13. PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG 38

W.I. Ridley, M.R. Perfit, and M-L. Adams, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York

INTRODUCTION

We have determined the bulk composition of basalt samples drilled during Leg 38. These data provide a basis for discussion of trace element abundances, Sr isotopic compositions, and mineral chemistry. Basaltic basement was collected at Sites 336, 337, 338, 342, 344, 345, 348, 350. Most of the basalts examined have textures that indicate rapid cooling, evidenced by the presence of glass and skeletal-shaped olivine and plagioclase grains. Samples from Site 336 are finegrained, subophitic basalts with microphenocrysts of plagioclase and olivine. Variolitic, amygdaloidal basalt occurs at Site 337 containing sparse phenocrysts of altered olivine. Basalt at Site 338 is uniformly subophitic with occasional phenocrysts. At least two textural varieties were observed at Site 342: an upper basalt with subophitic to holocrystalline texture, and a lower basalt with a coarse diabase texture. This texture also characterizes the diabase samples examined from Site 344. Fine-grained basalts from Site 345 are highly altered compared to fresher, aphyric samples from Sites 348 and 350.

MAJOR ELEMENT CHEMISTRY

Major elements were determined on fused glass samples by electron microprobe. Fe₂O₃ values were computed so that Fe₂O₃ = $0.1 \times \text{total}$ iron as FeO. Analyses are computed on an H₂O-free basis. Two basalts (GAST, KNIPPA) were run as secondary standards during the analysis of the Leg 38 samples. Data are shown in Table 1.

Basalts at Site 336 are quartz tholeiites with low TiO₂, K₂O, and Mg/Mg+Fe (Mg*) ratios of 48. Chemically similar basalts were analyzed from Site 337, except for slightly higher Al₂O₃ values (15%-16%) and higher Mg* ratios (55). Plagioclase tholeiites occur at Site 338 with greater than 16% Al₂O₃, low total FeO, and high Mg* ratios (59-63). In contrast, samples from Site 342 are more alkalic, with 3% TiO₂, somewhat higher K₂O, low total FeO and low, but variable, Mg* ratios (45-55). Chemically similar basalt occurs at Site 343. The diabase samples at Site 344 are titania-poor olivine tholeiites, but are enriched in K₂O relative to tholeiites from other sites. K₂O enrichment may be due to deuteric alteration. These diabase samples also have high Mg* ratios. One sample (344-34-2) is extremely enriched in FeO and TiO2, with a lesser enrichment in K₂O and depletion in MgO. We interpret this as a strongly fractionated facies of the diabase. Two samples from Site 345 are tholeiites with above average MgO values and high Mg* ratios (64-70). Typical lowtitania tholeiites were analyzed from Sites 348 and 350 with Mg* ratios between 45-51.

The overall sample population contains both quartz tholeiites and olivine tholeiites; the latter are close to being silica oversaturated. Samples from Sites 336, 337, 338, 345, 350 have bulk compositions similar to many other oceanic tholeiites, and their variations in Al₂O₃, K₂O, and Mg* ratio probably reflect minor removal or addition of plagioclase and olivine together with the effects of halmyrolysis. However, those samples with high Mg* ratios (338, 344, 345) show no signs of excess olivine and appear to be the most primitive basalts sampled. Several samples are titania rich, but are essentially tholeiites rather than alkalic basalts. These samples also have the lowest Mg* ratios, low MgO, and high K₂O and may represent basalt magmas that have undergone low pressure fractionation.

TRACE ELEMENT CHEMISTRY

The abundance of Rb, Sr, Zr, and Y were determined by X-ray fluorescence techniques and are shown in Table 2. Tholeiites from Sites 336, 337, and 338 have 1-5 ppm Rb, which, together with low K₂O contents, suggests that halmyrolysis has had little effect on basalts at these sites. Y contents (22-34 ppm) and Zr (50-82 ppm) are uniformly low, and together with the low Sr values for Site 336 and 337 basalts confirm that these samples are typical oceanic tholeiites. The Sr and Al₂O₃ contents of samples from Site 338 may result from minor plagioclase accumulation.

Samples from Site 342 show 2-3-fold enrichment in Zr and 1.5-2-fold enrichment in Sr over typical oceanic tholeiites, but Rb and Y are not strikingly enriched. Higher than normal Zr was also observed in Site 343 basalt, but Rb remained low. Diabases at Site 344 show marked enrichment in Rb (10-34 ppm), but this is not accompanied by enrichment in Zr (84-94 ppm) or Y (21-27 ppm), although Sr values are rather high (196-225 ppm).

High Rb and Sr contents also characterize Site 345 samples, but Y remains low (26 ppm) and Zr is variable but not exceptionally high. The trace element composition of Site 348 basalts are typical of oceanic tholeiites; Rb is low (1 ppm) as are Sr (88-98 ppm) and Zr (64-72 ppm), whereas Y is more varied (34-41 ppm). At Site 350, trace element contents show no internal consistency, low Rb (4 ppm) and Y (37 ppm) are associated with high Zr (158 ppm) and Sr (250 ppm).

Generally the behavior of the lithophile (LIL) trace elements is consistent with the bulk chemistry in that samples designated as typical oceanic tholeiites show appropriate low concentrations of LIL elements. In contrast, those samples with high TiO₂ contents show consistently high concentrations of Zr and Y and, in some cases, Sr. Even under the most favorable conditions of fractional crystallization, inspection of the

								5	Site (Cor	e-Section)									
	33	6		337			338			342		343		344		3.	45	3	48	350
	41-1	42-1	13-2	14-2	15-2	43-2	43-4	45-2	7-2	7-5	8-2	13-2	34-2	35-4	37-2	33-2	35-1	32-4	34-2	16-2
SiO ₂	50.08	50.57	49.87	50.55	50.19	49.08	48.62	51.00	48.90	49.48	50.08	49.73	47.21	51.58	50.58	51.20	51.10	48.93	48.99	50.86
TiO ₂	1.68	1.62	1.48	1.36	1.31	1.38	1.46	1.52	2.80	3.18	3.18	3.05	3.52	1.46	1.37	1.83	2.11	1.60	1.51	2.67
Al2O3	13.95	14.22	15.94	15.45	15.11	16.83	16.69	16.52	15.42	15.22	14.81	14.02	14.10	15.98	17.46	17.80	18.38	15.34	14.87	14.21
Fe2O3	1.34	1.32	1.07	1.08	1.06	0.98	1.04	0.84	1.16	1.22	1.20	1.34	1.89	0.80	0.72	1.01	0.87	1.45	1.40	1.40
FeO	10.86	10.69	8.66	8.77	8.61	7.93	8.46	6.87	9.45	9.94	9.73	10.83	15.38	6.51	5.83	8.17	7.01	11.75	11.38	11.41
MnO	0.26	0.19	0.23	0.20	0.16	0.19	0.18	0.15	0.25	0.16	0.17	0.19	0.31	0.18	0.12	0.22	0.22	0.21	0.20	0.22
MgO	6.40	6.17	6.61	6.69	6.70	7.37	7.57	7.45	7.24	5.17	5.11	5.69	6.65	7.69	7.00	9.01	10.24	6.17	7.53	5.75
CaO	11.70	11.54	12.91	13.25	13.18	12.94	12.52	11.96	12.79	11.39	11.21	10.97	4.49	11.10	11.38	7.47	4.09	10.86	10.65	9.15
NapO	2.16	2.34	2.25	1.58	2.16	2.09	2.26	2.69	1.98	2.76	2.92	2.68	3.86	2.82	2.87	2.56	2.24	2.18	2.04	2.67
K20	0.10	0.09	0.11	0.10	0.08	0.13	0.10	0.10	0.15	0.31	0.38	0.23	0.51	0.47	0.26	0.73	0.28	0.11	0.13	0.22
Fe as FeO	12.07	11.88	9.62	9.74	9.56	8.81	9.40	7.63	10.50	11.04	10.81	12.03	17.08	7.23	6.47	9.08	7.80	13.06	12.64	12.6
100 Mg Mg + Fe	48.8	48.3	55.3	55.2	55.7	60.1	59.1	63.7	55.4	45.7	45.9	46.0	41.2	65.6	66.0	64.1	70.2	45.9	51.7	44.9
$Fe_2O_3 = Fe_2O_3 = Fe_2$	$eO \times 0.1$																			
QZ	1.46	1.61	0.00	3.22	0.49	0.00	0.00	0.00	0.00	0.63	0.92	1.08	0.00	0.00	0.00	0.00	8.84	0.00	0.00	3.27
OR	0.59	0.53	0.65	0.59	0.47	0.77	0.59	0.59	0.89	1.83	2.25	1.36	3.02	2.78	1.54	4.32	1.66	0.65	0.77	1.30
AB	18.28	19.80	18.96	13.37	18.28	17.69	19.12	22.76	16.75	23.36	24.71	22.68	32.66	23.86	24.29	21.66	18.96	18.45	17.26	22.59
AN	28.08	28.04	33.12	34.78	31.31	36.17	35.11	32.72	32.75	28.23	26.19	25.55	19.65	29.57	34.00	34.93	20.79	31.76	31.04	26.15
DI	24.83	24.22	25.40	25.44	27.98	22.87	22.06	21.59	25.22	23.37	24.30	28.89	2.20	20.64	18.15	1.73	.00	18.41	18.00	15.98
HY	20.17	19.56	15.70	17.49	16.01	13.02	9.84	16.21	15.08	13.61	12.65	16.43	14.00	16.34	13.99	30.51	34.58	23.86	24.68	22.17
OL	0.00	0.00	0.94	0.00	0.00	4.37	7.90	1.14	3.64	0.00	0.00	0.00	16.93	1.48	1.98	1.92	.00	0.34	2.05	0.00
MT	1.94	1.91	1.55	1.57	1.54	1.42	1.51	1.22	1.68	1.77	1.74	1.94	2.44	1.16	1.04	1.46	1.26	2.10	2.03	2.08
IL	3.19	3.08	2.81	2.58	2.49	2.62	2.77	2.89	2.81	6.04	6.04	5.79	6.69	2.77	2.60	3.48	4.01	3.04	2.87	5.07
CO																	6.96			

TABLE 1 Major Element Composition and CIPW Norms of Leg 38 Samples

TABLE 2 Trace Element Abundances in Leg 38 Basalts

Sample (Interval in cm)	Rb	Sr	Y	Zr	Rb/Sr	Zr/Y
336-41-1	2.5	137	30	76	0.018	2.5
336-42-1, 144-146	1.0	144	35	82	0.007	2.3
337-13-2, 140-143	5	94	35	57	0.053	1.6
337-14-2, 91-94	5	96	34	55	0.053	1.5
337-15-2, 137-140	3.4	80	29	57	0.042	2.0
338-43-2, 115-118	3.3	167	23	62	0.019	2.7
338-43-4, 54-57	4.0	173	22	50	0.023	2.3
338-45-2, 56-59	1.5	151	27	64	0.010	2.4
342-7-2, 137-140	7.1	250	36	186	0.028	5.1
342-7-5, 126-129	7.8	241	42	180	0.032	4.3
342-8-2, 65-68	3.4	209	36	189	0.016	5.3
343-13-2, 20-23	5.1	202	40	154	0.025	3.9
344-34-2, 27-30	13.9	214	26	90	0.064	3.5
344-35-4, 87-90	34.1	196	22	84	0.173	3.8
344-37-2, 135-137	10.3	225	27	94	0.045	3.5
345-33-2, 56-59	15.3	256	26	94	0.059	3.6
345-35-1, 145-148	19.9	244	26	142	0.081	5.5
348-32-4, 93-96	1.6	98	41	72	0.016	1.8
348-34-2, 107-110	1.3	88	34	64	0.014	1.9
350-16-2, 30-33	3.8	251	38	158	0.015	4.1

trace element abundances and within the constraints afforded by the major element data, it would not be possible to derive the titania-rich and LIL element-rich basalts by fractional crystallization of a typical oceanic tholeiite. Rather, it seems that these magmas may be derivatives of a compositionally distinct (and unsampled) parent magma whose mantle source was chemically different from that of typical oceanic tholeiites.

MINERAL CHEMISTRY

We have determined the range of compositions of the major mineral phases in representative samples of each basalt type from each site. Mineral determinations utilized an ARL-EMX microprobe with appropriate application of instrumental and Bence-Albee matrix corrections. Data are tabulated in Table 3 (plagioclase), Table 4 (pyroxenes), and Table 5 (iron-titanium oxides). Few samples contained fresh olivine, and no useful data could be determined for this mineral.

Generally the minerals show a limited range of compositions as a consequence of relatively rapid cooling. As might be expected, the most extensive mineral zoning was measured from Site 342 and 344 samples which are coarser grained than samples from other sites. Variations in major end-member components of pyroxenes are shown in Figure 1. The pyroxenes are dominantly calcic diopsidic augites, no low-calcium pyroxenes were detected. The zoning trends result in depletion in the wollastonite component which is not invariably associated with iron enrichment. These trends are in contrast to the iron-enrichment trends at relatively constant wollastonite content observed for many volcanic and plutonic pyroxenes. It is also noted that some of the pyroxenes fall within the two-pyroxene field boundary as defined by the trend for calcium-rich pyroxenes from the Skaergaard intrusion. In the Leg 38 samples, it appears that relatively rapid cooling initiated rapid crystal growth and consequently metastable compositional trends developed. Significant deviations from stable crystallization are also indicated by the contents of minor elements Al, Ti, Cr. Rapidly cooled pyroxenes are highly aluminous and contrast

TABLE 3A Plagioclase in Basalts at Site 338

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Si02	49.46	49.87	50.88	47.35	51.32	51.03	51.45	52.61	50.89	51.44	47.42	47.85	47.36	47.85	49.44	48.69
Ti02	0.08	0.04	0.03	0.03	0.06	0.06	0.07	0.11	0.07	0.10	0.10	0.11	0.10	0.10	0.18	0.18
A1203	31.67	31.47	30.58	33.79	29.32	29.39	29.01	28.47	29.48	29.48	33.28	33.53	34.53	33.87	29.73	31.27
Fe0	0.92	0.79	0.76	0.57	1.02	1.31	1.34	1.14	0.93	1.08	0.65	0.56	0.162	0.59	1.33	1.36
Mn0	0.04	0.02	0.03	0.01	0.01	0.02	0.03	0.04	0.01	0.04	0.02	0.01	0.02	0.02	0.04	0.05
Mg0	0.18	0.21	0.15	0.17	0.61	0.60	0.69	0.66	0.51	0.55	0.38	0.35	0.36	0.34	0.18	0.13
Ca0	14.52	14.52	13.34	15.90	13.34	13.22	12.34	12.73	13.62	13.04	16.94	17.62	17.17	17.05	15.43	12.69
Na ₂ 0	3.76	3.84	4.47	2.51	3.94	4.02	3.91	3.44	3.24	3.23	1.57	1.29	1.34	1.30	2.80	3.17
K20	0.04	0.04	0.06	0.02	0.03	0.06	0.10	0.06	0.04	0.10	0.01	0.02	0.02	0.01	0.08	0.31
Total	100.67	100.80	100.30	100.35	99.65	99.72	98.94	99.26	98.79	98.85	100.39	100.92	101.14	101.13	99.21	98.08
Si	2.256	2.270	2.320	2.167	2.352	2.344	2.371	2.408	2.348	2.368						
Ti	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.003	0.002	0.001						
Al	1.703	1.688	1.643	1.823	1.584	1.591	1.576	1.536	1.603	1.728						
Fe	0.035	0.030	0.028	0.021	0.039	0.043	0.052	0.003	0.035	0.022						
Mn	0.001		0.001	-	-	-	0.001	0.001	-	0.001						
Mg	0.012	0.014	0.009	0.011	0.041	0.040	0.047	0.045	0.035	0.038						
Ca	0.709	0.708	0.651	0.780	0.655	0.651	0.609	0.624	0.673	0.643						
Na	0.333	0.338	0.395	0.222	0.351	0.358	0.348	0.305	0.290	0.289						
ĸ	0.002	0.002	0.003	0.001	0.002	0.003	0.006	0.003	0.002	0.006						
Al+Si	3.959	3.958	3.963	3.990	3.936	3.935	3.947	3.944	3.951	4.096						
An	70	70	65	78	65	65	62	64	68	67						
Mg/Fe	0.34	0.47	0.32	0.52	1.05	0.93	0.90	1.04	1.00	1.72						

Note: 1,2 = microlites; 3 = (edge), 4 = (core) phenocryst; 5-10 = microlites; 11-14 = weakly zoned phenocrysts; 15-16 = microlites.

TABLE 3B Plagioclases in Basalts at Site 342

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SiO ₂	49.87	52.87	49.26	51.40	51.10	51.27	53.96	53.61	54.05	53.83	54.24	53.63	53.12	50.81	52.41	21.27	55.52	51.95
TiO ₂	0.07	0.07	0.03	0.06	0.06	0.06	0.08	0.08	0.06	0.09	0.07	0.07	0.06	0.03	0.03	0.05	0.21	0.06
Al203	31.96	29.75	31.58	30.72	30.36	31.38	28.90	29.18	28.65	29.08	28.58	29.06	29.41	31.34	30.31	30.88	27.30	29.56
FeO	0.71	0.95	0.67	0.60	0.67	0.76	0.85	1.07	0.72	0.83	0.87	0.98	0.80	0.61	0.59	0.62	1.65	0.59
MnO	-	0.01	0.03	0.02	0.02	-	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.03	0.01		-
MgO	0.16	0.10	0.15	0.17	0.15	0.12	0.14	0.11	0.19	0.19	0.22	0.08	0.11	0.18	0.17	0.13	0.21	0.18
CaO	15.85	13.02	16.06	14.07	13.98	15.32	12.76	12.54	12.94	13.02	12.52	13.07	14.18	14.71	14.95	14.95	10.00	15.17
Na ₂ O	3.03	5.15	2.74	4.22	3.56	3.26	5.21	5.04	4.95	4.51	4.80	4 36	3.72	3.29	3.04	3.25	6.04	2.84
K ₂ O	0.40	0.75	0.42	0.42	0.45	0.43	0.56	0.56	0.48	0.44	0.50	0.65	0.43	0.36	0.31	0.32	0.86	0.31
Total	102.05	102.67	100.94	101.70	100.34	102.60	102.48	102.20	102.04	102.01	101.81	101.91	101.84	101.35	101.84	101.48	101.79	100.66
Si	2.249	2.364	2.247	2.317	1.219	2.294	2.409	2.399	2.419	2.406	2.430	2.410	2.384	2.295	2.349	2.312	2.488	2.376
Ti	0.002	0.002	-	0.001	0.001	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.001	0.001	0.001	0.001	0.007	0.002
Al	1.698	1.568	1.697	1.632	1.631	1.654	1.520	1.539	1.511	1.532	1.511	1.533	1.555	1.668	1.601	1.642	1.442	1.563
Fe	0.026	0.035	0.025	0.022	0.025	0.028	0.031	0.040	0.027	0.031	0.032	0.036	0.030	0.023	0.022	0.023	0.062	0.022
Mn		-	0.011	-	-	-		-		0.001	-	-	+	-	0.001	-	-	1.0
Mg	0.010	0.007	0.010	0.011	0.010	0.008	0.009	0.007	0.012	0.013	0.014	0.005	0.007	0.012	0.011	0.009	0.014	0.012
Ca	0.766	0.623	0.785	0.680	0.683	0.734	0.610	0.601	0.620	0.624	0.597	0.624	0.682	0.712	0.718	0.722	0.480	0.729
Na	0.265	0.447	0.242	0.369	0.314	0.283	0.451	0.437	0.430	0.400	0.415	0.377	0.323	0.288	0.265	0.284	0.525	0.249
K	0.023	0.043	0.024	0.024	0.026	0.024	0.031	0.032	0.027	0.025	0.028	0.037	0.024	0.020	0.017	0.018	0.049	0.017
Al + Si	3.947	3.932	3.944	3.949	3.960	3.948	3.929	3.938	3.930	3.938	3.941	3.943	3.939	3.963	3.950	3.954	3.930	3.939
An	75	60	77	66	68	73	59	60	61	62	59	62	68	71	71	72	48	72
Mg/Fe	0.38	0.20	0.40	0.50	0.40	0.28	0.29	0.17	0.44	0.4	0.43	0.14	0.23	0.52	0.50	0.39	0.22	0.54

Note: 1 = (core) phenocryst; 2-6 = zoned phenocryst; 7 = (core) phenocryst; 8 = (core) phenocryst; 9 = (core) phenocryst; 10, 11 = (core) phenocryst; 12 (edge)- 16 (core) = zoned phenocryst; 17 (edge) 19 (core) = phenocryst; 20 (edge), 21 (core) = phenocryst; 22 (edge)- 24 (core) = phenocryst; 25, 26 = (core) microphenocryst; 27 (edge)- 32 (core) = phenocryst; 32 (core)- 34 (edge) = phenocryst; 35 (core), 36 (edge) = phenocryst; 37, 38 = (core) phenocryst.

with the lower Al contents of more slowly cooled pyroxenes. Since the basalts show little variation in bulk Al_2O_3 content, and there is no obvious relationship between pyroxene minor element content and bulk composition, it can be concluded that the latter is not the dominant factor in determining pyroxene compositions.

A brief survey was made of plagioclase compositions in selected basalts. Results are shown in Table 3. Plagioclase phenocrysts in Site 338 basalts have calcic cores (An_{78-80} zoned to An_{60-62}). Groundmass microlites range from An_{70} to An_{64} and probably range down to at least An_{60} . Variations in phenocryst composition in Site 342 basalts suggests a complex history of plagioclase crystallization. There are two compositional groups of phenocrysts, one with An_{70} core composition and a second with An_{60} core composition. Zoning is quite pronounced with rims of An_{44} composition. At Site 344, plagioclase phenocrysts have An_{77} composition and may be continuously zoned to An_{33} . This represents the most extreme compositional variability in any of the basalts analyzed.

All of the plagioclases contain minor amounts of Ti, Mg, and Fe. Generally there is a positive correlation between An content and Ti and Mg abundances. In addition, the Mg/Fe ratio decreases with decreasing An content. The highest Mg/Fe ratios are associated with quenched plagioclase in Site 338 basalts. Probably the partitioning of Mg and Fe into the plagioclase is not an equilibrium process for these plagioclases.

We have also briefly examined the Fe-Ti oxides in these basalts. Surprisingly, most contain primary ilmenite with minor or no titanomagnetite. Analysis of co-existing ilmenite and titanomagnetite could only be accomplished in the coarse diabase at Site 342, indicating crystallization parameters of $1020^{\circ}-1040^{\circ}C$ and Fo₂ = $10^{-10}.5 - 10^{-11}$ atm.

SUMMARY

All basaltic rocks are either quartz or olivine tholeiites which are best divided on Al_2O_3 and TiO_2 contents. In terms of major elements and limited trace element abundances, samples from Sites 336, 337 and 348 are abyssal tholeiites typical of basalts dredged from active mid-oceanic ridges. Samples from Sites 338, 344, and 345 are high-alumina tholeiites, but some have high Mg/Fe ratios that serve to distinguish them from high-alumina abyssal tholeiites. Basalts with distinctly higher K₂O, TiO₂, and overall greater enrichment in lithophile trace elements, occur at Sites 342, 343, and possibly 350. Diabase at Site 344 appears to contain patches of high TiO₂ FeO material which may represent local segregations of in situ fractionated liquid.

Phase chemical studies indicate the ubiquity of plagioclase and pyroxene, general lack of olivine, and rarity of titanomagnetite relative to ilmenite. Compositional zoning is most pronounced in plagioclase phenocrysts which may have grown largely prior to eruption. Compositional zoning is not extensive in the pyroxenes which are all diopsidic augites, and trends are indicative of rather fast, metastable crystallization. Minor element abundances in both plagioclase (Fe, Mg, Ti) and pyroxene (Al, Ti, Cr) indicate an influence of bulk mineral chemistry, but also cooling rate has had a large effect.

TABLE 3B - Continued

19	20	21	22	23 .	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
51.00	56.65	53.72	55.74	53.66	53.14	54.94	55.56	54.50	51.82	49.92	49.32	49.26	53.22	56.70	53.44	54.15	53.70	51.60	53.94
0.03	0.11	0.09	0.10	0.08	0.10	0.10	0.09	0.10	0.03	0.02	0.02	0.03	0.07	0.12	0.07	0.07	0.09	0.09	0.09
30.81	27.70	29.08	25.86	29.25	29.97	28.40	27.89	27.94	29.90	31.87	31.87	31.95	29.60	27.17	29.49	28.92	29.40	29.60	29.66
0.55	0.90	0.76	1.33	0.73	0.71	1.05	1.32	1.02	0.69	0.68	0.54	0.67	1.06	1.11	0.98	0.81	1.19	0.86	0.90
	0.01	-	-	0.01	0.02	0.01	0.01	-	0.01	-	0.04	-	0.01	-	-		0.01		-
0.18	0.10	0.21	0.17	0.15	0.15	0.04	0.01	0.03	0.16	0.09	0.14	0.13	0.05	0.12	0.09	0.16	0.06	0.07	0.08
15.30	9.04	13.18	8.83	13.09	13.47	12.10	10.16	11.23	13.59	15.60	15.90	15.70	12.94	10.13	12.63	12.67	11.91	13.11	12.11
2.75	6.02	3.96	5.99	3.87	3.64	4.34	5.11	4.79	3.68	2.34	2.29	2.16	3.96	5.39	4.32	4.17	4.49	3.90	4.62
0.32	0.48	0.31	0.58	0.30	0.28	0.57	0.76	0.48	0.24	0.21	0.15	0.16	0.28	0.49	0.27	0.22	0.34	0.21	0.19
100.94	101.01	101.31	98.6	101.14	101.48	101.55	100.91	100.09	100.12	100.73	100.27	100.06	101.19	101.23	101.29	101.17	101.19	99.44	101.59
2.311	2.529	2.412	2.553	2.411	2.382	2.459	2.496	2.470	2.359	2.268	2.253	2.253	2.395	2.531	2.401	2.401	2.430	2.414	2.41
0.001	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	1		0.001	0.002	0.004	0.002	0.002	0.003	0.003	0.003
1.645	1.457	1.539	1.396	1.549	1.584	1.498	1.477	1.493	1.604	1.706	1.716	1.722	1.570	1 4 3 0	1.562	1.529	1.557	1.599	1.563
0.021	0.033	0.028	0.051	0.027	0.026	0.039	0.049	0.038	0.26	0.025	0.020	0.025	0.039	0.041	0.036	0.030	0.045	0.033	0.034
	-	-	-	100	1.00	· · · ·	-	-			0.001	÷.	-	-	<u> </u>	<u> </u>	-	-	
0.012	0.006	0.014	0.011	0.010	0.010	0.002	0.001	0.002	0.011	0.006	0.010	0.009	0.003	0.008	0.006	0.011	0.004	0.001	0.005
0.742	0.432	0.634	0.433	0.630	0.647	0.580	0.489	0.545	0.663	0.759	0.778	0.769	0.623	0.485	0.608	0.609	0.573	0.644	0.580
0.242	0.521	0.345	0.532	0.337	0.317	0.376	0.445	0.421	0.325	0.206	0.203	0.191	0.345	0.467	0.376	0.363	0.391	0.347	0.401
0.018	0.027	0.018	0.018	0.017	0.016	0.032	0.043	0.028	0.014	0.012	0.009	0.009	0.016	0.028	0.015	0.012	0.019	0.012	0.010
3.956	3.986	3.951	4.092	3.960	3.966	3.957	3.973	3.963	3.963	3.974	3.969	3.975	3.965	3.961	3.963	3.959	3.971	3.964	3.974
74	45	64	44	64	66	60	51	55	66	76	78	77	62	50	61	61	59	64	58
0.57	0.18	0.50	0.21	0.37	0.38	0.05	0.02	0.05	0.42	0.24	0.50	0.36	0.08	0.19	0.16	0.37	0.09	0.12	0.15

TABLE 4A Pyroxenes in Basalts at Sites 348 and 350

		3	348					350			
	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	48.20	49.82	50.84	49.02	50.18	52.01	51.18	51.16	51.09	52.49	53.27
TiO2	1.05	1.01	1.31	1.25	1.50	0.63	1.27	1.55	1.20	0.61	1.46
AlaÕa	4.34	3.86	4.01	4.27	4.85	2.16	2.30	4.34	3.25	2.03	1.99
CroO2	0.08	0.13	0.15	0.14	0.37	0.20	0.09	0.24	0.25	0.21	0.21
FeO	12.45	13.34	12.21	10.92	8.50	8.74	8.82	9.42	8.12	9.22	8.60
MnO	0.49	0.45	0.46	0.43	0.25	0.32	0.31	0.27	0.24	0.27	0.26
MeO	14.87	15.85	16.44	14 84	16.01	15 30	18 29	15.32	14.99	14.91	16.41
CaO	18.00	16.52	16.08	20.20	19.12	19.06	16.30	17.86	19 70	20.61	18 84
Na-O	0.16	0.24	0.22	0.27	0.79	0.17	0.20	0.30	0.24	0.17	0.28
Total	99 64	101 22	101 72	101 34	101 12	98 59	98.76	100.46	99.08	100.52	101.32
Total	JJ.04	101.22	101.72	101.54	101.12	90.59	90.70	100.40	<i>))</i> .00	100.52	101.52
Si	1.827	1.867	1.865	1.838	1.839	1.949	1.906	1.882	1.907	1.941	1.938
Ti	0.029	0.028	0.036	0.034	0.043	0.017	0.035	0.043	0.033	0.017	0.040
Al	0.194	0.167	0.173	0.185	0.209	0.095	0.101	0.188	0.143	0.088	0.085
Cr	0.002	0.003	0.004	0.004	0.010	0.006	0.002	0.007	0.007	0.006	0.006
Fe	0.394	0.410	0.374	0.335	0.260	0.274	0.275	0.289	0.253	0.285	0.261
Mn	0.015	0.014	0.014	0.013	0.007	0.010	0.009	0.008	0.007	0.008	0.008
Mg	0.840	0.868	0.899	0.813	0.874	0.855	1.015	0.840	0.834	0.822	0.890
Ca	0.731	0.650	0.632	0.795	0.751	0.765	0.650	0.704	0.787	0.816	0.734
Na	0.012	0.017	0.015	0.019	0.020	0.012	0.015	0.021	0.017	0.012	0.020
AlIV	0.173	0.133	0.135	0.162	0.161	0.051	0.094	0.118	0.093	0.059	0.062
AIVI	0.021	0.024	0.028	0.022	0.049	0.044	0.007	0.070	0.050	0 0 2 9	0.023
AI STat	0.021	0.034	0.038	0.023	0.048	0.044	0.007	0.070	2.000	2.000	2,000
SCations	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	3 982
Zeations	4.044	4.024	4.012	4.030	4.015	3.965	4.008	5.902	3.900	5.905	3.902
Wo	37	34	33	41	40	40	33	48	42	42	39
En	42	45	47	41	46	45	52	46	44	42	47
Fs	21	21	20	18	14	15	15	16	14	16	14
Quad	88.6	89.3	88.7	88.3	86.7	93.1	92.2	87.2	90.0	94.1	92.2
Others	11.4	10.7	11.3	11.7	13.3	6.9	7.8	12.8	10.0	5.9	7.8

Note: 1, 2 = Phenocrysts; 3, 4 = groundmass grains; 5-7 = center to edge of phenocrysts; 8 = center of phenocryst; 9-11 = center to edge of phenocrysts.

	1	2	3	4	5	6	7	8
SiO ₂	51.26	52.13	52.13	52.01	50.05	51.26	52.13	52.13
TiO ₂	0.52	0.42	0.47	0.72	0.84	0.52	0.42	0.47
Al203	3.56	3.92	2.69	2.20	4.31	3.56	3.92	2.69
Cr203	0.09	0.15	0.17	0.01	0.13	0.09	0.15	0.17
FeO	9.14	5.94	6.16	5.96	8.32	9.14	5.96	6.16
MnO	0.18	0.19	0.19	0.21	0.21	0.18	0.19	0.19
MgO	17.08	16.71	16.79	16.78	16.02	17.08	16.71	16.79
CaO	18.07	20.88	21.20	20.71	18.08	18.07	20.88	21.20
NapO	0.17	0.17	0.17	0.22	0.23	0.17	0.17	0.17
Total	100.07	100.51	99.97	98.82	98.19	100.07	100.53	99.97
Si	1.892	1.900	1.916	1.930	1.879	1.892	1.900	1.916
Ti	0.014	0.011	0.013	0.020	0.023	0.014	0.011	0.013
Al	0.154	0.168	0.116	0.096	0.190	0.154	0.168	0.116
Cr	0.002	0.004	0.005	0.001	0.004	0.002	0.004	0.005
Fe	0.282	0.181	0.189	0.185	0.261			
Mn	0.005	0.005	0.005	0.006	0.006			
Mg	0.940	0.908	0.920	0.928	0.896			
Ca	0.714	0.815	0.835	0.823	0.727			
Na	0.012	0.012	0.012	0.016	0.017			
AlIV	0.108	0.100	0.084	0.070	0.121	0.108	0.100	0.084
AIVI	0.046	0.068	0.032	0.026	0.069	0.046	0.068	0.032
ΣTet	2,000	2.000	2.000	2,000	2.000	2,000	2.000	2.000
ΣCations	4.015	4.004	4.011	4.005	4.003			
Wo	37	43	42	43	38			
En	48	47	47	48	47			
Fs	15	10	11	9	15			
Quad	91.1	90.4	92.7	93.3	88.7			
Others	8.9	9.6	7.3	6.7	11.3			

TABLE 4B Pyroxenes in Basalts at Site 336 and 337

Note: 6-8 Edge to center of phenocryst.

TABLE 4C Pyroxenes in Basalts at Site 338

	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	49.20	50.90	51.81	50.56	50.32	52.02	52.35	49.80	50.95	49.74	50.96
TiO ₂	0.54	0.62	0.69	0.40	0.69	0.55	0.56	0.35	0.40	0.55	0.53
Al2O2	4.93	4.06	4.01	3.25	2.99	2.20	2.33	5.00	2.57	3.26	2.99
CroO2	0.43	0.34	0.51	0.37	0.44	0.08	0.08	1.06	0.64	0.28	0.33
FeO	6.57	5.79	5.48	6.80	5.36	7.92	9.89	5.98	5.82	7.08	7.80
MnO	0.17	0.15	0.14	0.19	0.18	0.22	0.23	0.43	0.34	0.39	0.43
MaO	17.32	17 32	17.93	19 43	17.73	17.18	16.58	16 99	17.71	17.86	17.57
CaO	20.27	20.93	21.25	19.74	21 72	20.14	19.09	20.49	20.33	20.14	19.83
Na O	0.22	0.23	0.23	0.17	0.26	0.20	0.18	0.16	0.17	0.18	0.18
Tago Tago	0.22	100.24	102.05	100.41	0.20	100.51	101.30	100.26	08.02	00.49	00.62
Total	99.71	100.34	102.05	100.41	99.69	100.51	101.50	100.26	98.93	99.48	99.02
Si	1.824	1.864	1.863	1.872	1.869	1.913	1.919	1.861	1.912	1.883	1.916
Ti	0.015	0.017	0.018	0.010	0.018	0.015	0.015	0.009	0.011	0.015	0.015
Al	0.215	0.175	0.169	0.137	0.127	0.095	0.100	0.220	0.113	0.145	0.132
Cr	0.012	0.010	0.014	0.010	0.012	0.002	0.002	0.031	0.019	0.008	0.009
Fe	0.203	0.177	0.165	0.203	0.162	0.243	0.303	0.187	0.182	0.222	0.214
Mn	0.005	0.004	0.004	0.005	0.005	0.007	0.007	0.013	0.011	0.012	0.013
Mg	0.956	0.946	0.961	1.037	0.954	0.942	0.906	0.891	0.935	0.951	0.928
Ca	0.804	0.821	0.819	0.738	0.840	0.793	0.750	0.780	0.817	0.776	0.759
Na	0.015	0.016	0.016	0.011	0.018	0.014	0.013	0.011	0.012	0.013	0.013
AlIV	0.176	0.136	0.137	0.128	0.127	0.087	0.081	0.139	0.088	0.117	0.084
AIVI	0.039	0.039	0.032	0.009		0.008	0.019	0.081	0.025	0.028	0.048
ΣTet	2,000	2,000	2.000	2.000	1,996	2.000	2.000	2.000	2.000	2.000	2.000
ΣCations	4.049	4.030	4.029	4.025	4.005	4.024	4.015	4 003	4.012	4.025	3.999
Wo	41	42	42	37	43	40	38	42	42	40	40
En	49	49	49	52	49	48	42	48	48	49	49
Fs	10	9	9	11	8	12	20	10	10	11	11
Quad	88.2	89.7	89.7	91.8	91.5	93.6	93.4	86.7	92.0	90.9	91.3
Others	11.8	10.3	10.3	8.2	9.5	6.4	6.6	13.3	8.0	9.1	8.7

Note: 1, 2 = Edge and center of phenocryst; 3 = center of small phenocryst; 4, 5 = edge and center of phenocryst; 6, 7 = groundmass grains; 8-11 = phenocrysts.

1 2 3 8 9 10 11 12 4 5 6 7 SiO₂ 52.17 51.53 51.61 49.64 51.51 49.50 52.54 51.31 52.04 49.38 50.82 51.35 TiO₂ 0.88 1.07 1.09 0.88 0.88 1.13 0.87 1.07 0.68 1.06 0.89 1.03 Al203 1.89 2.97 2.55 3.50 1.63 1.31 2.11 2.73 1.82 2.07 3.39 2.98 Cr203 0.07 0.20 0.34 0.51 0.03 0.01 0.28 0.33 0.07 0.02 0.31 0.29 FeO 8.72 8.22 9.42 8.55 9.40 8.91 10.65 11.65 9.29 8.22 11.63 17.73 0.25 MnO 0.24 0.21 0.24 0.17 0.26 0.31 0.22 0.18 0.26 0.36 0.20 16.15 MgO 17.19 16.53 17.33 17.00 18.20 16.33 12.64 17.57 17.25 17.14 16.69 CaO 16.43 15.98 15.19 18.47 17.00 16.81 16.52 17.08 16.29 16.58 18.55 16.69 0.22 0.28 0.26 Na₂O 0.31 0.22 0.27 0.22 0.23 0.24 0.23 0.25 0.23 Total 97.81 97.99 98.71 99.19 99.68 99.28 98.21 100.14 98.76 99.25 98.60 97.46 1.902 Si 1.955 1.930 1.916 1.869 1.935 1.904 1.930 1.916 1.946 1.916 1.888 Ti 0 024 0.032 0.032 0.028 0.024 0.024 0.030 0.024 0.018 0.029 0.025 0.031 Al 0.083 0.131 0.000 0.155 0.072 0.091 0.120 0.080 0.094 0.148 0.130 0.059 0.009 Cr 0.002 0.006 0.010 0.015 0.001 0.001 0.008 0.009 0.002 0.001 0.008 0.255 0.291 Fe 0.273 0.2670.292 0.280 0.334 0.374 0.285 0.256 0.364 0.575 0.007 0.006 0.007 0.005 0.007 0.005 0.012 0.006 0.007 Mn 0.008 0.010 0.008 0.910 0.960 0.922 0.959 0 954 0.960 0.996 0.899 0.731 0.918 0.953 Mg 0 957 Ca 0.659 0.674 0.657 0.689 0.656 0.687 0.652 0.742 0.640 0.631 0.736 0.674 0.020 0.018 Na 0.016 0.022 0.016 0.020 0.016 0.017 0.017 0.017 0.018 0.017 AlIV 0.098 0.045 0.070 0.070 0.054 0.084 0.112 0.084 0.131 0.065 0.059 0.084 AIVI 0.038 0.010 0.036 0.032 0.061 0.027 0.024 0.007 0.021 0.037 0.026 ΣTet 2.000 1.963 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 ΣCations 3.979 3.982 9.998 4.019 4.006 4.040 4.004 3.994 3.993 4.009 4.008 4.007 35 Wo 35 36 34 36 34 34 34 39 33 32 38 En 51 49 50 50 49 47 51 47 47 38 48 50 14 30 14 15 15 19 20 Fs 16 14 17 15 14 Ouad 93.4 90.7 91.6 89.4 93.2 91.2 93.5 92.5 90.0 91.1 94.1 94.5 Others 6.6 9.3 8.4 10.6 5.9 5.5 6.8 8.8 6.5 7.5 10.0 8.9 23 13 14 19 21 22 15 16 17 18 20 SiO₂ 50.93 50.28 51.90 51.37 51.83 51.34 52.18 53.19 51.61 53.61 52.56 TiO₂ 1.01 1.05 1.49 1.22 0.91 0.68 0.77 0.67 0.95 1.02 1.15 Al203 3.16 3.37 2.23 1.90 2.40 2.05 1.99 3.01 3.07 3.14 1.87 0.06 0.33 0.49 Cr2O3 0.42 0.28 0.13 0.09 0.14 0.22 0.26 0.26 8.30 7.71 12.73 9.04 9.14 8.70 8.16 8.90 FeO 11.81 10.59 8.26 0.21 0.20 0.24 0.24 0.22 0.19 0.22 0.18 0.17 MnO 0.27 0.23 16.50 17.92 17.59 16.25 15.73 MgO 16.46 16.14 15.85 18.62 14.86 17.33 17.82 CaO 19.08 19.95 16.19 18.99 17.75 16.95 17.31 18.98 16.66 16.09 0.26 Na₂O 0.26 0.27 0.25 0.24 0.20 0.28 0.28 0.27 0.22 0.26 100.02 101.13 Total 99.87 99.57 102.21 99.74 100.52 97.73 99.61 100.74 98.37 1.920 1.909 1,939 1.940 1.931 1.927 1.933 Si 1.887 1.870 1.895 1.933 0.019 0.026 0.028 Ti 0.028 0.029 0.041 0.034 0.025 0.032 0.019 0.021 Al 0.138 0.148 0.135 0.098 0.082 0.106 0.081 0.088 0.088 0.129 0.133 0.009 0.014 Cr 0.012 0.008 0.003 0.002 0.004 0.007 0.007 0.001 0.006 Fe 0.257 0.240 0.389 0.369 0.326 0.261 0.280 0.279 0.272 0.248 0.273 0.005 Mn 0.006 0.006 0.007 0.008 0.007 0.007 0.007 0.006 0.007 0.005 0.880 0.862 0.911 0.913 0.957 0.974 0.981 Mg 0.878 0.883 1.022 0.837 0.757 0.795 0.635 0.768 0.704 0.662 0.694 0.739 0.702 Ca 0.633 0.667 0.019 0.019 0.016 0.019 0.019 Na 0.018 0.017 0.017 0.014 0.020 0.020 AlIV 0.113 0.130 0.105 0.080 0.082 0.061 0.060 0.069 0.073 0.067 0.108 AlVI 0.025 0.018 0.030 0.018 0.045 0.014 0.028 0.019 0.056 0.066 1.991 2.000 ΣTet 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 3.996 3.982 3.969 ΣCations 4.014 4.028 3.998 3.998 4.024 4.006 4.008 4.009 Wo 39 40 33 32 41 36 34 36 39 38 35 47 49 50 53 47 En 46 46 46 51 45 50 15 Fs 14 14 21 19 17 14 15 16 14 18 93.6 90.8 90.2 Quad 90.5 90.2 90.3 93.7 90.2 93.5 93.1 92.3 9.5 9.8 9.7 7.7 9.8 6.9 6.4 9.2 9.8 Others 6.3 6.5

TABLE 4D Pyroxenes in Basalts at Site 342

Note: 1-3 = Edge to center, phenocryst; 4, 5 = edge to center, phenocryst; 6-8 = edge to center, phenocryst; 9, 10 = groundmass microlites; 11, 12 = edge and center of phenocryst; 13, 14 = center and edge of phenocryst; 15 = inclusion in plagioclase; 16-23 = microphenocrysts.

					Pyroxen	es in Basali	ts at Site 3	544					
	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO2	52.25	51.95	50.78	51.01	51.74	50.83	50.89	50.26	50.40	50.20	50.15	50.35	50.64
TiO2	1.11	1.08	1.11	1.08	1.08	0.74	0.62	0.67	1.32	0.97	0.91	1.09	0.99
Al203	4.00	4.21	4.90	4.61	4.04	2.93	2.85	2.33	2.90	2.83	2.01	1.98	1.91
Cr203	0.33	0.40	0.55	0.51	0.41	0.48	0.52	0.20	0.05	0.06	0.06	0.06	0.06
FeO	4.76	4.94	5.104	5.54	5.34	4.44	4.57	5.35	9.31	7.99	13.28	11.73	12.29
MnO	0.16	0.16	0.14	0.18	0.17	0.42	0.40	0.49	0.45	0.55	0.74	0.56	0.61
MgO	15.95	16.56	16.28	15.79	15.96	17.32	17.18	17.24	15.66	16.75	13.48	14.12	14.11
CaO	20.94	22.11	21.67	21.11	21.49	23.25	23.12	22.85	18.39	20.10	18.52	20.74	20.80
Na ₂ O	0.25	0.31	0.22	0.23	0.22	0.22	0.23	0.21	0.30	0.28	0.30	100.00	101.77
Total	99.75	101.73	100.69	100.06	100.45	100.63	100.38	99.60	98.78	99.15	99.45	100.99	101.77
Si	1.908	1.873	1.850	1.887	1.901	1.878	1.846	1.870	1.895	1.872	1.912	1.889	1.890
Δ1 Δ1	0.030	0.029	0.030	0.029	0.029	0.020	0.016	0.018	0.037	0.027	0.020	0.030	0.027
Cr	0.009	0.011	0.015	0.014	0.011	0.013	0.015	0.006	0.001	0.001	0.001	0.001	0.001
Fe	0.145	0.149	0.153	0.165	0.161	0.134	0.138	0.166	0.292	0.249	0.423	0.368	0.383
Mn	0.005	0.004	0.004	0.005	0.005	0.012	0.012	0.015	0.014	0.016	0.023	0.018	0.019
Mg	0.868	0.889	0.884	0.842	0.858	0.935	0.929	0.956	0.878	0.931	0.766	0.790	0.785
Na	0.018	0.854	0.846	0.809	0.830	0.902	0.976	0.911	0.022	0.020	0.022	0.026	0.032
AIIV	0.092	0.127	0.150	0.103	0.099	0.122	0.122	0 102	0 105	0.124	0.088	0.087	0.084
AIVI	0.080	0.052	0.060	0.091	0.072	0.003	-	-	0.023	-	0.002		-
ΣTet	2.000	2.000	2.000	2.000	2.000	2.000	1.968	1.972	2.000	1.996	2.000	1.976	1.974
ΣCations	3.974	4.009	4.008	3.971	3.981	4.034	4.070	4.059	4.008	4.043	4.020	4.043	4.047
Wo	44	47	45	45	45	46	48	45	39	40	39	42	41
En	47	48	47	46	46	47	45	47	46	47	39	40	39
Fs	9	5	8	9	9	7	7	8	15	13	22	18	20
Quad Others	88.6 11.4	88.5	87.2 12.8	87.5	88.8	91.4 8.6	91.8 8.2	92.8 7.2	90.4 9.6	91.3 8.7	92.3 7.7	92.4 7.6	96.7 3.3
					5254254								
-	14	15	16	17	18	19	20	21	22	23	24	25	26
SiOn	51.19	52.25	51.95	50.78	51.01	52.74	50.55	50.40	49.26	50.20	50.15	50.35	50.64
TiO2	0.98	1.11	1.08	1.11	1.08	1.08	1.05	1.32	1.23	0.97	0.91	1.09	0.99
Al2O2	1.85	4.00	4.21	4.90	4.61	4.04	2.39	2.90	3.30	2.83	2.01	1.98	1.91
Cr203	0.07	0.33	0.40	0.55	0.51	0.41	0.04	0.05	0.06	0.06	0.06	0.06	0.06
FeO	12.89	4.76	4.95	5.04	5.54	5.34	11.62	9.31	8.02	7.99	13.28	11.73	12.29
MnO	0.66	0.16	0.15	0.14	0.18	0.17	0.62	0.45	0.39	0.53	0.74	0.56	0.61
MgO	13.61	15.96	16.56	16.28	15.79	15.96	13.82	15.66	16.65	16.75	13.48	14.12	14.11
CaO	20.53	20.94	22.11	21.67	21.11	21.49	19.41	18.39	20.59	20.10	18.52	20.74	20.80
Na ₂ O	0.34	0.25	0.31	0.22	0.23	0.22	0.34	0.30	0.26	0.28	0.30	0.36	0.36
Total	102.12	99.76	101.72	100.69	100.06	101.45	99.84	98.78	99.76	99.71	99.45	100.99	101.77
Si	1.905	1.908	1.878	1.840	1.897	1.901	1.879	1.895	1.812	1.872	1.912	1.889	1.890
Ti	0.027	0.030	0.029	0.030	0.029	0.029	0.030	1.037	0.035	0.027	0.026	0.030	0.027
Al	0.081	0.172	0.179	0.210	0.194	0.171	0.109	0.128	0.149	0.124	0.090	0.087	0.084
Cr	0.002	0.009	0.011	0.015	0.014	0.011	0.001	0.001	0.002	0.001	0.001	0.001	0.001
re	0.401	0.145	0.149	0.153	0.165	0.161	0.376	0.292	0.257	0.249	0.423	0.308	0.385
Mg	0.755	0.868	0.889	0.884	0.842	0.858	0.797	0.878	0.951	0.931	0.766	0.790	0.785
Ca	0.818	0.819	0.854	0.846	0.809	0.830	0.805	0.741	0.845	0.803	0.757	0.834	0.832
Na	0.024	0.018	0.021	0.016	0.016	0.015	0.025	0.022	0.019	0.020	0.022	0.026	0.026
AlIV	0.081	0.092	0.122	0.150	0.103	0.099	0.109	0.105	0.149	0.124	0.088	0.087	0.084
AlVI		0.080	0.057	0.060	0.091	0.072	-	0.023	-	-	0.002		-
ΣTet	1.986	2.000	2.000	2.000	2.000	2.000	1.988	2.000	1.961	1.996	2.000	1.976	1.974
ΣCations	4.033	3.974	4.014	4.008	3.971	3.981	4.042	4.008	4.082	4.043	4.020	4.043	4.047
Wo	41	45	45	45	44	45	41	39	41	40	39	42	41
Fs	38	47	47	47	46	40	40	46	40	13	22	19	20
Quad	02.7	884	88 5	87.2	87 6	000	01 4	90.4	90.4	91.3	923	924	92.7
Others	7.3	11.4	11.5	12.8	12.5	11.2	8.6	9.6	9.6	8.7	7.7	7.6	7.3

TABLE 4E Pvroxenes in Basalts at Site 344

Note: 1-3 = Edge-center of phenocryst; 4, 5 = center of phenocryst; 6-8 = center-edge of phenocryst; 9, 10 = center of phenocrysts; 11-14 = individual phenocrysts; 15-19 = center of phenocrysts; 20-22 = center to edge of phenocryst; 22-26 = center to edge of phenocryst.

		Spir	nels in Leg	38 Basalts	\$		
				Site			
	342	342	342	342	342	344	344
TiO ₂	23.32	49.50	24.01	21.87	49.51	47.54	47.56
Al2O3	1.47	0.14	0.99	1.69	0.16	0.11	0.22
Cr2O3	0.06	0.03	0.08	0.07	-	0.05	0.07
FeO	72.88	49.75	71.00	72.84	48.64	51.01	49.16
MnO	0.35	0.36	0.28	0.47	0.39	0.46	0.61
MgO	0.85	1.28	0.43	0.75	1.76	0.49	2.27
Total	98.93	101.05	96.79	97.69	100.46		
FeO	51.69		52.3	50.4			
Fe ₂ O ₃	23.36		20.8	24.6			
Total	101.10		98.89	99.85			
% Ulv.	54.3		69.7	63.9			
% R ₂ O ₃		8.2			8.5		
Ilmenite B	asis						
FeO	38.16	41.83	38.2	37.5	40.96	41.04	38.01
Fe ₂ O ₃	38.72	8.32	36.8	39.7	8.48	10.56	11.36
Total	102.93	101.45	100.79	102.05	101.26	100.25	100.12
-log fO ₂		10.5		-11.0			
T°C		1040		1020			

TABLE 5

Figure 1. Pyroxene compositions in Leg 38 basalts in terms of quadrilateral components diopside (DI)-enstatite (EN)-ferrosilite (FS)-hedenbergite (HD). The size of the triangles is an indication of the amount of components other than the above present in the pyroxene. These "other" components are due to solid solutions of Al, Cr, and Ti in the pyroxene structure.