The Shipboard Scientific Party¹

SITE DATA

Date Occupied: 14-17 July 1974

Position: 37°02.13'N, 34°24.87'W

Water Depth (sea level): 2619 meters

Number of Holes: 1

Penetration: 376.5 meters

Number of Cores: 27

Total Core Recovered: 99.6 meters

Oldest Sediment Cored Above Basement: Depth: 254 meters

Nature: Foram-bearing nannofossil ooze Age: Early late Miocene, near late Miocene-middle Miocene boundary

Acoustic Basement:

Depth Subbottom: 259.5 meters Nature: Basalt overlying a gabbro-peridotite sequence Velocity: 5.94 to 7.29 km/sec at 0.5 kbar

SUMMARY

Site 334 was drilled on a steep east-facing slope in a small, deep basin near the middle of magnetic anomaly 5. Acoustic basement lies beneath 259.5 meters of Recent to early late Miocene foram-bearing nannofossil ooze and was drilled 123.5 meters with 20% recovery. Basement consists of an upper 50-meter-thick section of largely aphyric basalt and a lower 67-meter-thick section of fresh, coarse-grained gabbro, serpentinized olivine gabbro, serpentinized peridotite, and breccia. Such a shallow occurrence of a plutonic assemblage was not expected at this site.

Breccias with gabbro and peridotite clasts in a nannofossil-foram ooze matrix are interlayered with the plutonic rocks and may reflect exposure of a mélange in or near the Median Valley of the Mid-Atlantic Ridge prior to burial by later basaltic extrusions. It is probable that uplift along the east-facing slope also assisted in bringing the gabbro-peridotite complex to shallow depths.

The plutonic rocks show mainly primary igneous textures suggestive of a cumulative origin for the peridotites and some of the gabbros.

BACKGROUND AND OBJECTIVES

Sites 332 and 333 provided an excellent insight into the nature of layer 2 of late Pliocene age. Unanswered questions remaining after drilling at these sites concerned the representativeness of the sections drilled, the existence of possible secular variations in basalt sequences, and the nature of materials occurring at levels deeper than those drilled at Sites 332 and 333. With these questions in mind, Site 334 was selected along a sea-floor spreading flow line connecting Sites 332 and 333 with the FAMOUS area at the ridge crest (Figure 1). The line was chosen to avoid fracture zones and to sample material that originated from the same spreading zone as the rocks at Sites 332 and 333.

Site 334 is located in a small sediment pond near the center of magnetic anomaly 5 in crust about 9.0 to 9.5 m.y. in age. Four tracks link the area of Sites 332 and 333 with the area of Site 334. These are the Hudson track of Jan/Feb 1974 (Cruise 74-003) and Glomar Challenger tracks of 17 June, 14 July, and 21/22 July, 1974 (Iuliucci and Aumento, this volume). Magnetic records are presently available only for the three Glomar Challenger tracks, and the magnetic anomaly profiles for these tracks are plotted in Figure 2. Regional gradients have been removed from original total field profiles by fitting linear gradients by eye. In the vicinity of Site 334 the profiles are separated by close to 9 km. However, as the result of a maneuver to avoid traffic, Profile 1 crosses Profile 2 and runs about 2 km to the south of it in the vicinity of Sites 332 and 333. Correction has been made for the major deviation from a line during this maneuver.

There is a strong coherence between the three profiles, indicating that a well-defined linear anomaly pattern exists in the area of the survey tracks. Phase agreement holds well throughout from the points in the vicinity of Sites 332 and 333 to the broad positive anomaly identified as anomaly 5. If this identification is correct, spreading has been very uniform over the area of the survey at a rate close to the 1.17 cm/yr previously determined for this area.

Although Site 334 was selected during the survey of 14 July (Profile 3) the position of the site is projected with the smallest offset onto the 17 June profile (Profile 2). The site lies on the young side of positive anomaly 5, but at a significant distance from the next youngest

¹F. Aumento, Dalhousie University, Halifax, Nova Scotia (Cochief scientist); W.G. Melson, National Museum of Natural History, Smithsonian Institution, Washington, D.C. (Co-chief scientist); H. Bougault, Centre Océanologique de Bretagne, Brest, France; L. Dmitriev, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.; J.F. Fischer, The University of Texas at Arlington, Arlington, Texas; M. Flower, Ruhr-Universität Bochum, Bochum-Querenburg, West Germany; J.M. Hall, Dalhousie University, Halifax, Nova Scotia; R.C. Howe, Indiana State University, Terre Haute, Indiana; R.D. Hyndman, Dalhousie University, Halifax, Nova Scotia; G.A. Miles, University of Oregon, Eugene, Oregon; P.T. Robinson, University of California, Riverside, California; T.L. Wright, U.S. Geological Survey, Washington, D.C.

Figure 1. Index map showing location of Leg 37 drill sites.

Figure 2. Magnetic anomaly profiles along three Glomar Challenger tracks linking the vicinities of Sites 332, 333 and 334.

negative anomaly. Talwani et al. (1971) give the age of anomaly 5 as from 8.71 to 9.94 m.y. If it is assumed that spreading was uniform within this interval, linear interpolation within anomaly 5 on Profile 2 gives an age for the magnetic source at Site 334 of 8.9 m.y.

Although the identification of the broad positive anomaly at this site as anomaly 5 seems well based, there is a clear conflict between the magnetic and paleontological estimates for the age of basement. Howe and Miles (this volume) find a basement age of 10-11 m.y. which is significantly older than the age from magnetic anomaly identification. This discrepancy has not yet been resolved.

The drill string was spudded in at Site 334 near the base of a steep, west-facing slope on the hypothesis that the slope was a fault scarp, and that faulting had exposed material from sections deeper in the crust.

The principal objectives for this site were to obtain an older basement sequence for comparison with Sites 332 and 333 in regard to macroscopic features, petrography, chemical composition, magnetic stratigraphy, and sonic velocities. The site was chosen at the base of a suspected fault scarp in an attempt to reach deeper into the crust than had been possible at Sites 332 and 333.

OPERATIONS

At 0230 hr 14 July *Glomar Challenger* left Site 333 and profiled 38 miles west-northwest to Site 334, where at 0930 hr 14 July a 16-kHz beacon serial 252 was dropped on the second pass over the site (Figure 1). After arriving on station a sonobuoy record was made.

A sediment thickness of 195 meters was estimated from the sonobuoy record, but the actual thickness found by drilling was 259.5 meters. This discrepancy could not be explained by errors in our estimates of sediment velocities nor by errors in measurements of travel times on the records. At this site, as later at Site 335, a likely explanation appears to be the presence of side reflections which were mistaken for acoustic basement.

The drill string was spudded in at 1930 hr in 2632 meters of water, and a 6-meter surface core was retrieved. The string was then washed to 129.5 meters subbottom where continuous coring was commenced. Heat-flow measurements were made at 139 and 177 meters subbottom.

Basalt basement was encountered at 259.5 meters subbottom. The basalt was hard to drill, the penetration rate being only 4.5 m/hr, slower than for any previous hole on Leg 37. In contrast, hole sloughing and high bit torque experienced at other sites were not encountered here. The lower penetration rates and severe bit bouncing reduced the expected life of the bit by 50% in spite of the continuous use of the heave compensator.

The bit was pulled after a total subbottom penetration of 376.5 meters. Two cones were missing from the bit.

A summary of cores taken at Site 334 is given in Table 1.

Glomar Challenger departed the site at 1400 hr 17 July.

LITHOLOGY

A single hole was drilled at Site 334; it was cored from 0 to 6 meters, washed from 6 to 129.5 meters, and then continuously cored to the bottom of the hole at 376.5 meters below the sea floor. The lithologic section consists of 259.5 meters of sediment overlying acoustic basement, approximately 50 meters of basalt with some interlayered sediment, and below the basalt, approximately 67 meters of gabbro, olivine gabbro, and peridotite.

Sediments

The punch core from 0 to 6 meters consists of firm, very pale brown (10YR 7/4) to white (10YR 8/2), foram-bearing nannofossil ooze capped by 45 cm of watery, very pale brown (10YR 7/3) nanno-foram ooze.

Cores 2-4 consist almost entirely of very stiff, white (N9) to light gray (N8), foram-bearing nannofossil ooze composed of 96% nannofossils, 3% forams, and trace amounts of sponge spicules, pyrite, and volcanic glass. A few thin (0.5 cm thick) green (10GY 5/2) and greenish-gray (5G 8/1) layers interrupt the otherwise homogeneous character of the sediments. A black patch in Section 4, Core 2 is rich in glauconite and hematite(?).

TABLE 1 Coring Summary, Site 334

Core	Date (July 1974)	Time	Depth From Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recovered (m)	Recovery (%)
1	14	2000	2632.0-2638.0	0.0- 6.0	6.0	3.0	50
2	14	2250	2761.5-2771.0	129.5-139.0	9.5	9.5	100
Heat Flo	w						
3	15	0130	2771.0-2780.5	139.0-148.5	9.5	2.9	31
4	15	0230	2780.5-2790.0	148.5-158.0	9.5	1.8	19
5	15	0335	2790.0-2799.5	158.0-167.5	9.5	5.0	53
6	15	0445	2799.5-2809.0	167.5-177.0	9.5	3.2	34
Heat Flo	w						
7	15	0705	2809.0-2818.5	177.0-186.5	9.5	9.5	100
8	15	0940	2818.5-2828.0	186.5-196.0	9.5	3.2	34
9	15	1100	2828.0-2837.5	196.0-205.5	9.5	6.2	65
10	15	1210	2837.5-2847.0	205.5-215.0	9.5	8.5	89
11	15	1320	2847.0-2856.5	215.0-224.5	9.5	6.2	65
12	15	1440	2856.5-2866.0	224.5-234.0	9.5	5.5	58
13	15	1600	2866.0-2875.5	234.0-243.5	9.5	9.5	100
14	15	1715	2875.5-2885.0	243.5-253.0	9.5	1.4	15
15	15	1830	2885.0-2894.5	253.0-262.5	9.5	0.5	5
16	15	2150	2894.5-2904.0	262.5-272.0	9.5	4.55	48
17	16	0130	2904.0-2913.5	272.0-281.5	9.5	2.5	26
18	16	0355	2913.5-2923.0	281.5-291.0	9.5	1.6	17
19	16	0750	2923.0-2932.5	291.0-300.5	9.5	2.4	25
20	16	0915	2932.5-2942.0	300.5-310.0	9.5	2.2	23
21	16	1110	2942.0-2951.5	310.0-319.5	9.5	0.8	8
22	16	1255	2951.5-2961.0	319.5-329.0	9.5	1.6	17
23	16	1500	2961.0-2970.5	329.0-338.5	9.5	1.5	16
24	16	1825	2970.5-2980.0	338.5-348.0	9.5	3.8	40
Heat Flor	w						
25	17	0115	2980.0-2989.5	348.0-357.5	9.5	1.0	11
26	17	0400	2989.5-2999.0	357.5-367.0	9.5	1.4	15
27	17	0700	2999.0-3008.5	367.0-376.5	9.5	0.3	3
				Total	253.0	99.55	39

Cores 5-9 are composed chiefly of watery to very stiff, light gray (N7), greenish-gray (5GY 6/1), or olivegray (5Y 6/1) nannofossil ooze composed of 85% nannofossils, 3% forams, 8% volcanic glass, 3% Radiolaria, and trace amounts of sponge spicules and pyrite. Either nearly continuous volcanic activity took place during the deposition of these sediments to explain the uniform occurrence of glass or perhaps the shards were once in discrete layers and were later redistributed by burrowing organisms. In comparison to younger and older cores, the radiolarian content of Cores 5-9 is significantly higher. Pumice fragments are prevalent in Cores 7 and 9.

Cores 10-13 are quite similar to Cores 2-4. They consist of watery to stiff, light gray (N7 to N8), forambearing nannofossil ooze composed of 97% nannofossils, 2% forams, and a trace of pyrite.

Below acoustic basement, Cores 16, 17, and 20 have interlayered sediment. Rare limestone, probably at one time nanno ooze, is interbedded with basalt in Cores 16 and 17. Core 20 has 40 cm of well-indurated calcareous sediment, two pieces of which are pale yellow (2.5Y 8/4) nannofossil ooze. A third piece is pale yellow to light yellow-brown sediment showing intense burrowing. The basal sand of this layer is composed of 85% nannofossil-chalk clasts, 10% basalt glass, 2% forams, 2% zeolite, and trace amounts of pyroxene and plagioclase. A few manganese dendrites discolor the surface of the core.

Basement

Acoustic basement was encountered at 259.5 meters and drilled to a bottom hole depth of 376.5 meters. A total of 25.2 meters of core was recovered. Three major lithologic units have been recognized; an upper sequence of sparsely phyric basalt, a lower sequence of aphyric basalt, and a basal sequence of mafic and ultramafic plutonic rocks (Table 2). In the two basalt units 14 cooling breaks can be recognized on the presence of glass rinds and interlayered sediments. The plutonic unit is a sequence of interlayered gabbro, olivine gabbro, and peridotite with several distinct breccia zones. Major element compositions of the basement rocks are given in Tables 3A and 3B and trace element compositions in Tables 3C and 3D (at end of text).

Unit 1 consists of light gray, medium-grained, sparsely phyric basalt. Glass rinds are locally present but no interlayered sediment was observed. Phenocrysts make up from 5% to 10% of typical specimens and consist of plagioclase with small amounts of augite and olivine. The plagioclase occurs in subhedral, often corroded, crystals from 1 to 5 mm in length; most crystals are at least Ander-70 and are only weakly zoned, although a few have narrow sodic rims. The plagioclase crystals occur either singly or in small glomerophyric clots associated with augite $(2V_2 = 45^\circ)$ and olivine microphenocrysts. All of the olivine has a composition of Fo85-90 based on a 2V of approximately 90°, and most crystals show some rounding and corrosion.

All of the basalts from Unit 1 have a fine-grained quenched groundmass with prominent skeletal plagioclase laths up to 0.5 mm in length. Small skeletal crystals of olivine average about 5% and augite is present in variable amounts. These crystals are in a glassy to microcrystalline matrix showing incipient crystallization to clinopyroxene and iron oxide.

Olivine crystals are fresh or show only slight alteration to iddingsite. Yellow smectite replaces some glass and lines sparse vesicles near fractures, but most of the groundmass is unaltered.

Unit 2 is a sequence of medium gray, aphyric basalt containing numerous glass rinds and interlayered sediments. Except for the absence of phenocrysts, these basalts are mineralogically and texturally similar to those of Unit 1. All are fine-grained rocks showing quench textures and all contain about 5% of groundmass olivine. Most specimens have a few plagioclase microphenocrysts but these never exceed 1%.

These basalts are notably more altered than those of Unit 1. The olivine is completely replaced by brown smectite and minor carbonate, and in many specimens the interstitial material is largely replaced by smectite. Smectite and carbonate are also common vesicle fillings.

A complex interlayered sequence of gabbro, olivine gabbro or troctolite, and serpentinized peridotite comprises Unit 3. The bulk of this unit consists of light brown very coarse-grained, two-pyroxene gabbro. Most of these rocks have a hypidiomorphic granular texture; some are slightly deformed with marginal granulation of crystals. Prismatic crystals of orthopyroxene ($2V_x = 80^\circ$), up to 1.5 cm long, average about 20% and pale green augite ($2V_z = 50^\circ$) averages 30%. Both pyroxenes are characterized by abundant exsolution lamellae and the augite crystals have prominent (100) parting. Many of these crystals are marginally uralitized to pale green amphibole. Plagioclase crystals generally range from 2 to 5 mm in diameter, are anhedral to subhedral, and often contain small inclusions of pyroxene. Most have a composition of Anss-90. Some of the gabbros contain small quantities (up to 10%) of olivine (Foss-ss), which is usually partly to completely serpentinized. Primary iron oxides are rare to absent. Except for serpentinization of the olivine, the gabbros are generally fresh. Some specimens, particularly those that have granulated crystal margins, contain some interstitial chlorite and talc(?).

The peridotites are very distinctive, dark gray to greenish-gray lherzolites with abundant ovoids of serpentinized olivine up to 1.5 cm across. Fresh olivine crystals (Fo%) are commonly twinned and contain abundant inclusions of red-brown picotite. The serpentine pseudomorphs contain trains of magnetite dust and are cut by narrow veinlets of carbonate. Large prismatic crystals of orthopyroxene make up 10% to 40%. Exsolution lamellae are not common in these crystals but picotite inclusions are typically rimmed with augite. Augite crystals generally make up less than 10% and plagioclase usually less than 5%.

The olivine gabbros or troctolites are intermediate in composition and consist of serpentinized olivine, clinopyroxene and orthopyroxene, and plagioclase. These rocks are texturally similar to the associated gabbros. They grade into either gabbro or lherzolite with

TABLE 2 Lithologic Units in Acoustic Basement at Site 334

Unit	Interval	Core Recovered (m)	Probable Maximum Thickness (m)	Lithology
1	15-1, 150 cm to 16-3, 90 cm	2.5	12	Light gray, medium-grained, sparsely phyric basalt with phenocrysts of plagioclase, augite, and olivine
2	16-3, 90 cm to 21-1, 15 cm	10.8	45	Light gray, medium-grained aphyric basalt with numerous glass rinds and sedimentary interbeds
3	21-1, 15 cm to 27-1, 50 cm	10.3	65.5	Interlayered gabbro, olivine gabbro, and serpentinized peridotite with numerous breccias containing plutonic clasts in a nannofossil chalk matrix

decreasing or increasing percentages of olivine. The degree of serpentinization in the troctolites is directly related to the modal percent of olivine.

Both the gabbros and peridotites have numerous breccia zones. These consist of angular fragments of gabbro and peridotite together with broken crystals of feldspar and pyroxene. Some breccias have a matrix of finely comminuted material of the same composition, but in others the matrix consists of light brown nannofossil chalk. No basalt fragments occur in the breccias, and no such breccias have been found in the overlying basalts themselves. These breccias are tentatively interpreted as indicating cold extrusion or tectonic uplift of the coarse-grained rocks onto the ocean floor in the median valley prior to eruption of the overlying basalts.

Sulfide and oxide minerals in the basalts of Site 334 are similar to those in other basalts recovered on Leg 37. Magnetite is by far the most abundant oxide and is generally skeletal in shape. Ilmenite occurs in residual glass and spinel is closely associated with olivine.

The sulfides are almost entirely in the form of small globules, hence are presumably primary. There are hematite patches in several thin sections which may have been derived from earlier secondary sulfides. In Core 20, Section 2, there are abundant thin, botryoidal pyrite crusts growing on smectite. These crusts are almost certainly secondary, but their derivation is not clear.

The gabbros and peridotites are devoid of primary magnetite. They have some chromite and much secondary magnetite and sulfide. The secondary opaques occur in serpentine, in brecciated areas, and in altered exsolution lamellae within some of the pyroxenes.

The sulfides in the plutonic rocks are far more complex than those in the basalts. Grains with three and four distinct phases are often present. Bornite, pyrrhotite, chalcopyrite, and pyrite have been tentatively identified and there are at least two additional unidentified phases. It appears that these rocks have the highest copper and sulfur contents of all rocks examined on Leg 37.

PHYSICAL PROPERTIES AND HEAT FLOW

The paleomagnetic results from this site fall into three groups: sediments, basalts, and the gabbroperidotite complex. The sediments yield a clear picture of part of the worldwide geomagnetic reversal sequence. Since only the lowest half of the 259-meterthick sediment section was cored continuously, the paleomagnetic record cannot be correlated unambiguously with the worldwide sequence. Howe and Miles (this volume) find that a convincing fit can be made if it is assumed that normal polarity epoch 9, which is seen in linear anomaly patterns as anomaly 5, extends from 148 to 187 meters subbottom in the sediment sequence. If this identification is correct the basement age must be greater than is implied by the location of the site within what is apparently anomaly 5. This difference in apparent ages for basement has not been resolved.

The 50-meter-thick sequence of pillow basalts underlying the sediment column consists of two lithological units with well-defined statistically identical cleaned natural remanence (NRM) inclinations (Table 4). The mean cleaned inclination is $+53.1 \pm 3.1^{\circ}$ (S.D. of mean) for shipboard samples. This inclination is indistinguishable from the expected dipole inclination for the site of $+56^{\circ}$, and the polarity of the lava sequence is consistent with the location of the site within a positive magnetic anomaly (Hall and Ryall, this volume). The small scatter of cleaned NRM inclinations suggests that eruption of the sequence took place over an interval of not more than 100 yr. Generally well developed alteration by seawater at close to ocean bottom temperatures has strongly influenced the magnetic properties of the pillow basalts, with Curie point, Q ratio, and mean demagnetizing field now relatively high, and remanence intensity, initial susceptibility, and saturation magnetization now relatively low.

Paleomagnetic inclinations in the gabbro-peridotite complex are scattered, probably because of the mélange nature of the complex. The poorly defined average direction is inclined upwards, in contrast to the uni-

TABLE 4 Magnetic Measurements for Basement Rocks from Site 334

	Cation		R	ock Mag	netic Da	ta			Pale	eomagne	tic Data						Sample
Sample	Deficiency	Curie			SUS/	NRM/	0						Sta	ble	Micro	Data	Depth
(Interval in cm)	Z	Temp	JSAT	SUS	JSAT	JSAT	(F=0.45)	J (0)	I (0)	D (0)	J (200)	MDF	Inc	Dec	Content	Size	(m)
16-1, 22-25 (2)	0.78	310	0.440	182	0.143	8.6	133.7	10947	58.4	33.3	7322	252.9	58.3	32.7	0 50	2.30	262.72
16-1, 110-113 (2)	0.76	307	0.436	221	0.175	2.1	27.0	2682	36.9	21.7	2679	362.9	39.2	23.5			263.60
16-2, 109-112 (2)	0.44	206	1.037	659	0.219	2.3	22.9	6788	49.7	14.3	2252	134.2	52.5	14.1			265.09
16-3, 16-19 (2)	0.32	170	1.085	1587	0.504	2.5	11.0	7850	47.0	196.0	1914	105.0	50.2	198.1			265.66
16-4, 7-10 (2)	0.78	310	0.417	182	0.151	2.6	38.0	3113	58.2	214.8	2502	286.7	54.7	216.5			267.07
16-4, 110-113 (2)	0.71	287	0.397	248	0.215	2.9	29.6	3308	57.9	164.7	1632	189.3	60.7	160.3	0.30	2.70	268.10
16-5, 19-21 (2)	0.91	366	0.483	256	0.183	0.8	9.7	1116	39.1	189.2	538	196.6	38.4	191.9			268.69
17-1, 77-80 (2)	0.82	329	0.304	244	0.277	2.1	17.0	1864	41.6	199.3	1384	263.8	42.2	201.2			272.77
17-2, 140-143 (2)	0.76	307	0.298	182	0.211	5.7	60.0	4918	59.2	70.1	4503	333.9	59.1	69.0			274.90
17-3, 3-6 (2)	0.69	284	0.377	201	0.184	3.0	36.5	3302	57.9	251.8	2080	246.3	59.3	254.7	0.40	2.90	275.03
17-3, 95-98 (2)	0.73	297	0.343	232	0.233	1.6	15.3	1600	64.9	336.9	815	208.3	63.6	335.5			275.95
18-1, 20-23 (2)	0.87	350	0.342	159	0.160	5.2	72.0	5149	71.1	276.8	4164	313.5	71.2	274.8			281.70
19-1, 6-9 (2)	0.89	358	0.366	208	0.196	6.2	70.7	6616	60.0	123.6	5777	332.9	60.0	121.1			291.06
19-2, 47-49 (2)	0.87	350	0.374	269	0.248	1.5	13.1	1580	46.8	114.1	1376	288.5	47.4	110.6			292.97
19-3, 93-95 (2)	0.85	339	0.356	271	0.262	3.0	25.7	3133	47.7	64.1	2438	303.0	48.2	65.3	0.30	2.10	294.93
20-1, 98-100 (2)	0.71	289	0.492	360	0.252	0.6	5.6	909	40.0	98.0	365	90.0	54.3	84.9			301.48
20-2, 16-18 (2)	0.53	230	0.814	698	0.296	1.1	8.0	2510	60.0	325.0	700	100.0	62.6	329.3			302.16
20-2, 38-40 (2)	0.76	307	0.464	291	0.216	0.6	6.1	800	49.8	327.2	413	194.3	64.1	328.3			302.38
21-1, 47-49 (2)				75			2.3	78	-26.7	331.4	56	358.0	-24.3	332.1	0.10	2.90	310.47
22-2, 61-63 (2)		577	1.170	4679	1.379	1.5	2.4	5154	-60.9	205.7	288	107.2	-55.6	207.1	1.20	3.70	321.61
23-1, 127-129 (2)		527	0.147	137	0.321	0.6	4.1	253	4.4	287.3	201	467.4	9.3	289.7			330.27
24-1, 92-94 (1)								3									339.42
24-1, 93-94 (2)								22									339.43
24-3, 112-114 (2)				62			0.2	6	-30.0	37.0	3		1.8	187.0			342.62
24-4, 95-97 (2)		572	0.187	681	1.256	1.5	2.7	821	-19.0	269.0	123	125.0	-6.8	275.3	0.20	2.60	343.95
26-1, 20-22 (2)		578	0.311	1680	1.863	2.4	2.8	2140	-77.0	72.0	368	120.0	-68.3	48.7	1.20	4.10	357.70

Note: J(0) and J(200), intensity of natural remanent magnetism and NRM intensity after AF demagnetization in 200-oe field; respectively; JSAT, saturation intensity; SUS, magnetic susceptibility; Q, Königsberger ratio; I(0), inclination; D(0), declination; MDF, median destructive field. From Hall and Ryall, this volume.

Sample (Interval in cm)	x	Q	<i>J</i> (0)	<i>I</i> (0)	MDF	J ₁₀₀ /NRM (or J _{max} /NRM)	△ Direction (deg) at MDF
16-3, 29-31	6500	1.3	3900	U	200	0.89	8
19-2, 17-19(a)	14200	0.4	2500	U	250	0.93	4*
19-2, 17-19(m)	9900	1.7	7700	U	300	(1.08 at 50 oe)	2
19-2, 17-19(i)	14900	0.6	3700	U	200	1.0	3
21-1, 36-47(a)	8500	0.15	6800	U	425	0.90	1
21-1, 36-47(b)	7700	0.19	6500	U	275	0.98	4
22-2, 34-35(a))			33000	-65	—	-	
22-2, 34-35(b)	32300	0.20	33000	-63	>400	0.95	2
22-2, 34-35(c)	,		20000	-64	175	0.81	2
27-1, 38-50(a))			_	U	_	-	-
27-1, 38-50(b)	16800	0.10	8400	U	150	(1.03 at 50 oe)	3
27-1, 38-50(c)	J		6300	U	-		-

Note: J(0), natural remanent magnetization intensity in units of 10^{-6} emu. cm⁻³ (average for sample where bracketed χ , susceptibility in units of 10^{-6} emu. cm⁻³, oe⁻¹ (average for sample where bracketed); Q, Königsberger ratio (NRM 10.45χ) $I(0)^{\circ}$, inclination of NRM; $J_{100}/$ NRM, residual NRM fraction after 100 oe AF cleaning; J_{max} , maximum intensity reached during AF demagnetization; MDF, mean destructive field; U, unoriented sample. All others were partially (vertically) oriented; *Denotes angular shift with respect to 50-oe demag step instead of NRM. From Brecher et al., this volume.

Sample (Interval in cm)	<i>J</i> (0)	<i>I</i> (0)	D(0)	J(200)	MDF	Stable I	Stable D	TRM	SRM	SRM(h)
20-1, 114-116	1090	+25	137	644	230	Indet.	Indet.	8690	349	520
22-2, 52-55	5770	-57	210	627	130	-64	216	38500	1230	1490
24-3, 55-58	36	-29	152	-		-	-		-	-

Note: J(0), intensity of magnetization in emu/cc, for natural remanent magnetization; J(100), intensity following 100-oe demagnetization; I(0), inclination of NRM; D(0), declination in degrees; MDF, median destructive field; TRM, laboratory thermoremanence acquired in 0.5 oe from an unspecified temperature; SRM, saturation remanence in natural state; SRM(h), saturation remanence after laboratory thermoremanence acquisition. From Carmichael, this volume.

Sample (Interval in cm)	D	I	$Jn \times 10^3$ (Gauss)	$k \times 10^3$ (Gauss/oe)	Q_n
20-1, 114-116	294	+28	1.54	0.307	11
26-2, 4-7	162	-44	2.94	4.22	1.5

D, declination, degrees; I, inclination, degrees, positive downward; J_n , intensity of magnetization; k, initial susceptibility measured in 0.31 peak oe; Q_n , Königsberger ratio $Q_n = J_n/kH$, where H = 0.45 oe. is the present in situ field. From Deutsch et al., this volume.

TABLE 4 - Continued

Sample (Interval in cm)	$J_{\rm nrm} \times 10^{-4}$	D _{nrm}	<i>I</i> nrm	$J_{100} \times 10^{-4}$	D ₁₀₀	I ₁₀₀	$J_{200} \times 10^{-4}$	D ₂₀₀	I ₂₀₀	$J_{100}/J_{\rm nrm}$	J ₂₀₀ /J _{nrm}
19-2,6	19.11	346.5	-65.6	14.63	354.4	-70.1	3.32	352.9	-71.8	0.77	0.17
22-1, 57	3.85	0.4	48.6	3.82	359.5	49.9	3.62	0.1	50.6	0.99	0.94
22-2, 52	41.45	108.4	-70.7	15.05	114.6	-67.1	0.87	60.2	-64.6	0.36	0.02
22-2, 85	34.19	49.2	-67.4	11.38	44.3	-62.2	1.30	29.3	-63.3	0.33	0.04

Note: J_{nrm} , J_{100} , and J_{200} , intensity of magnetization in emu/cc, for natural remanent magnetization, and following 100 oe and 200 oe, demagnetization treatment, respectively; corresponding directions given by D and I where D, declination in degrees east of an arbitrary zero azimuth; I, inclination in degrees with respect to the horizontal, negative above the horizontal. J100/Jnrm and J200/Jnrm are simple magnetic stability indices. The present mean inclination of the geomagnetic field at Sites 332B, 334, and 335 = +59°; axial dipole inclination = +56.5°. From Ell-wood and Watkins this volume.

		Intensity Direction									
Sample		(10 G)		NRM		Stable			k ^c _4		MDF ^e
(Interval in cm)	Depth(m) ^a	NRM	100 oe	Dec.	Inc.	Dec.	Inc.	H _b	(10 G/oe)	Qn^{C}	(oe)
19-2, 70	40	26.2	26.3	156	65	140	69	400	2.53	10.3	302

^aApproximate subbasement depth in meters.

 ^{b}H is the AF demagnetizing field for each stable direction.

 $c_k = initial susceptibility.$

 $^{d}Qn = NRM$ intensity/susceptibility.

^eMDF = median destructive field of NRM. From Kent and Lowrie, this volume.

formly downwards magnetization of the overlying pillow basalts. Magnetization intensity varies by three orders of magnitude, with serpentinized peridotite as magnetic as the overlying basalts and fresh gabbro effectively nonmagnetic.

Pillow basalt compressional wave velocities at this site average 6.32 ±0.12 km/sec (S.D. of mean) (Table 5). Fresh gabbros of the plutonic complex have a mean velocity of 7.21 km/sec (Hyndman, this volume), which is appropriate for the upper part of crustal layer 3 (i.e., 3a) rather than layer 2 if a small amount of fracturing or low velocity material is present. If the peridotites were little serpentinized before being brought to near the surface of layer 2, such a complex at the base of the crust would explain the basal layer (3b) that has sometimes been observed by refraction measurements with velocities between those of oceanic layer 3 and the mantle. When compared with the basalts recovered from all Leg 37 sites the gabbros are denser, less porous, less conducting electrically, but better conducting thermally. In contrast, the serpentinized peridotites are less dense than the basalts, while in other physical properties they show differences in the same sense as shown by the gabbros.

Other physical properties of basement rocks are given in Table 6.

Several temperature measurements were made at Site 334 and a best estimate of conductive heat flux is 1.16 ± 0.8 HFU.

BIOSTRATIGRAPHY

General

Cores 1 through 14 contain abundant and wellpreserved planktonic foraminifers and calcareous nannoplankton. Core-catcher samples from Site 334 were examined for Radiolaria. The radiolarians are common and well preserved, but are absent from core-catcher samples in Cores 2, 3, 12, 13, and 14. Core 1 sediments are Pleistocene in age, while those of Cores 2 through 14 are late Miocene in age.

Minor amounts of sediment occur as indurated veins, interbeds, and components of breccias in the basalt and ultramafic rocks of the basement sequence. Sediments in Cores 16, 17, 20, 22, and 26 were examined for calcareous nannoplankton. All samples are barren except those from Core 20, Section 2, and from Core 22, Section 2. Samples from Section 2 of Core 20 yielded abundant and well-preserved calcareous nannoplankton as well as foraminifers. The foraminifers indicate an age of early late Miocene. A breccia interbed which bears a small amount of indurated calcareous sediment is present in ultramafic rocks in Core 22, Section 2. This material contains a few moderately preserved nannofossils.

Planktonic Foraminifers

Sediments in Core 1 are late Pleistocene in age and are assigned to Zone N23. The uppermost part of the core may be Holocene, but this could not be determined with certainty. The faunas of this core are dominated by temperate species, although some species indicative of warmer water are present.

Sediments in Cores 2 through 14 are assigned to the upper Miocene, but the subdivision of these sediments is difficult because of the absence of some important zone species.

Cores 2 through 6 are placed in Zone N17. Included within this interval is the predominantly Miocene species, *Globigerinoides mitra*. The Zone N16/N17 boundary could not be distinguished by the use of planktonic foraminifers, but it was roughly established by using Radiolaria from core-catcher samples. It is placed between Cores 6 and 7 based on the first downhole occurrence of *Ommartartus hughesi* in Sample 334-7, CC.

Faunas in Cores 7 through 12 and Sample 334-13-1, 106-108 cm are assigned to Zone N16. *Globoquadrina advena* first appears in Core 13, Section 2, marking the approximate top of Zone N15. Sediments in the interval between Sample 334-13-2, 51-53 cm and basement are assigned to this zone. Faunas in the chalk interbed in Section 2 of Core 20 are also referable to Zone N15.

The absolute age of the sediment-basement contact in Hole 334 is approximately 10.5 to 11.0 m.y.B.P.

Radiolaria

Core-catcher samples from Cores 1 through 14 and lithified sediments from Core 20 were examined for Radiolaria. Sample 334-1, CC and Samples 334-4, CC through 334-11, CC contain Radiolaria which are common and well preserved. The remaining samples are barren.

Core 1 contains radiolarians of Pleistocene age. Cores 4 and 5 contain nearly uniform assemblages which include *Stichocorys delmontensis* and *Stichocorys peregrina*. The co-occurrence of these species indicates an age of late Miocene. Core 6 faunas are similar, but do not include *S. peregrina*. Faunas in Cores 7 through 11 also resemble those of Cores 4 and 5, but are characterized by the presence of *Ommartartus hughesi* and the absence of *S. peregrina*. In addition, rare specimens of *Ommartartus penultimus* and *O. antepenultimus* are present in some samples within this interval. Cores 7 through 11 are assigned to the *Ommartartus antepenultimus* Zone of the upper Miocene, based on the presence of *O. hughesi*.

Nannofossils

Cores above acoustic basement are dominated by well-preserved late Miocene nannofossils. Cores taken below have only poorly preserved nannofossils, making age determinations difficult. Ages determined are based almost entirely on core-catcher samples.

The upper portion of Core 1 has *Emiliania huxleyi* and *Gephyrocapsa oceanica* indicative of Zone NN21.

Cores 2-10 are placed in Zone NN11 on the occurrence of Coccolithus pelagicus, Cyclococcolithina leptopora, Discoaster berggrenii, D. brouweri, D. challengeri, D. pentaradiatus, D. surculus, D. variabilis, Helicopontosphaera kamptneri, Reticulofenestra pseudoumbilica, Sphenolithus abies, and the rare occurrence of Discoaster quinqueramus. Ceratolithus

A Carlo Carl								
Sample (Interval in cm)	Density (g/cm ³)	Ham. Frame (km/sec)	P (0.5) (km/sec)	S (0.5) (km/sec)	P/S (0.5)	P (2.0) (km/sec)	S (2.0) (km/sec)	P/S (2.0)
16-2, 89 (B)	2.820	5.80	5.94	3.30	1.80	6.00	3.32	1.81
16-4, 105 (B)	2.928	6.20	6.44	3.62	1.78	6.47	3.63	1.78
18-1, 85 (B)	2.945	6.25	6.40	3.60	1.78	6.44	3.62	1.78
18-2, 13 (B)	2.893	6.23	6.40	3.60	1.78	6.42	3.62	1.77
2-1, 40 (G)	3.002	7.17	7.29	3.98	1.83	7.34	4.01	1.83
21-1, 79 (G)	2.969	7.61	7.17	4.08	1.76	7.29	4.11	1.73
22-1, 70 (G)	3.013	6.82	6.96	3.93	1.77	7.02	3.99	1.76
22-2, 44 (P)	2.836	6.16	6.75	3.33	2.03	6.97	3.33	2.09
23-1, 77 (G)	3.034	7.13	7.23	4.02	1.80	7.28	4.04	1.80
24-1, 64 (G)	2.871	7.11	7.29	3.93	1.85	7.42	3.95	1.88
24-4, 87 (G)	2.851	6.39	6.85	3.84	1.78	6.92	3.87	1.79
26-1, 19 (G)	2.640	5.68						
26-2, 20 (P)	2.666	5.45						
Mean of basalts	2.882	6.46	6.79	3.75	1.81	6.87	3.77	1.82
Mean of gabbros	2.957	7.04	7.13	3.96	1.80	7.21	4.00	1.80

TABLE 5 Seismic Velocities of Basalts (B), Gabbros (G), and Peridotities (P) from Site 334

 TABLE 6

 Physical Properties of Basalts (B), Gabbros (G), and Peridotites (P) from Site 334

Sample (Interval in cm)	Depth Below Bottom (m)	Depth Below Top Basalt (m)	Bulk Density (g/cm ³)	Grain Density (g/cm ³)	Porosity (vol %)	Water Content (Wt %)	Resistivity (ohm-m)	Velocity (P) 0.5 kbar (km/sec)
16-2-89 (B)	264.9	5.4	2.820	2.963	7.3	2.6	114	5.94
16-4-105 (B)	277.6	18.1	2.928	2.995	3.3	1.1	939	6.44
18-1-85 (B)	282.4	22.9	2.945	3.009	3.1	1.0	959	6.40
18-2-13 (B)	283.1	23.6	2.893	3.000	5.3	1.8	721	6.40
21-1-40 (G)	310.4	50.9	3.002	3.017	0.8	0.3	3300	7.29
21-1-79 (G)	310.8	51.3	2.969	3.002	1.7	0.6	1850	7.17
22-1-70 (G)	320.2	60.7	3.013	3.028	0.8	0.3	1150	6.96
22-2-44 (P)	321.4	61.9	2.836	2.868	1.7	0.6	7160	6.75
23-1-77 (G)	329.8	70.3	3.034	3.049	0.8	0.3	1480	7.23
24-1-64 (G)	339.1	79.6	2.871				3540	7.29
24-4-87 (G)	343.9	84.4	2.851				687	6.85
26-1-19 (G)	357.7	98.2	2.666					(5.65) ^a
26-2-20 (P)	359.2	99.7	2.640					(5.88) ^a
Mean of basalts			2.896	2.992	4.7	1.6	683	6.30
Mean of gabbros			2.915	3.024	1.0	0.4	2001	6.92

^aHamilton frame at 1 atm + 0.2 km/sec for 0.5 kbar estimate.

amplificus, C. dentatus, and C. primus also occur rarely in Core 2.

Cores 11-15 commonly have Coccolithus pelagicus, Cyclococcolithina leptopora, Discoaster brouweri, D. challengeri, D. prepentaradiatus, D. variabilis, Helicopontosphaera kamptneri, Reticulofenestra pseudoumbilica, and Sphenolithus abies. Additional occasional occurrences of *Discoaster bollii*, and *D. cf. D. neohamatus* likely place these cores in Zone NN10.

REFERENCE

Talwani, M., Windisch, C.C., and Langseth, M.G., 1971. Reykjanes Ridge Crest, A detailed geophysical study: J. Geophys. Res., v. 76, p. 473-517.

TABLE 3												
Geochemical	Data	for	Igneous	Rocks	at	Site	334					

TABLE 3A Major Element Analyses of Basalt Glasses at Site 334

Samp	ole ^a	Depth (m)	Inv.	Si02	Ti0 ₂	A1203	Total Iron	MnO	MgO	CaO	Na20	к ₂ 0	P ₂ 0 ₅	Total
5-2,	3-	159.53	ML	50.51	1.12	15.60	9.37	-	8.19	11.77	2.42	0.19	0.12	99.29
5-2,	108-	160.58	ML	50.65	1.15	15.65	9.33	-	8.24	11.68	2.41	0.17	0.13	99.41
5-3,	39-	161.39	ML	50.45	1.16	15.78	9.52	-	8.03	12.10	2.41	0.18	0.11	99.74
6-1,	44-	167.94	ML	50.58	1.16	15.46	9.58	-	8.01	12.04	2.43	0.17	0.10	99.53
6-3,	89-	171.39	ML	50.51	1.17	15.60	9.54	-	8.26	12.05	2.43	0.17	0.10	99.83
6-4,	46-	172.46	ML	50.99	1.16	15.61	9.52	-	8.21	12.05	2.39	0.16	0.10	100.19
6-CC,	28-	170.60	ML	50.33	1.14	15.77	9.53	-	7.99	11.95	2.41	0.17	0.10	99.39
6-CC,	60-	170.60	ML	50.72	1.13	15.57	9.56		8.21	11.95	2.41	0.16	0.09	99.80
7-1,	15-	177.50	ML	50.49	1.17	15.43	9.50	-	7.93	11.99	2.44	0.17	0.10	99.22
7-2,	4 -	178.89	ML	50.58	1.14	15.82	9.61	-	8.15	12.10	2.35	0.17	0.10	100.02
7-2,	18-	179.03	ML	50.92	1.13	15.63	9.59	-	8.11	12.15	2.32	0.18	0.09	100.12
7-3,	86-	181.21	ML	50.66	1.19	15.63	9.56	-	7.79	12.15	2.50	0.18	0.10	99.76
8-4,	46-	191.46	ML	50.67	1.16	15.80	9.51	-	8.34	11.75	2.31	0.18	0.12	99.84
9-1,	38-	196.38	ML	50.29	1.18	15.70	9.40	-	8.06	11.84	2.42	0.18	0.11	99.18
9-5,	92-	202.92	ML	50.62	1.15	15.84	9.35	-	7.75	12.11	2.35	0.17	0.11	99.45
10-2,	89-	207.89	ML	51.02	1.15	15.95	9.37	-	7.90	12.18	2.29	0.15	0.11	100.12
11- 1,	22-	215.22	ML	50.73	1.14	15.53	9.24	-	7.58	12.18	2.35	0.16	0.12	99.03
16-1,	30-	262.80	ML	52.14	0.95	14.65	10.01	-	7.28	11.97	2.06	0.22	0.13	99.41
16-1,	104-	263.54	ML	51.82	0.95	14.87	9.87	-	7.53	12.23	2.03	0.19	0.10	99.59
16-5,	72-	269.22	ML	52.20	0.85	14.44	9.91	-	7.99	12.70	1.80	0.08	0.07	100.04
17-1,	4 -	272.04	ML	52.07	0.83	14.45	9.97	-	8.06	12.69	1.83	0.09	0.07	100.06
18-1,	46-	281.96	ML	51.66	0.85	14.62	10.03	-	7.76	12.66	1.79	0.09	0.08	99.54
19-2,	17-	292.67	ML	52.17	0.78	14.62	9.52	-	7.82	12.82	1.80	0.08	0.06	99.67

							M	ajor An	alyses	TABL of Igne	E 3B ous Ro	ocks at	Site 33	34								
Sar	mple ^a	Dept (m)	h Inv	• Method	Si02	Ti02	A1203	Fe203	Fe0	Tota: Iron	L Mn0	Mg0	Ca0	Na ₂ 0	к ₂ 0	P205	co2	н ₂ о-	н20+	Total	LOI	S
5- 2.	14- 1	7 254.	66 AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-	0.0244
5- 2,	14- 1	7 254.	66 GUN	N XRF	50.78	0.89	15.66	2.90	6.84	9.45	0.16	7.32	12.32	1.92	0.34	0.11	-	0.46	0.43	100.13	10	-
5- 2,	30-	254.	80 AUM	TRACK	-	-		-	-	-	- 1	-	-	-	-	-	-	-	-	0.00	-	0.0320
5- 2,	30- 3	2 254.	81 BOG	XRF	49.49	0.85	15.54	10.25	-	9.22	0.16	7.52	12.52	1.89	0.31	-	0.24	0.20	0.57	99.54	2.16	-
6-1,	22- 2	5 262.	74 AUM	TRACK	-	-	¥.	14	-	-	-	-	-	-	-	-	0.03	-	-	0.03	-	0.0243
6-1,	22- 2	5 262.	74 BOG	XRF	50.37	0.88	15.67	10.19		9.17	0.16	7.44	12.49	1.93	0.37	0.11	-	0.56	0.28	100.45	-	-
6-1,	22- 2	5 262.	74 GUN	N XRF	50.99	0.87	15.47	2.54	6.95	9.23	0.16	7.47	12.36	1.96	0.36	0.10	-	0.52	0.40	100.15	77	
6-1,	40- 4	2 262.	91 AUM	TRACK						·	- 17	7 10	10 05	2 05			-	0 55		0.00	-	0.0000
6-1,	40- 4	2 262.	91 GUN	N XRF	51.41	0.92	15.13	2.53	6.8/	9.14	0.17	7.49	12.25	2.05	0.32	0.11	0 07	0.55	0.51	100.31	-	0 0000
6- 1,	110-11	3 203.	62 AUM	TRACK	51 25	0 00	15 00	2 71	6 99	0 22	0 18	7 62	12 11	2 06	0 30	0 11	0.07	0 54	0 26	100.02	_	0.0000
o- 1,	100-11	2 202.	11 AUD	TRACK	21.22	0.90	15.00	2.11	0.00	9.32	0.10	7.02	12.11	2.00	0.30	0.11	0 04	0.54	0.20	0.04		0 0987
6 2,	109-11	2 205.	11 AUP	VDD	40 00	0.86	15 43	9 64		8.67	0.16	7.64	12.47	2.03	0.25	0.10	0.04	0.92	0.47	99.87	-	-
6 2,	109-11	2 205.	11 DUG	NVPF	51 23	0.86	15 50	1.82	7 16	8 80	0.16	7.81	12.31	1.93	0.23	0.10	_	0.54	0.59	100.33	_	-
6- 2	109-11	2 205.	11 GUN	N XRF	51.24	0.86	15.58	1.81	7.16	8.79	0.16	7.75	12.31	2.00	0.23	0.10	_	0.54	0.59	100.33	-	-
6- 3	16- 1	9 265.	68 AUE	AAS	49.89	0.84	15.79	1.50	7.66	9.01	0.15	7.60	11.95	2.07	0.19	0.06	0.07	1.36	0.41	99.54	<u></u>	
6- 3	16- 1	9 265.	68 AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	0.03	-	-	0.03	-	0.0956
6- 3.	16- 1	9 265.	68 BOC	XRF	49.05	0.84	15.46	10.22	-	9.20	0.15	8.00	12.27	2.13	0.19	0.08	0.04	0.80	0.67	99.90	1.57	-
6- 3.	24- 3	1 265.	78 TM	PROBE	51.12	0.85	15.55	1.91	7.08	8.80	0.15	8.21	12.16	1.96	0.21	_	0.12	0.42	0.32	100.06	0.93	-
6- 3.	29- 3	1 265.	80 FW	XRFFP	50.80	0.87	15.53	1.27	7.40	8.54	0.16	7.91	12.08	2.01	0.21	0.08	0.07	0.69	1.01	100.09	1.21	-
6- 3.	29- 3	1 265.	80 ISH	XRF	49.70	1.09	14.80	-	-	9.48	0.18	7.23	12.20	1.69	0.28	0.20	-	-	-	96.68	2.88	-
6- 4.	7-1	0 267.	09 AUN	TRACK	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	0.00	-	0.0142
6- 4,	7-1	0 267.	09 BOC	XRF	48.94	0.73	14.63	9.98	-	8.98	0.16	8.50	13.28	1.68	0.17	0.07	0.22	0.50	0.42	99.28	1.07	-
6- 4,	110-11	3 268.	12 AUM	TRACK	-	-	-	-	-	-	-	-	Ξ.	~	-	-	0.04			0.04		0.0038
6- 4,	110-11	3 268.	12 BOO	XRF	49.91	0.73	14.88	10.12	-	9.11	0.16	8.28	13.13	1.80	0.23	0.08	-	0.58	0.20	100.10	-	-
6- 4,	110-11	3 268.	12 GUN	IN XRF	51.04	0.73	14.85	2.85	6.56	9.12	0.16	8.21	12.79	1.78	0.22	0.08	-	0.64	0.47	100.38	-	-
6- 5,	19- 2	1 268.	70 AUE	AAS	-	-	-	3.01	6.28	8.99	-	-	-	-	-	-	-	0.56	0.61	10.46	-	-
6- 5,	19- 2	1 268.	70 AUN	I TRACK	-	-	-	<u> </u>	-	-	-	-	-	-		-		-	-	0.00	-	0.0000
6- 5,	19- 2	1 268.	70 GUN	IN XRF	49.61	0.73	15.78	9.94	-	8.94	0.17	7.91	13.80	1.79	0.19	0.08	-	-	-	100.00	-	-
7-1,	77- 8	0 272.	79 AUN	I TRACK			- -	5%						. 1.			0.01			0.01	$\overline{\sigma}$	0.0053
7-1,	77- 8	0 272.	79 GUN	IN XRF	51.52	0.75	15.10	1.77	6.60	8.19	0.16	8.32	13.06	1.78	0.13	0.08	-	0.57	0.44	100.28	-	-
7-1,	77- 8	0 272.	79 GUN	IN XRF	51.55	0.75	15.10	1.76	6.60	8.18	0.16	8.35	13.04	1.76	0.13	0.08	~ .	0.57	0.44	100.29	-	0 0259
7-2,	140-14	3 274.	92 AUN	I TRACK	-										0 15		0.15			0.15	-	0.0238
7-2,	140-14	3 274.	92 GUN	IN XRF	50.92	0.75	14.90	2.18	6.95	8.91	0.17	8.32	13.10	1.72	0.15	0.08	0 01	0.50	0.09	99.03	-	0 0160
7-3,	3-	6 2/5.	US AUN	I TRACK	10 75	0 7/	14 67	10 01		0 01	0 17	0 51	12 02	1 70	0 10	0 00	0.01	0 43	0 07	0.01		0.0109
/- 3,	3-	6 275	05 800	N VDE	49.75	0.74	14.07	2 07	7 07	9.01	0.17	8 48	12.95	1.68	0.16	0.08		0.43	0.53	100 21	_	-
7-3,	57 5	0 275	50 DU	VD FFD	50 22	0.74	14.01	5.02	3 40	7 03	0.16	8 76	13 08	1 82	0.17	0.06	0 10	0.33	0.77	00.58	0.76	_
7 3,	57 5	0 275	58 TCI	I YDF	49 80	1 13	14.00	5.05	5.40	10.80	0.21	7.45	13.10	2.07	0.29	-	-	-	1.02	98.95	-	-
7-3,	05_ 0	8 275	07 AID	TRACK	43.00	1.15	14.00	-			-	-	-		-	-	0.08	-	-	0.08	-	-
7-3,	95- 0	8 275	97 GIN	IN XRF	51.44	0.74	14.95	2.41	6.18	8.35	0.16	8.56	12.89	1.77	0.13	0.08	-	0.65	0.49	100.45	-	-
7-3,	95- 9	8 275	97 GIR	IN XRF	51.06	0.76	15.17	2.47	6.18	8.40	0.16	8.53	13.05	1.72	0.13	0.08	-	0.65	0.49	100.45	-	
8- 1.	20- 2	3 281.	72 AU	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	0.01	-	0.0131
8- 1	20- 2	3 281.	72 GIN	IN XRF	51.16	0.73	14.97	9.80	-	8.82	0.16	8.24	13.02	1.69	0.16	0.07	-		-	100.00	-	-
8- 2	31- 3	3 283	32 FW	XRFFP	51.15	0.76	15.10	1.72	6.50	8.05	0.17	8.71	12.98	1.85	0.13	0.06	0.14	0.46	0.74	100.47	0.80	-
9- 1.	6-	9 291.	08 AU	1 TRACK	-	-	-	-	-	-	-	-	-	-	-	-	0.01	-	-	0.01	-	0.0319
9- 1.	6-	9 291.	08 GU	IN XRF	50.88	0.75	14.85	2.11	7.20	9.10	0.17	8.44	12.87	1.68	0.16	0.08	-	0.42	0.49	100.10	-	-
9- 2.	6-	8 292.	57 SG	S NAA	-	-	-	-	8.80	8.80	-	-	\rightarrow	2.10	-	-	-	-	-	10.90	-	-
9- 2.	17- 1	9 292.	68 TM	PROBE	-	-	-	-	-	-	121	-	-	-	-	-	0.54	0.27	0.31	1.12	-	-
9- 2,	47- 4	9 292.	98 AU	AAS	51.01	0.76	15.15	2.08	6.73	8.60	0.16	8.32	12.80	1.77	0.15	0.06	0.01	0.65	0.84	100.49	-	-
9- 2,	47- 4	9 292.	98 AU	I TRACK		. 5			-		-	-		. .	-	-	0.01		-	0.01	-	0.0131
9- 2	47- 4	9 292.	98 GUN	IN XRF	51.01	0.76	15.26	9.52	-	8.57	0.17	8.26	13.03	1.75	0.15	0.08	_	-	-	99.99	-	-

19- 2	2.	95-101	293.48	ISH	XRF	50.80	0.99	14.30	-	-	10.20	0.07	7.70	13.40	1.64	0.08	0.06	2 —	-	-	99.24	0.58	
19- 2	2.	102-111	293.57	AUM	TRACK	-	-	-		-	-	-		-	-	-	-	0.01	-	-	0.01	-	-
19-	3.	19- 29	294.24	ISH	XRF	-	-	-	-	-	-	-	-	-	-	-	-		0.20	0.82	1.02	-	-
19-		93- 95	294.94	AITM	TRACK	-	_	-	_	_	-	-	-	_	_	_	_	0.01	-	-	0.01	-	0.0204
10-	,	03- 05	204 04	CUNN	VDF	51 24	0.75	14 80	1.84	7 16	8 82	0 17	8 56	12 82	1 66	0 13	0 08	0.01	0 46	0.37	100.04		0.0204
10	,,	00 105	205 02	CM	VDE	50.20	0.75	12 10	11 50	7.10	10.25	0.19	0.00	12.02	1 90	0.15	0.00	_	0.40	0.57	00.04	-	0 1100
19	,	99-103	295.02	CIDIN	ARF	50.20	0.07	15.10	10.40	-	0.36	0.10	0.00	13.10	1.00	0.20	0.09	100	-	-	100 01	-	0.1100
19- 1	,	99-105	293.02	GUNN	ARF	50.21	0.70	15.05	10.40		9.30	0.10	0.40	12.95	1.72	0.17	0.09	-	-	-	100.01	-	-
19	5,	99-105	295.02	MUN	AAS	49.00	0.82	15.20	2.52	1.30	9.5/	0.18	8.52	12.95	1.//	0.20	0.12	-	-	-	98.58	0.90	-
20- 1	,	20- 22	300.71	AUF	AAS	-	-		3.67	4.45	7.75	-	Ξ.	-	-	-	+	-	1.02	9.20	18,34	-	-
20- 1	.,	98-100	301.49	AUF	AAS	49.97	0.75	15.20	3.21	5.68	8.57	0.15	8.27	12.42	2.07	0.18	0.06	0.05	1.29	0.93	100.23	÷.,	-
20- 1	,	98-100	301.49	AUM	TRACK	-	-	-	1 H	-	-	-	-		-	-	\rightarrow	0.04	-	-	0.04	-	0.0000
20- 1		98-100	301.49	GUNN	XRF	51.11	0.75	14.92	9.66	-	8.69	0.15	8.68	12.58	1.89	0.18	0.07	-	-	-	99.99	-	
20- 1	() i	121-123	301.72	ISH	XRF	49.20	0.89	14.70	-	-	9.55	0.15	8.20	12.80	2.10	0.30	-1	-	0.61	1.04	99.50	-	14 1411
20- 2		16- 18	302.17	AUF	AAS	50.42	0.77	15.12	0.97	7.82	8.69	0.16	8.51	12.62	1.88	0.09	0.04	0.01	1.08	0.43	99.92	-	-
20- 2	2	16- 18	302.17	AIM	TRACK	_	_	_	_	-	-	_	_	-	_	-	-	0.01	-	-	0.01	124	0.0845
20- 2	,	16- 18	302 17	ROC	VPF	40 08	0 74	14 61	0 85	100	8 86	0 16	8 00	13 00	1 88	0 10	0.07	0.07	0 60	0 58	00 73	1 20	0.0045
20- 2	,	22 25	202.24	EU	VDEED	50.20	0.74	14.01	1 10	6 90	7 96	0.16	0.99	12 61	1 00	0.10	0.06	0.07	1 02	0.60	00.00	1.20	
20- 2	.,	23- 23	302.24	C W	ARFFF	51.40	0.70	14.70	1.10	0.00	7.00	0.10	0.00	12.01	2.10	0.00	0.00		1.02	0.00	99.00	1.44	-
20- 2		26- 28	302.27	CML	XKF	51.40	0.91	14.60	9.80	-	8.82	0.14	8.40	12.30	2.10	0.17	0.12	-	-	-	99.94		0.0900
20- 2	,	26- 28	302.27	MUN	AAS	49.30	0.84	14.90	3.69	5.20	8.52	0.16	8.57	12.60	1.84	0.16	0.09	-	-	. 3.	97.35	1.49	-
20- 2	,	32- 34	302.33	ISH	XRF	48.30	0.81	14.20	-	-	10.40	0.17	8.20	13.10	2.23	0.37	77		0.69	0.64	99.11	-	
20- 2	,	38- 40	302.39	AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	0.08	-	-	0.08		0.0000
20- 2	,	38- 40	302.39	GUNN	XRF	50.16	0.75	14.70	3.92	6.39	9.92	0.19	8.25	12.78	1.82	0.24	0.08	-	0.67	0.60	100.55	-	-
20- 2		38- 40	302.39	GUNN	XRF	49.95	0.75	14.79	3.99	6.39	9.98	0.19	8.27	12.75	1.89	0.24	0.08	-	0.67	0.60	100.56	-	-
21 - 1		0- 10	310.05			39.00	0.06	3.30	-	$\sim - 1$	7.25	0.09	34.40	0.62	0.18	0.02	-	-	-	÷	81.921	4.80	-
21 - 1	1	36- 47	310.42	TM	PROBE	50.88	1.09	14.48	6.16	4.36	9.90	0.17	7.42	11.95	2.16	0.30	-	0.22	0.17	0.44	99.80	0.78	
21- 1	Č.,	36- 47	310.42	TM	PROBE	_	_		_	_	_		_	_		_	<u> </u>	0.18	0.11	0.19	0.48	_	-
21-1	•	47- 49	310 48	AIIM	TRACK	-	_	-		-				525	_	_			-		0.00	200	0 0395
21 1	•	47- 49	210 40	ROC	VDE	40 52	0 11	18 00	5 66	1.000	5 00	0 11	10 14	15 01	10200	0 01	1079	0 02	0 20	0 22	00.10	1070	0.0555
21- 1	,	47- 49	210.40	BUG	ARF	49.02	0.11	15.00	5.00		10.10	0.11	10.14	0 70	2 2/	0.01		0.05	0.20	0.55	99.12		-
22- 1	,	26- 33	319.80	ISH	XRF	45.00	0.30	15.20	-	-	10.10	0.31	13.30	8.70	2.24	0.16	-	-	0.95	2.57	99.51	-	-
22- 1	,	52- 57	320.05	ISH	XRF	48.30	0.24	13.50			8.10	0.16	15.70	11.40	1.46	0.08	-	- 7-	0.27	0.23	99.44	5.	-
22 - 2		14- 21	321.18	FW	XRFFP	40.66	0.05	5.53	2.13	5.00	6.92	0.14	31.77	4.27	0.18	0.01	-	0.10	0.301	0.00	100.14	9.34	-
22- 2	,	14- 21	321.18	LEB	WET	40.65	0.05	5.40	3.63	5.20	8.47	0.13	30.55	4.22	0.10	0.02		-	-	-	89.95	8.60	-
22- 2	,	34- 35	321.35	TM	PROBE	45.84	0.76	13.78	4.51	4.24	8.30	0.13	7.10	10.82	1.76	0.17	-	0.14	0.331	1.08	100.661	0.67	-
22- 2		61- 63	321.62	AUM	TRACK	-	-		-	-	-	-		-	-	-	-	-	-	-	0.00	-	0.0536
22- 2		61- 63	321.62	BOG	XRF	40.99	0.05	4.13	10.02	-	9.02	0.14	34.58	2.14	0.10	0.02	0.01	0.11	0.50	6.44	99.23	6.70	_
22- 2		70- 75	321.72	FW	XRFFP	39.38	0.06	4.22	4.80	4.30	8.62	0.13	32.52	3.36	0.09	-	-	0.16	0.321	0.28	99.621	0.06	-
22- 2	·	77- 79	321.78	TSH	XRF	39.90	0.04	3.45	-	-	7.40	0.07	32.50	1.55	0.01	0.01	-	-	-	-	87.371	1.48	_
22- 2		77- 79	321 78	IFR	LIFT	38 44	0.04	4 10	3 82	4 67	8 11	0 11	34 10	1 48	0.08	0.02		Versit		2000). 12210	06 871	1 30	
22 2		0 02	221.70	CUMM	VDE	11. 05	0.04	4.10	10 70	4.07	0.70	0.15	26 52	2 60	0.11	0.02	0 01				100.00	1.30	
22- 2		80- 82	321.01	GUNN	ARF	44.03	0.07	4.79	10.70	1 00	9.70	0.15	30.33	2.09	0.11	0.02	0.01	-	-	-	100.00		-
22- 2	•	80- 82	321.81	MUN	AAS	39.70	0.01	3.89	4.14	4.09	7.82	0.13	34.45	1.20	0.06	0.06	0.09	-	-	-	87.821	1.21	-
22- 2	,	110-120	322.15	ISH	XRF	47.00	0.89	17.20	-	-	9.55	0.15	12.20	12.80	1.65	0.30	-	-	-	-	97.98	1.65	-
23- 1	,	8- 22	329.15	ISH	XRF	47.20	0.27	14.40	-	-	6.45	0.16	14.30	13.00	1.69	0.07	-	-	-	-	97.54	0.79	-
23- 1	,	30- 35	329.33	ISH	XRF	41.80	0.03	3.57	-	-	7.67	0.03	32.90	2.49	0.07	0.02	-	-	-	-	88.551	0.70	-
23- 1		30- 35	329.33	LEB	WET	39.90	0.05	3.86	4.44	3.59	7.59	0.11	32.59	3.20	0.10	0.02	-	-	-	-	87.961	0.70	-
23- 1		83- 85	329.84	ISH	XRF	45.90	0.05	14.90		-	3.47	0.05	11.10	12.40	0.40	0.06	-	-	-	-	91.93	8.60	
23- 1	Ê 1	127-129	330.28	AUF	AAS	49.77	0.17	16.60	0.94	6.49	7.34	0.17	10.11	13.93	1.27	0.02	0.01	0.09	0.16	0.08	99.81	-	-
23- 1		127-129	330.28	AUM	TRACK		-				-				-	-		0.09	-	-	0.09	-	0.0503
23- 1		127-129	330.28	AIM	TRACK	-	_	_	_	_	_	_	-	_	_	_	_	-	_	_	0.00		0.0363
23- 1	,	127-120	330 28	ROC	VDE	40 16	0 15	16 00	7 00		7 10	0 16	10 22	12 00	1 27	0 02	0 01	0.07	0 20	0 42	00.77	0 50	0.0505
23- 1	•	127-129	220.20	CUDIN	NDE	50 00	0.15	15 25	0.21	-	7.19	0.10	10.55	13.90	1.12	0.02	0.01	0.07	0.20	0.42	100.01	0.50	-
23- 1	,	127-129	330.28	GUNN	ARF	50.92	0.15	15.25	0.34	-	7.50	0.1/	10.41	13.39	1.13	0.02	0.03			-	100.01	-	
23- 1	,	12/-129	330.28	GUNN	XRF	50.74	0.14	15.68	8.13	-	1.32	0.17	10.13	13.84	1.14	0.02	0.01	-	-	-	100.00	-	-
23- 1	,	127-129	330.28	GUNN	XRF	50.48	0.15	15.81	8.07	-	7.26	0.17	10.25	13.77	1.27	0.02	0.02	-	-	-	100.01	-	
23- 1	,	134-143	330.39	FW	XRFFP	50.02	0.15	15.62	3.89	6.10	9.60	0.19	10.30	12.21	1.27	0.02	-	-	0.18	1.02	100.97	0.53	-
23- 1	,	139-143	330.41	ISH	XRF	43.70	0.04	3.72	-	-	6.67	0.08	32.10	1.35	0.01	0.01	-	-	-	-	87.731	1.48	-
23- 2	2,	52- 62	331.07	ISH	XRF	41.80	0.28	4.89		_	6.46	0.11	30.20	5.54	0.04			-	-	-	89.42	9.57	-
23- 2		78- 82	331.30	CML	XRF	43.90	0.07	5.30	9.20	-	8.28	0.11	39.20	1.30	0.32	0.10	0.04	-	-	-	99.54	-	0.4000
23- 2		78- 82	331.30	GUNN	XRF	44.03	0.04	3.99	10.72	-	9.65	0.12	39.63	1,26	0.14	0.03	0.03	-	-	-	99.99	-	
23- 2		78- 82	331.30	MUN	AAS	38.30	0.01	3.15	6.55	1.74	7.63	0.10	36.70	0.56	0.08	0.06	0.09	-	-	_	873.41	2.44	-
							N . V.A		~ ~ ~ ~	/ .		VANU	20010			~	~ • • • >						

TABLE 3B - Continued

-	13157	Depth								Total	L								14			
-	Sample ^a	(m)	Inv.	Method	Si02	Ti02	A1203	Fe203	Fe0	Iron	MnO	Mg0	Ca0	Na_20	к20	P205	co2	H20-	н20+	Total	LOI	S
24-	1. 40- 4	338.92	AUM	TRACK	_	-	-	-	-	-	-		-	-	-	-	0.02	-	-	0.02	-	-
24-	1. 110-11	339.64	ISH	XRF	43.20	0.12	11.80	-	-	5.72	0.43	23.50	5.75	2.02	0.28	-	_	-	- <u>-</u>	91.85	8.25	-
24-	3. 72- 7	342.26	ISH	XRF	47.80	0.09	13.00	-	-	5.45	0.08	15.90	8.50	2.45	0.83	-	-	-	-	94.10	5.25	-
24-	3. 112-11	4 342.63	AUF	AAS	49.75	0.12	12.54	0.53	4.50	4.98	0.12	18.60	12.02	0.51	0.01	0.01	0.06	0.30	1.25	100.32	-	-
24-	3. 112-11	4 342.63	AUM	TRACK		-	-	-	_	-	-	-	-	-	-	-	0.06	-	-	0.06	_	0.0540
24-	3, 112-11	4 342.63	AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\rightarrow	0.00	-	0.0852
24-	3. 112-11	4 342.63	BOG	XRF	49.50	0.09	12.20	5.42	-	4.88	0.12	17.52	12.37	0.49	0.01	0.03	0.06	0.20	1.34	99.35	1.70	-
24-	3. 112-11	4 342.63	GUNN	XRF	51.07	0.09	12.69	5.64	-	5.07	0.12	17.78	12.08	0.50	0.01	0.02		-	-	100.00	-	-
24-	3. 112-11	4 342.63	GUNN	XRF	50.67	0.08	12.15	5.76	-	5.18	0.12	18.25	12.45	0.48	0.01	0.02	-	-	-	99.99	_	-
24-	3, 112-11	4 342.63	GUNN	XRF	50.81	0.09	12.11	5.79	-	5.21	0.12	18.11	12.42	0.52	0.02	0.01	-	-	-	100.00	-	-
24-	3, 136-14	342.88	CML	XRF	46.10	0.08	6.90	7.80	-	7.02	0.15	28.60	9.10	0.30	0.02	0.03	-	-	\rightarrow	99.08	-	0.4500
24-	4. 81- 8	3 343.82	ISH	XRF	42.80	0.05	6.47	_	12	5.90	0.04	30.00	7.80	0	0.09	_	_	-	-	93.15	5.74	
24-	4. 81- 8	3 343.82	LEB	WET	45.00	0.08	7.20	3.22	4.31	7.21	0.13	23.88	9.13	0.20	0.06	-	-	-	-	93.11	5.74	-
24-	4. 95- 9	7 343.96	AUF	AAS	45.58	0.10	11.67	1.08	4.66	5.63	0.11	20.40	11.85	0.36	0.04	0.01	0.05	0.57	3.34	99.82	-	-
24-	4. 95- 9	7 343.96	AUM	TRACK	-	-	-	_	-	-	-	-	-	-	-	-	0.05	-	-	0.05	_	0.0828
24-	4. 95- 9	7 343.96	AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	-	0.0481
24-	4. 95- 9	7 343.96	BOG	XRF	45.50	0.07	11.30	6.33	-	5.70	0.11	19.73	11.80	0.29	0.03	0.02	0.11	0.30	3.81	99.40	3.90	-
24-	4. 95- 9	7 343.96	GUNN	XRF	48.46	0.07	11.57	6.68	-	6.01	0.12	20.35	12.33	0.35	0.04	0.02	-	-		99.99	-	-
24-	4. 95- 9	7 343.96	GUNN	XRF	48.40	0.07	12.16	6.45	-	5.80	0.12	19.80	12.66	0.28	0.04	0.02	-	_	-	100.00	-	-
24-	4, 111-11	3 344.12	FW	XRFFP	49.80	0.10	18.05	0.02	3.60	3.62	0.10	11.42	16.09	0.87	0.02	-	-	0.12	0.68	100.87	0.69	-
25-	1. 52- 5	8 348.55	ISH	XRF	40.80	0.08	3.06		-	7.60	0	36.00	0.92	0.01	0.01	-	-	-	-	88.18	11.82	-
25-	1, 52- 5	8 348.55	LEB	WET	37.60	0.04	3.86	4.79	4.13	8.44	0.11	34.88	1.16	0.07	0.02	824	-	-	-	86.66	11.82	-
26-	1, 20- 2	2 357.71	AUM	TRACK	-	-	-	-	-	-	-	-	-	-	-	-	0.31	-	4	0.31	-	0.0352
26-	1, 20- 2	2 357.71	AUM	TRACK	-	-	-	5 	-	-		\sim	-		-	-	-	-	-	0.00	-	0.0371
26-	1, 20- 2	2 357.71	BOG	XRF	39.24	0.05	4.72	8.99	-	8.09	0.12	34.27	3.12	0.13	_	0.01	0.31	0.60	7.20	98.76	8.10	-
26-	1, 20- 2	2 357.71	GUNN	XRF	44.75	0.05	5.46	9.63	-	8.67	0.16	35.04	4.79	0.11	0.01	0.01	-	-	-	100.01	-	-
26-	1, 118-12	5 358.72	ISH	XRF	43.90	0.09	6.95		-	7.88	0.26	25.90	5.80	0.75	0.01	-	-	-		91.54	8.00	-
26-	2, 5-1	0 359.08	AUM	TRACK	-	-	-	\sim $-$	-	-	-	-	-	-	-	-	0.06	-	-	0.06		-
26-	2, 59-6	4 359.62	GUNN	XRF	48.35	0.07	10.42	6.89	-	6.20	0.16	22.07	11.70	0.26	0.06	0.02	-	-	20	100.00	-	-
26-	2, 59-6	4 359.62	GUNN	XRF	48.33	0.07	10.39	6.91	-	6.22	0.16	22.08	11.70	0.28	0.06	0.02	-	-	-	100.00	-	-
26-	2. 64- 6	7 359.66	ISH	XRF	47.50	0.10	8.70	+	-	5.94	0.15	22.40	8.70	0.34	0.17	-	-		-	94.00	5.20	-
26-	2, 64- 6	7 359.66	LEB	WET	44.62	0.10	10.28	0.94	5.57	6.42	0.13	21.10	10.77	0.26	0.06		-	-	-	94.83	5.20	1 - <u>1</u>
26-	2, 93-10	3 359.98	S ISH	XRF	43.50	0.05	9.95	-	-	7.70	0.12	25.80	8.42	0.06	0.04	-	-	-	-	95.78	3.97	-
26-	2. 93-10	3 359.98	LEB	WET	45.20	0.06	11.30	1.82	4.85	6.49	0	21.55	10.19	0	0.08		-	-	-	95.00	3.97	-
27-	1. 3-1	2 367.08	ISH	XRF	40.80	0.06	3.15	-	-	7.38	0.09	33.90	1.12	0.06	0.08		-	-	-	86.64	12.12	-
27-	1, 3-1	2 367.08	LEB	WET	38,60	0.05	3.90	3.72	3.95	7.30	0.12	34.98	0.84	0.11	0.03	-	-	-	-	86.29	12.12	-
27-	1, 38- 5	0 367.44	ISH	XRF	45.70	0.13	9.35	-		8.95	0.13	18.50	12.50	0.22	0.10	-	-	-	-	94.58	4.00	-
27-	1, 38- 5	0 367.44	LEB	WET	45.90	0.07	10.25	1.92	4.85	6.58	0.12	21.30	10.56	0.34	0.04	-	-	-	-	95.32	4.00	-
27-	1, 38- 5	0 367.44	TM	PROBE	49.09	0.81	14.56	3.43	5.43	8.52	0.12	7.96	11.54	1.75	0.20	-	0.24	0.33	6.28	101.74	5.12	-

 TABLE 3C

 First Transition and Rare Earth Elements in Igneous Rocks at Site 334

Sample ^a	Depth (m)	Inv.	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	La	Ce	N d	Sm	Eu	Gd	ть	Ho	Tm	YЪ	Lu
15-2, 14	254.6	GUNN	_	5335	_	-	1239	73552	-	110	-	_	-	-	-	-	-	_	-	-	-	-	-
15-2, 14	254.6	MUY	-		-	230	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-
15-2, 30	254.8	BOG	-	5160	235	275	1240	71693	41	118	75	71		-	-		-	-			-	-	
15-2, 30	254.80	DOS	36	-	-	220	_	-	44	-	-	-	4.450	10.70	-	1.950	0.680	-	0.550		-	2.38	0.360
16-1, 22	262.7	2 BOG	-	5280	255	262	1240	71274	44	110	74	78	-	-	-	-	-	-	-	-	-	-	-
16-1, 22	262.7	GUNN	-	5215	200	-	1239	71875		116	-	-	-	-	-	-	-	177 - C	2.5	1.7	-	-	-
16-1, 40	262.9	GUNN	-	5515	-	-	1317	71174	-	141	-	-	-	-	-	-	-	-			-	-	- B
16-1, 40	262.9	MUY		= = 205		230	1204	-		110	-	-			-	-	-	22.5		122	_	_	_
16 - 1, 110	263.0	GUNN	7	5395	245	265	1394	671.27		124	71	71	T	-	-	-	-	-			_	-	5
16 - 2, 109	265.0	CUNN		5156	245	205	1230	68521	44	170	/1	/1				-		-			-	-	
16 - 2, 105	265 0	CUNN	- 2	5156	- 2	- 24	1239	68451	- 2	170	- 2	-		-	-	-	-				_	-	_
16-3 16	265 6	BOG		5100	260	270	1160	71484	43	113	67	75	-		_	-	_	-		10-11	_	-	20
16-3, 20	265.7	TM	40	5096	270	295	1162	68506	49	135	67	-	4.600	7.90	4.700	1.860	0.640	-	0.420	0.74	-	2.45	0.370
16-3, 29	265.7	FUPI	37	5215	-	249	1239	66522	-	114	64	-	5.680	9.72	55.000	1.670	0.690	-	2.640	-	-	3.35	0.350
16-3, 31	265.8	BAS	-	-	-		-	-	50	110	74	120	-	-	-	_	_	-	_	-	-	-	-
16-3, 31	265.8	CHE	-	-	380	400		-	47	150	430	-		-	-	-	-	-		12	200	-	-
16-4.	267.0	BOG	-	4440	245	200	1240	69805	47	142	87	72	-	-	-	-	-	-	-	-	-	-	-
16- 4, 7	267.0	DOS	38	-	-	148	-	-	51	-	-	-	3.880	9.25	-	1.730	0.620	-	0.470	-	-	2.04	0.330
16- 4, 110	268.1	BOG	<u> </u>	4380	245	200	1240	70784	47	86	86	67	-	-	-	-	-	-	-	-	-	-	-
16- 4, 110	268.1	GUNN	-	4376	-	-	1239	71029	-	93	-	-	-	-	-	-	-	-	-	-	-	-	-
16-5, 19	268.6	GUNN	-	4376	-	-	1317	69525	-	106	-	-	-	-	-	-		-	1000	-	-	-	-
17-1, 77	272.7	GUNN	-	4496	-	-	1239	63756	-	273	-	-	-	-	-	-	-	-	-	1 	-	-	-
17-1, 77	272.7	GUNN	-	4496	-	-	1239	63686	-	270	-	-	-	-	-	-	-	-	-	· =	-	-	-
17-2, 140	274.90) GUNN	-	4496	-	-	1317	69357	-	115	-	-	-	-	-	-	-	-	-	-	-	-	-
17-3, 3	275.0	B BOG	-	4440	220	192	1320	70015	47	78	90	66	-	-	-	-	-	-	-	-	-	-	
17-3, 3	3 275.0	GUNN	-	4436		-	1317	69569	-	103	-	-	-	-	-	-	-	-	-	-	-	-	-
17-3, 57	275.5	FW	-	4556	-	180	1239	61665		102	94	-	-	-	-	-	-	-	-	-	-	-	-
17-3, 59	275.5	BAS		-			-		70	100	80	100	-	-	-	-	-	-	-	. =	-	-	-
17-3, 59	275.5	CHE	-	-	320	225	-		32	120	130	-	-	-	(m)	-	-	-	-	-	-	-	-
17-3, 95	275.9	5 GUNN	-	4436	-	-	1239	65008	-	226	-	-	-	-	-	-	-	-	-	-	-	-	-
17-3, 95	275.9	GUNN	-	4556	-	-	1239	65428	-	222	-	-	-	-	-	-		-	-	-		-	-
18-1, 20	281.7	GUNN	-	43/6	-	-	1239	68546	-	103	101	-	770 I	-	-			-	-	77.)	-	<u> </u>	-
18-2, 31	283.3	FW	-	4000	-	-	1317	70930	-	102	104	-			-	-	-	-	_		-	-	-
19-1, 6	291.0	GUNN		4496	-	155	1317	695630		99		-	5 100	11 00	6 900	3 000	0 710		0 540		0 48	2 40	0 340
19-2, 0	292.5	565	42	1.070	250	190		00343	40	100	0.0	-	5.100	11.00	0.000	3.000	0.710		0.340		0.40	2.40	0.340
19-2, 17	292.0	CIINN		4556	250	100	1317	66587		115	30	-				0.00	277 211			-	-		_
19 - 2, 41	292.9	BAS	- 2	4550	_	1.0	1517		70	170	80	75	-		-	-	_		_	_	-	-	_
19- 2, 101	293.5	CHE			330	220	20		32	125	250	-	20	_	-	52	<u></u>	1	_	27	1	-	_
19- 2, 101	293.5	DOS	39	-		142	_	-	52			-	3.760	8-85	-	1.840	0.650	-	0.470	-	-	2.15	0.350
19-3 20	294.2	BAS	-	-	-	-	-	-	70	150	84	75	-	-	-		-	-	-	-	-	-	-
19-3, 20	294.2	O CHE		-	320	175	-		32	100	140	-	-	-	-	-			-	-	-	-	-
19-3, 99	294.9	CML	-	5215	-	-	1394	80436	56	105	75	88	-	-	-	-	-	-	-	-	12	-	\simeq
19-3. 99	294.9	9 GUNN	-	4556	-	-	1394	72743	-	92	-	-	-	-	-	-	-	-	-	-	-	-	-
19-3. 99	294.9	MUN	-	4916	-	198	1394	74486	-	90	71	73	-	-	-	-		-	-	-	-	-	-
19-3. 99	294.9	MUY	1.2	_	221	210	-		-		-	-	-	324	-	-	3 22		<u></u>	-	-	-	-
20- 1, 9	3 301.4	B GUNN	-	4496	-	-	1162	67567	-	94	-	-	-	-	-	-	-	-	-	-	-	-	-
20- 1, 123	3 301.7	3 BAS	-	-	-	-	-		70	170	84	90	-	-	-	-	-	-	-	-	-	-	-
20- 1, 12:	3 301.7	3 CHE	-	-	330	195	-	÷.	32	120	140	-	-	-	-	-	-	-	-	-	-	-	-
20- 2, 10	5 302.1	6 BOG	-	4500	245	180	1240	68896	46	89	87	76	<u> </u>	-	-	-	-	-	-	-	-	-	-
20-2, 10	5 302.1	5 DOS	39	-	-	136	-	0.77	46	-	-	-	3.410	8.69	-	1.640	0.600	÷.	0.465	-	-	1.92	0.300

3
5
7
(*)
S
S
4

		Depth																						
Sample ^a		(m)	Inv.	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	La	Ce	Nd	Sm	Eu	Gd	Тb	Ho	Τm	YЬ	Lu
	-	78127780			10/10/08				And Sec.	100 000100			107-54			212.240		10/10/202			110.521			
20- 2,	23	302.23	FW	-	4556		155	1239	61219		97	89	-	-	-	-	-	2000	\overline{T}		-	-	-	(, , ,)
20- 2,	26	302.26	CML	-	5455	- 1	-	1084	68546	49	137	98	77	-	-	-	-	-	-	-	-	-	-	-
20- 2,	26	302.26	MUN	-	5036	-	166	1239	66312	-	114	93	68	-	-	-	-	-	-	<u> </u>	-	-	-	-
20- 2,	26	302.26	MUY	-	-	-	220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20- 2,	34	302.34	BAS	-	-		-	-		50	100	84	100		-	-	-	-	-	-		-	-	-
20- 2,	34	302.34	CHE	-	-	320	185	-	-	-	93	140	-	-	-	-	-	-	-	-	-	-	-	-
20-2,	38	302.38	GUNN	-	4496	-	-	1471	77182	-	88	-	-	-	-	-	-		-		-	-	-	-
20-2,	140	303.40	DOS	39	-	-	409	-	-	46	-	-	-	2.250	6.69	-	1.540	0.540	-	0.470	-	-	2.29	0.360
21-1,	10	310.10	BAS	-		. 7.				50	100	80	75	-					-			-		
21- 1,	36	310.36	TM	36	6534	100	570	1317	77046	45	230	73	-	-	<1.00	<1.000	0.170	0.170	-	0.060	0.22	-	0.57	0.110
21- 1,	36	310.36	TM	-		100	600	-	-	65	210	80		-	-	-	-	-	-	-	-	-	-	-
21-1,	47	310.47	BOG		660	135	700	852	39589	38	202	83	34		-			. 7			.	-		
21- 1,	47	310.47	DOS	31	-	-	542	-	2.000	39				0.180	-	0.470	0.190	0.135	0.370	0.080	-	-	0.52	0.083
22- 1,	33	319.83	BAS	-	-	-	-	-	-	70	220	130	75	-	-	-	-	-		-	-	-	-	-
22- 1,	33	319.83	CHE	-	-	250	300	-			150	80	-	-	-	-	-	-	-	-	-	-	-	-
22- 1,	57	320.07	BAS		-				2.75	22	240	90	70	-	-	-	-	1	-	2 0	7 3	0.55	-	· •
22- 1,	57	320.07	CHE			2501	000			-	250	160	-						-		-	-		
22- 2,	14	321.14	FWPU	10	300	- 5	/01	1084	53843		2061	33		0.04/	1.8/	13.000	0.032	0.028	-	0.059	-		1.01	0.018
22- 2,	21	321.21	BAS	-	-	-		-	-	80	1400		50		-		-	-	-		-	-	-	-
22- 2,	21	321.21	CHE			1301	000	1007			1000	140				-			-			-		-
22- 2,	34	321.34	TM	10	4556	<12	500	1007	04570	135.	2000	35	26	0.070	<1.00	<1.000	0.050	0.050	-	<1.000	0.07	_	0.30	-
22- 2,	01	321.01	BOG		300	334	4/4	1085	10085	100	1340	40	30	-	-	-	0 020	0 00/	0 070		-	-		
22- 2,	70	321.01	DUS	14	260	- 4	360	1007	(70()	100		-	-	0.058		25 000	0.029	0.024	0.073	0.015	-	-	0.15	0.026
22- 2,	70	321.70	FWPU	10	300	- 5	232	1007	0/000		2219	34		0.170	4.15	25.000	0.023	0.039	7	0.039	-	_	1.01	0.037
22- 2,	79	321.79	BAS	-	-		-	-		100	1770	18	60	-	-	-	-	-	-	-	-	-	-	-
22- 2,	/9	321.79	CHE	-	-	1401	000		-	-	1000	90	-	-	-		200	-	-		-	-	_	-
22- 2,	80	321.80	GUNN	-	420	-		1162	/5400	-	1992	-		-	-	-	-	1	17 2)		-	-	-	-
22- 2,	80	321.80	MUN	-	60	- 3	159	1007	60814		1/04	48	61	-	-	-	100	1. 	-	-	-	10	-	-
22- 2,	120	322.20	BAS	-	-	-	-	-	_	85	120	14	90	-	-	5. 		-	-	-	-	-	-	-
22- 2,	120	322.20	CHE	-	-	245	860	-	-	-	200	240	-	-	-	-			-	7.	-	-	-	-
23- 1,	22	329.22	BAS	-	-	2/5	100	- T		90	220	30	70	-	-	-	370	575		70	-	-	-	
23-1,	22	329.22	CHE	-	-	245	480	-		100	290	20	50	-	-					-	-	-		-
23-1,	35	329.35	BAS	-	-	1 2 5 1	-	-	-	100	1/20	30	50	-	-		-			-	-			-
23 - 1,	35	329.35	CHE	-		1 3 3 1	000	-		25	210	34	20	-				-	-	-	-	-	-	-
23-1,	00	329.05	BAS	-	-	2201	-	5		33	210	105	20	-	0.00	-	3.7	-	55.9		100	-		
23 - 1,	127	329.03	ROC			160	615	1240	55004	4.0	159	105	. 7	-	-		0.00				-	-	-	-
23-1,	127	330.27	DOG	22	900	100	415	1240	33000	40	130	40	47	0 220		0 600	0 220	0 170	0 / 50	- 100	-		0 60	0 100
23- 1,	127	330.27	CUNN	22	830		203	1217	56865	4 J	156		- 2	0.230		0.000	0.230	0.170	0.430	0.100			0.00	0.100
23 - 1, $23 - 1$	12/	330.27	BU	177	800	17.5	200	1671	76721		172	100	1077	-	100	-	200	-	0.0		17	227	30 7 7	
23-1,	1/2	330.34	PAC	- 2	099		299	14/1	74721	100	260	110	5.0			-		-					1.55	
23- 1,	143	330.43	CHE			240	760	1000		100	200	250	50	- 2			100			-			200	-
23- 1,	62	331 12	BAC		- 3	240	100			1 3 0	1670	200	50		1.5				- 21	-	-	_	100	
23- 2,	62	221 12	CUF			1501	000	-		130	1000	50	50	-	100		275						100	
23- 2,	7.9	331.12	CMI	- 2	420	1501	000	852	64340	117	2080	17	54		1.17					-	-			-
23- 2,	78	331.28	CHINN		240			929	74981	117	1649	17	54			-			- 2					2
23- 2,	79	331.20	MUN	_	60		446	776	50367	12	1426	21	50		12									
24- 1	10	338 00	DOS		00		440	//4	59507		1420	21	29	0 160	0 41	0 450	0 180	0 120	0 310	0 067	-		0 4 3	0 068
24-1,	117	339.67	BAS	2	-	-	-	-	_	60	360	110	150	-	0.41	0.450	-	0.120	0.510	. 0.00/		- 21	0.43	0.000
24-1,	117	339 67	CHE	2	122	1501	000			00	370	165	150	-			-	1.11		1.20	10.00		1	
24- 3	70	342 20	BAS	_	- 2			-	-	50	400	120	40	-	-				-	-	-	-	10	
24- 3,	79	342.29	CHE			1501	000			50	370	210	40	-	0.55		277.10	1713 1917 -		1773) 1171	1776 1.10		1.075	
24- 3,	112	342.29	BOC		540	1101	800	0 2 0	37010	20	476	70	26		-	-			-	-	-	-	-	
24- 3,	112	342.02	DOG	20	540	- 1	560	950	37910	10	4/5	13	20	0 005	0 25	0 280	0 110	0 069	0 220	0 052		2.2	0 34	0 052
24- 3	112	342.62	GUNN	29	540	- 1		929	39449	+9	447	1	2	-	-	0.200	-	-	-	-		-	0.54	-

24-	3.	112	342.62	GUNN	-	480		929	40288	8 - 46	5 -	-		-	-	-	-	-	-	-	-	-	-
24-	3,	136	342.86	CML	-	480	-	1162	5455	7 -126	0 43	43	-	-	-	-	-	-	-	-	-	19 44	-
24-	4,	83	343.83	BAS	-	-		-	-	80 90	0 77	60	-	÷.	-	-	-	-	-	-	-	- <u>-</u>	-
24-	4,	83	343.83	CHE	-	-	1501000	-	-	- 62	0 90	-	-	-	-	-	-	-	-	-	-	-	-
24-	4,	95	343.95	BOG	-	420	801900	852	44275	5 49 75	5 102	28	-	-	-	-	-	-	-	-	-	-	-
24-	4,	95	343.95	DOS	-	-		-	-	-		-	0.038	0.12	0.170	0.099	0.070	0.200	0.045	-	-	0.30	0.048
24-	4,	95	343.95	GUNN	-	420	140 OM	929	45114	4 - 62	7 -	-	-	-	-	-	-	-	-	-	-	-	-
24-	4,	111	344.11	FW	-	599	- 1164	774	28180	0 - 27	7 80	-	-	-	-	-	-	-	-	-	-	-	-
25-	1,	58	348.58	BAS	-	-		-	-	100210	0 50	50	-	-	-	-	-	-	-	-	-	-	-
25-	1,	58	348.58	CHE	-	-	1201000	-	-	-100	0 50	-	-	÷.	÷.	-	-	-	-	-	-	-	-
26-	1,	20	357.70	BOG	-	300	356170	930	62880	58185	6 16	32		=	\simeq	-	-	-	-	-	-		-
26-	1,	20	357.70	DOS	-	-		-	-	-		-	0.030	÷.	0.097	0.040	0.021	0.060	0.015	-	-	0.13	0.023
26-	1,	20	357.70	GUNN	-	300		1239	67352	7 -182	9 -	-	3	-	-	-	-	-	-	-	-	-	-
26-	1,	125	358.75	BAS	-	-		-	-	100 87	0 170	40	-	-		-	-	-	-	-	-	-	-
26-	1,	125	358.75	CHE	-	-	1651000	-	-	- 76	0 270	-	-	<u> - </u>	_	-	-	-	-	-	-	-	-
26-	2.	5	359.05	DOS	-	-		-	-	-		-	0.087	0.30	0.280	0.110	0.084	0.190	0.041	-	-	0.28	0.047
26-	2.	59	359.59	GUNN	-	420		1239	48192	2 - 77	9 -	-	-	-	-	-	-	-	-	-	-	-	-
26-	2.	59	359.59	GUNN	-	420		1239	48332	2 - 78	2 -	-	-	H 0	-	-	-	-		-	-	: 	-
26-	2.	67	359.67	BAS	-	_		-	-	60 74	0 130	50	-	-	-	-	-	-	-	-	-	-	-
26-	2.	67	359.67	CHE	-	-	1401000	-	-	- 60	0 210	-	-	-	-	-	-	-	-	-	-	-	-
26-	2.	103	360.03	BAS	-	-		-	-	65 68	0 120	40	-	-	-	-	-	-	-	-	-	-	-
26-	2.	103	360.03	CHE	-	<u></u>	1351000	-	-	- 60	0 230	-	- 1 -	-	-	-	-	-		-	-	-	-
27-	1,	12	367.12	BAS	-	<u> </u>		-	-	100186	0 70	50	-	-	-	-	-	-	-	-	-	-	-
27-	1,	12	367.12	CHE	-	-	1251000	-	-	-100	0 12	-	-	-	-	-	-	-	-	-	-	-	-
27-	1.	38	367.38	TM	28	4856	401600	929	6628	5108140	0 200	-	-	-	-	0.090	0.047	-	-	-	0.07	0.23	0.050
27-	1.	50	367.50	BAS	-	-		_	-	85 90	0 210	40	-	<u>-</u>	-	-	-	-	-	-	-	-	
27-	1,	50	367.50	CHE	-	<u> </u>	1351000	-	-	- 84	0 320	-	-	=	-	-	-	-	-	-	-		-

TABLE 3D Trace Elements in Igneous Rocks at Site 334

		Depth												
Sampl	e ^a	(m)	Inv.	В	Li	Rb	Sr	Cs	Ba		T1	Th	U	Y
15-2,	14-17	254.66	GUNN	-	-	6.00	86.0	-	89		-	-	-	-
15- 2,	14-17	254.66	MUY	-	6.5	8.20	85.0	-	110	0	035		-	-
15-2,	30- 32	254.81	DOS	-	-	-	-	-	-		-	0.46	-	-
16-1,	22- 25	262.74	AUM	-	-	-	-	-	-		-	-	0.110	-
16- 1,	22- 25	262.74	GUNN	-	-	7.00	80.0	-	80		-	-	-	-
16- 1,	40- 42	262.91	GUNN	-	-	6.00	86.0	-	89		-		-	-
16-1,	40-42	262.91	MUY	-	7.0	2.70	93.0	-	45	<	001	-	-	-
16-1,	110-113	263.62	AUM	-	-	-	-	-	-		-	-	0.140	-
16-1,	110-113	263.62	GUNN	-	-	6.00	81.0	-	85		-	-	-	-
16-2,	109-112	265.11	AUM	-	-	-	-	-	-		-	÷	0.140	-
16-2,	109-112	265.11	GUNN	-	-	4.00	89.0		95		-		-	-
16- 2,	109-112	265.11	GUNN	-		4.00	88.0	_	93		-	-	-	-
16-3,	24-31	265.78	TM	<1	5.0	-	60.0	-	40		-	-	-	23.0
16-3,	29-31	265.80	AN	-	-	-	-	-	-		-	-	-	-
16-3,	29-31	265.80	BAS	-	5.0	4.00	-	-	-		-	-	-	-
16- 3,	29-31	265.80	CHE	-		-	5.0	-	90		-	-	-	-
16- 3,	29-31	265.80	FWPU	-		2.70	87.0	3	84		-	0.96	1.040	22.7
16-3,	29-31	265.80	SAV		-	-	-	-	-		-	-	-	-
16- 4,	7-10	267.09	DOS	-	-	-	-	-	-		-	0.42	-	-
16- 4,	110-113	268.12	AUM	-	-	-	-	-	-		-	-	0.160	-
16- 4.	110-113	268.12	GUNN	-	-	4.00	67.0	-	64		-	-	-	-
16- 5.	19-21	268.70	AUM	-	-	-	-	-	-		-		0.280	-
16- 5,	19-21	268.70	GUNN	-	-	3.00	75.0	-	-		-	-	-	-
17- 1,	77-80	272.79	AUM	-	-	-	-	-	-		-	-	0.500	-
17- 1.	77- 80	272.79	GUNN	-	-	2.00	74.0	<u></u>	69		-	-	-	-
17- 1.	77- 80	272.79	GUNN	-	-	2.00	74.0	_	64		-	-	-	-
17- 2.	140-143	274.92	AUM	-	-	-	-	-	-		-	-	0.130	-
17- 2.	140-143	274.92	GUNN	· · · · ·	-	3.00	67.0	-	54		-	-	-	-
17- 3.	3- 6	275.05	GUNN	-	-	3.00	67.0	-	61		-	-	-	-
17- 3.	57- 59	275.58	AN	-	-	-	-	_	-		-	-	-	_
17- 3.	57- 59	275.58	BAS	-	6.0	3.00	-	-	-		-	-	-	-
17- 3.	57- 59	275.58	CHE	-	-	-	88.0	-	120		-	-	-	-
17- 3.	57- 59	275.58	FW	-	-	2.70	77.0	-	69		-	-	-	20.6
17- 3.	57- 59	275.58	SAV	_		_	_	_	_		-	-	-	-
17- 3.	95- 98	275.97	AUM	-	-	-	_	_	-		-	-	0.160	-
17- 3.	95- 98	275.97	GUNN	_	_	2.00	76.0	-	66		-	-	-	-
17- 3.	95- 38	275.97	GUNN	-	-	2.00	75.0	-	75		-	-	-	-
18- 1.	20 - 23	281.72	AIIM		-		-	-	-		-	-	0.140	-
18- 1.	20 - 23	281.72	GUNN	-	-	3.00	65.0	-	-		-	_	-	-
18- 2	31- 33	283.32	FW	2	-	2.10	73.0	_	49		_	_	-	20.8
19- 1	6- 9	291.08	AIIM	1	_			-	-		-	-	0.120	
19 - 1	6- 9	291.08	GUNN			3.00	69.0	_	69		-	-	-	-
10- 2	17-19	202 68	TM	<1	6 0	5.00	50 0	-	16		-	_	-	21.0
10_ 2	47-49	292.00	AIIM	~1	0.0	1990 1997	50.0				_		0.190	
10 - 2,	47-49	292.90	CUNN			3 00	72 0		076.0 (22.0		1000		-	
10- 2,	47-49	292.90	GUNN	100		5.00	72.0		- 2					
10- 2,	95-101	293.40	RAC		7 0	4 00		_	-		_	_	-	-
19- 2,	95-101	293.40	CHE		7.0	4.00	88 0		60		-	-	-	-
10- 2	95-101	203 40	SAV	-	_	1	00.0		-			-		-
10- 2,	102 - 111	203 57	DOC	5 75			-				100	0.43	-	_
10- 2	102 - 111	293.37	AN	8000 1410			- 2				-	5.45	_	1
19- 3,	19- 29	294.24	AN	-		-		-						

TABLE 3D - Continued

Zr	Hf	Nb	Ta	Pd	Ir	Pt	Au	Cd	Pb	Sb	F	Р	Ga	Sn	Ag	Ge	YЪ
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
-		-	-	_	-	-	-	-	-	-	-	-	-	-		-	-
-	1.30	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-
-		-	_	-	-	-		-	-	-		-	-	2 53 722	-		
- 2	-	- 2	-					1000 1000	-		200			5576 8941	_		-
		- 2		-	_	- 2		-					-				
	_	_	_		_				-		_	-	_	-	_	-	-
_	-	-	-	-	_	_	-	_	_	_	_	-	-	-	-	-	-
-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
55	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	_	-	_	1-1	_	_	2.10	-	-	-	-	-	-	-	-	-	-
-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-
49	1.70	-	0.64	-	-		-	43	-	0.64	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	0.029	0.05	-	-	-	-	-
-	0.99	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
_		-	-	-	-	-	-	-	-	-	-	-	9777 (C.	3. 55	-	-	-
-	-	-	-	-				-			1970) 13 Mei			-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-		-			-	-
-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	_		_		-	_		-	-		-	-	_		_	_	_
_	-		-	_		_	-	-	-	-	-	-	-	-	_		
_	_	-	_	2		-		-	-	_		2	-		-	_	_
_	_	-	-	11-10	<u></u> 2	8	3.30	_	_	-	45 45	9080 <u>411</u> 2	-	-	-	-	-
-	_	-	_	_	_	_	-	-	-	-	_	-	-	-	-	-	-
-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
41	-	-	-	-		 :	-	-	-		-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	1.00	0.01	0.029	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-		-	-		-	-	-		-	-	-	-	-	-
-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-
-	-		-		-	-	-	-	-	-		-	-	-	-	-	-
-		-	-		-	-	-	-	-	-	-		-	-	-	-	-
42	-	1	-	-	-	-	-	-	-	-	-	-	-	-	7 2	-	-
-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-
	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
45	_	_	-		-	-	-	-	-	-	-	-	-	-	_		-
	25	-	_	-	_	_	_	-	-	-	_	_	2	2		-	-
		_			_	8	7.70		- 2				_	_	_		-
_	÷*** 0	-				-			_	_	-		-	-	-	-	-
_	-	-	-	-	-	-	-	-	-	-	= 0	-	-	-	-	-	-
-	-	-	-	-		-	-	-	-	-	0.024	0.049	-	-	_	-	-
-	1.10	-	-	-		-	-	-	-	1.77	1 700 600. 1 0	500 N 100	-	-	-	-	-
-	-	-	-	-	-	-	3.37	-	-	-	-	-	-	-	-	-	-

TABLE 3D - Continued

			Depth											
San	npl	e ^a	(m)	Inv.	В	Li	RЪ	Sr	Cs	Ba	Tl	Th	U	Y
10	2	10 20	201 21	DAC		10.0	6 00							
10-	5,	19- 29	294.24	DAS	-	10.0	4.00	<u> </u>		6.0				100
10-	2,	19- 29	294.24	CHE				00.0		00				
19-	э ,	19- 29	294.24	SAV	-	-	1.5	55 		-			0 1 2 0	
19-	э ,	93-95	294.94	AUM	-	-	2 00	77 0	-	60	-	-	0.130	22 0
19-	5,	99-105	295.02	CML	-	-	3.00	77.0	-	00	-	-		23.0
19-	э,	99-105	295.02	GUNN	-		4.00	/0.0	_	04	0 04		- 170	
19-	5,	99-105	295.02	MUCA	-	5.0	6.40	85.0	-	99	0 04	4 -	0.170	
19-	3,	99-105	295.02	MUN		-	6.00	69.0	-	112		1	-	100
20-	1,	98-100	301.49	GUNN	-	-	4.00	69.0	-	80	-	-	-	-
20-	1,	121-123	301.72	AN	-		-	-	-	-	-	-	-	-
20-	1,	121-123	301.72	BAS	-	15.0	8.00	-	-		-		-	
20-	1,	121-123	301.72	CHE	-	-		84.0		51		-	-	
20-	1,	121-123	301.72	SAV	-	-	-	-	-	-	-		-	-
20-	2,	16 - 18	302.17	DOS	-	-	-	-	-	-	-	0.41	_	-
20-	2,	23- 25	302.24	FW	-	-	2 11 2011 - 1122 - 1122	76.0	-	59	-	-	-	19.8
20-	2,	26 - 28	302.27	CML	-	-	4.00	83.0	-	43	-	-	-	23.0
20-	2,	26-28	302.27	MUCA	-	14.0	5.50	85.0	-	72	0 01	7 -	0.190	
20-	2,	26-28	302.27	MUN	-		2.00	72.0	-	89	-	-	-	-
20-	2,	32-34	302.33	AN	-	-	-	-	-	-	-		-	-
20-	2,	32-34	302.33	BAS	-	11.0	12.70	-	-	-	-	-	-	-
20-	2,	32- 34	302.33	CHE	-	-		88.0	-	60	-	-	-	-
20-	2,	32-34	302.33	SAV	-	-	-	-	-	-	-	-		-
20-	2,	38- 40	302.39	GUNN	-	-	5.00	72.0	-	64	55	-	200	-
20-	2,	140-145	303.43	DOS	-	-	-	-	-	-	-	0.24	-	-
21-	1,	0-10	310.05	AN	-	-	-	-	-	-	-	-	-	-
21-	1,	0-10	310.05	BAS	_	13.0	3.80	1222	-	-	-	-	-	-
21-	1,	0 - 10	310.05	CHE	-	-	-	5.0	-	20	-	-	-	-
21-	1,	0 - 10	310.05	SAV	-	-	-	-	-	-	-	-	-	-
21-	1,	36- 47	310.42	TM	70	70.0	-	26.0	-	<1	-	-	-	<1.0
21-	1,	36- 47	310.42	TM	<1	4.0	-	30.0	-	<1	-	-	-	11.0
21-	1,	47- 49	310.48	DOS	-	_		-	-	-	-	<1.00	-	-
22-	1,	26-33	319.80	AN	-	-	-	-	-	-	-	-	-	-
22-	1,	26-33	319.80	BAS	-	-	4.00	-	-	-	-	-	-	-
22-	1,	26-33	319.80	CHE			-	60.0	-	34	-	-	-	-
22-	1,	26 - 33	319.80	SAV	-	-	-	-	-	-	-	-	-	-
22-	1,	52- 57	320.05	AN	-	-	-		-	-	-	-	-	-
22-	1,	52- 57	320.05	BAS	-	6.0	3.00	-	-		-		-	-
22-	1,	52- 57	320.05	CHE	-	-	-	26.0	-	30	-	-	-	-
22-	1,	52- 57	320.05	SAV		-	-	-	-	-	-	-	-	-
22-	2.	14 - 21	321.18	AN	-	-	-	-	-	-	-	-	-	-
22-	2.	14-21	321.18	BAS	-	6.0	3.00	-	-	_	-		122	-
22-	2.	14-21	321.18	CHE	-	-	_	5.0	~	20	-	-	-	-
22-	2.	14-21	321.18	FWPU	-	-	1.40	2.7	0	6	-	0.19	0.230	1.4
22-	2.	14-21	321,18	SAV	-	-	-		_	_	-	_	_	_
22-	2.	34- 35	321.35	тм	28	7.0	-	<1.0	_	<1	-	-	-	15.0
22-	2	61 - 63	321.62	DOS	-	-	_	_	-	-	_	<1.00	_	_
22-	2	70- 75	321.72	FWPII	_	5257 v 2014 - 5		2.7	0	_	_	0.12	0.210	3.8
22-	2	77- 79	321.78	AN	_				-	-	-	-	-	
22-	2	77- 79	321.78	BAS	-	5.5	2.00	-	-	-	-	-	-	-
22-	2,	77- 79	321.78	CHE	-	5.5		5.0	-	20	_	-	-	4
22-	2	77- 79	321.78	SAV	_	2	3400 240	-	-		_	_	-	
	-,			5 11 V			020		- 3700					

TABLE 3D - Continued

																	100 C
Zr	Hf	NЪ	Ta	Pd	Ir	Pt	Au	Cd	РЪ	Sb	F	Р	Ga	Sn	Ag	Ge	Yb
-	-	-	-	-		-	-	-	-	-	_	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	(-)	-	-	-	-	-	-	5. 	
-		1.00	-	-	-	-	-	-		-	0.020	0.020	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
30	-	1	-	-	-		-	-	-	-	-	-	-	-	-	-	_
_	-	-	-	< 0.01	0 02	-1	2 20	-	-	-	-	-	_	-	_		
30	_	0	-	<.001	0.02	<1	2.20	_	_	-	-			- 2		- 2	- 2
55		-	- 2			5	- 2	- 2	- 2	- 2	- E -		_		-	1	_
_	_				_	9	2.40	-	_	-	-	_	-		-	_	_
_	_	-	-	_	_	_	-	_	_	-	-	-	-	-	-	_	_
_	-	-	_	-	-	-	_	-		-	_		13 - 18	-	-	-	
-	-	_	-	-	-	-	-		_	-	0.022	0.025	-	-	-	_	-
-	0.98	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
41	_	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	_
35	-	9	_	-	-	_	-	-	-	_	-	-	-	-			-
-	-	-	-	<.001	0.03	<1	0.92	_	-	-		10 — 1	-	-	-	-	-
37		10	-	-	-	-	-	-	-	-	-	-	-	-	-		-
-	-	-	-	-		8	2.59	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	0.026	0.049	-	-	-	-	-
-		-	-	-	-	-	-	-	-	-	-		-	-	-		-
-	0.88	-	-	-		-	-	-		-	3 5	-	-	-	-	10.00	-
-		-	-	-	c = c		3.30	-	-	1.77	1.00	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-		_	-	-	-		-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	0.01	0.012	-	-	-	-	-
<1	-	-	-	-	-	-	-	-	-	-	() ()			-	-		-
<1	-		-	-	-	_	-	-	_			-	-	-			
- <	1.00	1		1000	-	-	2 10		_	-	3 - 3						- 27
	_		-			0	2.10			-		-	-		_	_	_
_	_			_	_		_		_	_	_	_	-	_	_	_	_
_	_	_	-	-	_	_	-	_	-	-	.0046	0.01	-	-	_	-	_
-	-	-	_	-	-	8	5.40	-	_	-	-	-	-	-	-	-	_
-	-	_	-	-	-	_	-	-	_	-	-	-	-	-	-	-	_
-	_	_	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-
_	_	-	-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
-	-	-	-	-		8	9.60	-		-	2020 - 6104047 1 11 1	-	-	-	-	-	-
-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	-	-	0.16	-	-	-	-	101	-	0.16	-	-	_	-	-	-	-
-	_	-	-		10 - 17	-	-	-	-	-	0.01	0.01	-	-	-	-	-
<1	-	-	-	-		-	-	-	-	-		:: - ::	-	-	-	-	-
- <	<1.00		-	-			-	-	-	-		-	-	-	-	-	-
6	-	-	0.19	-	-	-	-	89	-	0.11	-	-	-	-	-	-	-
-	-	-	-	-	-	8	6.20	-	=	-	-	-	-	-	-	-	-
-	-	-	-	3 -	-	-	-	-	_	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	0.01	0.01	-	-	-	()	

TABLE 3D - Continued

			Depth											
San	npl	e ^a	(m)	Inv.	В	Li	Rb	Sr	Cs	Ba	T1	Th	U	Y
			1222 222											
22-	2,	80- 82	321.81	AUMC	-	-			-		-	-	0.130	-
22-	2,	80- 82	321.81	GUNN	_	-	1.00	2.0	-	33	-	-	-	-
22-	2,	80- 82	321.81	MUN	3 - 0	-	5.00	14.0	-	8	-	-	-	-
22-	2,	110-120	322.15	AN			-		-	-	-	-	-	-
22-	2,	110-120	322.15	BAS		6.0	4.00		-	-	-	-	-	-
22-	2,	110-120	322.15	CHE	-	-	-	34.0	-	21	-	-	-	-
22-	2,	110-120	322.15	SAV	-	-	-	-	-	-	-	-	-	-
23-	1,	8- 22	329.15	AN	8 — 8	-	-	-	_	-	-	-	-	-
23-	1,	8- 22	329.15	BAS	\rightarrow	3.0	4.00	-	-	-	-		-	-
23-	1,	8-22	329.15	CHE	0.000	-	-	32.0	-	26	-		-	-
23-	1,	8- 22	329.15	SAV	-	-	-	-	-	-	-	-	-	-
23-	1,	30- 35	329.33	AN	-	-	-	-	-	-	-	-	-	-
23-	1,	30- 35	329.33	BAS	-	6.0	2.00	-	-	-	-	-	-	-
23-	1,	30- 35	329.33	CHE	-	÷	-	5.0	\rightarrow	16	-	-	-	-
23-	1,	30- 35	329.33	SAV	-	-	-	-	-	-	-		-	-
23-	1,	78- 82	329.80	AUM	-	-	-	-	-	-	-	-	0.120	-
23-	1,	83- 85	329.84	AN	-	-	-	-	-	-	-	-	-	-
23-	1,	83- 85	329.84	BAS	-	5.0	2.00	-	-	-	-	-	-	-
23-	1,	83- 85	329.84	CHE	-	1. 	-	14.0	-	22	- ²	-	-	-
23-	1.	83- 85	329.84	SAV	-	·	-	-	-	-	-	-	-	-
23-	1.	127-129	330.28	AUM	-	-	-	-	-	-	-	-	0.015	-
23-	1,	127-129	330.28	AUM	-	-	-	-	-	_	-	-	0.015	-
23-	1.	127-129	330.28	DOS	-	-	_	-	_	-	-	<1.00	_	_
23-	1.	127-129	330.28	GUNN	_	-	1.00	30.0	-	43	-	-	-	-
23-	1.	127-129	330.28	GUNN	-	-	2.00	30.0	-	47	-	-	-	-
23-	1.	134-143	330.39	FW		-	0.30	36.0	-	16	-	-	-	6.0
23-	1.	139-143	330.41	SAV	_	_	-	-	_	-	-	-	-	-
23-	2	52- 62	331.07	AN	-	1	_	_	_	_			_	
23-	2	52- 62	331.07	BAS	-	11.0	7.00	-	-	-	-	-	-	-
23-	2	52- 62	331.07	CHE	-		-	5.0	-	17	-	-	-	-
23-	2,	52- 62	331.07	SAV	-	-	-	-	-	_	-	-	-	-
23-	2	78- 82	331, 30	AIMC	-	_	_	_	_	_	0 022	-	-	-
23-	2,	78- 82	331 30	CML		124	3 00	6.0	_	35		_		2.0
23-	2,	78- 82	331.30	GUNN			1.00	5.0	-	79	-	_		
23-	2,	78 - 82	331 30	MIIN		0.000	3 00	15.0	-	69	-	_	_	-
23-	1	110-117	330 64	AN		-	5.00	13.0	_		_	_	_	-
24-	1,	110-117	339 64	BAS	-	24 0	3 00		-			121	2	_
24-	1,	110-117	330 64	CUE		24.0	5.00	6 0		17		100		102
24-	1,	110 - 117	339.04	CAV	100	100		0.0	200	17		120		
24-	2,	72- 79	339.04	AN						_	-		_	
24-	5,	72-79	342.20	DAC	-	10 0	3 60	-	-	_	_	_	_	_
24-	2,	72- 79	342.20	CUE		19.0	5.00	10 0	- 2	17		1000	227	
24-	5,	112 114	342.20	AIM				10.0	100	17	1777		0 004	_
24-	5,	112-114	342.03	AUM		1977 1997							0.012	
24-	5,	112 - 114	342.03	AUM				-	-	-	-	<1 00	0.012	_
24-	3,	112 - 114	342.03	DUS	-	-	0 00	12 0	-	6 3	-	<1.00	-	-
24-	5,	112-114	342.03	GUNN	-	-	0.00	10.0	-	63	-	-	-	-
24-	5,	112-114	342.03	GUNN	-		1.00	10.0	-	44		2.00 (2.00)		-
24-	4,	81-83	343.82	AN		6 0	2 00			576 899	1942	-	1000 C	-
24-	4,	81- 83	343.82	BAS	-	0.0	3.00		-	-	-	-	-	-
24-	4,	81- 83	343.82	BAS	-	-	-	5.0	-	26	-	-	-	-
24-	4,	81- 83	343.82	SAV	-		-	-	-	-	-		-	

TABLE 3D - Continued

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr	Hf	NЪ	Ta	Pd	Ir P	t /	Au	Cd	Pb	SЪ	F	Р	Ga	Sn	Ag	Ge	УЪ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	_	-	62.000	0.553	910.	. 00	-	-	-	-	_	-	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c} 8 & 3.70 \\ -3.9$	13	-	0	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	_	_	-		_	8 3.	.70	_	-	-	_	-	_	-	3 -	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	-		-	_	-	-		-	-	- 3	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-		-	-	-	-	-	-		-	-	-		-	-
$\begin{array}{c} 3.90 \\ & & & & & & & & & & & & & & & & & & $	-	-	-	-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	-	-	-	-	-	-	- 3.	. 90	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c} .0060 & 0.01 \\ .0060 & 0.01 \\ .001 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0086 & 0.01 \\ $	-	-	-	-		-	-	-	_	_	-	_	-	_	-	-	-	_
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
$ \begin{array}{c} 8 & 6.00 \\ 0.01 & 0.01 \\ 0.01$	-	-	-	-	-	-	-	-	-	-	-	.0060	0.01	-	-	-	-	-
$ \begin{array}{c} 8 & 4.70 \\ -<1.00 \\ 1 & - & - & - & - & - & - & - & - & - &$	-	-	-	-	-	-	8 6.	.00	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c} 0.01 & 0.01 \\ 0.01 & 0$	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-
$ \begin{array}{c} 0.01 & 0.01 \\ 0$	-	<u> </u>	-	-	-	_	-	_	-	_	-	-	-	-	-	-	-	-
$ \begin{array}{c} 8 & 4.70 \\ -<1.00 \\ -<1.00 \\ -\\ 8 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	-	-	_	_		-	-	_	_	_	_	0.01	0.01	_	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
$\begin{array}{c} .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0086 & 0.01 \\ .0086 & 0.01 \\ .0086 & 0.01 \\ .0086 & 0.01 \\ .0086 & 0.01 \\ .0086 & 0.01 \\ .0012 & 0.01 \\ .0012 & 0.01 \\ .0012 & 0.01 \\ .0012 & 0.01 \\ .0012 & 0.01 \\ .0014 & 0.01 \\ .0046 & 0.01 \\$	-	-	-	-	-	-	8 4.	. 70	-	-	-	-	-	-	-		-	-
$ \begin{array}{c} .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0046 & 0.01 \\ .0086 & 0.01 $	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
$\begin{array}{c} -<1.00 \\ -<1.00 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	-	-	-	-	_	-	-	-	-	_	_	_	-	-	-	-	-	-
$ \begin{array}{c} -<1.00 \\ 8 \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	_	_	-	_	_	-	_	_	_	-	-	.0046	0.01	_	_	_	_	_
$ \begin{array}{c} -<1.00\\ 8\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	_	-	-	_	-	-	_	_	-	-	_	-	-	-	-		-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-		-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-<	1.00	-	-	-	-	-		-	-	-		-		-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	_	_	-	-	-	_	-	-	-	-	-	-	-	-	3 — 1	_	_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	-	-	_	Y 15	_	_	_	_	_	_	_	-	_	-	(1 -1)	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	· - ·	-	87.	.10	-	-	_	-	-	-	-	-	-	-
.0086 0.01 1 - 5 - 19.000 0.7231 4.40 1 - 5 - 8 3.80 - 8 3.80 - 8 9.10 - 8 9.10 	-	-	-	_	-	-		-	-	-	-	-	-	-	-	-	_	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	-	-	-	_	_	-	-	-	-	-	-	<u></u>	_	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-		_	_	_	_	_	-	.0086	0.01	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	19.000	0.723	1 4.	.40	-	-	-	-	-	-	-		-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-	5	-		-	-	-	_	-	-	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	_	_	-	-	-	-	-	_	-		-	-	-	-	-	-
<pre></pre>	12	-	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-<1.00 	_	-	-	-	-	-	8 3.	. 80	-	-	-	-		-	-		-	-
-<1.00 - 15 8.40 - 0046 0.01	-	-	-	-	-		-	-	-	-	-		-	-	-		-	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	-	-	-	-	-	-	-	-	-	-		-		-	-	-
$= \frac{89.10}{-9} = \frac{-9}{-10} = \frac{-10}{-10} $	-	-	-	-	-	-	-	-	-	-	-	0.012	0.01	-	-	-	-	-
-<1.00 	-	_	-	-	-	-	8 9.	. 10	-	-	-	-	-	-	-	-	-	-
-<1.00 -<1.00 - 15 8.40 - 15 8.40 - 0046 0.01	-	-	-	_	-	-	_	-	-	-	-	-	-	_	-	-	_	-
-<1.00	-	1.0-0	-	-	-	-	-	- 9	_	_	_	_		-	-	-	-	_
-<1.00! -! -! -! -! -! -! -! -! -! -! -! -	-	-	-	-	—	-	-	-	-	-	-	-	())	-	-	-	-	-
-<1.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-<	1.00	_	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-
	-	_	_	-	-	-	-	- (-	-	_	-	-	-	-	-		-
	_	-	_	_		_	-	_	_	-	-	-	-	_	-	-	-	_
	-	-	_	-	-	- 1	5 8.	40	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	-	- 1	-	-	-	-	-	-	-	5 — 7	-	-	-	-
0046 0.01	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-	-	-	_	-	-	-	-	-	-	.0046	0.01	-	-	-	-	_

TABLE 3D - Continued

			Depth		-			-				m 1		
Samp	pie	_	(m)	Inv.	В	Li	Rb	Sr	Cs	ва	TI	Th	U	<u> </u>
24- 4	95-	97	343.96	AUM	_	_	_	-	_	-		-	0.022	-
24- 4	4, 95-	97	343.96	GUNN	-	-	1.00	14.0	-		-	-	-	-
24- 4	4, 111-1	13	344.12	FW	-	-	-	23.0	-	19	-	-	-	4.6
25- 1	1, 52 -	58	348.55	AN	-	-	-	-	-	-	-	-	-	-
25- 1	l, 52 -	58	348.55	BAS	-	4.0	2.00	-	-	-	-	-	-	-
25- 1	1, 52-	58	348.55	CHE	-	-		5.0	-	15		-		-
25- 1	1, 52-	58	348.55	SAV	-	-	-	-	-	-	-	-	-	-
26- 1	1, 20-	22	357.71	AUM	-	-	-	-	-		-	-	0.074	-
26- 1	1, 20-	22	357.71	GUNN	-	-	1.00	4.0	-	47	-	-	-	-
26- 1	1, 118-1	25	358.72	AN	-	-	-	-	-	_	-	-	-	-
26- 1	1, 118-1	25	358.72	BAS	-	9.0	4.00	-	_		-	-		-
26- 1	1, 118-1	25	358.72	CHE	<u></u>	-	-	7.0	-	18	-	-	-	-
26- 1	1, 118-1	25	358.72	SAV	-			-	-	-	-	-	-	-
26- 2	2, 59-	64	359.62	AUMC	-	-	-	-	-	-	-	-	0.031	-
26- 2	2, 59-	64	359.62	GUNN	-	-	1.00	13.0	-	58	-	-	-	-
26- 2	2, 59-	64	359.62	GUNN	-	-	1.00	13.0	-	60	-	_	-	-
26- 2	2, 64-	67	359.66	AN	-	_	_	_	-	-	-	-	-	-
26- 2	2, 64-	67	359.66	BAS	_	11.0	3.00	-	-	-	-	-	2 3- 01	÷.
26- 2	2, 64-	67	359.66	CHE	-	-		9.0	~	21	-	-	a - a	
26- 2	2, 64-	67	359.66	SAV	-	-	-	-	-	-	-	-	-	-
26- 2	2, 93-1	03	359.98	AN	-	-	3 	-	-	-	-	-	-	-
26- 2	2, 93-1	03	359.98	BAS	-	5.0	2.20	-	-	_		-	-	-
26- 2	2, 93-1	03	359.98	CHE	-	-		8.0	-	22	-	-	-	-
26 - 2	2, 93-1	03	359.98	SAV	-	-	-	-	-	-	-	-	-	1.00
27- 1	1, 3-	12	367.08	AN	-	-	-	-	-	-	-	-	-	-
27- 1	1, 3-	12	367.08	BAS	-	4.0	2.00	-	-	-	-	-	-	-
27- 1	1, 3-	12	367.08	CHE	-	-	-	5.0	-	17	-	-		-
27- 1	1, 3-	12	367.08	SAV	-	-	-	-	-	-	-	-	-	-
27- 1	l, 38-	50	367.44	AN	-	-	-	-	-	-	-	-	-	-
27- 1	1, 38-	50	367.44	BAS	-	6.0	2.30	-	-	-	-	-	-	-
27- 1	1, 38-	50	367.44	CHE	-	-	-	6.0	-	22	-	-	-	-
27- 1	1, 38-	50	367.44	SAV	-	-	-	-	-	-	-	-	-	-
27- 1	1, 38-	50	367.44	TM	27	8.0	-	6.0	-	<1	-	-	-	13.0

Note: The analysts codes are as follows: AUM - F. Aumento and W. Mitchell, Dalhousie University; S by A. J. Naldrett, University of Toronto (Chapter 32, this volume); GUNN - B. Gunn, University of Montreal (Chapter 58, this volume); BOG - H. Bougault, Centre Oceanologique de Bretagne (Chapters 30 and 50, this volume); AUF - F. Aumento and M. Fratta, Dalhousie University; TM - G. Thompson, Woods Hole Oceanographic Institution (Chapter 53, this volume); FW - M. Flower, Ruhr-Universitat Bochum (Chapters 51 and 61, this volume); ISH - I. Shevaleevsky, U.S.S.R. Academy of Sciences; SGS - J. Schilling, University of Rhode Island (Chapters 38 and 71, this volume); MUN - Memorial University, Newfoundland (see Chapter 56, this volume); CML - R. Lambert, University of Alberta (Chapter 34, this volume); LEB - A. Lebedkova, U.S.S.R. Academy of Sciences; MUY - J. Muysson, McMaster University (Chapter 33, this volume); DOS - J. Dostal, Dalhousie University (Chapter 35, this volume); FWPU - M. Flower, Ruhr-Universitat Bochum (first transition elements) and H. Puchelt, Universitat Karlsruhe (REE) (Chapters 51 and 37, respectively); BAS - L. Bannich, and N. Sushevskaya, U.S.S.R. Academy of Sciences;

TABLE 3D - Continued

Zr	Hf	Nb	Ta	Pd	Ir	Pt	Au	Cđ	РЪ	SЪ	F	Р	Ga	Sn	Ag	Ge	УЪ
-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	8	6.30	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	_	-	-	-	-	_	_	-	-	-	-	-	_	-	-	-
-	-	-	-	-	-	-	-	-	-	-	.0046	0.01	-		-	-	-
-	-	-	-	-	-	-	-	$\sim - 1$	-		-	-	-	: . 		-	
-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	8	2.60	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-		-	-	<u> </u>	-	-	-	-	-	-	-
-	-	-	\rightarrow	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-
	-		-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
-	-	-	-	49.000	0.4	6<1	34.00	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-		8	2.20	-	-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	0.01	0.01	-	-	-	-	-
-	-	-	-	-	-	8	2.10	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-	-		-	-	-	-	-	-	-	.0046	0.01	-		-	-	-
-	-	-	-	-	-	8	2.40	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	+	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
-	-	-	-	-	-	18	5.20	-	-	-	-	-	-	-	-	· -	-
= - c	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	.0046	0.01	-	-	-	-	-
< 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

CHE – S. Chernogorova, U.S.S.R. Academy of Sciences; MUCA – J. Muysson, McMaster University (Chapter 33, this volume); J. Crocket, McMaster University (Chapter 36, this volume), F. Aumento and W. Mitchell, Dalhousie University (Chapter 31, this volume); AUMC – F. Aumento and W. Mitchell, Dalhousie University (Chapter 31, this volume); and J. Crocket, McMaster University (Chapter 36, this volume); AN – G. Anoshin, U.S.S.R. Academy of Sciences; SAV – E. Savinova, N. Kosilina and T. Andreeva, U.S.S.R. Academy of Sciences. The methods codes are as follows: TRACK – fission track; XRF – X-ray fluorescence; AAS – atomic absorption; XRFAA – X-ray fluorescence and atomic absorption; WET – classical wet chemical techniques; NCL – neoclassical techniques; PROBE – electron microprobe; MISC – miscellaneous techniques; NAA – neutron activation analysis; CLASS – classical wet chemical techniques; XRFFP – X-ray fluorescence and flame photometry; – not detected.

C

G Core

G Catcher

F A G

F A

T LNN

LATE MIDCENE N17 (F)

-

REMOVED

N9 to NR 75

N8

N8

5Y 8/1 layer

264

ite	334	Hole			-	Core 3	Cored 1	nter	val:	139.0-148.5 m	1
		CHA	ARAC	TER	NO	x		NOI	WPLE		
AGE	ZONI	FOSSIL	ABUND.	PRES.	SECTI	METER	LITHOLOGY	DEFORMAT	LITH0.SI		LITHOLOGIC DESCRIPTION
					0						Very stiff chiefly white to light gray (N8)
		F	A	6	1	0.5		4444444	96 121	N8 106Y 5/2 1ayer 5G 8/1 mixed	Bock with green (100 3)/2, and green an gray (56 8/1) layers between 1-120 and 2-89. Darkest layers are stiffest. FORAM-BEARING NANNO 00ZE Avg. of smear slides 1-96, 1-121, 2-48, 2-54, 2-135 Nannos 95% Forams 3% Pyrite 1% Vol. Glass TR Grain Size 2-80
MIDCENE	(F) (F) (F)	F	A	G	2	trada a			54 135	106Y 5/2 and 5G 8/1 layers mixed N8 and N9 layers	sand <u>6.4</u> silt 28.7 clay 64.9 <u>Carbon-Carbonate 2-72</u> 11.0, 0.1, 91 X-ray (Bulk) 2-83
LATE		FNR	A A -	GG -	Ca	ore tcher				NB	Amor 6.9, Calc 100.0 <u>X-ray (2-20,m)</u> <u>2-83</u> Amor 45.5 Quar 2.0 Plag 25.1 Mica 16.7 Mont 12.7 Phil 38.1
AGE	ZONE	FOSSIL R	OSS. OND . UNDER	PRES. 31	SECTION	METERS 400	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	140.5-130.0 #	LITHOLOGIC DESCRIPTION
					0		VOID				This core was accidentally dropped on the
		F	A	G	1	0.5			40	N7 N8 N7	deck.Inerefore parts of Section 1 are not necessarily in order and their top-bottom orientation may be incorrect. Very stiff light gray (N7 to N8) ooze with a few faint light green layers. FORAM-BEARING NANNO 00ZE Avg. of smear slides 1-40, 1-100, 2-140 Nannos 95% Forams 4%
LATE MIOCENE	N17 (F) NN11	FNR	AAC	GGE	2 Ca	ore			140	N7 56¥ 6/1	Sponge Spicules TR Pyrite TR Vol. Glass TR sand 4.1 silt 30.6 clay 65.3 Carbon-Carbonate 1-72 10.7, 0.1, 89 X-ray (Bulk) 1-83
											Amor 4.8, Calc 100.0 <u>X-ray (2-20,m)</u> 1-83 Amor N.D. Quar 3.6 Plag 38.1 Mica 21.5 Augi 36.8

		CH	OSS RAC	IL TER	N	~		NOI	MPLE	
AGE	ZONE	FOSSIL	ABUND.	PRES.	SECTIO	METER	LITHOLOGY	DEFORMAT	LITH0.SA	LITHOLOGIC DESCRIPTION
		F	A	6	0 1 2 3	0.5		30 04	110	Watery to very stiff gray to greenish-gray (567 6/1) ooze. Black patch pyrite at 1-110. Subcircular greenish-gray (567 4/1) patch at 4-113 may be filled burrow.VOLCANIC GLASS, FORAM BEARING NANNO 002E Avg. of smear slides 2-75, 3-130, 4-40, 4-80, 4-113
LATE MIUCENE	N17 (F) NN11	F FNR	A A A A C	G G GGM	4 Ccan	ore		2	130 40 80 113	N7 X-ray (2-20,m) Amor 79.8 85.9 78.3 Quar 2.8 4.9 2.4 Plag 37.3 31.9 25.9 N7 to Mica 8.3 22.3 7.5 N8 Mont - 25.3 0.0 gradational Anal 2.2 2.5 3.0 gradational Augi 49.5 38.4 34.9 56Y 6/1 Cris TR PRES -

Explanatory Notes in Chapter 1

265

ZONE	FOS CHARA TISSO	ACTE -	KES, N	SECTION	METERS	LITHOLOGY	EFORMATION	ITHO.SAMPLE	LITHOLOGIC DESCRIPTION
LATE MIDCENE N17 (F) NN11	FF	A AAC	G GGM	0 1 2	0.5 1.0			20 120 54 75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ite	334	Hol	e			Core 7	Cored I	nter	val:	177.0-186.5	m				
AGE	ZONE	FOSSIL F	FOSS ARAC	LER	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE		LI	THOLOGI	C DESCR	[PTION	
					0						Mostly v	ery sti	ff ligh	t gray (N7	') to
		F	A	G	1	0.5			63 75	N7 to 5GY 6/1	greenish gray (5G spot mot pyrite-r green (1 purple (olive gr 6. Pumic 4-134, 5 pyrite-r	-gray (Y 4/1) tling i ich pat OGY 5/2 5P 4/2) ay (5Y e fragm -61, 5- ich str	bor 6/1 ooze wi n upper ch at 4) layer layer 6/1) mo ents at 76, 5-8 eak at) to dark th slight half. Bla -19. 3 mm at 5-55. at 6-31. S ttling in 1-91, 1-1 5, and 6-4 2-144.	green purple ick thick 0.5 cm Silight Section 116, 4-106, 14. Purple
					2	direction			75	N7	VOLCANIO Avg 2-7 6-4	C GLASS- . of sm 5, 3-75 4, 6-75 Nanno: Foram: Vol. 0 Rads	-FORAM-1 ear sli , 4-75, s s Slass	3EARING NA des 1-63, 5-75, 5-1	NNO 00ZE 1-75, 35, 6-31, 86% 3% 8% 4%
		F	A	G		1		Ľ.	144			Spong Pyrite	e Spicu	les	TR TR
		F	A	G	3	minnian			75	N7 to 5GY 6/1	Grain Si sand silt clay <u>Carbon-Cc</u> 9.0, 0.1	ze <u>1-80</u> 8.1 41.2 50.7 arbonati , 74	3-80 10.3 39.9 49.7 ≥ 3-60	5-80 7.5 38.7 53.9	
					4	utra tana			19 75	N7 to 5GY 6/1	Amor 32. Amor 22. Amor Quar Plag Mica	-20µm) -20µm) 1-83 90.1 2.8 15.2 10.2	2-88 89.7 3.4 18.0 4.8	3-83 88.6 5.0 15.1 8.5	
		E	A	G		denta				5GY 6/1 10GY 5/2 laver	Mont Paly Phil Anal Pyri Augi Cris	37.0 11.1 3.8 2.4 17.4 TR	34.8 7.7 4.9 1.8 24.7 PRES	37.9 7.6 2.6 2.1 21.2	
	s (R)	F	A	G	5	n sent n			75 135	5GY 6/1 N6 5GY 6/1	Amor Quar Plag Mica Mont	4-83 91.0 1.7 14.4 8.1 46.7	5-83 87.8 2.9 18.3 4.5 43.3	6-83 85.6 1.9 19.7 7.1 34.6	
	antepenultimu				6	dim to the			31 44 75	5P 4/2 layer 5GY 6/1	Paly Phil Anal Pyri Augi Cris	3.3 3.6 4.1 - 18.2 PRES	3.6 3.7 1.0 22.7	6.5 0.6 29.6	
LATE MIOCENE	NI6 (F) NN11 Ommartartus	FNR	A A A A	6 6 6 6	Cat	ore cher				5GY 4/1 layer 5GY 4/1					

Explanatory Notes in Chapter 1

266

Site 334	Hol	e		C	ore	8	Cored I	nterv	a]: 3	186.5-196.0 m	Site	334	Hole	ē		Core	9 Cored In	terv	al:	196.0-205.5 m
AGE ZONE	FOSSIL D	FOSS IARAC	PRES. PRES.	SECTION	METERS	LIT	HOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIL 2	VIND.	PRES. 33	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
TATE MIDCENE NI16 (F) Exbjauaro	An Ammartartus antepenultimus (R) and a survey of the surv	A A A A C	G G G G M M	0 1 2 Cor Ca	0.5- 1.0- 				60	Matery to stiff greenish-gray (SSY 6/1) to give gray (SY 4/1) ooze. Black spots of pyrite micronodules in 100-125 interval in Section 1. Greenish gray (SG 6/1) spot at 1-60. RAD-FORAM-VOLCANIC GLASS-BEARING TANNO OOZE Avg. of smear slides 1-60, 2-60 Nannos Nannos Sponge Spicules R Sponge Spicules Sponge Spicules R Sill 43.7 Sofy 6/1 Grain Size Teolog Sill 43.7 Sofy 6/1 Grain Size Teolog Sill 43.7 Sill 43.7 Sill 2-88 Sand Sill 43.7 Sill 43.7 Sill 43.7 Sill 2-88 Sand Sill 43.7 Sill 43.7 Sill 2-91 Amor 83.5 Quar 1.7 Quar 1.7 <td>LATE MIOCENE</td> <td>N16 (F) N111 Commentation and community feature (p)</td> <td>F F FNR</td> <td>A A AAC</td> <td>6 6 6 6 6 6 7 7</td> <td>0.1</td> <td></td> <td></td> <td>10 135 75 75</td> <td>Matery to stiff light gray (N7) to light olive gray (SY 6/1) ooze. White (N9) patches at 1-6, 1-10, 1-16 and 2-83. Dark greenish-gray (SGV 6/1) patch at 1-135. Purple (SP 4/2) layer 3 mm thick at 4-90. Diffuse greenish-gray (SGV 6/1) layer at 4-97. Pumice fragments at 3-44 and 4-96. RAD-VOLCANIC GLASS-FORAM-BEARING NANNO 002E And 7-96. Avg. of smear slides 1-10, 1-135, 2-75, 3-75, 4-75 86% Forams N7 Rade of the second state of the second s</td>	LATE MIOCENE	N16 (F) N111 Commentation and community feature (p)	F F FNR	A A AAC	6 6 6 6 6 6 7 7	0.1			10 135 75 75	Matery to stiff light gray (N7) to light olive gray (SY 6/1) ooze. White (N9) patches at 1-6, 1-10, 1-16 and 2-83. Dark greenish-gray (SGV 6/1) patch at 1-135. Purple (SP 4/2) layer 3 mm thick at 4-90. Diffuse greenish-gray (SGV 6/1) layer at 4-97. Pumice fragments at 3-44 and 4-96. RAD-VOLCANIC GLASS-FORAM-BEARING NANNO 002E And 7-96. Avg. of smear slides 1-10, 1-135, 2-75, 3-75, 4-75 86% Forams N7 Rade of the second state of the second s
															9					Mont 48.3 41.3 50.5 Phil 4.4 Anal 4.0 3.4 2.6 Pyri - 1.0 - Augi 14.6 24.6 20.4 Cris PRES - TR

SITE 334

267

.

te 334 Hole	1122	-	Cor	re 10	C	ored In	terv	al:	205.5-215.0 m	Site	3	34	Hole	SSIL	T	Core	11 Cored	Inte	rval:	215,0-224.5	m	
ZONE FOSSIL	ACTE	CELTION	1011000	METERS	LITH	DLOGY	DEFORMATION	LITHO.SAMPLI	LITHOLOGIC DESCRIPTION	AGE		ZONE	LTAR TISSO	ACTEL . ONUBA	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPL		LITHOLOGIC DESCRIPTION	
F	A	1) 0 11	1818-1818-1818-1818-1818-1818-1818-181			000000000000000000000000000000000000000	90	Watery to stiff light gray (N7 to N8) ooze mottled with white (N9) patches at 1-124, 1-143, 2-43, and 2-68. Yellowish-gray (5Y 8/1) patches at 1-96, 1-113, 2-61, 2-110, 3-46, 3-76, and 3-83. Greenish-gray patch (56 8/1) layer at 4-124. Greenish-gray patch (56 8/1) at 6-102. N7 FORAM-BEARING NANNO 002E Avg. of smear slides 1-90, 2-110, 3-75, 4-60, 5-75, 6-75. Nannos 93% Forams Yol. Glass 1% Rads N7 Sponge Spicules Trace of fish remains at 4-60.				F	A G	0	0.5-			35 75	NB NB	Watery to stiff chiefly light a ooze. Greenish gray (SG 671) p. 1-51, 1-67, and 1-77. Two blac 1-35. 3 mm thick gray (N7) lay. Purple (SF 4/2) patches in Sec Yellowish gray (SY 8/1) from 11 Section 4. FORAM-BEARING NANNO DOZE Avg. of smear slides 1-35. 3-75, 4-120, 4-185 Wannos Forams Rads Sponge Spicules Vol. Glass Pyrite Grain Size 2-80 3-80 4-80	gray (N8 stches a k specks er at 2- tion 3. 08-130 i , 1-75,
F	A	G	3				000 000	75	Grain Size 4-90 sand 7.6 silt 20.9 clay 71.5 NB Carbon-Carbonate 4-69 11.0, 0.1, 91 11.0, 0.1, 91 X-ray (Bulk) 4-94 Amor 11.1, Calc 100.0			s (R)	F	A G	3	-			125 75	N7 layer N8 N8	sand 11.6 9.3 9.6 silt 23.2 17.0 17.6 clay 65.2 73.6 77.8 <u>Carbon-Carbonate 3-72</u> 11.0, 0.1, 91 <u>X-ray (Bulk) 2-83</u> Amor 11.6, Calc 100.0 <u>X-ray (2-20,m)</u> Amor <u>N.D.</u> 37.9 N.D.	
F	A	G	1				00 00 0	60	N8 56 8/1 layer N8 <u>X-ray (2-20µm)</u> <u>4-96</u> Amor N.C. Quar 14.7 Plag 60.0	LATE MIOCENE	N16 (F)	 NNIO Ommartartus antepenultimu 	FFNR	A G A G A G	4	ore			120 135	N8 5Y 8/1 in 5GY 6/1 1a N8 N8	Quar 7.4 6.5 5.8 Plag 22.1 15.6 19.4 Mica 4.3 19.3 17.5 Mont 34.7 35.1 35.1 Phi1 10.4 10.5 11.7 Ana1 2.0 1.6 Cris PRES PRES PRES Erval Lyers	
NE anteperultimus (R)			6				00000000000000000000000000000000000000	75	N8 Mica 9.0 Anal 3.1 Augi 13.3 Cris TR	εxp	Idn	acory	Note	5 11	спар	Ler I						
LATE MIOCE N16 (F) NN10? Demartartus 202 m	AAA	6 6 6	Con	re :her			4		NB													

SITE 334

Sit	e 334	Но	le			Core	e 12		Cored	Int	erva1	224.5-23	34.0 m	1							Site	334	Hold	e		Cor	re 13	Cored	Inter	val:	234.0-243.5 m							
AGE	ZONE	Enceri C	FOS HARA	SIL CTER	SECTION	The Pool	METERS	LIT	HOLOGY	NECODMATION	LETURMALIUN LITHO.SAMPLE			ł	LITHO	.OGIC (DESCRI	PTION			AGE	ZONE	FOSSIL 2	ARACT	PRES. B	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITH	OLOGIC	DESCRIF	TION			
		F	A	G	0	0.				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	120	NB		Watery (N8) c in Sec in Section FORAM-	to v boze b tions tions BEARII Vg. o I-75, N Fr R S V V	ery st ecoming 4. Blu 1 and and 4. NG NANN f smean 4-90 annos orams ads ponge 5 ol. Gla yrite	iff ch gree ish gr 2. Gr 40 00Z r slid Spicul	niefly li nish gra ay (58 7, ay mottl E es 1-120 es	ght gra y (5GY /1) pat ing in , 2-37	ay 6/1) tches , 94% 5% TR TR TR TR TR			F	A	G	0 1 1	0.511111111111111		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	75	N/ bi a 2 2 N7 Fi N7 Fi	tery to zze. Stif Tow 6-14 dd 1-63. -84, 2-11 tch at 2 DRAM-BEAR Avg. 4-75,	stiff 1 f very 3. Whit Olive g 6, and -30. NING NAM of smea 5-75, Nannos Forams Rads Sponge Vol. Gi Pyrite	light g pale bin te (N9) yray (5' 3-101. NNO 002/ ar slid 6-75, f Spicule ass	ay (N7 'own (1 patche / 4/1) Black E es 1-75 5-145 es	to N8 OYR 8/ s at 1 patche pyriti	1) nann 3) -31 is at c 6, 94% 5% TR TR TR TR TR	2.0
		F	A	G	2		111111111111					NB		Grain sand silt clay <u>Carbor</u> 10.7, X-ray	<u>Size</u> 2 6 - <u>Carb</u> 0.1, 1 (Bulk	-80 9.6 3.8 5.6 0 nate 3 88) 2-83	3-80 10.4 23.3 56.3 3-72	4-81 12.3 23.5 64.1					F	A	6	2				116	N8 <u>G</u> SS S C C T	rain Size Ind It Way Wrbon-Car I.O, O.1,	2-83 14.0 22.7 63.3 bonate 91	4-90 13.8 23.6 62.6 4-104	5-80 12.6 21.2 66.2	6-80 11.8 22.4 65.7		
		F	A	G	3						75	N8		Amor X-ray Amor Quar Plag Mica Mont	3.7, (2-20) 2 N 2 2	Calc 10 -83 -0. 1 6.5 9.9 6.9	3-83 4.0. 5.8 26.3 7.3 23.2	4-83 76.7 3.4 22.1 4.2 36.4					F	A	6	3	mount				N8 X A Q P M	ray (Bul tor 13.9, ray (2-2 nor Jar lag ica	<pre>ik) 2-86 Calc 20μm) 2-86 N.D. 5.5 25.3 12.0 30 9</pre>	4-93 74.2 7.8 18.4 26.5	5-83 72.1 8.0 19.3 14.2 34.9	6-83 N.D. 4.3 32.8 5.4		
E MIDCENE	(F)	F	A	G	4	ore	IIIIIIIIIII				90	to 5GY 6/	1	Anal Pyri Augi Cris	2	3.5 3.6	5.8 2.0 3.2 26.4 IR	5.8 1.8 26.4 PRES					F	A	6	4				75	NS P A A C	hily hil hal yri Jgi ris	2.7 2.6 21.0 PRES	8.4 3.2 16.1 PRES	4.0 0.8 18.8 TR	1.3 26.0 2.5 1.2 9.0		
EXT	anato	OINN R ry No		in i	Ca	ter	er 1		<u>+</u>	3		57 6/1											F	A	6	5	uhunhun			75	NB							
																										6	min				N7 to N8							

Core Catcher

G

10YR 8/3

10YR 8/3

145

- 1

LATE MIOCENE

SITE 334

270

Site 334 Hole Core 17 Cored Interval: 2/2.0-281.5 m	Site 334 Hole Core 19 Cored Interval: 291.0-300.5 m
CHEMICAL CHARACTER NULL CHARACTER NU	CHEMICAL CHARACTER HATTINIA AND CHEMICAL CHARACTER AND CHEMICAL CH
0 Original basalt recovery was 2.5 m. Styrofoam spacers make the amount shown here greater than the amount recovered. 0.5 1 1 0.5 1 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0	0 0 1 - 0 0 1 - 0.5 1 1 - 1<
Site 334 Hole Core 18 Cored Interval: 281.5-291.0 m	Site 334 Hole Core 20 Cored Interval: 300.5-310.0 m
CHEMICAL CHARACTER INDUCING CHARACTER INTUCING CHARACTER INTUCING CHARACTER INTUCING CHARA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
0 0 0 0 0 0	0 0 Original basalt recovery was 2.2 m. Styrofoam spacers make the amount shown here greater than the amount shown here greater than the amount recovered. 0.5 1 0.5 1 1 1 1 1
Explanatory notes in chapter 1	

manner of senses of the sense of the sense of the

Explanatory Notes in Chapter 1

SITE 334

SITY		Cł	EHI	CAL	CHA	RACT	ER	z	\$				S,	~	
NRM INTEN	POLARIT	A1203	Fe ₂ 0 ₃	Mg0	K20	H20+	C02	SECTIC	METER	LITHOLOGY	SAMPLES	D g/cc	V km/s	POROSIT	LITHOLOGIC DESCRIPTION
21.4	Ę	5.14	9.78	37.3	0.00	7.2	16.0	0	0.5		A 8	2.640 2.666	5.88 5.65		Original recovery was 1.4 m. Styrofoam spacers make the amount shown here greater than the amount recovered. GABBRO T. 5. 1-20 Light brown, coarse-grained, allotriomorphic granular; composed of clinopyroxene, augite and plagioclase with minor olivine and picotite. Some olivine serpentinized. From 0-100 cm gabbro and peridotite are inter- layered and associated with some breccia. PERIDOTITE Dark gray-green serpentinized rock composed of pyroxene and ovoids of serpentinized olivine. Minor spinel and plagioclase.
ite	33	4 CH	EMI	Hole CAL	CHA	RACT	ER	Cor	e 27	Cored In	terva	a1:	367	.0-37	6.5 m
NRM INTEN	POLARITY	A1203	Fe ₂ 0 ₃	MgO	K20	H20+	c02	SECTION	METERS	LITHOLOGY	SAMPLES	D g/cc	V km/se	POROSITY	LITHOLOGIC DESCRIPTION
			Π					0							Original recovery was 0.3 m. Styrofoam spacers
															make the amount shown here greater than the amount recovered. GABBRO T.S. Light brown, coarse-grained, composed of orthopyroxene, clinopyroxene, plagioclase, minor olivine and spinel. Olivine serpentinized

