius astroporus (Stradner). \times 12,000. Proximal view; overgrowth in center.					
Figure 6	Sphenolithus sp. 3 (moriformis group). \times 12,000. Side view, overgrowth.					
Figure 8	<i>Toweius callosus</i> Perch-Nielsen. \times 12,000. Distal view; damaged specimen.					
Figure 9	Zygrhablithus bijugatus Deflandre. \times 6000. Heavily overgrown.					

PLATE 7

Calcareous nannofossils. (Figures 1, 3, 4, 6-9, 11, Sample 277-45-2, 118 cm; Paleocene. Figures 2, 5, 10, Sample 277-40, CC; Eocene)

Figure 1	Ellipsolithus distichus (Bramlette and Sullivan). \times 5700. Distal view; damaged specimen.							
Figure 2	Toweius craticulus Hay and Mohler. $\times 11,500$. Proximal view; damaged specimen.							
Figure 3	Biscutum panis (Edwards) n. comb. (Basionym: Conococcolithus panis Edwards 1973, p. 73, fig. 2- 21.) ×11,200. Damaged specimen.							
Figure 4	Discoaster multiradiatus Bram-lette and Riedel. \times 5700. Oblique distal view; damaged specimen.							
Figures 5, 10, 11	Zygrhablithus bijugatus Deflandre. \times 5700. Heavy overgrowth.							
Figure 6	Neococcolithes protenus (Bramlette and Sullivan). $\times 11,200$. Distal view; selective overgrowth.							
Figure 7	Fasciculithus ? sp. 1. Note internal structure not previously observed in fasciculiths. $\times 11,500$.							
Figure 8	Markalius astroporus (Stradner). \times 5700. Distal view; minor overgrowth in center.							
Figure 9	Nannolith. (Possibly stem of <i>Discoaster multi-radiatus?</i>); ×5600.							

Calcareous nannofossils; Sample 277-40, CC; Eocene. (Figures 1-4, 7, 8, 13, \times 5700; Figures 5, 6, 9-12, \times 11,400)

Figures 1-3	Helicopontosphaera seminulum (Bramlette and Sullivan). Distal and proximal views.							
Figure 4	Neococcolithes protenus (Bramlette and Sullivan). Distal view; center heavily overgrown.							
Figure 5	Reticulofenestra dictyoda (Deflandre and Fert). Distal view; damaged specimen; selective overgrowth.							
Figure 6	Toweius callosus ? Perch-Nielsen. Distal view; some overgrowth.							
Figures 7, 8	Discoasteroides kuepperi (Stradner). Proximal and distal views; partly overgrown.							
Figure 9	Markalius astroporus (Stradner). Relatively wide central area has suffered more under recrystal- lization than the shield. Distal view.							
Figure 10	Sphenolithus radians Deflandre. Heavy overgrowth.							
Figure 11	Markalius? sp. 1. Proximal view of distal shield?							
Figure 12	Ring of elements of a broken coccolith or whole coccolith(?); ×11,400.							
Figure 13	Coronocyclus prionion (Deflandre and Fert). Distal view.							

PLATE 9 c С

Calcareous nannofossils; Sample 277-33-1, 120 cm; Eocene.

Figures 1, 5, 11	Chiasmolithus solitus (Bramlette and Sullivan). $\times 6000$. Distal views.								
Figures 2-4	<i>Neococcolithes dubius</i> (Deflandre). \times 9000. Distal views; heavy overgrowth in centers.								
Figure 6	Sphenolithus radians s.l. Deflandre. \times 12,000. Side view; some overgrowth.								
Figure 7	Helicopontosphaera sp. 1. \times 6000. Distal view; damaged specimen.								
Figure 8	Chiasmolithus expansus (Bramlette and Sullivan). $\times 6000$. Proximal view.								
Figure 9	Sphenolithus moriformis s.l. (Brönnimann and Stradner). $\times 12,000$. Side view; heavy overgrowth.								
Figures 10, 12	Helicopontosphaera salebrasa Perch-Nielsen. ×6000. Distal and proximal views.								

516

Calcareous nannofossils; Sample 277-33-1, 120 cm; Eocene.

Figure 1	Rhabdolith. ×6100. Broken stem.						
Figure 2	Discoaster sp. 2. \times 6000. Heavy overgrowth.						
Figures 3, 8	Cyclicargolithus cf. C. neogammation (Bramlette and Wilcoxon). $\times 12,000$. Distal views.						
Figures 4, 7	<i>Ericsonia obruta</i> Perch-Nielsen. \times 12,000. Distal views; some overgrowth in center.						
Figure 5	Discoaster barbadiensis Tan Sin Hok. \times 6000. Distal view; overgrowth on arms.						
Figures 6, 12, 13	Dictyococcotes daviesi (Haq). 6, 13. ×6000. Distal views. 12. ×9000. Proximal views.						
Figure 9	<i>Toweius occultatus</i> (Locker). \times 12,000. Distal view; selective overgrowth.						
Figure 10	Reticulofenestra placomorpha (Kamptner). ×6000. Distal view; shields missing?						
Figure 11	<i>Ericsonia alternans</i> Black. \times 6000. Proximal view; some overgrowth.						

PLATE 11

Calcareous nannofossils. (Figures 1, 2, 4, 8 from Sample 277-29, CC; Eocene;

Figures 3, 5-7, 9-11 from Sample 277-19; late Eocene to early Oligocene)

Figure 1 Reticulofenestra sp. Small coccosphere; ×5700.

Figures 2, 4, 7 Dictyococcites onustus Perch-Nielsen. 2. ×5700. Distal view. 4. ×9000. Distal view. 7. ×11,400. Distal view.

 Figures 3, 6,
 Dictyococcites ? sp. 1. ×11,400.

 9, 11
 3, 6. Proximal views.

 9, 11.
 Distal views.

Figure 5 Dictyococcites callidus Perch-Nielsen. ×5700. Distal view; etching and overgrowth.

Figures 8, 10 Cribrocentrum coenurym (Reinhardt). \times 11,400. Proximal views; etching and overgrowth.

Calcareous nannofossils.

(Figures 1-3, 5, 7, 10, 11 from Sample 277-29, CC; Eocene: Figures 4, 6, 8, 9, 12 from Sample 277-19, CC; late Eocene to early Oligocene)

Figures 1, 2	Rhabdolith stems with heavy overgrowth of selected elements while others are well preserved.
	Overgrowth results in forms similar to the Late
	Cretaceous Microrhabdulus belgicus; ×5700.

- Figures 3, 4 *Ericsonia obruta* Perch-Nielsen. Proximal views of specimens without proximal shields; ×11,400.
- Figure 5 *Neococcolithes dubius* (Deflan-dre). ×9000. Minor overgrowth of central structure.
- Figure 6 Transversopontis prava Locker. ×5700. Distal view; etching and overgrowth.
- Figure 7 Chiasmolithus expansus (Bramlette and Sullivan). \times 5700. Distal view; diffuse etching and overgrowth.
- Figure 8 Chiasmolithus cf. C. oamaruensis (Deflandre). \times 5700. Distal view; diffuse overgrowth in wall.
- Figures 9, 12 Isthmolithus recurvus Deflandre. ×9000. Heavy overgrowth.
- Figure 10 *Ericsonia ovalis* Black. ×11,400. Distal view; selective overgrowth.
- Figure 11 *Markalius*? sp. 2. ×11,400. Proximal view; heavy overgrowth.

Calcareous nannofossils from Sample 277-16-5, 110 cm; early Oligocene

Figures 1-7

Helicopontosphaera ? subantarctica n. sp. 1-5, 7. ×6100. Distal views.
6. ×12,200. Proximal views.

525

PLATE 15 Oligocene calcareous nannofossils.

Figures 1-3, 7, 8	 Helicopontosphaera? subantarctica n. sp. Sample 277-16-5, 110 cm; early Oligocene; ×6000. 3, 8. Holotype. Distal views. 7. Proximal view.
Figures 4, 5, 9, 10	 Chiasmolithus altus Bukry and Percival. 4. Sample 277-3-3, 110 cm; mid-late Oligocene; ×5700. Distal view. 5. Sample 277-6-4, 110 cm; mid-late Oligocene; ×5700. Distal view. 9. Sample 277-16-5, 110 cm; early Oligocene; ×6000. Distal view. 10. Sample 277-13-2, 110 cm; mid-late Oligocene; ×5700. Distal view.
Figure 6	Isthmolithus recurvus Deflandre. Sample 277-16-5, 110 cm; early Oligocene; ×9000.
Figure 11	Syracosphaera? sp. Sample 277-16-5, 110 cm; early Oligocene; ×11,800. Distal view.

Calcareous nannofossils.

(Figures 6, 7, 14 from Sample 277-16-5, 110 cm; early Oligocene. Figures 11, 13 from Sample 277-13-3, 110 cm; mid-late Oligocene. Figures 3, 5, 9, 10, 16 from Sample 277-6-4, 110 cm; mid to late Oligocene. Figures 1, 2, 4, 8, 12, 15 DSDP 277-3-3, 110 cm; mid to late Oligocene.)

Figure 1	Discoaster deflandrei ? Bramlette and Riedel. \times 5800. Heavy overgrowth.							
Figures 2-7, 11, 12	"Reticulofenestra" cf. R. alabamensis Roth. 2-5, 11, 12. ×5800. 6, 7. ×5900.							
Figure 8	Discolithina segmenta Bukry and Percival. $\times 11,600$. Distal view; etching and overgrowth.							
Figures 9, 10	Reticulofenestra cf. R. pseudoumbilica (Gartner). \times 5800. Proximal and distal views.							
Figure 13	Cyclicargolithus neogammation (Bramlette and Wilcoxon). \times 5700. Proximal view, small specimen.							
Figures 14, 15	"Reticulofenestra" bisecta (Hay et al.) 14. ×6000. Distal view. 15. ×5800. Proximal view.							
Figure 16	"Reticulofenestra" abisecta (Müller). ×5800. Distal view.							

Calcareous nannofossils from Sample 279A-5-4, 110 cm; early Miocene.

- Figures 1, 3, 4 *Reticulofenestra* sp. ×5700. Proximal and distal views; overgrowth in walls.
- Figure 2 Cyclicargolithus neogammation (Bramlette and Wilcoxon). ×4500. Proximal view.
- Figure 5 Cyclococcolithus macintyrei Bramlette and Bukry. ×2900. Distal view; slight etching and overgrowth.
- Figure 6 Discoaster adamanteus Bramlette and Wilcoxon. ×5700. Some overgrowth.
- Figures 7, 8 Discoaster deflandrei Bramlette and Riedel. ×5700. Distal views; overgrowth.
- Figures 9, 10 *Helicopontosphaera granulata* Bukry and Percival. ×5700. Distal and proximal views.
- Figure 11 *Helicopontosphaera sellii* Bukry and Bramlette. ×5700. Distal view.
- Figures 12-14, Sphenolithus heteromorphus Deflandre. ×11,400. 17, 18 Variable overgrowth.
- Figures 15, 16 Sphenolithus cf. S. moriformis (Brönnimann and Stradner). ×11,400. Etching?

Calcareous nannofossils from Sample 279A-5-2, 141 cm; early Miocene.

Figures 1-5	 Sphenolithus heteromorphus Deflandre. 1-4. ×11,400. Side views; some overgrowth. 5. Could be mistaken as an overgrown specimen of Triquetrorhabdulus rugosus Bramlette and Wilcoxon. ×5700. 						
Figure 6	Sphenolithus moriformis (Brönnimann and Stradner). $\times 11,400$. Side view.						
Figures 7, 8	Discoaster deflandrei Bramlette and Riedel. \times 5700. Etching and overgrowth.						
Figure 8	Ericsonia ovalis Black. \times 5700. Distal view; selective heavy overgrowth.						
Figure 9	Helicopontosphaera intermedia (Martini). ×5700. Proximal view; some etching.						
Figures 10-12	Helicopontosphaera granulata Bukry and Bramlette. \times 5700. Distal and proximal views.						
Figure 13	Chiasmolithus altus Bukry and Percival. ×5800. (Reworked?) Distal view.						
Figure 14	(?)Cyclococcolithus sp. 1. \times 11,400. Proximal view of distal shield?						
Figure 15	Helicopontosphaera euphratis (Haq). ×5700. Prox- imal view; damaged and etched specimen.						

Calcareous	nannofossils	from	Sample	282-5-1,	136	cm;	early
		Mie	ocene.				

- Figures 1, 6-10 Sphenolithus cf. S. conicus Bukry. ×11,600.
- Figure 2Coronocyclus nitescens (Kamptner). ×5800. Distal
view; selective overgrowth.Figure 3Discoaster cf. D. saundersi Hay. ×5800. Proximal
- view; etching and overgrowth.
- Figure 4 *Pontosphaera* cf. *P. multipora* (Kamptner). ×5800. Proximal view; slight etching.
- Figure 5 ?Sphenolithus sp. 4. ×11,600.
- Figure 11 Sphenolithus moriformis (Brönnimann and Stradner). ×11,600. Etching.

Calcareous nannofossils. (Figures 3, 5, 9-11, Sample 282-4-1, 110 cm; early Miocene, Figures 1, 2, 4, 6-8, 12, Sample 282-4, CC; early Miocene)

Figure 1	Sphenolithus abies Deflandre. $\times 12,100$. Side view.
Figure 2	Sphenolithus moriformis group (Brönnimann and Stradner). $\times 12,000$. Side view.
Figure 3	<i>Ilselithina</i> sp. 1. \times 12,000. Youngest known to date of this late Paleogene genus. Side view; damaged specimen.
Figure 4	Coronocyclus nitescens (Kamptner). \times 9600. Distal view.
Figures 5-12	<i>Ericsonia tasmaniae</i> n. sp. ×12,000. 5. Holotype. 5-8. Distal views.

9-12. Proximal views.

Neogene calcareous nannofossils at Site 284. (All figures $\times 2000$)

Figures 1-6	Ericsonia tasmaniae n. sp. Sample 282-4-1, 110 cm; early Miocene.
Figures 7-14	Hornibrookina australis n. sp. 7-10. Sample 277-45-2, 118 cm; late Paleocene. 11, 12. Sample 277-46-4, 111 cm; late Paleocene. 13, 14. Sample 277-45-3, 127 cm; late Paleocene.
Figure 15	Holococcolith. Sample 284-10-5, 110 cm; early Miocene.
Figure 16	Ilselithinia sp. Sample 282-4-1, 110 cm; early Miocene.
Figures 17-20	Helicopontosphaera? subantarctica n. sp. Sample 277-16-5, 110 cm; early Oligocene.
Figure 21	Ceratolithus rugosus Bukry and Bramlette. Sample 284-10-5, 110 cm; early Pliocene.
Figures 22-48	 Ceratolithus triconiculatus group Gartner. No birefringence shown. 22. Sample 284-10-2, 135 cm; early Pliocene. 23. Sample 284-10-5, 110 cm; early Pliocene. 24. Sample 284-10, CC; early Pliocene. 25. Sample 284-12-1, 110 cm; early Pliocene. 26. Sample 284-11-4, 110 cm; early Pliocene. 27, 29. Sample 284-13-4, 110 cm; early Pliocene. 28, 30, 32. Sample 284-14-4, 110 cm; early Pliocene. 31. Sample 284-14-1, 110 cm; early Pliocene. 33, 34. Sample 284-16-3, 110 cm; late Miocene. 35, 36. Sample 284-17-4, 110 cm; late Miocene. 37, 38. Sample 284-18-6, 110 cm; late Miocene. 39, 41. Sample 284-19-2, 110 cm; late Miocene. 40, 42. Sample 284-19-3, 110 cm; late Miocene. 43. Sample 284-19-3, 110 cm; late Miocene. 44. Sample 284-29-4, 110 cm; late Miocene. 45-47. Sample 284-22-2, 110 cm; late Miocene. 48. Sample 284-22-4, 110 cm; late Miocene.
Figures 49, 50	Ceratolithus primus Bukry and Percival. 49. Sample 284-22-1, 135 cm; late Miocene. 50. Sample 284-22-6, 110 cm; late Miocene; slight birefringence.

÷