6. SITE 345

The Shipboard Scientific Party¹ With Additional Contributions From

Svein B. Manum, Universitetet i Oslo, Oslo, Norway and H.-J. Schrader, Der Universität Kiel, Kiel, Germany

SITE DATA

Position: 69°50.23'N; 01°14.26'W

Water Depth (from sea level): 3195.0 corrected meters (echo sounding)

Bottom Felt at: 3216.0 meters (drill pipe)

Penetration: 802.0 meters

Number of Holes: 1

Number of Cores: 36

Total Length of Cored Section: 336.5 meters

Total Core Recovered: 189.8 meters

Percentage of Core Recovery: 56.4%

Oldest Sediment Cored:

Depth below sea floor: 762.0 meters Nature: Red sandstones Age: Eocene(?) (Core 32) Measured velocity: $\cong 6.0$ km/sec

Basement:

Depth below sea floor: 762.0 meters (drilled) Nature: Altered aphyric basalt breccia K/Ar age: 28 m.y. (late Oligocene)

Principal Results: This site was located in the Lofoten Basin near the eastern flank of Mohns Ridge. The sediments consist of a "glacial" and Miocene sequence, overlying an Oligocene and late Eocene sequence. "Glacial" sediments extend from the top to a depth of 36 meters and are dominately muds, sandy muds, and sands. Miocene sediments extend from 36 to 169(?) meters, and consist of clays, muds, and siliceous oozes. The fauna is siliceous. The Oligocene section extends from 169.5(?) meters to 530(?) meters. The late Eocene sediments consist of mudstones and sandstones in the lower part. Often lithified and soft sequences alternate. From 764 meters, the basement consists of tuff breccias, and below, highly altered basalt and amygdaloidal basalt.

BACKGROUND AND OBJECTIVES

Site 345 lies near the base of Mohns Ridge close to the southwestern margin of the Lofoten Basin. The Jan Mayen Fracture Zone consists of two segments. Site 345 lies east of the younger (northern) segment and north of the older segment (see Figure 1 in Chapter 1, this volume) of this fracture zone. As originally selected, the site lies near the boundary of the abyssal plain in the Lofoten Basin.

From the reflection profiler records (Figure 1), a series of horizontal layers (presumably turbidites) in the abyssal plain abut against a folded transparent sequence, which in turn lies above basement. In order to minimize the depth to basement, and to be sure that basement was actually discernible in the reflection records, the actual site was selected as the point shown in Figure 1, so that the objective of coring the turbidite sequence and dating the underlying angular unconformity was not lost. However, coring through the "transparent" sequence of sediments was expected to vield information about the history of sedimentation in the Lofoten Basin. Samples of basement were sought in order to learn about its nature and age. The sea-floor spreading types of linear anomalies are not very clear in this area, and it has not been possible to date the basement accurately from them.

OPERATIONS

Approach to Site 345

Site 345 was approached from the northeast after steaming 460.4 n mi, including surveying, in 52 hr, 39 min at an average speed of 8.7 knots from Site 344. At 0159Z, the course was altered to 254° and the speed reduced to 150 rpm. The original site was at the edge of an abyssal plain, however, this site was not selected because basement was not clear on *Glomar Challenger*'s profiler records. The ship continued on the same course just off the abyssal plain when the reflection corresponding to basement was again visible on the records. However, at this latter location, the layered sequence of sediments (presumably turbidites) was absent. The beacon was dropped at 0817Z, and the ship continued

¹Manik Talwani, Lamont-Doherty Geological Observatory, Palisades, New York; Gleb B. Udintsev, P.P. Shirshov Institute of Oceanology, Moscow, USSR; Kjell Bjørklund, Universitetet i Bergen, Bergen, Norway; V.N.D. Caston, British Petroleum Company Ltd., Middlesex, England; Richard W. Faas, Lafayette College, Easton, Pennsylvania; Jan E. van Hinte, Esso Production Research Company, Begles, France; G.N. Kharin, Atlantic Branch of Oceanology Institute, Kaliningrad, USSR; David A. Morris, Phillips Petroleum Company, Bartlesville, Oklahoma; Carla Müller, Geologisch-Paleontologisches Institut der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany; Tor H. Nilsen, U.S. Geological Survey, Menlo Park, California; Detlef A. Warnke, California State University, Hayward, California; Stan M. White, University of California at San Diego, La Jolla, California.

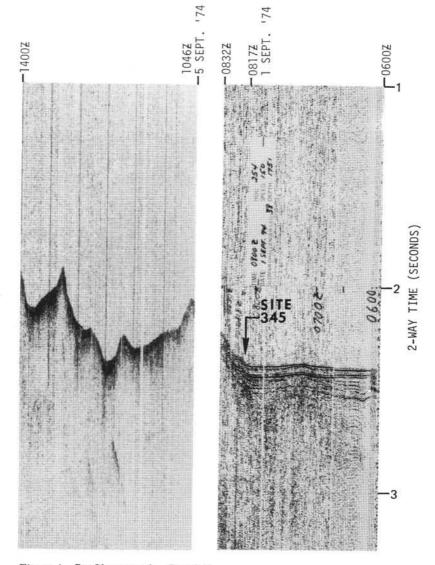


Figure 1. Profiler record – Site 345.

on the same speed and course until 0832Z. At this time, the profiling and magnetic gear was pulled in, and the ship maneuvered to reoccupy its position over the beacon (Figure 2).

Drilling Operations

A 13.5-kHz beacon was dropped at 0817 hr, 1 September. Estimated sediment thickness (750 m minimum) was somewhat greater than expected. The on-site weather was expected to be good for a minimum of 2 days. The standard $3 \times LSB$ BHA was run, with the Lynes RFT and circulating sub included above the CB.

The sea bed was contacted at 3216 meters, and continuous coring undertaken to 3262 meters. Recoveries were less than expected due to the presence of thin ooze and sandy mud which extruded through the soft-style catcher and sock. The use of a hard-style catcher, with less fingertip gap, improved recoveries.

From 3252.5 to 3927 meters, the wash and core method was adopted, including multiple washes, as

core evidence dictated. During this 684-meter interval, 23 control cores were taken. Reasonably good recoveries were obtained from the generally homogeneous material (Table 1).

Continuous coring was adopted at 3927 meters (720.5 m BSB) in advance of estimated earliest basement depth. The transition zone from 3974.5 meters was successfully cored and recovered. Basalt was cored from 3978 meters to final depth at 4018 meters. This represents an interval of 43.5 meters, with 13.5 meters recovery, or 31% (Table 1). Recoveries from the basalt section were disappointingly low due to the severely fractured nature of the brecciated material. The basalt was probably also undergoing further fragmentation and jamming in the core barrel.

Overall penetration was 802 meters of which 336.5 meters was cored with 189.8 meters recovery, or 56.4% (Table 1). The hole remained clean throughout. There was no evidence of hydrocarbons, and the hole was abandoned according to regulations. The *Glomar Challenger* was underway to Site 346 at 1113 hr, 5 September.

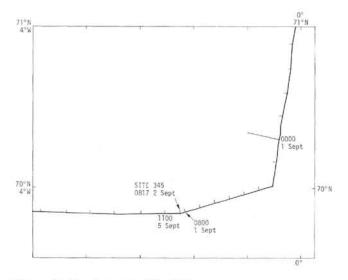


Figure 2. Track chart - Site 345.

LITHOLOGY

The hole penetrated 762 meters of sediments: clays, muds, sands, diamictons, and their lithified equivalents. This sediment column has been subdivided into three units (Table 2 and Figure 3).

Unit Descriptions

Unit 1

Unit 1 consists of gray and brown clastic sediments including muds, sandy muds, sands, and diamictons. The unit also contains volcanic ash and foraminiferal ooze. A sequence of graded beds exists at the base of Core 5, Section 4 (average thickness 15 cm), with a total thickness of 63 cm. The sediments are mainly terrigenous, i.e., glacial marine as well as sediments deposited from suspensoids, or deposited by other mass transport mechanisms. The age of this unit is given as Holocene-Pliocene (to early Miocene?).

Unit 2

The unit is described in the following two subunits (Table 2). Subunit A consists mainly of gray and green clays, also muds, and transitional biogenic siliceous sediments (diatomaceous muds and muddy diatom ooze). Foraminiferal ooze and volcanic ash are also present. Bioturbation is present, but not as clearly identifiable as in the lower portions of Unit 2.

Subunit B is similar to Subunit A in color; however, the variety is not quite as great (Table 2). It consists mainly of muds and clays (i.e., slightly coarser than Subunit A), and their lithified equivalents. The coring deformation for this subunit is slight to intense, and variable in a core. Alternations of lithified and nonlithified units are characteristic. Volcanic ash, pyrite, and siderite nodules are present, but not dominant. Bioturbation exists everywhere within the unit.

Unit 3

The unit consists of two subunits, as described below: Subunit A has a great variety of colors, mainly in shades of gray and green, black, and shades of orange, purple, and brown. The subunit is mainly a mudstone. Other lithologies include mud, sandy mudstone, some calcareous sandy mudstone, sandstone, and limestone. Characteristic is the ubiquitous nature of bioturbation; identifiable types of burrows include Zoophycos, Chondrites, Helminthoida. Volcanic ash and its derivatives, as well as limestone and siderite (?) fragments, are present. Towards the base of this subunit, a number of turbidite sequences are present (Table 2).

Subunit B colors include a great variety of shades of gray and brown, and towards the base of the unit, shades of red (Table 2). It consists of claystone to sandstone of various types, diamictites, and volcanic ash. The fine-grained lithologies particularly exhibit bioturbation and identifiable lebensspuren including Zoophycos. Cross-bedding and graded bedding are the most important characteristics of this subunit, which consists for the most part of turbidites (identifiable Bouma sequences). These grade near the base into diamictites of different origin. The diamictites include exotic pebbles, particularly chert, quartzite, and granitic rocks.

Interpretation

The sediments at Site 345 consist of an accumulation primarily of clastic sediments, accumulated by mechanical processes from Eocene to Recent time. Biogenic materials form a subordinate component. The reddish-brownish pebbly mudstones and diamictites above the basaltic basement are interpreted as slump or similar deposits, transported and deposited mainly by gravity. The high degree of roundness of many of the pebbles, near the base of Subunit 3B, indicates that running water or surf action played an important role in the transport history of this material. Ultimately, the pebbles and finer sized materials were incorporated into the slump deposits. The low degree of sorting suggests that very little winnowing took place. Because these slump deposits are directly overlain by turbidites, it may be assumed that slumping took place in the marine environment. No fossils are present to indicate either an exact age or a depth range. The size of the pebbles (1.2 cm), however, suggests a near-shore environment, or the proximal part of a fan associated with a submarine canyon.

These pebbly mudstones and diamictites are overlain by a series of turbidites, indicating either increasing water depth, increased distance from the source, reduced transport energy, or a combination of these parameters. Extensive bioturbation in the fine-grained rocks above each turbidite unit indicates quiet water conditions between the occurrences of turbidity currents. Occasional pyrite concretions suggest that reducing conditions existed below the habitat occupied by the burrowing organisms.

The number of total thicknesses of turbidites apparently diminishes from Subunit 3B into the upper portions of Subunit 3A. Transport mechanisms other than turbidity currents assumed greater importance, i.e., settling out of sediment particles from suspensoids. Volcanic ash contributed to the sediment make-up through "Unit 3 time."

	Date		Depth From	Depth Below			
	September		Drill Floor	Sea Floor	Cored	Recovered	Recovery
Core	1974)	Time	(m)	(m)	(m)	(m)	(%)
1	1	1800	3216.0-3224.0	0-8.0	8.0	5.9	75
2	1	1902	3224.0-3233.5	8.0-17.5	9.5	4.4	46.3
3	1	2005	3233.5-3243.0	17.5-27.0	9.5	4.0	42.1
4	1	2105	3243.0-3252.5	27.0-36.5	9.5	3.0	31.6
5	1	2215	3252.5-3262.0	36.5-46.0	9.5	6.0	63.1
Washed			3262.0-3271.5	46.0-55.5			
6	1	2312	3271.5-3281.0	55.5-65.0	9.5	3.0	31.6
Washed	4	2220	3281.0-3290.5	65.0-74.5	12	2.12	257
7	2	0030	3290.5-3300.0	74.5-84.0	9.5	2.0	21
Washed			3300.0-3309.5	84.0-93.5	1		
8	2	0208	3309.5-3319.0	93.5-103.0	9.5	5.7	60
Washed	2	0046	3319.0-3328.5	103.0-112.5			
9	2	0346	3328.5-3338.0	112.5-122.0	9.5	5.5	57.9
Washed	2	1525	3338.0-3347.5	122.0-131.5	0.5	0.5	100
10	2	1525	3347.5-3357.0	131.5-141.0	9.5	9.5	100
Washed	2	0700	3357.0-3376.0	141.0-160.0	0.6	0.5	100
11	2	0700	3376.0-3385.5	160.0-169.5	9.5	9.5	100
Washed	2	0050	3385.5-3404.5	169.5-188.5	0.5	2.2	22.1
12 Weeked	2	0850	3404.5-3414.0	188.5-198.0	9.5	2.2	23.1
Washed 13	2	1220	3414.0-3433.0	198.0-217.0	9.5	1.5	15.8
Washed	2	1230	3433.0-3442.5 3442.5-3461.5	217.0-226.5 226.5-245.5	9.5	6.0	63
Washed			3471.0-3509.0	255.0-293.0	9.5	0.0	05
15	2	1645	3509.0-3518.5	293.0-295.0	9.5	1.3	13.7
Washed	2	1045	3518.5-3547.0	302.5-331.0	9.5	1.5	15.7
16	2	2033	3547.0-3556.5	331.0-340.5	9.5	5.6	56.9
Washed	4	2035	3556.5-3585.0	340.5-369.0	9.5	5.0	30.9
17	2	2255	3585.0-3594.5	369.0-378.5	9.5	5.7	60
Washed	2	2200	3594.5-3623.0	378.5-407.0	7.5	5.7	00
18	3	0120	3623.0-3632.5	407.0-416.5	9.5	1.0	10.5
Washed	2	0120	3632.5-3661.0	416.5-445.0	5.5	1.0	10.0
19	3	0345	3661.0-3670.5	445.0-454.5	9.5	9.5	100
Washed		0010	3670.5-3699.0	454.5-483.0	5.0	2.0	100
20	3	0555	3699.0-3708.5	483.0-492.5	9.5	4.1	43
Washed		0000	3708.5-3737.0	492.5-521.0	,		
21	3	0855	3737.0-3746.5	521.0-530.5	9.5	8.0	84.2
Washed			3746.5-3775.0	530.5-559.0			
22	3	1130	3775.0-3784.5	559.0-568.5	9.5	7.1	75
Washed		1100	3784.5-3813.0	568.5-597.0	210		10
23	3	1420	3813.0-3822.5	597.0-606.5	9.5	9.7	100
Washed	100		3822.5-3851.0	606.5-635.0	210		
24	3	1730	3851.0-3860.5	635.0-644.5	9.5	9.5	100
Washed			3860.5-3889.0	644.5-673.0	880 C.W.		
25	3	1953	3889.0-3898.5	673.0-682.5	9.5	9.5	100
26	3	2120	3898.5-3908.0	682.5-692.0	9.5	6.8	71.6
Washed			3908.0-3927.0	692.0-711.0			
27	3	2325	3927.0-3936.5	711.0-720.5	9.5	3.1	33
28	4	0240	3936.5-3946.0	720.5-730.0	9.5	9.6	100
29	4	0445	3946.0-3955.5	730.0-739.5	9.5	2.5	26.3
30	4	0645	3955.5-3965.0	739.5-749.0	9.5	7.0	73.7
31	4	0835	3965.0-3974.5	749.0-758.5	9.5	8.0	84.2
32	4	1035	3974.5-3980.0	758.5-764.0	5.5	4.0	81.8
33	4	1235	3980.0-3989.5	764.0-773.5	9.5	3.8	40
34	4	1510	3989.5-3999.0	773.5-783.0	9.5	2.5	26.3
35	4	1825	3999.0-4008.5	783.0-792.5	9.5	2.3	17.9
36	4	2240	4008.5-4018.0	792.5-802.0	9.5	1.0	0
Total			4018.0	802.0	336.5	189.8	56.4

TABLE 1 Coring Summary, Site 345

	Litholog	TABLE 2 gic Summary, S	ite 345	-	TABLE 2 – Continued							
Unit	Depth (m) and Core Numbers ^a	Age	Characteristics	Unit	Depth (m) and Core Numbers	Age	Characteristics					
1	0-46 (1-1 to 5-4)	Holocene, Plio- Pleistocene to Early Miocene	Muds, sandy muds, sandy diamictons (pebbles are present throughout most of this unit), foram ooze; colors are extremely varied; volcanic ash is scattered throughout this unit; at the base of Section 5-4 a se- quence of graded beds exists (average 15 cm thick), sandy muds to muds (or clays)	Subunit 3B	711-762 (27-1 to 32-2)		Claystone, mudstone, sandy and pebbly mud- stone, sandstone, with various admixtures of coarser and finer com- ponents, diamictites; volcanic ash; most of the the fine-grained litholo- gies are extensively bio- turbated; Zoophycos and rind burrows are also present; Cross- bedding and graded bedding are the most important character- istics of this subunit					
2	46-331 (6-1 to 15-6)	Early Miocene- Oligocene	Mainly clays, muds and diatomaceous muds; volcanic ash; bioturba- tion prominent.				which consists, for the most part, of a series of turbidite sequences (Bouma sequences), grading towards the					
Subunit 2A	46-160.0 (6-1 to 10-6)	Early Mio- cene and E. Miocene or late Oligocene	Mainly clays, also muds, transitional biogenic siliceous sediments, foram ooze, volcanic ash; burrows			Eocene (?)	base into diamictites of different origin; calcareous sandstones and limestone pebbles are also present, espe- cially near the base of					
Subunit 2B	160-331 (11-0 to 15-6)	Oligocene (?)	Mainly mud, some clay, and their lithified equivalents in alter- nating units; bioturba- tion throughout; vol- canic ash; pyrite and siderite nodules				the subunit, as are well- rounded pebbles of exotic origin (at least 1 pebble of granitic composition); pebbles in Section 31-6 are equidimensional (<1					
3	331-762 (16-1 to 32-2)	Oligocene and L. Eocene- Eocene	Mudstone to sand- stones, diamictites, some limestone, pebbles particularly in lower part of unit; turbidites increasing in importance towards base of unit; volcanic ash, bioturbation and recognizable burrows throughout				cm), very well rounded, and consist of chert, quartzite, and granitic rocks (?); core 32 is largely a pebbly sand- stone, of reddish-br brownish colors, with scattered subrounded pebbles (about 1.2 cm in length), lithology similar to above					
Subunit	331-711		Mainly mudstone.	^a Core nu	mbers in parenthe	ses.						

Other lithologies include mud, sandy mud-

stone, some calcareous

sandy mudstone, sand-

stone, and limestone;

the subunit is characterized by omnipres-

ent bioturbation, and

identifiable burrows;

volcanic ash, altered

ash, and devitrified volcanic glass is present at

many levels; limestone

(fragments?) and sid-

erite (and rhodochro-

cretions are also pres-

ent; a number of turbidites are recognized

in this subunit

site?) fragments or con-

TADLE

3A

(16-1 to 26-6)

Oligocene-

Eocene (?)

late Eocene-

TABLE 2 - Continued

The trend to quiet-water conditions continued into Unit 2 time. In Subunit 2b, muds and some clays are dominant, bioturbation is extensive. "Pelagic sedimentation" without biogenic contributions was the determining factor, i.e., slow settling of individual mineral particles through the water column. Later detailed investigations of the core may change this concept, but it may serve as a useful working hypothesis.

Subunit 2a, of lower Miocene age or upper Oligocene age shows a continuation of quiet water conditions. Clays predominate; volcanic ash is also present. Transitional biogenic siliceous sediments, mainly diatomaceous "muds," also contribute to the sediment mass, perhaps indicating that sedimentation rates were slow enough to prevent complete masking by dilution of the biogenic components. Other factors may have

SITE 345

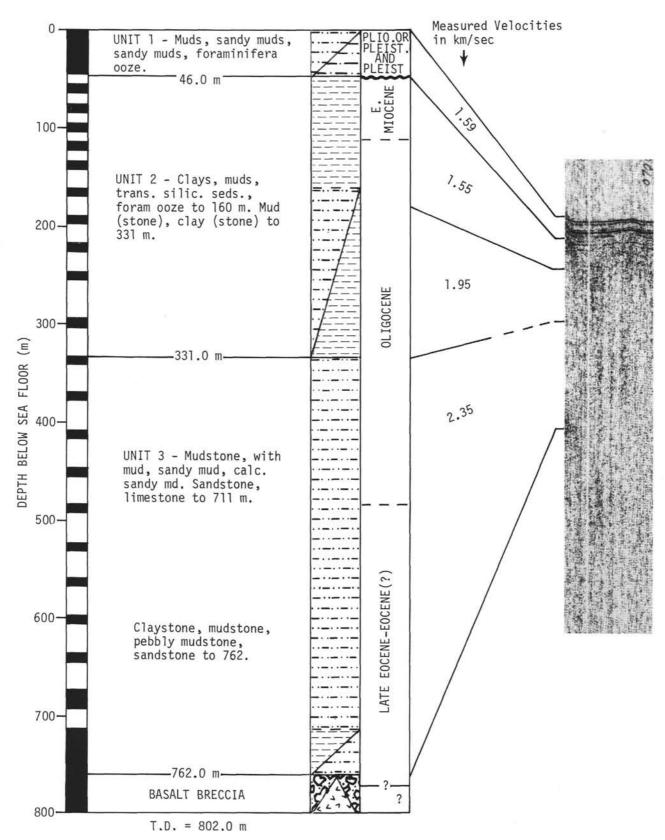


Figure 3. Lithologic summary and seismic profile - Site 345.

contributed to the increased influx of biogenic components; perhaps climatic deterioration increased the intensity of circulation, hence increasing upwelling and primary production, or perhaps cooling placed stress on the marine ecosystem, simplifying the food web, and leading to an increased rate of "outfall" from the first trophic level of the system (Warnke, 1970; Warnke et al., 1973). The question remains unanswered.

Unit 1 is an accumulation of glacial-marine sediments, of Holocene to Plio-Pleistocene age. The base of this unit (Core 5) is of early Miocene age thus perhaps signaling the initiation of glacial-marine sedimentation during the Miocene, i.e., prior to about 5 m.y. ago, but it must be emphasized that: (a) the faunal determination of the age of the material may not be very secure; (b) a general, intensive climatic deterioration took place only in Gauss time, as indicated by the deposition of the first ground moraine in Iceland, "just prior to the mammoth event" (McDougall and Wensink, 1966); (c) initiation of ice rafting in the North Atlantic is placed at about the same time (Berggren, 1972); and (d) the identification of glacial-marine sediments is not entirely unequivocal (no exotic pebbles have yet been identified from the very base of Unit 1).

IGNEOUS PETROGRAPHY-PETROLOGY

General Description

Rocks of acoustic basement in Hole 345 were penetrated at 762 meters. Five cores (32, 33, 34, 35, and 36) contained 6.5 meters of sedimentary-tuff breccia, and 3.8 meters of basalt.

In the 762.75 to 763.1 meter interval, the boundary between the sedimentary series and the basement rocks is present. The breccia, which is found below this boundary, contains round and angular fragments of weathered basalt, with hematite, zeolite, and calcite (0.5-6 cm). The breccia matrix is a moderate yellowish sandy silt, with white calcite veins (1-3 mm). The basalt fragments are grayish-red (5R4/2), with grayish and pale blue-green zeolite rims.

Above this breccia, is a moderate brown sandstone with rare, round zeolite fragments. Below the breccia, there is a tuff-breccia horizon with thin sedimentary layers. The tuff-breccia series consists of 13 rhythmic layers from 0.3 to 1 meter in thickness. The lower portion of this rhythmic layering is represented by a very coarse grained (5-10 cm), angular, altered, gray and grayish-red aphyric basalt, with smectite and zeolite. In the upper portion of the rhythmic layered series, there are small (0.2-2 cm), angular and round fragments of smectite, zeolite, and altered basalt.

The breccia matrix consists of dusky blue-green to grayish-bluegreen smectite-chlorite-zeolite, with thin calcite veins. Thin laminae of sandstone and siltstone with fragments of basalt and zeolite are present in upper and central portions of rhythmic layered tuff-breccia (Samples 33-3, 8-17 cm, and 30-37 cm). The angle of inclination of the sedimentary layer is near 30°. There are branching veins of white calcite (1-10 mm), and cavity walls have zeolite and calcite crystals. Rare goethite veins (1-3 mm) were observed.

The basalt (Cores 34-2, 35-1, 35-2, and 36-1) has a vesicular aphyric, aphanitic texture, is medium gray (N5) to medium light gray (N6) in color, with patches of grayish-red and pale blue-green. White calcite and green-yellowish zeolite veins, and cavities with walls coated by calcite and zeolite crystals, are present. There are slickensides, which have a blackish-red, clay-like material (zeolite with basaltic dust) on their walls.

Petrography

Based on the data from megascopic and microscopic descriptions the following types of basement rock are present: (1) zeolitized basalt tuff-breccia; (2) sedimentary (tuff)-breccia; (3) altered hyalobasalt; (4) amyg-daloidal basalt.

A brief description of these types follows:

Sedimentary (Tuff)-Breccia

This unit is found between the basalt tuff-breccia in Sections 32-3 and 33-3. The rock is multicolored, moderate brown to light brown, with grayish bluegreen spots. Coarse, angular fragments are zeolitesmectite and basalt. The matrix is sandy silt and silty sand, with round quartz and plagioclase grains. Very rare radiolarian and diatom fragments were observed.

Zeolitized Basalt Tuff-Breccia

This is present in top of the cored section (Sections 32-3, 33-2, 33-3, 34-1, 34-2). It is very coarse grained and very often only one fragment of this breccia is contained in a thin section. The fragments are represented by altered (zeolitized, smectized, and oxidized) basalt; stripped and rosetted zeolite (near isotropic and isotropic, N = 1.500), Hematite, goethite, and altered olivine are replaced by chlorite, smectite, and calcite. The smaller basalt fragments have a greater degree of alteration than the larger fragments. The zeolite-smectite fragments have a concentric structure, which probably represents the sequential replacement of volcanic glass. The fragment form generally is angular.

The breccia cement is smectite and zeolite, with hematite and goethite dust. Very often thick calcite veins cut through the breccia. The zeolite-smectite cement is also replaced by calcite.

Altered Hyalobasalt

This rock type is present in the lower portion of the cored section (Sections 34-2, 35-1, 35-2, 36-1). The basalt has aphanitic, microporphyric, variolitic, micro-hyalophytic, and microintersertal textures. One can see a taxitic heterogeneity of the rock conditioned by irregular crystallization of magma. Rare phenocrysts and glomeroporphyritic clusters are present, consisting of altered olivine (up to 3%-5%) and plagioclase (up to 10%).

The groundmass consists of twinned plagioclase laths (0.1-1 mm long). The plagioclase is labradorite (An 60-68, having a maximum extinction angle $33^{\circ}-38^{\circ}$ in zone ± 010), and sometimes with a trachite arrangement. Very often the plagioclase laths are skeletal, with an isotropic and near isotropic matrix inside. This material is probably devitrified volcanic glass. Between plagio-

clase laths, a microlitic felt of plagioclase is present, submerged into an altered glassy matrix. Sometimes it is marked the fine underdeveloped prisms of clinopyroxene which accretes together with plates of an iron mineral. Also the clinopyroxene forms thin laths which are interlaced with plagioclase laths. C:Ng(γ) of this clinopyroxene is 40°. Olivine phenocrysts are represented by euhedral crystals (0.3-0.5 mm), replaced by iddingsite, calcite, with a goethite matrix.

Plagioclase phenocrysts have prismatic and tabular forms. The grains often are zonal. The central part of zonal phenocrysts is replaced by fine plate aggregate of hydromica. Thin peripheral edging is clean and transparent. In center of phenocrysts the plagioclase is bytownite An 74 (Ng[γ] = 1.574), and on periphery—andesine, An 48 (Np[α] = 1.553) (Sample 36-1, 98-100 cm).

The intergranular groundmass consists of a slightly recrystallized matrix material, probably zeolitizedsmectized glass (N < 1.55). Zeolite, calcite, smectite, and chlorite very often fill veins, cavities, and amygdules. The number of amygdules sometimes is very high ($\sim 10\%$) and hyalobasalt has amygdaloidal character. The basalt is very highly altered. Nearly half of the plagioclase is replaced by hydromica, zeolite, and calcite. Olivine is completely replaced by calcite, smectite(?), zeolite, and goethite.

Amygdaloidal Basalt

This basalt is very similar to the altered basalt, but contains more than 10% amygdules (0.2-2 mm). These are filled by zeolite, smectite, plus rare calcite.

Summary

Rocks of acoustic basement in Hole 345 are basalt tuff-breccia, sedimentary (tuff-sedimentary) breccia, hyalobasalt, amygdaloidal basalt. The tuff breccia and sedimentary breccia originated in submarine conditions. They contain weathered basalt and altered pyroclastic products. The hyalobasalt and amygdaloidal basalt probably represent a submarine flow, exposed to secondary hydrothermal alteration and weathering. However, it is possible that the flow may represent a subaerial, or a shallow submarine flow. The high degree of oxidation and weathering of the basalt supports this conclusion.

PHYSICAL PROPERTIES

Bulk Density, Porosity, and Water Content

Figure 4 shows the variation in sonic velocity and density with depth. Data plotted are uncorrected GRAPE analog data (values from 40, 80, 120 cm averaged together/core section) and uncorrected sonic velocity. Figure 5 shows syringe water content and acoustic impedance. A number of units possessing different physical properties are seen. Table 3 gives means and standard deviations for all the different units.

Shear Strength

Figure 6 shows the combined shear and unconfined compression strength profile for this site. Shear

strength values show considerable scatter in Cores 1-8, and an anomalous reversal in strength in Core 1. However, Core 1 was intensely deformed.

Unconfined compressive strength shows a pattern of orderly and regular increase from Cores 2 to 13. Below Core 16, values exceed the limit of measurement of the penetrometer (4.5 TSF).

GEOCHEMICAL MEASUREMENTS

Inorganic Geochemistry

The results of analysis of interstitial water samples are found in Table 4.

Organic Geochemistry

Neither the presence of gas nor hydrocarbons was detected at Site 345.

BIOSTRATIGRAPHY

Biostratigraphic Summary

"Glacial" sediments (Pliocene to Pleistocene) were encountered in Cores 1 to 4 (0-36.5 m) with nannoplankton, foraminifera, and traces of radiolarians. Nannofossils are restricted to some horizons. Reworked Cretaceous and Paleogene pollen, spores, and nannofossils are present in differing amounts.

A hiatus exists between Pliocene and the early Miocene of about 13 m.y. The early Pliocene was determined in Cores 5 to 11 (36.5-169.5 m) based on diatoms, silicoflagellates, dinoflagellates, and radiolarians. However, according to silicoflagellates Cores 9 and 10 belong to the upper Oligocene-lower Miocene which is supported by dinoflagellates and foraminifera. Sediments below contain only arenaceous foraminifera and dinoflagellates, which in some horizons become frequent. They indicate an Oligocene age for Cores 12 to 21 (188.5-530.5 m), and probably a late Eocene age for Cores 22 to 32 (559-764 m).

Foraminifera

"Glacial," Pleistocene, Cores 1 through 5, Section 4

The "glacial" section is fossiliferous throughout, fossils becoming rare in Core 5. The amount of icerafted material relative to foraminiferal tests varies greatly between washed residues; some samples have practically nothing but quartz, rock fragments (common basalt), and *Inoceramus* prisms, whereas the residue of others largely consists of foraminiferal tests. All faunas are dominated by *Neogloboquadrina pachyderma* (95%, 94%, 100%, and 97% sinistral, respectively, in 1, CC; 2, CC; 3, CC; and 4, CC). Globigerina *quinqueloba* is present in most samples and at some levels *G. bulloides* occurs. Sample 1, CC seems to be the "warmest" having, in addition to the above, *Globorotalia inflata* and *Orbulina inversa*.

Benthos is very rare and in most samples constitutes less than 1% of the fauna. The most conspicuous species are *Pyrgo rotalaria*, *P. williamsoni*, and "*Cibicides*" wuellerstorfi but small *Eponides umbonatus* is probably more abundant. Other species found are: *Cassidulina* subglobosa, Melonis zaandamae, and species of Den-

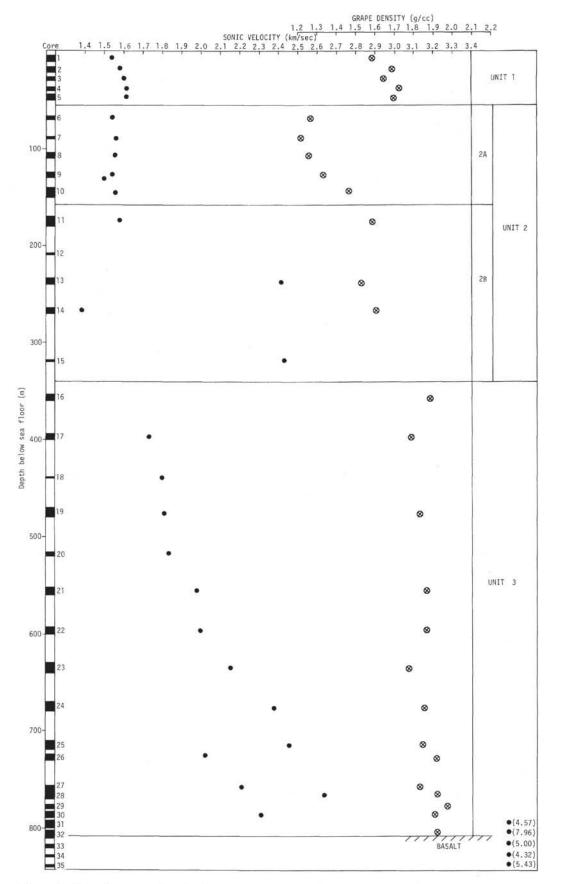


Figure 4. Density and sonic velocity.

459

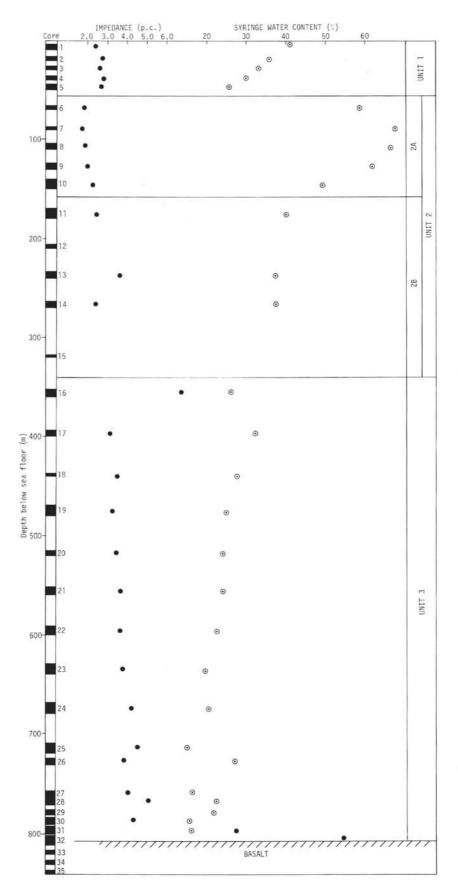


Figure 5. Impedance and Syringe Water Content.

TABLE 3 Physical Property Averages

		GRA	PE						
Unit		$\rho(g/cc)$	$\eta(\%)$	S(TSF)	Pc(TSF)	ρc	c(km/sec)		
1	x	1.66	64.81	0.14	0.51	2.65	1.59		
	S	0.05	3.46	0.06	0.16	0.13	0.03		
2A	x	1.35	85.43	0.15	1.40	2.09	1.55		
	S	0.14	9.28	0.05	0.80	0.24	0.02		
2B	x	1.56	71.38	0.20	2.25	2.94	1.90		
	S	0.06	3.85	-	2.43	1.03	0.73		
3	x	1.86	51.45	0.20	4.50	4.29 ^a	2.35 ^a		
	S	0.06	3.86			1.02	0.73		

Note: ρ = GRAPE bulk (wet) density; η = GRAPE porosity; s = Shear strength (equals cohesion in saturated sediments); Pc = Compressive strength; ρc = Acoustic impedance; c = Sonic velocity; x = Arithmetic mean; s = Standard deviation.

^aVelocity and ρc values are presented for a unit in which they are greatly changing. They should not be interpreted to characterize the unit at any given point.

talina, Recurvoides, and Triloculina. Rare specimens of Nonion labradoricum and Elphidiella groenlandica probably are ice rafted.

Plio-Miocene (?), Cores 5, CC, 6, Section 1

Sample 5, CC differs from the samples above and below. It yielded an arenaceous fauna with a few *Cyclammina* sp., *Haplophragmoides* sp., and fragments of *Martinotiella communis* and numerous fish teeth. The rusty brown color of the specimens, dark crusty (manganese) fragments of undisintegrated zeolitic sediment and the common occurrence of fish teeth all suggest a very low to zero rate of sediment accumulation below the carbonate compensation surface. This arenaceous assemblage differs from the usual Miocene *Martinotiella* assemblage and might be of Pliocene or Miocene age. Core 6, Section 1 does have somewhat similar residues in having fish remains, but lacks the foraminifera, rusty color, and crusty fragments.

Miocene, Core 6, Section 2 through Core 10, Section 6 (?)

This interval is poor in microfauna. The washed residues are extremely small to nonexistent; some spicules, radiolarians, and diatoms can be present. Core 6, Section 2 through Core 8 have *Spirosigmoilinella* sp., *Spirolocammina* sp., and *Karreriella siphonella*, but no *Martinotiella* and might be of early rather than middle or late Miocene age. All 11 samples of Core 9 through Core 10, Section 6 are barren.

Late Oligocene, Cores 10, CC through 14

Of the 17 samples from this interval only two yielded an arenaceous foraminiferal fauna: *Haplophragmoides* sp., *Saccorhiza* sp., *Bathysiphon* sp., *Ammolagena* sp. and *Karreriella siphonella*. The washed residues differ from above in having mica and pyrite; the latter occurs in tubular form in many samples and may have replaced siliceous foraminiferal tests. From Core 13 down, very fine quartz grains are present. An Oligocene-early Miocene age was assigned with dinoflagellates (Core 14), diatoms (Core 11), and silicoflagellates (Core 10).

Oligocene, Cores 15 through 32

This interval with numerous turbidites is characterized by the common to abundant occurrence of an arenaceous foraminiferal assemblage that in literature has been referred to as "flysch fauna" or "Rhabdammina fauna." Of the 94 samples examined from this interval only one (18, CC) additionally had some calcareous tests: Turrilina alsatica, Nodosaria soluta, "Cibicides" sp., and Quinqueloculina sp. allowing to assign an early or middle Oligocene age to this level. The calcareous fossils are very well preserved and therefore probably were displaced with the density currents from shallower depths where conditions on the sea floor were less corrosive to carbonate. No further age-diagnostic fossils are present, but the absence of the Eocene marker Spiroplectammina spectabilis (which is present at other sites in similar facies) and the presence of Spirosigmoilinella (down through Core 27) suggest that the lowest sediment is of Oligocene age.

The washed residues largely consist of rounded and angular quartz grains (at some levels coarse) with some chert grains and from Core 28 down with fragments of metamorphic rocks. Pyrite is a common constituent down to 27, CC.

A local biostratigraphic subdivision can be based on slight changes in relative frequences of different forms and will not have regional value. The fauna of Core 15 through Core 21, Section 3 has species of the genera Saccorhiza, Rhabdammina, Bathysiphon, Haplophragmoides, Hormosina, "Trochammina," some Reophax, Tylopammina (or Ammolagena), Psammosphaera, Spirosigmoilinella, Spirolocammina, and Karreriella siphonella.

A similar fauna occurs from Core 21, Section 4 through Core 25 without *Karreriella siphonella* (except for one specimen found in 22-3, 83-85), with only rare *Spirosigmoilinella*; but with *Cyclammina* spp. and *Hyperammina* sp. added.

A further change occurs between Core 25, Section 6 and Core 26, Section 2 from which level down *Psammosphaera* is numerically important in most samples. Several samples from this interval (mainly of Core 28) are barren and/or have washed residues largely consisting of (?) weathered volcanic material (?).

From Core 30, Section 3 down the sand portion of the washed residues increases rapidly and coarsely arenaceous tests of *Psammosphaera* and *Rhabdammina* outnumber the others.

Nannoplankton

Nannofossils were found in Cores 1 to 4 (0-36.5 m). They are abundant in nannofossil ooze layers intercalated in Quaternary sediments. Core 1 belongs to the *Emiliania huxleyi* Zone (NN 21). The following species were determined: *Emiliania huxleyi*, *Coccolithus pelagicus*, *Gephyrocapsa ericsonii*, and few specimens of *Syracosphaera pulchra*, *Cyclococcolithus leptoporus*, and *Helicosphaera carteri*. The same assemblage was observed in Core 2 but without *Emiliania huxleyi*. This core may belong to the *Gephyrocapsa oceanica* Zone (NN 20). *Pseudoemiliania lacunosa* is present from Sample 3-2, 35-36 cm to Sample 4-2, 42-43 cm, indicating a late Pliocene to Pleistocene age.

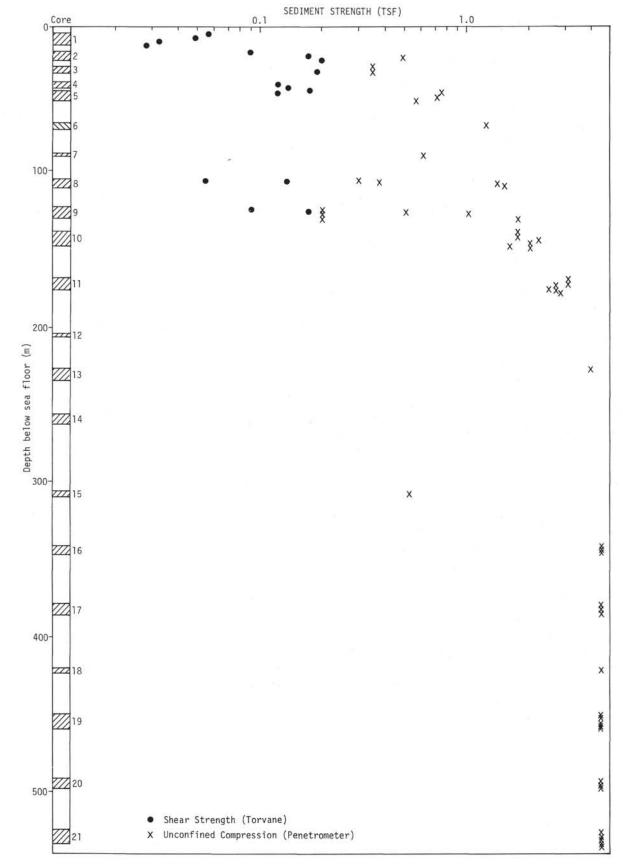


Figure 6. Shear Strength Profile.

TABLE 4	
Summary of Shipboard Geochemical	Data, Site 345

Subdepth (m)	pН	Alkalinity (meq/Kg)	Salinity (°/ ₀₀)	Ca ⁺⁺ (mmoles/1)	Mg ⁺⁺ (mmoles/1)
8		2.31	35.2	10.25	53.13
1.5	7.41	3.23	34.9	11.28	53.18
28.3	7.44	3.99	35.2	13.51	48.35
76.0	8.13	3.07	35.2	15.23	45.44
137.5	7.34	2.33	34.6	18.49	39.95
250.0	-	1.97	33.3	27.63	26.57
338.0	8.03	1.67	33.6	32.73	20.13
451.0	8.61	1.09	32.7	43.51	10.17
486.0	8.72	0.77	32.7	43.62	9.69
527.0	8.88	0.90	33.0	51.56	5.02
604.5		0.54	34.9	59.50	3.33
	(m) 1.5 28.3 76.0 137.5 250.0 338.0 451.0 486.0 527.0	(m) pH 1.5 7.41 28.3 7.44 76.0 8.13 137.5 7.34 250.0 - 338.0 8.03 451.0 8.61 486.0 8.72 527.0 8.88	(m) pH (meq/Kg) 2.31 3.23 1.5 7.41 3.23 28.3 7.44 3.99 76.0 8.13 3.07 137.5 7.34 2.33 250.0 - 1.97 338.0 8.03 1.67 451.0 8.61 1.09 486.0 8.72 0.77 527.0 8.88 0.90	(m) pH (meq/Kg) $(^{\circ}/_{\circ\circ})$ 2.31 35.2 1.5 7.41 3.23 34.9 28.3 7.44 3.99 35.2 76.0 8.13 3.07 35.2 137.5 7.34 2.33 34.6 250.0 - 1.97 33.3 338.0 8.03 1.67 33.6 451.0 8.61 1.09 32.7 486.0 8.72 0.77 32.7 527.0 8.88 0.90 33.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Preservation of the nannoplankton is good in the nannofossil ooze but they are slightly etched in other samples. Reworked Cretaceous and Eocene species were found in all samples. Below Core 4 (36.5-802 m) nannofossils are absent.

Diatoms (H.-J.S.)

Diatoms were only found in the interval of Unit 2 (Samples 6-2, 68 cm to 11-3, 50 cm) with well-preserved diversified assemblages in Cores 6-9, and poor to moderate preserved assemblages in Cores 9-11. Freshwater diatoms were observed in Samples 8-1, 79 cm; 10-1, 40 cm; and 10-3, 50 cm.

Age-diagnostic species were found only in the interval between Samples 6-2, 68 cm to 8-1, 79 cm with *Coscinodiscus vigilans*, *Goniothecium tenue*, *Opephora* gemmata, and *Thalassiosira fraga*. Therefore, Samples 6-2, 68 cm to 7-2, 59 cm have been placed into the *Rhizosolenia bulbosa* Partial Range Zone, and Samples 8-1, 79 cm to 8-3, 62 cm into the *Thalassiosira fraga* Partial Range Zone. Only a tentative early early Miocene age could be assigned to the interval between Samples 9-3, 30 cm to 11-3, 50 cm with an absolute age older than 19.5 m.y. B.P.

Radiolarians

Three units could be identified based on the occurrence of radiolarians. Unit 1 (Cores 1 through 5) is characterized by poor radiolarian fauna. Traces of radiolarians were found in Core 1, mostly fragments, and only *Spongotrochus glacialis* could be identified.

Unit 2 (Cores 6-1, 43-45 through 10, CC) is characterized by a well to moderately preserved radiolarian fauna. Assuming Site 338 to be the reference hole for the radiolarian stratigraphy, the boundary between the *Gondwanaria japonica* Zone and the *Velicucullus oddgurneri* Zone is situated between 10-1, 35-37 and 10-2, 30-32, which is close to the Miocene-Oligocene boundary. A *Spongomelissa* (?) sp. was frequently found in Samples 8-2, 118-120 to 8, CC. This species was very rare at Site 338, but it occurred in low numbers in Sample 13, CC, of an uppermost early Miocene age. This unit can be age determined to early Miocene, Samples 6, CC through 10-1, 35-37, and possibly late Oligocene, from Samples 10-2, 30-32 to 10, CC.

Unit 3 (Cores 11 through 32) is characterized by being barren of radiolarians.

Silicoflagellates

Silicoflagellates were first noted in Sample 6-1, 123-124 cm (56.5 m): Mesocena apiculata, Cannopilus hemisphaericus, Distephanus speculum, Distephanus crux, and Distephanus longispinus indicating a middle Miocene age (probably Corbisema triacantha Zone).

Corbisema triacantha and Naviculopsis quadratum are present in Sample 8-1, 139-140 cm (85.5 m) together with the same species as in Cores 6 and 7. According to Martini, 1972, Naviculopsis quadratum in its typical form indicates an early Miocene age. One specimen of Naviculopsis lata was found in Sample 8-4, 70-71 cm.

In Core 9 only very few silicoflagellates are present like Distephanus crux, Corbisema triacantha, Distephanus speculum, and Naviculopsis lata. They become more frequent in the upper part of Core 10. The assemblage with Corbisema triacantha, Distephanus crux, Dictyocha fibula, Naviculopsis lata, Distephanus speculum, Mesocena apiculata indicates a late Oligocene to early Miocene age (Naviculopsis lata Zone). In the lower part of Core 10 silicoflagellates are present only sporadically Below Core 10 they are missing. Archaeomonads are common in some samples.

Palynology (S.B.M.)

Dinocysts

Workable assemblages with zone-diagnostic species occur only in Sections 9-3 to 7-2. A tentative zonation is suggested for Cores 26 to 11 which gave only infrequent specimens of a few diagnostic species (Figure 7). Since all palynomorphs in assemblages from Core 14 and below are corroded and darkened, alteration is considered to have taken place in situ, even though some of the material is certainly reworked. From Core 9 upwards, preservation of indigenous fossils appears normal.

In Core 26, Section 3 Deflandrea phosphoritica, Meiourogonyaulax sp., and Cyclonephelium ordinatum occur in association with frequent Phthanoperidinium resistente, indicating Zones IV to V (the last species perhaps more suggestive of Zone V). It is suggested that the IV to V interval also includes Core 23, Section 3 and Core 22, Section 3, since D. phosphoritica and C. ordinatum occur together. Below Core 26 only D. phosphoritica has been observed very infrequently down to Core 30.

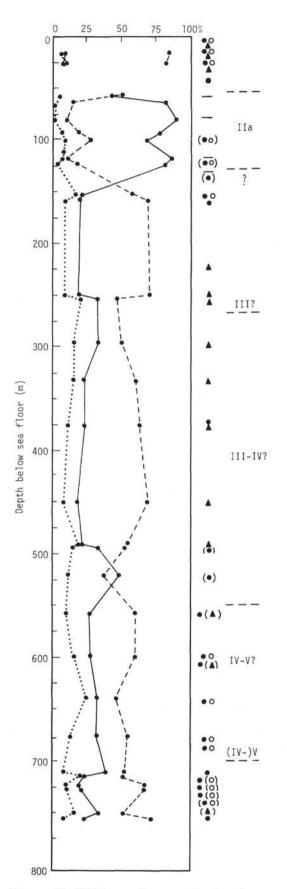


Figure 7. Relative palynomorph abundance, palynodebris composition, and dinocyst zo-

nation (as established for 338). – Dinocysts; - Pollen + spores; excl. saccates; . . . Saccate pollen. Terrestrial plant debris: Mixed cuticular and tracheidal; \blacktriangle altered (dark color); \land unaltered; Sorted, tracheidal mainly • carbonized (opaque); \circ noncarbonized; - No recognizable debris; () Debris present but not dominating in prep. residue. Symbol only: debris dominating.

The interval, Cores 21 to 15, has an association of infrequent specimens of a few species which either belong to Zone IV and lower (e.g., c.f. Gonyaulacysta giuseppei, D. phosphoritica, and Leptodinium sp. I), or to Zone III and higher (e.g., Chiropteridium dispersum and Impletosphaeridium sp. I).

At Site 336, Sections 20-5 to 18-2, a somewhat similar situation was observed, with *D. phosphoritica* and *C. dispersum* occurring together. Intense bioturbation in part of this particular interval at Site 345 may explain assemblage mixing. This, together with relative paucity of the assemblages, hinders zonation, but the interval is tentatively referred to Zones III-IV. In Core 14, Section 1, by far the commonest cyst is *Leptodinium* sp. II comparable to the base of Zone III at Site 338. However, since *D. phosphoritica* also occurs seemingly indigenous, Core 14, Section 1 is referred to Zone III with reservation. In Cores 13 and 11 extremely rare observations of *Dinocyst.* sp. V and *C. dispersum* suggest Zone III.

The interval, Core 9, Section 3 to Core 6, Section 2, has essentially similar assemblage composition throughout, comparable with Zone IIa. Key species are: *Leptodinium* spp. II and III, both frequent. They are, however, unassociated in 338, sp. II having its last appearance in IIa, sp. III its first in Ic. Further significant species are *Cyclonephelium* sp. II which is quite common (occurrence in 338 at top of IIa only), and *Hystrichosphaeropsis* cf. *obscurum* and cf. *Batiacasphaera baculata* (in 338 occurring in IIa to Ia and IIb to Ic, respectively). Other species occurring range from III to I (*Hystrichokolpoma rigaudae*, *Problematicum* I, cf., *Heteraulacysta campanula*, cf. *Plathycystidia* sp. II).

Core 6, Section 1 has a rather poor assemblage of long-ranging Zone III to I species, while Core 5 and higher is unproductive.

Debris, Reworked Material

Noticeable changes in terrestrial plant debris occur in Cores 20, 11, and 5. Age-diagnostic reworked palynomorphs are rare, but the source of reworked material appears predominantly to be lower Tertiary to late Upper Cretaceous. From Core 4 upwards it appears to be more distinctly pre-Tertiary (lower [?] Cretaceous).

Sedimentation Rates

Plio/Pleistocene sediments were determined in Cores 1 to 4 (0-36.5 m) but were mainly of Pleistocene age. Using 3 m.y. as the basal age, the "glacial deposits" accumulated at an average rate of 1.3 cm/1000 yr. A hiatus of approximately 13 m.y. exists between the "glacial sediments" and the early Miocene (Core 5) including the middle-upper Miocene and probably the largest part of the Pliocene. Dating the top of the early Miocene at 16 m.y. and the base at 22.5 m.y., the sedimentation rate of this sequence is 2.1 cm/1000 yr. The Oligocene rate is 2.2 cm/1000 yr assuming a complete section. Since the exact age of the base of sediments is not known (Eocene?), only a very tentative sediment accumulation can be determined for the post-Oligocene sequence. If it is of probable late Eocene age, a sedimentation rate of 3.7 cm/1000 yr is assumed. None of these rates has been corrected for compaction, which for the sedimentary section may make a significant difference.

SUMMARY AND CONCLUSIONS

Summary

At this site in the Lofoten Basin at a depth of 3195 meters, a depth of 802 meters was penetrated of which 762 meters was in sediments, and the remainder in basalt. The sediments consisted of thin "glacial" and Miocene sequences, overlying a very thick Oligocene sequence. Late Eocene(?) and Eocene(?) sediments underlie the Oligocene.

"Glacial"

The "glacial" extends down to nearly the bottom of Core 4 (about 36 m). The sediments are dominantly muds, sandy muds, and sands, although volcanic ash and foraminiferal oozes are also present. Left-coiling *Neogloboquadrina pachyderma* dominates the fauna. Nannoplankton are also present, although they are restricted to some horizons, and only reworked species are present in others. Only traces of radiolarians, mainly fragments, are found.

Miocene

The Miocene extends from about 36 meters to possibly 169 meters. It is possible that a hiatus exists at the upper portion of the Miocene, where Pliocene sediments overlie early Miocene sediments. There is a small, but definite decrease downwards in sonic velocity at this interface (from 1.61 km/sec to 1.54 km/sec), and a much larger decrease in density (from 1.7 g/cc to below 1.3 g/cc). The density, however, increases very rapidly in depth within the Miocene. The sediments consist of clays, muds, and biogenic siliceous oozes. The fauna is siliceous, and age determination is based on radiolarians, silicoflagellates, and siliceous-arenaceous foraminifera.

Oligocene

The Oligocene extends from the base of the Miocene at about 169.5 meters(?), to 530.5 meters(?). A 28.5 meter uncored interval underlies the Oligocene. The upper contact of the Oligocene to the Miocene is gradational. Some distance below (at 160 or 180(?) m) a change in lithology is apparent. The mud and clay now seem to be present in alternating sequences with their lithified equivalents, which would explain the wide variations in sonic velocity down to about 330 meters. The Oligocene sediments are barren in calcareous fossils, as well as in radiolarians and silicoflagellates. The only fauna that appears to be present consists of arenaceous foraminifera. Even these are scarce in the upper Oligocene, which extends down to about 255 meters.

The undivided Oligocene which extends below 255 meters consists of mudstones and sandstones without the alternating soft sequences found in the upper Oligocene. Turbidites exist and increase in volume towards the base of this lithologic unit (Unit 3). Pebbles are also particularly prominent towards the base. The reddish-brownish pebbly mudstones above basaltic basement are interpreted as a slump or similar deposit. There is a marked and regular increase in sonic velocity downwards (from 1.74 km/sec at 400 m to 2.45 km/sec at 720 m). Density remains the same, or perhaps shows a slight increase downwards. The arenaceous foraminifera found in the upper Oligocene increase considerably in the undivided Oligocene. Other fauna are absent, except chitinous forms. Also, in Sample 18, CC calcareous foraminifera are observed.

Basement

Basement from 762 to 780(?) meters consists of tuff breccias including coarse angular fragments of zeolite and basalt. This breccia was laid down in submarine conditions. Below 780 meters to the base of the hole at 802 meters lies very highly altered basalt and amygdaloidal basalt.

The age of the oldest sediments above basement is somewhat uncertain. Although some of the articles in this report speculate that the age might be as old as late Eocene, the best evidence is probably from foraminiferal studies which point out the absence of Eocene fossils. Hence lower Oligocene may actually be the best estimate of the oldest sediments at this site. Radiometric studies (Russian Group) suggest a somewhat younger age of 27 ± 3 m.y.

Discussion and Conclusions

The following calculation is made to compare the reflection profiler travel time to basement with that obtained from measured sample velocities.

a) Lithologic Unit 1 to 46 meters, corresponding to Physical Properties Unit 1. Cores 1 to 5; 0-46 meters; average velocity = 1.592 km/sec; travel time = 0.058 sec.

b) Physical Properties Unit 2A. Core 6 to Cores 10/11; 46 to 150 meters; average velocity = 1.550 km/sec; travel time = 0.133 sec.

c) Physical Properties Unit 2B, equivalent to remainder of Lithologic Unit 2. Cores 10/11 to 15/16; 150 to 331 meters; average velocity (extremely variable) = 1.947 km/sec; travel time = 0.186 sec.

d) Lithologic Unit 3, corresponding to Physical Properties Unit 3. Cores 15/16 to 25; 331 to 762 meters; average velocity (considerable progressive increase downwards) = 2.013 km/sec; travel time = 0.428 sec.

Total calculated time to basement = 0.805 sec. Profiler record is somewhat indistinct, and basement appears to be at 0.9 sec. If this is true, velocities have to be revised to be about 12% slower than those obtained from the sample measurements.

The presence of tuff layers and the high degree of weathering and oxidation, suggest that the basalt was extruded under very shallow or perhaps even subaerial conditions. The nature of the overlying sediments (pebbly mudstones overlain by turbidites) argues for water depths that were originally shallow, but gradually deepened. Turbidites generally gave way to pelagic sedimentation, but with mainly nonbiogenic components. Otherwise, the conditions under which sedimentation took place appear to have been monotonous, as reflected in the profiler records. The source of the large amounts of terrigenous material and the high sedimentation rates are not explained as yet.

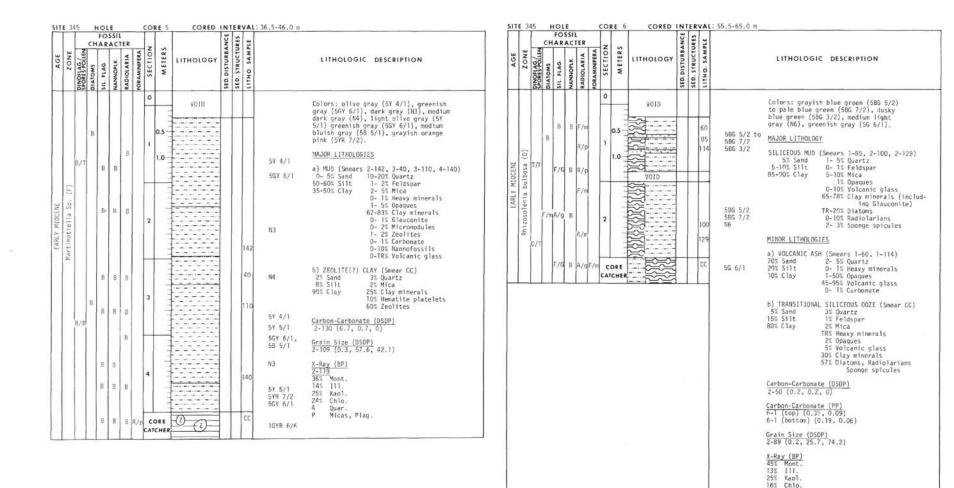
It may be possible to envisage an island, that the Jan Mayen Fracture Zone stood above sea level at the time of creation of ocean floor at Site 345 and may have been a source of terrigenous sediments.

The age of basement calculated from the age of the overlying sediments is not firm. The oldest sediments

appear to be perhaps lower Oligocene. A corresponding age for basement is in accord with what we know of the magnetic lineations in this area.

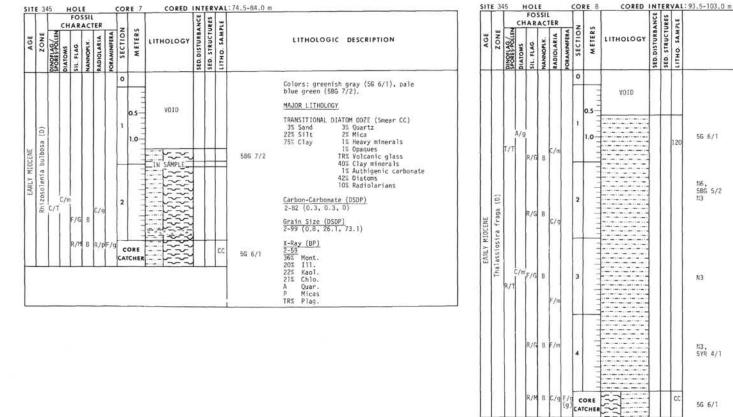
REFERENCES

- Berggren, W.A., 1972. Late Pliocene-Pleistocene glaciation. In Laughton, A.S., Berggren, W.A., et al., Initial Reports of the Deep Sea Drilling Project, Volume 12: Washington (U.S. Government Printing Office), p. 953-963.
- Martini, E., 1972. Silicoflagellate zones in the late Oligocene and early Miocene of Europe: Senchenberg. Letheae, v. 53, p. 119-122.
- McDougall, I. and Wensink, H., 1966. Paleomagnetism and geochronology of the Pliocene-Pleistocene lavas in Iceland: Earth Planet. Sci. Lett., v. 1, p. 232-236.
- Warnke, D.A., 1970. Changing rates of biogenic sedimentation in the Southern Ocean: results of a stressed ecosystem: Geol. Soc. Am. Abstract with Programs, v. 2, p. 715.
- Warnke, D.A., Richter, J., and Oppenheimer, C.H., 1973. Characteristics of the nearshore environment off the south coast of Anvers Island, Antarctic Peninsula: Limnol. Oceanogr., v. 18, p. 131-142.


		FOS		-	T				18							FOS					5	n		
ZONE DINOFLAG/LEN	DIATOMS T	AR	NANNOPLK.	FORAMINIFERA	SECTION	METERS	LIT	HOLOG	SED. DISTURBANCE	SED. STRUCTURE		LITHOLOGIC DESCRIPTION	AGE	ZONE		SIL FLAG		FORAMINIFERA	METERS	LITHOLOGY	SED. DISTURBAN	SED. STRUCTURES		LITHOLOGIC DESCRIPTION
600 Emiliania huxieyi (II) B/B	B	B C B R	/g E //P 1 //G E //G E		0	0.5		VOID SAMPLE GEOCHER	000 00000 000	77	10YR 5/4 SY 4/1 N4 SY 5/1 SY 4/1 SY 4/1 10YR 5/4 SY 4/1 N6	Dark yellowish brown (10YR 4/2), moderate yellowish brown (10YR 5/4), olive gray (SY 4/1), medium light gray (N6), medium dark gray (N4), light olive gray (SY 5/1). Drilling breects to intense deformation. MAJOR LITHOLOGIES a) MUD (Smears 1-40, CC) 10-205 Sand 0-35% Quartz 30-40% Silt 0-7% Feldspar 40-60% Clay 0-5% Mica 0-3% Foraminifera 0-15% Palagonite 50-80% Clay minerals b) MARLY FORAMINIFERA 00ZE (Smears 2-77, 4-80) 50% Sand 3-17% Quartz 25-40% Clay minerals 40-50% Clay minerals 5-23% Clay minerals 5-23% Clay minerals 25-40% Coraminifera 2-40% Mannofossils Carbon-Carbonate (DSDP) 1-2 (bollom) (0.54, 1.09) Grain Size (DSDP) 2-90 (20.8, 33.5, 45.7) X-Ray (BP) 2-10 Ta% Mont. 53% Ill.	breistocewe	B,	//T B B B	B C B A B I B A	/G B 8 /G B 3	2 2 3 A/g	0.5- 1.0-	VOID		60 105 129 80 CC	5Y 4/1 N4 5Y 5/1 5Y 4/1 10YR 4/2 N4/N5 5YR 4/1 N4 5YR 4/1 N4 5YR 4/1 5Y 4/1	Colors: medium dark gray (N4), olive g (SY 4/1), medium gray (H5), light oliv gray (SY 5/1), brownish gray (SYR 4/1) dark yellowish brown (10YR 4/2). Moder slight deformation, variegated colors color bands. MAJOR LITHOLOGIES a) MUD (Smears 1-60, 2-129, 3-80, CC) 0-1% Sand 3-4% Quartz 10-20% Silt 1-5% Feldspar 70-90% Clay 0-2% Mica 0-1% Foraminifera 0-1% Carbonate 43-59% Clay minerals (Carbonate higher in some slides.) b) SANDY MUD (Smear 1-105) SOX Sand 30% Quartz 30% Silt 10% Feldspar 20% Clay 15% Mica 4% Heavy minerals 50% Clay minerals 50% Cl
		B C	/G B	A/c		DRE			000	C	5YR 4/4	15% Kaol. 18% Chlo. A Quar. P Micas. Plag., Calc. TR% Ortho., Siderite, Dolo.	Exj	lanat	tory	notes	in l	hapte	r 1		-			A Quar. P Micas, Plag. TR% Siderite

SITE 345

467


FOSSIL CHARACTER			
2006 2006 2006 2006 2006 2006 2006 2016	LITHOLOGIC DESCRIPTION	AGE AGE CHARACTER CHARACTER CHARACTER ANNONCHU CHARACTER SECTOR ANNONCHU CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR CHARACTER SECTOR SECT	LITHOLOGIC DESCRIPTION
B B B B B B B V01D 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Colors: olive gray (5Y 4/1), medium dark gray (N4), light olive gray (5Y 5/1) to greenish gray (56 /1), medium gray (N6). Variegated colors. Slight defor- mation. 5Y 4/1 N4 MAJOR LITHOLOGY SY 4/1 - MUD N4 MINOR LITHOLOGY TRANSITIONAL CALCAREOUS MUD (MARLY CALCAREOUS 00ZE) (Smear CC) 40% Sand 35% Quartz 20% Clay liberary minerals and Mica 15% Clay minerals 30% Foraminifera 5% 4/1 Carbon-Carbonate (DSDP) 2-30 (4.6, 0.2, 36) N4 Grain Size (DSDP) 2-58 (18.7, 28.4, 52.8) N4 X-Ray (BP) 5% 6/1 2-55 5% 5/1 - H6 47% Ill. N4 AT 11 SGY 6/1 2% Chio. N4 AT 12% Mont. N4 AT 11 SGY 6/1 2% Chio. N4 AT 12% Chio. N4 AT 24% Chio. N5 AT 25% Chio. N5 A</td> <td>B R/P B 0 V010 NO001010 B F/G 0.5 0 NO001010 B F/G 1 00 NO001010 B R/P B 2 0 NO001010 B R R 100 NO00100 B R R 100 NO00100 B R R 100 NO00100 B R R R NO00100 R R R <t< td=""><td>Colors: medium gray (N5) to light oli gray (5Y 5/1), olive gray (5Y 4/1) to medium light gray (N5), dark yellowis brown (10YR 4/2), grayish orange (10) 5Y 5/1 7/4), dark gray (N3), moderate yellow brown (10YR 5/4). MAJOR LITHOLOGY SY 4/1 MUD (Smears 1-80, 2-100) N6 5-155 Sand 5-156 Quartz 25-30% Silt 1-3% Mica 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55 4/1 3% Foldspar 10YR 5/4 700 Clay 1-TR% Meavy minerals 58 Annofossils 59 4/1 3% Foldspar 10YR 5/4 700 (0.24, 1.27) 4-1 (bottom) (0.17, 1.66) 67ain Size (0SDP) 2-79 (14.7, 32.7, 52.6) X-Ray (BP) 2-77 (Ta, 7, 32.7, 52.6) X-Ray (B2) 2-74 Chlo. A Quar. P Mica, Plag.</td></t<></td>	Colors: olive gray (5Y 4/1), medium dark gray (N4), light olive gray (5Y 5/1) to greenish gray (56 /1), medium gray (N6). Variegated colors. Slight defor- mation. 5Y 4/1 N4 MAJOR LITHOLOGY SY 4/1 - MUD N4 MINOR LITHOLOGY TRANSITIONAL CALCAREOUS MUD (MARLY CALCAREOUS 00ZE) (Smear CC) 40% Sand 35% Quartz 20% Clay liberary minerals and Mica 15% Clay minerals 30% Foraminifera 5% 4/1 Carbon-Carbonate (DSDP) 2-30 (4.6, 0.2, 36) N4 Grain Size (DSDP) 2-58 (18.7, 28.4, 52.8) N4 X-Ray (BP) 5% 6/1 2-55 5% 5/1 - H6 47% Ill. N4 AT 11 SGY 6/1 2% Chio. N4 AT 12% Mont. N4 AT 11 SGY 6/1 2% Chio. N4 AT 12% Chio. N4 AT 24% Chio. N5 AT 25% Chio. N5 A	B R/P B 0 V010 NO001010 B F/G 0.5 0 NO001010 B F/G 1 00 NO001010 B R/P B 2 0 NO001010 B R R 100 NO00100 B R R 100 NO00100 B R R 100 NO00100 B R R R NO00100 R R R <t< td=""><td>Colors: medium gray (N5) to light oli gray (5Y 5/1), olive gray (5Y 4/1) to medium light gray (N5), dark yellowis brown (10YR 4/2), grayish orange (10) 5Y 5/1 7/4), dark gray (N3), moderate yellow brown (10YR 5/4). MAJOR LITHOLOGY SY 4/1 MUD (Smears 1-80, 2-100) N6 5-155 Sand 5-156 Quartz 25-30% Silt 1-3% Mica 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55 4/1 3% Foldspar 10YR 5/4 700 Clay 1-TR% Meavy minerals 58 Annofossils 59 4/1 3% Foldspar 10YR 5/4 700 (0.24, 1.27) 4-1 (bottom) (0.17, 1.66) 67ain Size (0SDP) 2-79 (14.7, 32.7, 52.6) X-Ray (BP) 2-77 (Ta, 7, 32.7, 52.6) X-Ray (B2) 2-74 Chlo. A Quar. P Mica, Plag.</td></t<>	Colors: medium gray (N5) to light oli gray (5Y 5/1), olive gray (5Y 4/1) to medium light gray (N5), dark yellowis brown (10YR 4/2), grayish orange (10) 5Y 5/1 7/4), dark gray (N3), moderate yellow brown (10YR 5/4). MAJOR LITHOLOGY SY 4/1 MUD (Smears 1-80, 2-100) N6 5-155 Sand 5-156 Quartz 25-30% Silt 1-3% Mica 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55-70% Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 10YR 7/4 700 Clay 1-TR% Meavy minerals 55 4/1 3% Foldspar 10YR 5/4 700 Clay 1-TR% Meavy minerals 58 Annofossils 59 4/1 3% Foldspar 10YR 5/4 700 (0.24, 1.27) 4-1 (bottom) (0.17, 1.66) 67ain Size (0SDP) 2-79 (14.7, 32.7, 52.6) X-Ray (BP) 2-77 (Ta, 7, 32.7, 52.6) X-Ray (B2) 2-74 Chlo. A Quar. P Mica, Plag.

468

P

Quar., Micas

HOLOGY	SED. DISTURBANCE	SED. STRUCTURES	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
VOID					Colors: greenish gray (56 6/1), medium light gray (N6), grayish blue green (586 5/2), dark gray (N3), brownish gray (574 4/1).
	-				MAJOR LITHOLOGY
			120	5G 6/1	MUD (Smear 1-120) 1-5% Sand 5% Quartz 20% Silt 1% Feldspar 75% Clay 5% Mica 1% Volcanic glass 79% Clay minerals
				N6, 58G 5/2 N3	7% Clay interals TR% Glauconite 5% Diatoms 1% Radiolarians 2% Sponge spicules
					MINOR LITHOLOGY
				N3	DIATOMACEOUS MUD (Smear CC) 5% Sand 2% Quartz 20% Silt 1% Feldspar 75% Clay 5% Mica TR% Heavy minerals 1% Opaques 2% Volcanic glass 4% Clay minerals 3%% Diatoms 5% Radiolarians 2% Sponge spicules
				M3. SYR 4/1	Carbon-Carbonate (DSDP) 3-81 (0.3, 0.4, 0) Carbon-Carbonate (PP) 8-3 (top) (0.31, 1.61) 8-3 (bottom) (0.34, 0.04) Grain Size (DSDP) 3-79 (0.1, 23.7, 76.1)
			cc	56 6/1	<u>X-Ray (BP)</u> 3-75 29% Mont. 38% I11. 16% Kaol. 16% Chlo. A Quar. P Micas TR% Plag., Siderite

R/M B C/g F/d

SITE 345 HOLE CORE 9 CORED INTERVAL:11	12.5-122.0 m	SITE 345 HOLE CORE 10 CORED IN	TERVAL: 131.5-141.0 m
	LITHOLOGIC DESCRIPTION	POSSIL CHARACTER CHARACTER STORE CHARACTER NO U U U U U U U U U U U U U U U U U U	SED STRUCTOR
0 V010 0.5 V010 0.5 1 0.5 1 1.0 0.5 1.0 1.0 0.5 1 0.5 1 1.0 1.0 0.5 1 1.0 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 <td< th=""><th>Colors: grayish blue green (586 5/2), brownish gray (5YR 4/1), grayish orange (10YR 9/4). Some intense deformation. MAJOR LITHOLOGY 586 5/2 MUD (Smears 1-100, 4-30, 4-75, 4-120) 1-5% Sand 3-5% Quartz 5YR 4/1 10-25% Silt 0-1% Feldspar 10YR 9/4 75-80% Clay 2-5% Mica 1-2% Opaques 1-3% Volcanic glass 59-70% Clay minerals 1-5% Radiolarians 1-5% Radiolarians 1-5% Songe spicules 0-1% Siltcoflagellates MINOR LITHOLOGY CLAY (Smear CC) 1% Sand 1% Opaques 93% Clay minerals TR% Diatoms 24% Clay 1% Opaques 93% Clay minerals TR% Diatoms Carbon-Carbonate (DSDP) 3-85 (0, 4, 0, 4, 0) Grain Size (DSDP)</th><th>F/m F/m 0 F/G 8 0.5 B/B F/m 0.5 B/B/B F/m 0.5 B/B/B B 3 B/B/BR/m B B</th><th>Colors: dark greenish gray (56 4/1), greenish gray (56 6/1), grayish blue green (586 5/2), olive gray (5Y 4/1), medium yellow brown (10YR 5/4), Some intense deformation, Drownish gray (5YR 4/1). with 56 6/1 MAJOR LITHOLOGIES a) MUD (Smears 5-127, 6-75, CC) 0-5% Sand S& Quartz 15-20% Silt 3-5% Mica 80-85% Clay TR% Heavy minerals 1-3% Dopaques 56 4/1 87-89% Clay minerals 586 5/2 b) TRANSITIONAL SILICEOUS (DIATOMACEOUS?) MUD (Smears 2-75, 3-75, 5-120) 3-5% Sand 2-3% Quartz 7-12% Silt 1-5% FeldSpar 85-88% Clay 1% Opaques 556 4/1 62-75% Clay minerals 56 4/1 62-75% Clay minerals 57 5 4/1 62-75% Clay minerals 57 4/1 0-1% Clauconite 57 4/1 2-5% Zeolites 5-10% Diatoms 2-3% Radiolarians 4-5% Sponge spicules</th></td<>	Colors: grayish blue green (586 5/2), brownish gray (5YR 4/1), grayish orange (10YR 9/4). Some intense deformation. MAJOR LITHOLOGY 586 5/2 MUD (Smears 1-100, 4-30, 4-75, 4-120) 1-5% Sand 3-5% Quartz 5YR 4/1 10-25% Silt 0-1% Feldspar 10YR 9/4 75-80% Clay 2-5% Mica 1-2% Opaques 1-3% Volcanic glass 59-70% Clay minerals 1-5% Radiolarians 1-5% Radiolarians 1-5% Songe spicules 0-1% Siltcoflagellates MINOR LITHOLOGY CLAY (Smear CC) 1% Sand 1% Opaques 93% Clay minerals TR% Diatoms 24% Clay 1% Opaques 93% Clay minerals TR% Diatoms Carbon-Carbonate (DSDP) 3-85 (0, 4, 0, 4, 0) Grain Size (DSDP)	F/m F/m 0 F/G 8 0.5 B/B F/m 0.5 B/B/B F/m 0.5 B/B/B B 3 B/B/BR/m B B	Colors: dark greenish gray (56 4/1), greenish gray (56 6/1), grayish blue green (586 5/2), olive gray (5Y 4/1), medium yellow brown (10YR 5/4), Some intense deformation, Drownish gray (5YR 4/1). with 56 6/1 MAJOR LITHOLOGIES a) MUD (Smears 5-127, 6-75, CC) 0-5% Sand S& Quartz 15-20% Silt 3-5% Mica 80-85% Clay TR% Heavy minerals 1-3% Dopaques 56 4/1 87-89% Clay minerals 586 5/2 b) TRANSITIONAL SILICEOUS (DIATOMACEOUS?) MUD (Smears 2-75, 3-75, 5-120) 3-5% Sand 2-3% Quartz 7-12% Silt 1-5% FeldSpar 85-88% Clay 1% Opaques 556 4/1 62-75% Clay minerals 56 4/1 62-75% Clay minerals 57 5 4/1 62-75% Clay minerals 57 4/1 0-1% Clauconite 57 4/1 2-5% Zeolites 5-10% Diatoms 2-3% Radiolarians 4-5% Sponge spicules
B B B F/p B CORE CATCHER	3-89 (0.1, 25.2, 74.7) 3-74 70 71 155 71 75 76 77 78 79 70 78 78 78 78 79 70 78 79 70 70 70 71 72 74 74 70 70 71 72 74 70	B B F/p H H H H H H H H H H H H H H H H H H H	586 5/2 5G 4/1 586 5/2 with 586 5/2 yith 586 5/2 yith 586 5/2 yith 586 5/2 yith 147 10YR 5/4 98% Sand 13 511t 0-11% Feldspar 13 512t 0-15% Hica 13 513t 0-16% Hica 13 512t 0-15% Hica 13 513t 0-16% Hica 147 10YR 5/4 98% Foraminifera(?) with Carbon-Carbonate (DSDP) 98% Foraminifera(?) 90% Forantifera 10-5 (top) (0.324, 0.02) 10-5 (top) (0.324, 0.02) 120 5YR 4/1 10-5 (top) (0.324, 0.02) 10-5 (top) (0.26, 0.03)

R

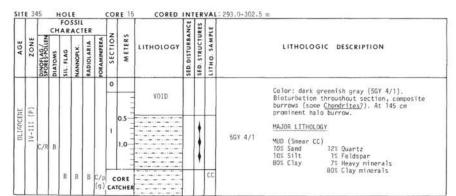
CORE

5YR 4/1

5GY 4/1

5Y 4/1 streaks of 5YR 4/1

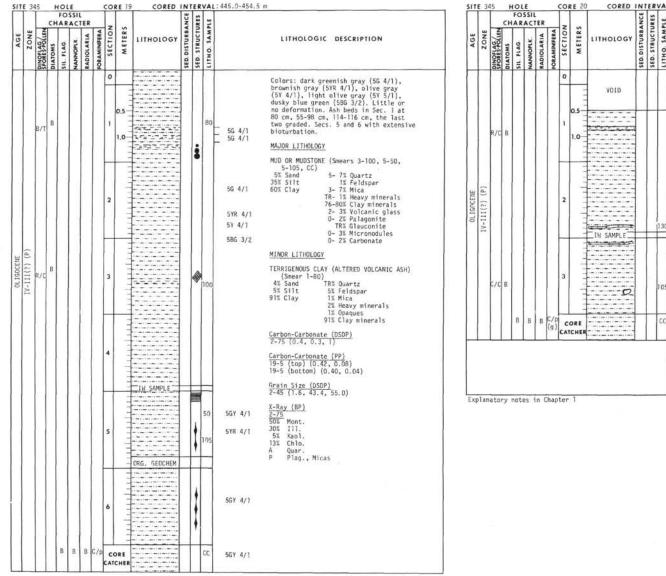
5GY 4/1


CC

Grain Size (DSDP) 3-60 (0.0, 23.8, 76.1)

X-Ray (BP) 3-89 28% Mont. 37% Ill. 17% Kaol. 17% Chlo. P Quar., Mica TR% Plag., Siderite

	TERVAL: 160.0-169.5 m	SITE 345 HOLE CORE 12 CORED INTERVAL	: 188.5+198.0 m
A CHARACTER A CHAR	STANCE DESCRIPTION	AGE AGE AGE AGE AGE AGE AGE AGE	LITHOLOGIC DESCRIPTION
B/T B/T B B B B/T B B B B B/T B B B B B B B/T B B B B B B B B B B B B B B B B B B B	Colors: olive gray (5Y 4/1), brownish gray (5YR 4/1), dark greenish gray (5GY 4/1) and (5G 4/1), dusky blue green (5BG 3/2), greenish gray (5G 6/1), intense deformation. Sec. 5 - composite burrows at SO cm pyrite nodule at 20 cm. Sec. 6 - pyritized worm burrows and evidence for blotur- bation. MAJOR LITHOLOGY MUD (Smears 4-102, 5-75, 6-80, CC) 5G 4/1 20-30% Silt 0 - 2% Feldspar 65-75% Clay 0 - 3% Mica 5G 6/1 5G 6/1 5G 6/1 CLAY (Smear 2-35) 2% Sand 3% Quartz 3% Silt 1% Heavy minerals 95% Clay 1% Opaques 95% Clay 1% Opaques	B B B C/P CORE CATCHER	Color: dark greenish gray (SGY 4/1). Intense deformation, soupy. MAJOR LITHOLOGY MUD (Smear 2-75) 5% Sand 1% Quartz 35% Silt 10% Feldspar 60% Clay 1- 2% Mica 0- 1% Heavy minerals 2- 3% Opaques 85% Clay aggregates 0- 1% Glauconite 56Y 4/1 MINOR LITHOLOGIES a) SILTSTONE (MUDSIONE) FRAGMENT (Smear from fragment at 1-140) 10% Sand 1- 2% Quartz 40% Silt 8-10% Feldspar 50% Clay 2% Mica 0- 1% Heavy minerals 80-85% Clay aggregates 2- 3% Opaques b) TERRIGENOUS CLAY (Smear CC) 3% Sand 0- 3% Quartz 4% Silt 5% Feldspar 93% Clay 0- 3% Mica 1% Opaques
	4% Zeolites <u>Carbon-Carbonate (DSDP)</u> <u>3-40 (0.4, 0.4, 0)</u> <u>Grain Size (DSDP)</u> <u>3-60 (0.2, 33.3, 66.5)</u> <u>X-Ray (BP)</u> <u>3-89</u> 102 107R 5/4 [7]% Mont. 13% 111. 8% Kaol. 6% Chlo. A Quar. 5GY 4/1 P Micas 5Y 4/1 5G 6/1 5GY 4/1 5G 4/1	SITE 345 HOLE CORE 13 CORED INTERVAL FOSSIL CHARACTER NOILUS & LITHOLOGY OUTSION OF THE AND DATE OF THE ADDRESS OF THE ADDRE	91% Clay minerals 217.0-226.5 m LITHOLOGIC DESCRIPTION Colors: dark greenish gray (5GY 4/1), medium gray (KG), light olive gray 5GY 4/1 (5Y 5/1). Slight to intense deformation. Extensively bioturbated, abundant. composite burrows - Helminthoidea. Chandrites? 5GY 4/1, MAJOR LITHOLOGY N6 5Y 5/1 MUD (Smear CC) 5% Sand 21% Quartz 20% Silt 1% Feldspar 75% Clay minerals 75% Clay minerals


	E 3	T			\$\$1			T	RE 14			_		: 245.5-255.0 m
AGE	ZONE	SPORES-POLLEN	_		ANNOPLK.	4	Te	SECTION	METERS	LITHOLOGY	SED. DISTURBANCE	SED. STRUCTURES	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION
		T/R				-		1	0.5	V01D		00000000 00000000		Colors: dark greenish gray (56Y 4/1), dusky olive green (58G 3/2), yellowish gray (5Y 8/1), Some slight deformation, Burrows in Socs. 1 and 2. <u>Helmithoides</u> at 2 (37-38 cm), (31-32 cm), (42-44 cm, (46-47 cm ²). Bioturbation, mainly <u>Chondrites?</u> in Sec. 3. Composite burrow in upper 30 cm of Sec. 4. Sec. 5 - in- tensely bioturbated. 56Y 4/1 <u>MAJOR LITHOLOGY</u> MUD (Smears 4-11, CC) 0 - 5% Sand 12-20% Quartz 20-30% Silt 1 - 2% Feldspar
OLIGOCETE		R/R	В					3	Internation and tradition	VOID		00000		65-75% Clay 7-8% Heavy minerals 70-80% Clay minerals 70-80% Clay minerals Carbon-Carbonate (DSDP) 3-10 (0.5, 0.5, 0) Carbon-Carbonate (PP) 14-4 (top) (0.51, 0.13) 56Y 4/1 Grain Size (DSDP) 56Y 4/1 Grain Size (DSDP) 56Y 4/1 3-30 56Y 4/1 67% Mont. 23 56Y 4/1 4% Kaol.
								4	TELEVEL STATE	ORG. GEOCHEM		+	11	5% Chlo. P Quar., Micas TRI Plag. 56Y 4/1 ? Gyps.
				в	в	В	в		CORE			+	cc	5GY 4/1 5Y 8/1

4
-1
4

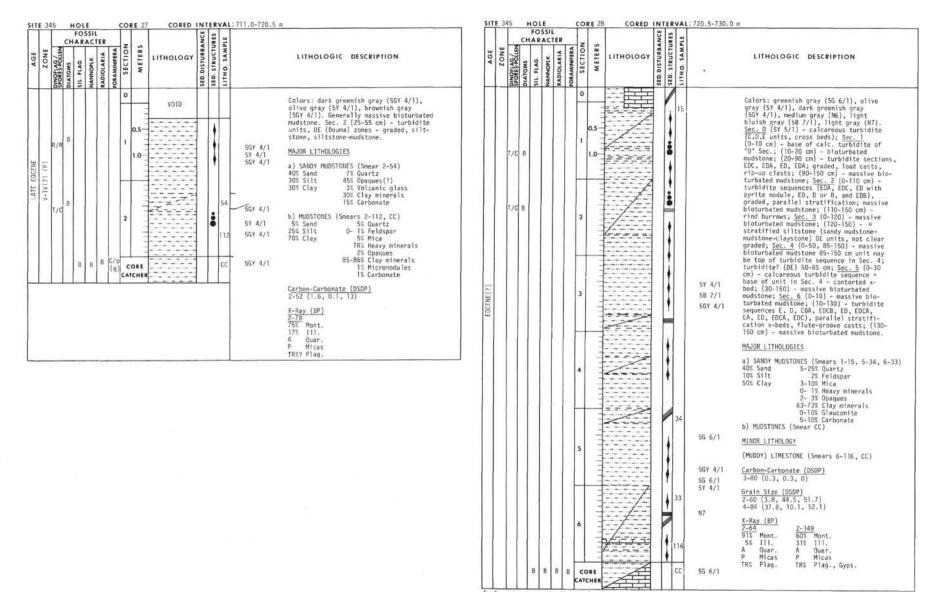
FOSSIL		ORI	: 16	cor	KED	INT	ERV	/AL: 331.0-340.5 m		345		FOS			ORE	1 101	LED I	w	TT	: 369.0-378.5	W
ZONE PIATOMS PIATOM	FORAMINIFERA	SECTION	METERS	LITHOLO	OGY	SED. DISTURBANCI	SED. STRUCTURES	LITHOLOGIC DESCRIPTION	AGE	ZONE DINOFLAG/	CH	ARA	RADIOLARIA	FORAMINIFERA	SECTION	LITHOLO	GY	SED. DISTURBANC	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
(4) (4) (4) (4)	-	1	5	VOID VOID	D		*	Colors: dark greenish gray (56Y 4/1), olive gray (5Y 5/1), yellowish gray (5Y 8/1), greenish gray (56 6/1), light olive gray (5Y 5/1), olive black (5Y 2/1), medium dark gray (N4), dark gray (N5), Fragments of mudstone in Sec. 1; variegated, bioturbated mudstone in Sec. 3; bioturbated (Sec. 4); bioturbated (Sec. 5) and volcanic ash(2) through Sec. 5; bioturbated (Kelminthoidea?) in 5GY 4/1 Sec. 6. MAJOR LITHOLOGY MUD (Smear 4-70, 5-66, CC) 2-55 Sand 9-15% Quartz 30-40% Silt 1-2% Feldspar 55-68% Clay 15 Mica 0-25% Volcanic ash(2) 60-26% Volcanic glass 0-1% Volcanic glass 0-1% Volcanic glass 0-1% Volcanic glass 0-1% Volcanic glass 0-1% Falagonite 5G 6/1, 64-35 (0.5, 0.0, 5) 5G 4/1 Carbon-Carbonate (DSDP) 4-40 (2.3, 46.3, 51.4) X-eq (BP) 4-40 (2.3, 46.3, 51.4) X-eq (BP) 4-40 (La, Calc.		B∕ (d) (2)111-A1	R	-18	BB	6/9	0 1 1.0 2 3 3				100 CC	5Y 5/1 5GY 4/1 = 10YR 8/6 5GY 4/1	Colors: olive gray (5Y 5/1), greenish gray (5GY 4/1), pale yellowish orange (10YR 8/6). Some intense deformation. Calcarous concretions Sec. 1; pyrite nodule, Sec. 2; bioturbated zone in Sec. 3. MAJOR LITHOLOGY MUD (Smears 2-100, CC) 1-5% Sand 7-18% Quartz 30-40% Silt 0-1% Feldspar 55-69% Clay 0-8% Heavy minerals (including Mica) 0-2% Opaques TR% Volcanic glass 73-90% Clay minerals R% Volcanic glass 73-90% Clay minerals TR% Palagonite TR% Palagonite TR% Zeolites Carbon-Carbonate (DSDP) 3-65 (0.7, 0.4, 3) Carbon-Carbonate (PP) 17-3 (hottom) (0.23, 0.04) Grain Size (DSDP) 3-79 (1.1, 41.5, 57.4) X-Ray (BP) 3-74 Gast Mont. 16% Ill. 8% Kaol. 6% Chio. A Quar. TR% Plag. P Micas
			-				1	66	SITE	345	н	OLE			ORE	8 00	ED I	NTER	VAL	:407.0-416.5 m	
		2	curi curire				+	Na	П	T	сн	FOS			SECTION METERS	1	GY	SED. DISTURBANCE SED. STRUCTURES	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
8 8 E		6 COT		V01D			1	5Y 4/1. 5Y 5/1 N4 to 5Y 4/1 N4 N3	OCENE	Torrilina alsatica		в		C/p	0 0.5 1 1.0 CORE CATCH	VOID			140 CC	5GY 4/1	Color: dark greenish gray (56Y 4/1). MAJOR LITHOLOGY MUD (Smear CC) 7% Sand 30% Silt 2% Feldspar 63% Clay 2% Mica TR% Heavy minerals 2% Opaques 3% Volcanic glass 66% Clay minerals 15% Authigenic carbonate (dolomite?) TR% Sponge spicules
																					MINOR LITHOLOGY

ALTERED ASH (Smear 1-140) 100% Clay 100% Altered ash

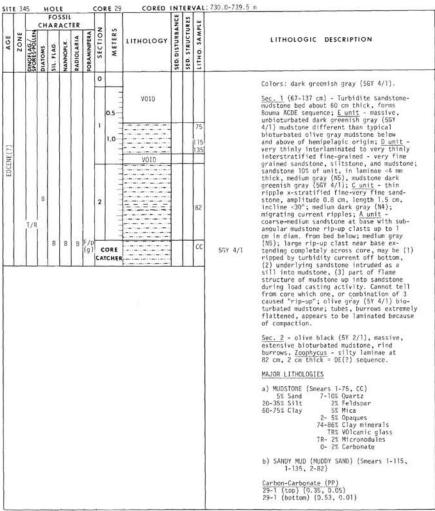
METERS	LITHOLOGY	SED. DISTURBANCE	SED. STRUCTURES	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
1111	V010					Colors: dark greenish gray (5GY 4/1), brownish gray (5YR 4/1), yellow gray (5Y 6/1). Carbonate concretion Sec. 3 (105 cm).
0.5						MAJOR LITHOLOGY
1.0					5Y 6/1 5GY 4/1 5YR 4/1	MUD-MUDSTONE (Smear CC) 2- 5% Sand 7% Quartz 30-40% Silt 2% Feldspar 10% Mica 1% Heavy minerals 5% Devitrified glass TR% Glauconite 5% Carbonate 65% Clay minerals
7						MINOR LITHOLOGIES
141 6	IN SAMPLE		-	130	5GY 4/1 5GY 4/1	a) CARBONATE CONCRETION (Smear 3-105) 10% Silt 5% Quartz 90% Clay 95% Authigenic carbonate
A STATISTICS	Ð			105	5GY 4/1 5YR 4/1	b) YOLCANIC ASH (Smear 2-130) 1% Sand TR% Quartz 2% Silt 3% Feldspar 97% Clay 97% Devitrified ash(?) <u>Carbon-Carbonate (DSDP)</u> 3-20 (0.4, 0.3, 0) Caris (DSDP)
DRE				сс		Grain Size (DSDP) 3-70 (2.4, 43.8, 53.7)
CHER						<u>X-Ray</u> <u>3-14</u> 593 Mont. 265 Kaol. 7% Chio. A Quar. P Micas. Plag.

	t	N	è	
	٠	۲	2	
	÷	2	1	L
	2	2	1	۰
- 1	-	т	٩	

	FOSSIL			а.			5	12	1					SSIL					01	<u>سا</u>		
ZONE ZONE SPORES-POLLEN DIATOMS SIL FLAG	SIL FLAG	RADIOLARIA	FORAMINIFERA	NOUSS	MEIEKS	LITHOLOGY	SED. DISTURBAN	SED. STRUCTUR	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	DINOFLAG/LEN	SIL. FLAG.	NANNOPLK.	FORAMINIFERA	SECTION	METERS	LITHOLOGY	SED. DISTURBANCE	SED. STRUCTURES	LITHOLOGI	C DESCRIPTION
50 11111(3) (b)			2 3 4 5			V010		1	126 138 145 54 70 75 18	Colors: dark greenish gray (56Y 4/1), light olive gray (55 5/1), brownish gray (57R 4/1), very dusky purple (59 2/2). Sec. 1 - drill blocks lithified mudstone, limestone, burrowed; Sec. 2 - basic section is mudstone, costensive biotur- bation (composite, halo, Zoophycus) all subborizontal burrows; (507 5Cm) - turbidite bed, Bouma ADE (possibly A=E); Sec. 3 - mudstone as per Sec. 2 - with extensive burrows; (1) Scolithus - white, calcareous (0.1-0.5 mm); (2) inclined to subborizontal, dark filled - Zoophycus; (3); (3) compressed ellipsoidal (1-5 mm), (4) Helmintholda; (5) rind burrows; Sec. 4 -massive mudstone, Zoophycus, possibly re- burrowed; Sec. 5 - Massive mudstone, worm tubes; Sec. 6 - Massive mudstone, incompare (10-20 cm) - thin - very thinly interstrat- ified (20-30 cm) - massive siltstone with fault?, (30-150 cm) - bioturbated mudstone, irregular burrows; Teintichnus burrows; Teintifical currows; Teintichnus burrows; Teintifical currows; Teintichnus burrows; Teintifical currows; Teintichnus burrows; Carbon-Carbonate (DSDP) 3-8 (0.4, 0.3, 0) CHER LITHOLOGY A-20 (Secar 2-70) VOLGAIL CSH (Smear 2-70) VOLGAIL CSH (Smear 4-71) Carbon-Carbonate (DSDP) 3-3 (1.6, 43.9, 54.5) X-Ray (BP) 3-6 7-50 (Massi Micas TRE Plag.	LATE EOCEN V-1V(2) (C/C.	в	8 8	(c/p)	1 2 3 4 5 COIC	.0.			108	Colors: dark (olive black ((10YR 6/2), w medium gray (abundant burro mudstone, irre 5GY 4/1 mudstone biotur icant brown-or turbated mudst at 130-150 cm sand/silt muds MAJOR LITHOLOG	NES (Smears 3-129, CC) 203 Quartz 107 Feldspar 25% Mica 45% Clay minerals IES Smear 1-108)


SITE 345 HO	LE	c	ORE	23	CORED	INT	ERV	AL: 597	97.0-606.5 m	SI	E 34	5	HOL			COR	RE 24	CORED	INTE	RVA	AL: 635.D-644.5 m	
FC	OSSIL		Т			SCE	ES	-				c	HAP	ACTE	R				NCE	-		
AGE ZONE SPORESPOCLEN DIATOMS	NANNOPLK RADIOLARIA	14	SECTION	METERS	LITHOLOGY	SED. DISTURBAN	SED. STRUCTUR	LITHO. SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	SPORES-POLLEN	SIL. FLAG.	NANNOPLK.	FORAMINIFERA	SECTION	METERS	LITHOLOGY	SED. DISTURBANCE	SED. STRUCTURES		LITHOLOGIC DESCRIPTION
LATE EOCENE (?) LATE EOCENE (?) V-111(?) (P) P P P P P P P P P P P P P	2011 2011 2010 2010		0 1 1 2 3 4 5 6		ORG. GEOCHEP			24	Colors: dark greenish gray (55Y 4/1), olive black (5Y 2/1), high olive gray (SY 5/1), wellowish gray (5Y 8/1), med- ium gray (N5). Massive mudstone with extensive bioturbation throughout, un- conf. at 2-7 - rip-up clasts. MAJOR LITHOLOGY MUDSTONE (Smear CC) 100 Sand 30% Quartz 30% Silt 2% Feldspar 60% Clay 8% Heavy minerals 60% Clay 8% Heavy minerals 00% Clay 8% Heavy minerals 60% Clay 8% Heavy minerals 01% Clay 10% Feldspar 60% Clay 20% Quartz 20% Sand 20% Quartz 20% Silt 10% Feldspar 60% Clay 20% Opaques 50% 2/1 30% Silt 35-50% Quartz 20% Sand 3-5% Quartz 50% 2/1 30% Silt 35-50% Feldspar 50% 2/1 20% Clay 30% Feldspar 50% Clay 30% Silt 35-60% 50% Clay 30% Silt 35-7% Quartz 30% S	LATE EDCENE(?)	((3) (b)	27 B		NA I I I I I I I I I I I I I I I I I I I	RA	1	0.5				5GY 4/1 C 5Y 2/1	Colors: dark greenish gray (56Y 4/1), blive black (5Y 2/1), grayish orange [10W 7/4), yellow brown [10W 5/4]. Color graded zone (25-30 cm, 5ec. 2) with pale green. gray black, green shades (also at 100-110). Extensive bloturbation, halo burrows. A&E sequence in "0" Section, Sec. 1 - 30 cm, 120 cm; BE - Sec. 2 (25-30, 95-105 cm); DE - (75-80 cm), in Sec. 3 and 125-130 in Sec. 3. ALOR LITHOLOGIES 1) MUDSTONE b) SANUY MUDSTONE/MUDSTONE (Smear CC) 10-30: Sand 1- 22 Quartz 40. Silt 152 FeldSpar 30-50: Clay 2 - 35 Mica 1- 23 Heavy minerals 2- 35 Opaques 75% Clay minerals 1% Glauconite Arbon-Carbonate (DSDP) 1-123 (0.4, 0.3, 1) -Ray (BP) -124 6% Mont. 8% 111. Quar. Micas R% Plag.
В	BBB	C/p (g)	COR			-			56Y 4/1				B		B C/p (g)		RE			cc	5GY 4/1	

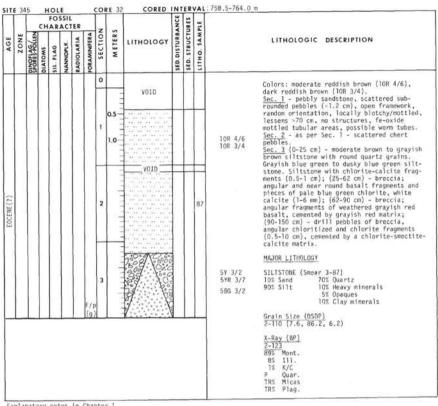
SITE 345


477

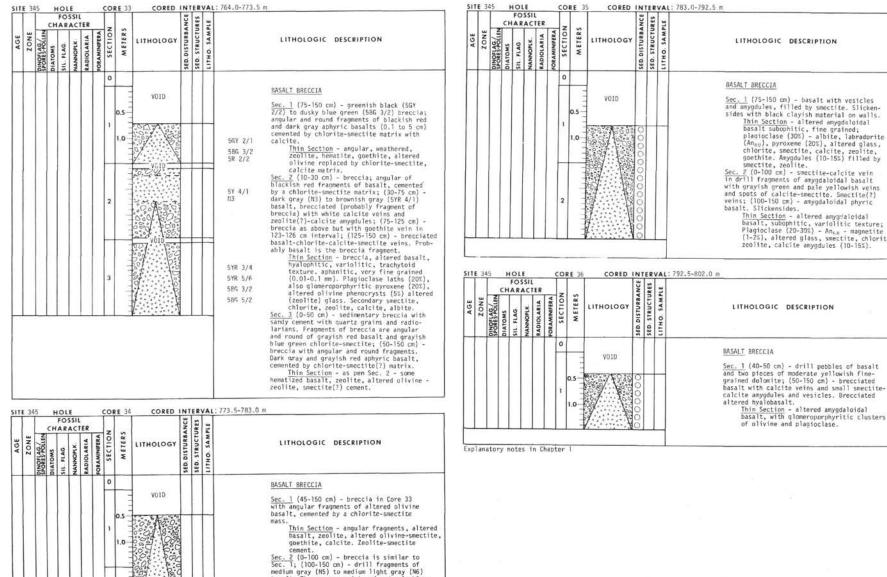
FOSS	SIL		FOSSIL	5 2	
ZONE PINOFEAG(IEN DIATOMS SIL FLAG	MANNOFLK: CALENCIAL ALL SECTION METERS SECTION METERS SED DISTURBANCE SED DISTURBANCE SED STRUCTURES	LITHOLOGIC DESCRIPTION	AGE SPOREHAG(LEN SPOREHAG(LEN SPOREHAG(LEN SPOREHAG(LEN ADDIOLARIA RADIOLINI RADIO	METERS METERS ABOTOHLIT SED. DISTURANUCE SED. STAUCTURES LLITHO. SAMPLE	LITHOLOGIC DESCRIPTION
(d) (2)/1-/		Colors: greenish gray (5GY 6/1), dark greenish gray (5GY 4/1), olive black (5Y 2/1), light olive gray (5Y 5/1). Unconf. Sec. 3 (100 cm), Sec. 4 has thin laminations. MAJOR LITHOLOGY MUDSTONE MINOR LITHOLOGY LIMESTONE (Snear CC) 403 Clay 0-1% Feldspar 0-1% Mica Carbon-Carbonate (DSDP) 2-58 (0.7, 0.4, 2) X-Ray (BP) 2-42 35% Mont. 28% III. 1% Kaol. 18% Chio. A Quar. P Micas TR# Plag. 56Y 4/1 5Y 2/1	о 1 1 1 1 1 1 1 1 1 1 1 1 1	VOID 20 10 10 10 10 10 10 10 10 10 1	Colors: dark greenish gray (5GY 4/1), olive black (5Y 2/1), greenish gray (5G 6/1). Massive mudstone with extensis bioturbation. Some scattered laminae/ graded laminae (Sec. 1, 87-150); calcar- eous units (Sec. 3, 13-130 cm); Sec. 4 - rip-up, distorted beds, siderite(?) concretion, finely laminate beds (color laminations); Sec. 5 - fine laminations at 102-150 cm, Turbidites: Sec. 2 - DE (70-75 cm), DE (90-110 cm); Sec. 3 - J Bouma A-f, flutes, load casts, SS at base, (0-30 cm) - composite at 30-120 cm - DE sequence graded; DE (120-130 cm); Sec. 4 - DE (15-25 cm), BCDE (55- 57 2/1 70 cm). MAJOR LITHOLOGIES 5G 6/1 a) MUDSTONES b) SANDY MUDSTONES (Smears 4-22, CC) 10-25% Sand 10-20% Quartz 35% Sit 2% Feldspar 40-55% Clay 10% Mica (Chlorite?) 1-2% Orgaques - 35% Glass (Volcanic) 64-70% Clay minerals TR% Glauconite 5GY 4/1 MUDOY LIMESTONE (Smear 3-20) 5-15% Sand 5-10% Quartz 5-25% Sit 1% Feldspar 60-90% Clay 0-1% Mica 5DG 7/2 0-1% Meavy minerals 30-47% Clay minerals 30-47% Clay minerals 556 7/2 26-4 (top) (0.22, 0.02) X-Ray (BP) 3-57 83% Mont. 16% I11. TR% Quar. TR% Micas
		5G 6/1			

478

479



.

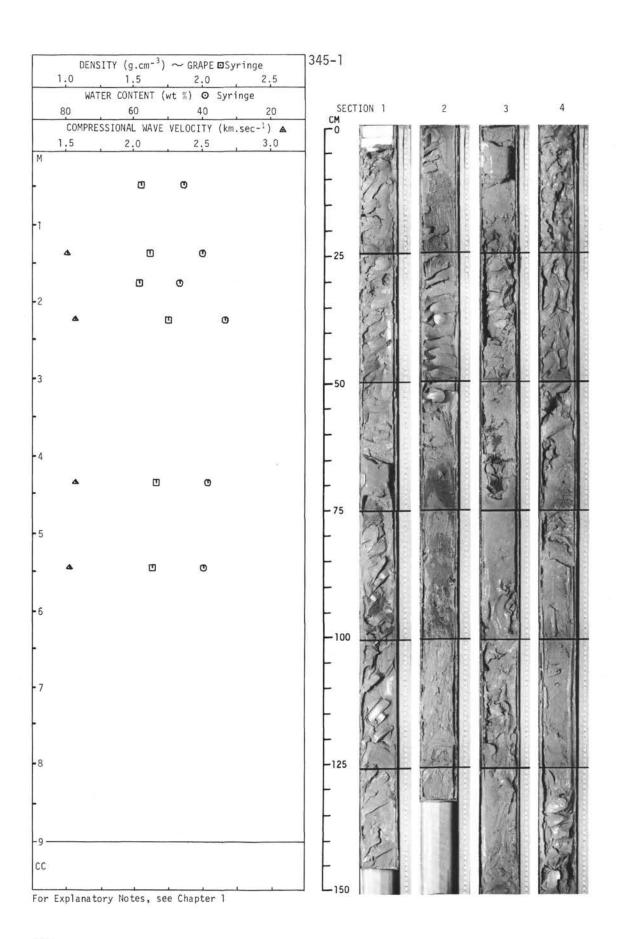

Explanatory notes in Chapter 1

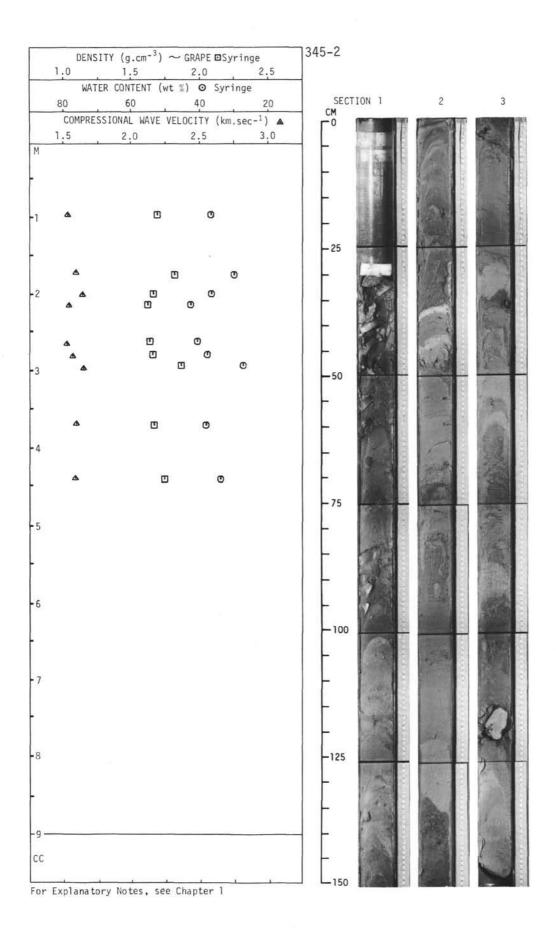
SITE 345	HOLE		c	ORE	30	CORED	INTER	VAL	739.5-749.0	n
AGE ZONE PONELAG(LEN				SECTION	METERS	LITHOLOGY	SED. DISTURBANCE SED. STRUCTURES	LITHO. SAMPLE		LITHOLOGIC DESCRIPTION
R/C	8			0 1 1.0	and the property of the second se	V01D		88	56Y 4/1 5Y 2/1	Colors: brownish gray (SYR 4/1), dark greenish gray (SGY 4/1), olive black (SY 2/1). Sec. 1 (50-110, 125-150 cm) - massive mudstome, extensive bioturbation. Subhorizontal burrows, some pyrite-filled, no bioturbation (125-150 cm); 110-150 cm) = turbidite sequence, sandstome mudstome unconformable basal contact, upward grading. Sec. 2 (0-25 cm) - lower part of graded turbidite; upper part in base of 30-1 (mudstome-claystome); basal massive fine-medium sandstome 2 cm thick, medium gray (NG) overlying / laminated (very thin, <0.1 mm) very fine-sine sandstome, 7 cm thick, medium davk gray (N4) overlying massive, unbioturbated, possibly some small cross beas (amp 0.4 cm) grading up into very fine ss, siltstome, mudstome, olive black (SY 2/1); (25-33 cm) graded turbidite unit; upper 7 cm massive mudstome-claystome, E unit; (32-73 cm) parallel stratified, very fine, fine, medium, and locally coarse- grained sandstome; above 50 cm, abundant thin mudstome-claystome laminae (1.0 cm thick; finer grain sizes in upper part of unit; large burrows or possibly dikes (irregular shape) at 60-62 cm filled with medium-grained sandstome; DBA units; (73-78 cm) basal unit of irregularly len-shaped fine-medium grained sandstome in mudstome; either bioturbated, brecciated, or depositional gradational with burrows or load casts; (78-100 cm) - large, thick, turbidite-grain flow(?) deposit extending downward into 30-3; (1) upper 20 cm thinly to very thinly laminated mudstome-claystome with moderate yellowish brown (10YR 5/4) and pale yellowish brown (siderlike or rohocknosite?-bearing & laminated unit from 85-92 cm; 0 unit; (100-150 cm) without on-150 cm, mixed up, disrupted unit that may be a composite turbidite, containing abundant claystome and mudstome, rip-up clasts and possibly lenses of mudstome fine to coarse- grained sandstome mutic, is rip-up clasts locally deformed, contorted; clastic pebbles of quartz also scattered, A and C unit; lower 15 cm probably x-stratified amplitudes up to 5 cm. Sec. 4 (0-15 cm) - oflive
R/C				5				63 65 113 41 70	5Y 3/2	Sec. 5 (0-20 cm) - fine pebbly mudstone, rounded quartz, lithic, and feldspar(?) clasts <3 mm massive, no stratification, no visible burrows or sed structures; base unconformable and channeled into underlying mudstone; generally fining upward; (20-25 cm) - graded parallel-laminated Bouma DE sequence, olive gray (5Y 4/1) fine grained ss, irregularly 11 aninated, grading up into more irregularly parallel bratified massive olive black (5Y 2/1). mudstone- claystone, E.D unit; (25-33 cm) - parallel-laminated very fine-grained sandstone, well-sorted, no pebbles or larger sand grains, medium gray (MS), grades upward into very thinly irregular mudstone and claystone, olive black (5Y 2/1). E.O? unit; (33-63 cm) - massive, ungraded, pebbly and sandy mudstone with abundant <u>Scolithus</u> type tubes, possibly some arenaceous foraminifera; lithic pebbles up to 1.1 cm length, plus elongate white clasts. Brownish gray (5Y R 4/1) color generally, medium dark gray (MA) at base, which is very coarse grained, granule-sized, and very fine pebble-sized while arenaceous forams and/or fragments; (63-74 cm) - turbidite or pebbly mudstone unit similar to above, basal medium dark gray (N4) unit containing abundant fragments oriented parallel to one another, obviously clasts with massive ungraded pebbles with tubes and pebbles up to 1/2 cm in length; (74-130 cm) - massive epebbly mudstone, containing well-rounded clasts of quartz, lithic fragments, and possibly arenaceous forams; large lens-shaped burrows sub-parallel to bedding, <1 cm x -4 cm, flattened, lighter colored (light brownish gray, SYR 4/1) within brownish gray, SYR 4/1) to medium dark gray (M4) pebbly mudstone; very abundant tubes in <u>situ</u> in pebbly mudstone, one in place conspicuously at 80 cm; pebbles as long as 1.1 cm; no grading or stratification; (130-150 cm) light brown (SYR 7/6) and moderate brown (SYR 4/4) very lithified calcareous sandstone-siltstone; prominent cross-strata near top of unit worked by prominent moderate brown laminae; abundant shall vertical
	В	8 8		COR				cc	- 5¥R 4/1	MUDSTONE (Smears 1-88, 1-114) SANDY MUDSTONES (Smears 4-65, 4-113) Carbon-Carbonate (DSDP) 5-103 Sand 10-12% Quartz, Feldspar (MUDDY SANDS) 5-130 (5.2, 0.1, 43) 15-20% Silt 0-10% Mica 25-40% Sand 35-60% Quartz 5-130 (5.2, 0.1, 43) 70-80% Clay minerals 10-20% Silt 0-5% Feldspar Grain Size (DSDP) 70-80% Clay minerals 40-65% Clay 0-5% Feldspar Grain Size (DSDP) 70-80% Clay minerals 0-65% Clay 0-5% Feldspar Grain Size (DSDP) 70-80% Clay minerals 0-65% Clay 0-5% Feldspar 1-121 (23.8, 11.5, 64.7) 70-80% Clay minerals 0paques 23-50% Clay minerals 4-7 40% Sand 50% Quartz 23-50% Clay minerals 55% Mont. 10% Mud 40% Heavy minerals, 0paques 23-50% Clay minerals 20% I11. 10% Clay minerals MUDSTONEE (Smears 5-70, CC) 14% Choi. A Quar. A Quar. A Quar. A Quar. A Quar. A Quar. A Quar. A Quar. P Micas TR%7 Calc. 70< Hide S

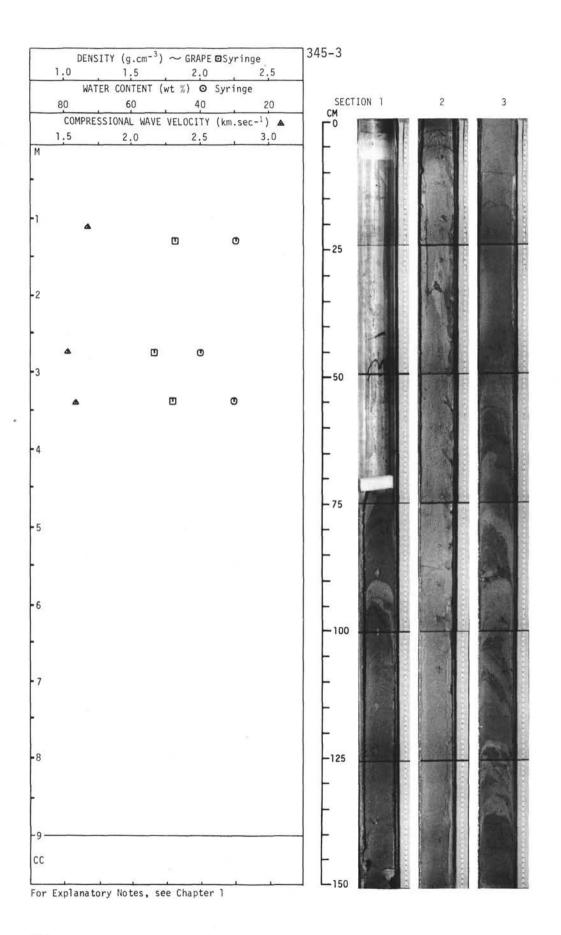
	Γ	T		- 3	FO	\$\$		R								749.0-758.5 m	
AGE	TONE	101	SPORES-POLLEN	DIATOMS	SIL FLAG	NANNOPLK.		RADIOLARIA	FORAMINIFERA	SECTION	METERS	LITHOLOGY	SED. DISTURBANCE	SED. STRUCTURES	LITHO SAMPLE	LITHOLOGIC DESCRIPTION	
EUCENE(\$)		B	1.42 1.72	0	<u>u</u>					0 1 2 3 4 6		VOID		~	44	Colors: grayish brown (5YR 3/7), brownish gray (5YR 3/1), medium gray (MS), medium brown (SYR 3/4), grayish brown (5YR 3/2), olive black (SY 2/1). Sec. 1 - sandy mulstone to muddy sandstones, massive, thinly interstratified, 31 cm thick, burrows abundant: Sec. 2 (0-45 cm) - massive, structureless, pebbly sandy mudstone, 1-2 cm N5 bands with gradational contacts. Pebbles & rounded; chert. Heavy minoral conglomerite at base; for the sandy mudstone, scattered chert, worm tubes-white chitinphosphatic? material, some claystone rip-up clasts - gradational at 100 cm to soft sandstone (3 cm) - sub- rounded. (105-15) cm) - pebbly, sandy mud- stone massive, structureless, coarsens up- ward with large round lithics (0.5 cm) - scattered chert (black) pebbles. Sec. 3 - massive, structureless, coarsens up- ward with large round lithics (0.5 cm) - scattered worm tubes, rare claystone clasts. Sec. 4 - as per Sec. 3 - sandy strata with biotite, heavy laminae; irregularly mottled - large burrowed areas; Sec. 5 - pebbly micaceous sandy mudstone, worthoclase, sandstone layers; Sec. 6 - as per Sec. 3 - sandy mudstone with sandstones = well sorted, quartzose, rounded subrounded chert pebbles (-1 cm) micaceous - pebbly at base - chert, quartzite granite; SNR 3/4 Gree catcher - massive, blotchy, pebbly medium grained ss. no structures, grayish red (10R SYR 4/1 Q2), medium red brown (10R 4/6), pale red 10 (10R 6/2) blotches. Lithuo.GillS SNR 9/4 3-31 (16.6, 25.7, 57.7) SYR 3/4 Gree scide/clay.) SYR 3/4 Great Size (DSDP) SYR 3/4 Z-Asy (BP) 3-44 Z-Asy (BP) 3-44 Z-Asy (BP) 3-45 Tile, 57 Tile, 57 Tile, 57 Tile, 57 Tile, 75	
					В	5	3	1	(g)	CAT	ORE				cc	10R 4/2 10R 4/6	

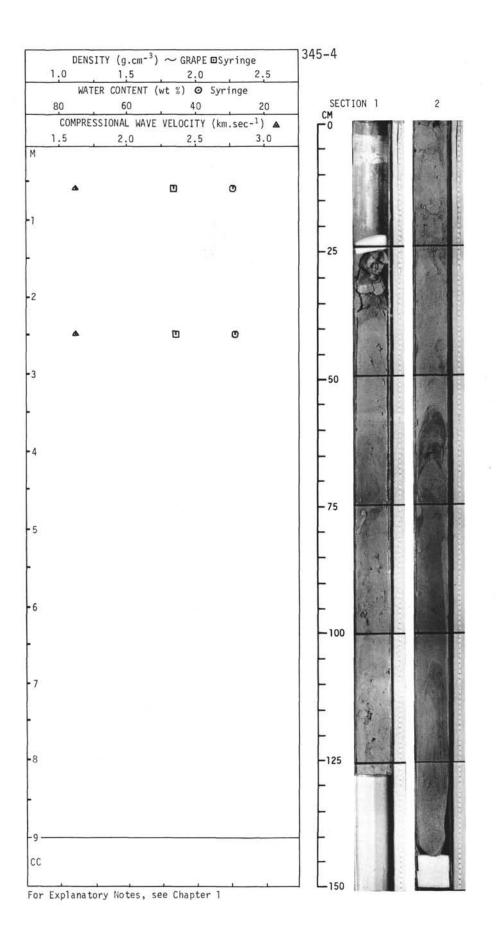
482

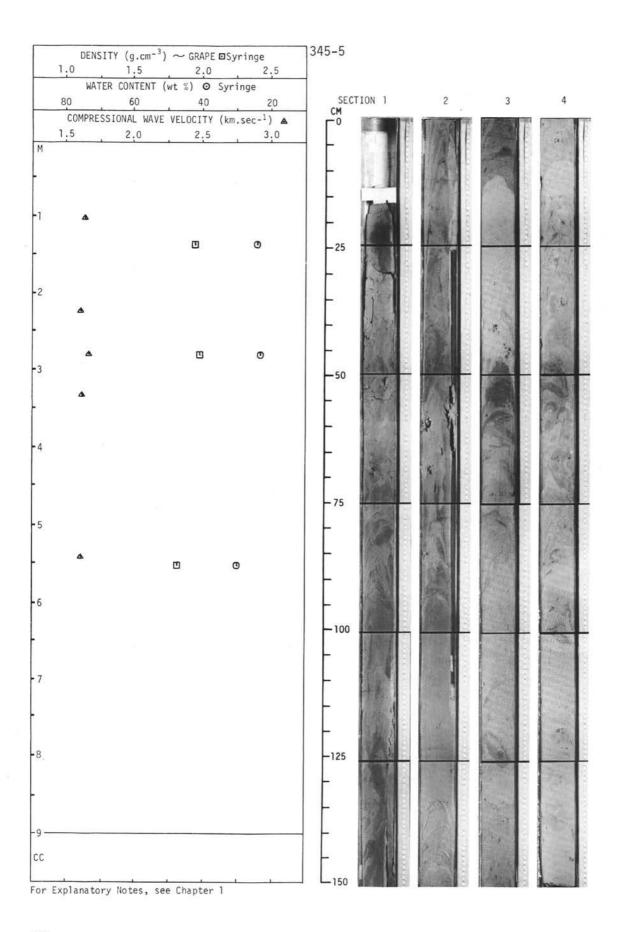
basalt. There are grayish red and pale blue green spots in basalt. <u>Thin Section</u> - breccia, angular weather-ed (altered) basalt, hematite basalt, zeolite, zeolite-smectite cement. Basalt hyalophitic, interstadial texture, chlorite, zeolite, smectite amygdules (3-5%), olivine (2%) replaced by smectite,

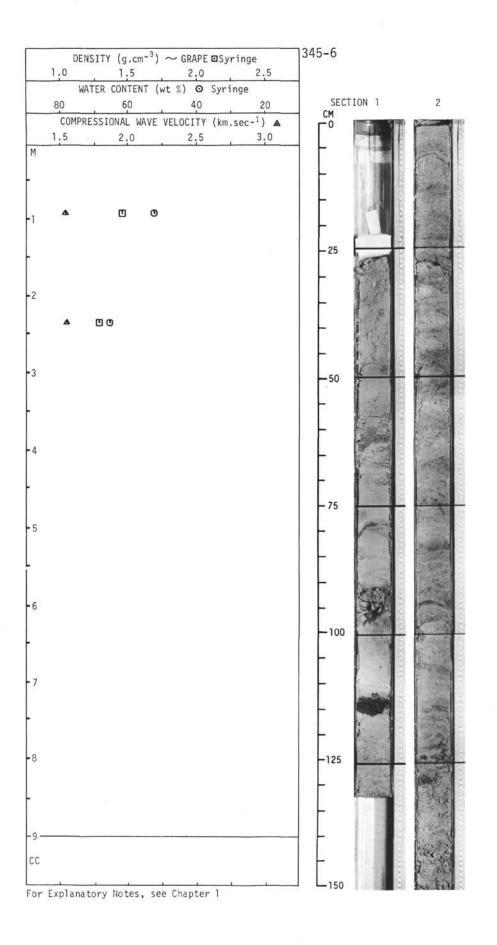

calcite-goethite, Plagioclase (20-30%).

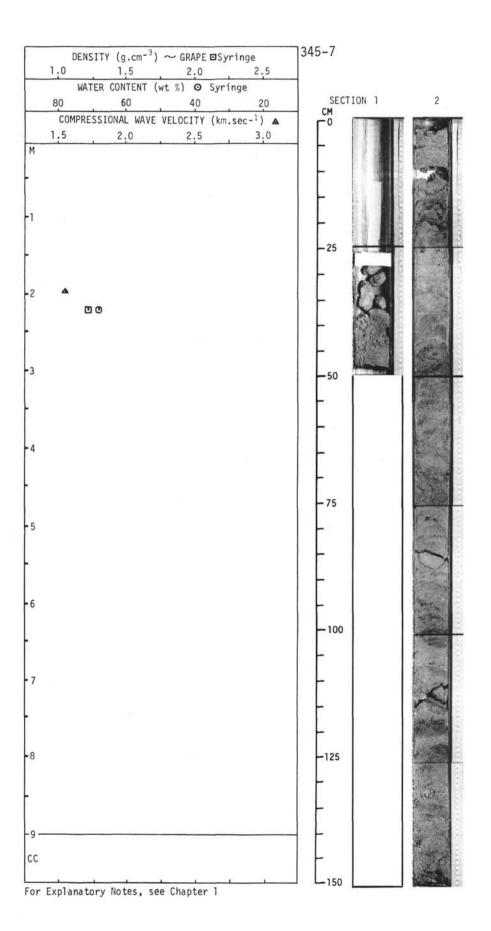

veins; (100-150 cm) - amygdaloidal phyric basalt. Slickensides. This Section - altered amygdalcidal basalt, subophitic, variolitic texture; Plagioclase (20-30%) - An_{kH} - magnetite (1-2%), altered glass, smectite, chlorite, zeolite, calcite amygdules (10-15%). LITHOLOGIC DESCRIPTION

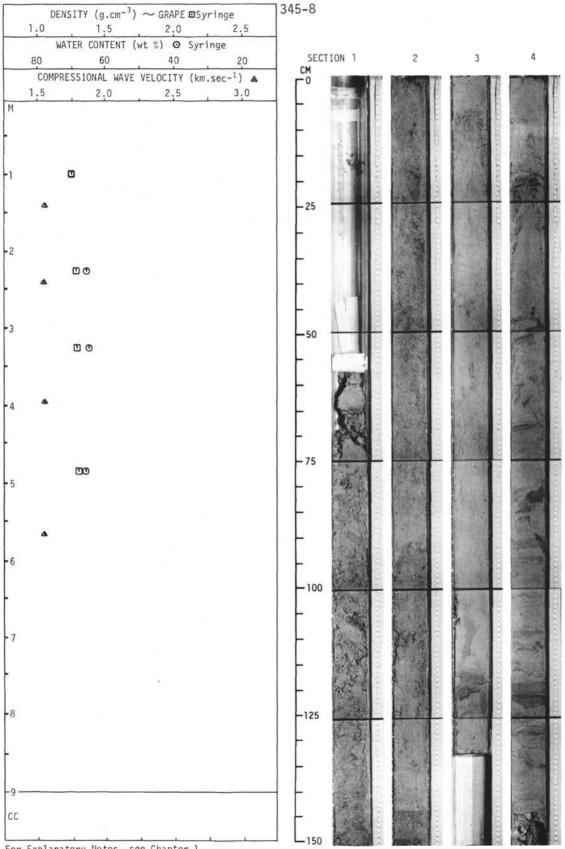

BASALT BRECCIA

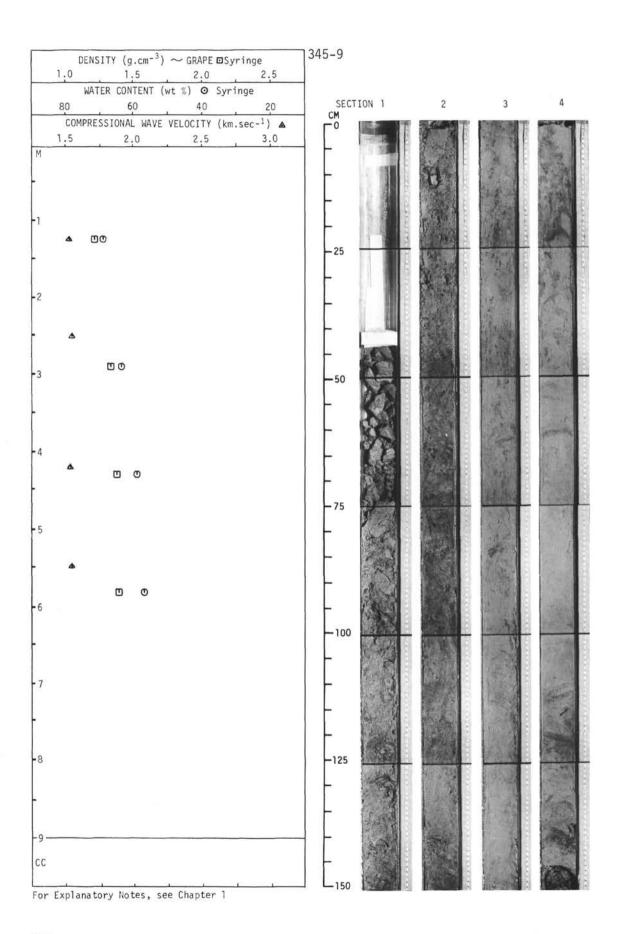

<u>Sec. 1</u> (40-50 cm) - drill pebbles of basalt and two pieces of moderate yellowish fine-grained dolomite; (50-150 cm) - brecciated basalt with calcife veins and small smectitecalcite amygdules and vesicles. Brecciated altered hyalobasalt.

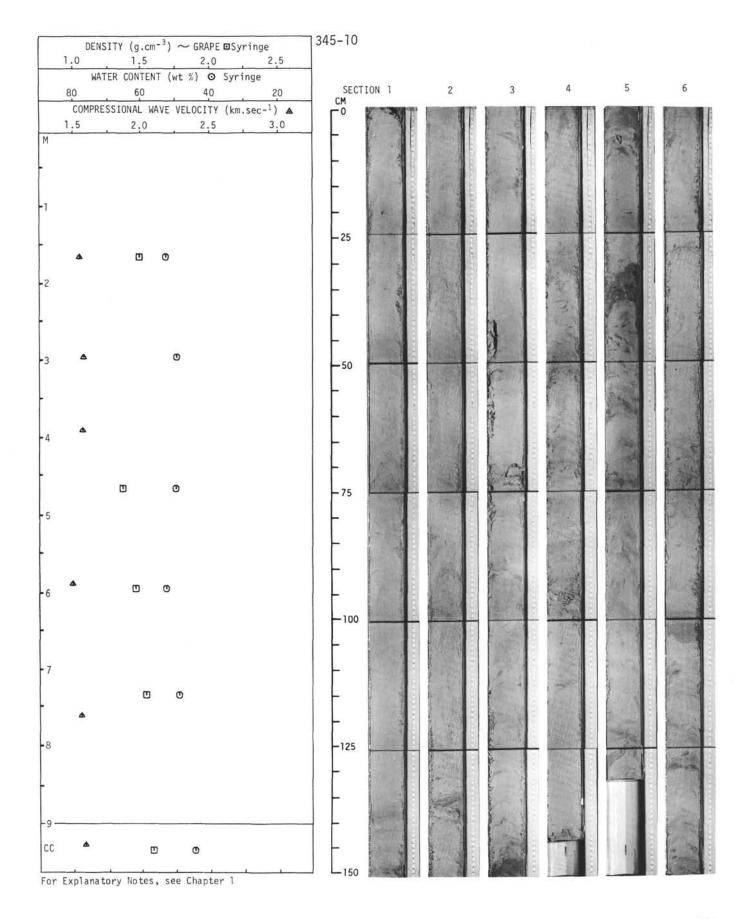

Thin Section - altered amygdaloidal basalt, with glomeroporphyritic clusters of plivine and plagioclase.

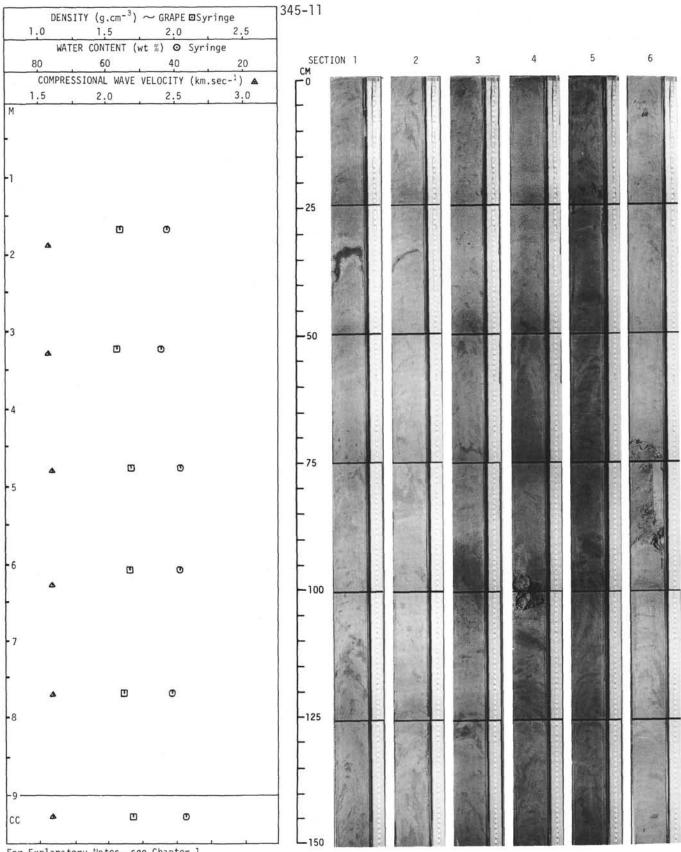


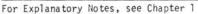


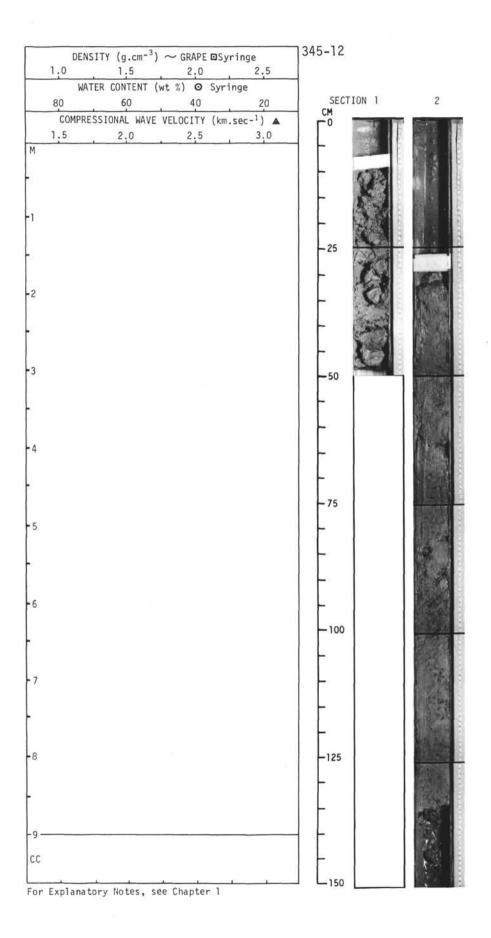


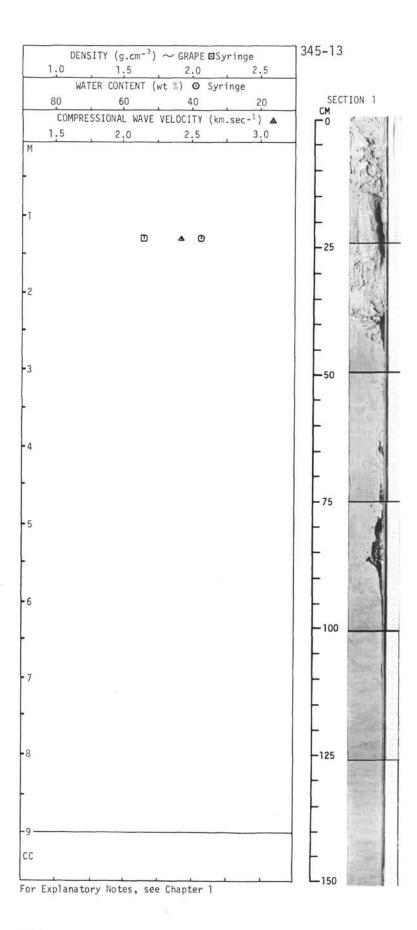


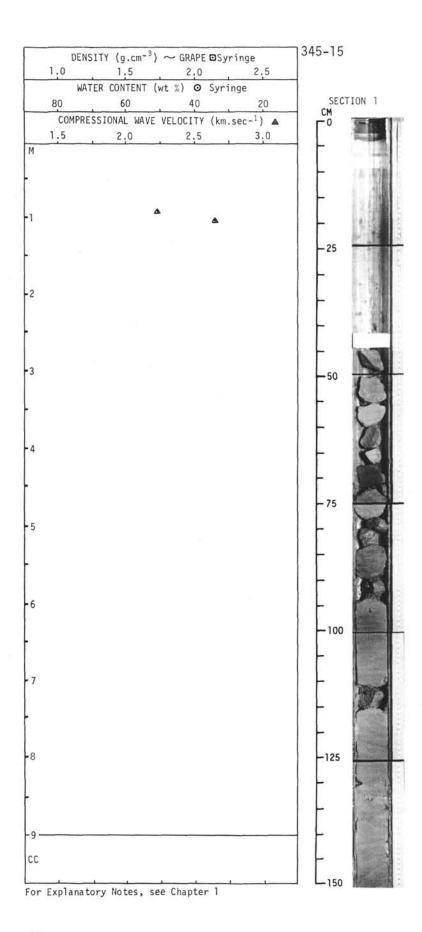


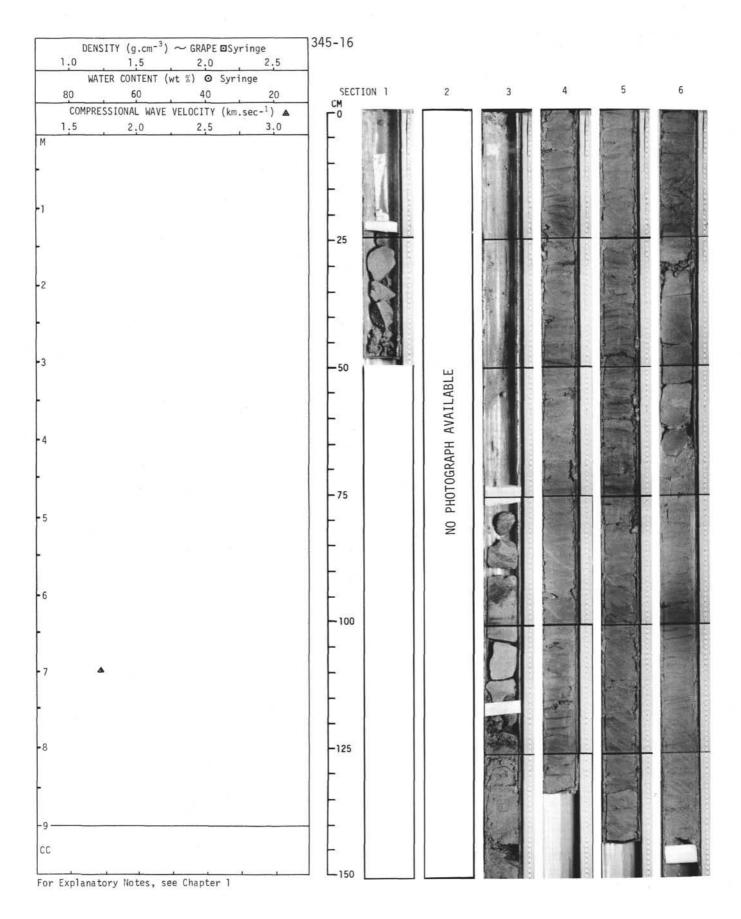


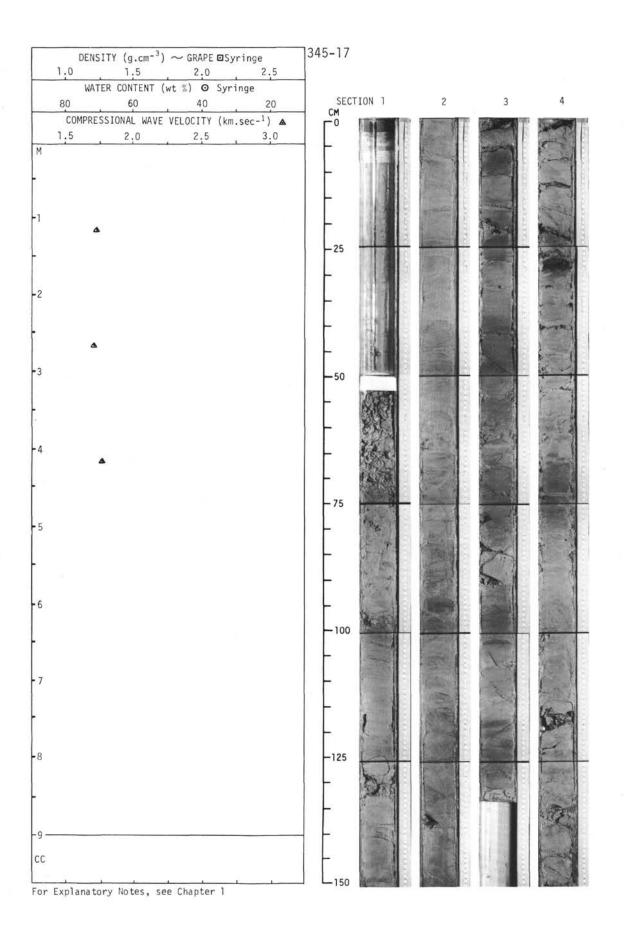


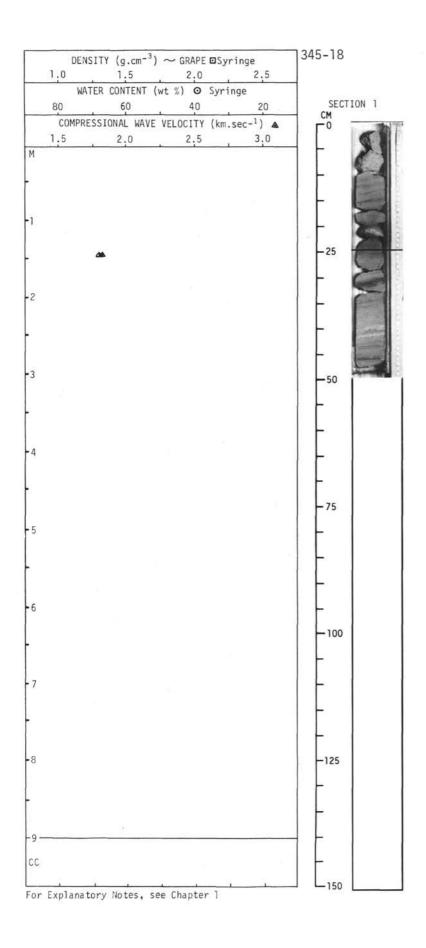

For Explanatory Notes, see Chapter 1

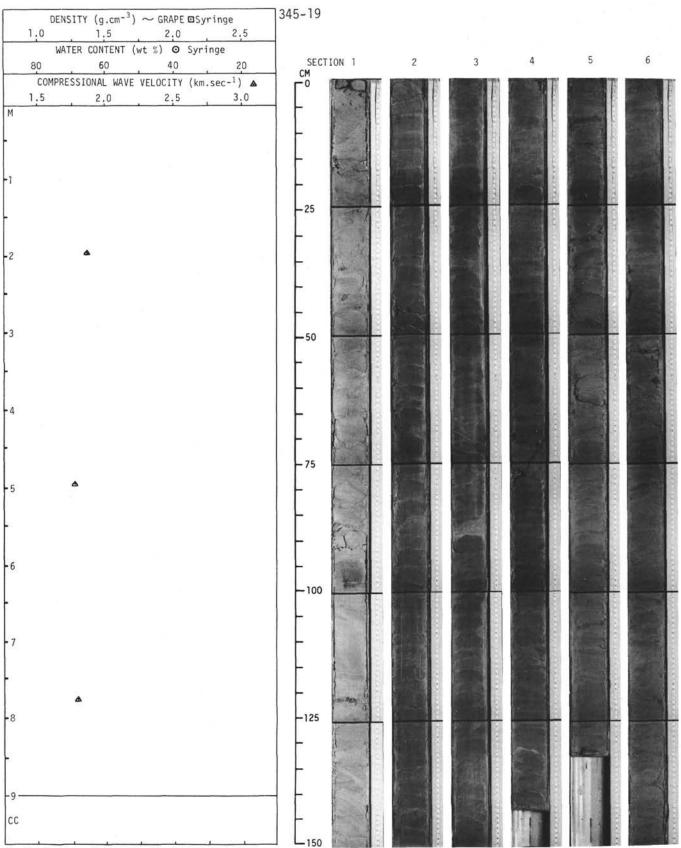


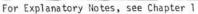


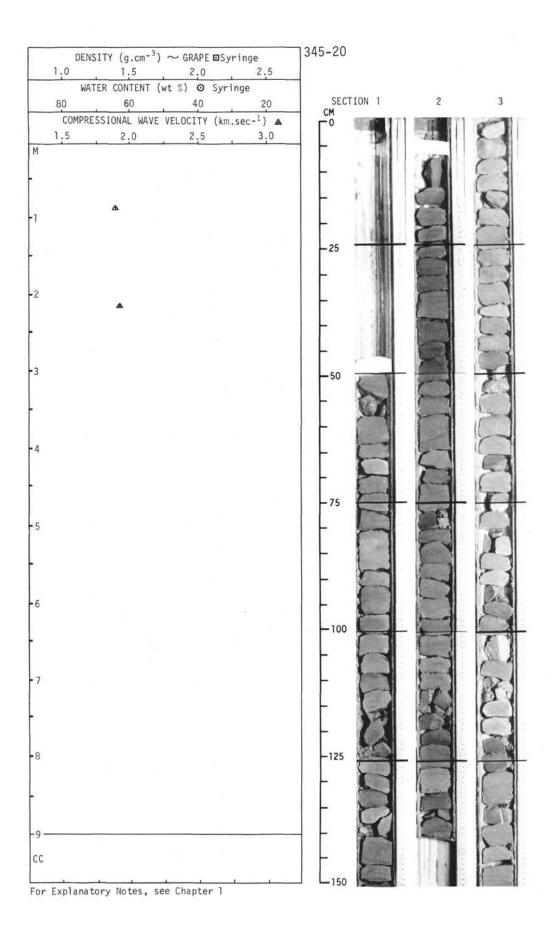


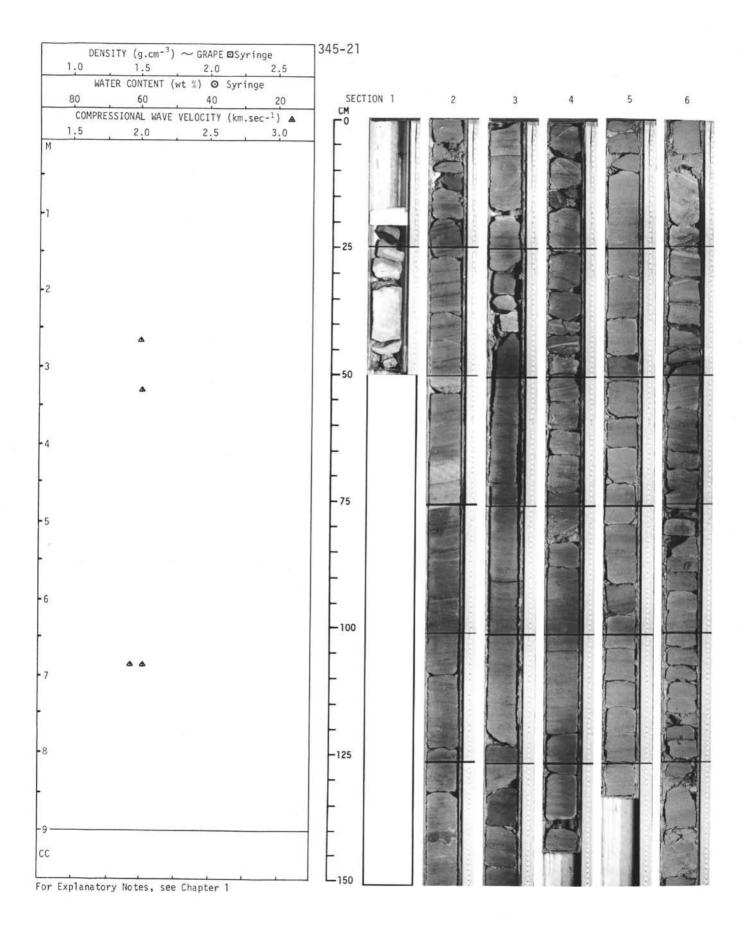


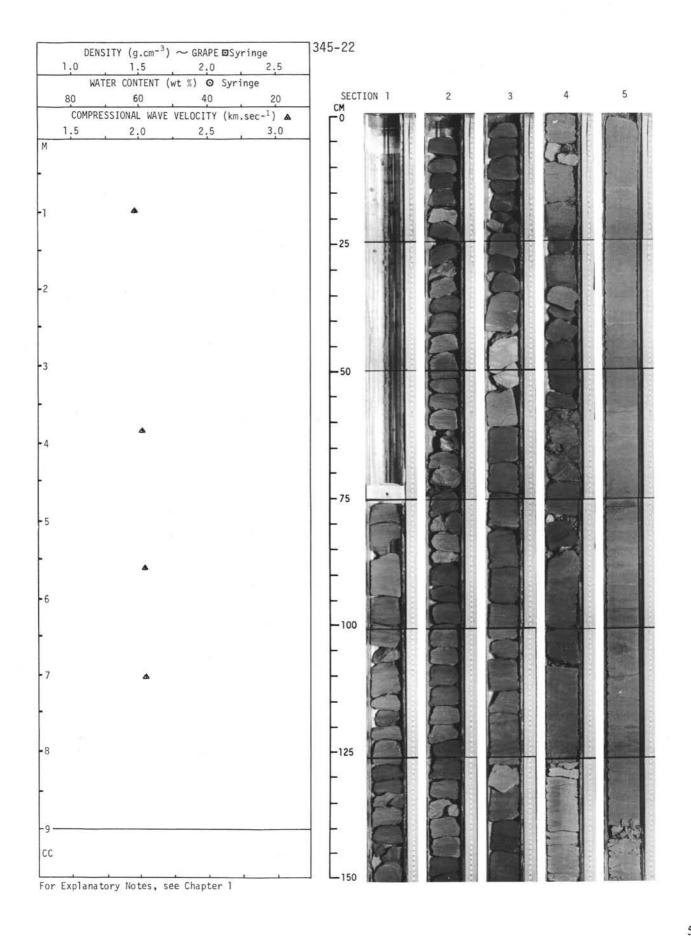


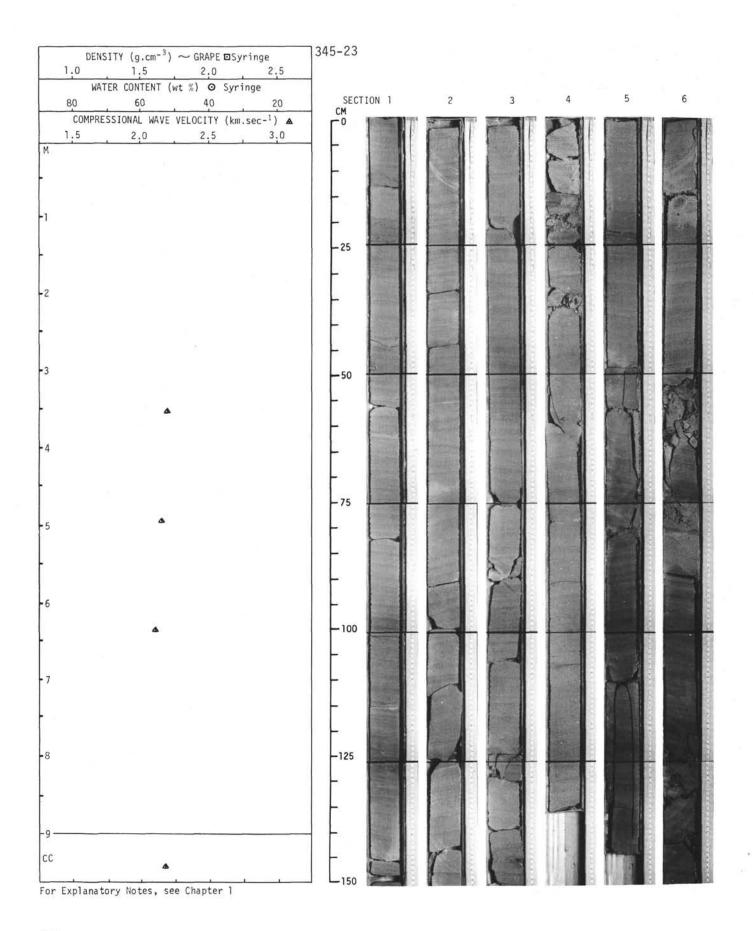

WATER CONTENT (wt %) ⊙ Syringe 80 60 40	20 SECTION	1 2	3	4	5
COMPRESSIONAL WAVE VELOCITY (km.sec	CM C ^{−1}) ▲ Γ ⁰		STATISTICS.	STATE AND	Distantian in the
1,5 2,0 2,5			200		
	N			(Same)	
			King al	2 and	144
				A state	Can I
				C. C. C. C.	
				5	
	-25		A CONTRACT OF	A Generation -	
			12 S.	St. all	
		the state	Long 1	K A	
				6200	
					1 States
			and the second s	(mail	
	-50			ADDRESS OF	
		1 2	12	2.1	1 and
			Supply 1	A second	
•				(this	1. Alt
	-		100	37	
				the second	
				L'al	8. W
	- 75			2.20	¢ . L. II.
	- 63			2	
			their and		
	and the second se			1 3 4	1978
	-	-		Teneral -	
	_		Service I		
			the second is		
	- 100		35.5	1 2 2 2	
				TO RE	1257
				1 Alexandre	A Car
				and the second s	TOP 1
			10.00	+ 47	1/2
	-		1-1	and and	1 Carl
	-125		1	AT THE	
	-125				11-155
		1	1		1 al
	-				
					12 ST
				Can E	
Explanatory Notes, see Chapter 1				12.00	

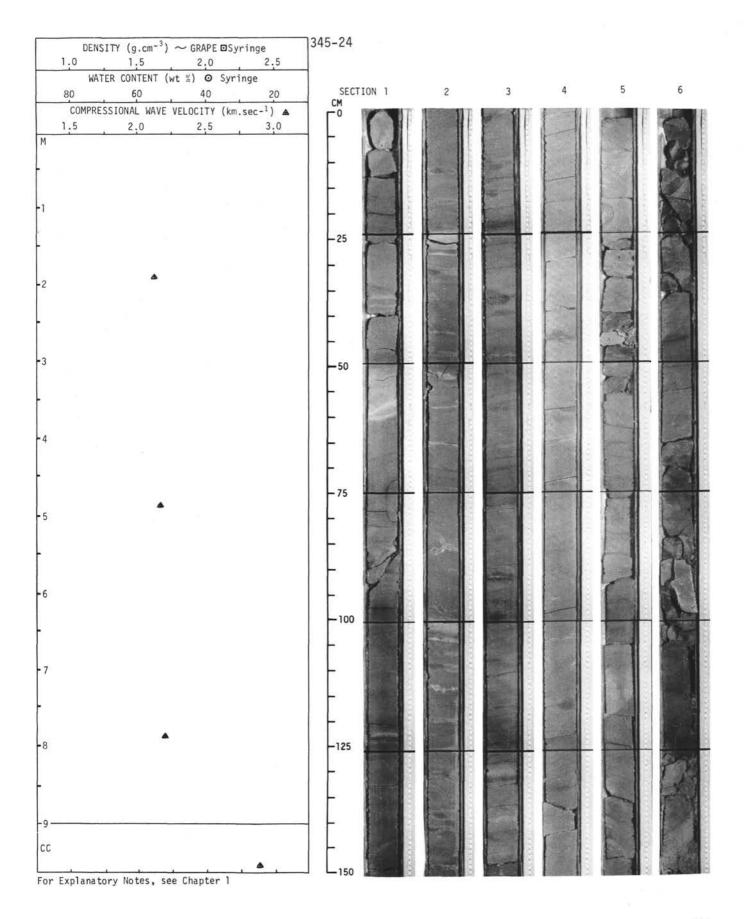


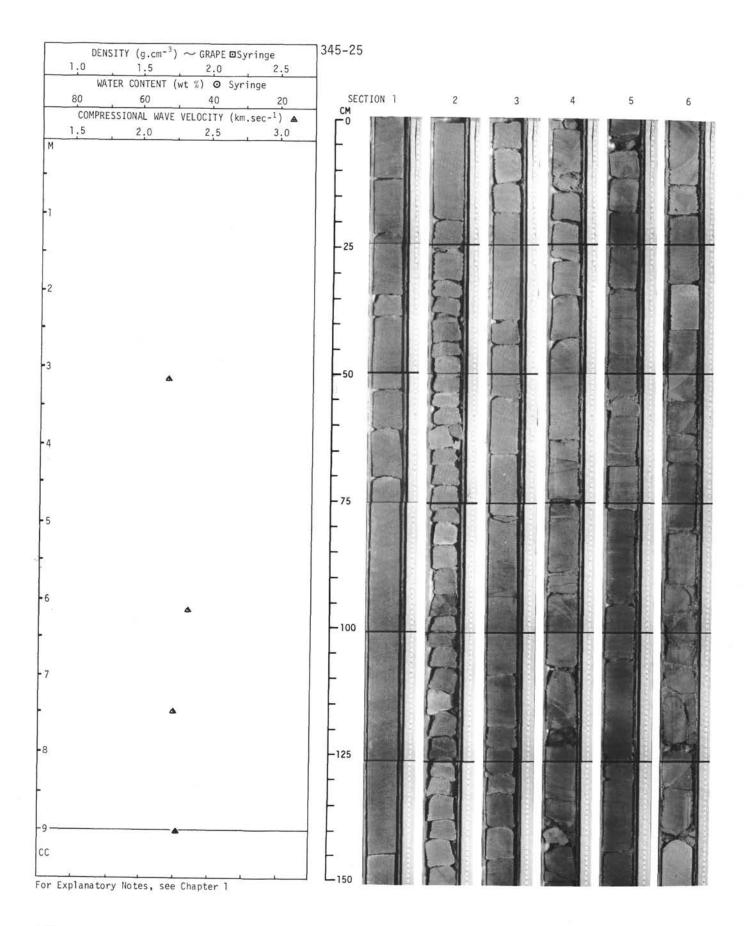


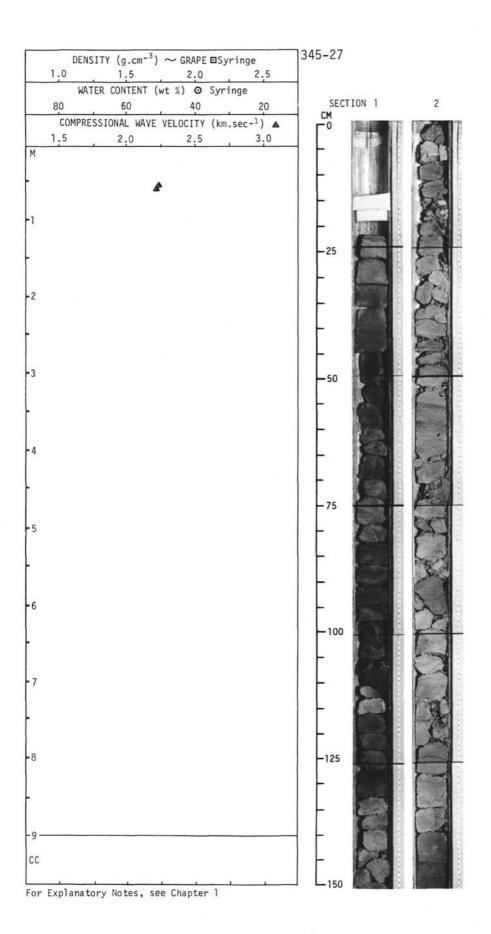


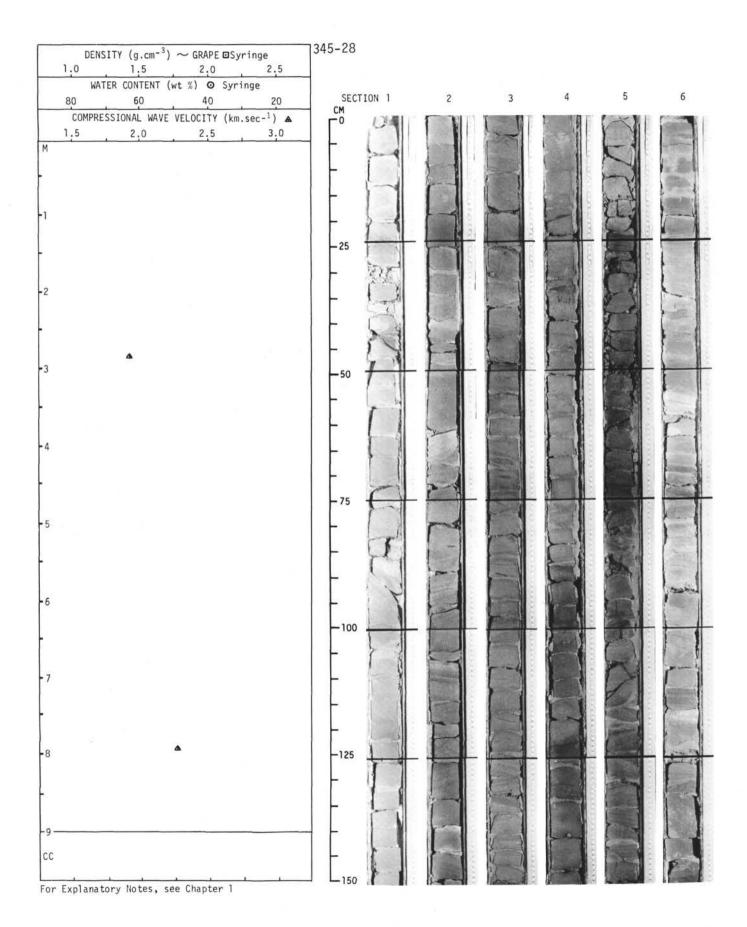


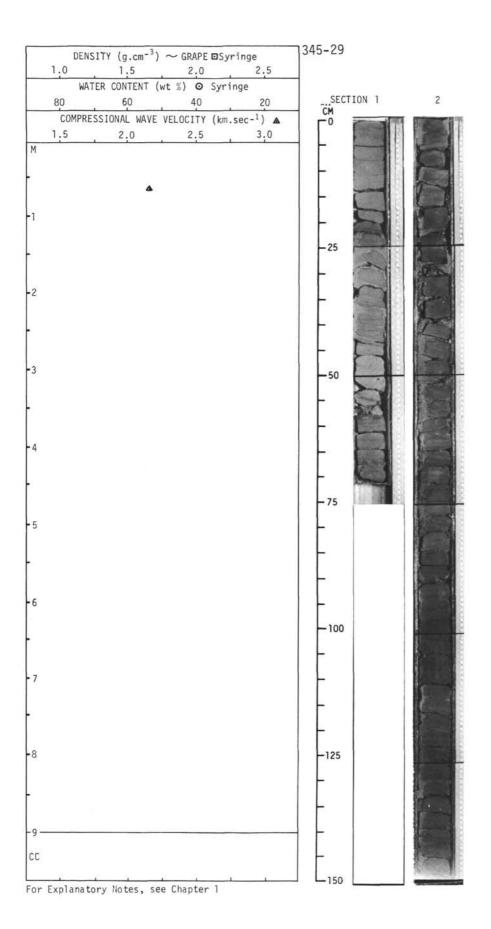


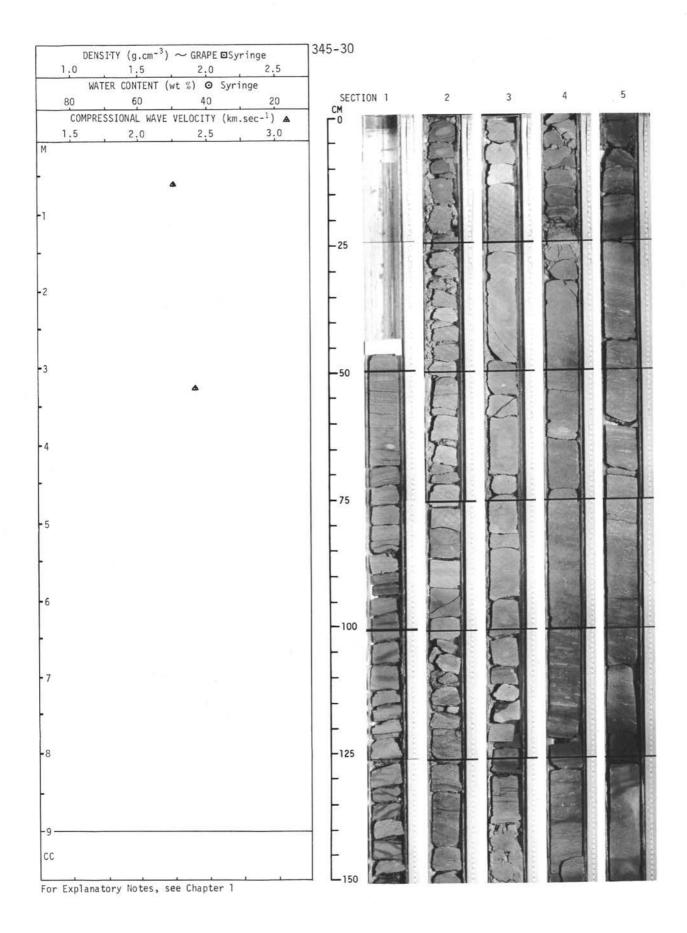


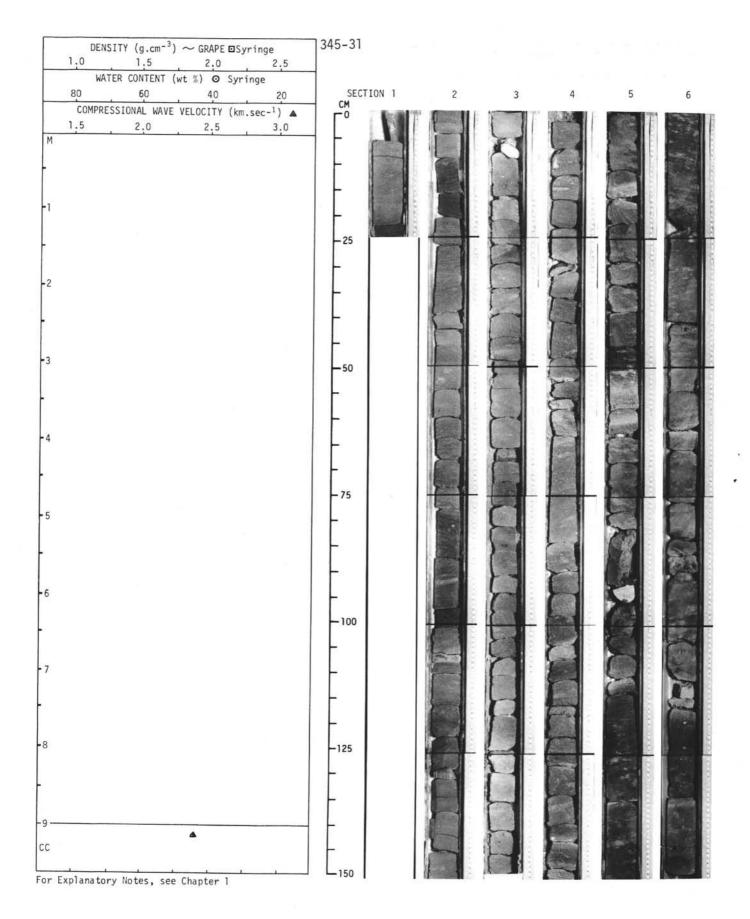











8	DENSITY (g.cm ⁻³) ~ GRAPE ⊡Syringe 1.0 1.5 2.0 2.5	345-26				
	WATER CONTENT (wt %) O Syringe	1				
	80 60 40 20	SECTION 1	2	3	4	5
	COMPRESSIONAL WAVE VELOCITY (km.sec-1) 🛦			ALC:	T	TA
	1,5 2,0 2,5 3,0	1200				1611
						Jan.
		- 1A 40		1		mel
		1.3			hand	1 4
			10.	13		-
				1 milli		
		-25				
		6		. 34.	1 - 1	1
		- "		1-1		2
		19.38	V			1800
				Contraction of the second		and the second
				19		5
	•				Sec.	
	-	-50	1000		6	
		- 1936		1 - 4		Î.
			En		1000	A Real
			1 (De 1	and the state		a second
ł					-	1000
						1
		- 75				ALC: NOT
5		11/12				1
		-			And the second s	8 - 60
		- 192	1 Second	Server and the	1- d	
				4		8
)		-				13
		-100			- 1	1000
				3		
		-	the start			
7		-		5	(and all :	
		100	Frend I	-7 12		1
		-			Par inte	
		-		and the second second	A State	5
						1
3		-125		Second I	1	1
		-		K - let	1	
				-		1 m
				and the second		-
) —			E State	a second	1 8	5
С			-	and the second second	11.2	120
•			1 A 1	There is		F
_	xplanatory Notes, see Chapter 1		1: 10-21:	and de la		

