51. X-RAY MINERALOGY DATA FROM THE NAZCA PLATE— LEG 34 DEEP SEA DRILLING PROJECT¹

I. Zemmels and H.E. Cook, University of California, Riverside

METHODS

Semiquantitative determinations of the mineral composition of bulk samples, 2-20 μ m, and <2 μ m fractions were performed according to the methods described in the appendix of Volume 28.

The method of sample preparation, in brief, is as follows: Bulk samples are washed to remove seawater salts and are ground to less than 10 μ m under butanol. A portion of the sediment is decalcified in a sodiumacetate-buffered, acetic-acid solution (*p*H 4.5). The residue is fractionated into 2-20 μ m and <2 μ m samples by wet sieving and centrifugation. The 2-20 μ m samples are ground to less than 10 μ m. These three preparations are treated with trihexylamine acetate to expand the smectites. All samples are X-rayed as random powders.

The results of the X-ray diffraction analysis are presented in Tables 1 to 5. Table 6 contains the list of samples submitted for X-ray diffraction analysis, the subbottom depth of each sample which identifies the sample in Tables 1 to 5, a color description, and a sediment description of each sample. In a few cases, sediment samples of similar composition were composited. The composited samples are bracketed in Table 6 and are identified in Tables 1 to 5 by the subbottom depth of the uppermost sample in the composite.

The sediment description is based on a classification devised in the DSDP X-ray Mineralogy Lab for rapid smear-slide analysis of deep-sea sediments. The classification assumes four major sediment types: detrital (d), consisting of fragmented silicates and clay minerals; biogenous (b), consisting of skeletal debris; authigenic (a), common examples of which are zeolites and chert; and chemical (c), primarily the ironmanganese colloids. The sediment types are given equivalent rank. Operationally a sediment is detrital if volumetrically d + b > a + c and d > b; biogenous if d +b > a + c and b > d; authigenic if a + c > d + b and a > c; chemical if a + c > d + b and c > a. Detrital sediments are further subdivided on the basis of texture into sand, silt, mud, and clay according to Folk's (1968) scheme.

Biogenous sediments are subdivided into siliceous ooze, calcareous siliceous ooze, siliceous calcareous ooze, and calcareous ooze in 25% increments of the components. The prefix *bio* is used when a biologic origin of the materials can be seen.

Authigenic and chemical sediments are given only gross descriptive terms such as iron-manganese colloid or chert.

Components of other groups which appear in the major sediment type are acknowledged by modifiers to the sediment name according to the following scheme: components in concentrations of 2%-10% are used as adjectives or in conjunction with "bearing" (i.e., clayey and clay-bearing are synonymous), 10%-25% concentrations are termed "rich," 25%-50% concentration are termed"abundant."

No lithified sediments were submitted for X-ray diffraction analysis from Leg 34.

The percent amorphous is a measure of the weight fraction of amorphous material in each sample which commonly consists of biogenic silica, volcanic glass, palagonite, allophane, and organic material. The amorphous content is calculated from the total diffuse scattering of the sample. The method of calculation assumes that the diffuse scatter in excess of the diffuse scatter from the crystalline materials is proportioned to the amorphous content. The diffuse scatter of the crystalline minerals is determined from the mineral calibration standards (see Volume 28). Ideally, the amorphous content varies between 0 and 100%, but, in cases where the minerals in the sample have a higher degree of crystallinity than the calibration standards, negative values can result. The negative values are reported as blanks; these samples can be assumed to contain little or no amorphous material.

The crystalline minerals are quantified by the method of mutual ratios using peak heights and concentration factors derived from ratioing the diagnostic peaks of minerals with the major peak of quartz. Unquantifiable minerals, i.e., unidentified minerals and minerals for which standards are not available, are tentatively quantified using a hypothetical concentration factor of 3.0 which is applied to the major peak of the mineral. The concentrations of the quantifiable minerals is *summed to* 100%. The amorphous content and the unquantifiable minerals are *not* included in the total. The unquantifiable minerals are reported on a qualitative scale as trace (less than 5%), present (10%-25%), abundant (25%-65%), and major (greater than 65%).

The precision of the mineral determination is approximately ± 1 weight percent of the amount present. Because of differences between crystallinity between the mineral calibration standards and the minerals in the samples and also diffraction peak interferences, the accuracy of the reported concentrations is often less than the precision of the method allows. In terms of the reported concentration, smectites may vary $\pm 50\%$; micas, chlorites, cristobalite, tridymite, geothite may

¹Institute of Geophysics and Planetary Physics, University of California, Riverside, California, Contribution No. 75-3.

²Now of U.S. Geological Survey, Menlo Park, California.

 TABLE 1

 Results of X-Ray Diffraction Analysis, Hole 319

Subbottom Depth (m)	Amor.	Calc.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Mont.	Clin.	Phil.	Gibb.	Hema.	Bari.	Amph.
Bulk Sample																	
1.4	82.2	-	21.1	0.7			14.0	4.8	22	13.8	-		33.4		-	12.2	
7.4	52.7	94.1	_	-			_	_		-	5.9		-		-	-	
8.0	78.7	47.9	9.0	0.7			9.4	_	-	11.0			8.9		-	13.0	
10.9	46.0	83.1		-				-	-	4.4	10.8		-		-	1.6	
12.1	37.9	89.1	_	-			_	-	-	2.6	8.3		-		-	_	
14.5	40.9	88 3	_	_			_	_	_	37	9.0		_		_	_	
21.7	48.3	87.4	_	_			_	_	_	3.1	8.2		_		_	1.4	
22.8	38.6	97.1		_				_	-	2.9	~		_		-	-	
28.7	33.8	96.0	-	—			_	-	-	4.0			-			-	
31.2	33.4	95.1	-	-			_	-	-	4.9	~		-		-	_	
33.5	30.6	96.5	_	_					_	3.0	-		_		_	_	
35.1	23.5	96.3	-	-			_	-	-	3.7			-		-	-	
36.5	19.1	97.1		—			-	-	-	2.9	-		_		-	-	
39.6	15.1	97.8		-			_	-	-	2.2			-		-	-	
44.4	17.9	96.6	_	-			_	-	-	1.7	~		_		1.7	_	
48.4	18.4	97.0	_	_			_	_		2.2	_		_		_	_	
51.7	20.2	92.3		_			_	_	_	3.4			3.9		0.3	-	
52.3	25.5	94.5	_	-			_	-	_	4.0	-		1.5		-	-	
54.7	15.2	96.8	1.0	-			-	-	-	2.2	-		_		-	-	
58.2	15.7	98.9					-		-	1.1	_		_		_	_	
64.5	16.3	97.7	_	_			_	_	_	2.3	_				_	_	
65.2	16.7	98.3	_	_			_	_	_	1.7			_		_	_	
67.6	20.2	97.7	-	_				_	-	2.3	_		_				
68.8	19.8	96.5	-	-			-			3.5	-				-	-	
72.4	20.4	96.5	-	-				-	-	3.5	_				-	-	
73.6	16.5	98.2	_	-			-	-	_	1.8			_		_	_	
76.9	22.1	96.3	_	_			_	_	_	1.7			_		_	_	
78.8	38.9	92.2	-	_				_	_	7.8	_		_		_	_	
79.9	32.8	94.6	_	_			~	_	_	5.4	_		_		_	_	
86.6	19.5	97.7	-	-			~	-	-	2.3	-		-		-	-	
92.6	25.9	95.9	-	-				-	-	4.1	-		-		-	-	
100 7	29.2	94.2	_	_			-	_	_	2.8	_		_			-	
105.9	22.0	97.8	-	-				-	-	2.2	-		_		-	-	
2-20µm Fract	ion																
1.4	36.7		9.6	1.0	-		13.0	4.9	—	16.6	12.2	_	27.7	-		15.1	-
5.0	50.4		22.0	2.2	-		7.7	4.0		11.1	20.1	1.1	20.8	0.2		5.7	5.1
7.4	57.5		14.6	1.9	-	-	8.0	5.4	1.5	13.5	53.6	1.0	156	_		1.6	-
10.9	64.2		4.5	0.7	_	_	5.0	5.7	1.5	24.3	54.8	1.9	3.0	_		7.8	_
12.1	61.6		6.0	0.9			~	_		6.5	76.1	_	2.0	-		8.6	_
13.3	58.1		7.0	0.6	-	-	2.8	-		15.3	54.1	_	15.6	-		4.8	-
14.5	60.8		14.6	1.4	-	-	-	4.1	_	16.6	53.6	_	4.6	-		5.2	
21.7	59.7		3.5	1./	_	_	0.5	_	_	1/.4	56.1 70.4	1.3	4.2	-		3.9	_
28.7	80.8		9.3	2.3	_	_	-		_	26.2	5.6	24.7	31.8	_			_
31.2	80.1		7.1	1.4	_	_	-	11.6	_	33.8	_	20.2	25.8	_		-	-
32.1	77.2		8.4	1.3		-	-	7.8	-	22.7	4.7	28.7	26.5	_		_	-
33.5	80.0		12.1	7.6	-	-	-	12.7		21.4	-	19.1	20.0	-		4.4	2.6
36.5	44.6		83	3.5	_	_	_	13.0	-	19.0	10.8	27.5	18.4	-		-	_
39.6	77.6		12.6	5.6	_	_	_	9.0	_	29.2	2.8	20.2	14 2	_		39	_
45.9	70.5		19.5	7.1	-	_	-	-	-	36.2	_	26.2	11.0	_		_	_
48.4	27.2		34.2	7.1	-	-	-	—	-	16.9	10.9	18.4	12.3	-		-	-
51.7	/6.5		32.6	5.3	-		-	-	-	27.9	_	11.5	22.6	-		_	-
58.2	65 1		2.8	49	_	_	_	29 5	_	12.3	9.0 5 A	1.8	16.9	_		12 2	_
63.0	6.0		15.7	13.5	_	_	_	29.J —	_	28.2	-	17.7	24.9	_		13.2	_
64.5	59.3		11.2	7.0	-	-	_	7.8	_	15.5	6.6	27.8	23.9	_		_	_
65.2	64.9		11.2	6.6	-	-	_	7.5		18.2	6.1	25.8	24.6	-		_	_
67.6	87.8		11.6	6.7	-	-	-	11.1	—	44.8	5.1	15.0	5.7	-		-	-
00.8 72 4	01.4 75.5		12.5	0.1	_	_	_	13.1	-	33.6	4.8	20.0	9.9			-	-
73.6	84.5		11.3	5.2	_	_	_	12.6	_	27.0	5.9	21.1	9.1	_		_	_
75.0	61.8		7.7	4.2	_	_		5.2	_	10.0	_	40.0	32.9	_		_	_
76.9	93.4		11.4	5.3	-	-	-	18.5	-	34.0	-	19.6	11.2	_			_
78.8	90.8		8.8	7.3	_	_	-	11.0	-	59.9	-	9.5	3.5	_		-	-
19.9	90.2		10.0	6.6	11.2	7.3	-	-	-	74.8	-	-	-	_		-	-
00.0	01.2		10.9	4.1	_	-	-	11.2	-	42.1	_	19.0	5.8	_		6.3	-

 TABLE 1 – Continued

Subbottom Depth (m)	Amor.	Calc.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Mont.	Clin.	Phil.	Gibb.	Hema.	Bari.	Amph.
2-20µm Frac	tion – Co	ntinued															
92.6	86.4		17.1	7.1	-		-	10.0	-	35.1	-	24.1	6.6	-		-	-
95.8	90.3		-	5.5	4.6	8.3	-	9.5	-	66.3	-	2.5	3.4	-		-	-
100.7	92.1		7.7	5.2			-	9.4		64.4	-	3.2	3.8			6.3	-
105.9	84.4		13.7	6.8	-	-	_	11.5	_	22.3	-	29.9	10.8	-		4.9	-
<2µm Fractio	on																
1.4	88.1		5.3	0.7			9.5	_		24.9	18.1	_	33.2		_	8.3	
5.0	88.1		12.3	0.7						60.0	17.9	-	-		4.0	5.2	
7.4	88.0		11.8	1.4			-			41.5	40.4	-	_		-	5.0	
8.0	84.5		-	1.8			_	6.1		38.2	43.6	2.2	_		-	8.1	
10.9	73.7		-				_	_		24.7	69.1	-	-		_	6.2	
12.1	74.7		7.6	-				-		6.2	79.6	-	-		-	6.6	
13.3	72.0		-	_			—	-		34.8	65.2	-	-		-	_	
14.5	74.0		-	-			-	-		30.5	69.5	-	-		-	_	
21.7	76.9		_	_			—	-		30.6	69.4	-	-		-	-	
22.8	80.9			-			-	-		34.3	65.7	-	—		-	-	
28.7	92.0		-	-			-	-		91.3	8.7	-			-	-	
31.2	90.0			-			-			91.3	8.7	-	—		-	-	
32.1	91.7		-	-			-			81.6	18.4				-	—	
33.5	90.9		-	-			-	-		91.3	8.7	-	-		-	_	
35.1	88.9		-	-			-			77.8	22.2	-	-			-	
36.5	87.1						-	-		89.5	10.5		-		-	-	
39.6	90.9		-	-						90.1	9.9	-	-		-	-	
44.4	78.6		-				-	-		48.3	51.7	-	-				
45.9	88.9		-	-			_	-		81.6	18.4	-	—		_		
48.4	84.0		-	-			-	-		87.5	12.5	-				_	
51.7	88.9		-	_			-	-		80.2	19.8	_	_			-	
52.3	88.6		-	_			-	-		79.9	20.1	-			-	-	
54.7	63.1		—	-			—	-		77.8	22.2	-	-		-	-	
58.2	90.9		_	_			-	-		77.8	22.2	-	-		-	—	
63.0	88.0		_	_			-	-		83.7	16.3	-	-		-	-	
64.5	93.1		-	-			-	-		80.8	19.2	-	-		-	-	
65.2	88.9		-	—			-	-		82.4	17.6	-	-		-	-	
67.6	89.1		-	-			-	-		70.0	30.0	_	-		_	_	
68.8	87.3		-	1.7			-	-		85.6	8.7	3.9	_		—	_	
72.4	90.3		-	_			-	-		83.2	16.8	-	-		-	_	
73.6	82.3		-	-			_	9.1		80.0	10.9	-	_		-	_	
75.0	91.1		-	-			-	_		84.6	15.4	-	-		-	_	
76.9	80.3		-	-			-	-		79.6	20.4	-	-		-	_	
78.8	84.6		-	-			-	-		92.8	7.2	-	-		-		
79.9	81.4		-	—			-			100.0		_	_		-	_	
86.6	85.7		-	-			-	-		86.6	13.4	_	-		-	_	
92.6	86.6		-	-			_	-		92.2	7.8		—		—	-	
95.8	82.9		-	-			_	_		100.0	_	_	_		—	_	
100.7	82.0		-	-			-	_		93.0	7.0	_	-		-	_	
105.9	85.5		-	1.9			-	-		76.5	20.0	-	-		-	1.7	

^aPlagioclase and K-feldspar are reported as undifferentiated feldspars when there is significant interference with phillipsite or they occur in small concentrations.

Subbottom Depth (m)	Amor.	Calc.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Mont.	Clin.	Phil.	Pyri.	Bari.	Magn.
Bulk Sample																
6.5 10.9 74.5 75.7 103.7	71.7 74.4 48.1 43.5 18.3	- 82.1 82.4 99.0	 1.3 2.1	28.6 29.0 1.2 1.3	3.7 3.0 - -	16.7 16.8 - -	2.9 5.1 0.5	29.5 29.7 3.1 2.9	1.7 3.4 0.5 -	- 8.9 10.5 1.0	16.1 12.7 	 1.2 0.8	_ 1.1 _	0.7	0.3 - -	
109.4 110.6	20.9 23.9	98.9 98.1	_	_	_	_	_	-	_	1.0 1.1 1.9	-	_	_	_	_	
2-20µm Frac	tion															
6.5 10.9 74.5 75.7 103.7 109.4 110.6	58.2 62.2 73.1 75.4 31.5 78.5 80.8		- 10.1 4.7 16.4 10.3 14.1	44.3 40.4 15.4 11.3 8.8 4.8 2.7	3.1 5.6 - - -	18.0 21.3 - - - - -	2.9 4.7 3.1 4.1 - 3.8 3.7	22.9 19.6 27.1 19.7 - 8.0	3.0 3.8 1.4 0.8 - -	 26.9 17.8 26.7 14.8 15.8	5.7 2.9 5.5 3.9 - 7.2 3.1	23.8 18.5 47.5 44.5	9.8 11.2 13.0 6.5 3.5	1.3 - - - -	- 0.4 0.9 2.5 16.6 3.6 4.1	 1.4 0.6
<2µm Fractio	on															
6.5 10.9 74.5 75.7 103.7 109.4 110.6	43.1 63.5 85.5 85.0 78.2 78.0 82.6		 2.8 	10.4 14.1 2.4 2.8 2.3 - 3.6	3.4 2.0 - - - -	4.5 7.1 - - -	4.9 4.9 - - -	23.5 21.7 57.5 - - -	1.4 3.1 - 59.6 -		52.0 46.0 6.9 22.7 36.3 40.4 27.1	 1.7 	 3.6 	1.1 - - - -	 	 2.8

 TABLE 2

 Results of X-Ray Diffraction Analysis, Hole 320

 a Plagioclase and K-feldspar are reported as undifferentiated feldspars when there is significant interference with phillipsite or they occur in small concentrations.

Subbottom Depth (m)	Amor.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Mont.	Phil.	Bari.
Bulk Sample										
0.4 4.1 5.4	73.5 69.9 73.5	32.0 29.4 27.0	6.6 3.0 2.9	18.2 16.1 14.5	5.5 7.6 3.6	24.1 25.5 28.5	3.3 3.5 2.2	10.4 12.7 20.4	2.0	0.2 0.8
2-20µm Frac	tion									
0.4 4.1 5.4	59.9 56.2 65.6	42.6 45.6 46.5	4.3 4.8 4.3	23.1 23.1 23.7	3.3 1.7 3.5	19.8 11.6 16.5	3.8 1.9 2.5	3.0 2.5 3.0	6.1 _	2.9 –
<2µm Fractio	on									
0.4 4.1 5.4	57.7 55.7 51.2	14.0 21.0 11.5	0.4 1.5 2.9	6.2 6.8 5.5	4.1 3.1 8.4	22.8 32.2 22.0	2.8 3.6 3.9	45.6 24.2 45.6	3.7 6.4 —	0.4 1.1 0.2

 TABLE 3

 Results of X-Ray Diffraction Analysis, Hole 320A

 TABLE 4

 Results of X-Ray Diffraction Analysis, Hole 320B

Subbottom Depth (m)	Amor.	Calc.	Feld.	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Mont.	Clin.	Phil.	Bari.
Bulk Sample														
136.4	26.1	97.8								2.2				
140.9	25.6	95.9								4.1				
146.6	27.5	97.3								2.7				
147.9	34.9	95.8								4.2				
148.6	27.6	95.9								4.1				
150.5	28.6	95.5								4.5				
151.7	32.8	91.4								8.6				
2-20µm Fract	tion													
136.4	85.4		_	7.9	9.0	7.9	6.6	8.9	_	19.0	8.5	27.9	-	4.2
140.9	83.1		5.4	8.2	_	_	5.1	13.3	1.6	27.1	4.3	19.5	13.1	2.4
146.6	87.2		7.4	6.3	-	_		13.8	-	24.1	11.0	23.8	13.6	_
147.9	90.9		_	6.1	6.0	4.9	_	12.6		39.2	12.1	19.1		-
148.6	53.3		-	5.4	13.8	9.0	-	10.5	-	22.5	7.0	31.7	-	_
150.5	91.4		9.9	7.8	-	-	-	11.5	-	48.2	6.9	15.8	-	—
151.7	88.1		4.7	5.6	-	-	—	8.7	-	63.5	-	17.5	-	-
<2µm Fractio	on													
136.4	79.1			_				_		50.3	49.7	-		
140.9	79.5			2.8				_		53.6	25.5	_	18.1	
146.6	58.9			1.4				8.5		32.6	57.4	_		
147.9	61.7			_				3.5		44.9	50.3	1.4	-	
148.6	69.3			1.3				8.1		58.6	32.0	-		
150.5	72.3			-						67.8	32.2	_		
151.7	78.6							-		92.7	7.3	-	-	

 TABLE 5

 Results of X-Ray Diffraction Analysis, Hole 321

Subbottom Depth (m)	Amor.	Calc.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Paly.	Mont.	Clin.	Phil.	Hema.	Bari.	Amph.	U-1 ^b
Bulk Sample																		
0.9 2.1 3.3 4.9 6.4 12.0 15.8 22.5 23.9 25.4 31.9 33.1 34.7 36.4 37.7 42.1 42.7 44.3 54.8 47.3 51.0 52.3 53.8 55.2 56.7 59.0 63.4 69.4 73.8 74.7 76.3 78.4 79.3 80.8 87.3 88.8 90.3 91.8 116.5 117.4 119.7 119.7	$\begin{array}{c} 73.0\\ 74.4\\ 73.3\\ 73.7\\ 76.0\\ 76.6\\ 76.2\\ 79.1\\ 79.3\\ 81.1\\ 79.3\\ 81.4\\ 79.8\\ 88.5\\ 81.3\\ 86.0\\ 83.5\\ 78.7\\ 80.7\\ 77.6\\ 74.8\\ 72.9\\ 70.6\\ 71.3\\ 16.1\\ 35.0\\ 42.5\\ 49.2\\ 26.8\\ 23.5\\ 23.6\\ 23.3\\ 79.8\\ 23.5\\ 23.6\\ 23.3\\ 79.8\\ 23.5\\ 19.7\\ 21.3\\ 32.0\\ 38.3\\ 43.1\\ \end{array}$			25.7 25.7 29.3 28.4 25.8 27.7 28.0 25.1 22.9 20.4 22.4 21.5 3 18.2 13.5 15.1 11.4 13.9 10.7 13.6 18.2 10.0 9.2 - - 1.5 1.1 1.4 1.4 0.4 - 0.3 0.2 8.6 - - 0.2 0.2 -	2.7 1.4 1.5 5.5 - 2.2 0.3 - 1.4 0.9 1.6 - - - 21.7 17.1 17.3 - - - - - - - - - - - - - - - - - - -	21.9 21.3 23.0 21.3 21.7 23.9 24.7 26.2 24.6 21.0 24.7 25.7 26.2 24.6 21.0 24.7 25.7 26.2 24.6 21.0 24.7 25.7 26.2 24.6 21.0 24.7 25.7 26.2 24.6 21.0 24.7 25.7 26.2 24.6 21.0 24.7 25.7 26.2 24.7 26.2 24.7 25.7 26.2 24.7 26.2 24.7 25.7 26.2 24.7 26.2 27.8 28.9 20.4 14.4 18.4 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	6.7 4.5 5.1 6.2 2.3 8 3.3 5.6 5.8 4.3 3.9 5.4 4.7 5.9 5.9 4.3 3.3 5.2 2.7 3.3 1.1 - - - - - - - - - - - - - - - - - -	30.1 24.7 23.5 21.2 21.9 25.6 22.1 21.0 20.3 20.5 17.8 18.0 16.6 18.7 16.7 19.1 20.9 31.8 15.2 16.9 18.0 20.4 23.3 17.2 15.4 - - - - - - - - - - - - - - - - - - -	4.7 4.8 3.7 2.3 1.4 1.5 2.1 2.6 5.2 2.9 0.3 3.7 2.0 1.6 5.9 2.8 1.8 - - - - - - - - - - - - - - - - - - -	- - - - - - - -	- - - - - - - - - - - - - - - - - - -	7.6 16.0 13.9 12.4 11.9 13.9 15.5 18.3 18.2 22.8 22.1 23.0 18.4 16.0 18.7 29.8 23.8 11.1 29.8 21.6 17.6 15.9 4.4 8.6 9.1 - - - - - - - - - - - - -				0.7 1.7 - 1.0 0.9 - 1.1 - 0.3 0.9 1.9 0.7 1.1 2.1 - 1.2 1.3 0.8 2.5 3.8 - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
2-20µm Fract	tion			20.0	5.4	22.0	2.2	17.2	4.0			2.4				0.6		
0.3 3.3 4.9 6.4 12.0 15.8 22.5 23.9 25.4 31.9 33.1 34.7 36.4 37.7 42.1 42.7 44.3 45.8 47.3 51.0 52.3 53.8 55.2 56.7 59.0° 63.4° 69.4 73.8 74.7 76.3 78.4° 79.3° 80.8° 87.3 88.8° 90.3°	58.2 58.2 58.9 65.4 60.9 57.4 68.9 70.7 33.5 69.6 68.9 70.4 70.7 85.4 70.7 85.4 70.7 75.0 67.0 75.0 67.0 75.0 67.0 75.0 67.0 75.0 67.0 75.0 67.0 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 85.4 70.7 70.7 75.0 77.0 75.0 77.9 ND ND ND ND 73.1 ND			39.6 39.6 17.7 38.3 38.2 34.3 31.8 29.7 31.1 26.6 30.5 26.2 20.6 20.9 18.2 21.9 16.9 16.9 16.9 16.9 16.9 16.7 21.4 16.5 16.4 16.5 16.4 15.0 12.4 15.0 12.4 15.0 15.0 12.4 15.0	2.1 4.6 0.1 3.8 1.9 - - - - - - - - - - - - - - - - - - -	21.6 28.6 12.7 29.2 30.3 25.6 21.4 30.7 27.6 31.8 30.8 30.8 39.8 41.7 45.7 37.4 35.2 21.0 - - - - - - - - - - - - -	5.0 1.4 2.0 3.9 3.8 3.4 3.8 3.4 3.8 4.1 2.0 2.8 2.2 1.8 4.4 2.0 2.8 2.2 1.8 4.4 2.0 2.8 2.2 1.8 4.4 2.0 0.7 1.2 - - - 1.3 0.7 1.8 - - - - - - - - - - - - -	17.9 62.5 15.7 15.9 21.5 25.2 19.8 22.7 21.2 20.4 18.3 21.4 19.5 18.0 11.2 15.0 11.2 15.0 11.2 15.0 11.2 15.0 11.2 15.0 11.2 15.0 11.2 15.0 11.2 15.0 11.5 25.2 19.8 21.7 21.2 20.4 18.3 21.4 19.5 18.0 11.2 15.5 21.5 21.5 21.5 21.5 21.5 21.5	3.9 1.9 3.1 1.7 3.2 - 3.4 3.3 1.6 2.4 2.7 2.6 3.0 2.4 2.7 3.6 - 2.4 1.9 1.1 0.8 1.6 1.6 1.6 1.6 1.6 1.6 0.7 - - 0.7	- - - - - - - -		2.4 3.8 1.7 3.7 2.5 6.8 6.6 5.1 7.5 8.6 9.0 4.6 5.4 5.5 7.8 7.3 8.0 7.5 7.3 8.0 7.5 7.3 8.0 7.5 7.3 8.0 7.5 7.5 8.4 2.7 4.5 7.5 8.4 1.7 4.5 7.5 8.4 7.5 8.4 7.5 8.4 7.5 8.4 7.5 8.5 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 7.5 8.6 9.7 6.1 5.8 7.8 7.3 8.0 7.5 8.1 7.5 8.6 9.7 6.1 5.8 7.8 7.3 8.0 7.5 8.4 2.7 4.5 7.5 8.4 7.5 7.5 8.4 7.5 7.5 8.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	17.0	0.6 1.2 - 1.1 - 0.6 0.9 3.2 - 1.4 2.6 3.1 3.6 2.9 - - - 0.6 - - - - - - - - - - - - -		

 TABLE 5 – Continued

Subbottom Depth (m)	Amor.	Calc.	Feld. ^a	Quar.	K-Fe.	Plag.	Kaol.	Mica	Chlo.	Goet.	Paly.	Mont.	Clin.	Phil.	Hema.	Bari.	Amph.	U-1 ^b
2-20µm Frac	tion – Con	tinued					8											
91.8 ^c 116.5 117.4 119.7	ND 91.9 89.8 67.5		37.1 	15.4 8.8 6.8 -	19.2 12.1	- 10.9 7.9 -		13.0 13.9		18.1 34.3 59.2 11.2		- - 9.6	13.7	29.4 79.1				-
<2µm Fracti	on																	
<2µm Fracti 0.9 2.1 3.3 4.9 6.4 12.0 15.8 22.5 23.9 25.4 31.9 33.1 34.7 36.4 37.7 42.1 42.7 44.3 45.8 47.3 51.0 52.3 53.8 55.2 56.7 59.0 63.4 69.4 73.8 74.7 76.3 78.4 79.3 80.8	on 52.0 60.4 61.6 64.4 67.4 67.5 67.9 67.3 70.0 68.7 73.6 68.7 73.6 68.7 75.9 69.5 67.9 64.7 66.8 71.8 64.4 64.4 65.4 64.4 65.4 67.5 67.9 67.5 67.9 67.3 73.6 68.7 73.6 68.7 75.9 69.5 67.9 64.7 66.8 71.8 64.8 71.8 64.8 71.8 64.9 71.1 81.0 83.0 76.8 82.4 81.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 81.6 83.0 76.8 82.4 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 76.8 83.0 83.0 76.8 83.0 83.0 76.8 83.4 83.6 83.9 83.0 76.8 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.8 83			$\begin{array}{c} 11.9\\ 15.5\\ 17.1\\ 18.0\\ 18.5\\ 19.9\\ 16.6\\ 13.6\\ 15.0\\ 14.3\\ 14.4\\ 13.7\\ 10.3\\ 14.4\\ 13.7\\ 10.3\\ 14.4\\ 13.7\\ 10.3\\ 8.5\\ 7.3\\ 8.1\\ 7.5\\ 5.4\\ 6.1\\ 2.3\\ 6.9\\ 2.9\\ 3.0\\ 14.3\\ 4.4\\ 4.5\\ 3.5\end{array}$	3.2 3.0 2.2 4.7 2.6 1.4 0.3 0.8 - 4.4 0.5 - 4.4 0.5 - - 1.4 6.7 4.1 - - - - - - - - - - - - - - - - - - -	9.3 11.1 8.9 12.2 12.0 14.0 11.3 12.1 11.5 12.5 11.2 11.3 13.4 8.55 9.1 8.25 9.4 5.2 - - - - - - - - - - - - -	6.8 3.0 4.9 3.5 3.0 4.4 3.3 3.6 4.1 4.2 3.6 4.9 4.3 1.1 4.5 5.3 3.8 3.7 5.0 4.4 2.4 - - - 3.5 2.9 - 1.1 - - -	$\begin{array}{c} 21.6\\ 16.8\\ 15.4\\ 18.9\\ 16.0\\ 15.8\\ 19.4\\ 14.9\\ 6.9\\ 7.1\\ 4.0\\ 5.7\\ 5.5\\ 5.0\\ 9.7\\ 2.4\\ 4.9\\ 5.7\\ -\\ 3.1\\ 4.6\\ 2.5\\ 13.9\\ 9.9\\ 14.2\\ 5.7\\ 11.2\\ 17.7\\ 8.1\\ 7.9\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	3.6 2.8 3.5 3.6 2.6 1.1 3.3 2.7 1.8 1.5 2.3 1.4 4.4 1.5 2.8 - 1.6 1.7 - 3.7 1.9 - - 2.8 4.8 3.4 3.5 1.5 1.5 - - - - - - - - - - - - - - - - - - -			$\begin{array}{c} 42.9\\ 47.0\\ 51.6\\ 36.4\\ 37.4\\ 40.7\\ 37.3\\ 46.8\\ 49.3\\ 51.7\\ 56.6\\ 51.9\\ 59.6\\ 57.0\\ 67.6\\ 69.7\\ 60.0\\ 65.7\\ 64.5\\ 69.4\\ 73.0\\ 64.5\\ 69.4\\ 73.0\\ 61.4\\ -\\ 4.0\\ 3.9\\ 4.3\\ 14.0\\ 11.9\\ 15.6\end{array}$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} - \\ - \\ - \\ - \\ 2.1 \\ - \\ - \\ 2.8 \\ - \\ - \\ - \\ - \\ 2.8 \\ - \\ - \\ - \\ 2.8 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		0.7 0.4 - 0.4 0.5 - 0.5 0.6 2.9 1.1 1.2 1.0 0.5 - 0.6 - - - - - - - - - - - - -		
87.3 88.8 90.3	84.6 82.5 85.2		8.1 	5.5 3.6 4.5	2.3	- 4.4 -	 1.8	10.8	2.6	10.3 54.0 66.2	-	76.1 13.3 11.9		- 9.0 5.6				
91.8 116.5 117.4 119.7	82.1 86.3 84.3 69.4		11.3 _ _ _	4.0 1.9 -				12.4 		56.5 91.3 93.3 18.6		12.1 6.8 6.7 81.4		3.7 - -				

^aPlagioclase and K-feldspar are reported as undifferentiated feldspars when there is significant interference with phillipsite or they occur in small concentrations.

^bMajor peak is located at 11 Å ($8.05^{\circ}20$). Allophane and amine-expanded halloysite have peaks at this location. Both of these minerals belong to the Kaolinite group. ^cThere was insufficient material in these samples to obtain highly reliable data.

	Subbottom		GSA Color	
Sample	Depth		Code	
(Interval in cm)	(m)	GSA Color	Number	Sediment Description
Hole 319				
1.1 110 112	1.4	Ducky vollowish	10 VP 2/2	
1-1, 110-112	1.4	brown	10 IK 2/2	
1-2, 130-132	3.1	Dusky yellowish- brown	10 YR 2/2	Fe-Mn colloid bearing clay
1-3, 20-22	3.5	Dusky yellowish- brown	10 YR 2/2	
1-4, 20-22	5.0	Moderate brown	5 YR 3/4	Volcanic glass bearing Fe-Mn colloid bearing clayey calcareous ooze
1-5, 117-119	7.4	Moderate brown	5 YR 4/4	Clayey calcareous ooze
1-6, 20-22	8.0	Grayish-brown	5 YR 3/2	Fe-Mn colloid bearing clayey calcareous ooze
2-1, 137-139	10.9	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
2-2, 106-108	12.1	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing muddy calcareous ooze
2-3, 80-82	13.3	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
2-4, 45-47	14.5	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
3-2, 123-125	21.7	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing clayey calcareous ooze
3-3, 76-78	22.8	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing clayey calcareous ooze
4-1, 2-4	28.7	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing clayey calcareous ooze
4-2, 100-102	31.2	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
4-3, 36-38	32.1	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing muddy calcareous ooze
4-4, 26-38	33.5	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
4-5, 36-38	35.1	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
4-6, 26-28	36.5	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
5-2, 10-12	39.6	Moderate orange- pink	5 YR 8/4	
5-3, 36-38	41.4	Moderate orange- pink	5 YR 8/4	 Fe-Mn colloid bearing calcareous ooze
5-4, 40-42	42.9	Moderate orange- pink	5 YR 8/4	
5-5, 40-42	44.4	Moderate orange- pink	5 YR 8/4	Fe-Mn colloid bearing clayey calcareous ooze
5-6, 40-42	45.9	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
6-1, 84-86	48.4	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
6-3, 121-123	51.7	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
6-4, 31-32	52.3	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
6-5, 120-122	54.7	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze

 TABLE 6

 Samples Submitted for X-Ray Diffraction Analysis, Leg 34

Sample	Subbottom Depth	CSA Color	GSA Color Code	Sediment Description
(Interval in cm)	(m)	GSA Color	Number	Sediment Description
Hole 319 - Cont	inued			
7-1, 101-103	58.2	Grayish-orange	10 YR 7/4	
7-2, 60-62	59.3	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
7-3, 24-26	60.5	Grayish-orange	10 YR 7/4	
7-4, 124-126	63.0	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
7-5, 128-130	64.5	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
7-6, 44-46	65.2	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
8-1, 104-106	67.6	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing volcanic glass bearing muddy calcareous ooze
8-2, 80-82	68.8	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing volcanic glass bearing muddy calcareous ooze
8-4, 136-138	72.4	Light brown	5 YR 5/6	Fe-Mn colloid bearing volcanic glass bearing calcareous ooze
8-5, 110-112	73.6	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing clayey calcareous ooze
8-6, 100-102	75.0	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing volcanic glass bearing muddy calcareous ooze
9-1, 89-91	76.9	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
9-2, 127-129	78.8	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
9-3, 91-93	79.9	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing clayey calcareous ooze
10-1, 106-108	86.6	Moderate yellowish- brown	10 YR 5/4	
10-2, 82-84	87.8	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing volcanic glass bearing muddy calcareous ooze
10-3, 70-72	89.2	Moderate yellowish- brown	10 YR 5/4	
10-4, 101-103	91.0	Moderate yellowish- brown	10 YR 5/4	a Ka
10-5, 110-112	92.6	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing muddy calcareous ooze
11-1, 63-65	95.8	Moderate yellowish- brown	10 YR 5/4	
11-2, 60-62	97.3	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
11-3, 120-122	99.4	Moderate brown	5 YR 4/4 J	
11-4, 100-102	100.7	Moderate brown	5 YR 4/4	
11-5, 60-62	101.8	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing clayey calcareous ooze
12.1.124.126	105.7	Create brown	5 IK 4/4 J	
12-1, 134-136 12-2, 80-82	105.9	Grayish-orange Grayish-orange	10 YR 7/4 10 YR 7/4	Fe-Mn colloid bearing volcanic glass bearing muddy calcareous once
12-3, 97-99	108.5	Grayish-orange	10 YR 7/4	

 TABLE 6 – Continued

Sample	Subbottom Depth		GSA Color Code	
(Interval in cm)	(m)	GSA Color	Number	Sediment Description
Hole 320				
1-1, 20-22	6.5	Yellowish-gray	5 Y 7/2	
1-2, 100-102	8.8	Gray ish-green	5 G 5/2	Volcanic glass bearing biosiliceous-rich clay
1-3, 128-130	10.6	Yellowish-gray	5 Y 7/2 🕽	
1-4, 10-12	10.9	Grayish-green	ן 5 G 5/2	
1-5, 30-32	12.6	Grayish olive-green	5 GY 3/2	Volcanic glass bearing biosiliceous-rich mud
1-6, 94-96	14.8	Grayish olive-green	5 GY 3/2 J	
2-1, 100-102	74.5	Light olive-gray	5 Y 5/2	Fe-Mn colloid bearing muddy biosiliceous calcareous ooze
2-2, 69-71	75.7	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing volcanic glass bearing calcareous ooze
3-1, 123-125	103.7	Light brown	5 YR 6/4)	
3-2, 74-76	104.8	Light brown	5 YR 6/4	Fe-Mn colloid bearing
3-3, 130-132	106.8	Light brown	5 YR 6/4	clayey calcareous ooze
3-4,67-69	107.7	Light brown	5 YR 6/4	
3-5, 88-90	109.4	Light brown	5 YR 6/4	Fe-Mn colloid bearing calcareous ooze
3-6, 59-61	110.6	Moderate yellowish- brown	10 YR 5/4	Fe-Mn colloid bearing clayey calcareous ooze
Hole 320A				
1-1, 40-42	0.4	Dark yellowish- brown	10 YR 4/2	Volcanic glass bearing biosiliceous mud
1-3, 111-113	4.1	Light olive-gray	5 Y 5/2	Volcanic glass-rich clay
1-4, 89-91	5.1	Light olive-gray	5 Y 5/2	Volcanic glass-rich biosiliceous-rich mud
Hole 320B				
1-1, 10-12	136.4	Moderate yellowish- brown	10 YR 5/4	
1-2, 70-72	138.5	Moderate yellowish- brown	10 YR 5/4	Fe-Mn bearing colloid volcanic glass rich silty
1-3, 67-69	140.0	Moderate yellowish- brown	10 YR 5/4 J	calcareous ooze
1-4, 10-12	140.9	Light brown	5 YR 6/4	
1-5, 89-90	143.2	Light brown	5 YR 6/4	Fe-Mn colloid bearing
1-6, 65-67	144.5	Light brown	5 YR 6/4	clayey calcareous ooze
2-1 111-113	146.6	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing muddy calcareous ooze
2-2, 90-92	147.9	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing muddy calcareous ooze
2-3, 10-12	148.6	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing clayey calcareous ooze
2-4, 50-52	150.5	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing volcanic glass bearing clayey calcareous ooze
2-5, 20-22	151.7	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing muddy calcareous ooze
Hole 321				
1-1, 90-92	0.9	Dark yellowish- brown	10 YR 4/2	Fe-Mn colloid bearing biosiliceous bearing volcanic glass rich mud
2-1, 60-62	2.1	Pale yellowish- brown	10 YR 6/2	Biosiliceous clay

TABLE 6 – Continued

TABLE	6 -	Continued
-------	-----	-----------

Sample (Interval in cm)	Subbottom Depth (m)	GSA Color	GSA Color Code Number	Sediment Description
Hole 321 - Cont	inued			
2-2, 30-32	3.3	Pale yellowish- brown	10 YR 6/2	Volcanic glass bearing biosiliceous clay
2-3, 34-36	4.9	Pale yellowish- brown	10 YR 6/2	Biosiliceous clay
2-4, 34-36	6.4	Pale yellowish- brown	10 YR 6/2	Volcanic glass-rich clay
3-1, 102-104	12.0	Pale yellowish- brown	10 YR 6/2	
3-2, 30-32	12.8	Pale yellowish- brown	10 YR 6/2	Volcanic glass bearing clay
3-3, 30-32	14.3	Pale yellowish- brown	10 YR 6/2 J	
3-4, 30-32	15.8	Pale yellowish- brown	10 YR 6/2	
3-5, 33-35	17.3	Pale yellowish- brown	10 YR 6/2	Volcanic glass bearing biosiliceous bearing clay
3-6, 40-42	18.9	Pale yellowish- brown	10 YR $6/2$	
4-2, 50-52	22.5	Pale yellowish- brown	10 YR 6/2	Volcanic glass bearing mud
4-3, 35-37	23.9	Yellowish-gray	5 YR 7/2	Biosiliceous bearing volcanic glass-rich mud
4-4, 36-38	25.4	Yellowish-gray	5 Y 7/2	Volcanic glass-rich mud
5-2, 40-42	31.9	Yellowish-gray	5 Y 7/2	Volcanic glass rich mud
5-3, 13-15	33.1	Yellowish-gray	5 Y 7/2	Volcanic glass bearing mud
5-4, 22-24	34.7	Pale olive	10 Y 6/2	Volcanic glass-rich mud
5-5, 35-37	36.4	Yellowish-gray	5 Y 7/2	Volcanic glass-rich mud
5-6, 19-21	37.7	Light brown	5 YR 6/4	Feldspar and quartz bearing volcanic glass-rich silt
6-2, 113-115	42.1	Grayish-orange	10 YR 7/4	Feldspar and quartz bearing volcanic glass-rich silt
6-3, 23-25	42.7	Light brown	5 YR 6/4	Minor hornblende, feldspar, quartz, and volcanic glass bearing silt
6-4, 29-31	44.3	Yellowish gray	5 Y 7/2	Minor hornblende, feldspar, quartz, and volcanic glass bearing silt
6-5, 28-30	45.8	Yellowish-gray	5 Y 7/2	Hornblende, feldspar, quartz, and volcanic glass bearing biosiliceous silt
6-6, 29-31	47.3	Grayish-orange	10 YR 7/4	Minor hornblende, feldspar, quartz, and volcanic glass bearing silt
7-2, 47-49	51.0	Dusky yellowish- brown	10 YR 2/2	Feldspar and quartz bearing volcanic glass-rich mud
7-3, 27-29	52.3	Dusky yellowish- brown	10 YR 2/2	Minor hornblende, volcanic glass, feldspar, and quartz bearing mud
7-4, 33-35	53.8	Dusky yellowish- brown	10 YR 2/2	Volcanic glass, feldspar, and quartz bearing mud
7-5, 20-22	55.2	Dusky yellowish- brown	10 YR 2/2	Volcanic glass bearing biosiliceous mud
7-6, 17-19	56.7	Dusky yellowish- brown	10 YR 2/2	Volcanic glass bearing biosiliceous mud
8-1, 46-48	59.0	Yellowish-gray	5 Y 7/2	
8-2, 41-43	60.4	Yellowish-gray	5 Y 7/2	Calcareous ooze
8-3, 40-42	61.9	Yellowish-gray	5 Y 7/2	

Sample (Interval in cm)	Subbottom Depth (m)	GSA Color	GSA Color Code Number	Sediment Description
Hole 321 – Cont	inued			
9.4. 42.45	62.4	Vollowish serve	5 V 7/2)	
8-5 00-101	65.5	Vellowish-gray	5 V 7/2	Calcareous ooze
8-6 39-41	66.4	Yellowish-gray	5 Y 7/2	
0.1, 118,120	60.4	Moderate brown	5 VP 2/4	
9-1, 110-120	70.5	Moderate brown	5 VP 3/4	Volcanic glass bearing muddy biocalcareous ooze
9-3, 74-76	72.0	Moderate brown	5 YR 3/4	
9-4, 113-115	73.8	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing
9-5, 44-46	74.7	Moderate brown	5 YR 4/4	Fe-Mn colloid bearing muddy biocalcareous ooze
9-6, 58-60	76.3	Light brown	5 YR 5/6	Fe-Mn colloid bearing muddy calcareous ooze
10-1, 84-86	78.4	Light brown	5 YR 5/6	Fe-Mn colloid bearing muddy calcareous ooze
10-2, 30-32	79.3	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing calcareous clay
10-3, 30-32	80.8	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
11-1, 30-32	87.3	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing volcanic glass bearing mud
11-2, 30-32	88.8	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
11-3, 30-32	90.3	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
11-4, 26-28	91.8	Grayish-orange	10 YR 7/4	Fe-Mn colloid bearing clayey calcareous ooze
13-1, 94-96	116.5	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing calcareous mud
13-2, 35-37	117.4	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing calcareous mud
13-3, 116-118	119.7	Moderate brown	5 YR 3/4	Fe-Mn colloid bearing calcareous mud

TABLE 6 - Continued

vary $\pm 20\%$; kaolinite, amphibole, augite, the feldspars, the zeolites, palygorskite, sepiolite, apatite may vary $\pm 10\%$; the minerals which have stable crystal lattices and are not members of solid-solution series (or typically have limited crystal-lattice substitution in the sedimentary environment) such as quartz, lowmagnesium calcite, aragonite, dolomite, rhodochrosite, siderite, gibbsite, talc, barite, anatase, gypsum, anhydrite, halite, pyrite hematite, magnetite will vary less than $\pm 5\%$.

The user of the X-ray mineralogy data should bear in mind that (1) the reported values are not absolute concentrations and that some adjustment has to be made for the amorphous content and the unquantifiable minerals; (2) in a homogeneous system of minerals, the mineral concentration *trends* are reliable because of the precision, but when comparing mineral concentrations between different geographic regions or lithologic units, additional information regarding the crystallinity of the minerals is required; (3) the representativeness of the samples selected for X-ray diffraction analysis is the responsibility of the shipboard scientists, and any questions pertaining to this aspect should be directed to them.

DRILLING AND MUD USAGE

Drilling mud, containing montmorillonite and barite, was used in Hole 319A between Cores 6 and 7 and Cores 7 and 8. None of the samples submitted for X-ray diffraction analysis were directly exposed to the drilling mud.

ACKNOWLEDGMENTS

The writers wish to acknowledge the excellent work of David Berry in the interpretation of X-ray diffraction data, of Paul D. Johnson in X-ray data acquisition and data processing, and of Tom W. Halverson, Jr., in sample preparation.

REFERENCE

Folk, R.L., 1968. Petrology of sedimentary rocks (syllabus): Austin, Texas (Hemphill's).