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ABSTRACT

Multiple regression analysis was used to determine the relative im-
portance of crystal fractionation, partial melting, and seawater
alteration on the concentrations of 28 elements in deep ocean basalt.
The components AI2O3, P2O5, and H2O were used as independent
variables to represent each of these processes, and the computer-
derived equations show a high level of significance for all 28
elements.

The AI2O3, total Fe, and TiCh of oceanic basalt vary greatly in any
given region of the oceanic crust due to small-scale crystal settling.
The oceanic crust is enriched in large-ion-lithophile (LIL) elements
with time by off-ridge volcanism. With the notable exception of Zr
and Hf, seawater alteration probably affects the concentration of
LIL elements, but much less than partial melting. Seawater altera-
tion leaches significant amounts of Si and Ca from oceanic basalt
while enriching it in K, Li, and B.

INTRODUCTION

The study of chemical variation in deep ocean basalts
provides a unique opportunity to evaluate the chemical
characteristics of the upper mantle and the magmatic
processes which generate the oceanic crust at spreading
centers. However, secondary chemical exchange
between oceanic basalt and seawater produces an over-
printing which obscures the primary relationships.
Furthermore, off-ridge volcanism contributes a compo-
nent to the oceanic crust which is unlike that formed at
ridge crests. The purpose of this paper is to establish
criteria which will help in distinguishing chemical
relationships produced by magmatism at ridge crests
from those produced as an overprint by chemical ex-
change with seawater and those contributed by off-ridge
volcanism.

Covariant and multivariate analyses were applied to
all chemical data available on basement rocks cored on
the first 29 DSDP legs. The analyzed DSDP samples in-
clude, in addition to tholeiitic pillow lavas, differen-
tiated andesitic basalts, alkali and transitional-type
basalts, and basalts rich in olivine and pyroxene. Most
DSDP basalts are altered to a phyllosilicate assemblage
dominated by K-rich smectite. A few samples are
metamorphosed to spilite and amphibolite. Sites drilled
on spreading ridges or abyssal plains encountered
tholeiitic lava flows either fresh, or altered to a smectite-
rich assemblage. The unusual rock types and alteration
assemblages were encountered mainly in regions
thought to be typical sites of off-ridge volcanism such as
seamounts, aseismic ridges, and plateaus.

A group of 59 DSDP samples was selected to repre-
sent oceanic crust tholeiitic flows typical of ridge flanks
and abyssal regions. Hereafter, the group will be
referred to as TOPS (Typical Oceanic Profile Samples).

In this work the DSDP data are considered as a whole
including the TOPS group. Because of the diversity of

the non-TOPS DSDP samples, they were not considered
as a group; however, for the most part, such a group
would represent products of off-ridge volcanism.
Because of the difficulty of distinguishing sills from
flows, there is no way of knowing for sure if the TOPS
basalt contains samples produced by off-ridge
volcanism, but an effort has been made to eliminate the
most obvious cases.

The elemental abundance relations in all DSDP base-
ment samples and TOPS group of DSDP samples have
been compared to Mean Ocean Ridge Basalt (MORB).
The chemical data on DSDP volcanic rocks are taken
from the Initial Reports of the Deep Sea Drilling Project
and was compiled by Valuer (1974). The literature
sources for the ridge basalt defining MORB are given in
Appendix A along with specific references on the DSDP
volcanic rocks.

This paper is divided into three sections. The first sec-
tion compares the chemical composition of MORB with
the average chemical composition of all DSDP base-
ment samples and TOPS group of DSDP samples. The
second section presents the results of a study of
covariant element abundance ratios and multiple regres-
sion analysis of all three groups of basalts undertaken to
establish the relative importance of magmatic processes
and seawater alteration processes in determining the
concentrations of various elements in the oceanic crust.
The third section reports on the variation of elemental
concentrations with age of the oceanic crust and depth
of drill penetration into the basement.

COMPARISON OF THE AVERAGE
COMPOSITION OF ALL DSDP

BASEMENT SAMPLES WITH TOPS
BASALT AND MORB

The average chemical compositions of all DSDP base-
ment samples, TOPS basalt, and MORB are given in
Table 1 (major elements) and Table 2 (trace elements).
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The means and standard deviations are quite distinct in MORB. The major and trace elements have been
all three of these groups for a number of elements. The classified in Table 3 (for major elements) and Table 4
chemical variability is highest for all DSDP basement (for trace elements) according to an intergroup corn-
samples. TOPS basalts show higher variability than parison of their means and standard deviations. Figures

TABLE 1
Comparison of the Major Element Chemistry of Mean Ocean Ridge Basalt (MORB)

and Typical Oceanic Profile Samples (TOPS) with all DSDP Basement Samples

SiO2
A 12°3
TiO2

Total Fe
as Fe2Oo
MgO
CaO
Na2O
K2O
H2O
MnO
P2°5
Fe2°3
FeO
Fe2O3/FeO

Mean Ocean Ridge Basalt

Mean

49.92
16.08

1.46
10.29

7.75
11.21
2.79
0.17
0.77
0.17
0.15
1.49
8.04
0.19

(MORB)
Standard
Deviation

0.61
1.41
0.31
1.43

0.77
0.63
0.26
0.06
0.29
0.03
0.05
0.50
1.26
0.08

No. of
Samples

49
49
49
49

49
49
49
49

49
45
42
42
42

42

Typical Oceanic Profile Sample

Mean

49.09
15.48

1.55
10.48

6.72
10.66
2.73
0.49
2.65
0.18
0.18
3.77
5.96
0.92

(TOPS)
Standard
Deviation

1.54
1.39
0.69
2.08

1.45
2.14
0.58
0.68
1.31
0.06
0.11
1.81
2.27
0.90

No. of
Samples

59
59
59
59

59
59
59
59

59
45

50
42
42
42

All DSDP Basement Samples

Mean

47.85
15.33
1.67

10.86

6.57
9.55
2.85
0.87
3.71
0.17
0.27
4.99
5.74
1.04

Standard
Deviation

3.28
1.40
0.83
2.13

1.82
2.33
0.71
0.92
2.19
0.06
0.23
5.53
2.14
0.81

No. of
Samples

157
157
157
157

157
157
157
157

157
98

139
128
128
128

TABLE 2
Comparison of the Minor Element Chemistry of Mean Ocean Ridge Basalts (MORB)

and Typical Oceanic Profile Samples (TOPS) with all DSDP Basement Samples (in ppm)

B
Ba
Cl
Co
Cr
Cu
Eu
Ga
Hf
La
Li
Mo
Nb
Ni
Rb
Pb
S
Se
Sr
Th
U
V
Y
Yb
Zn
Zr

Mean Ocean Ridge Basalt

Mean

NDa

25.40
ND

43.75
291.29

79.80
1.03

23.75
ND

3.02
5.44

ND
ND
123.33

1.94
ND
ND

51.75
121.81
ND

0.28
286.00
38.60

3.75
91.81

105.50

(MORB)
Standard
Deviation

ND
27.02
ND
14.62
98.32
29.30
0.21

11.56
ND

1.01
1.87

ND
ND
39.95

1.68
ND
ND
17.69
26.06
ND

0.08
74.52
13.46

1.55
33.13
38.71

No. of
Samples

ND
20
ND
16
16
16

5
16
ND

6
9

ND
ND
21

9
ND
ND
12
21
ND

6
16
10
12
16
16

Typical Oceanic Profile Sample

Mean

ND
63.00
87.50
46.44

260.09
56.19

1.03
25.04

2.63
ND

9.81
0.41
2.84

128.24
5.44
1.08

128.31
40.60

445.64
0.21
0.35

316.42
38.89

ND
101.38
113.49

(TOPS)
Standard
Deviation

ND
118.06
123.26

13.10
105.98
32.89
0.49

10.47
1.61

ND
3.54
0.22
5.83

45.68
12.81
0.60

230.27
15.09

116.70
0.21
0.32

72.00
17.02

ND
36.34
56.95

No. of
Samples

ND
35

6
9

32
27

8
24

6
ND
16

7
13
25
11

7
16

5
33

5
9

24
30
ND
16
36

All DSDP Basement Sample

Mean

17.52
126.11
377.30
49.72

223.88
70.78

1.25
26.90

2.44
4.93

15.87
1.15

14.57
107.32

12.83
1.16

124.62
46.80

264.47
1.42
0.42

296.43
38.53

3.01
97.92

140.91

Standard
Deviation

43.26
203.32
280.29

13.87
130.67
50.16

1.13
31.87

1.32
4.53

14.10
1.44

21.48
64.48
22.27
0.68

180.86
17.82

234.41
1.85
0.39

132.74
28.84

1.50
31.33
86.45

No. of
Samples

21
81
23
40
77
65
14
58

9
5

24
12
39
63
39
12
34
15
89
14
25
61
82
15
28
93

aND = No data available.
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TABLE 3
Classification of Major Elements According to a Comparison

of Their Means and Standard Deviations in all DSDP Basement
Samples Relative to MORB

Same Mean and
Standard Deviation

Higher Mean, Larger
Standard Deviation

Smaller Mean, Larger
Standard Deviation

A1 2 O 3

Total Fe

as Fe2C«3

MnO

K 2 O
H 2 O

TiO2

Na 2 O

SiO 2

MgO

CaO

1 and 2 give means and standard deviations of concen-
trations in all DSDP basement samples compared to
TOPS basalts.

The elements Al, Fe, and Mn show no significant
variation among all DSDP basement samples, TOPS
basalt, and MORB. A slight decrease in Al and cor-
responding increase in Fe, Mn, in all DSDP basement
samples and TOPS basalts may be indicated. All DSDP
basement samples and TOPS basalts are depleted in Ni
and Cr while enriched in Co, V, and Ga relative to
MORB, suggesting old oceanic crust is more frac-
tionated with respect to olivine than the crust at oceanic
ridges.

All DSDP basement samples are enriched in K2O,
Na2θ, P2O5, and Tiθ2 as well as the LIL elements
relative to MORB. Such enrichment is expected because
the DSDP samples include many rocks produced by off-
ridge volcanism supposedly involving lower degrees of
partial melting than that normally operative at the ridge
crest.

The TOPS basalts show LIL-element enrichment
relative to MORB although to a lesser degree than all
DSDP basement samples. The TOPS basalts contain
only tholeiitic flows from ridge flanks or abyssal
regions; therefore, the enrichment of LIL elements in
TOPS basalts by off-ridge volcanism is not a foregone
conclusion. In all, four explanations are possible:

1) TOPS basalts contain sills intruded off-ridge.
2) TOPS basalts have been LIL enriched by seawater

alteration.
3) TOPS basalts are enriched in LIL elements relative

to MORB because the ridge sources of magma has
become depleted in LIL elements as a function of time.

4) TOPS basalts have been sampled in regions of LIL
enrichment due to changes of ridge spreading rate, in-
fluence of mantle plume activity, or underlying mantle
inhomogeneity.

An effort to evaluate these four possibilities will be
made in the sections that follow. First of all, the
covarieant elemental abundance relations are examined
to determine which elements behave as coherent groups
typical of magmatic processes at the ridge crest (as ex-
hibited in MORB), which behave as coherent groups un-
iquely in off-ridge sites, and which behave as coherent
groups correlated to alteration parameters such as H2O,
Fe2θ3/FeO, sonic velocity, and density.

ELEMENT ABUNDANCE RELATIONS

The correlation matrices for covariant relations
between site characteristics, physical properties, major
elements, and minor elements are given separately in
Appendix B for each of the three groups of samples,
namely, all DSDP basement samples, TOPS basalt, and
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Figure 1. Means and standard deviations of major element concentrations in all DSDP basement samples (open circle) com-
pared to TOPS basalt (closed circle) and MORB (triangle).
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TABLE 4
Classification of Trace Elements According to Comparison

of Their Means and Standard Deviations in all DSDP Basement
Samples Relative to MORB

Similar Mean
Larger Standard

Deviation

Y
Cu
Zn

Slightly Lower Mean
Larger Standard

Deviation

Ni
Cr

Slightly Higher Mean
Larger Standard

Deviation

Co
V
Ga
Zr

Higher Mean
Larger Standard

Deviation

Th
U
Mo
Nb
Rb
Ba
Li
Cl
Sr

MORB. The most significant covariant relations are dis-
cussed in this section. The major element covariant
relations for all DSDP basement samples as represented
diagrammatically in Figure 3 provide a good starting
point for the discussion. The covariant relations show-
ing the highest degree of correlation can be separated
into three groups:

1) Those correlating with the strong negative AI2O3-
total Fe covariance shown in Figure 4. The group of
covariant relations is thought to be produced by crystal
fractionation of plagioclase relative to pyroxene. The
covariance of Tiθ2 with total Fe and AI2O3 is shown in
Figure 5.

2) Those correlating with a two to seven time enrich-
ment of LIL elements in all DSDP basement samples
relative to MORB. This group is believed to have
produced by small degrees of partial melting of late
magmatic phases. Covariant relations involving P2O5
are typical of this group. The plot of P2O5 versus Tiθ2 is
shown in Figure 6. All DSDP basement samples con-
taining greater than 0.44% P 2O 3 have been clearly as-
sociated with sites of off-ridge volcanism in the DSDP
site summaries. Na2θ, MgO, and K2O also correlate
with the group as do the LIL elements Sr, Zr, Ba, and
Nb. Some of the best covariant relations in this group
are shown in Figures 7, 8, and 9. The lack of correlation
between P2O5 and H2O, and P2O5 and AI2O3 as shown in
Figure 10 suggests that seawater alteration and crystal
settling of Plagioclase relative to pyroxene have not
played significant roles in establishing the covariant
relationships of this group.

3) Those correlating with parameters of seawater
alteration. CaO, Siθ2, and K2O show correlation with
H2O and Fe2θ3/FeO and some of the major covariant
relations in this group are shown in Figures 11 and 12.

The degree to which elemental species correlate with
each of these groups cannot be specified with a high
degree of certainty using only covariant analysis since
any given element may relate to more than one, or
perhaps all three groups. For this reason a multiple
regression analysis was applied to all DSDP basement
samples along with the samples defining MORB.

On the basis of their lack of covariance to one an-
other (see Figure 10), AI2O3, P2O5, and H2O were
chosen as independent variables to represent, respective-
ly, fractionation of Plagioclase relative to pyroxene, par-

tial melting of late magmatic phases, and seawater
alteration. The multiple regression analysis was used to
classify 28 elements according to which independent
variable they each show the primary correlation. The
results are given in Table 5 for those elements cor-
relating primarily with AI2O3, in Table 6 for those
elements correlating primarily with P2O5, and in Table 7
for those elements correlating primarily with H2O. The
equations represented in these tables show significant
degrees of correlation for all 28 elements and on this
basis it seems possible to ascertain much of the history
of an oceanic basalt by simply measuring AI2O3, P2O5,
and H2O.

The results of the multiple regression analysis are
summarized in Table 8, where the elements are classified
according to primary, secondary, or lack of correlation
with AI2O3, P2O5, and H2O.

The elements which show primary correlation with
AI2O3 are Fe, Ti, Mn, Co, Se, Pb, Ga, Mo, and Zn. The
elements in this group which show no correlation with
H2O are Al, Fe, Ti, Se. At any given sample location, in-
cluding mid-ocean ridges, the concentration of these
elements may vary considerably because of localized
crystal fractionation in small magma bodies.

The elements which correlate primarily with P2O5 are
the LIL elements Zr, Hf, Ba, Cl, Sr, Eu, Th, U, Rb, and
Nb. The major elements Na, K, and Ti correlate
positively with P2O5, while Mg, Cr, and Ni show
negative correlation. The elements in this group showing
no correlation with H2O are Ti, Zr, and Hf. All other
elements in this group may be affected by seawater
alteration, but the magnitude of the alteration effect is
almost negligible compared to that produced by partial
melting.

The elements that correlate primarily with H2O are
Ca, Si, K, Li, Cl, and B. Small secondary correlations
are shown by Na, Mn, Ba, Rb, Pb, Sr, Mg, Yb, Eu, Zn,
Th, U, Ga, Nb, Cr, Cu, and Nb. The elements showing
no correlation with H2O and therefore the best in-
dications of magmatic processes in the oceanic crust are
Zr, Ti, Co, Ni, V, Hf, Se, Al, and Fe.

The general conclusion of the study of elemental
abundance relations in this section is that seawater
alteration has not produced the LIL enrichment of
TOPS basalt. The next section examines age-dependent
elemental relations in the oceanic crust.
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= = STRONG POSITIVE CORRELATION

W E A K POSITIVE CORRELATION
- = = = = STRONG NEGATIVE CORRELATION

WEAK NEGATIVE CORRELATION

Figure 3. Diagrammatic representation of covariant major element relations in all DSDP basement samples. The numbers in
circles are the correlation coefficient, R.

DISCUSSION
Although the average AI2O3 and total Fe concents of

all DSDP basement samples are similar to MORB,
basalts from about 35 DSDP sites have higher total Fe
and Tiθ2 contents than MORB (see Figures 4 and 5).
Only three DSDP basalts have lower total Fe and Tiθ2
than MORB. The majority of the high Fe and Ti (FeTi)
DSDP basalts are rich in pyroxene, olivine, or chlorite
and were sampled from sites of suspected off-ridge
volcanism or mantle plume activity such as the
Ninetyeast Ridge.

A significant number of TOPS basalts also show FeTi
characteristics. FeTi TOPS basalts were encountered at
DSDP Sites 61, 159, 160, 161, 166, 169, 172, 256, 261,
319, 320, and 321 which are removed from areas of
known off-ridge volcanism or mantle plume activity. In
general, the FeTi TOPS sites fall between Latitudes 10°S
and 32°N in the Pacific Ocean with two sites (256 and
261) in the same latitude belt in the eastern Indian
Ocean.

A possible explanation of FeTi TOPS basalts is that
they are sills introduced near the basement-sediment
contact. If this interpretation is correct then it appears
that the Pacific basin may have been subjected to a
higher degree of off-ridge sill intrusion than other ocean
basins.

CONCLUSION

The average chemical composition of all DSDP base-
ment sites shows an enrichment in K2O, Na2θ, P2O5,

and Tiθ2 and a depletion of Siθ2, MgO, and CaO
relative to MORB. The LIL elements Th, U, Nb, Rb,
Ba, and Sr are also enriched. The average composition
of a group of selected DSDP samples (TOPS) containing
only tholeiitic lava flows, either fresh or altered to
smectite-rich clay, and samples from only the flanks of
spreading ridges or abyssal regions shows a similar but
less-pronounced difference in chemical composition
relative to MORB.

A multiple regression analysis of the dependency of 28
elements on the AI2O3, P2O5, and H2O contents of
oceanic basalts shows a high degree of correlation for all
elements studied and enables an evaluation of the
relative importance of crystal fractionation of
Plagioclase relative to pyroxene, partial melting of late
magmatic phases, and seawater alteration in deter-
mining the abundance of these element in oceanic
basalt.

Crystal fractionation is marked by a coherent
negative correlation between Al and FeTi. Elements that
substitute for Al or Fe such as Mn, Zn, Se, Co, and Ga
follow this trend.

Small degrees of partial melting of late magmatic
stages lead to enrichment of the LIL elements. The
elements Ba, Zr, Nb, U, Th, Hf, and P may be enriched
by off-ridge volcanism two to seven times the concen-
trations in MORB. Crystal settling of Plagioclase in
magma bodies and seawater alteration affect the LIL
elements to a much smaller degree than partial melting
and therefore basalts with concentrations of LIL (two to

306



CHEMICAL VARIANCE IN DEEP OCEAN BASALTS

19

18

17

r. 16

CO

O
CSI

< 1 5

14

13

12

AI2O3 TOTAL Fe as Fe2O3

PYX. PYX.

CHL. PYX.
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12

Fe as
14 16 18

FeoO2^3
Figure 4. Plot of Al2Oj versus total Fe as Fe2Oß thought to have been produced by fractionation of plagioclaise relative to

pyroxene. The means and standard deviations for MORB are indicated by the cross. The dashed line outlines the MORB
field. The shaded areas enclose TOPS samples. The dots represent DSDP basement samples not classified as TOPS basalt.
PYX = pyroxene-rich sample, 01 = olivine-rich samples, CHL = chlorite-rich samples, SMT=alkali basalts from seamounts.

seven times that of MORB) can be safely specified as
products of off-ridge volcanism. The origin of basalts
with less than two times enrichment of LIL eleπ snts can
only be judged with knowledge of AI2O3, and H2O con-
tents. Seawater alteration strongly controls Si, Ca, Li,
K, Cl, and B contents of oceanic basalts.

A multiple regression analysis of the dependency of
elements in TOPS basalt and MORB on the age of the
oceanic crust and depth of drill penetration suggests that
the abyssal portions of the oceanic crust are
systematically enriched in Na2θ, P2O5, and Tiθ2 by con-
tinuous intrusion of basalt at the basement-sediment in-
terface. Abyssal high titanium (FeTi) basalts appear to
be most common in the equatorial Pacific and eastern
Indian Ocean suggesting that these regions may be more
subject to interplate volcanism than other oceanic
regions.
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TABLE 5
Results of Multiple Regression Analysis of the Dependency of Element Concentration in Oceanic Basalt

(All DSDP Basement Samples Plus MORB) on A12O3, P2O5, and H 2O as Independent Variables

Element

Total Fe
as Fβ2θ3

MnO
Co
Ga
Pb
Mo
Se
Zn

No. of
Observations

181

135
56
73
18
12
25
44

Correlation
Coefficient

for all
Variables

0.72

0.38
0.58
0.37
0.50
0.79
0.58
0.50

F Ratioa

for All
Variables

64.28

6.82
8.88
3.22
1.59
4.21
3.41
4.56

Constant

26.51

0.34
105.00
57.00

-25.00
27.00

101.00
173.00

% A12O3

Coefficient

-1.02

- .01
-3.56
-1.95

1.89
-1.84
-3.29
-6.37

rTes t b

-13.72

- 3.14
- 3.72
- 2.70

2.01
- 3.48
- 2.86
- 2.43

% P 2 O 5

Coefficient

0.590

0.046
-20.38

0.197
-2.55

1.71
-4.94

145.77

r T e s t b

1.15

1.83
-2.20
0.03

-0.75
0.59

-0.26
2.26

%H

Coefficient

-0.04
-0.005

1.38
-1.11
-0.82

0.63
- .72
0.25

2°
TTestb

-0.89
-2.61

1.91
-1.92
-1.32

1.64
-0.91
0.01

Note: Elements correlating primarily with AI2O3, major oxides in weight percent trace elements in ppm.

aF ratio shows significance at the 95% confidence level above 2.68 for more than 120 observations and above 2.93 for more than 30 observations.
b r test shows significance at the 95% confidence level above 1.98 for more than 120 observations and above 2.04 for more than 30 observations.

TABLE 6
Results of Multiple Regression Analysis of the Dependency of Element Concentrations in Oceanic Basalt

(All DSDP Basement Samples plus MORB) on A12O3, P2O5, and H2O as Independent Variable

Element

TiO2

MgO
Na2O
Ba
Sr
Zr
Cr
Cu
Ni
V
Y
Cl
Eu
Hf

Nb
Rb
Th

U

No. of
Observations

181
181
181

96
103
107

76
77
77

77
91
26
13

9
41

47
14

25

Correlation
Coefficient

for All
Variables

0.77
0.62

0.66
0.72
0.92
0.73
0.53
0.42
0.44
0.65
0.45
0.67
0.95
0.88

0.96
0.63
0.94
0.78

FRatio a

for All
Variables

88.88
35.25
46.84
40.58

206.83
39.13
12.64

4.99
5.43

17.45
6.86

5.59
89.93

5.76
195.11

8.56
32.50
11.48

Constant

4.49
11.85

1.91
-320.00
-166.00

109.00
-187.00

103.00
131.00
840.00
40.50

21.30
1.53
5.17

-17.48

-69.20

-5.29
2.91

% P 2 O 5

Coefficient

2.39
-5.02

2.13
810.00
957.00
251.00

-367.00
-110.00
-170.00
-354.00

23.22

559.00
4.86

11.78

75.22

50.81
4.71
1.12

rTes t b

13.02
-9.87
11.85
10.55

24.83
10.61
-4.72
-3.35
-3.97
-5.22

3.28
3.56

12.34
3.51

23.23
4.88
9.04

4.61

% A12O3

Coefficient

-0.22
-0.25
0.03

13.99
8.68

-2.80
30.33
-1.32
0.58

-31.28
-0.21

-12.24

-0.10
-0.34

0.37

4.27

0.31
-0.01

TTestb

-8.21
-3.43

1.31
1.65

1.61
-0.83

3.93
-0.41
0.14

-4.67
-0.21

-0.31
-0.72
-0.63

0.48

2.09
1.87

-0.24

%H

Coefficient

-0.02
-0.03
-0.03
12.87
10.43

1.62
5.73
4.51

2.45
4.65

-2.10
39.86
-0.10
0.33
1.67

0.88
0.09

-0.03

2°
T Testb

-0.92

-0.63
-2.13

2.03
2.67
0.65
0.93
1.76

0.74
0.88

-2.65
1.83

0.90
0.63

3.81
0.69
0.55

-0.94

Note: Elements correlating primarily with P2O5) major oxides in weight percent trace elements in ppm.

aF ratio shows significance at the 95% confidence level above 2.68 for more than 120 observations and above 2.93 for more than 30
observations.

b r test shows significance at the 95% confidence level above 1.98 for more than 120 observations and above 2.04 for more than 30 observations.
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TABLE 7
Results of Multiple Regression Analysis of the Dependency of Element Concentrations in Oceanic Basalt

(All DSDP Basement Samples Plus MORB) on A12O3, P2O5, and H20 as Independent Variables

Element

SiO2

CaO
K2O
B
Li

No of
Observations

181
181
181

24
33

Correlation
Coefficient

for All
Variables

0.67
0.70

0.69
0.57

0.59

F Ratio
for All

Variables

46.02

55.97
52.90

2.58
4.58

Constant

44.64

11.11
-1.19
-4.37

6.36

%H9O

Coefficient

-0.85

-0.49
0.17
9.08

3.46

rTestb

-11.16
-4.17
8.20
2.22

2.79

% Al

Coefficient

0.41
0.08

0.06
-0.27
-0.41

9Oo

T Testb

3.24

0.99
1.74

-0.05

-0.36

%P2O

Coefficient

-0.09
-4.17

1.97
-20.15

27.48

rTestb

-0.10
-7.11

8.20
-0.49

1.04

Note: Elements correlating primarily with H2O, major element oxides in weight percent, trace elements in ppm.

aF ratio shows significance at the 95% confidence level above 2.68 for more than 120 observations and above 2.93 for more than 30
observations. ^

"T test shows significance at the 95% confidence level above 1.98 for more than 120 observations and above 2.04 for more than 30 observations.

TABLE 8
Classification of Elements in Oceanic Basalt According to Degree of Correlation

with Al-FeTi Group, LIL Group, and Seawater Alteration Group

Al-FeTi Group LIL Group Alteration Group

Primary correlation Al, Fe, Ti, Co, Se, P, Ti, Na, Zr, Sr, K, Si, Ca, Li, Cl,
Pb, Ga, Mo, Mn Ba, Cl, Hf, Eu, Nb, H2O, B

Th, U, Rb, Mg, Cr,
Ni,V

Secondary correlation Mg, Si, Zn, Ni, Rb, Si, Co, Zn, Ca, Y, Na, Mn, Ba, Rb, Pb,
Th, Y, B, Yb, V, Cr Cu, Yb, K Sr, Mg, Yb, Eu, Zn,

Th, U, Ga, Nb, Cr, Cu, Mo

No correlation Eu, Sr, Ba, K, Na, Mn, Ga, Li, Rb, Zr, Ti, Co, Ni, V,
Cu, Cl, Hf, Li, Nb, Mo, Se, Al, Fe, B Hf, Se, Al, Fe
U, H2O

TABLE 9
Results of Multiple Regression Analysis of the Dependence of Elemental Abundances in Oceanic Basalt

(All DSDP Basement Samples Plus MORB) on the Age of the Oceanic Crust
(as Determined Paleontologically in the Oldest Overlying Sediment)

and Depth of Drill Penetration Into Basement

Element

CaO
K2O
Na2O
SiO2

A12O3

Y
Pb

No of
Observations

193
193
193
193
193

88
18

Correlation
Coefficient

for All
Variables

0.38
0.37

0.36
0.25
0.19
0.28

0.50

F Ratioa

for All
Variables

13.21

12.49
11.40
6.00
3.28
3.15
2.60

Age(I08

Coefficient

-1.82

0.71
0.33

-1.80
-0.52
-8.51
-2.20

yr)

rTestb

-5.01
4.93
3.07

-3.44

-2.06
-2.08

-1.86

Depth (10 m)

Coefficient

0.43
-0.15

-0.20
0.35

-0.06
0.21
0.03

TTestb

2.98
-2.68

-4.56
1.70

-0.60
1.82
4.11

Note: Major oxides in weight percent, trace elements in ppm.
aF ratio shows significance at the 95% confidence level above 2.68 for more than 120 observations and
above 2.93 for more than 30 observations.

T test shows significance at the 95% confidence level above 1.98 for more than 120 observations and
above 2.04 for more than 30 observations.

330



CHEMICAL VARIANCE IN DEEP OCEAN BASALTS

TABLE 10
Results of Multiple Regression Analysis of the Dependence of Element Abundance in TOPS Basalt

and MORB on the Age of the Oceanic Crust (as Determined Paleontologically in the Oldest Overlying
Sediment) and Depth of Drill Penetration Into Basement

Element

Na2O
K2O

SiO2

TiO2

MgO
MnO
CaO
P2°5
Cu
Nb
Li
V

Hf
Rb

Nn of
Observations

102
102

102
102
102

85
102

87
42

16
25
39

6
20

Correlation
Coefficient

fnr AllXVJl r\.LL

Variables

0.55
0.53
0.38
0.37
0.36
0.36
0.31
0.31
0.58
0.73
0.61
0.42
0.84
0.52

F Ratioa

fnr All
Variables

19.06
18.15
7.58
7.48
7.04

6.40
5.38
4.23
9.67
6.96
6.26
3.82
3.50
3.09

Age (I08

Coefficient

0.25
0.54

-1.42
0.35

-1.06
0.04

-1.21
0.04

-4.79
3.93
5.27

92.00
0.46
3.46

yr)

T Testb

2.53
6.02

-3.87
2.62

-3.36
3.35

-3.11
1.69

-3.25
3.69
3.08
2.70
1.23
2.23

Depth (10 m)

Coefficient

-0.20
-0.13
0.35

-0.18
0.38

-0.01
0.37

-0.02
0.27

-0.11
-2.81

-12.26
-1.52
-0.50

T Testb

-6.00
-4.02

2.80
-3.86
3.42

-1.15

2.77
-2.90
0.08

-2.45
-0.73

1.48
-2.32
-0.26

Note: Major oxides in weight percent, trace elements in ppm.
a F ratio shows significance at the 95% confidence level above 2.68 for more than 120 observations and
above 2.93 for more than 30 observations.

"T test shows significance at the 95% confidence level above 1.98 for more than 120 observations and
above 2.04 for more than 30 observations.

APPENDIX A: LITERATURE SOURCES FOR CHEMICAL
DATA ON OCEANIC BASALT USED IN THIS STUDY

1. DSDP Samples:

Sabine (1972); Wright et al. (1972); Honnorez and Fox (1973);
Weibel and Hsü (1973); Donnelly et al. (1973); Bass et al. (1973); Yeats
et al. (1973); MacLeod and Pratt (1973); Steward et al. (1973); Heki-
nian (1973); Thompson et al. (1973); Coleman (1974); Erlank et al.
(1974); Kempe (1974); Ovenshine et al. (1975); Robinson and Whit-
ford (1974).

2. Ridge Basalts:

Melson et al. (1968) Samples: 2-1 and 2-2.
Aumento (1968) Samples: 1-1, 1-3, 56-2, and 56-3.
Engel et al. (1965) Samples: AD-2, AD-3, AD5-5, AD5-1, PVD-1,

PVD-3, PVD-4C.
Hart et al. (1974) Samples: AD-1 (core), AD3-3 (glass), AD5-18

(margin).
Kay et al. (1970) Samples:AD150-7-4C, AD150-2-20, 13E, KD11,

4Z.

Miyashiro et al (1969) Samples: A150-AM9, A150-AM1, A150-
AM2, A150-AM5, A150-AM4, A15O-AM15, A150-AM7, A150-
AM16, V251-T9, V251-T87, V251-T3, V251-T11, V251-T1C, V251-
T97, V251-T96, V251-T103, V251-T91, V251-T94, V251-T99, V251-
T102, V2510T89.

Hekinian (1971) Samples: RC8-91, RC8-91A, RC8913, RC10-243.
Scheidegger (1972) Samples: W4-15, W8-2.

APPENDIX B

Correlation Matrices of Elemental Abundances in all
DSDP Samples, TOPS Group, and Ridge Basalt

= Strong negative correlation.
+ + = Strong positive correlation, R greater than 0.5 with 99% con-

fidence.
- = Weak negative correlation.
+ = Weak positive correlation, R greater than 0.3 with 95% con-

fidence.
0 = No correlation.
ND = No data.
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TABLE Bl
All DSDP Data Correlation Matrix:

Major Elements, Physical Properties and Site Characteristics

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Water depth
Sediment thickness
Age
Depth
Sonic velocity
Density
SiO2

Al 2 θ3
TiO 2

Total iron as F e 2 θ 3
MgO
CaO
Na2O
K 2 O
H 2 O
MnO

P 2 θ 5

F e 2 θ 3
FeO
Fe2θ3/FeO

1

0
+
0
0
0
0
0
0
0
0
0
0
0
0
+
0
0
0
0

2

0

0
0
0
0
0
0
0
0
0
-
0
0
-
0
0
0
0
0

3

+

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

4

0
0
0

+
+
0
0
0
0
0
0
0
0
0
0
0
0
0
0

5

0
0
0
+

0
0
0
_
0
0

++
-
-

0
0
0

++
—

6

0
0
0
+

0

0
0

—
0
+

++
++
+

0
-
0
0
-

7

0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0

8

0
0
0
0
0
0
0

_
—
0
0
0
0
0
0
0
0

—
0

9

0
0
0
0
-

—
0
-

+
0
0
+
0
0
+

++
0
0
0

10

0
0
0
0
0
0
0

—
+

_
0
0
0
0
+
0
0

++
0

11

0
0
0
0
0
+
0
0
0
_

0
-
-
0
0

—
0
0
0

12

0
-
0
0

++
++
0
0
0
0
0

-
—
—
0
-
0
0
-

13

0
0
0
0
-

++
0
0
+

0
-
-

0
0
0

++
0
0
0

14

0
0
0
0
-
+
0
0
0
0
-

—
0

+
0
+
0
-
+

15

0
-
0
0

—
-

—
0
0
0
0

—
0
+

0
0
0
-

+

16

+

0
0
0
0
0
0
0
+
+
0
0
0
0
0

0
0
0
0

17

0
0
0
0
0
-
0
0

++
0

—
-

++
+
0
0

0
0
0

18

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

19

0
0
0
0

++
0
0

—
0

++
0
0
0
-
-
0
0
0

+ +

20

0
0
0
0

—
-
0
0
0
0
0
-
0
+
+
0
0
0

++

Note: — = strong negative correlation; ++ = strong positive correlation, R greater than 0.5 width
99% confidence; - = weak negative correlation; + with positive correlation, greater than 0.3
with 95% confidence; 0 = no correlation; ND = no data.

TABLE B2
All DSDP Data Correlation Matrix Major Properties Versus Trace Elements

Water depth
Sediment thickness
Age
Basement depth
Sonic velocity
Density
SiO2

A12O3

TiO2

Total iron as F e 2 θ 3
MgO

Na 2O
K 2 O
H 2 O
MnO

P2O5
F e 2 θ 3
FeO
Fe 2θ3/FeO

Ba

_

0
0
0
0
_
0
0
0
0-–

++

++
0
0
+
0
0
0

Sr

0
0
0
0
-
_
0
0

++
0-–

++

++
0
0

++
0
0
0

Zr

_

0
-
0
0
_
0
0
+
0
-

+

++
0
0

+4

0
0
0

Cr

+

0
0
0
0
+
0
+-–-

++

0
0
0
-
0

__
0

Co Cu Ca

0
0
0
0-–_--
0

++
+
A

u

+
+
0
-

0
0
0

0
0
0
0
-
0
-
0
0
0
0
A

u
0+
+
0
-
0
0
0

0
0
0
0
+
+
0
0
0
0
0
fi
u

0
0
0
0
0
0
0
0

Ni

0
0
0
0
0
0
-
0
0
0

++
-J..J-

0
0
0
-
+
0
0

V

0
0
0
0
+

++
-
-

++
++
+
A

u

0
0
0-–
0
+
0

Y

0
0
-
0

++
+
0
0
0
0
0

πu
0
0
0
0
0
0
0
0

B

0
0
0
0

ND
ND
-
0
0
+
0
A

u

++
-HI-

N D

0
+
0
0

Cl

0
0
-
0-–_
0
0

++
0
-

0
0
0
0

++
+
_

+

EuHf

+
0
0
-
-

-_
0
+
+
0-–

+~+

0
0
0

++

0
0
0
0-–

ND
0
0

++
+
0

++

+
+
+

++

Li

_

+
-
-
0
--–
0
0
0
0

π
0
+
+
0
+

PbMoNbRbSc

0
_
-
0-–-
0
+
+
0
-

++

0
0
0
+

0
0
0
-
+
+
0-–
0
+
-
fi

0
0
0
0
0

NDND++NDND
NDND _ NDND
NDND++NDND

0
0
0
0
--–-–
0

++

0
-

++

0
0
0

++
0
0
0

0
0
0
0
0
-
0
0
+
0-–

++

0
0
0

++
0
-

+

0
0
-

ND
ND
0
-
+
0
0

π
0
0
0
0
0
0
0
0

Th

0
0
-
-
0
-
-
0
+
0
-

+

+
+
0

++
+
-
+

u

0
0
0
0
-

Yb

0
+

0
-

ND
NDND
+
+
+
--–

++

-
-
0

++
0-–++

-
0
+
0
0

0
++
++
++
0
0
0
+

Zn

0
0
0
0
0
+
0
0
+

0
-

π
0
0
0
0
+

0
0
0

s

0
0
0
0-–
0
0
0
+
+
0

0
0
0
0
0
0
+
0
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TABLE B3
All DSDP Data Correlation Matrix Trace Elements

Ba
Sr
Zr
Cr
Co
Cu
Ga
Ni
V
Y
B
Cl
Eu
Hf
Li
Pb
Mo
Nb
Rb
Se
Th
U
Yb
Zn
S

Ba

++
+

-
-

-

0
-

—
0
0

++
++
+

+

++

0
-H-

++
0

++
+
0
0
0

Sr

++

++

0
0
0
0
0
-
0
0

++
++
ND
0

ND
ND
++
+

0
++
++
0
0
0

Zr

+
++

0
-
0

++
0
0

++
0
0
+

++

n
+
0

++
+
0

++
++
0
0
0

Cr

_
0
0

0
0
0

++
0
0
0

ND
ND
ND
0

ND
ND
0
0

—
ND
ND
0
0

ND

Co

_
0
-
0

0
0
+
+

-
+

ND
ND
ND
ND
ND
ND

+

0
0

ND
-
0
+

ND

Cu

_
0
0
0
+

0
0
+
0
0

ND
ND
ND
0

ND
ND
+
0
0

ND
-
0
0

ND

Ga

0
0

-H-

0
0
0

0
0
+
0

ND
ND
ND
+

ND
ND
-H-

0
+

ND
+

++

0
ND

Ni

_

0
0

++
+

0
0

0
0
0

ND
ND
ND
+

ND
0
0

0
0

ND
_
0
0

ND

V

_
0
0
+

+

0
0

0
+

ND
ND
ND
_

ND
0
0
0
+

ND
_
+
0

ND

Y

0
0

++

0
-
0
+

0
0

-
0

ND
ND
0

ND
ND

0
0
0
+

+

+

0

0

B

0
0
0
0
+
0
0
0
+
-

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Cl

++
++

0
ND
ND
ND
ND
ND
ND
0

ND

ND
ND
ND
ND
ND

+
+

ND
+

ND
ND
ND
0

Eu

++
++
+

ND
ND
ND
ND
ND
ND
ND
ND
ND

+

ND
+

+

ND
ND
ND

+

+

0
ND
0

Hf

+

ND
++

ND
ND
ND
ND
ND
ND
ND
ND
ND
++

ND
+

0
+

ND
ND

+

ND
ND
ND

+

Li

+

0
0
(1

ND
0
+
+
_

0
ND
ND
ND
ND

ND
ND
ND

+

ND
ND
ND
ND
0

ND

Pb

++

ND
+

ND
ND
ND
ND
ND
ND
ND
ND
ND

+

+

ND

0
+

ND
ND

+

+

ND
ND
0

Mo

0
ND
0

ND
ND
ND
ND
0
0

ND
ND
ND

+

0
ND

0

0

ND
ND
0
+

ND
ND
0

Nb

++
++
++

0
+

+

++

0
0
0

ND
+

ND
+

ND
+

0

-H-

ND

+

0
+

0

Rb

++
+
+

0
0
0
0
0
0
0

ND
+

ND
ND

+

ND
ND
++

ND
+

ND
ND
0
0

Se

0
0
0

—
0
0
+

0
+
0

ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND

+

ND
ND

Th

++
++
++

ND
ND
ND
ND
ND
ND

+
ND

+

+
+

ND
+

0
++

+
ND

+

ND
ND
0

U

+
++
++

ND
-
_
+
_
_
+
0

ND
+

ND
ND

+

+
+

ND
ND
+

ND
ND
0

Yb

0
0
0
0
0
0

++
0
+
+

ND
ND
0

ND
ND
ND
ND
0

ND
+

ND
ND

ND
ND

Zn

0
0
0
0
+
0
0
0
0
0

ND
ND
ND
ND
0

ND
ND
+
0

ND
ND
ND
ND

ND

S

0
0
0

ND
ND
ND
ND
ND
ND

0
ND

0
0
+

ND
0
0
0
0

ND
0
0

ND
ND

TABLE B4
Typical Ocean Profile Samples

Correlation Matrix Major Elements, Physical Properties, Site Characteristics

1
2
3
4
5
6
7
8
9

10
11
12
13
14
i <;
± w*

16
17
18
19
20

Water depth
Sediment thickness
Age
Basement depth
Sonic velocity
Density
Siθ2
AI2O3
Tiθ2
Total iron as Fe2θ3
MgO
CaO
Na2O
K2O
H2O
MnO
P2O5
Fe 2 θ3
FeO
Fβ2θ3/FeO

1

0
++
0
-
-
0
0
0
0
0
0
0
+

+
0
0
-
0

2

0

0
+
+
0
0
0
0
0
0
0
0
0

0
0
+
-
+

3

++
0

+
0
0
0
0
0
0
0
0
0
0
πu
+0
0
0
0

4

0
+
+

+

++
+
0
-
0
+

0
_
-
fi

0
-

0
-

5

_
*
0
+

++
0
0

—
0
0

++
_

—

0
—

++

—

6

_
0
0

++
++

+
+

—

0
+

++
—
—

0
—

0
-

7

0
0
0
+

0
+

0
0
0
0
0
0
0

0
0

+
-

8

0
0
0
0
0
+
0

-
—
0
0
0
0
fi
u
00
0

—
0

9

0
0
0
-

—
—
0
-

++
-

—
++
+
fi
u
0++

0
0
0

10

0
0
0
0
0
0
0

—
++

0
0
0
0

0
+
0

++
0

11

0
0
0
+
0
+

0
0
-
0

0
_.
_
fi
u
0-

—

0
—

12

0
0
0
0

++
++
0
0

—
0
0

_
—

0
—
0
0

—

13

0
0
0
-
-

—
0
0

++
0
-
-

+
fi
u
0++
+

0
0

14

+

0
0
-

—
—
0
0
+

0
-

—
+

-1—1-

0
+
+
_

++

15

+
+
0
0

—
—
—
0
0
-
0

—
0

++

0
0

++
—
++

16

+
0
+

0
0
0
0
0
0
0
0
0

00
0
π

0
+

—
+

17

0
0
0
-

—
—
0
0

++
+

-
—

++
+

n
0

+

0
+

18

0
+
0

—
—
—
—
0
0
0

—
0
+

+

+
+

—
++

19

-
-
0
0

++

0
+

—
0

++
0
0
0
-

0
—

—

20

0
+

0
-

—
-
-
0
0
0

—
—
0

++
-H-

+
+

++
—
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TABLE B5

Typical Ocean Profile Samples Correlat ion Matrix Major Propert ies Versus Trace Elements

Ba Sr Zr Cr Co Cu Ga Ni V Y B Cl Eu Hf Li Pb Mo Nb Rb Se Th U Yb Zn S

Water d e p t h 0 0 0 - - - + — + 0 ND 0 + + + + - + + + + + + + + + + + + NDNDND

Sediment thickness ~ 0 - 0 + + 0 - + + 0 0 ND - + + 0 - + + - - - + + 0 0 +
Age - - 0 0 0 - + 0 + O N D - + + 0 0 + + 0 0 0 + + + 0 0 + +
Basement d e p t h 0 - - 0 - O O O O O N D - O O O - O N D - - - 0 0
Sonic velocity 0 — 0 0 N D - 0 0 0 + + N D - - - N D - - ND 0 —
Density + N D — 0 0 0 + + N D - - - - - - — - N D N D N D N D + 0
S i θ 2 0 0 0 0 - - 0 — 0 + 0 + 0 - 0 + + 0 - + + + 0 0 0
AI2O3 0 0 -+ ++ - + — 0 — - ND 0 0 - 0 + + - - + — 0 0 0 — 0
T i θ 2 0 + + + + - + 0 + 0 + + 0 - + + + + + + - + + + + + + ++ + + + + + + ++
Total iron as F e 2 θ 3 0 0 ++ — + 0 + 0 + + + + - + + + + — + + + 0 0 + + + + 0 0 +
MgO 0 0 - 0 + 0 0 + + 0 N D - 0 0 + + 0 0 — - - 0 0 - 0 +
CaO 0 + + — 0 0 0 - 0 0 - - - 0 - - — - - - - - 0 -
N a 2 θ + + + 0 - + 0 0 0 0 0 - + + + 0 0 + + + 0 + + + + + 0 0
K2O + + 0 0 0 + + - 0 0 - + + + + + + 0 0 0 + + + + + + + + + + + + 0
H2O 0 0 0 0 + + + + 0 + + - - - + + + + + + + 0 0 + + 0 — + + + + + 0
MnO 0 - 0 0 + - + + N D - + + 0 0 + 0 - + + + + + 0 + +
P2O5 + + + + + 0 + 0 0 0 0 + - + + + + 0 + + + + + + + + + + + + +
F e 2 θ 3 0 + 0 0 + + + 0 + 0 - + + + NDND 0 N D + + + + + + + + + + 0
FeO 0 0 + ~ 0 — + + - + + + + - — NDND 0 NDND + ND - 0 0 0
F e 2 θ 3 / F e O 0 0 0 0 0 ++ - 0 0 0 + + + N D N D 0 N D N D + + + + + ND - + + 0

TABLE B6
Typical Ocean Profile Samples: Correlat ion Matrix Trace Elements

Ba
Sr
Zr
Cr
Co
Cu
Ga
Ni
V
Y
B
Cl
Eu
Hf
Li
Pb
Mo
Nb
Rb
Si
Th
U
Yb
Zn
S

Ba

++

0
0
0
0
0
0
0
0

ND
ND
++
++

0
0

++
++
++
+
+

0
+

0
+

Sr

++

+

0
++

0
0
0
0
0
-
+

ND
ND

0
ND
ND
++
+

0
ND

+
+
+
+

Zr

0
+

-

0
-
+
-

++
++
-
+

ND
++
-
+
0

++
0
+
+

++
+

0
+

Cr

0
0
-

0
0
_
+

—
-
-

ND
ND
ND

0
ND
ND
ND
_
-

ND
0
_
0

ND

Co

0
++

0
0

-
+

++

0
0
0

ND
ND
ND
ND
ND
ND
ND
ND

0
ND
ND
ND
ND
ND

Cu

0
0
-
0
-

0
_
_
+

ND
ND
ND

+

ND
ND
ND
ND

0
ND
ND
+
0

ND

Ga

0
0
+
_
+

—

0
++
0
0

ND
ND
ND

-
ND
ND
ND
_
+

ND
ND
ND

0
ND

Ni

0
0
-
+

++

0
0

0
0
-

ND
ND
ND
++

ND
ND
ND
_
_

ND
ND
ND

0
ND

V

0
0

++

0
_

++

0

+
+

ND
ND
ND
_

ND
ND
ND
_
+

ND
MD
ND

0
ND

Y

0
0

++
_

0
_
0
0
+

_
—

ND
ND

-
ND
ND

_
+

ND
+

++

0
0

B

ND
-
_
_
0
+

0
_
+
_

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Cl

ND
+
+

ND
ND
ND
ND
ND
ND

ND

ND
ND
ND
ND
ND
++
++

ND
ND

+

ND
ND

0

Eu

++

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND

+

++
++

ND
ND

+
+

ND
ND
++

Hf

++

ND
++

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
+

++
++

ND
ND
ND
ND
ND
ND
++

Li

0
0
_
0

ND
+
_

++
_
_

ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Pb

0
ND

+

ND
ND
ND
ND
ND
ND
ND
ND
ND

+
+

ND

0
0

ND
0

ND
0

ND
ND

+

Mo

++

ND
0

ND
ND
ND
ND
ND
ND
ND
ND
ND
++
++
ND

0

++

ND
ND
ND

+

ND
ND

+

Nb

++
++
++

ND
ND
ND
ND
ND
ND

ND
++
++
++

ND
0

++

++

ND
+

++

ND
ND

0

Rb

++
+

0
_

ND
ND
_
_
_
_

ND
++
ND
ND
ND
ND
ND
++

ND
ND
ND
ND
_
0

Si

+
0
+
_
0
0
+
_
+
+

ND
ND
ND
ND
ND

0
ND
ND
ND

ND
ND

+
ND
ND

Th

+

ND
+

ND
ND
ND
ND
ND
ND
ND
ND
ND
+

ND
ND
ND
ND
+

ND
ND

+
ND
ND

+

U

0
+

++
0

ND
ND
ND
ND
ND

+

ND
+
+

ND
ND

0
+

++

ND
ND

+

ND
ND

+

Yb

+
+
+
_

ND
+

ND
ND
ND
++

ND
ND
ND
ND
ND
ND
ND
ND
ND

+

ND
ND

ND
ND

Zn

0
+
0
0

ND
0
0
0
0
0

ND
ND
ND
ND
ND
ND
ND
ND
_

ND
ND
ND
ND

ND

S

0
+
+

ND
ND
ND
ND
ND
ND

0
ND

0
++
++
ND

+
+
0
0

ND
+
+

ND
ND

TABLE B7
Ridge Basalt Correlation Matrix: Major Elements

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

S i O 2

AI2O3

T i O 2

Total i ron as
MgO
CaO
NaO
K 2 O
H 2 O
MnO

P 2 θ 5

F e 2 O 3

FeO
F e 2 θ 3 / F e O

+ - 0 0 0 - 0 - 0 0 0 0 - 0
+ 0 0 0 0 0 + 0 0 0 0 - 0 -
_ 0 ++ 0 0 0 - - 0 — 0
0 0 — ++ 0 — 0 0 0 + + + + + ++ 0
0 0 — + + 0 — 0 0 0 + ++ 0 ++ 0
0 0 - 0 0 0 0 0 0 0 - 0 0 -

_ o + + 0 - o o o - - o —
0 + 0 0 0 0 - 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 + 0 +

0 0 - + + + 0 0 0 0 0 + 0 + 0
0 0 - + + + + - - 0 0 0 + 0 + 0
0 - 0 + 0 0 - 0 0 + 0 0 0 + +
+ 0 — + + + + 0 0 0 0 0 + + 0
0 - 0 0 0 - — 0 0 + U 0 + + -
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TABLE B8
Ridge Basalt Correlation Matrix: Major Elements Versus Trace Elements

Water depth
SiO2

A12O3

TiO3

Total iron as Fe2C
MaO
CaO

K 2 O
H 2 O
MnO

P2O5
F e 2 O 3

FeO
Fe2θ3/FeO

Ba

0
+
-
0

>3 0
++
0
0

++
—
—
0

—
+

—

Sr

0
0
0
0
0
_
0
+
0
+
0
+
+
0

+ +

Zr

+

0
—
++
++

0
—
++

+

0
+

++
+

++
0

Cr

—
+
0
0
0
0
0
0
0
0
0
0
0
0

Co

+

0
—
0
0
+
_
0

++
0
0
0
0
+
0

Cu

+

++
-
0
0
0
0
0
+
0
0
0
0
0
-

Ga

0
++
-
0
+

++
0
0

++
-
-
0
0
+
-

Ni

+

0
0
0
0

++
0
0
+
-
0

—
-
0

—

V

0
++
—
0

++
+
-
0

++
-
0
0
-

++
—

Y

++

+

—
++
++
+

—
++

++
+

++

++
0

++
0

B

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Cl

ND
ND
0

ND
0

ND
ND
ND
0

ND
ND
ND
ND
ND
ND

Eu

_

-
-
+
+
0
0
_
0
+

ND
ND
ND
ND
ND

Hf

ND
ND
ND
ND

0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Li

++

0
-
+
+

0
-

++
++
+
0
0

++
+

++

Pb

+

-

++
++
-

—

0
0
-

++
++
ND
++
—

Mo

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Nb

ND
ND

-
0

ND
ND

0
ND

0
0

ND
ND

0
ND
ND

Rb

0
0
0
0
+
0
0

++
++
-
-

ND
ND
ND

Se

0
—
0

++
+
-
0
0
0
0
0
0

++
-

Th

ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND

U

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Yb

0
0

—
++
++
0

—
+
+
+
+

++
++
++
0

Zn

+

0
—
++
++
0

—
+
+
+
+
+
+

++
0

s

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

TABLE B9
Ridge Basalt Correlation Matrix: Trace Elements

Ba
Sr
Zr
Cr
Co
Cu
Ga
Ni
V
Y
B
Cl
Eu
Hf
Li
Pb
Mo
Nb
Rb
Se
Th
U
Yb
Zn
S

Ba

_
0
0
0
0

++
++
++

0
ND
ND
ND
ND

-
_

ND
ND
++
++

ND
ND

0
0

ND

Sr

_

0
_
_
0
0
0
+

++

ND
ND
ND
ND

0
+

ND
ND

0
0

ND
ND

0
0

ND

Zr

0
0

_
+

0
0
0
+

++

ND
ND
ND
ND
++

0
ND

0
0

++

ND
ND
++
++

ND

Cr

0
_
_

0
_
0
0
_
_

ND
ND
ND
ND
—
0

ND
+
+
-

ND
ND
—
0

ND

Co

0
_
+

0

+
+

++

0
0

ND
ND
ND
ND
++
++

ND
ND
ND
++
ND
ND
++
+

ND

Cu

0
0
0
_
+

++
+

0
+

ND
ND
ND
ND
++
++

ND
+

ND
++

ND
ND
++
+

ND

Ga

++

0
0
0
+

++

++
++
++

ND
ND
ND
ND
++
_

ND
ND

+
+

ND
ND
++

0
ND

Ni

++

0
0
0

++
+

++

+
_

ND
ND
ND
ND

0
—
ND

+

0
++

ND
ND

_
_

ND

V

++

+
+
_

0
0

++
+

++

ND
ND
ND
ND

0
—
ND
ND
ND
++

ND
ND
++
+

ND

Y

0
++
++
_

0
+

++
-

++

ND
ND
ND
ND
++

ND
ND
ND
ND
++

ND
ND
++
++

ND

B

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
++

ND
ND
ND
ND
ND

Cl

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Eu

ND
ND
ND
ND
ND
ND
ND
-

ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND
++

ND
ND

Hf

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

Li

_

0
++
—

++
++
++

0
0

++

ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

+

++

ND

Pb

_
+

0
0

++
++
-

—

ND
ND
ND
ND
ND
ND

ND
ND
ND

0
ND
ND
ND
++

ND

Mo

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND
ND

Nb

ND
ND
ND

+

ND
+

ND
+

ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND
ND
ND
ND

Rb

++

0
0
+

ND
ND

+

0
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND

0
ND
ND

Se

++

0
++
-

++
++
+

++
++
++

ND
ND
ND
ND
ND
_

ND
ND
ND

ND
ND

0
+

ND

Th

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND
ND

U

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND

ND
ND
ND

Yb

0
0

++
—

++
++
+
-

++
++

ND
ND
++

ND
+

ND
ND
ND

0
0

ND
ND

++

ND

Zn

0
0

++

0
+
+

0
-
+

++

ND
ND
ND
ND
++
++

ND
ND
ND

+

ND
ND
++

ND

S

ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND


