68. MINERAL ANALYSES FROM THE PERIDOTITE-GABBRO-BASALT COMPLEX AT SITE 334, DSDP LEG 37

D.B. Clarke, Department of Geology, Dalhousie University, Halifax, Nova Scotia, Canada

and

H. Loubat, Département des Sciences de la Terre, Université de Quebec à Montréal, Montréal, P.Q.

ABSTRACT

Fifty-one analyses of silicates, oxides, and sulfides from a suite of ultrabasic and basic rocks at Site 334 are presented. The intrusive rocks show rhythmic, cryptic, and phase layering and are closely analogous to the Rhum-layered intrusion. The extrusive rocks are mineralogically similar to the intrusives, but are unlikely to be genetically related to them.

INTRODUCTION

Drilling at Site 334 penetrated ~ 50 meters of basalts which overlie at least 68 meters of gabbros and peridotites. The basalts are generally aphyric, or sparsely porphyritic containing phenocrysts of olivine, clinopyroxene, and plagioclase. The presence of very coarse grained rocks at shallow depth under the basalts is in itself surprising and significant. The peridotites show well-developed cumulus textures in which olivine and spinel are always cumulus phases, whereas two pyroxenes and plagioclase are cumulus phases only in the gabbros. The present mineral analyses were undertaken to determine if the gabbros and peridotites are the complements of the overlying basalts, i.e., if there is a genetic relationship between the intrusive rocks below and the extrusive rocks above.

All analyses were done by electron microprobe (Cambridge Microscan MK-5) using natural minerals as standards. The raw data were processed using the EMPADR VII correction proceedure of Rucklidge and Gasparrini (1969).

MINERAL ANALYSES

Analyses of silicate minerals appear in Tables 1-3 and are graphically represented in Figure 1. In addition, Table 4 contains analyses of chrome spinels from the three peridotite specimens investigated. Also a qualitative petrographical investigation is summarized in Table 5. Finally, some of thee rocks were briefly studied for their sulfide mineralogy and the following two analyses were made in gabbro 334-21-1, 47-49 cm:

	Pyrite	Chalcopyrite
Fe	47.83	30,63
Cu	2.42	34.54
Ni	0.07	0.03
S	53.27	34.26
	101.18	99.47

In other rocks, the following sulfides were identified but not quantitatively analyzed: 22-2, 61-63 cm; pentlandite; 23-1, 127-129 cm; pyrrhotite; 24-3, 112-114 cm; chalcopyrite, pyrite, pentlandite. In many cases the sulfides appear to occur as disseminated blebs enclosed within the primary silicate minerals.

DISCUSSION

Within the limitations of the visual core descriptions (Aumento and Melson, 1974) and the low degree of core recovery, there appear to be at least nine cycles of peridotite-olivine gabbro-gabbro in the plutonic complex of Site 334. A cycle usually begins with peridotite, but in some cases the most basic member may be olivine gabbro. Also, a cycle usually ends with olivinepoor or olivine-free gabbro, but in some cases the cycle ends while the gabbro is still relatively olivine rich. This kind of rhythmic layering is found in several layered basic intrusions from the terrestrial environment (Wager and Brown, 1968). It remains to be seen what the nature of the cryptic layering is and which terrestrial model most closely applies to the submarine sequence.

In Table 6 the samples are arranged in stratigraphic order and the mineral chemistry is presented in summary form. Samples 22-2, 61-63 cm and 21-1, 47-49 cm are from the same rhythmic unit, and it is apparent that there is normal cryptic variation from the peridotite to the gabbro, i.e., increasing Fs molecule in the pyroxenes. There is also elimination of olivine, presumably through a reaction relationship with the liquid at the 1 atmosphere invariant point, $01^- + Opx^+ + Cpx^+ +$ Plag⁺ + Liquid⁻. This reaction is strongly suggested by a careful petrographic examination: among the various episodes of crystallization, there is evidence of intensive replacement, suggested by frequent lobate contacts between olivine relics, pyroxenes, and plagioclase. It is also evident that whereas gabbro 21-1, 47-49 cm is the uppermost gabbro in the sequence, it is not the most differentiated. The most evolved gabbro in terms of its Fs content in the pyroxenes is 23-1, 127-129 cm. A more primitive gabbro, 24-3, 112-114 cm, is found deeper in the sequence.

The reversal in the Fs content of the pyroxenes (and An content of the plagioclase) hints that the nine

TABLE 1 Microprobe Analyses of Olivines

	1	2	3	4	5	6	7	8
Fo	88.506	88.495	83.157	88.637	85.283	85.746	87.512	87.804
Fa	11.254	11.279	16.446	10.884	14.295	13.989	12.382	12.116
Larn	0.240	0.227	0.397	0.479	0.422	0.265	0.106	0.080
Fo	88.719	88.696	83.489	89.063	85.644	85.463	87.274	87.551
Fa	11.281	11.304	16.511	10.937	14.356	13.943	12.348	12.081
Niol	0.000	0.000	0.000	0.000	0.000	0.594	0.378	0.368
F/M	0.127	0.127	0.198	0.123	0.168	0.163	0.141	0.138
F/FM	0.113	0.113	0.165	0.109	0.144	0.140	0.124	0.121

Note: 1 = 26-1, 20-22 cm; olivine 5. 2 = 26-1, 20-22 cm; olivine 6. 3 = 15-2, 20 cm; olivine 1. 4 = 15-2, 20 cm; olivine 2. 5 = 20-2, 140-145 cm; olivine 1. 6 = 24-3, 112-114 cm; olivine 1. 7 = 22-2, 61-63 cm; olivine 1. 8 = 22-2, 61-63 cm; olivine 2.

Figure 1. Mineral analyses for intrusive and extrusive rocks at Site 334.

rhythmic units are not the result of fractional crystallization of a single magma as is the case in the Skaergaard intrusion. Instead, the cyclical variation of rock types and mineral chemistry suggests that this complex has formed in a manner similar to that described for the Rhum-layered intrusion by Brown (1956). It is believed that these cumulates formed in a magma chamber that acted as a temporary reservoir for magmas en route to the surface. The longer the magma stayed in the reservoir, the more evolved would become both the cumulate pile and the erupted basalt.

There is no compelling mineralogical evidence to prove or disprove a genetic link between the basalts and the underlying intrusives. The basalts are more erratic in their mineral chemistry principally because most phenocrysts in the basalts suggest that, if there is a genetic link, these basalts were erupted from the magma chamber at a stage of evolution between gabbros of the types 24-3, 112-114 cm and 21-1, 47-49 cm. However, more convincing evidence exists against the idea that there is any genetic relationship between the intrusives and extrusives at Site 334. First, the close spatial relationship between the two groups makes unlikely the notion that the coarse-grained intrusives could be in situ cumulates from the same magmas that gave rise to the basalts. Secondly, the numerous breccia zones noted in the core logs, plus the cataclastic tex-

tures in the gabbros, suggest that these cumulates were tectonically emplaced. The greater the degree of displacement this type of deformation represents, the less likely it is that the intrusives and extrusives are genetically related. Among the breccias, the mysterious nannofossil chalk matrix could tentatively be explained by a process of "oblique diapirism" of ultramafic lenses being serpentinized. The degree of serpentinization of olivine is a direct function of the amount of olivine in these rocks (i.e., a dunitic layer is totally serpentinized, and an olivine-poor gabbro has fresh olivine). If serpentinization occurred with an increase of volume, it could result in a dislocation of the layered sequence, across an oblique serpentinization front (Loubat, 1973). Lenses of brecciated serpentinites would eventually reach very superficial levels of the oceanic floor (Figure 2).

CONCLUSIONS

The conclusions listed below are tentative because of the gaps in the core record and because of the limited mineral data.

Figure 2. Proposed shallow cross-section of the oceanic floor at some distance away from the axis of a volcanic ridge. Due to steeply oblique isotherms and serpentinization fronts, a lateral increase of volume and dislocation of ultramafic layers could occur. Some of these bodies in the process of serpentinization will eventually be dragged in a phenomenon of "oblique diapirism," and they could reach levels of superficial basalts and sediments, in a process of incipient dislocation of the oceanic floor. This could account for the differential degree of serpentinization of the layered body, the obvious increase of volume in the serpentinization, and the breccias with chalky fossiliferous matrix.

TABLE 2 Microprobe Analyses of Pyroxenes

		1		2		3	4	L.	5	5		6		7	8	3
SiO2	53	.69	53	.32	54	.37	52.3	36	52.	61	42	.33	53	.47	53	.51
TiO2	0	.20	0	.32	0	.20	0.4	40	0.	30	0	.41	0	.21	0	.37
AlpOa	1	19	1	.75	0	.70	1.	55	2.3	24	1	.84	1	.14	2	.97
CraOa	0	07	0	09	ň	05	0.0	ng	0	14	0	08	0	.06	1	33
EasOs	0	.00	0	.00	0	.00	0.0	00	0.	00	ő	00	0	00	0	00
Fe203	10	.00	0	.00	10	.00	0.0	50	7.	00	0	54	20	20	2	72
reo	18	.85	/	.0.5	19	.53	0	00	/.	20	0	.34	20	20	0	00
MnO	0	.23	0	.25	0	.24	0	22	0.	20		.23	22	.29	16	25
MgO	25	.09	14	.85	24	.50	14.9	97	14.	94	14	.38	23	.35	10	.35
CaO	0	.65	22	.23	0	.72	21.3	53	21.	65	21	.62	1	.10	21	.98
Na ₂ O	0	.07	0	.26	0	.08	0.3	26	0.	27	0	.26	0	.09	0	.90
K ₂ O	0	.02	0	.04	0	.03	0.0	05	0.	05	0	.06	0	.03	0	.03
Sum	99	.98	100	.74	100	.42	99.9	93	99.	46	99	.75	100	.03	100	.16
Si	1.966	*	1.961	*	1.985	*	1.950	*	1.953	*	1.952	*	1.973	*	1.940	*
Al	0.034	2.000	0.039	2.000	0.014	2.000	0.050	2.000	0.047	2.000	0.048	2.000	0.027	2.000	0.060	2.000
Al	0.014	*	0.037	*	0.016	*	0.018	*	0.051	*	0.033	*	0.022	*	0.067	*
Ti	0.006	*	0.009	*	0.005	*	0.011	*	0.008	*	0.012	*	0.006	*	0.000	*
Cr	0.002	*	0.003	*	0.001		0.003	*	0.004	*	0.002	*	0.002		0.038	
Fe3+	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	
Fe	0.578	*	0.235	*	0 597		0.265	*	0.220	*	0.266		0.626	*	0.082	*
Mn	0.007	*	0.008		0.007	*	0.007	*	0.006	*	0.007		0.009		0.000	*
Ma	1 360	1.075	0.000	1 105	1 224	1.061	0.007	1 1 24	0.000	1.116	0.800	1 1 20	1 284	1 949	0.884	1.081
mg	0.000	1.975	0.014	1.105	0.039	1.901	0.051	1.1.54	0.027	1.110	0.000	*	0.042	*	0.004	*
Ca	0.026		0.876		0.028		0.859		0.861		0.804		0.043		0.054	*
Na	0.005		0.019		0.006		0.019		0.019		0.019		0.006		0.003	0.010
K	0.001	0.031	0.002	0.895	0.001	0.035	0.002	0.880	0.002	0.883	0.003	0.886	0.001	0.051	0.001	0.918
0	6.000	•	6.000		6.000	<i>.</i>	6.000	*	6.000	•	6.000	<u>a</u>	6.000	2	6.000	÷.
WO	1	.293	45	.512	1	.439	43.9	947	45.	149	44	.771	2	.226	46	.917
EN	69	.426	42	.295	68	.102	42.	510	43.	343	41	.426	65	.729	48	.551
FS	29	.281	12	.193	30	.459	13.	543	11.:	508	13	.804	32	.046	4	.532
WO	1.	.285	44	.898	1	.429	43.	377	44.	548	44	.174	2	.208	45	.341
HYP	98	.465	54	.152	98	.284	55.0	675	54.4	446	54	.865	97	.465	51	.293
JD	0	.250	0	.950	0	.287	0.9	948	1.	005	0	.961	0	.327	3	.360
0000 1000 - 1000		100										10123 (C.)	0	105	0	002
F/M	0	.427	0	.298	0	.453	0	327	0.	273	0	.431	0	.495	0	.093
F/FM	0	.299	0	.229	0	.312	0	246	0.	215	0	.255	0	.331	0	.085
	9	9	1	0	1	1	1	2	1	3	1	4	1	5	1	6
SiOo	55	.73	55	.92	50	.55	51.3	20	50.4	49	50	.68	52	.59	52	.44
TiOn	0	.11	0	11	0	22	0.1	24	0	17	0	25	0	.22	0	21
AlaOa	2	14	2	16	3	69	3	17	2	67	2	24	1	.12	1	09
CraOa	õ	77	0	74	1	27	13	27	0	30	õ	24	â	09	0	10
FacOs	0	00	0		0	00	0.0	27	0.	00	0	00	0	.00	0	00
F-0	6	.00	6	.00	2	64	0.0	30	0.	00	7	.00	14	14	14	16
N-O	0	.79	0	.09		.04	5	50	0.	07	,	.90	14	.14	14	11
MnO	0	.00	0	.00	0	.11	0.	10	0.	1/	0	.20	0	.11	0	.11
MgO	31	.48	32	.15	18	.52	17.9	99	17.3	83	16	.98	26	.88	27	.02
CaO	2	.53	2	.19	19	.56	20.3	75	18.	72	18	.27	2	.03	1	.98
Na ₂ O	0	.03	0	.05	0	.15	0.3	20	0.	14	0	.14	0	.01	0	.01
K ₂ O	0	.01	0	.02	0	.06	0.0	07	0.0	04	0	.05	0	.03	0	.02
Sum	99.	.59	100	.03	97	.77	98.3	35	97.	49	97	.01	97	.22	97	.14
Si	1.948	*	1.944	*	1.880	*	1.896		1.904	*	1.926	*	1.950	*	1.947	•
Al	0.052	2.000	0.056	2.000	0.120	2.000	0.104	2.000	0.096	2.000	0.074	2.000	0.049	1.999	0.048	1.995
Al	0.036	*	0.032	*	0.042	*	0.034		0.023	*	0.027	*	0.000	*	0.000	*
Ti	0.003	*	0.003		0.006	*	0.007		0.005		0.007	*	0.006	*	0.006	*
Cr	0.021	*	0.020		0.037	*	0.037	*	0.012	*	0.007	*	0.003	*	0.003	*
Fe3+	0.000	*	0.000	*	0.000	*	0.000	*	0.000		0.000		0.000	*	0.000	*
Fe	0 198	*	0 104		0 112	*	0.014		0.000		0.000	*	0.430	*	0.440	
Mn	0.000	*	0.000	*	0.002	*	0.014	*	0.005	*	0.255	*	0.002	<u></u>	0.002	
Ma	1.640	1 000	1.666	1.015	0.003	1.000	0.003	1 100	0.005	1 0 00	0.000	1.000	0.003	1 0 2 7	1.405	1.047
Mg	1.040	1.899	1.000	1.915	1.027	1.228	0.993	1.178	1.002	1.263	0.962	1.262	1.486	1.937	1.495	1.947
Ca	0.095		0.082		0.779	đ.	0.823		0.756	*	0.744	*	0.081	*	0.079	1
Na	0.002	*	0.003	*	0.011	*	0.014	*	0.010		0.010	*	0.001		0.001	1.55
ĸ	0.000	0.097	0.001	0.086	0.003	0.793	0.003	0.841	0.002	0.769	0.002	0.757	0.001	0.083	0.001	0.030
0	6.000	*	6.000	*	6.000		6.000	*	6.000	*	6.000	*	6.000	*	6.000	

1) The sequence of nine rhythmic units in the intrusive rocks at Site 334 appears to be the product of a Rhum, rather than a Skaergaard, type of fractional crystallization. rhythmic units. A detailed study of the phase chemistry of each rhythmic unit is suggested in order that the full record of evolution may be understood.

2) Cryptic variation is present in the uppermost intrusive unit, and it probably exists in each of the 3) There is phase layering in many of the units; olivine and chrome spinel are frequently observed at the bottom, but not the top, of individual rhythmic

	9	9	1	0	1	1	1	2	1	3	1	4	1	5	1	6		
WO	4	.901	4	.200	40	.510	42.8	372	38.	293	37	.979	4	.023	3	.911		
EN	84	.833	85	.784	53	.491	51.7	709	50.	738	49	.105	74	.105	74	.255		
FS	10	.266	10	.016	5	.899	5.4	419	10.	969	12	.916	21	.872	21	.834		
WO	4	896	4	.193	40	.310	42.4	185	37.	991	37	.657	4	.015	3	.903		
HYP	94	.999	95	.634	59	.131	56.	774	61.	495	61	.821	95	.950	96	.061		
JO	0	.105	0	.173	0	.559	0.3	741	0.	514	0	.522	0	.036	0	.036		
F/M	0	.121	0	.117	0	114	0.1	108	0.3	222	0	.270	0	.297	0	.295		
F/FM	0	.108	0	.105	0	.102	0.0	97	0.	181	0	.212	0	.229	0	.229		
	1	7	1	8	1	9	2	0	2	1	2	2	2	3	2	4	2	25
SiOn	52	24	51	12	52	14	54 9	93	55	20	52	58	52	.90	52	.41	51.	.92
TiO ₂	0	.43	0	.00	0	00	0.3	34	0.	33	0	.40	0	.41	0	.29	0.	.33
Al203	3	.70	5	.58	3	.81	1.	58	1.	80	2	.68	2	.55	2	.61	3.	.25
Cr203	0	.00	0	.00	0	.00	0.4	\$0	0.	40	0	.66	0	.57	0	.83	0.	.72
Fe2O3	0	.00	0	.00	0	.00	0.0	00	0.	00	0	.00	0	.00	0	.00	0.	.00
FeO	5	.80	6	.48	6	.60	8.4	\$7	8.	33	4	.91	4	.29	3	.44	3.	.17
MnO	0	.15	0	.00	0	.00	0.3	38	0.	37	0	.34	0	.34	0	.12	0.	.23
MgO	17	.88	18	.40	20	.88	31.	13	30.	80	18	.72	17	.35	16	.26	16.	.20
CaO	19	.90	17	.85	14	.71	2.4	\$2	2.	46	19	.63	20	.27	23	.29	23.	.35
Na ₂ O	0	.18	0	.14	0	.13	0.	14	0.	15	0	.27	0	.27	0	.40	0.	.21
K ₂ O	0	.06	0	.00	0	.00	0.0	08	0.	08	0	.09	0	.09	0	.06	0.	.06
Sum	100	.34	99	.57	98	.27	99.	97	99.	92	100	.28	99	.04	99	.50	99.	.44
Si	1.902	*	1.868	*	1.913	*	1.934	*	1.942		1.913	*	1.943		1.925	*	1.909	*
Al	0.098	2.000	0.132	2.000	0.087	2.000	0.066	2.000	0.058	2.000	0.087	2.000	0.057	2.000	0.074	2.000	0.091	2.000
Al	0.060	*	0.108	*	0.078	*	0.004	*	0.016	•	0.028	*	0.053		0.039	*	0.050	
Ti	0.012	•	0.000		0.000	*	0.009	*	0.019	*	0.011		0.011		0.008		0.009	
Cr	0.000	*	0.000	*	0.000	*	0.011	•	0.011	•	0.019	*	0.017		0.024		0.021	
Fe3+	0.000		0.000	*	0.000	*	0.000	*	0.000	•	0.000		0.010	•	0.000		0.000	
Fe	0.177		0.198	*	0.202		0.249		0.245		0.149		0.132	*	0.156		0.097	
Mn	0.005		0.000	*	0.000		0.011		0.011		0.010		0.011		0.004		0.007	
Mg	0.970	1.223	1.002	1.308	1.142	1.422	1.634	1.919	1.615	1.907	1.015	1.233	0.960	1.173	0.891	1.072	0.888	1.072
Ca	0.776		0.699		0.578		0.091		0.093		0.765		2.798	-	0.917		0.920	
Na	0.013		0.010	*	0.009		0.010		0.010	*	0.019		0.019		0.014	0.024	0.015	0.020
K O	6.000	0.792 *	6.000	0.709 *	6.000	0.587 *	0.004 6.000	0.104 *	0.004 6.000	0.107	0.004 6.000	*	6.000	*	6.003	*	6.000	*
WO	40	.364	36	.800	30	.076	4.0	524	4.	748	39	.653	42	.446	47	.926	48.	.283
EN	50	.453	52	.772	59.	391	82.	744	82.	702	52	.606	50	.542	46	.548	46.	.601
FS	9	.183	10	.428	10	.533	12.0	532	12.	558	7	.742	7	.012	5	.525	5.	.116
WO	40	.004	36	609	29	932	4	575	4	697	30	055	41	783	47	480	47	728
HYP	59	.342	62	.871	69	589	94 9	946	94	785	59	.973	57	.210	51	.732	51.	495
JD	0	.655	0	.520	0	479	0.4	179	0.	518	0	.972	1	.007	0	.733	0.	777
F/M	0	.187	0	.198	0	177	0.	160	0.	159	0	.157	0	.150	0	.123	0.	118
F/FM	0	.157	0	.165	0	.151	0.	138	0.	137	0	.136	0	.130	0	.109	0.	.105

Note: 1 = 23-1, 127-129 cm; OPX host 1. 2 = 23-1, 127-129 cm; CPX lamella 1A. 3 = 23-1, 127-129 cm; OPX host 2. 4 = 23-1, 127-129 cm; CPX lamella 2A. 5 = 23-1, 127-129 cm; CPX host 3. 6 = 23-1, 127-129 cm; CPX host 4. 7 = 23-1, 127-129 cm; OPX lamella 4A. 8 = 26-1, 20-22 cm; OPX 3. 9 = 26-1, 20-22 cm; OPX 7. 10 = 26-1, 20-22 cm; OPX 9. 12 = 26-1, 20-22 cm; CPX 10. 13 = 21-1, 47.49 cm; CPX 1. 14 = 21-1, 47.49 cm; CPX 2. 15 = 21-1, 47.49 cm; OPX 3. 16 = 21-1, 47.49 cm; OPX 4. 17 = 15-2, 30 cm; CPX 1. 18 = 20-2, 140-145 cm; CPX 3. 19 = 20-2, 140-145 cm; CPX 3. 22 = 24-3, 112-114 cm; CPX 4. 23 = 24-3, 112-114 cm; CPX 5. 24 = 22-2, 61-63 cm; CPX 4. 25 = 22-2, 61-63 cm; CPX 4.

units. This phase layering is attributed to reaction relationships in a fractionating magma rather than settling of dense crystals in rhythmic units developed by "turbidity currents" in the magma chamber.

4) The mineral chemistry alone is not sufficient to establish or disprove a genetic link between the basalts and the underlying intrusives.

5) A genetic link between intrusives and extrusives is unlikely because of the close spatial association of the rocks and because of the deformation of the intrusives suggesting that they have been tectonically emplaced.

REFERENCES

Aumento, F. and Melson, W.G., 1974. DSDP Leg 37 visual core descriptions and sample distribution for igneous cores, Holes 332A, 332B, 333A, 334, 335: DSDP Leg 37 Shipboard Report.

- Brown, G.M., 1956. The layered ultrabasic rocks of Rhum, inner Hebrides: Phil. Trans. Roy. Soc. London, Series 240B, p. 1-53.
- Loubat, H., 1973. Soubassement des dorsales volcaniques océaniques: Suisse Min. Pétrol. Bull., v. 53, p. 337-354.
- Rucklidge, J. and Gasparrini, E.L., 1969. Electron microprobe analytical data reduction: Dept. of Geology, Institute of Toronto, Canada.
- Wager, L.R. and Brown, G.M., 1968. Layered igneous rocks: Edinburgh (Oliver and Boyd).

								Inite.	toprove ?	inary ses	or a stable	ano								
	1		3	2	3	3		1	5	5		6		7	1	8	9)	1	10
SiO ₂	48.1	9	47.	.30	47.	57	47.	00	46.	87	48.	30	46	.47	51.	33	50.	41	45.	.72
TiO ₂	0.0	15	0.	.05	0.	04	0.	04	0.	05	0.	05	0	.00	0.	00	0.	00	0.	.02
Al ₂ O ₃	32.1	3	32.	46	32.	65	32.	93	32.	73	32.	11	33	.68	29.	39	29.	98	33.	.39
Cr2O3	0.0	00	0.	.00	0.	00	0.	00	0.	00	0.	00	0	.00	0.	00	0.	00	0.	.00
Fe ₂ O ₃	0.0	00	0.	.00	0.0	00	0.	00	0.	00	0.	00	0	.00	0.	00	0.	00	0.	.00
FeO	0.0	0	0.	.00	0.	00	0.	00	0.	00	0.	00	0	.29	0.	75	0.	74	0.	.00
MnO	0.0	00	0.	.00	0.	00	0.	00	0.	00	0.	00	0	.00	0.	00	0.	00	0.	.00
MgO	0.	00	0.	.00	0.	00	0.	00	0.	00	0.	00	0	.33	0.	58	0.	51	0.	.00
CaO	16.6	1	15.	74	16.	98	17.	55	17.	59	16.	59	18	.25	14.	85	15.4	40	18.	.17
Na ₂ O	2.2	3	2.	15	1.	97	1.	66	1.	66	2.	14	1	.12	2.	61	2.0	60	1.	.32
K ₂ O	0.0	7	0.	.06	0.	07	0.	06	0.	06	0.	07	0	.00	0.	00	0.0	00	0.	.05
Sum	99.2	28	99.	22	99.	28	99.	24	98.	96	99.	26	100	.14	99.	52	99.	64	98.	.67
Si	8.900	*	8.837	*	8.795	*	8.787		8.711	*	8.916	*	8.553		9.409		9.259	*	8.541	*
Ti	0.887	*	0.317	*	0.006	*	0.006	*	0.007	*	0.007	*	0.000	*	0.000	*	0.000	*	0.003	*
Al	6.992	*	7.072	*	7.113	*	7.188	*	7.168	*	6.985	*	7.304	*	6.348	*	6.488	*	7.391	*
Fe3+	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*
Fe	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.045	*	0.117	*	0.114	*	0.000	*
Mn	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*
Mg	0.000	15.899	0.000	15.916	0.000	15.914	0.000	15.901	0.000	15.866	0.000	15.908	0.091	15.992	0.158	16.033	0.140	16.000	0.000	15.895
Ca	3.287	*	3.308	*	3.364	*	3.483	*	3.603	*	3.281	*	3.599	*	2.917	*	3.030	*	3.637	*
Na	0.798	*	0.771	*	0.786	*	0.596	*	0.598	*	0.766	*	0.400	*	0.928	*	0.926	*	0.478	*
K	0.016	4.102	0.014	4.093	0.017	4.086	0.014	4.094	0.014	4.115	0.016	4.064	0.000	3.998	0.000	3.844	0.000	3.956	0.312	4.127
0	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*
Or	0.4	02	0.	346	0.	484	0.	346	0.	346	0.	406	0	.000	0.	000	0.0	000	0.	283
AB	19.4	68	18.	.830	17.	282	14.	564	14.	536	18.	843	9	.995	24.	130	23.4	402	11.	585
AN	80.1	30	80.	.825	82.	314	84.	090	85.	118	80.	746	90	.005	75.	870	76.	598	88.	.126
QZ	91.6	511	91.	.844	92.	407	93.	449	93.	432	91.	933	95	.536	91.	026	90.9	909	94.	.574
NE	8.2	219	8.	.000	7.	420	6.	399	6.	416	7.	897	4	.464	8.	974	9.	091	5.	.294
KS	0.1	78	0.	.147	0.	173	0.	152	0.	153	0.	170	0	.000	0.	000	0.	000	0.	.132

TABLE 3 Microprobe Analyses of Feldspars

Note: 1 = 23-1, 127-129 cm; plagioclase 5. 2 = 23-1, 127-129 cm; plagioclase 6. 3 = 21-1, 47-49 cm; plagioclase 5. 4 = 21-1, 47-49 cm; plagioclase 6. 5 = 21-1, 47-49 cm; plagioclase 7. 6 = 21-1, 47-49 cm; plagioclase 8. 7 = 15-2, 20 cm; plagioclase 1. 8 = 20-2, 140-145 cm; plagioclase 1. 9 = 20-2, 140-145 cm; plagioclase 2. 10 = 24-3, 112-114 cm; plagioclase 6.

				1	anciopiobe	Analyses	or spiners					
	1	Ļ	1	2	1	3	4	ļ.	5	;	(5
SiO ₂	0.	.00	0.	00	0.	00	0	.00	0.	01	0.	02
TiO ₂	0.	.37	0.	40	0.	66	0	.70	0.	63	0.	52
Al ₂ O ₃	24.	.66	22.	10	21.	58	21	.59	21.	54	20.	65
Fe ₂ O ₃	2.	.77	3.	93	4.	73	4	.62	5.	05	5.	16
FeO	15.	.52	18.	68	17.	51	17	.83	19.	26	20.	62
Cr2O3	43.	.12	43.	33	42.	86	43	.50	42.4	41	42.	91
MnO	0.	.29	0.	37	0.	36	0	.36	0.	37	0.	41
MgO	13.	.39	10.	94	11.	73	11	.74	10.	61	9.	60
ZnO	0.	.00	0.	00	0.	00	0	.00	0.	00	0.	00
CaO	0.	.02	0.	02	0.	02	0	.02	0.	01	0.	02
Sum	100.	.14	99.	77	99.	45	100	.36	99.	89	99.	91
Si	0.000	*	0.000	*	0.000	*	0.000	*	0.003	*	0.005	*
Ti	0.068	*	0.075	*	0.124	*	0.131	*	0.100	*	0.099	*
Al	7.064	*	6.522	*	6.369	*	6.322	*	6.409	*	6.181	*
Cr	8.288	*	8.580	*	8.486	*	8.547	*	8.427	*	8.618	*
Fe3+	0.507	15.926	0.741	15.918	0.891	15.871	0.864	15.864	0.955	15.894	0.986	15.890
Fe	3.155	*	3.913	*	3.667	*	3.705	*	4.048	*	4.380	*
Mn	0.060	*	0.078	*	0.076	*	0.076	*	0.079	*	0.088	*
Mg	4.852	*	4.084	*	4.379	*	4.348	*	3.975	*	3.635	*
Zn	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*	0.000	*
Ca	0.005	8.072	0.005	8.080	0.005	8.128	0.005	8.135	0.003	8.104	0.005	8.109
0	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*	32.000	*
CHRO	52.	.260	54.	156	53.	895	54.	324	53.3	366	54.	594
SPIN	44.	.545	41.	169	40.	444	40	185	40.5	585	39.	158
MAGN	3.	.195	4.	675	5.	661	5	491	6.	048	6.	248
USP	0.	886	1.	027	1.	683	1.	788	1.3	342	1.	367
SPIN	92.	481	88.	880	86.	245	86.	405	85.8	362	85.	060
MAGN	6.	.634	10.	903	12.	072	11.	807	12.	796	13.	573
USP	0.	763	0.	082	1.	308	1.	371	1.0	056	1.0	024
CHRO	93.	519	91.	315	89.	311	89.	574	88.	371	88.	812
MAGN	5.	718	7.	883	9.	381	9.	055	10.0	072	10.	165
F/M	0.	663	0.	977	0.	855	0.	870	1.0	038	1.	229
F/FM	0.	.399	0.4	494	0.4	61	0.	465	0.5	509	0.:	551

TABLE 4 Microprobe Analyses of Spinels

Note: 1 = 26-1, 20-22 cm; spinel 1. 2 = 26-1, 20-22 cm; spinel 2. 3 = 26-2, 5-10 cm; spinel 1. 4 = 26-2, 5-10 cm; spinel 2. 5 = 22-2, 61-63 cm; spinel 6. 6 = 22-2, 61 63 cm; spinel 7.

TABLE 5 Summary of Petrography

Sample (Interval in cm)	Rock Type	Modal Analysis		Grain Size (mm)	Texture	Alteration
15-2, 20	Basalt	Plagioclase Clinopyroxene Olivine	50 45 5	Phenocrysts <3 Groundmass <1	Porphyritic (phenocrysts of Plag, Cpx, Oliv)	Minor chlorite in vesicles
20-2, 140-145	Basalt	Plagioclase Clinopyroxene Quench crystals Olivine	5 5 90 Tr	<1	Microporphyritic rock consisting mainly of quench crystals in vario- litic texture	Fresh
21-1, 47-49	Anorthositic gabbro	Plagioclase Clinopyroxene	60 40	1-6	Plagioclase-Cpx adcumulate; ex- solution in Cpx	Minor sericite
22-1, 17-23	Gabbro	Plagioclase Pyroxene	60 40	Phenocrysts <3	Cumulus plagio- clase; intercumulus pyroxene	Partially amphi- bolitized
22-2, 61-63	Peridotite	Olivine Clinopyroxene Rodingite	70 15 15	Olivine 10-20 Cpx 1-4mm	Cumulus olivine; intercumulus Cpx with minor ex- solution	Olivine 95% serpentinized
22-2, 80-82	Perdotite	Olivine Clinopyroxene Orthopyroxene Chromite	60 18 22 Tr	Olivine 1-2 Cpx 8-15	Cpx exsolved; olivine cumulus pyroxenes inter- cumulus; mesh	Olivine and ortho- pyroxene partly serpentinized
23-1, 46-54	Peridotite	Olivine Iddingsite Opx Cpx Plag	60 40	Olivine 10-12	Olivines corroded; exsolution lamellae in fresh Cpx	Olivine totally serpentinized, Opx-Cpx-Plag serpentinized and rodingitized
23-1, 91-93	Gabbro	Plagioclase Clinopyroxene	50 50	<2	Ophitic; minor cataclasis; plagioclase cumu- lus; clinopyroxene intercumulus	Fresh
23-1, 127-129	Noritic gabbro	Plagioclase Pyroxenes	40 60	3-15	Adcumulate; augite and inverted pigeonite both with exsolution lamellae; cata- clastized	Fresh
23-2, 78-82	Peridotite	Olivine Orthopyroxene Plagioclase Chromite	70 15 15 Tr	<2	Trace of exso- lution in altered Opx	Olivine and ortho- pyroxene totally serpentinized; plagioclase rodingitized
24-2, 105-107	Olivine gabbro	Olivine Plagioclase Clinopyroxene	15 50 35	Generally <4	Plag poikilitic in Cpx	Olivine partly alter- ed to serpentine and iddingsite
24-3, 112-114	Olivine leucogabbro	Olivine Plagioclase Pyroxenes	5 55 40	1-6	Adcumulate	Olivine partly serpentinized
24-4, 100-106	Olivine gabbro	Olivine Plagioclase Pyroxenes	35 20 45	Olivine <10 Plag <2 Pyroxene 4	Opx and Cpx zoned, exsolved and with kink bands; olivine and plagioclase cumulus	Olivine partly serpentinized
26-1, 20-22	Peridotite	Olivine Pyroxenes Rodingite Spinels	60 30 5 5	3-10	Cumulus olivine and spinel; inter- cumulus plagio- clase mesh; bastite; pyroxenes with exsolution	Olivine altered to serpentine

4

Sample (Interval in cm)	Rock Type	Modal Analysis		Grain Size (mm)	Texture	Alteration
26-1, 70-75	Peridotite	Olivine Clinopyroxene Orthopyroxene Chromite	65 22 13 Tr	Generally <10	Cpx with exsolu- tion lamellae; Olivine cumulus; Cpx intercumulus	Olivine totally serpentinized; Opx partly serpentinized
26-2, 5-10	Peridotite	Olivine Pyroxenes Rodingite Spinel	80 15 5	2-3	Cumulus olivine and spinel; intercumulus pyroxenes and plagioclase; mesh; bastite	Olivine totally serpentinized; Opx partly serpentinized
26-2, 56-71	Olivine gabbro	Olivine Plagioclase Pyroxenes	20 40 40	<4	Exsolution lamel- lae in pyroxenes; cumulus plagioclase (and olivine?)	Olivine partly serpentinized
26-2, 59-64	Olivine gabbro (Pyroxenite)	Olivine Plagioclase Pyroxenes	10 20 70	<3	Plagioclase cumu- lus; pyroxenes with exsolution lamellae	Olivine serpentinized

TABLE 5 – Continued

Depth Sample											
(m)	Cycle	Rock Type	(Interval in cm)	Phase Chen	nistry						
310 -											
-											
-											
-		G		Olivine absent							
315 -		G	21-1.47-49	W038En50Fs12	Gabbro						
-		G	1000000 • 1000000	Wo4En74Fs22							
-		G		An80-85							
-		G									
-		G									
320 -		G									
-		G									
-		G	221 1722								
_*		G	22-1, 17-25								
325 -		P		Foor							
-		P	22-2.61-63	WOA9Ena 7Esc	Peridotite						
_*		Р	22-2, 80-82	CI54Sp40Mt6	. viao ili						
-		G	23-1, 46-54								
-*		G	23-1, 91-93	Olivier							
330 -		G	23-1, 127-129	We the Environment							
-		Р		W044En42F\$14	Gabbro						
-		G		Anoo							
		P		11180							
_*		G									
		P G									
335 -		P	23-2, 78-82								
-		G									
-		G									
-		G									
-*		G									
340 -*		G									
-*		OG	24-2, 105-107	Foes							
-*		OG OG	24.2 112 114	Wo1En51Fs8	Calibra						
-		00	24-3, 112-114	Wo5Eng3Fs12	Gabbro						
345 -		00		Angg							
- 1943		OG									
-		OG									
_*		OG									
-		OG	24-4, 100-106								
350 -*		Р									
-		Р									
-		P									
_		P									
225		G									
333 -		G									
-		G									
-		G									
-		G									
360 -		G		P							
-		G		Fogg							
-*		Р	26-1, 20-22	Wo42En53F85	Peridotite						
-*		P		WO4En85FS11							
-		P	26-1, 70-75	C1545p40Mt5							
365 -*		P	26-2, 5-10	Cr53Sp43Mt4	Peridotite						
-		OG	26-2, 56-71								
3 7 3		G	20-2, 39-64								
-		G									
370 -		G									
J/0 -											

Note: P = Peridotite; OG = Olivine Gabbro; G = Gabbro; * = Breccia.