17. X-RAY MINERALOGY DATA FROM THE CENTRAL PACIFIC, LEG 33 DEEP SEA DRILLING PROJECT¹

H.E. Cook and I. Zemmels, University of California, Riverside, California

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, 2-20 μ m, and <2 μ m fractions were performed according to the methods described in the appendix of Volume 28.

The method of sample preparation, in brief, is as follows: Bulk samples are washed to remove seawater salts and are ground to less than $10 \,\mu\text{m}$ under butanol. A portion of the sediment is decalcified in a sodiumacetate-buffered, acetic-acid solution (*p*H 4.5). The residue is fractionated into 2-20 μ m and <2 μ m samples by wet-sieving and centrifugation. The 2-20 μ m samples are ground to less than 10 μ m. These three preparations are treated with trihexylamine acetate to expand the smectites. All samples are X-rayed as random powders.

The results of the X-ray diffraction analysis are presented in Tables 1 to 14. Tables 1 to 7 summarize the mineral data and provide stratigraphic information. The sediment ages, lithologic units, and nomenclature of the sediment types are from the DSDP Leg 32 hole summaries.

The complete list of samples from Leg 33 and their subbottom depths which were utilized in X-ray diffraction analysis are presented in Table 15. In a number of cases, two or more samples of similar lithology were composited. The composited samples are bracketed in Table 15. The samples are identified by their subbottom depths in Tables 1 to 14. The composited samples are identified by the subbottom depth of the stratigraphically uppermost sample of the composite.

The percent amorphous is a measure of the weight fraction of amorphous material in each sample, which commonly consists of biogenic silica, volcanic glass, palagonite, allophane, and organic material. The amorphous fraction is calculated from the total diffuse scattering of the sample. The method of calculation assumes that the diffuse scatter in excess of the diffuse scatter from the crystalline minerals is proportional to the amorphous content. The diffuse scatter of the crystalline minerals is determined from the mineral calibration standards (see Volume 28). Ideally, the amorphous fraction varies between 0 and 100%, but, in cases where the minerals in the sample have a higher degree of crystallinity than the calibration standards, negative values can result. The negative values are reported as blanks; these samples can be assumed to contain little or no amorphous material.

The crystalline minerals are quantified by the method of mutual ratios using peak heights and concentration factors derived from the ratio of diagnostic peaks of minerals with the major peak of quartz. Unquantifiable minerals, i.e., unidentified minerals and minerals for which standards are not available, are tentatively quantified using a hypothetical concentration factor of 3.0 which is applied to the major peak of the mineral. The concentrations of the quantifiable minerals are summed to 100%. The amorphous fraction and unquantifiable minerals are *not* included in the total. The unquantifiable minerals are reported on a qualitative scale as trace (less than 5%), present (5%-25%), abundant (25%-65%), and major (>65%).

The precision of the mineral determinations is approximately ± 1 weight percent of the amount present. Because of inevitable differences in the crystallinity of the mineral calibration standards and the minerals in the samples and also because of diffraction-peak interferences, the accuracy of the reported concentrations is often less than the precision of the method allows. In terms of the reported concentration, smectites may vary \pm 50%; micas, chlorites, cristobalite, tridymite, goethite may vary $\pm 20\%$; and kaolinite, amphibole, augite, the feldspars, the zeolites, palygorskite, sepiolite, apatite may vary $\pm 10\%$. Minerals which have stable crystal lattices and are not members of solid-solution series (or typically have limited crystal-lattice substitution in the sedimentary environment) such as quartz, lowmagnesium calcite, aragonite, dolomite, rhodochrosite, siderite, gibbsite, talc, barite, anatase, gypsum, anhydrite, halite, pyrite, hematite, magnetite will vary less than $\pm 5\%$.

The user of the X-ray mineralogy data should bear in mind that (1) the reported values are not absolute concentrations and that some adjustment has to be made for the amorphous fraction and the unquantifiable minerals; (2) in a homogenous system of minerals, the mineral concentration trends are reliable because of the precision of the method, but when comparing mineral concentrations between different geographic regions or lithologic units additional information regarding the crystallinity of the minerals is required; and (3) the representativeness of the samples selected for X-ray diffraction analysis is the responsibility of the shipboard scientists and any questions pertaining to this aspect should be directed to them.

MINERAL NOTES

Twelve $<2 \mu m$ samples with a high smectite content from Hole 315A and Site 316 were tested for the presence of nontronite and beidellite using the Green-Kelly method. The samples selected from Hole 315A were from 739.3, 779.2, 779.6, 788.5, and 932.7 meters; samples from Site 316 were from 515.4, 524.7, 533.6,

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 74-31.

Sample Depth Below Sea Floor			E Maje	ulk Samj or Consti	ple tuent	2-20 Majo) µm Frac or Constit	ction tuent	<2 / Major	um Frac r Consti	tion tuent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
0.0 0-45 ^a 0-45 ^a	Brown zeolitic clay	Quat.?	Clin. Phil. Phil.	Magn. Mica Mica	Goet. Quar. Quar.	Clin. Phil. Phil.	Magn. Mica Mica	Goet. Clin. Quar.	Mont. Mont. Mont.	Cris. Phil. Mica	Goet. Mica Quar.

 TABLE 1

 Summary of X-Ray Mineralogy Samples, Sample Depths,

 Lithology, Age, and X-Ray Diffraction Results, Site 314

^aScrapings from outer drill collars.

TABLE 2 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 315

Sample Depth Below Sea Floor			Bu Major	lk Sam	ple ituent	2-20 Majo) µm Frac or Consti	ction tuent	<2 Majo	µm Frac r Consti	tion tuent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1.3	Unit 1:		Calc.			Quar.	Mica	Plag.	Mont.	Mica	Quar
3.9	Dark brown	ary	Calc.			Quar.	Mica	Phil.	Mont.	Mica	Quar.
57.9	nanno-foram	ane line	Calc.			Bari.	Mica	Quar.	Mont.	Phil.	Mica
59.2	and	ate	Calc.			Bari.	K-Fe.	Quar.	Mont.	Plag.	Quar.
61.9	nanno-rad	Su Pli	Calc.			Bari.	Mica	Plag.	Mont.	Phil.	Mica
65.5	oozes	_ `	Calc.			K-Fe.	Bari.	Plag.	Mont.	Phil.	Mica

562.9, 571.8, 610.5, and 771.2 meters (see Tables 10, 11, and 15 for sample identification).

The samples were saturated with lithium. Several samples were fractionated during centrifuging when it was evident that more than one population of clays was present. Randomly oriented mounts were prepared in duplicate. One set was heated for 12 hr at 300°C and treated with glycerol; the other set was only treated with glycerol.

Most of the samples contained montmorillonite which expanded to 17-18Å and collapsed to 10Å with heating.

The sample from Hole 315A, depth 779.2 meters, was found to consist largely of montmorillonite. The coarser portion of the $<2 \,\mu$ m fraction contained a large component of mica-montmorillonite mixed-layer clay.

The samples from Site 316, depth 610.5 and 771.9 meters, contained a portion which expanded after heating, indicating the presence of the nontronite-beidellite series.

Large quantities of montmorillonite were detected in numerous 2-20 μ m samples in Holes 315A, 316, 317A, and 318. A microscopic examination of several 2-20 μ m samples revealed that they contained large quantities of birefringent, low-refractive-index aggregates which were presumed to contain the montmorillonite. The aggregates, which had survived the action of acetic acid in an ultrasonic bath, were also difficult to disperse in the microscope slide.

DRILLING AND MUD USAGE

Drilling mud containing montmorillonite and barite was used in Hole 315A between Cores 12 and 13 and Cores 18 and 19. An X-ray diffraction analysis of a sample of drilling mud from Leg 33 showed 88% montmorillonite, 5% barite, 2% quartz, 2% mica, and 2% feldspar. No samples were submitted from Core 13. The sample from Core 19 showed no traces of barite and no inordinate concentrations of montmorillonite.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of David Berry in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr., in sample preparation.

Sample Depth Below Sea Floor			E Maje	ulk Samj or Consti	ole tuent	2-2 Maj	0 μm Frac or Constit	tion uent	<2 Maj	μm Fract or Consti	tion tuent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
76.6 82.9 124.9 142.6 148.9 260.0 372.1 465.9 513.5 591.0 703.6	Unit 2: Variegated nanno-foram and nanno-rad oozes	Middle Oligocene to upper Miocene	Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.			Ins Amph. Bari. Bari. Bari. Bari. Bari. Bari. Bari. Bari. Bari.	uffic, resid Bari. K-Fe. K-Fe. Chlo. Plag. K-Fe. K-Fe. K-Fe. Feld. K-Fe.	lue Plag. Plag. Pyri. Mont. Plag. Plag. Quar. Plag. Plag.	Mont. Mont. Quar. Mont. Mont. Mont. Mont. Mont. Mont.	Mica Mica Phil. Mont. Bari. Bari. Bari. Bari. Bari. Bari.	Plag. Bari. Bari. Bari. Mica K-Fe. Quar. Phil. Quar. K-Fe. K-Fe.
731.3 739.3 741.4 779.2 779.6 788.5 797.1 799.2 808.6 818.7 826.9 830.0 836.8 837.0	Unit 3: Claystone, chert, and limestone	Campanian to lower Oligocene	Calc. Quar. Quar. Quar. Quar. Quar. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Bari. Calc. Mica Clin. Clin. Quar. Quar. Quar. Quar. Plag. Clin.	Mont. Cris. Clin. Cris. Mica Mica Mica Mica Mica Mont. Plag.	Clin. Bari. Cris. Quar. Clin. Quar. Clin. Quar. Clin. Quar. Ins: K-Fe. Clin.	Bari. Mont. Quar. Clin. Quar. Clin. Quar. Quar. Mica uffic. resid Quar. K-Fe.	K-Fe. K-Fe. Trid. Mica Cris. Mica K-Fe. K-Fe. K-Fe. k-Fe. Uue Plag. Quar.	Mont. Mont. Cris. Quar. Quar. Mont. Quar. Mont. Quar. Ins Quar. Mont.	Bari. K-Fe. Quar. Mont. Quar. Mont. Quar. Mica uffic. resi Mont. Quar. Quar.	Clin. Plag. Trid. Mica Mica Mica Mica Mica Mont. due Mica
850.5 856.0 858.3 875.9 893.4	Unit 4: Volcanic sand- stone and clay- stone interbed. With clayey limestone	Campanian	Plag. K-Fe. Calc. Calc. Calc.	Mont. Calc. Mont. Quar. Quar.	Calc. Mont. K-Fe. Mont. Clin.	Mont. K-Fe. Mont. Quar. Quar.	K-Fe. Mont. K-Fe. Mont. Clin.	Plag. Plag. Plag. K-Fe. K-Fe.	Mont. K-Fe. Mont. Quar. Quar.	Mont. K-Fe. Mont. Mont.	Plag. Plag. Mica
911.3 932.7 952.8 952.9 970.9 990.0	Unit 5: Red-brown and blue-green ferr. claystones interbed. With graded volcanic sands	Unknown	Quar. K-Fe. Quar. Calc. Mica Quar.	Calc. Mont. Mica Hema. Mont. Mont.	Mont. Clin. Mont. Mica Quar. Hema.	Quar. K-Fe. Quar. Quar. Quar. Quar.	K-Fe. Mont. Mica Mica Mica Hema.	Mica Plag. Mont. Hema. Mont. Mont.	Quar. Mont. Quar. Mont. Mica Mont.	Mont. Mica Mica Quar. Quar.	Mica Mont. Trid. Mont. Hema.

TABLE 3 Summary of X-Ray Mineralogy Samples, Sample Depths, Lithology, Age, and X-Ray Diffraction Results, Hole 315A

Sample Depth Below Sea Floor			B Maj	ulk Samp or Consti	ole tuent	2-2 Maj	0 μm Frac or Constit	tion uent	<2 Maj	μm Frac or Consti	tion tuent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
0.8	Unit 1: ^a	a	Calc.			Bari.	Quar.	Plag.	Mont.	Quar.	Plag.
2.7 155.3 268.3	Unit 2: calc. and siliceous oozes and chalk	Mid to late Mio.	Calc. Calc. Calc.	K-Fe.		Bari. Bari. Bari.	Quar. Phil. K-Fe.	Plag. Quar. Plag.	Mont. Mont. Mont.	Quar. Bari. Quar.	Mica Plag. Chlo.
391.8 448.6 469.3 486.5 495.9 515.4 524.7 533.6 553.3 562.9 571.8 573.6	Unit 3: Siliceous chalk, limestone, and dolomite	Paleocene to lower Miocene	Calc. Calc. Dolo. Calc. Cris. Calc. Calc. Calc. Calc. Calc. Calc. Calc. Calc.	Clin. Calc.	Mont. Trid.	K-Fe. K-Fe. Clin. Clin. Cris. Quar. Quar. Quar. Quar. Quar. Quar. Quar. Quar.	Plag. Plag. K-Fe. Bari. Quar. Mica Mica K-Fe. K-Fe. K-Fe. Bari.	Bari. Quar. Bari. Quar. Trid. K-Fe. Paly. Bari. Mica Bari. Mica	Mont. Mont. Cris. Cris. Mont. Mont. Mont. Mont. Mont. Mont.	Phil. Mica Quar. Mont. Trid. Paly. Paly. Mont. Mica Mica Mica Quar.	Plag. K-Fe. K-Fe. Mica Mica Mica Quar. Quar. Quar. Quar. Mica
583.1 584.4 587.4 609.8 610.5 613.6 630.6 638.4 641.8 642.1 667.1 668.1 668.1 668.7 704.5 705.7 705.7 727.0 744.8 771.2 830.3	Unit 4: Volcaniclastic breccia and graded sandstone, chalk, and limestone	Late Cretaceous	Calc. Quar. Calc.	Quar. Mica Quar. Quar. Mont. Quar. K-Fe. Mont. Mont. Quar. K-Fe. K-Fe. Mont. K-Fe.	Calc. Quar. Plag. K-Fe. K-Fe. Mont. Plag. K-Fe.	Quar. Quar. Quar. Mont. Quar. Mont. Quar. K-Fe. K-Fe. Mont. K-Fe. Ins K-Fe. K-Fe. K-Fe. Mont. K-Fe.	Clin. Clin. Mica K-Fe. Clin. K-Fe. Quar. Clin. Hema. Clin. Quar. K-Fe. Quar. uffic. resid Hema. Magn. K-Fe. Quar.	Mica K-Fe. Mica K-Fe. Mica K-Fe. Clin. Clin. K-Fe. Mont. Mica Mica Plag. Pyri. Quar. Mica	Quar. Mont. Quar. Mont. Quar. Mont. Quar. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Clin. Quar. Mont. Quar. Mont. K-Fe. K-Fe. Quar. Quar. uffic. resin Geot. K-Fe. Quar.	Mica Mica Mica Mica Mica Mica Plag. Hema. Mica K-Fe. Mica due K-Fe. Anal. K-Fe.

 TABLE 4

 Summary of X-Ray Mineralogy Samples, Sample Depth,

 Lithology, Age, and X-Ray Diffraction Results, Site 316

^aInterbedded calcareous and siliceous oozes; Quaternary.

Sample Depth Below Sea Floor			E Maj	Bulk Samp or Constit	ole uent	2-20 Maj	0 μm Fra or Consti	ction tuent	<2 Maj	μm Frac or Constit	tion went
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
554.2 564.5 576.9 585.0 602.4 623.3 644.1	Unit 2: Foram-nanno oozes and chalk with black chert	Aptian to early Oligocene	Calc. Calc. Calc. Paly. Calc. Cris. Calc.	Clin. Quar. Quar. K-Fe. Cris. Calc. Mont.	Mica K-Fe. Quar. Quar. Trid. K-Fe.	Clin. K-Fe. K-Fe. K-Fe. Cris. Cris. Clin.	Quar. Quar. Quar. Mica Quar. K-Fe. K-Fe.	K-Fe. Mica Mica Quar. Bari. Trid. Plag.	Mont. Quar. Mica Paly. Cris. Cris. Mont.	Mica K-Fe. Quar. Mont. Trid. Trid. K-Fe.	K-Fe. Mica K-Fe. Mica Quar. Mont. Plag.
651.0 670.0 698.6 727.7 755.9 756.7 757.4 759.4 777.7 778.1 779.6 821.1 849.9 887.4 887.4	Unit 3: Volcaniclastic sandstones and siltstones	Unknown	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Plag. Anal. Sani. K-Fe. Hema. Sani. Sani. Sani. Sani. Sani. Anal. Anal. Anal. Anal. Anal.	Clin. Anal. Plag. Quar. Anal. Sani. Calc. Anal. Sani. Sani.	Plag. Mont. Mont. K-Fe. Mont. Mont. Mont. Mont. Mont. Mont. Anal. Mont.	Mont. Anal. Anal. Mont. Feld. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Sani.	Quar. Sani. Plag. Hema. Hema. Anal. Anal. Anal. Anal. Anal. Sani. Anal.	Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont. Mont.	Plag. Anal. Sani. Feld. Hema. Sani. Sani. Sani. Sani. Sani. Sani. Sani. Anal. Hema.	Anal. Anal.
927.5	Basalts with siltstones	Un- known	Plag.	Mont.	Hema.	Plag.	Quar.	Hema.	Mont.	Plag.	Mica

 TABLE 5

 Summary of X-Ray Mineralogy Samples, Sample Depths,

 Lithology, Age, and X-Ray Diffraction Results Hole 317A

 TABLE 6

 Summary of X-Ray Mineralogy Samples, Sample Depths,

 Lithology, Age, and X-Ray Diffraction Results, Hole 317B

Management of the second se											and the second s
Sample Depth Below Sea Floor			Bu Major	lk Sam Const	ple ituent	2-20 Maje) μm Fra or Consti	ction tuent	<2 Majo	µm Frac or Consti	tion tuent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
0.3 27.4	Unit 1: Nanno-foram	y	Calc. Calc.			Bari. Bari.	Plag. K-Fe.	K-Fe. Plag.	Mont. Mont.	Plag. K-Fe.	Bari.
102.2 141.2	chalk	Oligoce aternar	Calc. Calc. Calc.			Bari. Bari. K-Fe.	R-Fe. Plag. Bari.	Mont.	Bari. Mont.	Apat. K-Fe. K-Fe.	Mont. Mica
179.5 220.7		Early C to Qua	Calc. Calc.			Bari. Psil.	K-Fe.	Plag.	Mont. Psil.	Bari. Gyps.	Mica
266.8		-	Calc.			Clin.	Quar. K-Fe.	Mica Mica	Mont. Mont.	Mica	Quar. Quar.
312.4 352.0 389.4	Unit 2: As in Hole 317A	Mid. Eocene to early Olig.	Calc. Calc. Calc.			Ins Clin. Clin.	uffic. res Bari. K-Fe.	idue K-Fe. Bari.	Mont. Mont. Cris.	Mica Mica Mont.	Chlo. K-Fe. Mica
		1									

Sample Depth Below Sea Floor			B Majo	ulk Samj or Consti	ple ituent	2-2 Maj	0µm Fra or Consti	ction tuent	<2) Majo	um Fracti or Constit	ion uent
(m)	Lithology	Age	1	2	3	1	2	3	1	2	3
1.3	Unit 1: ^a	а	Calc.	Arag.		Dolo.	Phil.	Plag.	Mont.	K-Fe.	Plag.
93.7 122.5 179.7	Unit 2: Foram-nanno ooze	Up. Mio to Up. Plio.	Calc. Calc. Calc.			Ins Ins Bari.	uffic. res uffic. res Plag.	idue idue K-Fe.	Mont. Inst Mont.	Plag. Iffic. resid Bari.	K-Fe. due
266.5 350.8	Unit 3: Foram-nanno chalk	Up. Olig. to Lr. Mio	Calc. Calc.			Bari. Quar.	K-Fe. Plag.	Mica Mica	Mont. Mont.	K-Fe. K-Fe.	Bari. Quar.
407.5 492.7	Unit 4: Nanno-foram limestone	Up. Eo. to Up. Olig.	Calc. Calc.			Clin. Clin.	K-Fe. K-Fe.	Quar. Hema.	Mont. Mont.	K-Fe. K-Fe.	Plag. Clin.
578.5 581.1 615.8 630.7	Unit 5: Limestone, siltstone, and graded	r Eocene to 3 Eocene	Calc. Calc. Mont. Mont.	Clin. Calc. Calc.	K-Fe. K-Fe.	Clin. Clin. Clin. Mont.	K-Fe. K-Fe. Mont. K-Fe.	Mont. Plag. K-Fe. Plag.	Mont. Mont. Mont. Mont.	K-Fe. K-Fe.	Plag. Plag.
665.6 703.8 734.5	sandstone	Lowel Middle	Mont. K-Fe. Mont.	Plag. Clin. Calc.	K-Fe. Mont. Clin.	Mont. Clin. K-Fe.	K-Fe. K-Fe. Plag.	Clin. Mont. Mont.	Mont. Mont. Mont.	K-Fe. K-Fe. K-Fe.	Plag. Plag. Plag.

 TABLE 7

 Summary of X-Ray Mineralogy Samples, Sample Depths,

 Lithology, Age, and X-Ray Diffraction Results, Site 318

^aNannofossil-foraminiferal ooze with graded shell beds; Quaternary.

Sample Depth Below Sea Floor	Amor.	Dolo.	Quar.	K-Fe.	Cris.	Plag.	Mica	Chlo.	Goet.	Paly.	Mont.	Trid.	Clin.	Phil.	Gyps.	Sepi.	Magn.	Cupr. ^a	Anat.
Bulk Sample																			
0.0 0 to 45 ^b 0 to 45 ^b	75.9 59.8 52.2		3.8 9.3 13.2	2.0		9.3 7.2	1.4 13.9 18.3		16.4 4.6 2.6	- 1.7	12.0 6.4 5.6		31.5 9.3 2.6	39.4 45.0		4.8 2.7	18.2 3.0 0.3	14.7 	
2-20,µm Fracti	on																		
0.0 0 to 45 0 to 45	52.8 24.5 25.3		5.2 11.7 18.7	4.0 - -		8.1 9.9	3.9 14.2 21.5	1.6 2.4	10.8 7.0 -	- 1.9			50.7 13.1 3.9	37.7 38.5		1.0 2.6	18.2 3.4 -	7.2 - -	 0.6
<2 µm Fractio	n																		
0.0 0 to 45 0 to 45	73.3 71.0 77.3		3.2 9.7 14.3		16.0 		- 11.3 20.8	- 3,4	15.9 8.2 -	- 7.3	39.4 31.8 27.3	4.5 - -	4.0 1.0 -	30.0 7.7		4.2 4.9	12.2 3.7 -	4.7 - -	

TABLE 8 Results of X-Ray Diffraction Analysis, Site 314

^aAbbreviation Cupr. is for Cuprite. This may be a contaminant as the bent drill bit was torched off to recover the sample.

^bAggregated mud samples of uncertain depth.

Sample Depth Below Sea Floor (m)	Amor.	Calc.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Paly.	Mont.	Clin.	Phil.	Gyps.	Bari	Amph.	Anat.
Bulk Sample																
1.30	20.4	99.7	0.3													
3.90	24.7	99.5	0.3										0.2	122		
57.90	47.6	97.3	1.1										0.3	1.2		
59.20	26.8	99.7	0.3											-		
61.90	26.9	99.1	0.3										-	0.6		
65.50	19.0	100.0	7										-	-		
2-20 µm Fract	ion															
1.30	87.6		27.6	7.7	16.9	-	25.8	5.9	-	2.3	-	-		13.9	-	
3.90	86.7		28.2		16.7	-	18.7	3.5			-	18.1		14.3		0.5
57.90	89.8		10.4	3.4	8.1		13.9	6.9		7.0	—	3.9		46.4		_
59.20	86.7		15.8	16.3	10.6	-	13.4	2.7		2.5	-	-		37.1	1.5	
61.90	83.8		7.8	9.3	9.3	1.3	10.3	1.9	5.7	8.2	0.5			45.8		
65.50	91.6		13.1	24.3	15.8		15.6	9.1	-					22.2	_	127
<2 µm Fractio	n															
1.30	86.3		18.1	2.6	7.7	4.2	21.8	2.9	4.7	32.6			1.0	4.5	5 <u>—</u> 3	
3.90	88.9		16.7	-	9.1		17.7	2.2		35.3		11.7	4.1	2.1	1.2	
57.90	84.2		7.8	-	5.6	-	8.5	—	7.2	40.2		24.1	1.7	4.9		
59.20	86.0		10.3	7.4	12.0	1.8	7.7	2.1		51.6		-	1.7	5.3	-	
61.90	84.4		8.0	2.3	6.5	777.1	8.3	1.7	3.2	51.9		11.8		6.4	-	
65.50	85.5		8.1	0.7	4.9	-	8.4	4.5	-	54.8		13.1	1.6	3.9	-	

TABLE 9 Results of X-Ray Diffraction Analysis, Hole 315

H. E. COOK, I. ZEMMELS

	TABLE 10		
Results of X-Ray	Diffraction Analysis	s, Hole	315A

Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Arag.	Feld. ^a	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Paly.	Mont.	Trid.	Clin.	Phil.	Pyri.	Hema.	Gyps.	Bari.	Amph.	Gibb.	Magn.
Bulk Samples																									
76.6	20.5	100.0	<u> </u>	-		-		-	-		-					-	-			_	222	_			-
82.90	17.3	99.7	\rightarrow	-		0:3	-		-		0.000				-	-	-			440	-				
124.90	19.2	100.0	-	-		-	-	-	-						-		-			-	-	-			-
142.60	19.7	99.4		-		0.2	-	-	-		-				-	-	-			-	2.000	0.4			$\overline{}$
148.90	20.8	99.2		-		0.2	-	-	-						-	-	-			-	-	0.6			-
372.10	18.7	98.6	-	-		0.1	_	_	_						-	-	-			0.0		0.3			_
465.90	17.1	100.0	_	_		-	_	_	-		-				-	_	-			0.9	-	0.5			-
513.50	12.1	100.0	-				-	-	-						-	-	-			-	-	-			-
591.00	10.2	100.0	-			-	-		-		-				-	-				-	-	-			-
703.60	18.2	100.0	-			-	-		-		-				-	-	-			-	-	-			77.
731.30	10.0	98.4	-	-		0.2	-	-	-		1				-	-	0.5			-	-	0.9			-
739.30	88.3	61.7	-	-		3.9		-	-		2.3				14.4	-	-			-	-	17.7			-
741.40	13.7	26.7	_	_		48.1	22.3	0.7	-							2.9				_	~ ~				-
779.20	74.8	14.0				23.0	-	8.7	6.0		12.4				14.9	_	13.8			_	0.5	5.1			_
788.50	66.0	-	-	_		26.6	12.1	3.8	3.2		16.0				14.0		24 3			_	0.4	1.0			
797.10	48.1	-		-		28.8	-	7.2	4.7		17.0				11.3	-	27.0			-	1.5	2.4			
799.20	34.2	88.3	-	-		4.6	-	0.6	0.4		3.1				1.5	-	1.5			—	-	-			-
808.60	44.7	76.6	+			8.7	-	1.2	0.8		5.7				2.9	-	4.1			-	-	-			55 C
875.90	32.8	77.2	73 8			8.9	-	1.2	0.7		4.0				7.4		0.6			-	-	-			
893.40	47.2	50.4	-	-		36.8		1.6	1.6		2.2				3.4	-	4.2			-	275	-			-
911.30	30.4	17.1	1	-		48.2		6.4	4.2		12.3				6.9		2.9			1.9	1	-			-
952.70	51.8	2	1.0	-		75.8		43.9	4.1		14.8				9.4	-	10.9			1.4	2017	1500			579 L
952.90	44.5	93.6		_			-		2		23				1.2	2	2			29	2	- 21			28
970.90	45.3	_	_	8.0		19.9	-	2.9	1.4		36.0				31.3	-	0.4			-	0.1	-			-
990.00	70.8	-		_		53.9	2	4.1	1.9		2.5				24.2	-	-			13.4	2				20
2-20 µm Fract	ion																								
82.90	86.1				-	7.9	-	-	10.1		9.1	-	-	-	3 14 3	-	-	-	-	-	-	11.2	61.7	-	-
124.90	96.1				-	5.7	-	19.6	13.4	• 1	9.6	-	-	-	-	-	-	-	-	-	-	51.7	-	-	-
142.60	90.8				-	2.4	-	10.4	6.8		-	-	-	-	-		-	-	4.1	-		76.3		-	-
148.90	97.4				-	8.4	-	-	-		16.2	20.0	-	-	-	-	-	-	13.6	-	-	41.8	-	-	-
260.00	76.9				-	2.1	-	16.7	40.4		3.5	1.00		-	9.0	-	- -	-	43.2	_	-	1.8		-	
465.90	95.5				100	0.1	-	14.3	13.0		875	-	-	-	177.1	177		-	0.7	_	100	68.8		-	-
513.50	91.5				-		-	22.9	4.7				-		-	-	-	_	-		-	72.4	_	_	_
591.00	95.2				15.2	5.9	-	-	-		-	-	-		-		-		-	_	-	78.9	_	-	
703.60	88.5				-	1.0	-	13.8	13.8		6.1	2.2		-	6.7	-	-	7.6	-	-	0.1	48.7	-	-	-
731.30	37.6				-	1.9	-	8.2	5.4		3.4		-	-	5.7	-	57.5	-	-	-	-	17.8	-	-	-
739.30	90.3				—	6.9	-	13.2	10.3		-	-	-	-	18.5	-	-	_	_	-	-	51.0	-	-	-
741.40	13.5				-	35.6	56.7		1.			0.775	-		-	7.6	-	-	-	-	-	Ξ.	-	-	-
779.20	59.6				-	28.6	-	8.7	9.5		12.4	-	$\overline{}$	377	8.1	-	24.3	-	-	-	-	8.4	-	-	-
779.60	48.7				-	25.1	16.6	11.9	8.3		13.3	100	12.6	1	5.1	-	36.3	_	-	_		-		-	
797 10	373				-	20.7	15.5	0.1	5.0		11.2	0.7	12.5	1.5	0.5		43.8	_	_	-	-				_
799.20	53.2				_	40.8	_	9.5	5.4		18.5	-	-	100	6.1	_	19.7	_		-	-	-	-	-	
808.60	36.8					28.6	-	12.7	6.6		7.4		-	-	_	$\sim - 1$	44.7		-		-	-	-		
818.70	47.6					23.6	-	17.0	5.9		6.8	-	-		4.3	-	42.4	-	-	-	-	\rightarrow	-	-	-
826.90	49.2				-	36.5	-	19.7	2.3		23.4		-	-	5.0	-	13.2	-	-	-	-	-	-	-	-
836.80	44.6				-	25.6	-	31.0	10.2		9.9	0.7	-	-	0.7	-	14.3	-	-	7.4	-		-	0.3	
837.00	41.1				-	9.7	-	9.8	6.4		5.7	-	-	0.9	5.5	-	35.6	-	7		1	5		-	7.3
856.00	23.8				-	2	-	66.5	117		1.2	2	Z	0.8	12.2	2	3.9	2	2	12	2	2	-	-	47
858.30	38.2				1	1.1	1	36.8	5.8		1.6	2		1	49.0	5	5.6	2		12					
875.90	48.0				-	53.2	-	10.1	3.8		15.3		1		16.7	_	_	-	-	-		-	-	_	0.9
893.40	44.6				-	69.5	-	6.4	3.9		5.9	-			3.9	-	9.4	-	-	-	-	-	-	-	1.0

911.30	41.6		-	56.8	-	11.0	7.7		10.0	-	<u></u>	<u></u>	3.6	-	7.9	-	-	1.8	1417		-	-	1.3
932.70	50.6		—	1.0	-	58.1	11.1		1.0	-	-	÷	23.8	$\sim -$	3.0	-	-	2.1		_		-	
952.80	41.5		_	90.0	-	_	_		6.8	_	-		32	-	_	1.11				-	-	-	-
952 90	37.1		-	92.2	-	-	_		47				5.2		100			2 1		1.41.0		1.000	
970 90	49.2			70.0		17	28		17.9				67		_			3.1	_		-		_
900.00	50 6			42.2	1.11	0.1	2.0		11.0	1.0	-		16.2	-	_	-		16.1	_	-	-	-	-
390.00	39.0		-	43.2	177	9.1	5.5		11.1	1.0	-	T 2	15.5	-	_	-	-	10.1	-	-		-	-
<2 µm Fracti	on																						
76.6	58.2			7.9	-	7.3	9.1	-	15.6		-	-	55.9	-		-	4.2	-	Ξ.	-		-	-
82.90	83.5			6.1		1.2	3.3	1.4	9.6	-	-	7.4	56.2	-	-	3.4	2.4	-	1.6	7.5		-	-
124.90	89.0			4.4	-	-	_	-	4.5	3.7		20	63.7		24	12.8	-	-	1.1	9.8		-	
142.60	92.0			48.0	-	5.2	4.5	-	2.4	2.0	-	_	27.6	_	1	•	_	2	0.5	9.9		-	_
148.90	87.3			3.5	_	7.5	6.1		7.9	1.3			62.8	122	022	22	_	20	_	10.9		-	-
260.00	80.9			4.3	-	4.9	3.9	-	3.9	1.9	-	6.0	68.9	-	1	-	2.9	\simeq	0.6	-2.6		144	-
372.10	94.4			11.6		7.7	10.0	-	8.6	3.5	-	_	31.0	-			3.9	-	1.6	22.1		-	-
465.90	92.8			11.4	-	2.0	6.8		6.6	3.0		_	27.7	-		14 5	_		0.9	26.4		0.6	_
513.50	82.7			6.4	-	51	37		26	35	-	-	52 7			6.0	-	-	0.9	19 1		0.0	-
591.00	89 3			5.9		11 3	61		4.8	28			51.5			0.0			0.7	17.6			
703 60	78.2			53		9.7	76		4.0	2.6			52 4							21 4			
731 30	63.0			1.4		10.3	8 1			2.0			20.8		15.4		_		0.2	24 7			_
730.30	84.2			0.0	100	0.9	0.1	-	1.77	0.775			62.1	-	15.4	-	-		0.2	7.0		-	-
741.40	20.4			0.0	70 4	9.0	9.0	-	-	-		-	03.1	7.0	277	-	-	-	0.7	1.0		-	-
741.40	20.4			21.2	/0.4	-	60	-	110	100	-	-	2.1	1.0		-	-		-	2.0		-	-
779.20	76.2			31.4	_	9.0	0.0		14.0	1		17	21.4		1.2	-		722	100	3.8			1
779.60	74.4			31.1		8.0	0.1	-	19.7	5	-	57	21.2	-	13.4	-	-	-		-		-	-
788.30	70.2			30.0	14.2		1.1	-	8.9	-	9.0		35.1	_	0.8		_	_	0.5	2.0			_
797.10	70.9			33.2	-	7.0	3.2	-	19.1			-	25.9	_	8.6	-	_	-	0.1	2.9			-
799.20	73.1			32.5	-	10.4	1.9	-	17.2	-		-	34.9	-	2.8	~	-	-	0.2	-		-	-
808.60	71.6			35.9	-	5.6	1.5	~	26.4		-	-	27.7	-	2.9	-	-	÷-0	-	-		-	-
818.70	67.7			32.7	-	5.1	3.1		12.1	-	-	-	44.9	-	1.8	-	-	÷=	0.3	-		-	-
826.90	72.6			38.4	-	4.9	4.5	-	28.6			-	22.7		0.8	-	-		-	-			-
836.80	58.1			45.4	-	3.5	1.4	-	4.2	-		-	39.5	-	4.0	-	-	1.7	0.2	-		-	
837.00	57.5			13.3		2.6	2.8	-	5.8	-			74.0	-	1.6		-	-		-			-
850.50	92.0			-		-		-	277		-	. .	100.0		-	-	100	200 C	100	-			
856.00	57.3			0.4	-	55.3	6.7		4.8	-	-	-	28.0	-	1.2		-		-	-		1.1	3.5
858.30	60.5			1.9	-	17.5	3.2	-				1.00	77.4	-	-	-	-		-	-		-	-
875.90	58.2			58.2	-	5.1	1.5	-	13.9			-	21.3	-	100	-		-	-			-	-
893.40	54.4			75.3	-	1.7	1.1	-	1.7	-	-	-	19.2	-	0.6	-	-	-	-	-		-	0.5
911.30	57.0			63.6	-	3.6	2.4	-	9.6	-	-	-	19.3	-	1.5	-	_		_	_			-
932.70	84.3			_	_	_	72	_	_	_	_	22	100.0	-	12	_		<u></u>	_	-			-
952.80	2.8			_	11.2	_	<u> </u>	_	27.6		-	-	45.1	16.1	12	-	-	-	-	-		-	
952.90	54.9			75.7	-		-	1.0	8.9	-		-	11.5		-	-	-	3.9	-	-		-	
970.00	37.6			24 2	-	-	0.8	_	51.6	-	-	-	23.4	222	-	-		-	-	-		-	-
990.00	60.8			36.8	-	18	2.0		2.8	122	_	_	45.0	-	-	-	_	11.5	-	-			-
20.00	00.0			00.0			ALC: 1 1																

^aUndifferentiated feldspar.

X-RAY MINERALOGY DATA

547

Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Feld. ^a	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Paly.	Mont.	Trid.	Clin.	Phil.	Anal.	Hema.	Pyri.	Gibb.	Gyps.	Bari.	Augi.	Magn.	U-2 ^b
Bulk Sample																										
0.80 2.70 155.30	31.8 15.8 20.8	97.6 99.8 100.0	-	-	0.4 0.2	-	-			1.4				-	-	-		-	-		-	-	0.6		-	2
268.30 391.80	21.6 29.8	94.5 99.1	1	-	0.2 0.2	Ξ	3.5 -	1.1 -		2				2	-	Ē		-		0.7	-				-	-
448.80 469.30 486.50	55.2 22.5	97.4	83.4 0.5	-	0.8 0.3	-	1.3	0.9		3.3				3.0	-	5.6		-	-	-	-	-	- 1.7 -		-	-
495.90 515.40 524.70	-7.3 11.5 10.0	34.6 98.1 99.8	0.3	1	5.3 1.7 0.2	47.1	1	-		1.0				2	11.9 	-		-	Ξ		-	1			-	
533.60 553.30 562.90	13.1 29.0 20.3	98.9 96.2 98.5	1.1.1	-	0.7 1.6 0.8	-	0.8	0.5		1.0				-	-	-		-	-		-	-	0.4		-	-
571.80 573.60	21.4 8.7	96.3 98.8	-	-	1.0 1.2	-	-	-		18 17				0.9 -	-	-		-	-	-	-	-	1.8		-	-
583.10 584.40 587.40 609.80	74.6 10.6 24.8	16.3 95.2 81.7		-	36.1 3.2 15.1	1.1	5.4	5.2		17.5 1.6 1.4				10.0	2	2.4 9.3 - 0.4		-	2	2	-	0.2			-	2
610.50 613.60 630.60	52.1 9.0 16.0	52.0 97.1 91.3	1	-	0.3 2.2 2.3	1.1.1	1.5	-						46.7 0.7 6.2		1.0 - 0.2		-	-	-	-	-			-	P
638.40 641.80 642.10	13.4 20.4 35.3	96.0 80.5 66.2	1 1 1	0.3	2.7 0.1 0.8		- 7.4 7.8	- 4.8 4.2		1.1 1.3				0.6 4.3 13.6	-	0.4 0.4 2.2		-	1.2 3.4	1 1 1		1.1.1			0.1	- P
667.10 668.10 686.70 704.50	16.4 18.8 7.7 25.9	98.2 95.5 98.0 78.5		0.3	0.7 0.7 1.4 0.6	8 8 9	- - 6.2	-		- - 0.9				1.1 3.5 0.6 11.6	1.1			1 1 1	- - 0.4	111	111	111	-		-	P - -
705.70 727.00 744.80 771.20	44.3 38.9 44.7 38.7	77.6 58.4 73.1 41.8	0.1 - -		9.3 0.9 1.0 2.5	1	2.0 20.0 13.1 12.7	1.6 6.2 2.9 0.7		5.9 1.3 -				3.4 6.7 6.1 30.7	111	0.5		0.4 9.6	4.9 - 1.3	2.3	 0.7	0.1			- 1.1 0.9 -	- P P
2-20 µm Fractio	15.5 on	95.1		20	1.5	-	2.2	-		0.9				0.4	70	12				72	20		-		-	
0.80 2.70	86.9 92.2				22.3	22	5.7	20.4	π^{ik}	11.9	1.6	-	-	6.0	-	ī	-	-	-	0.9	-		31.1	i.e.	-	-
155.30 268.30 391.80	96.3 95.2 95.2				13.3 10.3	-	4.6 17.8	7.0 17.4 20.8	51	-	4.4	2		8.1	3	2.8	15.3	-	2	-	2		44.5	Ξ	-	
448.60 469.30 486.50	95.8 32.9				16.0 13.4 9.3	=:	28.0 14.8	18.2	-	14.1		-	-) e 	*	42.0	-	-	9.5	-	-		14.1	2 1	-	-
495.90 515.40	-19.8 66.1				14.7 30.5	80.0	- 14.4	- 6.3		21.6	1.6	-	12.0	2.5	5.4	-	Ξ	-	Ξ	Ξ	Ξ		11.0	2		-
524.70 533.60 553.30	40.1 49.6				40.2 41.2	5.3 -	13.7 23.1	2.3 6.3 7.7	1	23.1 18.7 16.5	1.2	-	-	1.4 0.9 -	-	-	-	-	-	0.1	-		13.8 0.8	7.9	-	-
562.90 571.80 573.60	49.9 50.0 45.8				33.6 32.4 38.0		24.6 19.6 9.2	6.6 6.0	1.0 -	16.5 17.0 17.7	0.9	111	- 3.3 -	2.1 2.1 4.0	1	0.5	-	-	Ξ	0.2 0.3 0.8	-		17.6 23.3	2		-
583.10 584.40 587.40	38.7 43.6 44.6				46.8 57.6	1	12.9 12.8	8.4 8.3	-	3.6 11.3 17.8	1.5	1.1	-	0.6 1.3	-	23.4 19.9 0.7	-	-	-	2	-		-	1	-	
609.80 610.50 613.60	45.4 39.6 43.7				43.8 1.7 58.1	-	14.9 2.6 15.0	7.2 1.2 5.9	0.9	13.6 3.6 11.4	1.0 - -	1.1	-	2.4 81.0 -	1	13.3 6.2 -	-		- 5.2	2	5		4.0 	1	- 3.7 -	P
630.60 638.40 641.80	42.2 35.6 34.7				27.0 39.8 3.3	11	7.6 16.0 44.3	3.3 6.2 6.4	0.5	8.8 8.1 5.9	1	-	- 1.0	44.2 1.1 4.2		8.2 21.0 11.6	1 - 1	-	6.1 17.3		-		0.9 1.4 -	-	- 6.0	P TR

642.10	38.2	3.1	-	43.1	4.4	-	5.6		4.9	-	7.0		13.2	-	-	16.7	-				-	1.9	P
667.10	46.1	13.7	-	15.6	12.1		83	-		-	25.8	_	17.7	_	-	5.6	-	-		-		1.4	P
668 10	45.6	20.2	12	324	4.6	1.0	12.9		- 9 <u>2</u>		16.8		2.8			88						0.5	TR
686.70	20 4	45 7	1.5	27.2	6.0	1.0	14.9				10.0	8	2.0			4.6						0.0	11
704.50	30.4	43.7		21.2	0.0		14.0			-	2.4			_	-	4.0	_	-		-		0.9	
704.50	33.0	1.5	-	08.8	3.2	-	1.2	-		-	2.4	-	1.4	-	-	6.8	-	-		Ξ.	-	3.0	-
121.00	28.9	5.1	-	57.0	1.6	-	4.5	1000			1.6		3.5	-	-	13.9	-			1.4		5.3	-
744.80	37.7	5.2		61.9	6.6		3.0	1.0	-						0.5	-	7.5	-		-	-	14.4	
771.20	22.9	7.9	125	36.9	3.6		4.9	100	375	100	38.0		-	177.2	7.8	0.8		1.00		-	-	177	P
830.30	17.3	26.4	-	58.0	5.4	-	8.5	5	-	-	-	-	1.8		77/	-	177	-		-	-	-	-
<2 µm Fracti	ion																						
0.80	88.7	15.3	. 	8.3	11.6	8.7	7.5			\rightarrow	43.3	-	-	-	-	-	-	-	0.3	5.1		1	1.000
2.70	79.5	9.8		5.4	6.5	2.8	8.3	2.5	-		63.2		-		-	-			0.2	1.6			
155.30	92.9	8.1	-	10.7	13.2	-	3.7	4.9	-	_	43.6	_		-	-	2	-	0.6	0.5	14.6		-	-
268.30	91.4	10.9	_	7.8	5.1	-	_	9.0	-	-	58.0	_	_	-	20	_		-	-	9.4		-	22
391.80	81.6	5.9	122	73	78		8 1	21	122	22.0	51.8	2.2	1.1	11.5	1.12	223		1420	03	4.2			122
448 60	70.1	5.2		0.2	6.0		10.9	1 7			60.6		0.0	11.5		1.8			0.5	2.8			
460.00	75.6	12.0	-	10.6	6.0		10.0	1.7	-		61.6		2.0		-	1.0	0.0		0.2	2.0			
409.30	75.0	13.0	10.7	10.0	0.9		3.6	-	-		31.5		2.9	-	10	4.0	0.0	275	0.2	5.0		-	
400.50	33.3	1.0	00.7	1.1	0.8		0.5	1	1		25.5	1.9	1.0		20 A	1	-	10	0.1	0.8		100	57
495.90	-11.4	1.5	82.2	-	-		0.4	-	-			15.8	-			-	-		-			_	
515.40	76.1	11.0	-	2.8	-	-	14.6	3.4	-	21.3	43.3		1.2	-		-	-	0.6	1.8			-	-
524.70	61.5	6.6	-	-	-		22.4	-	-	25.3	45.3		100	-		100		-	0.4	-			-
533.60	71.8	17.0	4.6	5.2	3.1		36.5	1.8	-	-	26.9	-	0.6	-	-	0.5	0.9	0.3	0.2	2.5		-	
553.30	77.5	18.3	-	10.9	4.0	-	23.8	1.8	-	-	36.8	-	-	-	100	3.0	0.8	0.3	0.3	-		-	-
562.90	74.1	10.7	-	1.0	2.3	-	20.7	1.4		-	49.3		-	9.4	77.0	1.1	0.9	0.3	0.3	2.8			-
571.80	73.4	12.8	-	4.4	3.8	-	15.0	1.9	-	10.2	39.0	-	0.6	6.6	1	-	-	0.4	-	5.2		122	-
573.60	73.8	321	02	1.9	1.2	-	17.0	22	-	-	39.0	-		_		-	1.8	0.4	0.2	4.1		-	-
583.10	57.2	88.1	\sim	_	27		5.5		- 22		-	-	64	-		2	_	_				1.00	
584 40	74.8	37.2	-	63	43	_	12.8				384		1.0		-	-		-	-	100		-	-
597.40	50.8	50.0		1 3	4.5		10.8				28.0		1.0						-				
600.90	57.6	39.0		1.0	1.0		6.2		-		45.7		0.5	- T (-			0.2				
609.80	32.0	24.0	-	1.0	1.0	1	0.2	1	-	-	00.7	5	0.5	22	<u> </u>	-	-	12	0.5	1		25	D
610.50	49.8	0.8	-	-		-	-		1	1	99.2		-	_	100	1	-	-	-	-			r
613.60	56.4	51.3		-	_		8.4	-		-	40.1			-	-	-	-		0.2			-	-
630.60	59.2	26.0		2.0	0.9		3.8		-	-	66.5	-	0.5	-				-	0.2			-	P
638.40	55.6	61.3	-	2.3	1.5	-	3.8	0.000	-	-	29.6	-	1.2	-	-			-	0.2	-			Р
641.80	31.6	2.7	-	5.2	4.4	-	1.8	-	-	-	80.7	1.000	1.4	-	-	2.9	-	5 75	0.2	-		0.7	P
642.10	34.8	2.1		18.8	4.9	-	1.3	2.00	-	-	59.9	1.00	5.4	-		7.0	-		0.2			0.8	P
667.10	47.3	13.5	-	1.7	0.8	-	3.9	-	-	-	79.5	-	-	-	-	-	-	-	0.5	-		-	P
668.10	43.1	10.1	_	3.5	2.3	_	1.6	1.0	1	23	78.5	_	0.4	-	100	2.6	_	-	0.8	-		0.7	P
686 70	55 3	33.0	12	37	1.0	-	44	122	-	_	57.5		-	_		_		_	0.4	-		-	-
704 50	28.2	1.8		12	0.8			1.1			96.2	-	- 22	_		-	-	-	0.1	~		-	P
727.00	35 4	0.0		65	25				8 5		77.6		0.5		-	33			0.1	-		-	P
744.90	53.4	0.9	-	0.5	2.5	-		100	0.5	-	05 6		0.5	1.2	24	5.5	1771	1077	0.1				P
744.80	34.2		5 T	6.1	2.0	-	1.75	-	-	-	03.0	-	-		0.6	2.2	-		0.5			-2	P
771.20	38.8	0.4	-		Ξ.	-	-		-	-	96.9	1.2		7	0.5	2.3		12	0.7	-		-	r
830.30	65.7	22.7	222	13.8	5.1		58.2		-	-	-	-		-	Ŧ		-	-	0.2	-			

^aUndifferentiated feldspar.

^bU-2 = Major peak located at 3.50 Å. This peak may be due to the presence of anatase. However, it may also be associated with the montmorillonite.

Sample Depth Below Sea Floor (m)	Amor.	Feld. ^a	Calc.	Dolo.	Quar.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Paly.	Mont.	Trid.	Clin.	Phil.	Anal.	Hema.	Pyri.	Gibb.	Gyps.	Apat.	Bari.	Amph.	Magn.	Sani. ^b
Bulk Sample																										
554.20	41.2		82.9		2.5	-	1.5	0.8	-	3.0	-	-	-	-	7.8		-	-	-			-	1.5	-		-
564.50	7.4		97.8	_	2.2	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-		-
576.90	52.5		78.2	-	8.3	-	7.3	-	-	5.9	-	-		2	-		1	_	_		0.4	-	122	-		
585.00	56.9		—	-	9.7	-	10.8	-	-		0.9	63.3	7.8	÷	1.4		-				-	6.0		-		-
602.40	7.1		43.7	0.3	5.9	42.2	-	100		-	-	-		5.5	- 1		-		0.1		0.2	-	2.0	-		
623.30	-6.2		34.3	-	0.6	55.5	0.9	0.4	-	-	**	-	1.5	4.3	1.2			-			-	-	0.5	0.7		-
644.10	28.7		7,8.7	-	0.6	-	4.8	3.3	-		-		6.0	-	3.2		-	-	-		-	0.3	1.5	1.5		-
651.00	44.2		-		2.1		-	16.0	0.6	-	100	-	71.8	-	9.5		-	-			-	-	17	-		
670.00	13.2		-	-	0.2	-	-	-	-	-	-	-	76.3	-	-		23.4	-	-		-	-	-	-		-
698.60	52.5		-	-		-	-	-			_	-	58.6		11		12.4	_	-		-		-			29.1
727.70	48.3		-	-	2.3		17.1	11.1	-	-	-	-	69.5	-	\simeq		-	-	-		-	-		-		-
755.90	52.7		-	-	2.8	-	-	-	-	-	2.3	-	90.4	-	÷		-	4.6	-			-	-	-		-
756.70	58.2		-	\rightarrow	-		\rightarrow	-	-	-	-	-	91.7	-	-		2.4	0.6			-	-	-	-		5.2
757.40	51.0		-	-	-	-	(11) (i)		-	100	-	~	95.6	10	÷.		0.5	-	-		-	-		1		3.8
759.40	62.8		-	-	7	-	534	- 1	-	-	1	74	80.1				11.1	-	-		-	100		-		8.9
777.70	43.0		-	-	-		-	-	-	-	-		92.8	-	-		2.5	-	-		-	-		-		4.7
778.10	58.8		4.5	-	-	-	-		100			-	84.5	-			2.8	-			-	-		-		8.3
779.60	48.5		-	-	-		-	-	-	-		~	88.3	-			4.1	-	100		-			-		7.6
821.10	49.1			-	-	-	-	-	-	**	÷.	1	88.8		-		6.4	-	-			-		-		4.8
849.90	44.8		1.4		-	-	-	-	-	-	-	197	68.7				25.7	-			-	-		~		4.2
887.40	25.1		0.4	-	-	-	T	-	1.00	-	85 -	+	92.3	÷2.			5.7		-			-	÷.	-		1.5
887.40	39.4		<u> </u>	T	-	-		26.1	-	10.0	17		94.8	15			3.8	1.4	100		-	1	-	-		
927.50	47.9		-	-	8.1	-	8.7	36.1	-	10.5		1	13.4		10.0		77	13.2	1		-	-	57	-		
2-20 µm Frac	tion																									
554.20	30.1	-			16.6	-	9.6	5.9	-	9.0	-	200	1.0	-	45.0	3.8	0.8	100				()	8.3	1.00	-	
564.50	24.0				43.0	-	47.8	4.0	100	5.2	-		1.10			111			200		-	0.000	77	1.77	1	
576.90	31.4	-			34.6	-	42.6	1.1	-	20.0	0.8	-	-		-	-		-	-		-	-	-	-	0.9	-
585.00	49.7				20.7	-	23.7	2.8	- 21	21.0	1.7	4.1	10.5	-	6.9	-	1		-		-	8.6	-	-		-
602.40	-12.9	—			25.1	56.6	1.1	0.7	-		-			5.4		-	-		-		-	-	11.1	-	-	-
623.30	-33.4	-			2.3	75.8	6.1	2.1	-		_	-	0.9	8.6	0.7		-	-	-		-	0.7	1.5	1.3	2.50	
644.10	21.2	-			3.1	-	23.3	15.2	1.5	÷÷	-	-	3.3	-	33.8	30	100				-	1.6	9.5	10.2	-	-
651.00	49.1				5.7		-	54.8	0.5		11	-	37.0	-	2.0		1.000	-	1.00		-	-	-	5.000	1.00	-
670.00	3.0	-			0.3	1.0	1.7-	372	77				52.1				45.9	-	100		-	12	77.0	100		
698.60	45.6	-			-	-	-	-	-	-	-	-	56.1		-	-	22.9	-	-		-	-	_	-	-	20.9
727.00	63.7	-			3.7	-	46.2	20.9				-	29.1	-		-		-	-		-	-	-	-	-	-
755.90	59.1	6.5			4.4	-	-	-		-	-		83.6				-	5.5	-		-		-	-	-	
/56.70	04.6	-			-	-	-	-	-	**	**	1-01-	87.3					5.5	-		-		-	-	-	7.1
757.40	66.6	-			-	-			-			-	76.5	-	-		3.7	-	155			-		-	5 m	19.3
759.40	62.0	-			100	-	-	-			10	-	91.5		-	-	-	-	100		-	-	2	1	-	8.5
777.10	64.8	-			5	-	-	1	-	0		-	0.00	5	5	12	7.6		2		-	- 5	20	1	100	25.8
778.10	58.0	-			-	-	8.1		-	_	-	-	81.6		1	-	3.0	-	-		-	_	-	-	-	7.3
119.00	02.4	-			-	-	-	0.7	-		1.0	-	64.1	**	**	-	4.8	-	-		-	-		-	-	30.5
821.10	38.5	-			-	-	-	-	-	1.8	1.0		13.8	-	-	-	0.9	~	0.7		-	-	-	-	-	10.5
849.90	36.6	-			-	-		2.9	-	-	-	-	40.2	-	-		17.4	~	0.7			-	-	-	0.9	31.9
887.40	55.2	-			-	-		1.2		-			30.1	-	-	-	34.5	-				100	-	. H	-	14.5
887.40	20.1	-			12.4	-	10.0	45.2	-		1.1	-	/0.0	1 1	10.0	-	8.7	0.6	0.4		-	-	-	-	-	13.0
921.50	39.1				13.4		10.0	43.5		3.0	-		4.5		10.3	_	-	10.0	0.4				-	_		-

 TABLE 12

 Results of X-Ray Diffraction Analysis, Hole 317A

<2 µm Fraction

554.20	72.2	-	8.7	100	11.4	7.4	31.7			39.1		0.6	-	-	~	0.3.	-	0.8	-	-	-
564.50	48.2		36.3		35.6	2.3	24.1	1.8					3000							1.000	
576.90	78.6	-	25.6	-	23.9	1.6	27.6	2.0		18.3	-	-			-		-			1.0	-
585.00	48.7		3.6	-	2.2	021	7.7		66.7	17.3	-	0.2	-	-	0.1	_	1.9	0.3	-	-	-
602.40	-19.6	-	2.4	83.4	0.4	0.2		-	-	1.8	10.9	-	-	-	-	-	-	0.8	-		-
623.30	-23.9		0.2	83.0	1.0	0.6		100		2.9	10.2	0.2	\sim	-	-	-	0.5	1.0	0.4	-	-
644.10	33.9	-	2.3	-	9.1	6.1		0.2	-	78.3	-	2.0	-				0.3	-	1.6	-	-
651.00	44.4	-		-		6.5	-	- 10	- 104	93.3	-				-	0.2	1.00	-		-	-
670.00	22.8	-	-	-	-	-		-		86.4		-	13.6	-	-		-	-	-		-
698.60	49.2			-			201	-	-	88.9	-	-	3.4	-	-	-	-	-	_	-	7.7
727.00	48.4	5.1	0.4		-	-	-		-	94.5	-	-	-	-	-		-	+	1.000	-	-
755.90	45.1		-	-	-			-		96.7	100	10-1		3.1	-	0.2	-	-	-	-	-
756.70	41.6		-	-	-	-	÷	-	-	97.1	H)	\rightarrow		2.9	-	-	-	-	-	-	-
757.40	34.0	-	-	-	-		-	-	-	97.7	-			-		-	1.00		-	-	2.3
759.40	90.6				-		~	-	-	96.6		-	-	-		-	1.77	77			3.4
777.70	40.9			-	_	-	2		-	96.2	-	-	0.6	-	-		-	+	-	-	3.2
778.10	32.6			-	-	1.00		51		100.0	21		1		124	-	12	2	14	400	-
779.60	41.5	-	-	-	-	-		- 10		95.2	100	-		-	-		_	-		-	4.8
821.10	86.3	-	()	-	-	-	200			94.2	240	\rightarrow	344 S	-	-	—	-		-	-	5.8
849.90	81.7		-	-	-	1.2		-	-	82.4	-	-	3.0	-	-	-	-	-	-	-	13.3
887.40	84.0					-		-	-	95.6		\rightarrow γ	3.1		-	-	1.000				1.2
887.40	42.0	-	-		-	-	-			92.7	-	-	-	7.3	-	-	-	-	-	-	-
927.50	48.9	-	3.4	-	5.3	18.2	18.0	-	-	39.2	-	0.8	-	15.1	-	-	-	-	-	-	-

^aUndifferentiated feldspar.

^bThe abbreviation sani, is for sanidine.

^CSample contains two types of K-feldspar. They have been reported separately as K-spar and sanidine.

Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Arag.	Feld.	Cris.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Trid.	Clin.	Gibb.	Ouar.	Gyps.	Apat.	Bari.	Psil. ^a	Magn.
Bulk Sample		12410192		U			- 0.111.19.29			_200.002						1000		•	0000000	11-22-20	
0.20	32.4	100.0																			
0.30	23.4	100.0														_	-				
27.40	21.1	100.0	_	_	_											-	-				
65.70	20.5	100.0	-		-											-	—				
102.20	20.3	100.0														-	-				
141.20	17.3	100.0	_	-	-											-	-				
179.50	23.7	98.1		1.2	0.6											0.1	_				
220.70	35.7	99.3	0.4	-	-											_	0.2				
227.10	21.8	100.0	_	-	-											-	—				
266.80	29.5	100.0		1.00												-	—				
312.40	29.5	100.0	-		-											—	—				
352.30	17.4	100.0	_		-											_	-				
389.40	28.9	99.8														0.2	-				
2-20 µm Fract	ion																				
0.30	31.0					_	23.5	29.3		-	-	-		-		7.8			39.5	-	
27.40	10.5					_	39.4	15.4		-	_	_		_		5.5			39.7	-	
65.70	32.5					22	27.8	10.4		_	_			<u> </u>		6.2			55.5	_	
102.20	80.8					_	84	26.9		_	_	_		21		21			60.5	_	
141 20	89.4					_	34.9	8.1		10.4		12.2		-		92			25.2	_	
179 50	91 9					-	29.9	11 3		10.1	1.1	12.2				11.3			47 5	1.1	
220.70	-						27.7					2.24		145		11.5			47.0	100.0	
227 10	94.8					660	7.0	28.1		227	27			200		22.7			16.8	100.0	
266.80	26						21.6	123		18 4	2.1			32 4		15 3			10.0		
352 30	32.3					100	10 4	11.2		6.0	573	2 1		25.7		0.1			24.7	177	
389.40	41.8					3.3	21.3	7.8		1.7	-	10.6		39.9		2.5			13.0	-	
<2 µm Fractio	on																				
0.20	00.2						14 7	22.7	4.4			20.2				60			22.2		
0.50	90.2					_	14.7	22.1	4.4	_		29.2	-		-	0.8	-	-	6.0		-
27.40	74.9					-	12.7	3.5	177	550	100	73.0	- TT	-	-	1.0	0.4	-	0.9		1.6
05.70	13.0					-	0.0	2.1	_	0.7		13.0		10	1.5	1.3	0.3	1.0	1.5		1.5
102.20	84.5					-	14.0	7.0		9.1	5.1	11.5	-	1.0	1.5	4.4	0.7	-	44.4		
141.20	14.2					-	7.0	3.1	1.0	6.4	2.3	72.0	-	-	-	2.6	0.7	111	4.8		
179.50	00.5					-	3.5	2.1	1.0	4.4	-	19.9	-	-	-	1.8	0.4	÷ .	0.3		
220.70	93.8					-	-	-	-	10.5	-		-	-	-	-	2.3	-	-		
227.10	84.9					-	-	-		19.7		64.1	-	-		9.6	—	÷7.	6.6		-
266.80	69.5					-	4.6	3.0	1.1	15.3	_	65.8	-	5.1	-	5.1	—	100			
312.40	70.5						2.3	1.1		15.9	3.6	71.0	-	3.4		2.9	-		-		
352.30	84.9					—	8.1	5.3		9.8	-	58.9	—	6.2	-	5.9	-	-	5.9		-
389.40	45.2					54.1	0.8	0.5	1000	4.8		31.4	4.5	0.9	-	3.0	$\sim \sim \sim \sim$		-		

 TABLE 13

 Results of X-Ray Diffraction Analysis, Hole 317B

^aThe abbreviation Psil. is for psilomelene.

								Suits OI	A Ruy I	Junacu	on Analy	, 515, DILC	510							
Sample Depth Below Sea Floor (m)	Amor.	Calc.	Dolo.	Arag.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Clin.	Phil.	Anal.	Hema.	Pyri.	Gibb.	Gyps.	Bari.
Bulk Sample																				
1.30	39.4	80.4	1.0	18.6	_	-	-	_		-		-	_			_	-		_	-
93.70	27.0	99.5	0.5	-		-	-	-		-		-	_			-	-		-	-
122.50	31.0	99.6	0.4		-	-	-	-		-		-	-						-	-
179.80	25.2	100.0	-	~ -1				-		-		-				_				_
266.50	30.3	100.0	-	_	-	<u> </u>	<u></u>	<u></u>		÷		-	-			-	-		-	-
350.80	30.8	100.0	-	-	-	-	-	-				-	-			-			-	-
407.50	25.0	100.0	-	-	(-)	-		1000				-	-				-		-	-
492.70	29.7	99.5	0.3	1.000		0.2	100	-		-			_			-	-		—	_
578.50	27.2	98.9	-	24	0.9	0.2	—			\rightarrow		-				100-0	20			
581.10	34.7	94.0	-	-	1.2	0.3	-			-		100	4.5						-	
615.80	10.2	31.6	-	1.00	-	2.1	11.6	4.1		1.3		43.1	6.2			÷				-
630.70	45.7	13.5	-		1.000	6.8	11.8	4.7				63.2	-				-		$\sim - 1$	-
665.60	69.4	5.6	-	-	-	0.6	9.4	13.2		-		68.3	1.3			1.6	-		-	-
703.80	58.3	4.8	_	-	-	2.0	55.4	10.1				12.2	14.8						_	-
743.50	41.2	2.96	-	-	-	1.0	9.1	4.4		1.1		33.5	20.4			\overline{a}	0.4		s /2	-
2-20 µm Fract	ion																			
1.30	48.7		59.6			1.5	5.9	11.0	-	1100	1.6		0.7	11.1		4.5	0.8			3.2
179.80	91.3		_			2.3	6.5	9.3	21	<u></u> ?	_		S.T.				_			81.9
266.50	94.7		-			10.0	26.3	9.8		21.0	-	-	-	-		-	-			33.0
350.80	95.1					25.8	7.8	24.8		24.2		-	-		-	-	-			17.4
407.50	50.1		-			16.4	17.4	8.8		11.3	-	5.7	33.7	-	0.8	-	-			5.9
492.70	56.7		-			2.2	14.8	9.6	<u></u> ;;	2.2	_	8.3	40.1		_	12.6	5.5			4.7
578.50	56.9					4.4	22.8	14.8	-	-	0.8	16.5	31.0	-	0.7	—	-			8.9
581.10	33.7		-			3.9	17.1	9.8	-			5.8	58.7	-	-		-			4.8
615.80	38.1		-			5.0	19.7	15.3	\rightarrow	0.6	-	26.8	31.6	-	-	\rightarrow	1.0			\rightarrow
630.70	72.9		-			10.6	22.1	17.8	127	_	_	49.4	_	100	_	_	-			-
665.60	43.4		-			1.3	48.7	4.6	-	-		38.4	5.7	-	-	0.9	0.4			-
703.80	46.4		-			3.0	21.3	13.1			+	18.4	42.9	-		1.0	-			
743.50	37.1		-			0.5	63.7	18.9		0.6	-	12.5	3.3		-	-				-
<2 µm Fractio	n																			
1.30	96.0					3.1	17.7	17.3				52.4	-			-	-			9.6
93.70	87.8					5.3	11.9	12.9				58.6	-				-	+	-	11.4
122.50b						-	-	-				-	-			_	-		()	-
179.80	90.1						<u></u> :	222				61.5	223			20	_	<u></u>	127	38.5
266.50	89.9					3.2	10.8	7.0				68.9	—			-	-	-	-	10.1
350.80	89.5					6.6	7.4	5.8				74.9	-				-		\sim	5.3
407.50	73.3					1.2	2.6	2.1				92.1	2.0				-	-	0-0	-
492.70	78.4					2.3	6.1	4.5				76.4	4.6				2.2	0.7	0.4	2.8
578.50	79.2					2.2	11.0	7.2				67.3	6.0			-		_	2 <u>0</u> 22	<u> </u>
581.10	64.0					-	-	100				98.6	1.1				-		0.3	-
615.80	71.0					1.4	15.6	8.9				65.4	5.7			3.0	-		-	
630.70	64.3					-	-	100				99.8	-			-	-	-	0.2	-
665.60	71.3					0.5	16.5	12.2				69.3	0.7			0.1	0.7		-	-

1.4

0.6

85.4

94.2

-

-

1.0

-

-

-

-

_

-

TABLE 14 Results of X-Ray Diffraction Analysis, Site 318

^aUndifferentiated feldspar.

68.1

41.3

703.80

743.50

^bDominant constituant was tungsten carbide contaminant. Sample also contained minor amounts of pyrite and goethite.

-

-

7.4

3.1

4.8

2.0

Amph.

_ -

-

-0.7 0.6

_

-

_

-

_

-0.4 0.4

553

TABL Samples Used in 2 Analysis, Leg 33 samples are	E 15 K-Ray Diffraction 8 (Composited bracketed)
Sample (Interval in cm)	Depth Below Sea Floor (m)
Site 314	
3, CC X X	0-45 0-45
Hole 315	
$\begin{array}{c} 1\text{-1}, 130\text{-}132\\ 1\text{-1}, 135\text{-}137\\ 1\text{-2}, 20\text{-}22\\ 1\text{-2}, 88\text{-}90\\ 1\text{-3}, 85\text{-}87\\ 4\text{-1}, 143\text{-}145\\ 4\text{-2}, 121\text{-}123\\ 4\text{-2}, 125\text{-}137\\ 4\text{-3}, 56\text{-}58\\ 4\text{-3}, 85\text{-}87\\ 4\text{-4}, 87\text{-}89\\ 4\text{-4}, 116\text{-}118\\ 4\text{-}5, 7\text{-}9\\ 4\text{-}5, 130\text{-}132\\ 4\text{-}6, 148\text{-}150\\ \end{array}$	$ \begin{array}{c} 1.3\\ 1.4\\ 1.7\\ 2.4 \end{array} $ 3.9 57.9 59.2 59.4 60.1 60.4 61.9 62.2 62.6 63.8 65.5
Hole 315A	
$\begin{array}{c} 1-1, 108-110\\ 1-5, 90-92\\ 1-5, 95-97\\ 1-6, 136-138\\ 1-6, 142-144\\ 2-1, 140-142\\ 2-1, 145-147\\ 3-1, 40-42\\ 3-1, 68-70\\ 3-3, 70-72\\ 3-3, 74-76\\ 3-5, 70-72\\ 3-5, 138-140\\ 4-3, 103-105\\ 4-3, 103-$	76.6 82.9 83.0 84.9 124.9 125.0 142.6 142.9 145.9 146.0 148.9 260.2 372.1 373.0 465.9 465.9 465.9 465.9 467.8 513.5 513.5 513.5 513.5 513.5 513.5 513.5 513.5 513.5 513.5 513.5 513.7 513.8 703.6 703.7 739.3 739.3 739.3 739.3 739.3 739.3 779.6 788.5 797.1

Sample (Interval in cm)Depti Sea F19-2, 118-120 19-3, 52-53820-1, 143-144820-2, 96-97820-4, 0-150821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34821-2, 32-34822-4, 145-146823-2, 49-51825-2, 72-74825-3, 48-50826-1, 130-132927-2, 119-120928-3, 85-87929-2, 136-138930-2, 148-15099Site 3161-1, 83-851-11-1, 83-851-21-1, 85-881-21-2, 118-1202-22-2, 80-82.5132-2, 80-82.5142-2, 80-82.5153-1, 126-128233-2, 72-74244-1, 124-128394-1, 124-128394-1, 123-135449-1, 100-1024411-1, 135-1385512-1, 123-1265513-1, 56-595515-1, 101-1035516-1, 137-1405517-2, 104-1065718-3, 96-995518-5, 84-865619-1, 10-146620-2, 112-1146620-1, 12-1146620-1, 12-1446720-2, 112-	TABLE 15 -	- Continued
19-2, 118-1208 $19-3, 52-53$ 8 $20-1, 143-144$ 8 $20-2, 96-97$ 8 $20-4, 0-150$ 8 $21-2, 32-34$ 8 $21-2, 32-34$ 8 $21-2, 32-34$ 8 $21-2, 32-34$ 8 $21-2, 32-34$ 8 $21-2, 32-34$ 8 $21-2, 46-47$ 8 $22-4, 145-146$ 8 $23-3, 130-131$ 8 $24-2, 136-137$ 8 $25-3, 48-50$ 8 $26-1, 130-132$ 9 $27-2, 119-120$ 9 $28-3, 75-77$ 9 $28-3, 75-77$ 9 $28-3, 75-77$ 9 $28-3, 75-77$ 9 $29-2, 136-138$ 9 $30-2, 148-150$ 9Site 316 $1-1, 83-85$ $1-1, 85-88$ $1-2, 118-120$ $2-2, 80-82.5$ $3-1, 126-128$ $2-2, 80-82.5$ $3-1, 126-128$ $2-2, 72-74$ $4-1, 124-128$ $32-2, 101-104$ 43 $7-2, 101-104$ 44 $7-2, 133-135$ 44 $9-1, 100-102$ 44 $10-1, 91-93$ 44 $11-1, 135-138$ 51 $12-1, 123-126$ 53 $15-1, 101-103$ 53 $16-1, 137-140$ 54 $19-1, 83-85$ 60 $19-1, 10-14$ 61 $20-2, 112-114$ 61 $20-2, 112-114$ 62 $21-3, 25-29$	Sample (Interval in cm)	Depth Below Sea Floor (m)
Site 316 1-1, 83-85 1-1, 85-88 1-2, 116-118 1-2, 118-120 2-2, 80-82.5 1: 2-2, 82.5-85 1: 3-1, 126-128 3-2, 72-74 4-1, 124-128 3-2, 72-74 4-1, 124-128 3-2, 72-74 4-1, 124-128 3-2, 72-74 4-1, 124-128 3-2, 101-105 4-4 7-2, 133-135 4-4 9-1, 100-102 4-1 10-1, 91-93 11-1, 135-138 5-2, 101-104 10-1, 91-93 11-1, 135-138 5-2, 15-17 13-1, 56-59 15-2, 101-103 15-1, 101-103 15-2, 101-103 15-2, 109-111 51 18-3, 96-99 18-5, 84-86 19-1, 146-150 19-4, 10-14 20-2, 112-114 21-3, 25-29 21-3, 25-29 21-2, 15-27 21-2, 15-27 21-3, 25-29 21-3, 21-32 21-3, 21-32	$\begin{array}{c} 19\text{-}2, 118\text{-}120\\ 19\text{-}3, 52\text{-}53\\ 20\text{-}1, 143\text{-}144\\ 20\text{-}2, 96\text{-}97\\ 20\text{-}4, 0\text{-}150\\ 21\text{-}2, 32\text{-}34\\ 21\text{-}2, 32\text{-}34\\ 21\text{-}2, 32\text{-}34\\ 21\text{-}2, 46\text{-}47\\ 22\text{-}4, 145\text{-}146\\ 23\text{-}2, 49\text{-}51\\ 23\text{-}3, 130\text{-}131\\ 24\text{-}2, 136\text{-}137\\ 25\text{-}1, 138\text{-}139\\ 25\text{-}2, 72\text{-}74\\ 25\text{-}3, 48\text{-}50\\ 26\text{-}1, 26\text{-}28\\ 26\text{-}1, 130\text{-}132\\ 27\text{-}2, 119\text{-}120\\ 28\text{-}3, 75\text{-}77\\ 28\text{-}3, 85\text{-}87\\ 29\text{-}2, 136\text{-}138\\ 30\text{-}2, 148\text{-}150\\ \end{array}$	818.7 819.5 826.9 828.0 830.0 836.8 837.0 850.5 856.0 858.3 875.9 893.4 894.2 895.5 911.3 912.3 932.7 952.8 952.9 970.9 990.0
21-3, 120-128 64 21-4, 8-11 64 23-1, 104-107 66 23-1, 54-56 66 24-2, 20-23 68 25-1, 45-47 70 25-2, 20-22 70 26-3, 95-97 77	Site 316 1-1, 83-85 1-1, 85-88 1-2, 116-118 1-2, 118-120 2-2, 80-82.5 2-2, 82.5-85 3-1, 126-128 3-2, 72-74 4-1, 124-128 4-1, 128-131 5-1, 110-115 5-2, 101-104 7-2, 133-135 9-1, 100-102 10-1, 91-93 11-1, 135-138 12-2, 15-17 13-1, 56-59 15-1, 101-103 16-1, 137-140 17-1, 77-80 17-2, 104-106 18-2, 109-111 18-3, 96-99 18-5, 84-86 19-1, 83-85 19-1, 146-150 19-4, 10-14 20-2, 112-114 21-1, 92-96 21-3, 25-29 21-3, 126-128 21-4, 8-11 23-1, 104-107 23-1, 54-56 24-2, 20-23 24-3, 63-66 25-1, 45-47 25-2, 20-22 26-3, 95-97 27-2, 104-107 23-1, 54-56 24-2, 20-22 26-3, 95-97 27-2, 104-107 23-1, 54-56 24-2, 20-22 26-3, 95-97 27-2, 104-107 27-1, 104-107 27-2, 20-22 26-3, 95-97 27-2, 104-107 27-2, 104-107 27-2, 105-128 21-4, 8-17 25-2, 20-22 26-3, 95-97 27-2, 104-107 27-1, 104-107 27-2, 105-128 21-4, 105-128 21-4, 8-11 23-1, 104-107 23-1, 54-56 24-2, 20-23 24-3, 63-66 25-1, 45-47 25-2, 20-22 26-3, 95-97 27-2, 104-107 27-1, 104-107 27-2, 105-128 21-3, 105-128 21-4, 8-11 23-1, 104-107 23-1, 54-56 24-2, 20-23 24-3, 63-66 25-1, 45-47 25-2, 20-22 26-3, 95-97 27-2, 104-107 27-2, 105-128 21-3, 105-128 21-4, 8-17 25-2, 20-22 26-3, 95-97 27-3 27-	$\begin{array}{c} 0.8\\ 0.9\\ 2.7\\ 2.7\\ 155.3\\ 155.3\\ 268.3\\ 269.2\\ 391.8\\ 393.3\\ 448.6\\ 450.0\\ 469.3\\ 486.5\\ 495.9\\ 515.4\\ 524.7\\ 525.2\\ 533.6\\ 553.3\\ 562.9\\ 571.8\\ 573.6\\ 583.1\\ 584.4\\ 587.4\\ 609.8\\ 610.5\\ 613.6\\ 630.6\\ 638.4\\ 640.8\\ 641.8\\ 642.1\\ 667.1\\ 668.6\\ 630.6\\ 638.4\\ 640.8\\ 641.8\\ 642.1\\ 667.1\\ 668.6\\ 704.5\\ 705.7\\ 727.0\\ 727$

TABLE 15 -	Continued
Sample (Interval in cm)	Depth Below Sea Floor (m)
30-2, 132-134	830.3
Hole 317A	
2-1, 22-24	554.2
3-1, 103-105	564.5
3-1, 128-130	564.8
3-2, 28-30	565.3
5-1,93-95	576.9 585.0
8-1, 90-92	602.4
10-2, 128-130	623.3
12-4, 5-7	644.1
13-2, 49-51	651.0 670.0
15-4, 102-104	673.5
18-2, 60-62	698.6
20-3, 50-52	727.0
22-2, 84-86	755.9
22-3, 86-88	757.4
22-4, 139-141 24-4, 70-72	759.4
24-4, 107-109	778.1
26-1, 107-109	821.1
26-2, 25-27	821.8
30-1, 88-92	887.4
33-3, 0-4	927.5
Hole 317B	
1-1, 20-22	0.3
1-1, 101-102	1.1
1-2, 102-104	1.1
1-6, 100-102	8.6
1-6, 102-104	8.6
4-2, 43-45	27.4
4-3, 82-84	29.3
8-2, 70-72	65.7
8-2, 73-75 8-4, 60-62	65.7
8-4, 63-65	68.6
12-1, 70-72	102.2
12-3, 40-42	104.9
12-5, 60-62	104.9
12-5, 63-65	108.1
16-1, 136-138	141.2
16-2, 60-62	141.9
16-4, 100-102	145.3
16-4, 103-105 16-6, 60-62	145.3 147.9
16-6, 62-64	147.9
20-2, 53-55 20-2, 98-100	179.5
20-4, 58-60	182.6
20-4, 60-62 20-6, 78-80	182.6
20-6, 81-83	185.8

TABLE	15 -	Continued
-------	------	-----------

Sample (Interval in cm)	Depth Below Sea Floor (m)
24-4, 70-90 25-2, 54-56 25-2, 56-58 25-4, 38-40 25-4, 52-54 25-6, 30-32 25-6, 48-50 29-3, 80-82 29-3, 82-84 29-5, 5-7 29-5, 13-15 34-2, 40-42 34-2, 43-45 34-5, 76-78 34-5, 86-88 38-3, 79-81 38-3, 82-84 38-4, 90-92 38-4, 93-95 42-2, 140-142	220.7 227.1 229.9 230.0 232.8 233.0 266.8 266.8 269.1 312.4 312.4 317.3 317.4 352.3 352.3 353.9 353.9 389.4
Site 318 1-1, 129-132 1-2, 82-85 1-3, 65-70 1-3, 72-78 1-4, 65-72 1-4, 72-76 1-5, 94-103 4-1, 41-43 4-1, 45-47 4-2, 71-73 4-2, 71-73 4-2, 74-76 4-3, 72-74 4-3, 72-74 4-3, 72-74 4-5, 52-54 4-5, 52-57 3-1, 78-80 7-1, 75-77 7-1, 78-80 7-2, 75-77 7-2, 80-82 7-3, 120-122 7-3, 123-125 7-4, 70-72 7-4, 72-74 10-2, 100-102 10-2, 106-108 10-3, 70-72 7-4, 72-75 13-1, 124-127 13-2, 33-35 15-1, 95-98 15-2, 126-129 18-1, 71-73 18-2, 137-139 21-1, 94-97 21-2, 18-20 21-3, 62-64 24-1, 25-29 25-4, 120-122 28-2, 106-110 30-2, 128-132 32-4, 0-3	1.3 2.3 3.7 5.2 5.2 5.2 5.2 7.0 93.7 93.8 95.5 95.6 97.0 97.1 98.5 98.6 99.8 99.9 101.6 122.5 123.9 179.8 179.8 179.8 179.8 181.3 183.2 184.2 266.5 266.6 267.7 266.5 266.6 267.7 350.8 351.3 407.5 409.3 492.7 494.9 578.5 579.2 581.1 615.8 630.7 665.6 703.8 743.5