2. SITE 366: SIERRA LEONE RISE

The Shipboard Scientific Party1, 2

SITE DATA

Date Occupied: 22 February 1975 (1140Z)

Date Departed: 1 March 1975 (1614Z)

Time on Site: 7 days, 4 hours, 34 minutes

Position:

Holes 336 and 336A: 05°40.7'N, 19°51.1'W

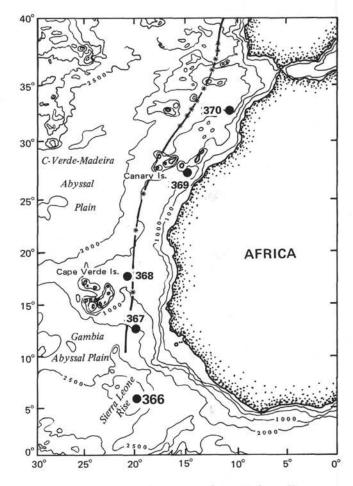
Accepted Water Depth: 2853 corrected meters (echo sounding)

Bottom Felt With Drill Pipe at: 2870 meters, below rig floor Penetration: 850.5 meters

Number of Holes: 2

Number of Cores: Hole 336: 55 Hole 336A: 39

Total Length of Cored Section: 850.5 meters


Total Core Recovered: 582 meters

Oldest Sediment Cored: Age: Maestrichtian Nature: Limestone

BACKGROUND AND OBJECTIVES

Background

The Sierra Leone Rise can be considered the boundary between the eastern basins of the North and South Atlantic. It is a broad elevation, oriented southwest-northeast and centered around 5°N (Figures 1 and 2). At the 4000 meter contour the rise is about 600 km in length and up to 400 km in width. It is separated from the Guinea Plateau to the northeast by a narrow

depression, probably the trace of the Guinea Fracture Zone. The Sierra Leone Rise consists of two morphological provinces separated by a broad southwest-northeast depression. Seismic profiles of the rise recorded by Lamont-Doherty Geological Observatory's R/V Vema show that the northwestern province exhibits a rough topography with high and steep basement peaks penetrating the sediment cover. The topography in the southeastern part of the rise is much smoother, and the rise consists of a broad basement swell covered with regularly although moderately stratified sediments forming a southwestnortheast trending plateau with dimensions of about 100 by 150 km in 2700 to 2900 meters of water (Figure 3). A relatively strong reflector observed in the middle part of the sedimentary section can be traced to the deep basin where it appears to be the equivalent of Horizon A defined in the western Atlantic. The maximum thickness of the sedimentary cover observed on the profiles reaches 1.0 sec in the southern part of the plateau and 0.9 sec in the northern part where Site

^{&#}x27;Yves Lancelot, Lamont-Doherty Geological Observatory, Palisades, New York (Co-Chief Scientist); Eugen Seibold, Geologisch-Palaontologisches, Institüt and Museum der Universität Kiel, Kiel, Germany (Co-Chief Scientist); Pavel Čepek, Bundesanstalt für Bodenforschung, Hannover, Federal Republic of Germany; Walter E. Dean, Syracuse University, Department of Geology, Syracuse, New York; Vladislav Eremeev, Institute of Geological Sciences of the Academy of Sciences, Laboratory of Lithology Formation, Moscow, USSR; James Gardner, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Lubomir F. Jansa, Atlantic Geoscience Centre, Geological Survey of Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia; David Johnson, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; Valery Krasheninnikov, Geological Institute of the Academy of Sciences of the USSR, Moscow, USSR; Uwe Pflaumann, Geologisch-Palaontologisches, Institüt und Museum der Universität Kiel, Kiel, Germany; J. Graham Rankin, Northeast Louisiana University, Department of Chemistry, Monroe, Louisiana; Peter Trabant, Texas A&M University, Department of Oceanography, College Station, Texas.

²David Bukry, U.S. Geological Survey, La Jolla, California (Tertiary nannofossils).

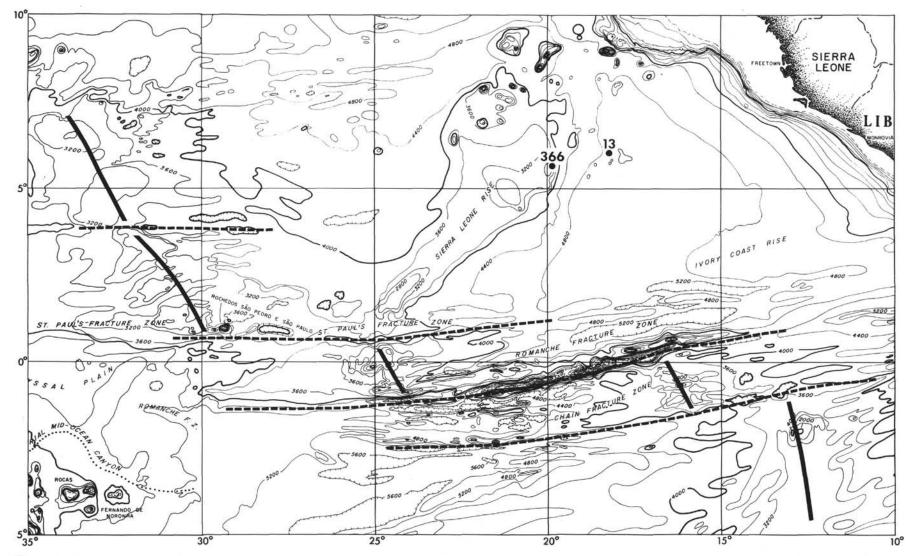


Figure 1. General location of Site 366 with indication of the main structural trends in the vicinity of Sierra Leone Rise. Solid heavy line indicates the ridge axis; dashed lines indicate major fracture zones. Bathymetry from Uchupi (1971).

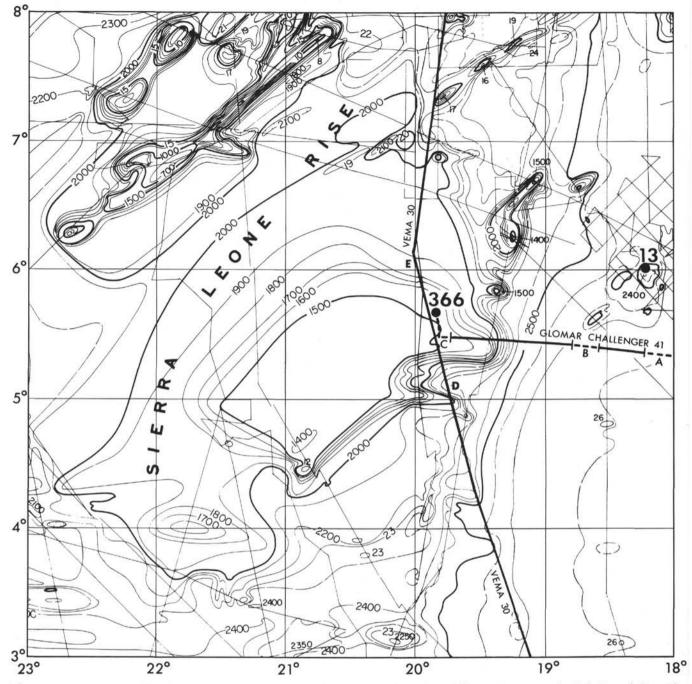


Figure 2. Bathymetry of Sierra Leone Rise in the vicinity of Site 366 (Jacobi and Hayes, in preparation) A, B, and C, on the Glomar Challenger track refer to PDR profiles displayed in Figure 6.

366 is located, although the acoustic basement is not always clearly visible. The nature of the acoustic basement is unknown and, although good continuity with what is believed to be the oceanic basement of the adjacent basins can sometimes be observed in the middle part of the rise, the picture is not as clear in the northern area. In any case, the nature and age of the basement, between the rise and the African margin off Guinea, Sierra Leone, and Liberia, are very poorly known. The age of the oceanic crust on the western side of the rise is also poorly known because of the lack of interpretable magnetic lineations. This results in part from the low latitude of the area.

During Leg 3 of the Deep Sea Drilling Project, Site 13 was drilled on a small satellite rise near the base of the eastern flank of the Sierra Leone Rise in 4588 meters of water (Maxwell et al., 1970). Only part of the scientific objectives of that site could be met because of technical difficulties. The section sampled consists of Tertiary carbonate ooze and clay with radiolarian ooze and chert occurring in the Eocene sediments. The Upper Cretaceous section was sparsely sampled but

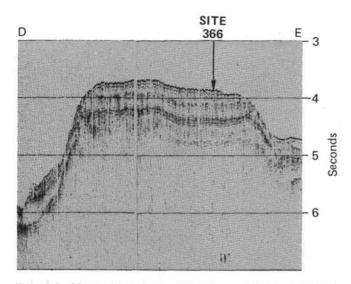


Figure 3. Vema 30 seismic reflection profile recorded on the eastern part of Sierra Leone Rise (see location on Figure 2).

consists of chert, limestone, and shale; the oldest sediments recovered are of Senonian age. Prior to Leg 41, the Tertiary and Upper Cretaceous history of the rise was still poorly known and the early Cretaceous history totally unknown.

Objectives

Improvements in the drilling technique and especially the use of new drill bits which are capable of better penetration in hard rock led the JOIDES Atlantic Advisory Panel to consider another attempt at obtaining a better record of the Cenozoic and Mesozoic sediments from Sierra Leone Rise. It was decided to select a site near the top of the rise in order to obtain a more complete and better-preserved carbonate section. Furthermore, the Sierra Leone Rise appears to be one of the few elevated areas of the eastern North Atlantic clearly separated from the margin and hence from any large source of terrigenous material.

The three major objectives assigned to this site were to: (1) obtain a good stratigraphic record for Late Cretaceous and Tertiary; (2) decipher the subsidence history of the rise and its possible role as a barrier capable of restricting the circulation of bottom water between the North and South Atlantic in the past and; (3) eventually determine the nature of the basement, if it could be reached.

Biostratigraphic Record

Sierra Leone Rise was judged to offer one of the best chances to sample a complete section of the Upper Cretaceous and Tertiary in a low latitude area. The main hiatuses observed on many other rises both in the Atlantic and in other oceans were expected to be either absent or restricted in time because the rise was permanently beneath a relatively high-productivity environment. Therefore, particular attention was to be directed toward sampling critical stratigraphic units in the middle Miocene, the Oligocene, lower Eocene to lower Paleocene, and the Cretaceous/Tertiary boundary sections, all times of observed hiatuses on other rises and in the basins.

Paleocirculation and Subsidence

The major hiatuses mentioned above are probably directly related to paleocirculation. The Paleocene to middle Eocene hiatus appears to be of worldwide significance because it has been observed in various parts of the Atlantic and Pacific oceans. A late Eocene to Oligocene hiatus has been consistently observed in the North and South Atlantic and appears to be correlated with a major acoustic reflector on the North African margin. This reflector extends from Rockall Bank and Bay of Biscay (Leg 12) to the African margin (Leg 14) and south in the eastern and western South Atlantic basins (Legs 39 and 40). A middle Miocene hiatus was also found during Leg 39 in the southwestern Atlantic. It is not clear if some of these Tertiary hiatuses can be directly related to erosion or nondeposition caused by the initiation of vigorous circulation of Antarctic Bottom Water, or if they result from a sudden increase in the dissolution of carbonates, or possibly from a combination of these two factors. The occurrence of such hiatuses on Sierra Leone Rise would help to confirm their oceanwide significance. This site was also judged to offer a good opportunity to study dissolution facies during the critical periods indicated above because of the anticipated purely pelagic (undiluted) calcareous section. In addition, the possible occurrence of shallow-water carbonate sediments near the base of the section should help document the subsidence history of the Sierra Leone Rise.

Nature of the Basement

The seismic reflection profile recorded at the proposed site (Figure 3) does not provide a good picture of the acoustic basement and the nature of this lowermost reflector is problematical. Although geometric reconstructions of the Atlantic Ocean for the Early Cretaceous suggest that Sierra Leone Rise lies on oceanic crust, the origin of such an elevation remains unclear and it was hoped that by sampling basement rocks new information could be obtained relative to the nature of the underlying crust and the mode of formation of the rise.

STRATEGY

Because the re-entry device was not available for Leg 41, we decided to use the alternate strategy recommended and successfully used by Schlanger, Jackson, et al. (1976) during Leg 33. This strategy consists of washing down with very limited coring in the upper part of the section until hard layers are encountered, and continuous coring until the maximum penetration permissible with one drill bit. Then, if it is judged that a new bit is necessary for continuously coring the previously by-passed upper section, the drill string is retrieved and lowered again. Another option is to pull the string out of the hole and punch core continuously the upper soft sediment with the damaged

bit used for the first run. This strategy presents the advantage of minimizing the rotation time of the bit before it reaches the harder layers. It also considerably reduces the total time spent within the hole and therefore reduces chances of having the hole collapse before the deep objectives can be reached.

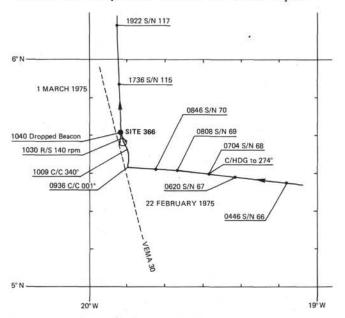
OPERATIONS

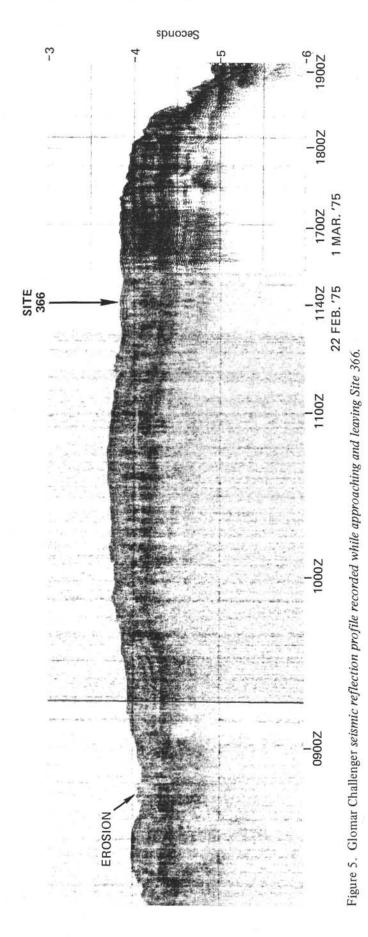
The site was approached from the south (Figure 4) on a course parallel to that of the reference profile *Vema* 30 from Lamont-Doherty Geological Observatory. The Lamont track was nearly intercepted on a 274° course at 0936 hr (local time) on 22 February 1975. The ship then steamed north for about 35 minutes and altered course to 340° for the final approach to the site. The seismic record obtained onboard (Figure 5) compared relatively well with the Lamont *Vema* 30 reference profile so it was decided to reduce speed and drop the beacon underway whenever a suitable location could be observed.

Ideally, the site should be located in a syncline and as far away as possible from the northern slope. Such a location was reached at 5°41'N and 19°51'W. The seismic reflection profile shows a series of parallel reflectors comparable to those observed on the Lamont profile.

A pre-soaked beacon was dropped at 1040 hr (local time) and several minutes later, after observing that the sediment section appeared undisturbed and complete on the profile, the seismic gear was retrieved and the ship reversed course to "lock on" over the beacon. The PDR water depth read 2847 meters corrected.

Running in drill pipe commenced immediately and the bottom was felt by the driller at 1948 hr (local time) when the total length of pipe below the rig floor reached 2870 meters. The drill pipe water depth of 2860 meters was accepted as the Site 366 water depth.




Figure 4. Track of Glomar Challenger approaching and leaving Site 366. Dotted line is track of Vema 30 used as a reference profile for selection of the site.

The first core was punched without rotation or circulation for five meters. Another core, immediately below the first one, was obtained in the same manner. Then the intermittent coring of the upper section began, down to 366 meters. Below that level, coring was continuous (Table 1). Recovery was generally good to excellent in chalk except in the most cherty part of the section. The rate of penetration varied with minor changes in the lithology and ranged from about 25 minutes to over 1 hr per core, depending mainly on the chert content. After a succession of long marly limestone cores, characterized by a very good recovery (Table 1), Core 52 recovered only a small, tapered corecatcher sample. Core 53 yielded the same result. Because the water pressure gauge indicated an anomalously high reading while pumping the core barrel down, it was felt that the bit might be plugged and the center bit was dropped in order to clear it. Another attempt at coring (Core 54) was unsuccessful and the operation was repeated with mud pumped down at high pressure. The core barrel was dropped for Core 55 and again retrieved empty. The continuing high water pressure indication suggested that the bit was still plugged and it was decided to pull out of the hole, terminating Hole 366 at a total depth of 850.5 meters sub-bottom.

The drill string was retrieved and the bit was on deck at 1130 hr (local time) on 27 February. It was found plugged by tightly packed sediment, as predicted. The sediment plug was thick enough so as to prevent correct seating and latching of the core barrel. Otherwise the drill bit was in good condition except for slightly sticky cones and some missing inserts. The Teflon rings of the bit seal were broken, although none of them blocked the entrance of the core barrel. The rings were replaced before the bit was put back in place. It was decided to use the same bit to continuously core the relatively soft upper part of the section down to 366 meters subbottom. Drill pipe was run down for drilling Hole 366A and the sea floor was reached at 2041 hr (local time) when the total length of the drill string recorded 2869 meters below the rig floor.

Coring was continuous with a relatively good recovery except in some of the soft chalk layers. Neither broken circulation nor minor pumping seemed to prove very effective in solving that problem. Coring was terminated after Core 39A had been cut at 0918 hr on 1 March. At that time, the total penetration in Hole 366A was 367 meters sub-bottom, 1 meter deeper than the depth at which continuous coring started in Hole 366. The drill string was recovered and the ship was underway on 2 March at 1514 hr. The post-site survey consisted of a run at 5 knots over the beacon on the same course as the final approach (see profile on Figure 5). Cruise speed was resumed shortly thereafter and the course was set toward Site 367.

A sonobuoy record was attempted on site, using various frequency settings, but because the buoy had to be tethered, neither wide-angle reflections nor refractions were expected. The sonobuoy record was terminated when the ship began backing over the airguns. Weather conditions were excellent during the entire week spent on site and this probably accounts in

part for the good record of the drill bit prior to its plugging.

UNDERWAY OBSERVATIONS

The PDR profiles (Figure 6) recorded along the approach courses exhibit some interesting features. The record obtained in the Sierra Leone Basin abyssal plain (Figure 6a) shows a smooth sea floor and several (up to four) subbottom reflectors. Such penetration with a 12kHz PDR can be related to the possible occurrence of very fine-grained and soft sediments at the sea floor, which suggests a low-energy environment with minimal bottom-water circulation in recent times. While approaching the base of Sierra Leone Rise, the character of the PDR record changed and the occurrence of small depressions at the base of basement peaks (Figure 6b) is indicative of some bottom-current circulation. Finally the upper part of the rise (Figure 6c) exhibits a relatively rough microtopography suggesting some erosion by bottom currents. The seismic reflection profile recorded while approaching the site (Figure 3) shows particularly good evidence of such erosion where a channel is cutting relatively deep within the upper part of the sedimentary section.

LITHOLOGY .

Introduction

The sediments of Site 366 are predominantly a pelagic carbonate facies. We subdivided the section into four units, based on composition and color. Table 2 summarizes the lithologic sequence.

Lithologic Descriptions

Unit 1—Nannofossil Marl and Ooze (Cores 1A through 15A, Section 4)

This unit is composed of nannofossil marl and ooze with varying abundances of foraminifers, radiolarians, and diatoms. The first seven cores sampled nannofossil ooze and marl of moderate yellowish brown (10YR5/4) to dark yellowish brown (10YR5/8) color with CaCO₃ contents ranging from 47% to 88%. The next eight cores are classified as nannofossil oozes on the basis of higher CaCO₃ content (64% to 86%). They are very light gray (N8) to light olive-gray (5Y6/1). The whole unit is mottled, and in places contains very thin (5 to 15 cm) clay interbeds. This unit contains rare to common (1% to 25%) foraminifers, rare radiolarians (only in the Pleistocene section), diatoms, black ferromanganese (?) flecks, and fish debris. Cores 1 and 2 contain both marine and fresh-water diatoms and opal phytoliths.

Intense drilling disturbance in this unit precludes any further detailed description of sedimentary structures, contacts, or interbeds.

Unit 2—Cyclic Alternations of Nannofossil Ooze or Nannofossil Chalk and Nannofossil Marl or Pelagic Clay (Cores 15A, Section 5 [Hole 366A], through Core 16 [Hole 366])

This unit consists of cyclic alternations of nannofossil ooze and nannofossil marl (CaCO₃ ranges from

			Coring Sum	mary, Site 366			
Core	Date (Feb. 1975)	Time	Depth From Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recovered (m)	Recovery (%)
Hole 3	66						
1	22	2029	2870.0-2875.0	0.0-5.0	5.0	5.2	100
2	22	2138	2875.0-2884.5	5.0-14.5	9.5	7.7	81
3	22	2345	2989.0-2998.5	119.0-128.5	9.5	9.4	99
4	23	0255	3112.5-3122.0	242.5-252.0	9.5	3.8	40
5	23	0600	3236.0-3245.5	366.0-375.5	9.5	9.5	100
6	23	0709	3245.5-3255.0	375.5-385.0	9.5	8.1	85
7	23	0815	3255.0-3264.5	385.0-394.5	9.5	6.75	71
8	23	0930	3264.5-3274.0	394.5-404.0	9.5	4.85	51
9 10	23	1050	3274.0-3283.5	404.0-413.5	9.5	5.95	63
11	23 23	1158 1327	3283.5-3293.0	413.5-423.0	9.5 9.5	9.1 1.65	96 17
12	23	1451	3293.0-3302.5 3302.5-3312.0	423.0-432.5 432.5-442.0	9.5	5.8	61
13	23	1612	3312.0-3321.5	442.0-451.5	9.5	3.4	36
14	23	1725	3321.5-3331.0	451.5-461.0	9.5	6.9	73
15	23	1847	3331.0-3340.5	461.0-470.5	9.5	3.1	33
16	23	2011	3340.5-3350.0	470.5-480.0	9.5	3.2	34
17	23	2205	3350.0-3359.5	480.0-489.5	9.5	0.5	5
18	24	0023	3359.5-3369.0	489.5-499.0	9.5	0.5	5
19	24	0202	3369.0-3378.5	499.0-508.5	9.5	1.1	12
20	24	0415	3378.5-3388.0	508.5-518.0	9.5	1.8	19
21	24	0635	3388.0-3397.5	518.0-527.5	9.5	3.5	37
22	24	0821	3397.5-3407.0	527.5-537.0	9.5	3.2	34
23	24	1035	3407.0-3416.5	537.0-546.5	9.5	3.1	33
24	24	1322	3416.5-3426.0	546.5-556.0	9.5	4.9	52
25 26	24 24	1533 1733	3426.0-3435.5 3435.5-3445.0	556.0-565.5	9.5 9.5	1.8 3.2	19 34
27	24	1938	3445.0-3454.5	565.5-575.0 575.0-584.5	9.5	7.5	79
28	24	2139	3454.5-3464.0	584.5-594.0	9.5	6.5	68
29	24	2316	3464.0-3473.5	594.0-603.5	9.5	6.0	63
30	25	0125	3473.5-3483.0	603.5-613.0	9.5	0.6	6
31	25	0338	3483.0-3492.5	613.0-622.5	9.5	5.6	59
32	25	0545	3492.5-3502.0	622.5-632.0	9.5	7.0	74
33	25	0747	3502.0-3511.5	632.0-641.5	9.5	6.4	67
34	25	0940	3511.5-3521.0	641.5-651.0	9.5	6.7	71
35	25	1140	3521.0-3530.5	651.0-660.5	9.5	7.8	82
36	25	1319	3530.5-3540.0	660.5-670.0	9.5	7.1	75
37	25	1444	3540.0-3549.5	670.0-679.5	9.5	8.8	93
38	25	1601	3549.5-3559.0	679.5-689.0	9.5	8.3	87
39	25	1720	3559.0-3568.5	689.0-698.5	9.5	8.1	85
40	25	1845	3568.5-3578.0	698.5-708.0	9.5	8.8	93
41 42	25 25	2004	3578.0-3587.5 3587.5-3597.0	708.0-717.5 717.5-727.0	9.5	8.2 9.5	86 100
42	25	2140 2344	3597.0-3606.5	727.0-736.5	9.5 9.5	9.5	100
44	26	0213	3606.5-3616.0	736.5-746.0	9.5	7.5	79
45	26	0444	3616.0-3625.5	746.0-755.5	9.5	8.5	90
46	26	0715	3625.5-3635.0	755.5-765.0	9.5	3.6	38
47	26	0915	3635.0-3644.5	765.0-774.5	9.5	9.5+	100+
48	26	1225	3644.5-3654.0	774.5-784.0	9.5	9.5+	100+
49	26	1408	3654.0-3663.5	784.0-793.5	9.5	8.7	92
50	26	1610	3663.5-3673.0	793.5-803.0	9.5	6.4	67
51	26	1759	3673.0-3682.5	803.0-812.5	9.5	9.5+	100+
52	26	1941	3682.5-3692.0	812.5-822.0	9.5	0.2	2
53	26	2119	3692.0-3701.5	822.0-831.5	9.5	0.2	2
54	27	0036	3701.5-3711.0	831.5-841.0	9.5	0.0	0
55	27	0440	3711.0-3720.5	841.0-850.5	9.5	0.0	0
Hole 3	66A				518.0	304.0	59
		0101	20/0 0 2075 0	0070		60	100
1	27	2124	2869.0-2875.0	0.0-6.0	6.0	6.0	100
2 3	27 27	2227	2875.0-2884.5	6.0-15.5	9.5 9.5	9.5 8.6	100 91
3 4	27	2318 0008	2884.5-2894.0 2894.0-2903.5	15.5-25.0 25.0-34.5	9.5 9.5	8.6 9.2	91
5	28	0008	2903.5-2913.0	34.5-44.0	9.5	9.2	98
6	28	0144	2903.3-2913.0	44.0-53.5	9.5	8.6	91

TABLE 1 Coring Summary, Site 366

			D. J.E.	D (1 D 1			
Core	Date (Feb. 1975)	Time	Depth From Drill Floor (m)	Depth Below Sea Floor (m)	Cored (m)	Recovered (m)	Recovery (%)
Hole 3	66A – Continu	ed					
7	28	0233	2922.5-2932.0	53.5-63.0	9.5	6.0	95
8	28	0320	2932.0-2941.5	63.0-72.5	9.5	8.8	93
9	28	0415	2941.5-2951.0	72.5-82.0	9.5	8.4	88
10	28	0511	2951.0-2960.5	82.0-91.5	9.5	1.6	17
11	28	0604	2960.5-2970.0	91.5-101.0	9.5	8.4	88
12	28	0656	2970.0-2979.5	101.0-110.5	9.5	8.8	93
13	28	0748	2979.5-2989.0	110.5-120.0	9.5	7.3	77
14	28	0846	2989.0-2998.5	120.0-129.5	9.5	9.5	100
15	28	0935	2998.5-3008.0	129.5-139.0	9.5	9.5	100
16	28	1045	3008.0-3017.5	139.0-148.5	9.5	7.4	78
17	28	1145	3017.5-3027.0	148.5-158.0	9.5	9.5	100
18	28	1237	3027.0-3036.5	158.0-167.5	9.5	8.6	91
19	28	1325	3036.5-3046.0	167.5-177.0	9.5	0.0	0
20	28	1433	3046.0-3055.5	177.0-186.5	9.5	3.5	37
21	• 28	1545	3055.5-3065.0	186.5-196.0	9.5	9.5	100
22	28	1633	3065.0-3074.5	196.0-205.5	9.5	2.5	26
23	28	1730	3074.5-3084.0	205.5-215.0	9.5	9.1	96
24	28	1818	3084.0-3093.5	215.0-224.5	9.5	2.4	- 25
25	28	1914	3093.5-3103.0	224.5-234.0	9.5	1.5	16
26	28	2009	3103.0-3112.5	234.0-243.5	9.5	7.2	76
27	28	2058	3112.5-3122.0	243.5-253.0	9.5	8.3	87
28	28	2157	3122.0-3131.5	253.0-262.5	9.5	9.5	100
29	28	2251	3131.5-3141.0	262.5-272.0	9.5	8.6	91
30	28	2347	3141.0-3150.5	272.0-281.5	9.5	9.3	98
	March						
31	1	0048	3150.5-3160.0	281.5-291.0	9.5	6.5	68
32	1	0225	3160.0-3169.5	291.0-300.5	9.5	0.2	2
33	1	0319	3169.5-3179.0	300.5-310.0	9.5	8.4	88
34	1	0424	3179.0-3188.5	310.0-319.5	9.5	8.7	92
35	1	0523	3188.5-3198.0	319.5-329.0	9.5	7.9	83
36	1	0624	3198.0-3207.5	329.0-338.5	9.5	6.6	70
37	1	0720	3207.5-3217.0	338.5-348.0	9.5	8.0	84
38	1	0820	3217.0-3226.5	348.0-357.5	9.5	6.2	65
39	1	0918	3226.5-3236.0	357.5-367.0	9.5	6.1	64
Total					367.0	278.0	76

TABLE 1 - Continued

41% to 90%) which grade into cycles of nannofossil chalk (60% to 90% CaCO₃) and pelagic clay in Cores 23A through 16. The nannofossil ooze and nannofossil chalk are typically light greenish-gray (5GY8/1). The ooze becomes semilithified at 366 meters and thus is classified as chalk. The CaCO₃ content of these sediments varies from 65% to 90%. Burrows are common in this facies (see Harrington, this volume), especially *Chondrites* and *Zoophycos*, and some *Helminthoida*. Clay, foraminifers, radiolarians, fish debris, and ferromanganese(?) flecks and liesegang halos are rare to common and appear throughout these sediments. The halos are especially common around burrows (Figure 7).

The nannofossil marl and pelagic clay are yellowish brown (10YR5/4; marl) to dark greenish gray (5G6/1; pelagic clay). They are both burrowed with Zoophycos and Chondrites and some sections show thin parallel, horizontal laminations. Smear-slide analyses show rare to common nannofossils, radiolarians, sponge spicules, fish debris, and common diatoms. The varying abundance of nannofossils and lack of foraminifers distinguish this facies from the nannofossil ooze and chalk. Each cycle of Unit 2 is characterized by a nannofossil ooze overlying a nannofossil marl, or chalk over pelagic clay. The cycles vary from 10 cm to over 50 cm in thickness, and the more calcareous facies is always the thicker of the two components. Within each cycle the contact between the lower marl and the upper ooze is gradational, but the boundary separating individual cycles is generally sharp. See Dean et al., this volume, for more detailed description of these cycles.

Unit 3—Cyclic Alternations of Nannofossil Chalk and Porcellanite or Chert, and Siliceous Limestone (Cores 17 through 37)

Cyclic alternations of nannofossil chalk and siliceous limestone, porcellanite, and minor chert nodules characterize Unit 3. The nannofossil chalk is similar in most respects to that of Unit 2. They are light greenish gray (5GY8/1), semilithified, burrowed with Zoophycos, Chondrites, and some halo-rimmed burrows, and are laminated in some sections. The chalks have rare foraminifers and radiolarians and common euhedral and subhedral calcite. This facies grades into a siliceous limestone with depth, the

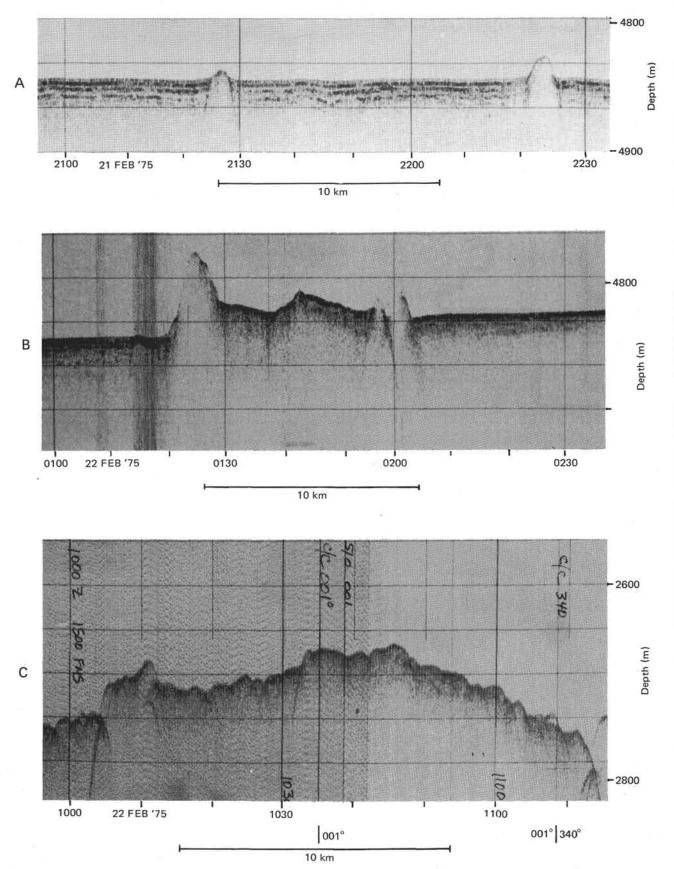


Figure 6. Precision Depth Recorder (PDR) profiles recorded while approaching the Sierra Leone Rise (see location on Figure 2).

TABLE 2 Lithostratigraphy at Site 366

Unit	Lithology	Cores	Age
1	Nanno marls and oozes	1A through 15A (0 to 136 m)	Pleistocene through middle Miocene
2	Cyclic alternations of nanno oozes or chalks and marls or pelagic clays	15A through 39A 5 through 16 (136 to 480 m)	Middle Miocene through middle Eocene
3	Cyclic alternations of nanno chalks and porcellanites/ cherts or siliceous lime- stones	17 through 37 (480 to 679.5 m)	Middle Eocene through early Eocene
4	Limestones and marlstones	38 through 55 (679.5 to 850.5 m)	Early Eocene to Upper Cretaceous

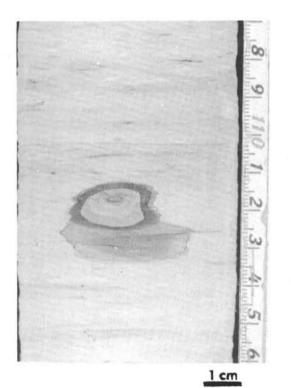


Figure 7. Section of Sample 41-366-21-2, 117-126 cm, showing manganese (?) liesegang halos which are common throughout Unit

uppermost occurring in Core 26, Section 2 (567 m). The youngest cherts occur in Core 19, Section 1 (508 m).

The porcellanite is light gray (N7) and shows subconchoidal fracturing. These often grade into light olive-gray (5Y6/1) chert, especially in burrows and within thin laminae. A typical sequence consists of about 15 cm of chalk, overlying about 10 cm of silicified limestone, or porcellanite. Chert nodules, when present, occur in the bottom 5 cm of the siliceous limestone or porcellanite.

By Core 29 (594 m) the nannofossil chalk grades into an argillaceous limestone-siliceous limestone (CaCO3 ranges from 68% to 84%). These are light gray (N8) to light greenish gray (5GY8/1) and have abundant ferromanganese(?) flecks, streaks, and laminae. The limestone is faintly laminated and contains abundant burrows. Thin interbeds of shale occur within the argillaceous limestone. Recrystallized calcite and calcite overgrowths on nannofossils are common in smear slides. Each cycle in this interval averages about 25 to 40 cm in length (4 to 6 cycles per core section), with about two-thirds of the cycle being the argillaceous limestone and one-third being the chert, porcellanite, or siliceous limestone.

The biogenic compositions of the two facies (siliceous limestone and argillaceous limestone), based on smear-slide descriptions, are quite similar; the clay and silica content are the main differences between facies. Both lithologies have abundant euhedral and subhedral calcite, rare foraminifers and radiolarians, and common nannofossils.

Unit 4-Limestone and Marlstone (Cores 38 through 55)

The principal lithologies of Unit 4 are greenish gray (5G6/1) argillaceous limestone and light gray (N7) siliceous limestone which grade with depth into light olive-gray (5Y6/1) marlstone (Core 48, Section 3, 776 m) having carbonate contents between 62% and 71%. This unit is thinly laminated and burrowed, with common thin (2 to 4 cm) shaly interbeds. Smear slides contain rare foraminifers and nannofossils, and abundant recrystallized calcite. Radiolarians become very rare to absent in this unit. Disseminated pyrite occurs in zones from Cores 44 through 46.

Thin (~5 cm) interbeds and lenses of calcarenite occurs from Core 41, Section 6, 130 cm, through Core 44, Section 5. These calcarenites contain abundant foraminifers (CaCO₃ content around 75%) with rare to common clay. They could represent lag deposits caused by current winnowing. The calcarenite lenses are commonly rimmed by a darker halo.

By Core 48, Section 3 (776 m), the above siliceous and argillaceous limestones have graded into a light olive-gray marlstone (CaCO₃ content 60%). The marlstone differs from the overlying limestone not only in composition but also in degree of cementation. Burrows, especially *Chondrites* and *Zoophycos*, are well developed in this lithology.

Summary

Overall, the sediments recovered at Site 366 provide an almost continuous record of open-marine pelagic conditions for the entire Cenozoic. The high CaCO₃ content of the section indicates that the Sierra Leone Rise has been above the CCD throughout the Cenozoic.

Unit 4 contains evidence of current winnowing, the only apparent breaks in sedimentation found in the entire section. The induration of the sediments and the occurrence of flattened burrows suggest a considerable amount of compaction.

The lower to middle Eocene section (Unit 3) consists of chalk and limestone of varying clay content. The variations in relative proportions of clay and CaCO₃ are interpreted as the result of CaCO₃ dissolution, and by dilution by terrigenous material (Dean et al., this volume). Cycles of CaCO₃ and clay, with periodicities on the order of 7000 to 21,000 years, are modified by post-depositional cementation by SiO₂ and CaCO₃.

Sediments with the highest $CaCO_3$ content were selected for both $CaCO_3$ and SiO_2 cementation, during diagenesis, which in alternations of siliceous limestone, and either chalk, marl, or argillaceous limestone, all containing more clay than the siliceous limestone.

The middle Eocene to middle Miocene chalks and marls (Unit 2) are also cyclic, but the cycles are relatively simple variations in proportions of CaCO₃ and clay and unmodified by CaCO₃ of SiO₂ cementation. Here, the two lithologies which make up a cycle, nannofossil ooze or chalk alternating with nannofossil marl or pelagic clay, are also interpreted as being mainly the result of CaCO₃ dissolution. The periodicities of these dissolution cycles are on the order of 30,000 to 50,000 years.

The middle Miocene to Holocene sediments (Unit 1) probably represent conditions prevailing on the Sierra Leone Rise today. Unfortunately, drilling disturbance was too intense to allow interpretation of any cyclicity.

The section sampled at Site 366 represents an excellent example of progressive diagenesis with depth in pelagic carbonate sediments (see Gardner et al., this volume). Unit 1 shows no obvious diagenetic features and minimal compaction, but Unit 2 shows evidence of compaction in some zones. This is followed in Unit 3 by calcite overgrowths on nannofossils, an increase in the number of zones showing compaction, and extensive cementation by $CaCO_3$ and SiO_2 . Unit 4 shows extensive calcite overgrowths on nannofossils, sparry calcite infilling of foraminifer tests and almost all of the unit shows evidence of compaction and cementation.

The carbonate cycles of Site 366 can be correlated with equivalent cycles recovered from Leg 40, Site 363 and 362A, on the Walvis Ridge and Leg 39, Site 354, on the Ceará Rise (see Dean et al., this volume).

GEOCHEMICAL MEASUREMENTS

Carbon/Nitrogen Measurements

A method for shipboard measurements of organic carbon to total nitrogen ratios was developed while at this site using the Hewlett-Packard Model 185B CHN Analyzer. Details of the method are given in the Introduction (this volume).

Results for organic carbon and carbon:nitrogen determinations for Site 366 are given in Table 3. All weight percentages have been converted to total dry weight basis or atomic ratio for carbon:nitrogen. The sparsity of sampling in the upper sediment as well as low precision encountered in the method prevents any meaningful interpretation. An electronic problem in the CHN Analyzer prevented analyses of sediments from Hole 366A.

Interstitial Gas Analysis

No cores at Site 366 yielded noticeable gas; however, gas bubbles formed in Cores 8A, 19A, and 21A while waiting to be split. Sampling both through the end caps and liner failed to detect light hydrocarbons. Sections 8A-6 and 18A-4 had elevated CO₂. Assuming 300 ppm CO₂ for ocean air, the CO₂ concentration was 1817 ppm of gas recovered for Section 8A-6 and 1631 ppm

for Section 18A-4. Gas in Section 21A-1 had no significant increase in CO₂.

Carbonate Bomb Measurements

The results of the "Carbonate Bomb" measurements for percent CaCO₃ are given in Table 4 and Figure 8 for Site 366. In order to help interpret the wide variations in percent CaCO₃, the lithology at each sampling interval in the cores is also given in Table 5. This lithology is based on the visual description and smearslide examination made as soon as the cores were split.

Interstitial Water Chemistry

At Site 366, five whole sections, 6 cm long, were squeezed to collect samples for interstitial water chemistry. By Core 20-1, the sediment is so lithified that excessive hydraulic pressures are necessary, hence preventing further sampling down in the section. An additional six samples were squeezed at Hole 366A. Results are tabulated in Table 5 and graphic representation appears in Figure 9.

PHYSICAL PROPERTIES

Lithologic variations throughout the sequence are strongly reflected in the physical properties data (see Trabant, this volume, for description of techniques used). This site allows a comparison of physical properties to be made between siliceous and calcareous sediments. No major unconformities were discovered at this site, thus all changes in physical properties may be attributed directly to primary variations in sedimentation and to diagenetic effects caused by compaction, cementation, and dissolution.

Bulk Properties

Bulk-property measurements were taken from one section of each core for bulk density, water content, void ratio, porosity, and specific gravity solids. Sound velocity and shear strength data were obtained, where feasible, prior to sampling for bulk properties measurements.

Porosities are equitable values in the description of sediment bulk properties but any of the other parameters would have been just as descriptive. A plot of porosities against depth is shown in Figure 10. The lithologic boundaries correspond with sharp changes in porosity values. Each unit is characterized by definite porosity ranges. The lowest values (10% to 15%) occur within the interbedded cherts and porcellanites of Unit 3. Two zones with relatively high porosities occur within the early Miocene (150 to 250 m) and early Eocene (600 to 700 m) where accumulation rates were high 40 and 60 m/m.y., respectively. Porosities within the lower Miocene section of nannofossil ooze and marl range between 60% and 65%. The chalk and limestone within the lower Eocene interval have porosities ranging between 35% and 45%. It is possible that overlying chert layers and argillaceous limestone layers have sealed off this lower zone and subsequently reduced the process of compaction by preventing the upward flux of pore water.

		caroon and i	uniogen A	mary ses at	Dite 50	0
Sample	Depth	% Orga (total dry		C/ (atomic		
(Interval in cm)	(m)	x	SD	x	SD	Remarks
3-4, 84-85	126	0.046	0.010	7.0	1.0	
3-5, 76-77	127	0.049	0.012	4.8	0.4	
7-3, 71-72	394	0.113	0.020	2.7	1.0	
12-3, 76-77	441	0.094	0.003	5.5	0.4	Residue from CO ₃ Bomb
16-2, 7-8	471	0.082	0.060	4.4	1.8	5
19-2, 103-104	508	0.129	0.021	7.6	1.2	
22-1, 49-50	528	0.148	0.017	6.6	1.9	Residue from CO ₃ Bomb
25-2, 60-61	565	0.106	0.014	4.6	1.6	······································
26-2, 1-2	574	0.567	0.001	11.6	1.8	Green clay layer
31-2, 111-112	620	0.084	0.005	7.4	1.2	5 S
34-5, 133-134	651	0.080	0.014	6.4	1.9	
37-3, 25-26	675	0.100	0.014	3.0	1.2	
40-3, 77-78	705	0.047	0.013	8.0	3.6	
44-3, 86-87	740	0.126	0.030	5.0	2.7	

TABLE 3 Carbon and Nitrogen Analyses at Site 366

Shear Strengths

Only a few shear strength measurements were obtained to a depth of 160 meters below the sea floor due to the limited upper sequence of soft unconsolidated sediments, and the disturbed nature of these samples. Variations in shear strength (cohesion as measured by the miniature-vane apparatus) strongly reflect the lithologic change from Unit 1 to Unit 2. Shear strengths range between 0.3 and 1.8 kg/cm² with the nannofossil marl and ooze of Unit 1, whereas they increase to over 5.0 kg/cm^2 within the firmer chalk and marl of Unit 2.

Acoustic Velocities

Compressional wave velocities (Vp) were obtained using the Hamilton Frame velocimeter. Soft sediments were tested in split liners, but the more indurated chalk, limestone, and chert were cut into small cubes (20 to 50 cm³ each) and velocities obtained both vertically and horizontally.

A plot of velocity versus depth is presented in Figure 11. These show a slow increase in velocity down to 400 meters, where nannofossil ooze and marl grade into indurated chalk. Velocities at this depth begin increasing rapidly to nearly 3.0 km/sec, and interlayered chert produces velocities at and above 4.0 km/sec. Below this interval a noticeable reduction in velocities is observed between a depth of 600 to 700 meters which corresponds to the previously discussed high porosity zone. Velocities within the deepest sediments penetrated range between 2.8 and 2.9 km/sec.

Anisotropy between horizontal and vertical measurements of Vp within chert layers is quite large. Vertical velocities are markedly *lower*, as was found to be the case for similar cherts retrieved during Leg 32 (Site 303). This directional dependence was attributed by Marshall (1975) to the presence of unsilicified or less silicified (porcellanite) interlayers within the chert.

Summary

Mass physical properties data for Site 366 (summarized in Trabant, this volume) do not display simple relationships which can be correlated with either depth or time. Diagenetic processes other than compaction appear to have taken place.

The upper Eocene chert and limestone section has higher velocities (Vp) and lower porosities than adjacent lithologic units.

Lower Eocene sediments are highly porous, considering the depth of burial (600 to 700 m) and the Vp values are consequently low (1.9 to 2.3 km/sec). This lower Eocene section can be considered under consolidated in terms of physical property data, whereas the overlying chert and limestone unit appears overcompacted due to cementation effects.

BIOSTRATIGRAPHY

The most noteworthy feature of this site is the biostratigraphic continuity of the Cenozoic, based on identification of the zonal succession of foraminifers, nannofossils, and radiolarians. Only minor hiatuses were detected. A substantial portion of the Cenozoic section contains well-preserved diatom assemblages as well. Consequently, there exists at this site an excellent opportunity to establish a more precise diatom zonation for the tropical Atlantic, and to determine precise correlations between the zonal boundaries for *all* of the microfossil groups. The proposed correlation between the principal zonal successions is included in the biostratigraphic synthesis (Cepek et al., this volume).

The Cretaceous-Tertiary boundary occurs near the base of the site, but was not sampled due to technical difficulties (see operations resume). Two foraminiferal zones (*Globorotalia eugubina* Zone-*G. pseudobulloides* Zone, and *Abathomphalus mayaroensis* Zone) and two nannofossil zones (*Markalius inversus* Zone) and two nannofossil zones (*Markalius inversus* Zone), which correspond to the lowermost Danian and uppermost Maestrichtian stages, were not recovered. Presumably, these zones are represented in the unsampled stratigraphic intervals (about 20 m thick) at the base of the hole. The evidence suggests that there is no depositional hiatus at the Cretaceous/Tertiary boundary on the Sierra Leone Rise.

 TABLE 4

 % CaCO3 - Carbonate Bomb Analyses, for Site 366

Sample	Depth		
(Interval in cm)	(m)	% CaCO ₃	Lithology
Hole 366			
3-1, 25-26	120	72	Nanno ooze
3-2, 25-26	121	83	Nanno ooze
3-4, 84-85	125	59	Nanno ooze
3-5, 82-83	127	62	Nanno ooze
4-2, 136-137	249	79	Nanno chalk
6-3, 64-65	380	79	Nanno chalk
7-3, 71-72	391	83	Nanno chalk
9-3, 61-62 10-2, 58-59	411 415	79	Nanno chalk
11-1, 52-53	413	72 75	Nanno chalk Nanno chalk
12-3, 76-77	439	58	Clay and nanno chalk
13-2, 82-83	449	54	Nanno chalk
14-3, 82-83	457	14	Nanno chalk
15-1, 54-55	467	83	Nanno chalk
16-2, 7-8	477	73	Nanno chalk
19-1, 103-104	508	83	Nanno chalk
20-2, 131-132	517	79	Nanno chalk
21-2, 81-82	525	92	Nanno chalk
22-1, 49-50	534	83	Nanno chalk
23-1, 63-64	544	37	Siliceous limestone/
	200		porcellanite
23-1, 68-69	544	87	Chalk
24-2, 105-106	552	37	Porcellanite
24-2, 110-111	552	79	Chalk
25-2, 60-61	563	40	Porcellanite
26-3, 81-82	574	73	Chalk
27-2, 79-80 28-3, 58-59	579 590	62 62	Siliceous limestone Argillaceous limestone
29-2, 37-38	599	67	Argilaceous limestone
30-1, 111-112	613	29	Chert limestone
31-2, 134-135	619	14	Argillaceous limestone
34-5, 133-134	650	55	Argillaceous limestone
35-3, 113-114	655	56	Argillaceous limestone
36-3, 33-34	665	58	Argillaceous limestone
37-3, 25-26	673	37	Argillaceous limestone
38-3, 47-48	683	46	Argillaceous limestone
39-3, 123-124	693	55	Argillaceous limestone
40-3, 77-78	702	47	Argillaceous limestone
41-3, 76-77	712	56	Argillaceous limestone
42-3, 123-124	722	71	Argillaceous limestone
43-3, 128-129	731	72	Siliceous limestone
44-3, 24-25	740	4	Shale
45-3, 43-44	750	71	Limestone
46-3, 64-65	764	65	Siliceous limestone
47-3, 42-43	769	65	Siliceous limestone
48-3, 44-45	778	58	Marlstone
49-3, 85-86	788	57	Marlstone
50-3, 107-108 51-2, 77-78	798 805	65 72	Marlstone Argillaceous limestone
Hole 366A	-2022	2.7	
2-3, 66-67	10	56	Nanno marl
3-3, 63-64	19	68	Nanno marl
4-3, 24-25	28	49	Nanno marl
5-3, 76-77	38	66	Nanno marl
7-3, 44-45	57	46	Nanno marl
8-3, 104-105	67	92	Nanno ooze
9-3, 77-78	76	86	Nanno ooze
10-1, 54-55	90	84	Nanno ooze
11-3, 54-55	95	83	Nanno ooze
12-3, 110-111	105	72	Nanno ooze
14-3, 91-92	124	68	Nanno ooze
15-3, 103-104	134	60	Nanno ooze
16-3, 140-141	145	60	Nanno ooze
17-3, 90-91	152	72	Nanno ooze

TABLE 4	- Continued

Sample (Interval in cm)	Depth Subbottom (m)	% CaCO ₃	Lithology
Hole 366A – Con	ntinued		
18-3, 83-84	162	81	Chalk
20-3, 104-105	186	77	Chalk
21-3, 74-75	190	79	Chalk
23-1, 26-27	205	7	Pelagic clay
23-1, 45-46	205	71	Chalk
23-3, 72-73	208	80	Chalk
23-3, 78-79	208	22	Clay
24-2, 95-96	223	80	Chalk
26-3, 113-114	240	80	Chalk
27-3, 108-109	247	78	Chalk
28-3, 76-77	257	76	Chalk
29-3, 72-73	266	79	Chalk
30-3, 54-55	276	73	Chalk
31-3, 84-85	287	81	Chalk
33-3, 84-85	305	76	Chalk
34-3, 78-79	314	76	Chalk
35-3, 73-74	323	80	Chalk
36-3, 53-54	334	69	Clay
37-3, 96-97	343	84	Nanno ooze
38-3, 45-46	353	85	Chalk
39-3, 91-92	364	86	Chalk

Foraminifers

Cenozoic

Foraminiferal assemblages of Cores 1, 2, 1A, 2A, and 3A are Pleistocene in age. They contain rich and diverse assemblages of planktonic foraminifers. However, specimens of *Globigerina bulloides* and *Globorotalia inflata* are rare. This assemblage has a tropicalsubtropical character and very good preservation.

The presence of pink Globigerina ruber and Globigerinoides rubescens in Cores 1 and 1A indicates a late Pleistocene age but the occurrence of Globorotalia tumida flexuosa gives a minimum age of 80,000 yr B.P.. We have subdivided the Pleistocene sequence (Globorotalia truncatulinoides Zone) into Globorotalia crassaformis viola Subzone, the Globorotalia crassaformis hessi Subzone, and the Globigerina calida calida Subzone.

Benthic foraminifera are scarce and represented by *Pullenia*, *Sphaeroidina*, *Cassidulina*, *Uvigerina*, thin-walled miliolids and nodosariids, all deep-water forms.

Pliocene assemblages were recovered in Cores 4A through 9A. The upper zone of Pliocene (the *Globorotalia tosaensis* Zone) was identified in Core 4A, Section 1 through 3, but the index species is missing.

The Globorotalia miocenica Zone is found in Cores 4A through 6A and was divided into two subzones; the Globorotalia exilis Subzone and the Globigerinoides fistulosus Subzone.

The assemblage of planktonic foraminifers from Cores 6A through 9A are assigned to the *Globorotalia* margaritae evoluta Zone.

Tropical and subtropical species of planktonic foraminifers are well-preserved, abundant and, with the

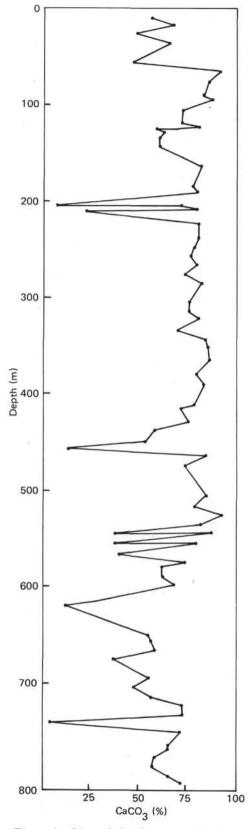


Figure 8. Plot of CaCO₃ versus depth at Site 366.

scarcity of benthic foraminifers, testify to open marine pelagic environments.

Cores 10A, 11A, and the upper part of the 12A have rich assemblages of tropical-subtropical planktonic foraminifers which are correlated with the *Globorotalia margaritae margaritae* Zone, a transitional zone between Pliocene and Miocene. *Globorotalia tumida tumida* was not found. Evidently, in the Sierra Leone Rise section as well as in other areas of the Atlantic and Caribbean regions, this species appears later in the Pliocene.

Faunas of lower and upper Miocene are well developed and can be divided into a number of zones, whereas the section of middle Miocene is condensed and only three zones are recognized. Our use of upper Miocene includes the Messinian and Tortonian stages. The abundant planktonic foraminifers of the *Globorotalia plesiotumida* Zone (Cores 12A and 13A) are well or moderately preserved and have tropical to subtropical affinities. Low benthic/planktonic foraminifer ratios suggest deep-water pelagic conditions.

The Globorotalia acostaensis Zone (Cores 3, 14A, and 15A, upper part) has numerous specimens of Globorotalia acostaensis, but G. plesiotumida, G. dutertrei, and Candeina nitida nitida are absent. The microfauna has a tropical to subtropical affinity, good preservation, and indicates deep-water conditions.

Upper and middle Miocene sediments are separated by a small hiatus with three zones missing: the Globorotalia continuosa Zone; Globigerina nepenthes/Globorotalia siakensis Zone; and the Sphaeroidinellopsis subdehiscens/Globigerina druryi Zone.

Middle Miocene faunas are found in Cores 15A and 16A. They belong to the *Globorotalia fohsi lobata* Zone, *Globorotalia fohsi/fohsi* Zone, and *Globorotalia peripheroronda* Zone. Good to moderately preserved faunas are seen throughout this interval. A peculiar feature of the microfauna is the presence of *Cl. bermudezi* and a scarcity of *Orbulinas*. We separated the middle and lower Miocene by a hiatus within Core 16A, which corresponds to two zones: the *Orbulinas suturalis-Globorotalia peripheroronda* Zone and the *Praeorbulina glomerosa* Zone.

The only zone of the lower Miocene not found is the Praeorbulina glomerosa Zone. Cores 16A through 18A are attributed to the Globigerinatella insueta-Globigerinoides trilobus Zone. The specific composition of planktonic foraminifers enables a precise zonal definition even though the zonal marker (G. insueta) is extremely rare. Cores 20A through 22A contain faunas correlated with the Globigerinita stainforthi-Globigerinita dissimilis zones. Cores 23A through 26A represent the Globigerinita dissimilis Zone. Cores 4 and 26A, 28A, Section 1 include the oldest Miocene microfauna, the Globigerinoides primordius-Globorotalia kugleri Zone. We consider the lower Miocene planktonic foraminifers to be tropical to subtropical assemblages. The ratios between planktonic and benthic foraminifers indicates deep-water conditions through the early Miocene.

Rich planktonic foraminiferal assemblages in the upper part of the section allowed us to carry out the standard Oligocene zonation but in the lower part of the section foraminifers are fairly rare, badly preserved, and our zonation becomes tentative.

Sample (Interval in cm)	Depth (m)	pH	Alkalinity (meq/kg)	Salinity (°/00)	Ca ⁺⁺ (mmoles/l)	Mg ⁺⁺ (mmoles/l)	Cl (°/)
Hole 366							
1-2, 0-6	1.5	7.30	3.43	35.2	11.72	52.90	19.24
3-5, 0-6	131.5	6.86	5.90	35.5	19.90	54.57	19.11
4-2, 144-150	248.5	6.79	5.82	35.8	24.19	56.53	17.98
5-5, 142-150	375.5	6.78	5.42	36.0	27.03	56.24	19.38
10-4, 144-150	419.5	7.07	4.22	38.0	33.67	56.24	19.31
15-2, 0-10	462.5	6.82	4.47	36.3	34.92	57.41	19.31
30-1, 135-150	510.0	6.85	0.60	36.0	42.75	56.39	19.05
Hole 366A							
1-3, 144-150	4.5	7.52	3.22	35.2	11.34	53.84	19.48
5-4, 144-150	40.5	7.13	4.06	35.8	13.42	54.58	19.72
9-5, 144-150	80.0	7.03	4.70	35.8	15.80	55.39	19.96
14-5, 144-150	127.5	6.93	5.98	36.0	20.06	56.86	19.82
20-2, 144-150	180.0	6.84	6.47	36.0	23.82	58.12	19.82
26-3, 144-150	238.5	6.76	6.99	36.3	28.18	59.15	20.06

TABLE 5 Summary of Shipboard Geochemical Data From Interstitial Water at Site 366

The uppermost zone (*Globorotalia kugleri* Zone s. s.) of the Oligocene appears in Cores 28A and 29A. Sample 29A, CC contains planktonic foraminifers transitional to the microfauna of the underlying *Globigerina ciperoensis* Zone. Cores 30A through 33A, Section 1, are correlated to the *Globigerina ciperoensis* Zone. Cores 33A through 39A, Section 1, belong to the *Globorotalia opima opima* Zone. Sediments of the *Globorotalia kugleri* s. s., *Globigerina ciperoensis*, and *Globorotalia opima opima* zones are marked by abundant or common planktonic foraminifers with good to moderate states of preservation, suggesting tropical to subtropical conditions.

By contrast, planktonic foraminifers of the lower part of the Oligocene (Cores 39A and 5 through 9) are few or even rare with poor to moderate preservation. We have correlated the sediments of Cores 39A, 5, and 6, Section 1 through 5, to the *Globigerina ampliapertura* Zone. Core 6, Section 6, is correlated to the *Globigerina* sellii Zone and Cores 7 through 9, Section 4, to the *Globigerina sellii-Globigerina tapuriensis* zones.

Benthic foraminifers in Cores 39A and 5 through 9 are more numerous and diverse compared to benthic microfauna or overlying zones. However, they also suggest deep-water conditions.

The upper and middle Eocene section has impoverished and poorly preserved microfaunas but the lower Eocene has relatively rich planktonic foraminifer faunas. Upper Eocene faunas are found in Cores 9, CC through 15. The uppermost zone of the upper Eocene (the Globigerina gortanii-Globorotalia centralis Zone), transitional to the Oligocene, is found in Core 10. Corroded deep-water benthic foraminifers are common. Cores 16 through 19 include comparatively diverse planktonic foraminifers and can be assigned to the Truncorotaloides rohri Zone. The microfauna is poor in underlying sediments. Core 20 is assigned to the Truncorotaloides rohri-Orbulinoides beckmanni zones. Cores 24 through 26 are assigned to the Globorotalia lehneri-Globigerapsis kugleri zones. Cores 27 and 28 belong to the Globigerapsis kugleriHantkenina aragonensis zones. Representatives of Orbulinoides, Hantkenina, Globigerinatheca, and keeled Globorotalia are missing or nearly absent. Benthic foraminifers are also very rare.

A thick succession of lower Eocene sediments contain very distinctive assemblages of planktonic foraminifers and all four zones of lower Eocene are found. Cores 29 through 31 correspond to the Globorotalia palmeri Zone. Cores 32 through 37 are attributed to the undifferentiated Globorotalia palmerae/Globorotalia aragonensis zones. Cores 38 through 40 belong to the Globorotalia aragonensis Zone. Core 40, Section 5 to Core 41, Section 5 has the microfauna of the Globorotalia formosa formosa Zone. Core 41, Section 6, contains poorly preserved planktonic foraminifers. The appearance of Globorotalia subbotinae suggests the transition to the underlying zone of this name. Cores 42 and 43, Section 1 are characterized by a typical assemblage of the Globorotalia subbotinae Zone.

The late Paleocene is well represented but the lower Paleocene is relatively condensed. The lowermost part of the Danian stage (the Globigerina eugubina Zone and the Globigerina pseudobulloides Zone) is missing due to drilling difficulties. Cores 43 through 47, Section 2, correspond to the upper Paleocene Globorotalia velascoensis Zone. Cores 47 through 49, Section 3, are attributed to the Globorotalia pseudomenardii Zone. Core 50 is correlated to the Globorotalia pusilla Zone s.s. of the lower Paleocene. Core 51, Section 1, belongs to the Globorotalia angulata Zone. Core 51, Section 2 through CC is correlated with the Acarinina uncinata Zone of the lower Paleocene. Cores 52 and 53 have been assigned to the Globorotalia trinidadensis Zone. Chiloguembelina are common in this section. Preservation of the planktonic foraminifers is poor in the upper part of the upper Paleocene and abundance is rare to few. In the lower part of the upper Paleocene and the lower Paleocene, the preservation is better and foraminifers are more numerous. Benthic foraminifers are rare, suggesting deep-water sedimentation.

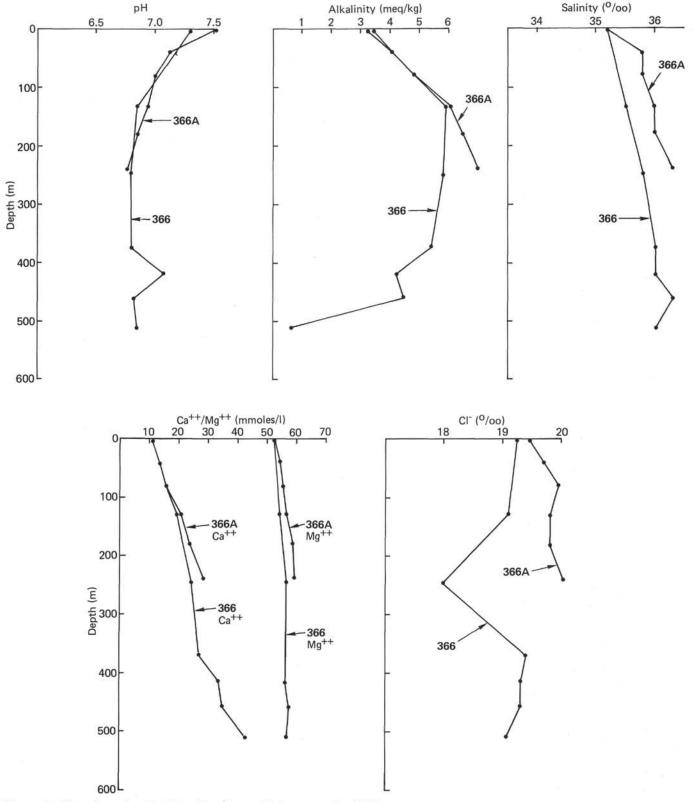
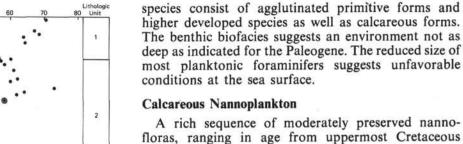



Figure 9. Plot of geochemical data from interstitial water at Site 366.

Mesozoic

Upper Cretaceous (Maestrichtian) faunas were encountered only in a sample recovered from the bit after retrieval of the drilling equipment. The depth of the sample is uncertain because the lowermost two cores were empty. The foraminifer fauna contains abundant planktonic specimens and large benthic forms. Preservation is moderate and, in comparison with Upper Cretaceous faunas from Tethys-Caribbean tropical to subtropical regions, the size of planktonic foraminifers is diminished. The Maestrichtian stage,

A new sequence of moderatery preserved namefloras, ranging in age from uppermost Cretaceous (*Lithraphidites quadratus* Zone) to Quaternary (*Emiliania huxleyi* Zone), was recovered at Site 366. After preliminary investigation, the nannofossils show no evidence for significant hiatuses and reworked specimens are extremely rare.

Representatives of the genus *Braarudosphaera*, which are indicators of shallow water and which are reported from South Atlantic legs (Leg 3, Sites 14, 17, 19, 20, 22; Leg 40, Sites 362, 363) in Oligocene chalks, were not found at this site.

Cenozoic

Pleistocene assemblages were recovered in Hole 366, Cores 1 and 2, and in Hole 366A, Cores 1A, 2A, and

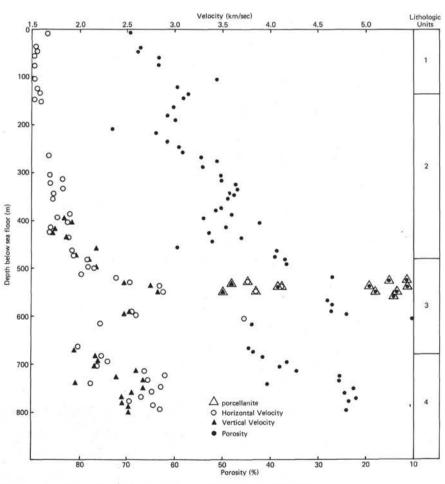


Figure 11. Plot of sonic velocity versus depth at Site 366.

Globotruncana contusa Zone is identified in these samples. Globotruncana (Abathomphalus) mayaroensis was not found in the material, so the uppermost zone of the Maestrichtian may not be represented. Benthic 3A. The assemblage of coccoliths is rich and fairly well preserved. Core 1 in Hole 366 from the top to Section 1, and Core 1A in Hole 366A from the top to Section 4, belong to the *Emiliania huxleyi* Zone. The *Gephyro*-

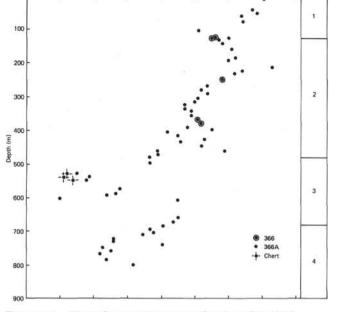


Figure 10. Plot of porosities versus depth at Site 366.

capsa oceanica Zone is represented in Hole 366 in the interval Core 1, Section 2, to Sample 1, CC and in Hole 366A in the interval below Core 1, Section 4. Core 2 in Hole 366, and Cores 2A and 3A in Hole 366A, belong to the *Emiliania ovata* Subzone. No reworked cocco-liths were found and no significant overgrowth or dissolution was observed.

Pliocene floras were recovered in Hole 366A to a depth of 82 meters. Common to abundant and generally well-preserved Pliocene coccolith assemblages of a rich tropical flora are indicative of the *Discoaster brouweri* Zone in Cores 4A to 6A and the *Reticulofenestra pseudoumbilica* Zone in Cores 7A and 8A. The samples are rich in discoasters, especially *D. pentaradiatus* and *D. brouweri*, which suggests warm waters. Many of the discoasters are broken in some slides but no significant overgrowth was observed. We use the Miocene/Pliocene boundary as the level between the *Ceratolithus acutus* Subzone and *Triquetrorhabdulus rugosus* Subzone which is found in Cores 9A and 10A.

Miocene assemblages are found in Cores 3 and 4 and 10A to 28A, giving the Miocene at least a 142.5 meter thickness. Upper Miocene coccoliths are abundant in Cores 10A to 12A and preservation is moderate. From Core 13A (\sim 110 m) to the Paleocene, the coccoliths are poorly to moderately preserved. Core 13A is assigned to the Catinaster calyculus Subzone. The middle Miocene is represented in Cores 13A to 18A. Assemblages of coccoliths are abundant, but moderately or poorly preserved. Great abundances of tropical zonal marker species, such as Discoaster hamatus, Catinaster coalitus, Discoaster exilis, and Spenolithus heteromorphus aid zonation. Cores 20A to 28A and Core 4 are lower Miocene and the floras indicate the presence of the Helicopontosphaera ampliaperta Zone, Sphenolithus belemnos Zone, and Triquetrorhabdulus carinatus Zone. Specimens are slightly to moderately overgrown. Warm-water taxa, Discoaster, Sphenolithus, and Triquetrorhabdulus are abundant. We place the Oligocene/Miocene boundary (Cores 27A and 28A) within the Discoaster deflandrei Subzone of the Triquetrorhabdulus carinatus Zone.

Cores 29A to 39A are of Oligocene age. The highest three Oligocene zones are present in these cores: Sphenolithus ciperoensis Zone, Sphenolithus distentus Zone, and Sphenolithus predistentus Zone. Cyclicargolithus floridanus and sphenolith species dominate the assemblages. The continuation of the Oligocene section is found in Hole 366, which was continuously cored from Cores 5 to 53 (366 to 832 m) through the Paleogene. The lowest sample of Hole 366A (39A, CC) is from the same stratigraphic level as sample 366-5, CC. In Hole 366 (Cores 6 to 10) Oligocene sediment from the Helicopontosphaera reticulata Zone and Sphenolithus predistentus Zone were recovered. Discoasters, which are the indicators for warm waters, are sparse or missing in the lower Oligocene in Cores 6 to 8. Species present are Discoaster deflandrei, D. nodifer, and D. tanii.

Core 10, CC contains a late Eocene coccolith assemblage including *Discoaster barbadiensis* and *Reticulofenestra reticulata*. Discoasters outnumber chiasmoliths, which are absent from many samples in upper Eocene Cores 10 to 16. Only low-latitude zonation can be applied. Determination of coccoliths in Cores 14 to 18 is difficult because of moderate to thick overgrowth and fragmentation of specimens. This part of the Eocene belongs to the *Reticulofenestra umbilica* and *Discoaster barbadiensis* zones. The coccoliths are no better through the middle Eocene (Cores 18 to 32). Only *Discoaster barbadiensis* and *D. strictus*, among the discoasters, retain their identity in the limestone and chert lithology.

Discoasters are few or common in the lower Eocene (Cores 32 to 41). Eocene assemblages are very poorly preserved and not common. They show partial overgrowth and partial dissolution.

Our Paleocene/Eocene boundary is assumed between the Discoaster multiradiatus Zone and the Discoaster diastypus Zone which is represented in Cores 41 or 42. Paleocene assemblages of coccoliths are found in Cores 42 to 53. The following zones were identified: Discoaster multiradiatus Zone, Discoaster mohleri Zone, Heliolithus kleinpellii Zone, Fasciculithus tympaniformis Zone, and Cruciplacolithus tenuis Zone. The abundance of coccoliths is few to abundant, and preservation is moderate to poor.

It is possible that the section on Sierra Leone Rise is continuous from uppermost Cretaceous to Paleocene. However, a distance of about 20 meters exists between the lowest Paleocene C. tenuis Zone (Core 53) and the upper Maestrichtian L. quadratus Zone (Sample 55, CC).

Mesozoic

Rich assemblages of late Maestrichtian age coccoliths were identified in Sample 55, CC belonging to the *Lithraphidites quadratus* Zone.

Radiolarians

Radiolarians are common and well preserved only within two stratigraphic intervals cored at Site 366: the late Pleistocene and the middle Miocene to lower Eocene. Radiolarians are absent in all other samples examined. It is possible that some calcified radiolarian tests may be present in the Paleocene and lower Eocene sediments, but none have been identified by standard preparation procedures.

The following Cenozoic radiolarian zonal boundaries (see Johnson, this volume; Riedel and Sanfilippo, 1974) have been identified within the early Neogene and Paleogene sediments cored at Site 366.

The base of the *Dorcadospyris alata* Zone lies between 157 and 158 meters in Core 17A. The base of the *Calocycletta costata* Zone lies between 163 and 164 meters in Core 18A. The base of the *Stichocorys wolffii* Zone lies between the bottom of Core 20A and the top of Core 21A. The base of the *Stichocorys delmontensis* Zone lies between the bottom of Core 25A and the top of Core 26A. The base of the *Cyrtocapsella tetrapera* Zone lies between 246 and 248 meters in Core 27A. The base of the *Lychnocanoma elongata* Zone lies between 270 and 277 meters in Cores 29A and 30A. The base of the *Dorcadospyris ateuchus* Zone lies between 341 and 342 meters in Core 37A. The base of the *Theocyrtis* tuberosa Zone lies between 405 and 413.5 meters in Core 9. The base of the Theocyrtis tuberosa Zone lies between 489.5 and 499 meters between Sample 17, CC and Core 19, Section 1. The Podocyrtis goetheana Zone was identified only in Section 19-1. The base of the Podocyrtis chalara Zone lies between 519 and 520 meters in Core 21. The base of the Podocyrtis mitra Zone lies between 530 and 537 meters in Core 22. The base of the Podocyrtis ampla Zone lies between 540 and 546.5 meters in Core 23. The base of the Thyrosocyrtis triacantha Zone lies between 590 and 591 meters in Core 28. The base of the Theocampe mongolfier Zone lies between 601 and 603.5 meters in Core 29. The base of the Theocotyle cryptocephala cryptocephala Zone and Phormocyrtis striata striata Zone lies in the interval below 622.5 meters in Core 31. Radiolarians were very rare and poorly preserved in all samples examined from below this depth.

The absence of identifiable radiolarians in much of the upper Neogene section and in the Paleocene section is noteworthy, and may have significant paleooceanographic implications. The Sierra Leone Rise evidently was not receiving significant siliceous skeletal material during a 15 m.y. interval from the middle Miocene until the late Pleistocene. Evidently the present locations of the zones of upwelling and high productivity in the equatorial Atlantic do not correspond with the positions of these zones during most of the late Neogene. A more precise documentation of this late Pleistocene shift in the circulation characteristics of the region will require a more extensive examination of the late Neogene depositional record over a wide geographic region within the equatorial Atlantic, including Site 354, Leg 39, Ceará Rise, where similar observations were reported.

The absence of Radiolaria from the earliest Cenozoic sediments at this site may have a similar paleoclimatic explanation, or alternatively may be explained in terms of diagenetic effects. The increasingly poorer preservation of the radiolarian assemblages with depth in the Eocene sediments strongly suggests a diagenetic alteration of the siliceous skeletal material, perhaps to calcite. However, examination of the coarse fractions before acid treatment failed to reveal identifiable calcified radiolarian tests, suggesting that perhaps siliceous sedimentation did not occur in the region during the earliest Cenozoic. An additional possibility is that silica was indeed deposited during the early Paleogene, but that diagenetic effects caused vertical migration of the silica and redeposition as chert in the overlying middle and late Eocene sediments. The resolution of the questions of silica accumulation during the early Cenozoic requires a more detailed examination of the cherts and of the coarse fraction within the early Cenozoic material.

Summary

Several additional preliminary observations can be made concerning the biostratigraphic succession recovered at Site 366:

1) The abundance and the degree of preservation of the different microfossil groups vary considerably

within the sampled interval. Diagenesis, dissolution, and variations in primary productivity all appear to be controlling factors in producing the variations observed. For example, the absence of Radiolaria from the middle Miocene to upper Pleistocene sediments is almost certainly indicative of substantial geographic migrations in the location and/or the intensity of upwelling in the eastern equatorial Atlantic. The increasingly poorer preservation of nannofossil assemblages with increasing age between the middle Miocene and Paleocene is probably a consequence of diagenetic overgrowths of calcite on the nannofossil specimens. The impoverished and poorly preserved foraminiferal faunas of the middle Eocene through lower Oligocene is perhaps a result of selective dissolution. All of these factors (diagenesis, dissolution, productivity) and perhaps others have played a major role in controlling the rates and types of sediments supplied to the sea floor and the effects of postdepositional alterations which we can observe.

2) Assemblages of *all* microfossil groups are remarkably free of contamination by reworking. None of the samples examined yielded evidence of vertical mixing or lateral redeposition. Particle-by-particle deposition of pelagic skeletal debris has been the dominant sedimentation process on this portion of the Sierra Leone Rise during the entire Cenozoic.

3) All microfossil groups represent tropical to subtropical assemblages for the entire Cenozoic. There is no evidence for any intrusions of extra-tropical water masses for significant periods of time during the Tertiary.

4) The water depth at Site 366 did not change substantially during the Cenozoic. The character of the benthic foraminiferal assemblages and the relative proportion of benthic to planktonic foraminifers requires that the site remained at intermediate depths (>2000 m) for most of the Cenozoic. However, the benthic foraminifers from the uppermost Cretaceous assemblages suggest that the water depth over the Sierra Leone Rise may have been somewhat shallower during the pre-Cenozoic.

ACCUMULATION RATES

The zonation of core-catcher material by the different planktonic organisms leads to similar trends in accumulation rate over a large time interval, although there are some differences between the absolute ages estimated for the different microfossil assemblages within individual core-catcher samples. Age assignment by nannofossils have been correlated to the Cenozoic time scale after Martini (1976); planktonic foraminifer zones have been assigned absolute ages following the zonation schemes of Berggren (1971), Blow (1969), and Saunders et al. (1973); and radiolarian zones have been correlated to the principal epoch boundaries according to the revised Cenozoic zonation of Riedel and Sanfilippo (1974). The data from the individual microfossil groups have been combined in Figure 12 to yield an approximate accumulation rate curve. The accumulation rates are not corrected for compaction.

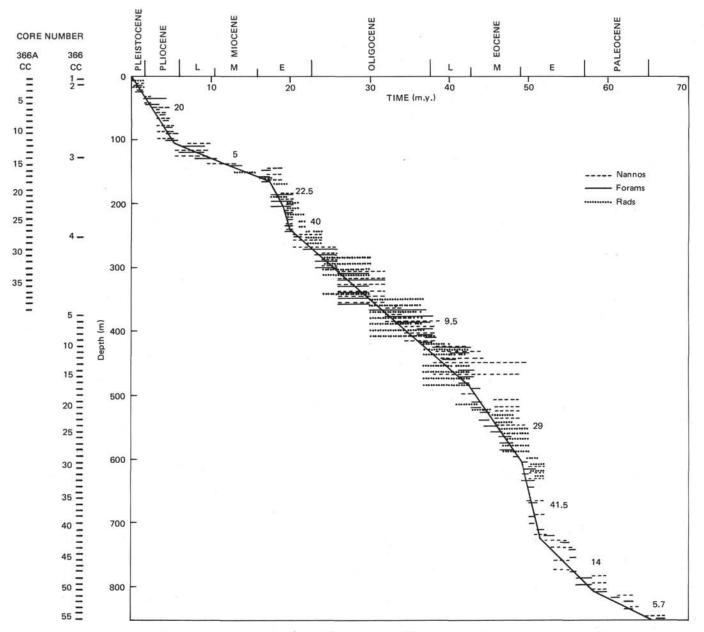


Figure 12. Average accumulation rate curve (in m/m.y.) for Site 366. The accumulation rates have not taken compaction into account.

The average Cenozoic accumulation rate is about 12 m/m.y. This rate is consistent with the continuously isolated position of Site 366 influenced primarily by pelagic deposition.

Six principal intervals can be distinguished on the accumulation rate curve obtained, disregarding the effects of compaction and dissolution. The Pleistocene/Pliocene time interval shows rates of about 20 m/m.y. The late and middle Miocene rate is about 5 m/m.y. There are quite constant deposition rates of about 10 m/m.y. from the early Miocene to the top of the middle Eocene, with an increased rate to 29 m/m.y. Rates of accumulation during the lower part of the lower Eocene are about twice as high (41.5 m/m.y.) as in the overlying interval. The lower part of the early Eocene and the Paleocene show normal rates of 5 to 15 m/m.y.

CORRELATION OF REFLECTION PROFILE WITH DRILLING RESULTS

The seismic reflection profiles recorded while approaching and leaving Site 366 (see Figure 5) show the acoustic section at the site to consist of a set of parallel reflectors. The correlation of the drilling results with these reflectors is based mainly on the record obtained while leaving the site at slow speed. Comparison with Lamont-Doherty seismic profiles recorded on the rise show that the reflectors observed on *Glomar Challenger* profiles are clearly of regional extension and significance.

The uppermost reflector observed at 0.26 sec below the sea floor is relatively faint. It probably corresponds with the younger stage of lithification of the calcareous sediments, as at several other DSDP sites located on carbonate-covered oceanic rises. At this site, however, drilling disturbances encountered in the soft chalk make the transition between ooze and chalk appear rather gradational. Therefore, no definite correlation between the lithology and the acoustic section can be established for this reflector, and no estimate of the interval sound velocity could be obtained for this uppermost part of the section. If a range of values of 1.60 to 1.70 km/sec (Figure 11) is considered probable for this interval, then the first reflector should correspond to layers situated at 210 to 225 meters below the sea floor.

A highly reflective horizon or set of closely spaced reflective horizons is observed at about 0.5 sec. Only the top of this reflective zone can be significantly correlated with drilling results because of intense reverberation within this horizon, probably resulting from multiple internal reflections. The top of this zone correlates quite well with the first (younger) occurrence of hard porcellanite layers appearing in the sedimentary column at about 480 meters subbottom. A definite decrease in the drilling rate is also recorded at that depth. Below that level, porcellanite and chert (below 508 m for the chert) are quite common down to about 680 meters. This correlation gives an estimate of 1.82 km/sec for the interval sound velocity of the layer between the sea floor and the first silicified layers. This value compares well with the velocities measured on core samples, and with interval velocities obtained from sonobuoys by Hoskins et al. (1974) on Sierra Leone Rise about 80 km southwest of Site 366.

Below the strong reflector, the seismic profile shows the presence of two lower ones. The uppermost of these lies at about 0.78 sec below the sea floor and the lowermost one is at 0.9 sec. The sedimentary layers corresponding with the latter were not reached at Site 366. The correlation between the reflector at 0.78 sec and a lithological change in the sedimentary column is questionable. A break in the drilling rate observed at about 740 meters subbottom does not seem to correspond with any marked change in the lithology. Moreover, a correlation between this drilling break and the reflector is unlikely because it would result in an unreasonably low interval velocity (2.0 km/sec for the limestone, siliceous limestone, and chert recovered between 480 and 740 m). An important change from limestone grading downward to marl is recorded at about 775 meters subbottom. This marl corresponds to a zone with a noticeable increase in the drilling rate.

A correlation between the reflector at 0.78 sec and the top of the marl gives an interval velocity of 2.11 km/sec, a rather low value, for the overlying lithologies. It is possible that the layers corresponding to that reflector were not sampled in Hole 366 because they lie at depths greater than total penetration (850.5 m). However, if the reflector corresponds with sedimentary layers from anywhere below the total depth, the sound velocity for the interval between that depth and the reflector at 0.5 sec would be greater than 2.65 km/sec. This value seems slightly too high, considering the relatively low proportion of chert versus marl and chalk in that part of the section. No indication about the nature of the lowermost reflector was obtained, because drilling terminated above them.

Figure 13 is a schematic interpretation of these results.

SUMMARY AND CONCLUSIONS

Figure 14 is a summary of the coring, lithology, biostratigraphy, and drilling rates at Site 366. The site was drilled in the upper part of the Sierra Leone Rise in a region where the seismic reflection profiles suggest the sedimentary section may be complete and undisturbed. The water depth of 2860 meters, well above the present level of the CCD, was a determining factor in the accumulation of a thick, relatively well preserved, and complete carbonate section. The Mesozoic part of the sedimentary record could not be sampled because of technical difficulties, but the almost complete Cenozoic section recovered makes the results of this site particularly interesting. The section was continuously cored from the sea floor to a subbottom depth of 850.5 meters. 582 meters of sediment, representing 68% of the drilled interval, were recovered. This overall recovery is close to the average recovery per core so, except for some cherty and porcellanitic horizons in the middle part of the section and for the lowermost 38 meters, the samples recovered can be considered representative of the entire section.

Most Significant Results

A nearly complete section of the Cenozoic was obtained. It represents a typical pelagic record for an oceanic rise and can be compared with the record obtained on similar elevated oceanic areas in the western Atlantic (Ceará Rise, in particular), and in the South Atlantic (Walvis Ridge and Rio Grande Rise), as well as in the Pacific (Shatsky, Hess, Magellan Rise, and Manihiki Plateau). This network of biostratigraphic reference sections covers different latitudes as well as different basins. The Sierra Leone Rise record appears to provide an ideal reference section for the low-latitude Atlantic Cenozoic record. Two characteristics make this record particularly useful:

1) the section is nearly complete and only very minor stratigraphic hiatuses are present; and

2) the presence of abundant planktonic foraminifers, nannoflora, radiolarians, and, to some extent diatoms, provides an excellent opportunity to correlate zonal boundaries obtained from these different microfossil groups in the tropical-subtropical environment.

Another aspect of the results obtained at this site is the very good opportunity to study the mode of deposition and diagenetic alterations of open marine deep-water carbonate facies. The relative importance of sediment input versus diagenesis can be studied in detail at this site because of generally constant and relatively high rates of accumulation. Also, of particular interest is the occurrence of cyclic sedimentation where the respective roles of dissolution and dilution can be estimated.

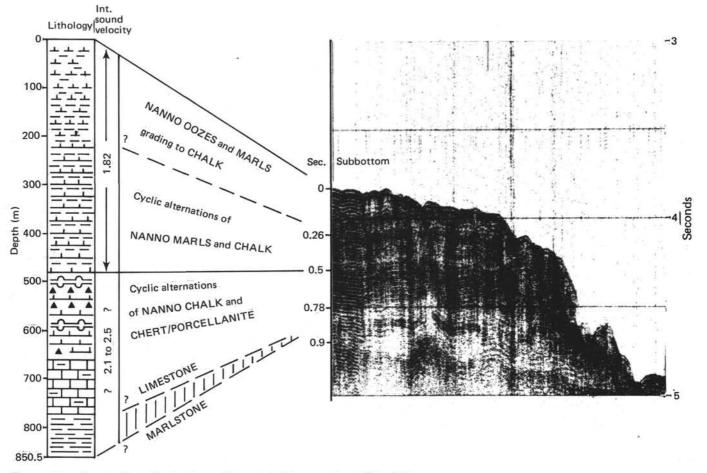


Figure 13. Correlation of seismic profile and drilling results at Site 366.

Nature of the Sediments

The section sampled consists of predominantly calcareous pelagic facies with carbonate values ranging from about 40% to 80%. The sediments are nannofossil ooze and marly ooze with common foraminifers, grading downward to chalk and marl, and then to limestone and marlstone. The middle to lower Eocene sediments show classical occurrences of silicified sediments in the form of interbedded porcellanite and chert. Most of the chalk, marl, and limestone show evidence of cyclic bedding with alternations of clay-rich and clay-poor calcareous beds. The average porosity of the sediment shows a general decrease toward greater depth from about 70% to 25%. The color varies within shades of brownish, grayish, and greenish gray with light greenish gray being largely dominant. Organic carbon content is always very low and averages about 0.1%.

Stratigraphy

Apart from minor hiatuses near the upper and lower boundaries of the middle Miocene, the Cenozoic record was completely sampled. In the lowermost part, however, near the Cretaceous/Tertiary boundary the lowermost zone of the Danian stage as well as the uppermost zone of the Maestrichtian stage were not recovered. However, the fact that these missing zones correspond to a sampling gap of about 38 meters, strongly suggests the absence of any hiatus at the Cretaceous/Tertiary boundary. Radiolarians are absent in upper Miocene, Pliocene, and early Pleistocene sediments, but below the lower Eocene they rapidly disappear. If the absence of radiolarians in the upper Miocene and the Pliocene sediments seems to correspond to a lack of radiolarians in the overlying waters at these times, then the relative influence of low input versus diagenetic dissolution in the lower part of the section is not clearly defined. Diatoms, usually well preserved, are present in many intervals (see Schrader, this volume). The complete absence of Braarudosphaera among the Oligocene nannofossils is noteworthy because it has been reported as abundant in the South Atlantic. This contrast provides a control over the lateral northern extension of the Braadrudosphaera chalks.

Paleoenvironment

The entire Cenozoic section was deposited in relatively deep water. Benthic assemblages and benthic/planktonic foraminifer ratios in the uppermost Cretaceous sediment, however, suggests a slightly shallower environment at that time. In any case, the sea floor on Sierra Leone Rise has always remained above the level of the CCD since at least the latest Cretaceous.

Bottom circulation is believed to have remained permanent during the entire Cenozoic, keeping the sediment-water interface always well oxygenated.

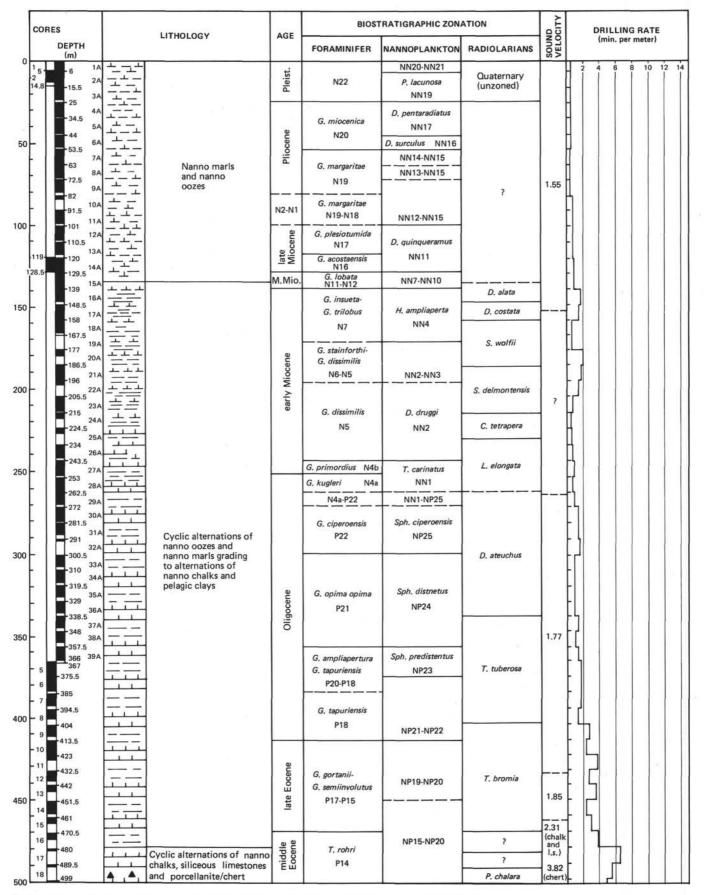


Figure 14. Summary of coring, lithology, biostratigraphy, and drilling rate at Site 366.

	CORES		LITHOLOGY	AGE	BIOST	RATIGRAPHIC ZONA	ATION	SOUND	DRILLING RATE
500	DEPTH (m)				FORAMINIFERS	NANNOPLANKTON	RADIOLARIANS	SOUN	(min. per meter)
	19 508.5	k≈≈4			T. rohri P14	4 1	P. mitra	2.31 (chalk	
	20 518 21 527.5			0	P14-P13	NP15-NP16	P. ampla	and I.s.)	
550	22 537 23 546.5			middle Eocene	P13-P12	NP14-NP16		3.82 (chert)	
550	- 25 - 25 - 26			middl	P12-P11		T. triacantha	+	
	- 27		Cyclic alternations of nanno chalks, siliceous		P11-P10	D. sublodoensis NP14	T. mongolfieri		
600	-29 -603.5 30		limestones and porcellanite/chert		G. palmerae	D. 3001000000311114	T. c. cryptoceph.	2.46	
	- ³¹ - ³² - ³² - ⁶¹³ - ^{622.5}				P9 P9/P8			1.	
650	33 - 641.5 34 - 651			ene	G. aragonensis	M. tribrachiatus			
	- ³⁵ 660.5			early Eocene	P8	NP12	?	1.96	
	- ³⁷ - 679.5			e				+	ζ
700					G. formosa P7 P7/P6				
	- 42 - 42 - 717.5 - 727		Limestones and marlstones		G. subbotinae P6	NP9-NP10]
750	- 44 			e	G. velascoensis	D. multiradiatus			
	- 46 - 47			late Paleocene	P5	NP9		2.52	
	- 48 - 784 - 49		(gradational)		G. pseudomenardii P4	<i>H. riedeli</i> NP8	?		
800	-50 -803 - ⁵¹ -812.5		Marlstone	E. Pal. Danian _S. I	G. pusilla P3b A. uncinata P2	F. tympaniformis NP5 Ch. danicus NP3			
	52 53 831.5			Danian s. s.	G. trinidadensis P1	C. tenuis NP2		-	
850	54 55 850.5			sno u	Globotruncana	? L. quadratus		-	<u> </u>
	T. D. (drill bit sample)			Late Cretaceous Maestrichtian	contusa				
		1		Late Maes					
900	-								
0.50									
950									
000									

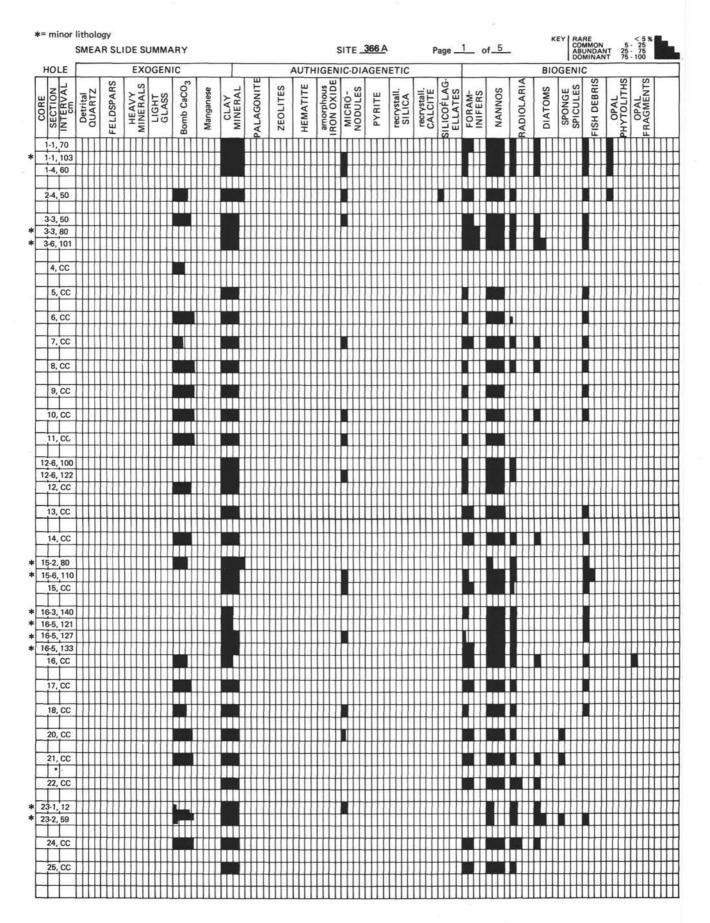
Figure 14. (Continued).

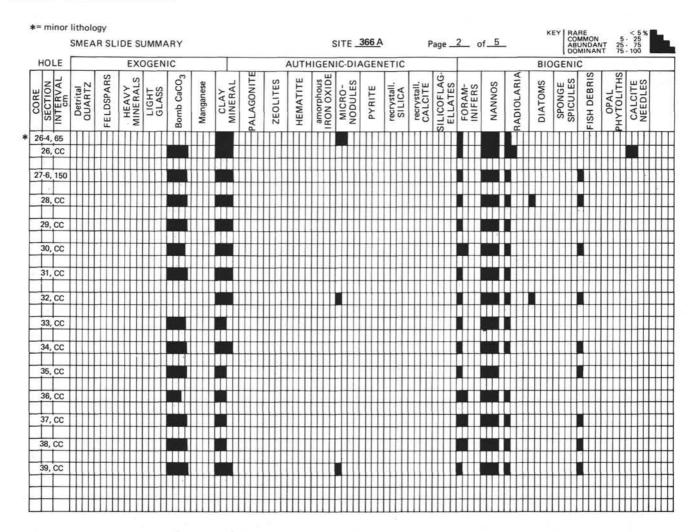
Bottom currents, however, were never strong enough to produce significant removal or non-deposition of sediments. The oxygenation of the bottom is attested to by the great abundance of burrows, thus the occasional occurrence of pyrite is believed to be related to reducing microenvironments within the sediment. The circulation during the early Eocene might have been slightly more vigorous, because lenses and thin layers rich in foraminifers indicate winnowing. Apparently the only period of very active bottom circulation has been relatively recent, suggested by evidence of erosion from both PDR and seismic reflection profiles (Figures 5, 6B, 6C).

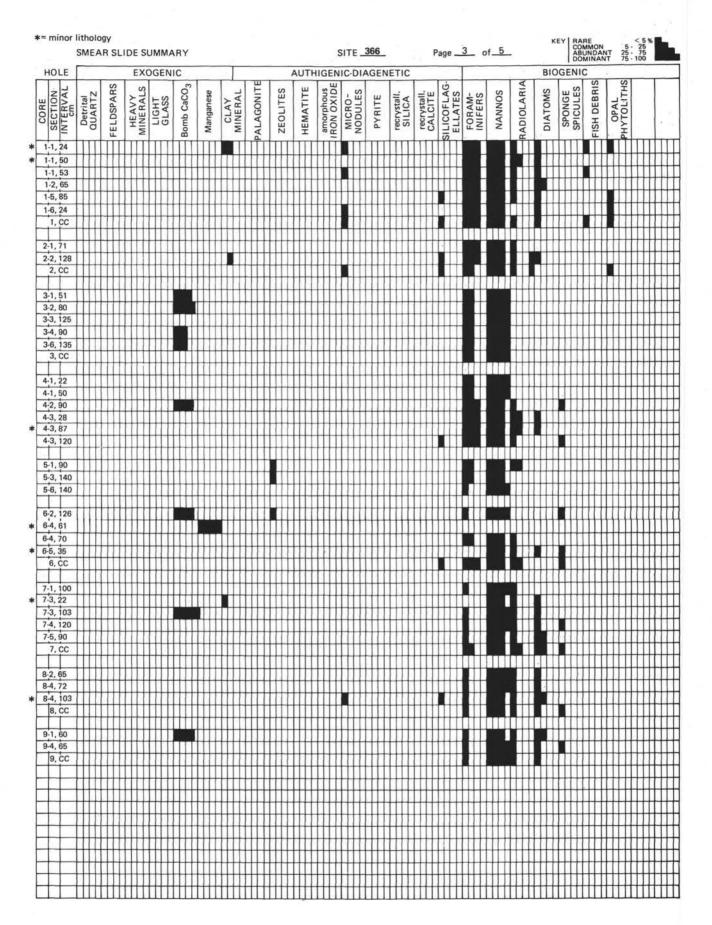
The productivity of the surface waters probably always remained relatively high. The distribution of radiolarians, however, suggests a reduction in the productivity during the early Pleistocene-Pliocene and the upper Miocene, as well as before the middle Eocene.

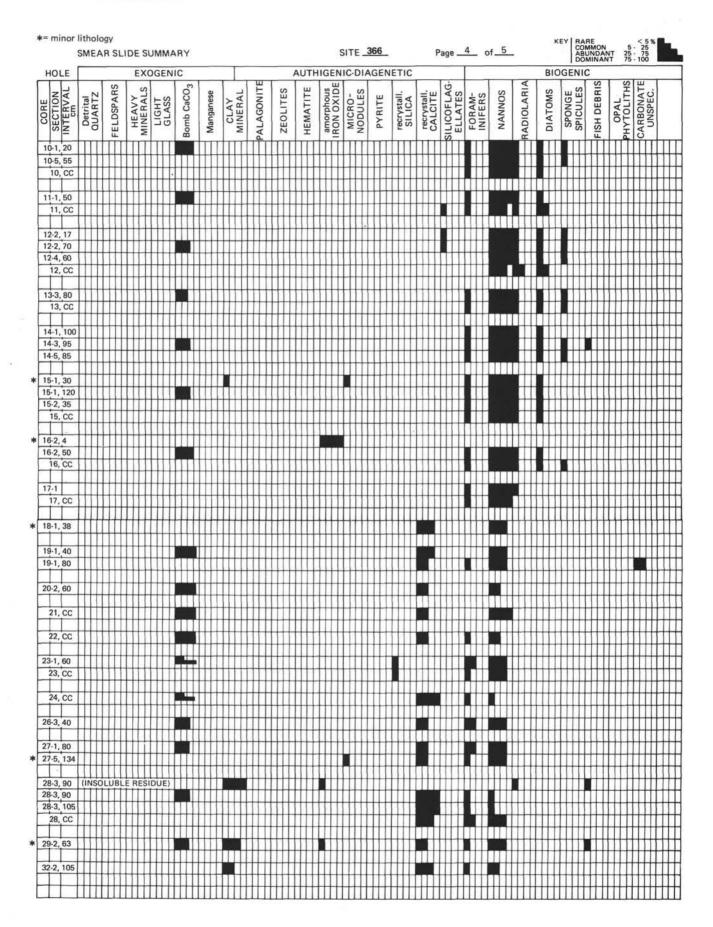
The rate of accumulation is controlled primarily by productivity in the surface waters and dissolution on the bottom because terrigenous input is only of minor importance. Excellent stratigraphic control provides a very detailed rate of accumulation curve (Figure 12). The average value of 12 m/m.y. for the entire Cenozoic compares well with other oceanic rises. Maxima occur in the early Eocene (41.5 m/m.y.) and in the early Miocene (40 m/m.y.) and minimum occurs during the middle to late Miocene. Similar trends have been observed on the Ceará Rise during Leg 39 (Site 354). There appears to be a very good correlation between the minima observed in the rate of accumulation curve on the Sierra Leone Rise (this site) and the occurrence of hiatuses in the deep basins, particularly in the South Atlantic (as well as on Ceará Rise in the southwestern North Atlantic). This observation compares well with similar trends observed in the western Pacific during Leg 32 (Lancelot and Larson, 1975) where the large hiatus observed at the Cretaceous/Tertiary boundary in the basin corresponds to shorter hiatuses or mere drops in the rate of accumulation on rises. If drops in productivity of the surface waters were responsible for these hiatuses, then the role of bottom circulation in producing hiatuses or slow deposition, even on the rises, could be overestimated. However, PDR and seismic reflection profiles on top of Sierra Leone Rise clearly show recent erosion.

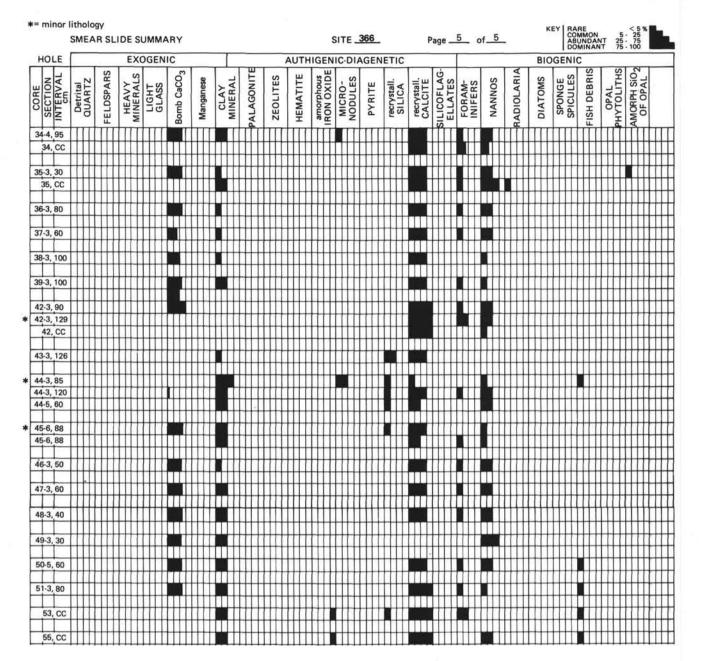
The cyclic sedimentation observed in the lower to middle Eocene and in the upper Eocene to middle Miocene sediments (see Dean et al., this volume) poses interesting problems. Bedding in the lower to middle Eocene sediments is mainly an alternation of cherty or porcellanitic layers with nannofossil chalk, and it is not clear whether this is due in part or totally to differences in the original silica content of these different beds, or if the original physical properties such as porosity and permeability (possibly related to the composition also) have played a major role in producing a selective silica recrystallization. Apparently "chertification" seems to have been favored by the most permeable environments. This seems logical if one considers the necessity for migration and concentration of relatively large amounts of silica in the pore waters in order to


precipitate chert layers or nodules. The cyclic bedding observed in upper Eocene, Oligocene, lower Miocene, and lowermost middle Miocene sediments is of a different nature. It closely resembles the widespread limestone/marl sequences well known in many geological formations on land. The cycles represent variations in the relative amounts of terrigenous and biogenous components being delivered to the sea floor. The marly layers might only reflect dilution by increased amounts of clay minerals, or they might also reflect dissolution cycles (Dean et al., this volume). The purely pelagic nature of the cycles suggests influence of climatic variations because Sierra Leone Rise is clearly separated from the African margin and because it is standing well above the level of the adjacent basins.


REFERENCES


- Berggren, W. A., 1971. Tertiary boundaries and correlations. In Funnell, B. M. and Riedel, W. R. (Eds.), The micropaleontology of oceans: Cambridge (Cambridge University Press), p. 693-809.
- Blow, W. H., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy: 1st Internatl. Conf. Plankt. Microfossils, Proc., Geneva, v. 1, p. 199-422.
- Bullard, E., Everett, J. E., and Smith A. G., 1965. The fit of the continents around the Atlantic, a symposium on continental drift: Phil. Trans. Roy. Soc. London, Ser. A, v. 258, p. 41.
- Hayes, D. E., Pimm, A. C., et al., 1972. Initial Reports of the Deep Sea Drilling Project, Volume 14: Washington (U.S. Government Printing Office).
- Hayes, D. E. and Rabinowitz, P. D., 1975. Mesozoic magnetic lineations and the magnetic quiet zone off northwest Africa: Earth Planet. Sci. Lett., v. 28, p. 105-115.
- Hoskins, H., Rogers, C. U., and Woo, A. O., 1974. Data report of oblique reflection-refraction radio-sonobuoy profiles on the African Atlantic continental margin (R/V ATLANTIS II, Cruise 67 and 75): IDOE-WHOI Tech. Rept., unpublished manuscript.
- Jacobi, R. and Hayes, D. E., in preparation. Bathymetry and microphysiography of the continental margin off northwest Africa.
- Lancelot, Y. and Larson, R. L., 1975. Sedimentary and tectonic evolution of the northwestern Pacific. In Larson, R. L., Moberly, R., et al., Initial Reports of the Deep Sea Drilling Project, Volume 32: Washington (U.S. Government Printing Office), p. 925-939.
 Marshall, C. M., 1975. Summary of physical properties—
- Marshall, C. M., 1975. Summary of physical properties— Leg 32. In Larson, R. L., Moberly, R., et al., Initial Reports of the Deep Sea Drilling Project, Volume 32: Washington (U.S. Government Printing Office), p. 961-962.
- Martini, E., 1976. Cretaceous to Recent calcareous nannoplankton from the central Pacific Ocean (DSDP Leg 33). In Schlanger, S. O., Jackson, E. D., et al., Initial Reports of the Deep Sea Drilling Project, Volume 33; Washington (U.S. Government Printing Office), p. 383-423.
- Maxwell, A. E., et al., 1970. Initial Reports of the Deep Sea Drilling Project, Volume 3: Washington (U.S. Government Printing Office).
- Riedel, W. R. and Sanfilippo, A., 1974. Stratigraphy and evolution of tropical Cenozoic radiolarians: Ms. prep. for 3rd Plankt. Conf., Kiel, 1974.
- Saunders, J. B., Beaudry, F. M., Bolli, H. M., Hay, W. W., Premoli Silva, I., Riedel, W. R., Rogl, F., Sanfilippo, A.,


1973. Paleocene to Recent microfossil distribution in the marine and land areas of the Caribbean. *In* Edgar, N. T., Saunders, J. B., et al., Initial Reports of the Deep Sea Drilling Project, Volume 15: Washington (U.S. Government Printing Office), p. 769-771.


- Schlanger, S. O., Jackson, E. D., et al., 1976. Initial Reports of the Deep Sea Drilling Project, Volume 33: Washington (U.S. Government Printing Office).
- (U.S. Government Printing Office). Uchupi, E., 1971. Bathymetric atlas of the Atlantic, Caribbean, and Gulf of Mexico, WHOI.

Site	366	Hole			Cor	e 1	Cor	ed In	terv	al: (0.0-5	i.0 m									Sit	e 366	Ho			Co	nre 2	Co	red I	nterv	al: 5	.0-14.5 m						
	RADS SAUS	CHAR	ABUND.	CLEATON	SECTION	METERS	.ITHOL	OGY	DEFORMATION	LITH0.SAMPLE				LI	THOLOGIC	DESCRIP	PTION	il.			AGE	FORAMS NANNOS	-	FOSS HARAC	TER	SECTION	METERS	LITHO	LOGY	DEFORMATION	LITHO.SAMPLE		LITHOL(DGIC DESCR	IPTION			
_	+	NRF	R	G	0			-+-		4 23 25				or (1 2/ Se op ra si	ange (10 OYR 4/2) 2), inte ction 1 wal phyto re rads licoflag	YR 6/6), , and du nse dril has comm liths, a	darl isky j lling ion pe ind fr	k yellow yellow b disturb elagic c resh wat Section	k yellowi wish brow brown (10 bance, so clay comp ter diato n 5 has r	wn OYR oft. ponent,			F	ACR	1 M I	0	0.5				70	10YR 8/2	pale or brown turband <u>SS at</u> Forams Nannos Rads		R 8/2) , inter nant 1: A R	, moderat nse dril ithology	te yell ling di	owish
	Ŧ	e F	R	GMG	2	1				55				Pe Nii Fo Nai SS Fo Nai SS Fo	lagic cl cronodul rams nnos at 2-65 rams nnos	ay es (domina (domina	C R A A A Int 11 A A A	Diatoms Rads Fish de Opal ph ithology Diatoms Rads ithology Rads Silicof	ebris hytoliths y) s	C R R VR						2	the second s				128	10YR 6/6 10YR 5/4	Forams Nannos Diatom SS at (Forams Nannos Diatom 2-23 (s <u>CC</u> (domina	A C C nt lith C A R	Rads Silicof Clay	lagella lagella	R R tes R
PLETSTOCENE					3		VOI	D						SS MIC D11 2	<u>at CC</u> (cronodul rams nnos atoms <u>RBON-CAR</u> 10 (8.0- 7 (7.6-0 <u>AIN SIZE</u> 7 (33.1- 8 (7.4-3	dominant es <u>BONATE</u> 0265)	7) Sa	hology) Rads Silicof Fish de Opal ph	flagellat ebris hytoliths	VR tes VR R	PLEISTOCENE	N22		A C	G	3	and and and and and and and and	10V	韓陸			10YR 5/4	GRAIN 2-20 (5-17 (<u>SIZE</u> 6.3-31.8-6 9.4-20.9-6	1.9) S 9.7) S	ilty cla ilty cla	у У.	
	Gioporotaila truncatulinoides NZZ Ceratolithus cristatus QUATERNARY (unzoned)	R F F	A	G G G	5	111111111111111111111111111111111111111	VOI	0		85 -	i	10YR 10YR	-0.10 C									truncatulinoides		F A G		5	and south on the set					10YR 5/6 10YR 5/4 10YR 6/6						
	Geratolithus A QUATERNARY (un	FN	A	G (3 X	6 Cor Catc	himini	V01	D		cc									В			QUATERNARY Globorotalie Ceratolithus cristatus	12	F A R	G	6 Co	re				cc							

Explanatory notes in Chapter 1

SITE 366: SIERRA LEONE RISE

FORAMS NANNOS RADS	CHA	OSSIL RACTE		SECTION	LITHOLOGY	DEFORMATION LITHO.SAMPLE		LITH	HOLOGIC DESCRIPTION	AGE	FORAMS NANNOS RADS Sauoz	CHA	ABUND.	SECTIO	METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE			LITHOLOGIC DESCRIPTION	
	FN		м	0 1 1		1 51	-	graj (10) for 10YR 7/4 SS a 11tf 10YR 8/2 Fora Namr Namr	nos D			FN	C N	0	0.5		50	10 to N9		FORAM-BEARING NANNO 002E, very pale ((10YR 8/2) to white (N9), firm to stif slight drilling disturbance, except for first 55 cm which are intense. Main lithology is motiled with grayish ora (10YR 7/4) and light grayish green (56 8/1) colors throughout core. Section 3 shows presence of Radiolaria. Fresh we diatoms. Lithology becomes a CHALK with Section 2.	nge SY Ster
tor coalitus	FN	CA	MM	2		1 80		CARE 2-10 5-80 80-11 2-11	bonate Bomb: 1-25 to 26 cm = 72% 2-25 to 26 cm = 83% 4-84 to 85 cm = 59% 5-82 to 83 cm = 62% BON-CAREDNATE 0 (10-0.0-83) 0 (4.9-90-40) IN SIZE 1 (6.5-50.2-43.3) Clayey silt 8 (0.7-22.1-77.2) Clay	EARLY MIDCENE	Globigerinoides primordius N48 Sphenolithus heteromorphus* Globorotalia kuuleri N4./	H-	C I	2			1 1 1 1 90	4		SS at 1-22 (dominant lithology) Forams C Nannos SS at 2-90 (dominant lithology) Forams A Rads Nannos A Sponge spicules SS at 3-28 (dominant lithology) Forams Nannos A Diatoms Nannos A Rads SS at 3-87 (minor lithology)	D R V R C
t / ?Catinastor	FN	ĊĂ	MM	3		1	5				Globigerinoi Sphenolithus Globorotali	N	A N R 1	3			1 1 1 28 1 87			Sa t 3-ay (minor lithology) Forams A Diatoms Nannos A Rads Ss at 3-120 (dominant lithology) Forams A Rads Nannos A Rads Silicoflagellat Carbonate Bomb: 2-136 to 137 cm = 79% CARBON-CARBONATE	
Zones N16-N14	FN	CA	MM	4		1 1 1 1 1 90	L L L	10YR 8/2 10YR 6/6 10YR 8/2			ι E.	F	R	4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 120			2-133 (10.1-0.0-84) GRAIN SIZE 2-130 (7.4-49.1-43.5) Clayey silt	
isis-Globigerina nepenthes	FN		м	5			Т	10YR 7/4 10YR 8/2		Exp	lanator			Ca	ore itcher ter 1			*S1ump	ed?		
Globorotalia acostaensis-Globigerina ?Discoaster kugleri	FN	C A C	MM	6			т г	10YR 7/4 10YR 8/2													

SITE 366: SIERRA LEONE RISE

Site 366	Hole	_	-	Cor	e 5	Cored In	terva	1: 3	866.0-375.5 m		Site	366	Hole	OSSIL		Core (Cored	Inter	-	375.5-385.0 m	
AGE FORAMS NANNOS SANOS SANOS	CHA	OSSI RACTI • UNDBY		SECTION	METERS	HOLOGY	DEFORMATION	LI INU SAMPLE	i 1	LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS BANS	CHA	RACTE	- E	METERS	LITHOLOG	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
Discoaster deflandrei	FN	RA	PM	0			9	0		RAD-BEARING FORAM NANNO CHALK, light greenish gray (SGY 8/1), mottled, little to slight drilling disturbance, stiff, burrowed zones 0-30, 108-125 and in Core 2. Biogenic calcite needles prominant in Section 3. FORAM NANNO CHALK, light bluish gray (SB 7/1), slight drilling disturbance, stiff, with Zoophycos tracks and burrowing, especially in Sections 5 and 6. SS at 1-90 (dominant lithology)					0	0.5-	VOID				NANNO CHALK, bluish white (5B 9/1) with mottles and bands of light bluish gray (5B 7/1), slight drilling disturbance, stiff, commonly burrowed and Zoophycos tracks. Mn laminations and liesegang band- ing common. Drilling breccia from 6-100 to 6-150 cm. Core Catcher is RAD-BEARING FURAM NANNO CHALK, bluish white (5B 9/1), stiff. SS at 2-126 (dominant lithology)
/	F	R	Р	2			1 1 1 1		'5GY 8/1	SS at 1-90 (dominant lithology) XR Forams A Zeolites(?) VR Forams A Rads C Nannos A SS at 3-140 (dominant lithology) Zeolites(?) R Nannos Zeolites(?) R Nannos A Forams A Calcite needles C SS at 6-140 (dominant lithology) Forams R Rads Forams D Reds R		P20	F	R	2				126		SS at 2-126 (dominant lithology) Zeolites(?) R Forams R Nannos D SS at 4-70 (dominant lithology) R Forams C Rads Nannos A SS at 5-53 (minor lithology) Rads Nannos A R Diatoms R Rads
OLIGOCENE tes bisectus	F	R	P	3			1111111			CARBON-CARBONATE 2-1 (9,7-0,1-81) 5-140 (10.1-0.1-83) GRAIN <u>SIZE</u> 2-1 (8.5-45.3-46.2) Silty clay 5-142 (8.6-37.0-54.4) Silty clay	EARLY OLIGOCENE	na ampliapertiva	FN	R I						58 9/1	SS at CC Forams A Rads C Nannos A Sponge spicules R Silicoflagellates R Carbonate Bomb: 3-64 to 65 cm = 79% CARBON-CARBONATE 2-4(10.5-0.1-87) 5-3 (10.2-0.1-85)
LATE OLI Dictyococcites	F	R	P	4				40			EA	Globigeri	F	RÍ	4				61 70		GRAIN <u>SIZE</u> 2-1 (3.6-41,5-54.9) Silty clay 5-1 (3.3-51.0-45.7) Clayey silt
liapertiva P20 / edistentus NP23 / rosa	F N		PM	5								P19 tentus	F	RI	° 5			Ξi.	35		
OLIGOCENE Globigerina ampliapertiva Sphenolitnus predistentus Theocyrtis tuberosa	F	R	p	6								Globigerina sellii pl Sphenolithus prediste Theocvrtis tuberosa	F		6						
EARLY OL	N R	R	P	Core	-11		1 14	40				GIVE	F N R	R F C M	. 0	ore tcher	-R-+++		cc	4	

Explanatory notes in Chapter 1

AGE FORAMS FORAMS RADS FORAMS FORA FORA FORA FORA FORA FORA FORA FORA		SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS BUOZ	CH	OSSIL RACTE	PRES. 20		LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
EARLY DLIGOCENE Sphenolithus predicentus Theoryrifs tuberosa a m m m m m m m m m m m m m m m m m m	р РМ М М	1 2			-	100 222 103 120 cc	 NANNO CHALK, bluish white (5B 9/1), mottled with light greenish gray (5G 8/1), slight drilling disturbance, stiff, Mn lamiations, burrows, and Zoophycos tracks common throughout. Diatoms appear in bottom of Section 5. Core Catcher lithology DIATOM-BEARING, RAD-BEARING NANNO CHALK. SS at 1-100 (dominant lithology) Forams R Rads R Nannos D Sponge spicules R SS at 3-22 (minor lithology) Felagic Clay R-C Diatoms R-C Nannos A Rads R Songe spicules VR SS at 5-90 (dominant lithology) Forams R Diatoms C Nannos A Rads R Sponge spicules VR SS at CC Zeolites(2) R Diatoms C Nannos A Rads R Sponge spicules R SS at CC Zeolites(2) R Diatoms C Nannos A Rads R Songe spicules R SS at CC Zeolites(2) R Diatoms C Nannos A Rads R Sist CC Zeolites(2) R Diatoms C Nannos A Rads R Sist CC Zeolites(2) R Diatoms C Nannos A Rads R Sist CC Zeolites(2) R Diatoms C Nannos A C Songe spicules R C Zeolites(2) R Diatoms C Nannos A Rads R Sist CC Zeolites(2) R Diatoms C Nannos A Rads R Sist CC Zeolites(2) R Diatoms C Nannos A Songe spicules R C Zeolites(2) R Diatoms C Set CC Zeolites(2) R Diatoms C Nannos A Songe spicules R C Arbonate Bomb: 3-71 to 72 cm = 83% CARBON-CARBONATE Z-9 (9.7-0.1-80) S-2 (9.4-0.1-78) GRAIN SIZE Z-10 (2.0-40, 1-57.9) Silty clay S-1 (4.0-45.1-50.9) Silty clay 	EARLY OLIGOCENE	Globigerina tapuriensis P18 /Globigerina sellii P19 Themorithus predistentus	R F N R	CA RC CRC	M Ca	0.5			65 72 103 CC	Annos D Kads K <u>SS at 4-103</u> (minor lithology) <u>Micronodules</u> R Diatoms C Forams R Rads Nannos A Silicoflagellates R <u>SS at CC</u> (dominant lithology) Forams R Diatoms R Nannos A Rads R Nannos A Rads R <u>CARBON-CARBONATE</u> 2-83 (9.2-0.1-76) SGY 8/1

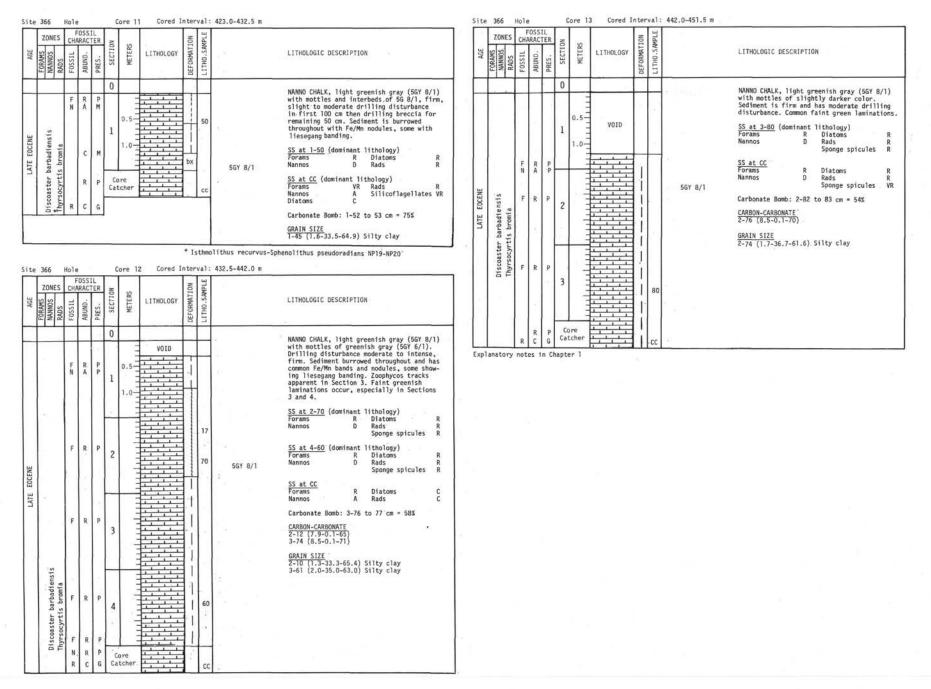
SITE 366: SIERRA LEONE RISE

SS

-

ZONES CHAR	÷		SECTION	METERS	LITHOL	DGY	DEFURMATION	LI HU . SAMPLE	LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS	CHA	OSSIL RACTE	PRES. 39	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
Elaty OLIGOCONE Globigerina tapuriensis P18/ Globigerina selli P19 Coccolithus formonia -Theocyrtis tuberosa Thyrsocyrtis bromia - Theocyrtis tuberosa m.∞	R	Р G Р М Р Р М М	3 · · · · · · · · · · · · · · · · · · ·	0.5				50	 NANNO CHALK, dark greenish gray (50 6/1) with mottles of (56 8/1) and greenish gray (50 6/1) and light olive gray (57 6/1), slight drilling disturbance, sediment burrowed, and has Mn laminations and nodules, some showing liesegang banding. Zoophycos tracks apparent at 4-15 to 20 cm. Diatoms are common. <u>S5 at 1-60</u> (dominant lithology) Forams R Diatoms C Nannos A Rads R <u>S5 at 4-55</u> (dominant lithology) Forams R Diatoms R Nannos D Rads R <u>S5 at 4-55</u> (dominant lithology) Forams R Diatoms R S5 at CC (dominant lithology) Forams R Diatoms R S5 at CC (dominant lithology) Forams R Diatoms R S6Y 6/1) <u>S5 at CC (dominant lithology)</u> Forams R Diatoms R Carbonate Bomb: 3-61 to 62 cm = 79% <u>CARBON-CARBONATE</u> Z-2 (8,7-0.1-72) 4-2 (8,9-0.1-73) GRAIN SIZE Z-1 (1,2-43,0-55.8) Silty clay 4-1 (1.2-37.8-61.0) Silty clay 	LATE EDCENE EARLY OLIGOCENE	Discoaster berbadiensis / Coccolithus formosus		R RA R A	0 P 1 P 2 P 4 P 5 M P 6	0.5			65	56Y 8/1	NANNO CHALK, light greenish gray (56Y 8/1) firm, slight to moderate drilling dis- turbance, intense burrowing and Fe/Mm banding around Mm nodules, Zoophycos track apparent, core generally mottled through out. Lighter sediment intensely burrowed, darker sediment only moderately burrowed, darker sediment only moderately burrowed, darker sediment only moderately burrowed, darker sediment only moderately burrowed, forams R Diatoms R Nannos D Rads R Sponge spicules R SS at 3-65 (dominant lithology) Forams R Diatoms R Nannos D Rads R Nannos D Rads R Sponge spicules R SS at 5-55 (dominant lithology) Forams R Diatoms R Nannos D Rads R Sponge spicules R SS at CC (dominant lithology) Forams R Rads R Nannos D Diatoms R Carbonate Bomb: 2-58 to 59 cm = 72% <u>CARBON-CARBONATE</u> Z-59 (1.3-35.5-63.3) Silty clay 4-45 (1.7-36.5-61.8) Silty clay

N R Explanatory notes in Chapter 1


C M

F R

Core Catcher

00

SITE 366: SIERRA LEONE RISE

$\frac{1}{1000} = \frac{1}{1000} = 1$	ZO	NES	FO: CHAR	SSIL	2		Τ		NO	PLE				ZONES	СН	FOSSI		-			NO	PLE		
$\frac{1}{10} \frac{1}{10} \frac$	FORAMS	RADS	FOSSIL	ABUND.	SECTIO	METERS		I THOLOGY	DEFORMATI	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS	FOSSIL	ABUND.	PRES.	SECITO	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	5	LITHOLOGIC DESCRIPTION
HY Little F R P Little Little U	NE Adfancie		F	R P	1	0.5	1				5GY 8/1	green (56 6/1). Sections 1 through 4 have . intense drilling disturbance. Entire core has moderate mottling and burrowing with Zoophycos apparent and Fe/Mn specks common. Some faint green laminations occur. <u>SS at 1-100</u> (dominant lithology) Forams R Diatoms R Nannos D Rads R <u>SS at 3-95</u> (dominant lithology) Forams R Rads R Diatoms R Fish debris VR <u>SS at 5-85</u> (dominant lithology) Forams R Rads R Nannos D Sponge spicules R Diatoms R Fish debris VR <u>SS at 5-85</u> (dominant lithology) Forams R Rads R Nannos D Sponge spicules R Diatoms VR Carbonate Bomb: 3-82-83 cm = 58% <u>CARBON-CARBONATE</u> <u>Z-53 (9,0-0,1-75)</u> 5-69 (10.0-0.1-83)	LATE	1 3	F F N F	P R C R	р р р	0. 1 1. 2 Core				120	5GY 8/1	5 cm thick, firm, moderate to severe drilling disturbance, thin Mn laminae, burrowed. Ss at 1-30 (minor lithology) Clay R Nannos Micronodules R Diatoms Forams R Rads Ss at 1-120 (dominant lithology) Forams R Diatoms Nannos D Rads Ss at 2-35 (dominant lithology) Forams R Diatoms Nannos D Rads Ss at CC Forams R Diatoms Nannos D Rads Carbonate Bomb: 1-54 to 55 cm = 83% CARBON-CARBONATE
F R P 5 VOID VOID VOID VOID VOID VOID VOID VOID		bromfa	FI	R P								5-67 (3.5-42.5-54.0) Silty clay		ZONES	СН	FOSSI	PRES. B	SECIJUN	Т				470.5-480.0 m	
Sponge spicules		Thyr	FI	R F C P	5					85			ENE	rohri P14 adiensis	F	R	p	1				4	56¥ 8/1	intense, faint black, green, and dark gray laminations, intense burrowing an Zoophycos tracks, a few Fe/Mm nodules with liesegang banding. S <u>S at 2-4</u> (minor lithology) Ferromanganese oxide layer <u>SS at 2-50</u> (major lithology) Forams R Diatoms Nannos D Rads S <u>S at CC</u> Forams R Diatoms Nannos D Rads

greenish gray (5GY 8/1), (5GY 6/1) interbeds wderate to severe e, thin Mn laminae, D R R R RR

GRAIN SIZE 2-12 (3.3-38.0-58.7) Silty clay •

SITE 366: SIERRA LEONE RISE

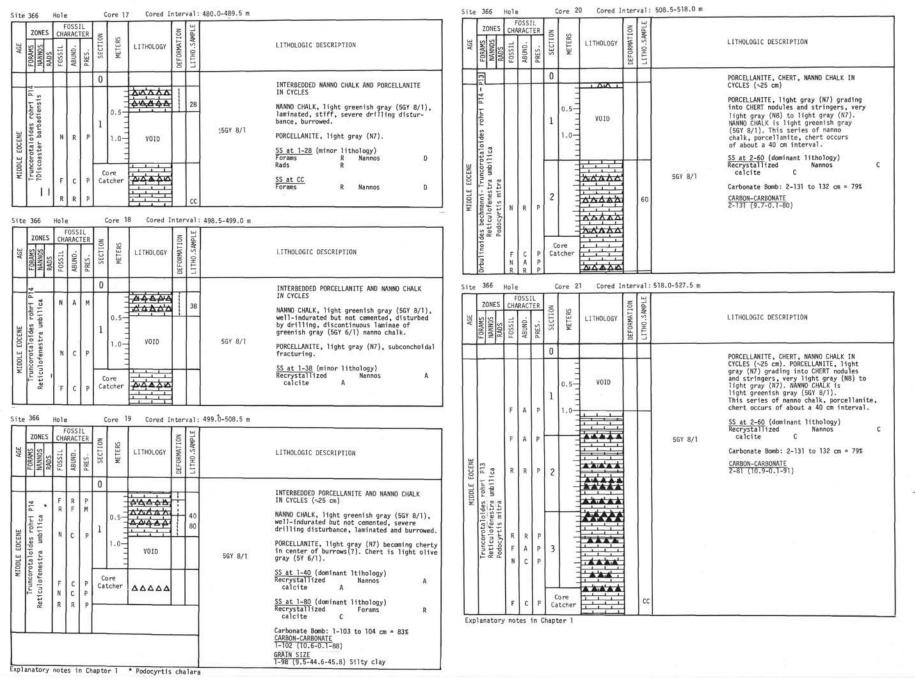
R Α.

3

Core

Catcher II.

CC


C CG

58

R Explanatory notes in Chapter 1

N

Thyrsocyrt

ite 366	Hole	ł		Con	re 22	Cored	Inte	rval:	527.5-537.0 m		Site	366	Но		_	Co	re 24	Cored	Inter	val:	546.5-556.0 m	
AGE FORAMS NANNOS RADS RADS	CHA	VARUND.		SECTION	METERS	LITHOLOG	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS NANNOS		HARACT		SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION
MIDOLE EOCENE Globorotalis leineri-Orbulinoides beckmanni P12-P131 Poddcyrtis ampla	F	A C	P P P P	1		WOID			5GY 8/1	INTERBEDDED NANNO CHALK, SILICIFIED LIMESTONE, AND CHERT IN CYCLES (~25 cm) NANNO CHALK, light greenish gray (SGY 8/1), well-indurated, laminated. Grades into SILICIFIED LIMESTONE. CHERT, light gray (N7), shows burrows, laminated. <u>SS at CC</u> Recrystallized Forams R calcite C Nannos C Carbonate Bomb: 1-49 to 50 cm = 83% <u>CARBON-CARBONATE</u> 1-48 (10.5-0.1-87) <u>GRAIN SIZE</u> 1-46 (25.4-44.0-30.6) Sandy clay	MIDDLE EOCENE	kugleri-Globorotalia lehneri Pll-Pl2	1	R R R	0-D-	1		VOID			56Y 8/1	INTERBEDDED NANNO CHALK, SILICIFIED LIMESTONE, AND CHERT IN CYCLES (~25 cm) NANNO CHALK, light greenish gray (5CY 84) well-induvated, laminated and burrowed, grading into silicified limestone. CHERT, light gray (N7), grades into porcellanite. Chert/porcellanite minor in occurrence. SS at CC Recrystallized Forams calcite D Nannos Carbonate Bomb: 2-105 to 106 cm = 37% 2-110 to 111 cm = 79% CARBON-CARBONATE 2-105 (5.0-0.1-42) 2-112 (10.4-0.1-86) GRAIN SIZE 2-113 (24,1-37.6-38.3) Sandy clay
AGE AGE AGE AGE AGE AGE AGE AGE AGE AGE	CH	RACT		Τ	WETERS	Cored	LION	L w	537.0-546.5 m	LITHOLOGIC DESCRIPTION		Globigerapsis urion	ha	F R F R		3	Internet	Volb'				
beckman P12-P13	F	A	T	1	.0		H H H H	60		INTERBEDDED NANNO CHALKS, SILICIFIED LIME- STONES, AND CHERT IN CYCLES (~20 cm). NANNO CHALK, light greenish gray (56Y 8/1), well-indurated, laminated, grading into silicified limestone. CHERT, medium light gray (N6) grading into porcellanites.		Coccolithus staurion		F C N R R R	P P P	4 Cor Cato	re :her			сс		
MIDDLE EOCENE Globorotalia lehneri- Orbulinoides bi Reticulofenestra umbilica Thyrsocyrtis triacantha	FN		P	2	thurburn th				5GY 8/1	SS at 1-60 Forams C Nannos A Recrystallized calcite C SS at CC Chert R Forams R Nannos A Carbonate Bomb: 1-68 to 69 cm = 87% 1-63 to 65 cm = 37%	Ex	ol anato	ory 1	iotes	in C	hapte	r 1					
Globorotalia ?Reticulofen Thyrsocyrtis	N F R	R C R	P P M	Cor Catc			4 4 4	сс		CARBON-CARBONATE 1-73 (10.7-0.1-88) GRAIN <u>SIZE</u> 1-72 (30.9-39.6-29.4) Sandy clay												

ite 366 Hole		1	Core	25	Core	ed In	terv	al: 5	556.0	-565.5 m			Site	3	66	Ho1e			Core	27	Cored In	ter	/al: 5	75.0-584.5 m	
AGE FORAMS FORAMS RADS FDSSIL	CTER	SECTION	METERS	L	ITHOLO	GY		LITHO.SAMPLE				LITHOLOGIC DESCRIPTION	AGE		ZONES SONNAN	CHA	ACTE	PRES. 20	METERS	UCIEW2	LITHOLOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION
MIDDLE ECICHE Globorotalia lehneri- Orbulinoides beckmanni P12-P13 Coccolitus staurion Thyrsocyrits triacantha 20 th 20 20 20 20 20 20 20 20 20 20 20 20 20	R P	0	0.5 1.0 ore		VOID			cc		5GY 8/1		INTERBEDDED NANNO CHALK, SILICIFIED LIMESTONE, AND CHERT, IN CYCLES OF ABOUT 20 cm. NANNO CHALK, light greenish gray (SGY 8/1), well-indurated, laminated, grading into SILICIFIED LIMESTONE. CHERT, medium light gray (N6) grading into PORCELLANITE, light gray (N7). Carbonate Bomb: 2-60 to 61 cm = 40% <u>CARBON-CARBONATE</u> 2-55 (9.0-0.1-75)		łld-	Chiasmolithus gigas	F	R	()	0.5	unternuter dan dan				Limestone: N8 to 56 8/1 Chalk: 56Y 8/1 to 56Y 6/1	INTERBEDDED LIMESTONE, CHALK, AND MINOR CHERT IN CYCLES (~20 cm) CHALK, light greenish gray (5GY 8/1) to greenish gray (5GY 6/1), well-indurated, laminated, burrowed, Fe/Mn specks, a few with liesegang banding, chalk becomes shaly in more argillaceous sections. LIMESTONE, very light gray (N8) to light greenish gray (5G 8/1), burrowing, dark Fe/Mn laminations common, varying degrees of cementation. CHERT, very light gray (N8) to light bluish gray (5B 7/1), occurs within or just above each limestone segment. Complete cycles 4 cm consist of: 8 cm 20 cm LIMESTON 8 cm 0 CHALK SS at 1-80 (dominant lithology) Recrystallized Forams C calcite C Nannos A SS at 5-134 (minor lithology) Re/Mn nodules R Forams R
2000 100 100 100 100 100 100 100 100 100	CTER	TION	Core WELERS	Τ	ITHOLO	IGY	MATION	LITHO.SAMPLE		-575.0 m		LITHOLOGIC DESCRIPTION	MIDDLE EOCENE	kugleri	-					HTH					Recrystallized Nannos A calcite C Carbonate Bomb: 2-79 to 80 cm = 62% <u>CARBON-CARBONATE</u> 2-83 (8.3-0.2-67) 4-75 (9:1-0.1-75) GRAIN 517E
MIDOLE EOCENE Globorotalia lehneri-Orbulino Chiasmolithus gigas Thyrsocyrtis triacan ≍ →	R P R I R I	3						40	TT TT TT TT T	N7 to N8 58 7/1 t 56 7/1 t 56 78 8/1 N7 to N8 58 7/1 t 56 78 8/1 N7 to N8 58 7/1 t 56 78 1 N7 to N8 58 7/1 t 56 8/1 N7 to N8 58 7/1 t 56 8/1 N7 to N8))))	PORCELLANITE/CHERT IN CYCLES (~20 cm) CHALK, light bluish gray (56 7/1) to light greenish gray (56 7/1), well- indurated, wavy Mn-high laminations, burrows, and a few liesegang bands. LIMESTONE, light gray (N7) to very light gray (N8), laminated. PORCELLANITE/CHERT, light bluish gray (58 7/1), occurs as thin (~3 cm) beds above CHALK units, or as nodules in silicified limestone segments. <u>SS at 3-40</u> (dominant lithology) Recrystallized Forams C calcite C Nannos A Carbonate Bomb: 3-B1 to 82 cm = 73% <u>CARBON-CARBONATE</u> 2-94 (10.5-0.2-86) 3-B3 (9.3-0.0-77)		Han	Disconster strictus Thyrsocyrtis triacantha	F N R	RC R R	P P P P	5 Core Catche	er H				P	07481 0724-40.6-42.0) Silty clay 4-72 (19.9-43.3-36.8) Clayey silt

te 366	-	FOSS	IL.		<u> </u>	T	T	- 1			4		70100		OSSIL			-1-		2	"		
FORAMS NANNOS NOT	1	ARAC . ONUBA	T	SECTION	METERS	LITHOL	OGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	ACE	FORAMS NANNOS DANC	-	RACTE . UND	CCTION	METERS		ITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
P10	-	-	-	0		-	_	-	-		INTERBEDDED CHALK, LIMESTONE, AND CHERT IN CYCLES (~20-25 cm)		-	-		()	H	****		-	98	INTERBEDDED ARGILLACEOUS LIMESTONE, AN SILICEOUS LIMESTONE WITH CHERT IN CYCL (~50 cm)
aragonensis	F	P	P	1	0.5	V01	D				CHALK, greenish gray (5GY 6/1 to 5G 6/1) to dark greenish gray (5G 4/1), wavy laminations, Fe/Mn specks, becomes shaly in a few places, burrowed, SHALES layers 1 to 2 cm thick.			F	c	M 1	0.5	H H H H H H				NB	ARGILLACEOUS LIMESTONE, very light gra (N8) to light greenish gray (5GY 8/1), faintly laminated, burrowed, Fe/Mn specks. Occasionally a small (~3 cm) interbed of SHALE occurs.
Hantkenina a	F	1		L		VOI		_			LIMESTONE, light bluish gray (5B 7/1) grading to light greenish gray (5GY 8/1), Fe/Mn specks, some with liesegang banding, burrowed, wavy laminations.					-	+	111111	volo		=		Grades into SILICEOUS LIMESTONE, light gray (N8), faintly laminated, burrowed capped by chert nodules.
Han	F			2		臣				5B 7/1 to 5GY 8/1	CHERT, medium light gray (N6), occurs as nodules or layers (~4 cm) just above lime- stone sections.			N F	Rp	M	2				63	4 N8 to 5GY 8/1	CHERT, medium light gray (N6), about : to 4 cm thick.
	N	c	P				1		۲	6	<u>SS at 3-90</u> (minor lithology, insoluble residue)			Ĺ				HIT					This core is a more argillaceous and more siliceous gradation of the previ core. The transition occurs over seve cores.
				-	-						Clay D Fe/Mn nodules R Rads R Fish debris R SS at 2-90 (dominant lithology, chalk)					\vdash	+	HH4					<u>SS at 2-63</u> (minor lithology) Clay A Fe/Mn
	R						AL			2000000	Recrystallized Forams R calcite D Nannos R SS at 3-105 (dominant lithology, limestone)	EDCENE	ala a	F	Р	2 3	3	世界					Recrystallized Fish debris calcite C
	ha		ľ						90 05	5GY 6/1 to 5G 6/1 to	Recrystallized Forams R calcite D Nannos R	EARLY F						HMH					Carbonate Bomb: 2-37 to 38 cm = 67% <u>CARBON-CARBONATE</u> 2-33 (10.2-0.1-84)
	Triacantha			-	F		and so the second			5G 4/1	SS at CC Recrystallized Forams C calcite A Nannos A	8	e P9 hala cr			F		HH					2-33 (10.2-0.1-84) 4-54 (8.2-0.1-68) GRAIN SIZE 4-52 (16.5-42.6-40.9) Clayey silt
	scoyrtis	C	м	4			44				Carbonate Bomb: 3-58 to 59 cm = 62% CARBON-CARBONATE 2-104 (10.1-0.1-83)	MIDDLF	ia palmerae P9 • strictus • cryptocephala •	N F	A R	P 4							4-32 (10.3-42.0-40.3) (10ycy 511)
	-Thyr						**				3-54 (10.0-0.1-83) GRAIN SIZE		otalia ister st otyle cr										
on an a	mongolfieri	RAR	PMP	F	t						2-102 (15.2-48.3-36.5) Clayey silt		Globorotali Discoaster Theocotyle	R	R		Core atche	THH	註				
	be would			5								Sit	e 366	Hole			Core	30	Cored I	terv	a1: 6	03.5-613.0 m	
Dieras	Theocampe m		F	ē,								AGE	ZONES	CHA	RACTER	OIL	METERS	-10	THOLOGY		SAMPLE		LITHOLOGIC DESCRIPTION
	- 12	F C		1	Core		臣		cc				FORM	FOSSIL	ABUND.				2002000	DEFOR	LITHO		
-		_		-								- -	cepha la	\vdash	+	0		=		+	-		SILICEOUS LIMESTONE, light gray (N7) t very light gray (N8), some faint lamir burrowed.
) i crypto			1	0.5	IIII	VOID	25-2			Carbonate Bomb: 1-111 to 112 cm = 29%
												EOCENE	a palmerae P9 cryptocephala	N	FF		1.0			-	-	117	
												EARLY E	talia palm yle crypto			$\left \right $		王	40			to N8	

SITE 366: SIERRA LEONE RISE

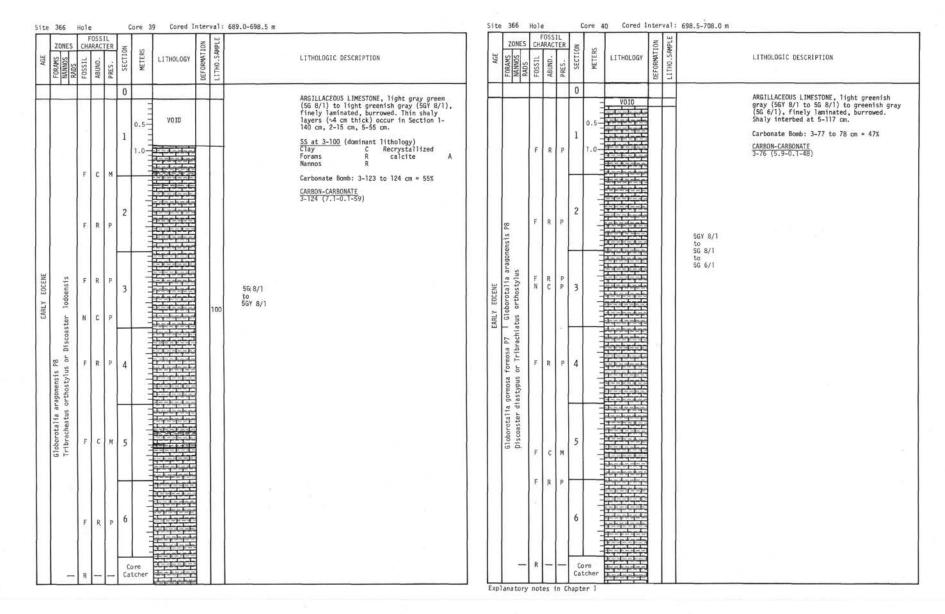
Explanatory notes in Chapter 1

r C R R

Globorotalia palme Theocotyle crypt

	FOSS HARAC	TER	SECTION	METERS	L	ITHOL	.0GY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION		AGE	FORAMS NANNOS Sauoz Rads	CHA	ABUND.	PRES. 201	METERS	LITHOLO	GY	LITHO.SAMPLE		LITHOLOG	IC DESCRI	PTION	×	
F			0	0.5-	THAT HAT HAT HAT					5GY 8/1	ARGILLACEOUS LIMESTONE WI LAYERS IN CYCLES ARGILLACEOUS LIMESTONE, 1 (56Y 8/1), faint wavy lan with thin (~2 cm) Fe/Mn t layers and ~5 cm thick Si stone grades into and bac bands at about 20 to 25 c regions are light to very to N8). The cherty sections cap e interval (~30 cm). Carbonate Bomb: 2-134 to <u>CARBON-CARBONATE 2-132 (2.0-0.1-15)</u> 4-53 (2.4-0.1-19)	ight green gray inations, burrowed, ands, ~5 cm cherty ALE beds. Lime- k out of siliceous m intervals, CHERTY light gray (N7 ach limestone			F		0	0.5-	VOID		105	5GY 8/1 to SGY 6/1 and N7 to N6	CHERT I ARGILLA(gray (5 faint w streaks CHERT TC (N7) to laminat The cycl cherty 1 30-35 cm SS at 2- Clay Forans Cargo	es of argi imestone/c intervals 105 (domir	(~30 cm) STONE, 1 greenis tions, b (MESTONE ght gray (11aceou thert oc to nant lit C Re R C	ight greer h gray. (50 urrowed, f , light gr (N6), fir s limestor cur at re	ish Y 6/1) e/Mn ay ely e.to gular
cryptocephala ≃~n	RA	PM	3		нннннн								EOCENE	8 P9-P8	FN		р М										
Globorotalia palmerae P9 Discoaster sublodoensis Theocotyle cryptocephala ≈ · · · · ·	1		4		州出销货比限的时候									oorotalia aragonensis P9-P8	F	R	^R 4										
Disco Disco Theoc	R	M P P		re .cher	RHHH									Globorotalia palmerae-Globorotalia Discoaster sublodoensis	F	R	p 5										

SITE 366: SIERRA LEONE RISE


AGE ZONES ADS ADS	CH/	OSS RAC	TER	SECTION	METERS	100	LIT	OLOG	FORMATION	- 1710 - 1401 -	TIM OUT LE	ľ		LITHOLOGIC DESCRIPTION		AGE	ORAMS ZANNOS ZANNOS ZANOS ZANO	C	FOSS	ER	SECTION	METERS	LIT	HOLOGY	DEFORMATION	LITHO.SAMPLE		LIT	HOLOGIC DESCRIPT	ON	
EARLY EOCENE - AGE oborotalia aragonensis P8- Sioborotalia palmerae P9	F	CONDEV R RA R RC	р РМ Р	0	0.5							5 5 5 5 5	GY 8/1 o 66/1 o 66/1 o 66/1 nd N7	LITHOLOGIC DESCRIPTION INTERBEDDED ARGILLACEOUS CHERTY LIMESTONE IN CYCL ARGILLACEOUS LIMESTONE, gray (5GY 8/1) to greeni faint away laminations, CHERTY LIMESTONE, light the top of the argillace (each zone 10 to 20 are consist of: 10 cm Cherty limest 15 cm Argillaceous CARBON-CARBONATE 2-58 (8.2-0.1-45) 5-134 (5.4-0.1-45)	S ight greenish h gray (56 6/1), urrowed: ray (N7), caps us limestones ick). en cherty 0 cm thick and ne	EARLY EDCENE .	P8 -Gioborotalia palmerae P		R	р р	0	Щ 0.5				95	N7 to 56 6/1 58 5/1	ARG LIMI ARG SIL Ligh and Eacl SS a Clay Fe/F For Cart	ILLACEOUS LIMEST SSTONE INTERBEDS ILLACEOUS LIMEST inish gray (SG 6, 5/1), laminated ICEOUS LIMESTONE t greenish gray burrowed. h cycle, 30 to 5 5 25-45 at 4-95 (dominan f n nodules R mms R	<pre>WE WITH THIN SIL IN CYCLES WE, light gray (i)) to medium blue, bioturbated. . light gray (N7) (5GY 8/1), lamini 0 cm thick, consi cm Siliceous limestone cm Argillaceous limestone calcite</pre>	N7) e g . t ate ists
Globorotalia arag Discoaster Todoen	F	R	Р	5	ore	watchththt			THURBURNE								Globorotalfa aragonensis Discoaster lodoensis	F	R	P	5 Co Cat	re			11 11 11 11 11 11 11						

SITE 366: SIERRA LEONE RISE

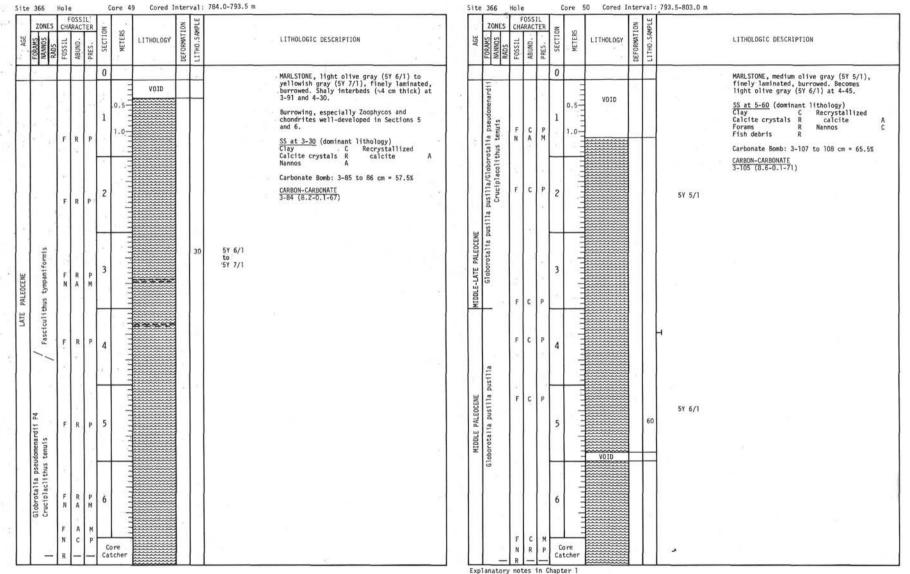
.

ZONES	CHAR	OSSIL		Core	Τ		T	T 1	651.0-660.5 m	LITHOLOGIC DESCRIPTION	AGE	ZONE:	CH	FOSSI	ER	Core Section	Τ	Cored In ITHOLOGY	4	-		LITHOLOGIC DESCRIPTION
FORAMS FORAMS NANNOS RADS	FOSSIL	ABUND.	SECTION			1 THOLOGY	DEFORMATION	LITHO.SAMPLE		LTINULUSIC DESCRIPTION	A	FORAMS	FOSSI	ABUND.	à		2		DEFORMATION	LE INO		
		2	0 1 P 2	0.5		VOID			56Y 8/1 to 56 6/1 and N7	INTERBEDDED ARGILLACEOUS LIMESTONE AND SILICEOUS LIMESTONE IN CYCLES ARGILLACEOUS LIMESTONE, light greenish gray (56 %1) to greenish gray (56 6/1), finely laminated, burrowed. SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed. Siliceous limestone caps each argillaceous limestone unit. TYPICAL CYCLE: 5 cm Siliceous limestone ~70 cm Argillaceous limestone SS at 3-30 (dominant lithology) Clay R Recrystallized			F		р] р	1.0		qIOV			5GY 8/1 to 5G 8/1 and N7	INTERBEDDED ARGILLACEOUS LIMESTONES AND SILICEOUS LIMESTONES IN CYCLES ARGILLACEOUS LIMESTONE, light greenish gray (567 8/1 to 56 8/1), finely laminated, burrowed. SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed. Siliceous limestone caps each argillaceous limestone unit. Typical cycle, 20 to 80 cm thick, consists of 5 cm Siliceous limestone 15-75 cm Argillaceous limestone
EARLY EOCENE balmerat P9 lodoensis	ŕ		Р 4					30		Forans R calcite A Nannos C Amorphous silica R SS at CC C Recrystallized R Clay C Recrystallized R Forans R calcite A Nannos A Rads R Carbonate Bomb: 3-113 to 114 cm = 56% CARBON-CARBONATE Z-655 (3.7-0.1-30) 3-114 (7.9-0.1-66)	EARLY EOCENE	-Globiritalia palmerae P9 Discoaster lodoensis	FN	C C R R	M M				8	D		<u>SS at 3-80</u> (dominant lithology) Clay R Recrystallized Forams R calcite A Nannos C Carbonate Bomb: 3-33 to 34 cm = 58% <u>CARBON-CARBONATE</u> 3-35 (7.1-0.1-59)
aensis P8-Globorotalia palmera Discoaster lodoensis	F	c	p 5		ut to the set of the s	VOID						rotalia aragonensis P8	F		P	5		VO1D	7			
Globorotalia <u>erago</u> a			P 6	Core	and the laterated at	***					Exp	anato	F	R R	P P	Core Catche						

FORAMS NANNOS RADS	CHAI	NULL CONTRACTED		of the second	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS	FOSSIL 2	VRACT . ONUBA	PRES. 2		LITHOLOGY	DEFORMATION LITHO.SAMPLE			LITHOLOGIC DESCRIPTION	
		R I		0.	511111111111111111111111111111				56Y 8/1 to 56 4/1	INTERBEDDED ARGILLACEOUS LIMESTONE AND SILICEOUS LIMESTONE IN CYCLES ARGILLACEOUS LIMESTONE. 1 light greenish gray (567 8/1) to dark greenish gray (56 4/1), finely laminated, burrowed, a few shaly interbeds (~4 cm thick). SILICEOUS LIMESTONE, light greenish gray (557 8/1) to light gray (N7), finely laminated, burrowed. Siliceous limestone caps each argillaceous limestone unit. TYPICAL CYCLE { SO-75 cm Argillaceous limestone SS at 3-60 (dominant lithology) Clay C Recrystallized			F	R	р Р Р 2	0.5	VOID				ARGILLACEOUS LIMESTONE, greenish gri (56 6/1), finely laminated, burrowe few 2 to 4 cm thick shaly interbeds occur in Sections 3, 5 and 6 and a siliceous interbed occurs in Section at 130 to 137 cm. <u>SS at 3-100</u> (dominant lithology) Clay R Recrystallize Nannos R calcite Carbonate Bomb: 3-47 to 48 cm = 46% <u>CARBON-CARBONATE</u> 3-45 (5.9-0.1-49)	3
Imerae P9	E	R I	3		munnin		A REAL FOR REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTIO	60		Clay C Recrystallized Forams R calcite A Nannos C arbonate Bomb: 3-25 to 26 cm = 37% CARBON-CARBONATE Z-17 (6.4-0.1-53) 3-23 (5.2-0.1-43)	Y EOCENE	~	FN	R F R	р Р З	induction of the		100	56 5	'n		
P8-Globorotalia pal	N	F	P 4		mhununun		a survey a survey a survey of the survey of				EARLY	?Discoaster	N	F	P 4	rind and an						
fa aragonensis	F	R	5	5	munu								F	c	M 5	in truti						
Globorotal	F	RI	P 6	5	1111111111		M M M M M M M M M					ia aragonensis P8	F	R	р 6							
-	R	+	P	Core	i li		HHHHHHHHH					Globorotalia	RF	R		ore						

$ \frac{70655}{100000000000000000000000000000000000$
$F = R = P = 1 \\ \hline S = V 0 D \\ \hline S = V 0 \\ \hline S = V 0 D \\ \hline S = V 0 \\ \hline S = V $
NOT N C P A

68


SITE 366: SIERRA LEONE RISE

-	Hole	SSIL	-	Lore	43	Lored	Inter	-	727.0-736.5 m		510	366	T	OSSIL	<u> </u>	Core	44 Cored I		736.5-746.0 m	
ZONES NANNOS RADS	CHAR	ACTER ' UNDR	101	METEOS	LI.	THOLOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS	CH	RACTE	PRES. 2	METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
Globorotalia subbotinae P6	FN	C F		0.1						ARGILLACEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, with winnowed layers of CALCARENITE at 1-30, 1-70, 1-85, 1-120, 1-130, 2-12, 2-42, 2-83, 2-115, 2-142. Small (3 cm) thick shaly interval occur at 1-46, 1-98, 2-14. This argillaceous limestone grades to: SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, with bluish black flakes crattered berowhow: CALCAPENTE Layers	PALEOCENE		F	R	0 P 1	0.5				SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, with stringers of winnowed layers, CALCARENITE, at 1-14, 1-60, 1-90, 1-123, 1-140, 2-18, 2-82, 2-11 2-140, 3-88, 3-129, 4-11, 4-140, 5-96. Argillaceous bands occur at 3-10, 3-14, 3- and disseminated pyrite occurs in a zone from 3-50 to 3-55 and throughout Sections and 5. Ss at 3-85 (minor lithology)
6105	F	C P	> 2							SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, with bluish black flakes scattered throughout. CALCARENTE layers occur at 4-10, 4-55, 4-80, 40-90, 5-15, 5-60, 5-110, 5-148. Dark greenish gray bands occur at 4-135, 5-2, 5-6, 6-70, 6-100 and 6-140. These are shaly at 5-2 especially. Core has been severely fractured during drilling. <u>SS at 3-126</u> (dominant lithology) Clay R Quartz(?) C	UPPER PALE	oborotalia velascoensis P5	F	C	2	the second se				SS at 3-85 (minor lithology) Clay A Recrystallized Fe/Mn C calcite R Quartz(?) R Nannos R Fish debris R S st 3-120 (dominant lithology) Clay C Recrystallized Quartz(?) R Calcite A Forams R Nannos C SS at 3-120 (dominant lithology) Clay C SS at 5-60 (dominant lithology) C
haera eodela		C P						126	N7	califie A Carbonate Bomb: 3-128 to 129 cm = 72% <u>CARBON-CARBONATÊ</u> <u>3-126 (9.1-0.0-76)</u>		Globor	F N		P3			85 120	N7	Ss at 5-60 (domfinant lithology) Clay C Recrystallized Quartz(?) R calcite Nannos C C Carbonate Bomb: 3-74 to 75 cm = 4% CARBON-CARBONATE 3-75 (0.5-0.1-3)
Campylosphaera	F	C P	4										F	R	P 4					
velascoensis P5	F	C P	5										F	R	_Р 5	and conductors		-60		
Globorotalia ve	F	C P R H	P	Core											6					

SITE 366: SIERRA LEONE RISE

AGE NANNOS NANNOS	S CHA	OSSIL RACTE		SECLION	METERS	LITHO	LOGY	DEFORMATION	ITH0.SAMPLE		LIT	THOLOGIC	DESCRIPT	TION				AGE	ZONES NANNOS RADS	CHAS	VIND . UNDER	NOITO	METERS	LITH	OLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
Globorotalia velascoensis P5 Chiasmolithus bidens	F	R R R A R	P P P P P	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1						N7)	SS CTa Qua SS CTa Ca Ca Ca Ca Ca Ca	rrows with e common. rrows with at <u>6-88</u> ay artz(?) inos <u>at 6-88</u> ay icite cry rams	thin burn (minor 1 (F (dominar (ystals F B Bomb: 3-4 30NATE	rows(?) rows? litholc C Re R R Not lith C Re R R Na	o (see d ogy) ecrystal calcite hology) ecrystal calcite	lized	red pelow) A C R	2		F F N	R I	0 1 2 3 	0.5- 1.0-				_	N7	SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, flecks of blue-black submetallic matter scattered throughout core, burrows within burrows(occurs in Sections 2 and 3. burrows within burrows? SS at 3-50 (dominant lithology) Clay mark Recrystallized Calcite crystals R Recrystallized Calcite Bomb: 3-64 to 65 cm = 65.5% CARBON-CARBONATE 3-63 (7.8-0.1-64)

Te 366 ZONES AGE SUNCES	CHA	OSSI ARACT		Τ	METERS	47 Cored I		LITHO.SAMPLE	765.0-774.5 m	LITHOLOGIC DESCRIPTION	ΨU	T	ZONES ZONES RADS	CHA	ACTE	SECTION	WETERS	LITHOLOGY	DEFORMATION LITH0.SAMPLE	: 774.5-784.0	LITHOLOGIC DESCRIPTION
Globorotājia velascoensis P5	F	R	-	0	.0-			1		SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed. SS at 3-60 (dominant lithology) Clay C Recrystallized Calcite crystals R calcite Forams R Nannos Carbonate Bomb: 3-43 to 44 cm = 65% CARBON-CARBONATE 3-41 (7.5-0.1-62)	Â			FN	R C R	0 P P	0.5			N7	SILICEOUS LIMESTONE, light gray (N7), finely laminated, burrowed, intensely burrowed in Section 2. MARLSTONE, light olive gray (5Y 6/1) to yellowish gray (5Y 7/1), finely laminated, burrowed. Differs from the siliceous lime- stone only in not being cemented but well- indurated. SS at 3-40 (dominant lithology) Clay C Recrystallized Forams R Nannos C Carbonate Bomb: 3-44 to 45 cm = 58%
mohleri	F N		P P	3	and the second			60	N7		EENE				R		tions and	*	40	e.	CARBON-CARBONATE 3-46 (7.5-0.1-62)
Discoaster	F.	R	P	4							LATE PALEOCENE		Heliolithus kleinpellii	F	RI	_P 4	the second s			5Y 6/1 to 5Y 7/1	
rotalia pseudomenardii P4	F	c		5			000						uioporotaila pseudomenarali r4		RI		alterna service				
Globor I	F F R N	C C R	м 	Cor Catc	e her		0 0 0 0						inatory	F N	c i	M P C	Core				

SITE 366: SIERRA LEONE RISE

ZONES ZONES	-	OSSIL RACTE	SECTION		LITHOLO	LION	LITHO.SAMPLE	803.0-812.5 m	LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS NO	CHA	BRES.		METERS	LITHOLOG	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION
Globorotalia angulata	F	с	0 1	0.	5				MARLSTONE, light olive gray (5Y 6/1), finely laminated, burrowed. <u>SS at 3-80</u> (dominant lithology) Clay C Calcite crystals C Recrystallized Forams calcite A Nannos R Fish debris R Carbonate Bomb: 2-77 to 78 cm = 72% <u>CARBON-CARBONATE</u> 2-76 (8.4-0.1-69)	EARLY PALEOCENE	Globorotalia trinidadensis Pl Cruciplacolithus tenuis	FN	A M R P						57 6/1	MARLSTONE, light olive gray (5Y 6/1).
S	FN	c	P 3				80	5Y 6/1		Site 90E	PADS PADS	CHA	A MBUND.	O SECTION	ME	Corec	LON	Val: TITHO.SAMPLE	822.0-831.5 m	LITHOLOGIC DESCRIPTION MARLSTONE, light olive gray (5Y 6/1).
Cruciplacolithus tenuis	F	с	P 4	1						EARLY PALEOCEME	Globrotalia trinidadensis Pl Cruciplacolithus tenuis	N	C M	1.177.53					5Y 6/1	SS at CC Clay C Recrystallized Quartz R calcite A Fe/Mn Calcite crystals C micronodules R Forams C Fish debris R Site 366, Core 54, Cored Interval: 831.5-841.0 m: NO RECOVERY
	f	c		5							366 ZONE	Hole F CHA	OSSIL RACTER	П	re 55	Core	1	- T	841.0-850.5 m	
Acarinina uncinata P2	F		M P	Core						MAESTRICHTIAN AGE	Globotruncana contusa FORAMS Lithraphidites quadratus	1	W W ABUND.	0 Cor		LITHOLOG	DEFORMATION	S LITHO.SAMPLE	5Y 6/1	LITHOLOGIC DESCRIPTION ONLY SCRAPINGS OFF OF CORE CATCHER MARLSTONE, light olive gray (5Y 6/1). <u>SS at CC</u> Clay Clay Clay Clay Clote Clote Clote Calci

FORAMS NANNOS - SAUS	CHAR	BRES.	SECTION	METERS	ı	ITHOLOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS BANC	CHJ	OSSIL RACTE	CECTTON	SECLION	오 프 LITHOLO	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
Globorotalia truncatulinoides Ceratolithus cristatus- Emiliania huxleyi QUATERNORY (unzoned)	N F	GGG	C	0.5 1.0		r , N , N , N		70 103 60.	10YR 4/2 to 10 YR 2/2	FORAM-BEARING NANNO MARL, dark yellowish brown (10YR 4/2) to dusky yellow brown (10YR 2/2), soft, moderate to severe drilling disturbance, mottled. Thin, dis- turbed zones show more clay (1-100 to 100) or increased foram content (1-60 to 100; 1-110 to 120; 2-90 to 105), Drilling dis- turbance is too severe to be certain about these zones. <u>SS at 1-70</u> (dominant lithology) Clay A Forams C Nannos A Rads R Diatoms R Opal phytoliths R Fish debris R <u>SS at 1-103</u> (minor lithology) Clay A Fe/Mn R Forams R Nannos A Diatoms R Nannos A Diatoms R Rads R Opal phytolith R Fish debris R <u>SS at 4-60</u> (dominant lithology) Clay A Fe/Mn R Forams R Nannos A Diatoms R Nannos A Diatoms R Rads R Opal phytolith R Fish debris R Ali smear slides showed both marine and fresh water diatoms (Melasira granulata) and opal phytoliths. <u>CARBON-CARBONATE 2-65 (7.8-0.2-63)</u> <u>GRAIN SIZE</u> <u>2-66 (29,0-29.5-41.5) Sandy clay</u>	PLEISTOCENE	e Emilianta ovata	F	A F	G 2 G	0 0 1 1 1 1 2 3 4			50	10YR 5/4 to1 10YR 6/2	<pre>FORAM-BEARING NANNO MARL, moderate yellow browm (107R 5/4) to pale yellowish browm (107R 6/2) to grayish orange (107R 7/4), very soft, intense drilling disturbance severe to be certain if it is real. <u>SS at 4-50</u> (dominant lithology) Clay A Fe/Mn modules Forams C Nannos Rads R Silicoflagellates Opal phytoliths R Fish remains Both fresh water and marine diatoms occur Ceratoliths appear in smear slide. Carbonate Bomb: 3-66 to 67 cm = 56% <u>CARBON-CARBONATE</u> <u>3-65 (7.0-0.1-57)</u></pre>
	R	C G	Ca	tche			1					Globorotalia truncatulinoides N22 Emi	foniorint		Ğ	6					

Explanatory notes in Chapter 1

V010

FORAMS FORAMS NANNOS RADS SADS	CHA	OSSIL RACTE		SECTION	METERS	L	ITHOLO	IGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	. –	ZONES SONES	CHA	RACTE	RS	METERS	LITHOLOG	DEFORMATION	LITHO.SAMPLE	÷	LITHOLOGIC DESCRIPTION	
	R	+ A	р	1	0.5-	13332001333	VOID					FORAM-BEARING NANNO MARL, varicolored because of disturbance, from moderate yellowish brown (10YR 5/4), yellowish brown (10YR 6/4), grayish orange (10R 7/3) to dark yellowish brown (10YR 5/8) soft, intense drilling disturbance, disrupted mottling(?). <u>SS at 3-50</u> (dominant lithology) Clay A Fe/Mn nodules Forams C Nannos	R			F	A	6 1	0.5	11				NANNO MARL, white (5Y 8/1 drilling disturbance, thi bands occur at 1-40 to 55 cm; 2-0 to 30 cm; 3-15 to 150 cm; 5-0 to 50 cm; the greenish gray (56Y 6/1) ar Black mottling occurs in 4 <u>SS at CC</u> (dominant litholo Clay A Fe, Forams R Nar	e clays are nd show mottling. 1-0 to 30 cm.
	NF	CA	G	2								Diatomis C naminos Diatomis R Radis Fish debris R . <u>SS at 3-80</u> (minor lithology) Clay A Forams Radis R Fish debris <u>SS at 6-101</u> (minor lithology) Clay A Forams Nannos A Diatoms	A R R R	6		FN	A	s 6 2		n			5Y 8/1	Diatoms R Raf Fish debris R Carbonate Bomb: 3-24 to 25 <u>CARBONACARBONATE</u> 3-22 (5.1-0.1-50) <u>GRAIN SIZE</u> 3-20 (9.0-23.3-67.7) Silty	ls F 6 cm = 49%
ovata	FR	<u>A</u>	G	3	and seed on the				- V I	50 80	10YR 5/4 10YR 6/4 10R 7/3 to; 10YR 5/8	Fish debris R Rads Carbonate Bomb: 3-63 to 64 cm = 68% <u>CARBON-CARBONATE</u> 3-61 (7.6-0.1-62)	a c	Globoratalia tosaensis		F	A	g 3	terd on the term	n.					
Emiliania ov	N F	AA	55	4	and the set of the set											F	A	4	and solutions	N					
truncatulinoides	N F R	C <	G	5	and the set of a set	Revenue and the second s			**************					conica N20	a macintyrei	FN	A A	5	conduction of a con-	N					
Globorotalia trunca	N	c	G	6						101				Globorotalia mio	Cyclococcolithina macintyrei	F		6 6	the second second second	11					
	N F R		G	Co Cat	re cher	TANKA C									_	N F R	- L	MC	iore itcher			cc			

AGE FORAMS NANNOS SENOZ	S CHA	-	TER	- 0		METERS	LITHO		DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS 3402	5 CH	VINDER .	PRES. 33		METERS	LITHOLOGY	DEFORMATION LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	
	F	A	G	1	0	.0	- 11	N				NANNO MARL, varicolored because of drilling disturbance, from white (N7) to greenish gray (56 6/1) to dark yellowish green (56Y 6/1), soft, intense drilling dis- turbance, black mottling occurs at 3-0 to 70 cm; 4-20 to 90 cm; 5-0 to 35 cm; 5-40 to 90 cm. <u>SS at CC</u> (dominant lithology) <u>Clay</u> A Forams R Nannos A Fish debris R			F	A		1	.0.5	VOID		-	NANNO MARL, very light gray (N8) with greenish gray (56 6/1) mottles, soft, intense drilling disturbance. Bottom- most 5 cm is white (N9). SS at CC Clay A Forams Nannos A Fish debris Carbonate Bomb: 3-70 to 71 cm = 92% (taken in a disturbed zone)	R
	FN	AA	G	2		direction of the second	Ň	N			N7 to 5G 6/1	Carbonate Bomb: 3-76 to 77 cm = 66% CARBON-CARBONATE 3-74 (9.0-0.1-75) 3-80 (8.8-0.1-73)			FN	A	G	2	ala	N		NB	<u>CARBON-CARBONATE</u> 3-71 (10.6-0.1-88) <u>GRAIN SIZE</u> 3-76 (33.0-24.8-42.1) Sandy clay	
PLIOCENE scoaster surculus	F	A	G	3	100 C	of contraction	- 11				56 6/1 to 56Y 6/1		PLIOCENE	Discoaster tamalis	F	A	G	3	thurder that the	NI N		- 1.1.7		
Dis.	F	A	G	4		the second s	N						FTd	Disco	F	A	G	4		1				
mfocentca	N F	AA	66	5	;	and set and set as					1			ia margaritae evoluta	F	A	6	5		IJ				
Globorotalia	F N F R	c	G		Corrected			Ń		co				Globorotalia	F N F R	A A A	G	6 Corr Catcl		II II	cc			

SITE 366: SIERRA LEONE RISE

ite 366	-		-	-	Co	re	7	Co	ored	Inte	-	-	.5-63.0 m	Site	300		ole ro		-	Core	s cored	Inte	1 1	1: 63.0-72.5 m
AGE FORAMS NANNOS BADS PADS	CHA	T	TER	1	SELITON	METERS		LITHO	OLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS		HAR	ACTE . ONUGA	15	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
	FN	AA	G	-		0.5		N	N				NANNO MARL, very light gray (N8) to white (N9) with mottles of greenish gray (SGY 6/1), soft, intensely dis- turbed. Black streaks common throughout core. <u>SS at CC</u> Clay A Fe/Mn R Forams C Nannos A Diatoms R Rads R Fish debris R				F	A	3 1	0.5-				NANNO 00ZE, very light gray (N8) to white (N9) with light olive gray (SY 6/1) mottlin and black streaks. Mottling becomes yellowi gray (SY 8/1) toward bottom of core, soft, intense drilling disturbance, clayey band occurs at 4-130 to 145 and 6-0 to 12 cm. <u>SS at CC</u> Clay A Forams R Nannos A Diatoms R Rads R Fish debris R SCYPHOSPHAERA appear in core catcher sample
	F	A	G	:	2			N	11				Carbonate Bomb: 3-44 to 45 cm = 46% <u>CARBON-CARBONATE</u> <u>3-45 (5.7-0.1-47)</u> <u>GRAIN SIZE</u> <u>3-50 (3.6-20.9-75.5)</u> Clay				F	A	2	and an other stars				Carbonate Bomb: 3-104 to 105 cm = 92% CARBON-CARBONATE 3-106 (10.4-0.0-86) GRAIN 51ZE 3-107 (22.0-24.9-53.1) Sandy clay
PLIOCENE er asymmetricus	F	A	G		3			N	N				N8 to N9	PL10CENE		- 1		A C	3	the second s				N8 to N9
/ Discoaster	F	A	G		4		and	N	Ń							- Clinich	F	A	4	and second second				
margaritae evoluta neoabies	F	A	G		5		The second secon	N	010						lia margitae evoluta		F	AG	5	and configure		4 4 4 4 4 4 4 4 4 4		
Globorotalia marg Sphenolithus neoa	FN	AA	G		6		Child Statistic Statistics	N	N	A CONTRACTOR OF					Globorotalia				. 6	The second second second				
	N F R	1.11		. I.	Con	re cher	a a a a a a a a a a a a a a a a a a a				co						FR	A (0	tcher			cc	c

SITE 366: SIERRA LEONE RISE

AGE	FORAMS NANNOS SAN RADS	CHAR	ACTE . ONDA	12	three Do	요 프 LITHO	.0GY	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS 3402	CHAR		PRES. 20	METERS	LITHOLOG	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC	DESCRIPTION	
	/ Ceratolithus rugosus R	F	AA	0	0.		-	3	N9 to	NANNO 00ZE, white (N9) to yellowish gray (55 871) mottled together, soft, intense drilling disturbance. Clayey bands occur at 3-0 to 10 cm; 3-50 to 55 cm; 3-100 to 120 cm. SS at CC Clay A Forams R Nannos A Fish debris R Carbonate Bomb: 3-77 to 78 cm = 86% CARBON-CARBONATE 3-74 (10.1-0.1-83)		-	FNNF	A 1 A 1 A 1		1.0			23	N9 and 5Y 6/1	<u>SS at CC</u> Clay Forams Diatoms	, white (N9) and light (1) mottled, soft, inte sturbance. A Fe/Mn R Nannos R Fish debri Bomb: 1-54 to 55 cm = 8 300ATE -0.1-85)	s
		F	A	2		1			5Y 8/1	GRAIN SIZE 3-79 (11.9-27.4-60.7) Silty clay		-					<u></u> -	-]			GRAIN SIZE 1-57 (19.7-	-27.9-52.5) Silty clay	
PLIOCENE		FN	AA	3		主要					Exp	lanator	y note:	s in	Chapt	er 1							
	Ceratolithus acutus	F	A	4																			
	evoluta	F	A	5																			
	Globorotalia margitae	F	A	s 6	,																		14
	-	F	A	s	Core																		,

RAR

AGE FORAMS NANNOS	-	FOS CHARA TISSOJ	_	R	SECTION	METERS		- LITH	IOL OG	Y	DEFORMATION	LI ITU . SMMPLE		LIT	HOLOGIC I	DESCRIP	TION			AGE	FORAMS NANNOS BADIC		OSSIL RACTE	PRES.		L	THOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOG	IC DESCRI	PTION		
	1	F A		G	0	0.5								thr pal mot SS Cla For Car Car Car	bughout. a brown i tles by S at CC y ams bonate Bo <u>BON-CARBO</u> 5 (9.7-9.	mb: 3- NATE T-80)	gradually /3) with	change white (n os cm = 83	l) with e drilling treaks (s to very N9) R A		Globorotalia margaritae	F		G 2	0.5-						SS at 6- Clay Fish deb SS at 6- Clay Fe/Mn Forams SS at CC Clay Nannos	100 (domi ris 122 (domi	and b. nant lit A Fc A Ra R A Na R Ra R Ff A Fo A Fi	nds nnos nds ish debris orams ish debris	R R R R R R R
MIOCENE-PLIOCENE Anaurolithus primus	1.0	F A N A		63 63	3								5Y 8/1								0 Discoaster berggrenii	FN	AA	900	-			*********		N9	CARBON-C 3-107 (8)	111 cm = 72 ty clay	25
n margaritae Ama		F A		6	4	The second s	+++++++++++++++++++++++++++++++++++++++														da N17 Dis	F		G											
Globorotalia margaritae	I N F F	FA	4 G			are						c								LATE		FR	A	- 0	Core atcher			111	100 122 CC						

SITE 366: SIERRA LEONE RISE

 \hat{e}

te 366 ZONES	Hole FI CHAI	OSSIL		Т	re 13		red I		-									Site	ZONES	Hole FO CHAR	SSIL		Core 1	1	red In	N	1			
TT	FOSSIL	-	PRES.	SECTION	METERS	LITHO	LOGY	DEFORMATION	LITHO.SAMPLE			l	ITHOLOGIC	C DESCR	IPTION			AGE	FORAMS	1 1	ABUND.	CTIO	METERS		LOGY	DEFORMATION	LLINU.SAM		LITHOLOGIC	DESCRIPTION
				0	1.017171717171								10YR 8/3) ellowish ale vello) with n brown (ow brown intense nds at 4	nottling (10YR 6/ n (10YR e drilli 4-95 to A N C F	, pale oran of moderat 4) and very 7/4), soft ng disturba 104. annos ish debris	2				A G	0	0.5-						(10YR 5/6) (10YR 6/4)	ING NANNO OOZE, very p IR 8/2) becoming mottl ion 2 with yellow brow and light yellow brow and white (loYR 8/2), illing disturbance. A Forams A Diatoms R Fish debr
	F	с	р	2	بليني بيانيا يربيه								RAIN SIZE	E		yey silt				F	AG	2							CARBON-CAR 3-90 (7.8-	Bomb: 3-91 to 92 cm = B <u>ONATE</u> 0.1-65) 38.7-54.6) Silty clay
MIOCENE ster calyculus	FN	C A	PM	3	مهي يبليه يه يه يه يو يه ي					1)YR 8/3							MIDDLE MIOCENE	Catinaster coalitus	FN	A G A M	3	-			*****		10YR 8/2		
MIO Catinaster	F	C	P	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													IW		F	A G	4	-							
plesiotumida N17	F	C	м.	5		V			_										acostaensis N16	F	A G	5	-	돮						
Globorotalia	F	с	м	6	1111111														Globorotalia acos	F	A G	6		鰘	遠辺					
	N F R		P-M GM	Con	re				cc										616		~ ·	P Co	ore							

SITE 366: SIERRA LEONE RISE

CRR

FORAMS NANNOS RADS	CH/	WACT . UNUBA	-	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS 7	CH	ARACT . UNUBA		METERS	LI	THOLOGY	DEFORMATION LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
acostaensis N16	FN	C A	м	0	0.5					NANNO 002E becoming interbedded with NANNO MARL NANNO 002E, moderate yellowish brown (10YR 5/6) to grayish orange (10YR 7/4) to very pale yellow (10YR 8/3), soft to stiff, intense drilling disturbance. NANNO MARL, dark yellowish brown (10YR 4/2) to brownish yellow (10YR 6/6), stiff, intense drilling disturbance but more cohesive than		peripheroaceta N10	FR	<u>c</u>	0 M 1	0.5-		VOID		10YR 8/4 to 10YR 5/3	DRILLING BRECCIA OF PELAGIC CLAY/MARL AND NANNO 002E IN SECTION 1 AND 2. Pale grayish orange (10YR 8/4) to yellowish brown (10YR 5/3). Soft to stiff, drillin breccia. At 3-102 cm: NANNO MARL, greenish gray (5GY 6/1) to light greenish gray (5GY 8/1) with mottl of light brown (10YR 7/4), stiff, intens- drilling disturbance.
Globorotalia a	F	F	P	2	huuluuluu		8	30	10YR 5/6 to 10YR 7/4 to 10YR 8/3	the nanno ooze. The nanno oozes and nanno marls tend to be in cycles of 30 to 50 cm thick, that look like dissolution cycles. They consist of: 20-40 cm Nanno ooze ~10 cm Nanno marl		oborotalia	FR	c	<u>M</u> 2			T	bx		Section 5: Cyclic alternations of the above NANNO MARL and a NANNO 002E, white (10YR 8/1), stiff, slight drilling disturbance. The nanno marls are generally grayish orange (10YR 7/4). Each cycle is about 20 cm thick but they gradually shorten to about 10 cm thick t last third of Section 5.
-	F	с	м	3	Thursday					SS at 2-80 (minor lithology, marl) Clay Nannos Rads R Fish debris C SS at 6-110 (minor lithology, marl) Clay Clay A Forams R Rads R State Clay A Fe/Mn Rads R SS at CC (dominant lithology) Clay A	MIOCENE	obus N7 G1 Coccolithus miopelaĝicus	N F R		M 3	and and and				56Y 6/1 te 56Y 8/1	Ss at 3-140 (minor lithology) Clay A Forams Nannos A Rads Fish debris R Ss at 5-127 (minor lithology) Clay D Fe/Mn Forams R Nannos Rads F State
	F	c	м	4						Clay A Fe/Mn R Forams C Nannos A Rads R Fish debris R Carbonate Bomb: 3-103 to 104 cm = 60% CARBON-CARBONATE 3-101 (8.6-0.1-71) GRAIN SIZE 3-104 (9.8-33.6-55.6) Silty clay	MIDDLE	insueta-Globigerinoides trilo	FR	<u>c</u>	<u>M</u> 4	1 3			140	10YR 8/1	SS at CC (dominant lithology) Clay A Fe/Mn Amorph SiO2 R Forams Nannos A Diatoms Rads R Fish Carbonate Bomb: 3-140 to 141 cm = 60% CARBON-CARBONATE Carbonate Bomb:
cus	F	c	м	5				TT	10YR 6/6 10YR 5/6 to 10YR 7/4 to 10YR 8/3			Globigerinatella insueta-	FR	¢+	м Р		£		1 1 1 1 1 1 1 1 1 1 1 1 27 1 121	and 1 TOYR 7/4	3-137 (9.3-0.1-77) <u>GRAIN SIZE</u> 3-135 (8.2-34.2-57.6) Silty clay
Goccolithus miopelagicus		CA	M	6	minninn				10YR 4/2 to 10YR 6/6 10YR 5/6 to 10YR 7/4 to 10YR 8/3 10YR 4/2 to 10YR 6/6 10YR 5/6 to 10YR 7/4 to 10YR 8/3 10YR 8/3		M EARLY	lanator	R	R	MC	Core atcher			1 133 1 CC		
69	N F R	C A	P G		re			CC													

ite 366		еA		c	ore	17	Cored	Inter		: 148.5-158.0 m		Si	te 366	Hole		-	Core	18	Cored	Inter	-	158.0-167.5 m	
AGE FORAMS NANNOS	S CH	FOSS ARAC	DRES.	SECTION	METERS		LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION		AGE FORAMS NANNOS	CHA	OSSIL RACTE	R	SECTION	MEIEKS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
	FR		PM	0	0.5	and the second	F				DRILLING BRECCIA OF NANNO MARL AND NANNO OOZE SIMILAR TO 16-5. Last 50 cm of SECTION 6 FORAM BEARING NANNO OOZE, bluish white			FR		MG	0	1111	VOID				CYCLES OF NANNO MARL AND NANNO CHALK NANNO CHALK, light greenish gray (5GY 8/1) to yellowish gray (5Y 8/1), stiff, slight drilling disturbance.
				1	1.0	the states	P	bx		10YR 7/4	(5B 9/1), stiff, slight drilling distur- bance, interbedded with pale brown (10YR 6/3) to greenish gray (5GY 6/1) NuNNO MARL, stiff, slight drilling disturbance.						1	del el elda				10YR 5/4 	NANNO MARL, yellowish brown (10YR 5/4), stiff, slight drilling disturbance. Cycles seem to have no regular wave length. Everything from 50 to 25 cm thick. The marl is always the thinner of the two
	F	c	P	2	100000000000000000000000000000000000000	Children Resta	F			-	SS at CC Clay A Forams C Nannos A Rads R Fish debris R Carbonate Bomb: 3-90 to 91 cm = 72%			F	A	м	2	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				10YR 5/4 5GY 8/1 to 5Y 8/1 10YR 5/4	the mori is a weys the thinner of the two components of each cycle. <u>SS at CC</u> (Chalk) <u>Clay</u> A Fe/Mn R Forams R Nannos A Rads R Fish debris R
	-					A CONTRACTOR OF	r			н ^{N9}	<u>CARBON-CARBONATE</u> 3-93 (9.4-0.1-78) GRAIN <u>SIZE</u> 3-95 (9.2-41.3-49.5) Silty clay					-						H 5GY 8/1 to 5Y 8/1 H 10YR 5/4	Carbonate Bomb: 3-83 to 84 cm = 81% CARBON-CARBONATE 3-80 (10.0-0.1-83) 4-17 (9.3-0.1-77) 4-27 (8.2-0.1-68)
EARLY MIDCENE hus heteromorphus		C F A	P M M	3		State State States	F					L I I	MIDCENE	NFR	AAC	M G	3		N VOID			56Y 8/1 to 5Y 8/1 H 10YR 5/4 H 56Y 8/1 to 5Y 8/1	4-37 (9.0-0.1-75) 4-47 (9.6-0.1-79) 4-57 (9.6-0.1-79) 4-77 (8.6-0.1-71) 4-77 (8.6-0.1-71) 4-87 (9.1-0.1-75) 4-97 (10.0-0.1-82) 4-107 (10.0-0.1-83)
EARL trilobus N7 Sphenolithus I	F	A	м	4			r	bx					EARLY inoides trilobus N7 coctata	F	A	4	4					H 10YR 5/4 H 5GY 8/1 to 5Y 8/1 H 10YR 5/4	4-127 (10.3-0.1-85) 4-137 (10.2-0.1-84) 4-148 (9.7-0.1-80) <u>GRAIN SIZE</u> 3-78 (15.6-46.2-38.2) Clayey_silt
	F	A	м			************		T					Insueta-Globigerinoides teromorphus	F		ŀ	1	-1.					
sueta-Globiger	R	R	м	5		A HALLANDARD	r	bx					la insueta-Globiger heteromorphus lffit_Caloruclata		A I	G	5	titter by basis	N				
	Calocycletta costata	A	м	6	1000 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Children and and and and and and and and and an	, ,						Globigerinatella fi Sphenolithus het	F	A 1	м	6						
Globi	N F R	R-C A C	P-M GM G		ore cher	1 1 Martin 1			cc						R-CI AG CI	м	Core				сс	→ 5Y 8/1 10YR 5/4 → 5GY 8/1 to 5Y 8/1	

	ZONES	F CHA	OSS1 RACT	ER	NO	~		ION	MPLE			
HGE	FORAMS NANNOS RADS	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DE	SCRIPTION	
					0					FORAM NANNO CI	HALK, light greenish gray	
		RF	c	GM	1	0.5	VOID			(5GY 8/1), st turbance. Moti (5Y 8/1). SS at CC	iff, slight drilling dis- tled with yellowish gray	
	ß	111				1.0		:	Η	Clay Forams Rads	A Fe/Mn A Nannos R Sponge spicules	F
	N6-N					-		i		Carbonate Bomb	b: 3-104-105 cm = 77%	
	nf 1 fs					111		i		CARBON-CARBON/ 3-107 (9.5-0.	ATE 1-78)	
	dissimilis N6-N5	F	с	M	2			1		5GY 8/1 GRAIN SIZE	6.5-47.0) Silty clay	
		N	A	M	-	- T		1		5-105 (10.5-5)	sis-47.07 Stridy citay	
MINCER	ofgeri rta					11		1				
CARL	rthi-Globig ampliaperta					111		1				
3	stainforthi-Globigerinita sphaera ampliaperta Diffii				3	11		!				
	stafr sphaen					111	+++++	i				
	Globigerinita stainfor 2H elicopontosphaera a Stichocorys wolffii					Ξ		1				
	biger elico choco	N F	FA	P-M G		ore tcher		1	CC			

Site 366, Hole A, Core 19, Cored Interval: 167.5-177.0 m: NO RE COVERY

	ZONES	СН	FOSS	IL TER	N			NOI	MPLE	
AGE	FORAMS	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHÓLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
			Γ		0		+++++++++++++++++++++++++++++++++++++++			FORAL MANUA CUALK . Make anomiak anom
	-	RF	C A	G	1	0.5		bx		FORAM MANNO CHALK, light greenish gray (56Y 8/1), soupy to severe drilling dis- turbance, stiff, burrowing apparent in some sections. Some green (56 6/1) bands in Section 6. Clay A Forams A Nannos A Diatoms R Rads R Sponge spicules R
						1111		Π		Carbonate Bomb: 3-74 to 75 cm = 79% <u>CARBON-CARBONATE</u> 3-76 (10.0-0.1-82)
		N F	A A	M	2					GRAIN SIZE 3-72 (16.1-45.7-38.2) Clayey silt
EARLY MIDCENE		FR	A C	MG	3	mhutun				5GY 8/1
EA	issimilis N6-N5	F	A	м	4	teri trentre				
	<pre>61obigerinita stainforthi-Globigerinita dissimilis N6-N5 Sphenolithus belemnos Stichncorve delmontensis</pre>	F	A	м	5	contractory.				
	Globigerinita stainforthi Spheno Stichocorvs delmontensis	F	A	M	6	rol molent				
		N F R	F-C A C	P-M G M	C Ca	ore tcher			сс	

Core 21 Cored Interval: 186.5-196.0 m

Sile 366 Hole A

Explanatory notes in Chapter 1

SITE 366: SIERRA LEONE RISE

ZONES CHARACTER NOTITION SOUND AND A CONTROL OF A CONTROL	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
SIN-9W SIN-9W	Nannos A Diatoms R Rads C	F A M F A M 2 F A M 2 F A M 2 F A M	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
s Buto strong F A G Catcher R		F A M 3 F A M 3 F C P 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		sudd ti officer and the state of the state o	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Site 366 Hole A Core 24 Cored Interval: 215.0-224.5 m		Hole A Core 26 Cored Interval: 234.0-	243.5 m
AGE CONSTITUTION AND CONSTITUTICA AND CO	LITHOLOGIC DESCRIPTION	FOSSIL SCHARACTER SCHARACTER 11 SS02 11 SS02	LITHOLOGIC DESCRIPTION
Source O Void Source R C G Stiller F C M Stiller Stiller Stiller Stiller Stiller Stiller Stiller <	CYCLES OF INTERBEDDED PELAGIC CLAY AND RAD-FORAM-BEARING NANNO CHALK PELAGIC CLAY, dark greenish gray (5G 4/1), burrowed (chondrites), stiff, severe drilling disturbance. RAD-FORAM-BEARING NANNO CHALK, light greenish gray (5GY 8/1), stiff, severe drilling disturbance, burrowed. Cycles appear to be dissolution cycles. <u>SS at CC</u> (dominant lithology) Clay A Forams C Nannos A Diatoms R Rads C Carbonate Bomb: 2-95 to 96 cm = 80% <u>CARBON-CARBONATE</u> 2-92 (20.4-37.8-41.9) Sandy clay	F A G A G Z A C C A C A C A C A C A C A C A C A C	CLAYEY NANNO CHALK, light greenish gray (56V 8/1), stiff, slight to severe drilling disturbance, burrowed. Thin (10 cm) inter- beds of slightly darker green occur at 2-70 to 80 cm; 3-47 to 54 cm; 3-85 to 100 cm; scattered throughout Section 4 and at 5-20 to 30 cm. These slightly darker green layers appear to have less carbonate and may be part of the previous dissolution cycle sequence. Sat 4-65 (dominant lithology) Clay A Fe/Mm C Forams R Nannos A Rads R Ss at CC Clay A Forams R CaCO ₃ needles C Nannos A Rads C Carbonate Bomb: 3-113 to 114 cm = 80% CARBON-CARBOMATE 3-114 (10,2-0.1-85)
Site 366 Hole A Core 25 Cored Interval: 224.5-234.0 m		F A G 3 56Y	Land a second state
ZONES CHARACTER NOTICE SIMPLO	LITHOLOGIC DESCRIPTION		
BY ST	FORAM-DIATOM-BEARING CLAYEY NANNO CHALK, light greenish gray (5GY 8/1), stiff. severe drilling disturbance, some darker green burrowed segments. Ethmodiscus rex common. <u>SS at CC</u> Clay A Forams C Nannos A Diatoms C Rads R Silicoflagellates R <u>CARBON-CARBONATE</u> T-119 (10.1-0.1-84) <u>GRAIN SIZE</u> T-117 (26.5-31.4-42.1) Sandy clay	F A G 4 1 65	
		F A G Core R R M Catcher	

SITE 366: SIERRA LEONE RISE

Т		F	A	L	Т		T		i Inte	14			1 [T	FOSS			1		-	щ	
-	RADS - SONES		RACT . UNUBA	PRES. 33	SECTION	METERS	-	THOLOG	DEFORMATION	I I THO SAMDLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS NO	-	HARAC . UNDA	1	SECTION	METERS	LITHOLOGY	DEFORMATION	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
					0	0.5	L I I	VOID				CYCLES OF INTERBEDDED PELAGIC CLAY AND CLAYEY NANNO CHALK PELAGIC CLAY, dark greenish gray (5G 4/1), burrowed with chondrites common, stiff,	CENE	mordius-Globorotalia kugleri N4				0	0.5				CLAYEY NANNO CHALK, light greenish gray (SGY 8/1), stiff, no to slight drilling disturbance, burrowed. Thin (~10 cm) interbeds of pelagic clay
		R	C.	G	1	1.0			1		☐ 5G 4/1	slight to moderate drilling disturbance. CLAYEY NANNO CHALK, light greenish gray (5GY 8/1), stiff, slight to moderate drilling	EARLY MIOCENE	orotalia		F C	н	1	1.0		1 1 1	4	Thin (~10 cm) interbeds of pelagic clay occur at 1-60 to 70 cm; 1-128 to 135 cm; 2-140 to 150 cm; 4-101 to 110 cm; 6-15 to 20 cm; the pelagic clay is burrowed.
				M		1					5GY 8/1	disturbance, burrowed. Cycles appear to be dissolution cycles.		us-61ot	1			Ц	-		;		These thin interbeds appear to be part of the dissolution cycles.
		F	A	M						-	- 5G 4/1	<u>Stat CC</u> (Clayey nanno chalk) Clay A Forams R Nannos A Rads R		primordi			P		-				<u>SS at CC</u> (Clayey nanno chalk) Clay A Forams R Nannos A Rads R Sponge spciules R Fish debris R
		R	c	M	2						5GY 8/1	Fish debris R Carbonate Bomb: 3-108 to 109 cm = 78%			ľ	F C C	М	2	1				Carbonate Bomb: 3-76 to 77 cm = 76%
											5G 4/1	CARBON-CARBONATE 3-2 (10.1-0.1-83)		Glogigerinoides					-			E	CARBON-CARBONATE 1-76 (9.8-0.1-81) 3-74 (10.3-0.1-85)
								t t			H 5G 4/1	3-12 (9.7-0.1-80) 3-22 (9.4-0.1-77) 3-32 (8.3-0.1-63)		Glog					1.1.1		1		
		RF	RA	MPM	3		11		H		5GY 8/1 5G 4/1 5GY 8/1 5GY 8/1 5G 4/1	3-42 (9.1-0.1-75) 3-52 (9.8-0.1-81) 3-62 (7.1-0.1-59) 3-72 (8.1-0.1-67)				F C A	PM	3			1	5GY 8/1	
		N	A	M				بر ب	ヨー		56Y 8/1	3-72 (8.1-0.1-67) 3-82 (9.0-0.1-74) 3-90 (8.3-0.1-68) 3-105 (10.5-0.1-86)	OL IGOCENE	deflandrei							1		
				ł					H H		4	3-115 (10.0-0.1-83) 3-125 (10.3-0.1-85) 3-135 (10.6-0.1-88)	0	1.11				H	1				
4	ra				4						56 4/1 56Y 8/1	3-145 (10.6-0.1-88) 4-2 (10.5-0.1-87) 4-12 (10.5-0.1-87)		scoaster		F C	м	4	1		i		
	etrape	RF	C A	G		111					5G 4/1 5GY 8/1 5G 4/1	4-22 (10.2-0.1-84) 4-32 (9.6-0.1-79) 4-42 (4.8-0.1-39)		ā							1	H I	
a pro	Discoaster deflandrei Cyrtocapsella tetrapera			}	-	_	北田	55			5GY 8/1	4-52 (9.9-0.1-82) 4-62 (9.3-0.1-77) 4-72 (9.6-0.1-79) 4-82 (8.6-0.1-71)						Η	1				
PANAL P	coaste	F	c	P		1					5G 4/1	4-82 (8.6-0.1-71) 4-92 (9.9-0.1-82) 4-122 (9.0-0.1-74) 4-132 (9.8-0.1-81)							1		i		
	Cy Cy				5		E H				Jul of t	4-142 (10.1-0.1-84)				FC	P	5			ł		
"dimondation	5								- 1		5G 4/1			kugleri	erongata						i		
	elongata						-		1		5GY 8/1			al1a k	cena e i				-		ł	F	
Act HID	Lychocanoma	F	A	GG	6		3113				-			Globorotalia 5.5.	Chocan	R C F A	G M	6			1		
Clob family and a close	Lyche							- - -			56 4/1 56Y 8/1 56 4/1			9							i		
		N F	A-C	G	Co		HILL			C	5GY 8/1					N R F C R R	M			VOID		cc	

98

SITE 366: SIERRA LEONE RISE

FORAMS NANNOS SANC SANC	CHA			SECTION	METERS		LIT	HOLOG	Y	DEFURMATION	LITHO.SAMPLE		LIT	OLOGIC DESCR	IPTION		104		ZONES RADS	CHA	ABUND.	110			DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DES	CRIPTION	
	F	с		0	0.5	Charles Hable		VOID		1		H 5GY 8/1 5 56 4/1 5 67 8/1 5 56 4/1	PELA (5G) turt pela 1-13 135 0 to	GIC CLAY, 11 8/1), stiff ance, burrow gic clay occ 5 to 142 cm; cm; 4-23 to 10 cm.		gray ling dis- erbeds of				FR	A 0 + 1	1	0.5-				5GY 8/1	PELAGIC CLAY CLAYEY NANNO CI (5GY 8/1), stii turbance, burro bands common. I PELAGIC CLAY, c stiff, slight c burrowed, some	YEY NANNO CHALK AND WLK, light greenish gr ff, slight drilling dis wwed. Mn specks and lie Black specks occasional lark greenish gray (56 irilling disturbance, sequences laminated.	
	Ē	c	P	2			1		ž			5GY 8/1	SS a Clay Nanr The	<u>t CC</u> (domina os alternations	nt lithology A Foram A Rads					FR		2	. Travelation					<u>SS at CC</u> (domin Clay Nannos Fish debris These alternati cycles.	nant lithology) A Forams A Rads R nons appear to be disso	C R Diutior
deflandrei	E		MPG	3								5GY 8/1 5GY 8/1 5GY 8/1 5GY 8/1 5GY 8/1	CARE			1 = 79%	AL ADACTUR	OLIGOCENE	Cyclicargolithus abisectus	N							5GY 8/1 5G 4/1 5GY 8/1	Carbonate Bomb: CARBON-CARBONA 1-85 (10.4-0.1- 3-51 (10.1-0.1-	-86)	
Díscoaster d	FR	A C	G P	4						1 1 1	Ī	56 4/1 56Y 8/1 56G 4/1 56Y 8/1 156 4/1							Cyc	F	AG	4					5G 4/1 5GY 8/1 5GY 8/1 5GY 8/1 5GY 8/1 5G 4/1			
kugleri s.s. elongata	R	C R	р Р	5						1		56Y 8/1						cinamaneie 022	cionigerina ciperoensis rzz Sphenolithus ciperoensis Dorcadospyris ateuchus		A G F I	5					56Y 8/1 56 4/1 56Y 8/1		a -	
Globorotalia ku Lychnocanoma e	F	C C A	Р Р-М-	6	re	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				1		-1 5G 4/1 -1 5GY 8/1						Glahfaarfna	Sphenolithus Dorcadospyri		A G	-M	1 3	1 13111			+ 5G 4/1			

_	_	_	_	 _

Site 366 Hole A FOSSIL

SECTION

0

Core Catcher

MP

C

R 1R GM METERS

Core 32 Cored Interval: 291.0-300.5 m DEFORMATION LITHO.SAMPL LITHOLOGY LITHOLOGIC DESCRIPTION Only small sample 5GY 8/1 CLAYEY NANNO CHALK, light greenish gray (5GY 8/1), stiff. <u>SS at CC</u> Clay Forams Diatoms Fish debris Fe/Mn Nannos Rads R A R AR R R

Explanatory notes in Chapter 1

ZONES

AGE FORAM NANNC RADS

OLIGOCENE ciperoensis P22 tes bisectus

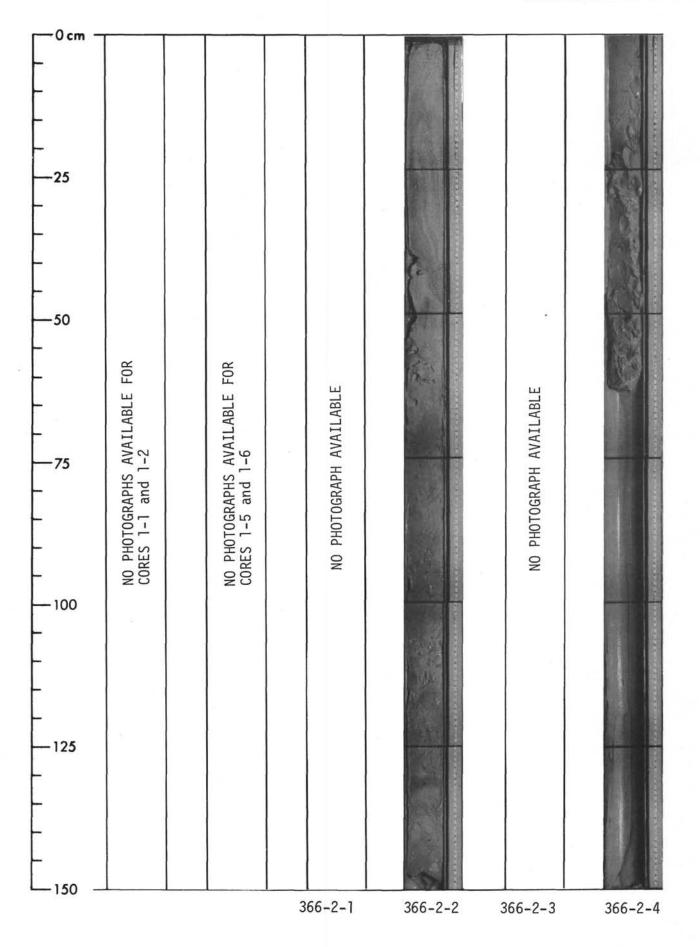
Globigerina cipe Dictyococcites

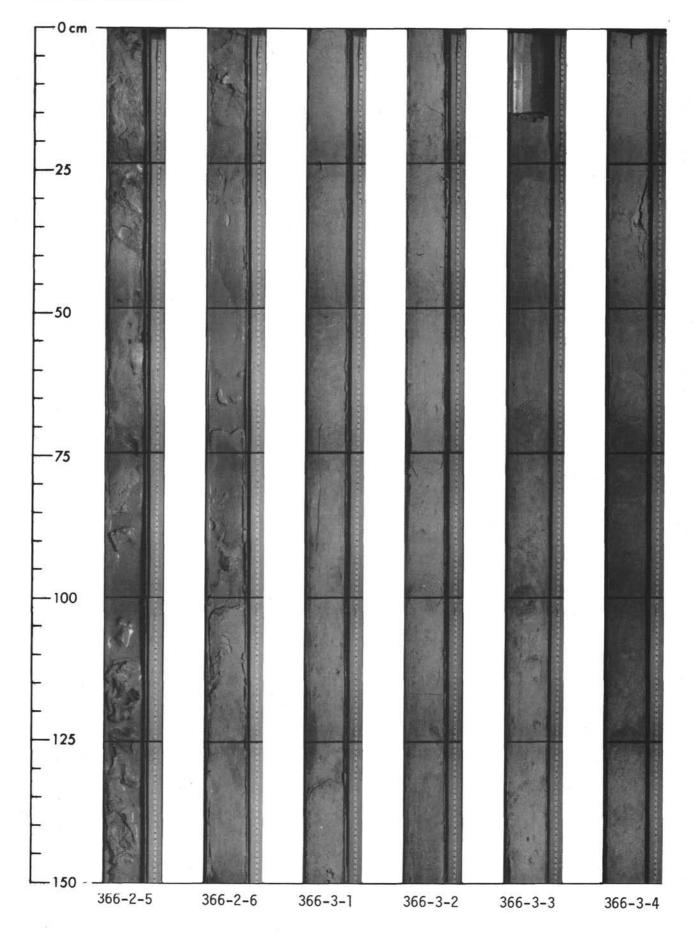
	ZONES		RAC		N	1.22		NO	APLE		
HUE	FORAMS NANNOS RADS	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	
_				_	0	-				INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY	
					1	0.5	VOID	bx 1		CLAYEY NANNO CHALK, light greenish gray (5GY 8/1), stiff, slight drilli disturbance, burrowed, Mn spots with liesegang halos scattered throughout PELAGIC CLAY, dark greenish gray (50 stiff, slight drilling disturbance, 5G 8/1 burrowed, sometimes laminated.	
		FR	A C	M	2	internation of				56 6/1 These appear to be dissolution cycle 567 8/1 SS at CC (dominant lithology) 56 6/1 Clay 56 7 8/1 Nannos 56 8/1 Carbonate Bomb: 3-84 to 85 cm = 81%	is.
L	Dictyococcites bisectus	FRN	ACA	MGM	3					56 6/1 CARBON-CARBONATE 2-76 (10.2-0.1-85) 5GY 8/1 3-81 (10.8-0.1-89) 5G 6/1 56 6/1	
OLIGOCENE	cocci tes					-		1		5G 6/1	
	Dictyoo	F	A	м		111		1		5G 6/1	
	(s P22	R	с	G	4					567 8/1 56 6/1	
	Globigerina ciperoensis P22 Dorcadospyris ateuchus	F R	c c	P	5	the second s				5GY 8/1	

Core Catcher

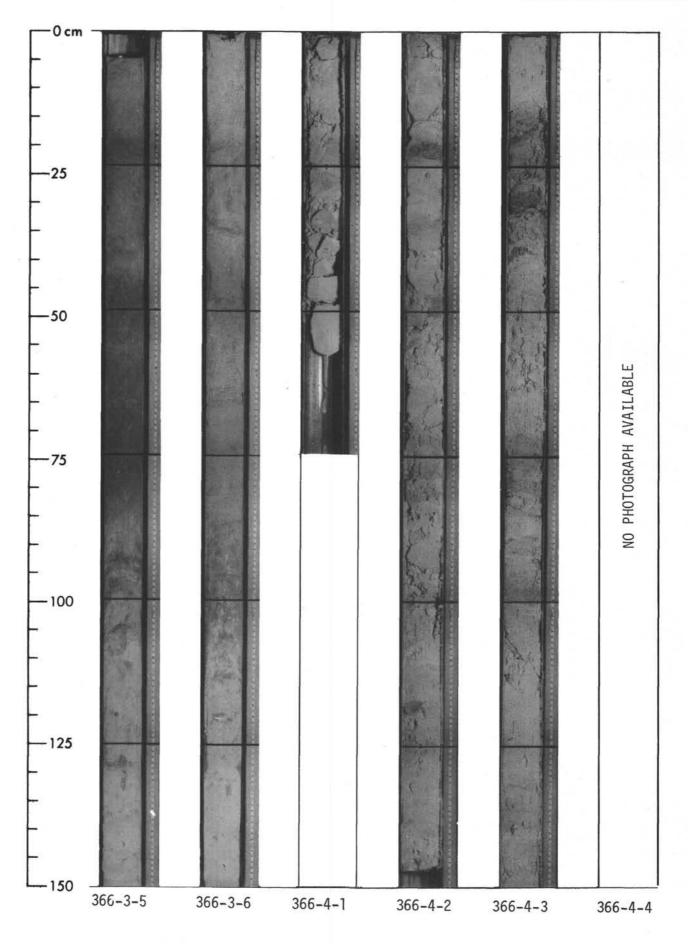
F A GM R C M

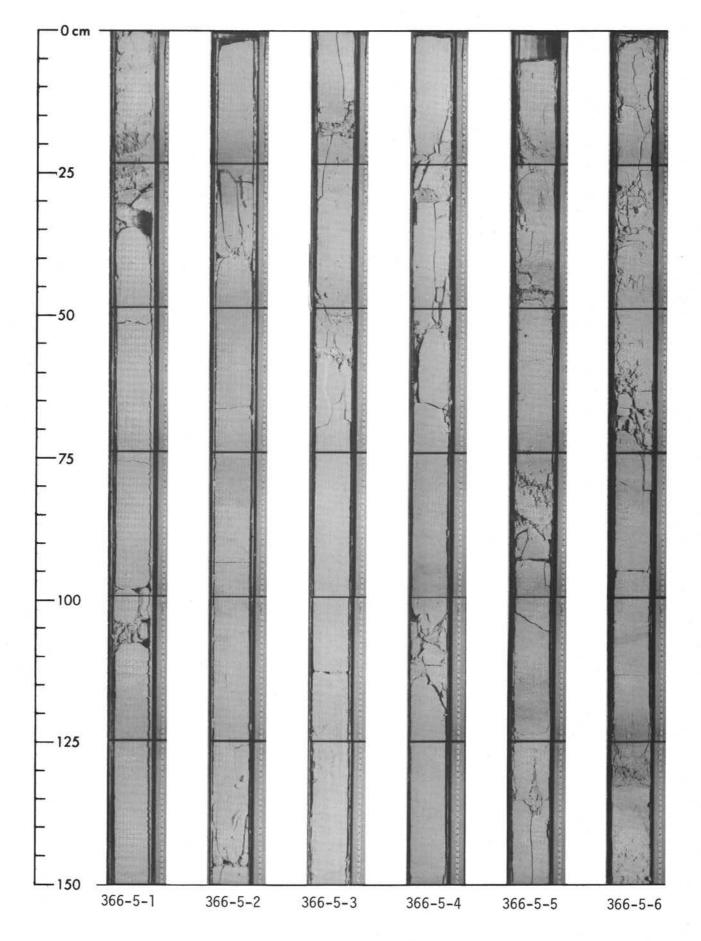
CC

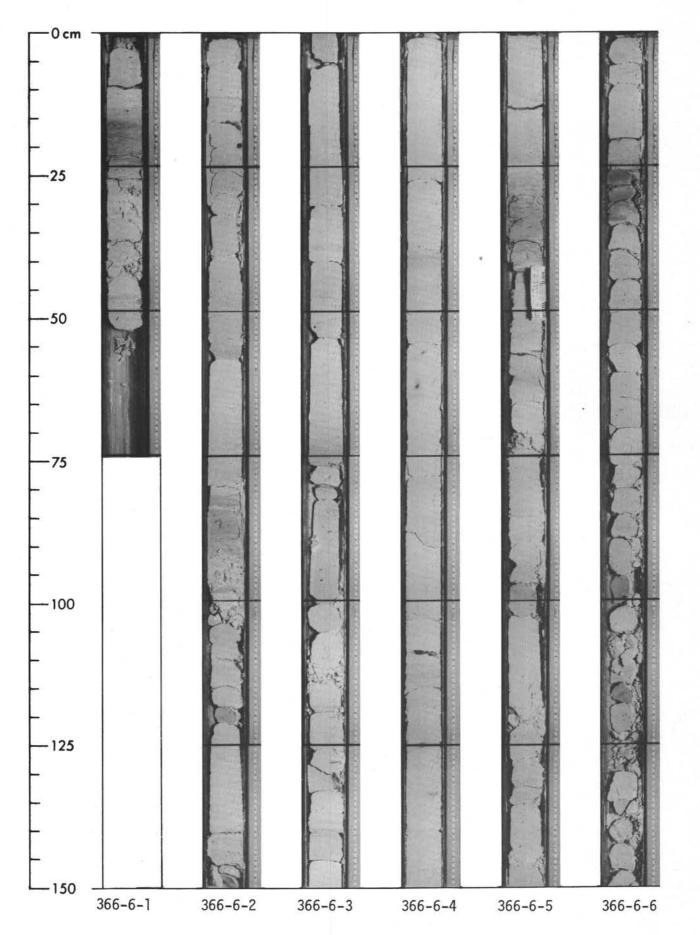

ZONES		OSSI RACT					×	E				70	NES C	FOS	SIL				Z	<u><u> </u></u>		
NANNOS RANS	-		PRES.	SECTION	METERS	LITHOLOG	DEFORMATION	LITH0,SAMPLE		LITHOLOGIC DESCRIPTION	AGE	H		TICCO-	T	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMP		LITHOLOGIC DESCRIPTION
2 2		-	-	0	-		-	-		INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY	1 –	-	-	+	-	0	-	VOID	H	-		INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY
erina ciperoer P22	F	A	G	1	.5	VOID	Se bx		5GY 8/1	CLAYEY NANNO CHALK, light greenish gray (5GY 8/1), stiff, slight drilling dis- turbance, burrowed, Mn and Fe flecks, some with liesegang bands and halos, scattered throughout. Good Zoophycos burrows. Bluish-				RC		1	-		1	5G 5G 5G	6/1 (8/1 6/1	CLAYEY MANNO CHALK, light greenish gray (SGY 8/1), stiff, slight to no drilling disturbance, burrowed, Mn halos around Zoophycos tracks, liesegang bands, some blue-gray laminations scattered throughout
Globigerina				ľ					→ 5G 6/1	gray laminae occur scattered. PELAGIC CLAY, dark greenish gray (5G 6/1), stiff, slight drilling disturbance.							-			5G	Y 8/1	PELAGIC CLAY, dark greenish gray (56 6/1), stiff, slight to no drilling disturbance, intensely burrowed.
							축¦		5GY 8/1	burrowed, some zones Taminated. These alternations appear to be dissolution cycles.							7		11	T 1111	6/1 Y 8/1	These alternations appear to be dissolutio cycles.
	F	A	G	2	-		5			SS at CC (dominant lithology) Clay C Forams R				R C		2	-	titt titt	1		Y 8/1 6/1	<u>SS at CC</u> (dominant lithology) Clay A Forams R Nannos A Rads R Fish debris R
			+	+	_		2		56 6/1	Nannos A Rads R Carbonate Bomb: 3-84 to 85 cm = 76%									!	56	/ 8/1	Carbonate Bomb: 3-78 to 79 cm = 75%
Dictyoccites bisectus	FN	A A	G M	3	<u>uluulu</u>				5GY 8/1	CARBON-CARBONATE 1-91 (10.9-0,1-90) 3-81 (10.2-0,1-84)	DLIGOCENE		- 13	R F C	ΜņΜ	3	unhundu			56 56 56 56 56 56 56	6/1 / 8/1 6/1 / 8/1 6/1 / 8/1 6/1	CARBON-CARBONATE 1-101 (10.6-0.1-88) 3-76 (9.8-0.1-81)
Dict			F	+					d 56 6/1		OLIG								;	56	Y 8/1	
	F	A	G	4	1111				5GY 8/1					R F	р М	4	1111			☐ 5G 5G	6/1 (8/1	
			-	_	T	hotot	=;		⊣ ^{5G 6/1}											₽ ⁵⁶	6/1	
					1111		-		5GY 8/1					F /							1 8/1	
opima P21 tus hus		A	6	5	LI LI				-			opfima	s distentus is ateuchus			5	ululu.			, ⁵⁶	6/1	
opima opima distentus s ateuchus			ł	+	111		<u>1</u> 1					a opima	s diste is ateu	F	P		11		$\left \right $	56	Y 8/1	
Globorotalia o Sphenolithus d Dorcadospvris	F	A		6	tilin.		T		5GY 8/1			oborotalf	Sphenolithus o Dorcadospyris			6	the	میں اور		☐ ⁵⁶	6/1	
Sphe	N	c	м		- Int		3					610	. 1	N	м		- the		i	5G	Y 8/1	
	FR	A	G	Cor	6			cc						F I	G		ire cher		1	cc		

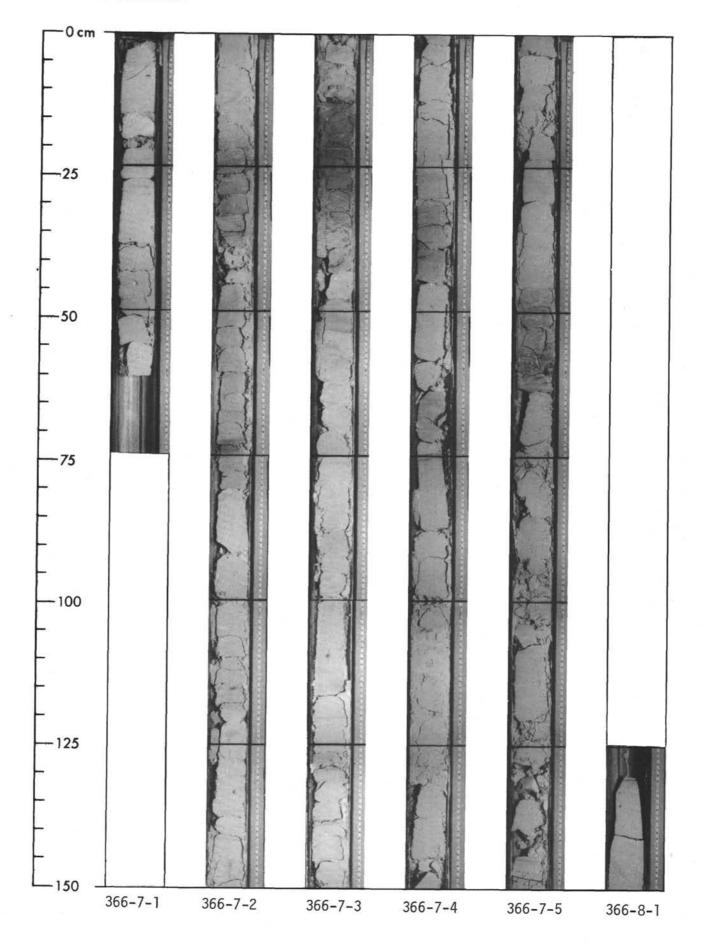

Site 3	66	Hole	еA		C	Core	35	Core	d In	terv	al:	319.5-329.0 m		Site	366	Но	le A	<u>}</u>	C	ore 36	Co	red Ir	terva	1:3	29.0-338.5 m		
	RADS SANO	CH/	FOSS ARAC . UNUBA	TER	SECTION	METERS		LITHOLO	SY	DEFORMATION	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS Z		-	CTER	SECTION	METERS	LITHO	LOGY	DEFORMATION	LI IDU SWILLE		LITHOLOGIC DESCRIPTION	
			-		0	L	- 14		242	bx	-		INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY			1	-	-	0	-		-	-	-		INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY	
					1	0.5	11111	VOID					CLAYEY NANNO CHALK, light greenish gray (5GY 3/1), stiff, slight to no drilling disturbance, burrowed, Mn flecks and liesegang bands scattered throughout, laminated zones present throughout.			5	c	м	1	0.5	VOI		bx_		2	CLAYEY NANNO CHALK, light greenish gri (567 8/1), stiff, no drilling disturbi burrowed, Mn bands, laminae, halos abu some layers laminated. PELAGIC CLAY, dark greenish gray (56 6	ince, indant,
							-			-	_	− 5G 6/1	PELAGIC CLAY, dark greenish gray (5G 6/1), stiff, slight to no drilling disturbance, burrowed.			ľ				- 12		1		ſ	5GY 8/1	stiff, no drilling disturbance, burrow Sometimes the contact between pelagic	clay
						1	3		1			- 56 0,1	These alternations appear to be dissolution cycles.			F	A	G		- 74		the state of the s			5G 6/1	below clayey nanno ooze is gradational but the other contact is always sharp. These alternations appear to be dissol	
		FN	C A	M	2		Ŧ		-			301 0/1	SS at CC (dominant lithology) Clay C Forams R			R			2	1441				Γ	00.071	cycles.	acton
						1	ł		T		F	56 6/1	Nannos A Fish debris R Carbonate Bomb: 3-73 to 74 cm = 80%	ENE						1111		2			5GY 8/1	<u>SS at CC</u> (dominant lithology) Clay C Forams Nannos A Rads	R R
												5GY 8/1	CARBON-CÂRBONATE 2-26 (10.6-0.1-87) 3-70 (10.4-0.1-86)	OL IGOCENE		F	A	G		- Intra		1 -1 -1 -1			5G 6/1 5GY 8/1 5G 6/1	Carbonate Bomb: 3-53 to 54 cm = 69% <u>CARBON-CARBONATE</u> 1-126 (10.6-0.1-88) 3-51 (9.9-0.1-81)	
OLIGOCENE		R F	c	P	3		Hard Hard		111 111		F	1 5G 6/1				F		6	3	111111	· · · · · · · · · · · · · · · · · · ·	T		Γ	5GY 8/1 5G 6/1		
0110		F	A	G	4	1	the state of the s		1111111111			5GY 8/1				FR	C R	P	4	111111	-			F	5GY 8/1 5G 6/1		
							and the state		H		F	⊣ 5G 6/1			P21					1111							
fma P21	5	FR	c		5		the state			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5GY 8/1			ia opima opima us distentus	ris ateuchus	C R	P P	5	Lindrit.					5GY 8/1		
on ima on	distentus				_				1	!	-	Ħ 5G 6/1			Globorotalia Sphenoiithus	orcadospyr1				1111			co	C			
otalia	Sphenolithus								キシー						ය න් lanate		R	P	Cat	.cher		-					
61 abor	Spheno	F	A	G	6		書		T			5GY 8/1		Exp	lanato	ry n	tes	in c	napti	er i							
		N	A	M-G			-		T																		
		F R	A _			ore tche	E	글글	1		cc																

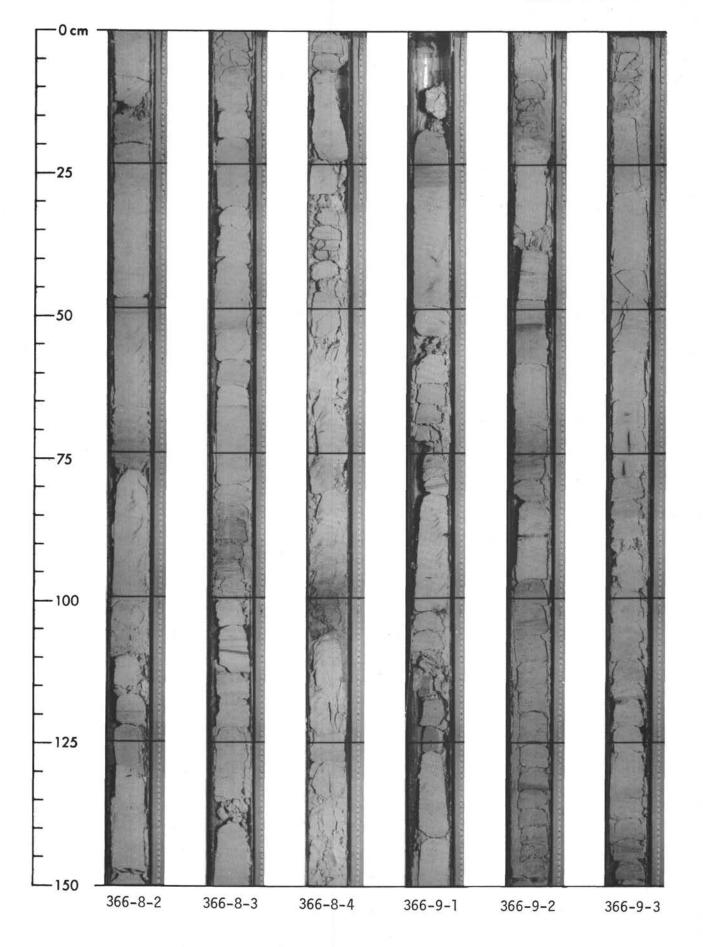
SITE 366: SIERRA LEONE RISE

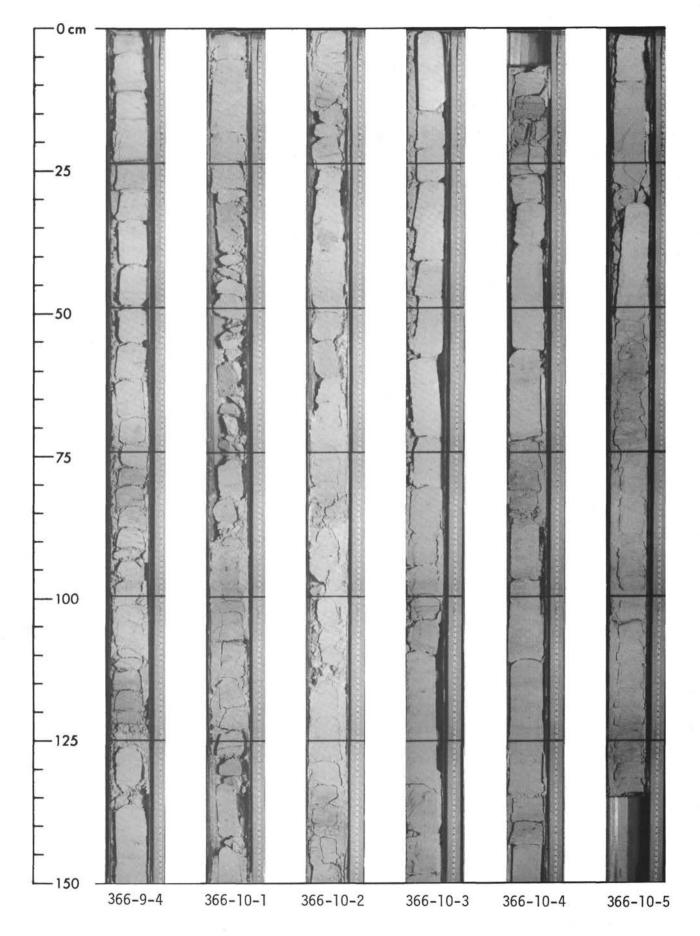

ite 366 H	Hole	_	_	Co	re 37	Co	ored In	ter	-	338.5-348.0 m		Site	366	_	e A FOSS		Con	e 38	Cored 1	nterval	: 34	48.0-357.5 m		
AGE FORAMS NANNOS RADS Sanoz	CHA	OSSI RACT - ONNBY		SECTION	METERS	LITHO	LOGY	DEFORMATION	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION	AGE	FORAMS NANNOS	ES CH	IARAC . UNINBA	TER	SECTION	METERS	I THOLOGY	DEFORMATION LITHO.SAMPLE			LITHOLOGIC DESCRIPTION	
			_	0	111				_		INTERBEDDED CLAYEY NANNO CHALK AND PELAGIC CLAY CLAYEY NANNO CHALK, light greenish gray	-			-		0	-	100 geore.		H	56 6/1 567 8/1 56 6/1	INTERBEDDED CLAYEY NANNO (PELAGIC CLAY	
	RF	c	M	1	0.5						(56Y 8/1), stiff, no drilling disturbance, burrowed, abundant Mn flecks, bands, and halos, some laminated layers blue-gray and green.			F	с	м	1					5GY 8/1	CLAYEY NANNO CHALK, light (5GY 8/1), stiff, no drill burrowed, abundant Mn filo liesegang halos, some zone laminated and are blue-gra	ing disturbance ks, bands, and s are
	. 6	Ū					Land			5GY 8/1	PELAGIC CLAY, dark greenish gray (56 6/1), stiff, no drilling disturbance except in Sec.6, burrowed. These alternations appear to be dissolution						1.	Hill H	* - * - * * - * - * * - * - *		F	56 6/1	PELAGIC CLAY, dark greenis stiff, no drilling disturb	h gray (5G 6/1) ance, burrowed.
					1111	늪	÷			H 56 6/1	cycles. SS at CC (dominant lithology)			F	A	6						5GY 8/1	These alternations appear cycles. <u>SS at CC</u> (dominant litholo Clay A For	
1 1	R F N	0	M P M	2	1111					-1 5GY 8/1	Nannos A Rads R Fish debris R			Ň		G M	2	- Halling			FF	5G 6/1 5GY 8/1 5G 6/1	Clay A For Nannos A Rad Fish debris R	ams C s R
			+	-		1 1	1		f	- 56 6/1 56Y 8/1	Carbonate Bomb: 3-96 to 97 cm = 84% <u>CARBON-CARBONATE</u> T-126 [10.2-0.1-84] 3-94 (10.5-0.1-87]	LIGOCENE					+	1111			ľ	5GY 8/1	Carbonate Bomb: 3-45 to 46 <u>CARBON-CARBONATE</u> 1-131 (10.9-0.1-90)	cm = 85%
				3	1111	- 1 - 1 1 - 1				1 5G 6/1	3-94 (10.5-0.1-87)	GL		F	A	G	3	the state			þ	5G 6/1	3-43 (10.7-0.1-89)	
	R F		P		1111	TTT-	T						P21					-1			L	5GY 8/1		
			ł	+	111	distant in the second				5GY 8/1			a opima entus	sa			+				۲	5G 6/1		
u Dorcadospyris	R	CA	MG	4	tinh.					5G 6/1 5GY 8/1			Globorotalia opima opima SPhenolithus distentus	s tubero	с	м	4					56Y 8/1		
8					1111					⊐ 5G 6/1			loborota Phenolit	beocyrt1				thirth 1			F	56 6/1		
			ĺ		1111					5GY 8/1			00	F	C-A A R	6	Core Catch	14		cc		5GY 8/1		
	F	A	G	5	1111					5G 6/1 5GY 8/1 5G 6/1		Expl	lanato	ry no	tes i	in Cha	pter	1						
ima P21 s					1111					5GY 8/1														
					Thur			bx																
Globorotalia opima of Sphenolithus distenti Theocyrtis tuberosa	RF		P P	6	- Thu					5G 6/1 5GY 8/1														
Globoro Sphenol Theocyr	N F		P-M	-	-					5G 6/1 5GY 8/1														
	R	Ř	м	Co Cat			C T			991 971														

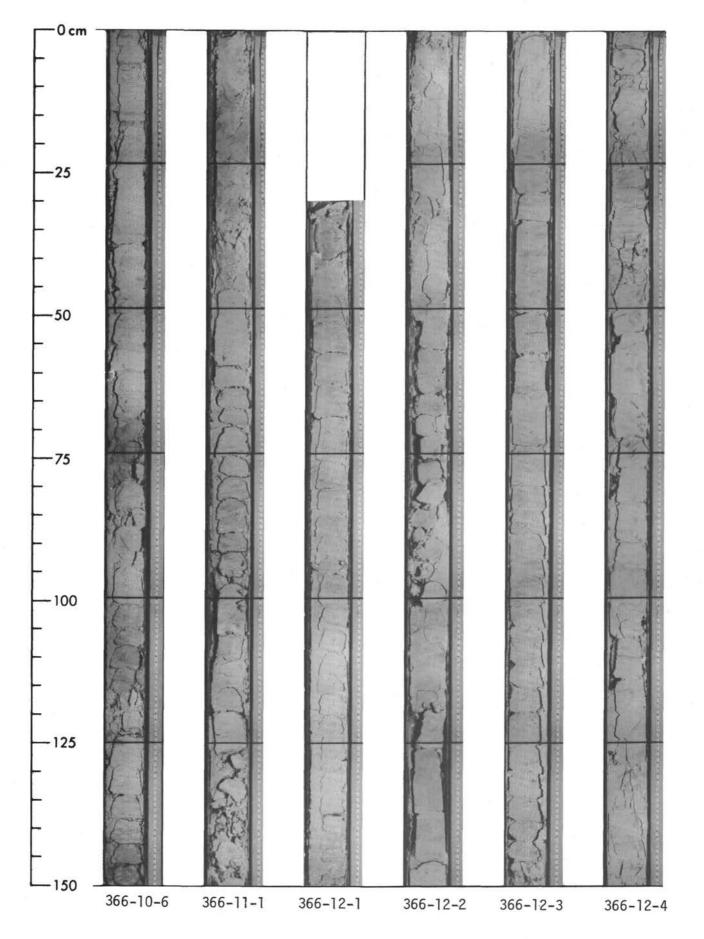

	ZONES		OSS	IL TER	NO	s		NOI	MPLE						
AGE	FORAMS NANNOS RADS	FOSSIL	ABUND.	PRES.	SECTION	METERS	LITHOLOGY	DEFORMATION	LITHO.SAMPLE	Ľ		LITHOLOGIC	DESCRIPTI	ON	
	ma opima P21				0		N890/0740(bx.		-	5GY 8/1	PELAGIC CLA	Y	ANNO CHALK AND	
	Globorotalia opima	F	R	þ	1	0.5			1		5G 6/1 5GY 8/1 5G 6/1	(5GY 8/1), burrowed, al	stiff, no bundant M	light greenish gr drilling disturb n flecks, laminat mon blue-gray and	ance, ions.
	[G1 abor										5GY 8/1 5G 6/1	PELAGIC CLA stiff, no di and sometime	rilling d	ellowish gray (5G isturbance, burro ted.	6/1), wed
		N	A	м								These altern cycles.	nations a	ppear to be disso	lution
OLIGUERE		F	R	P	2	maker					5GY 8/1	<u>SS at CC</u> (de Clay Forams Rads	ominant 1 A R R	ithology) Fe/Mn Nannos Fish debris	R A R
1110														to 92 cm = 86%	
						1	<u>, , , , , , , , , , , , , , , , , , , </u>			F	5G 6/1 5GY 8/1	CARBON-CARBO 1-25 (10.5-			
		F	R	P	3		121			F	5G 6/1				
	ura tus				S	4	للي الي الي الي الم الي				5GY 8/1				
l	Globigerina ampliapertura Sphenolithus predistentus Theocyrtis tuberosa								1.3	ŧ	5G 6/1 5GY 8/1				
	prec									۲	5G 6/1				
1	ina thus is t				6 2	1				Ħ	5GY 8/1 5G 6/1				
	iger noli	F	R	р	4	1	1111			H	30 0/1				
	G1ob Sphe Theo										5GY 8/1				
		N	C.	P-M		Ξ				E	5G 6/1				
		F	CR	M		ore tcher			cc		5GY 8/1				

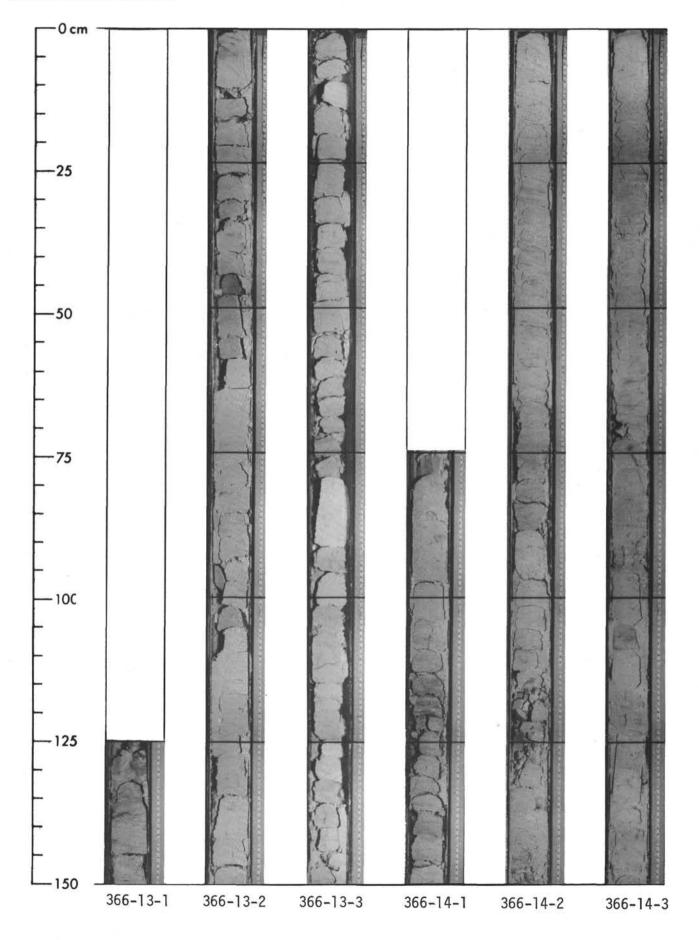


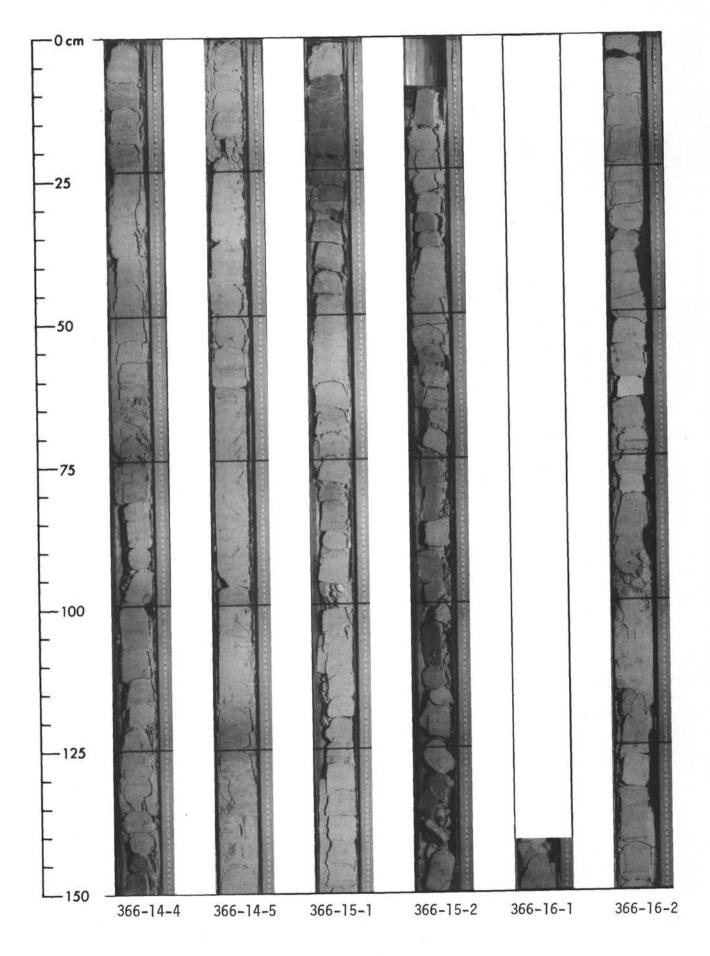


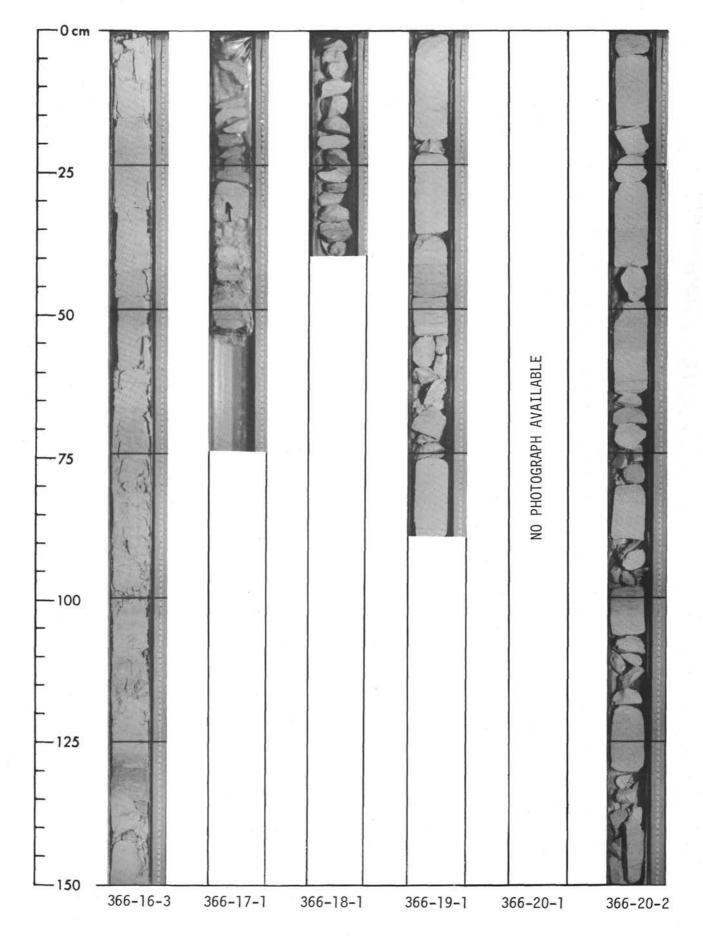


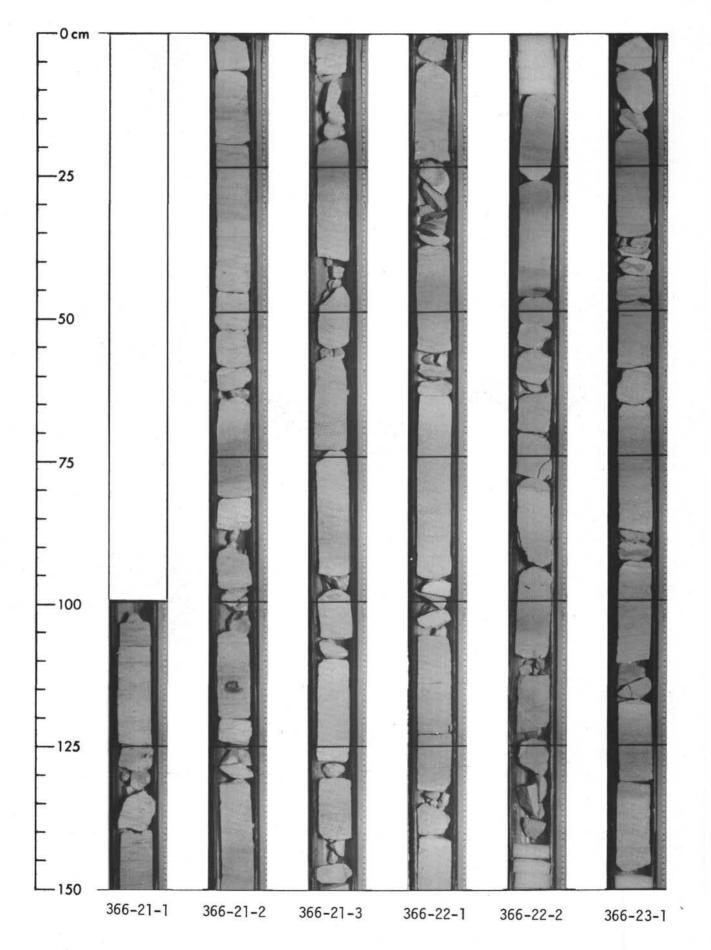


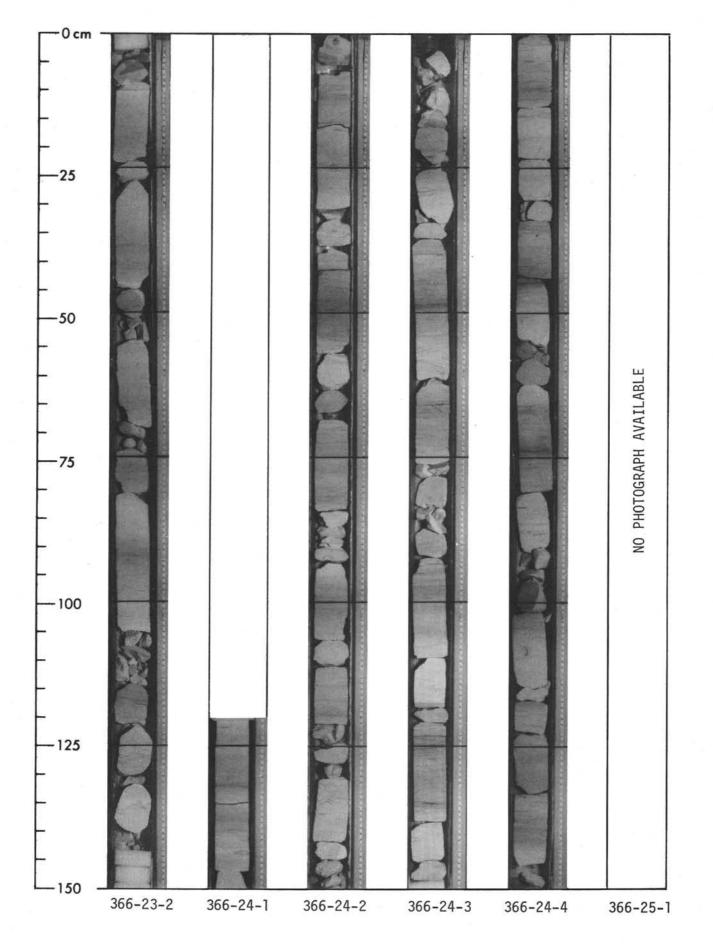


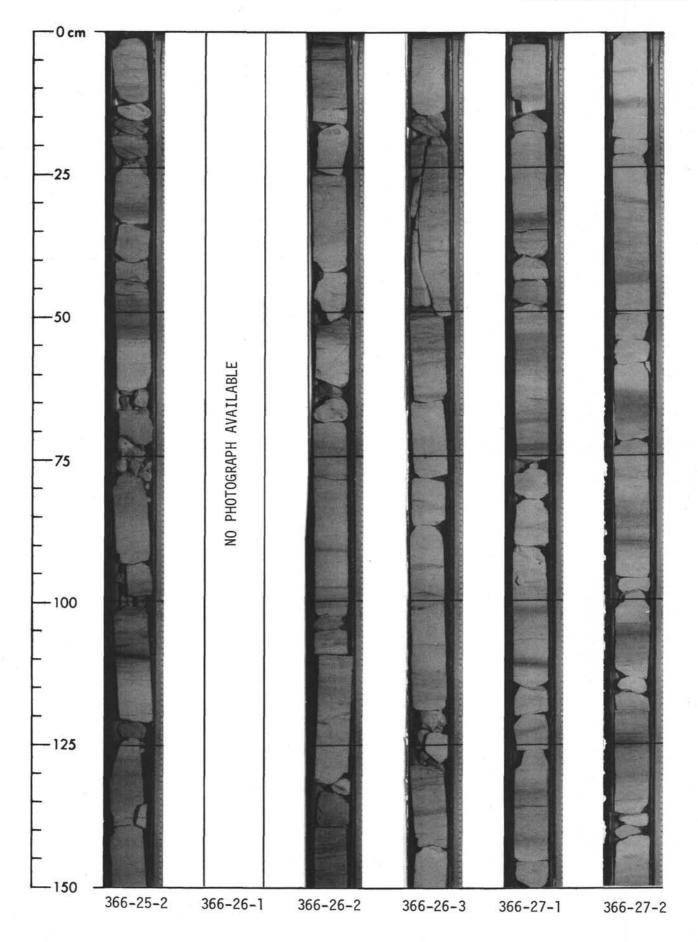


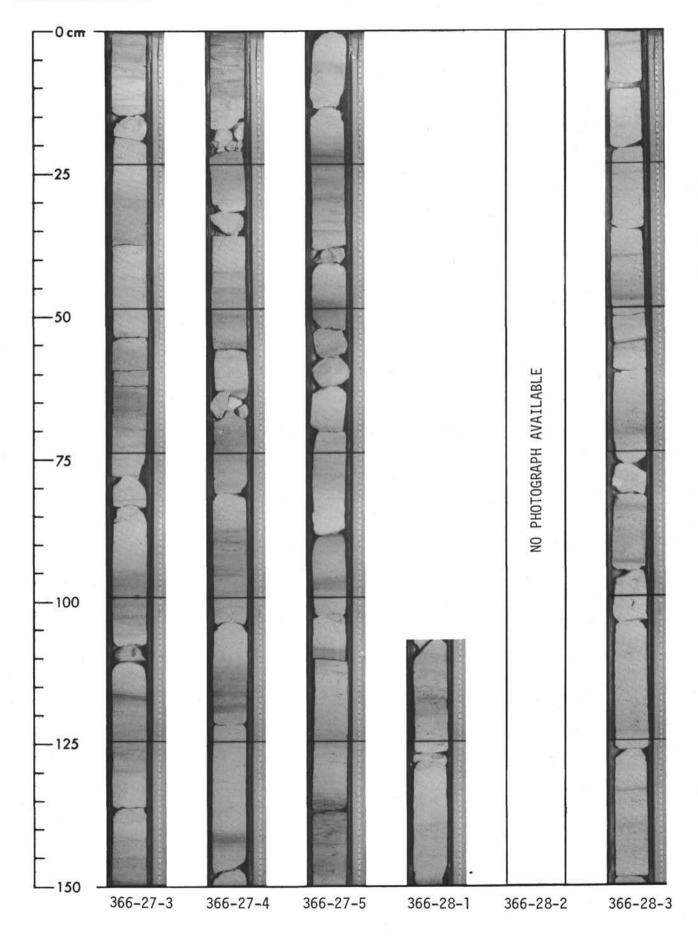


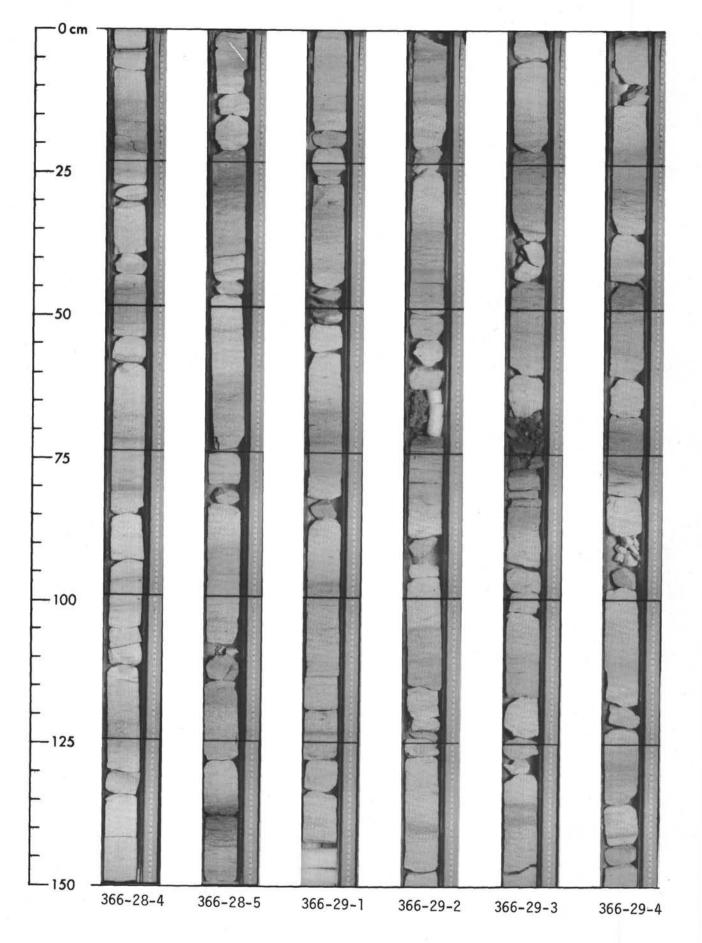


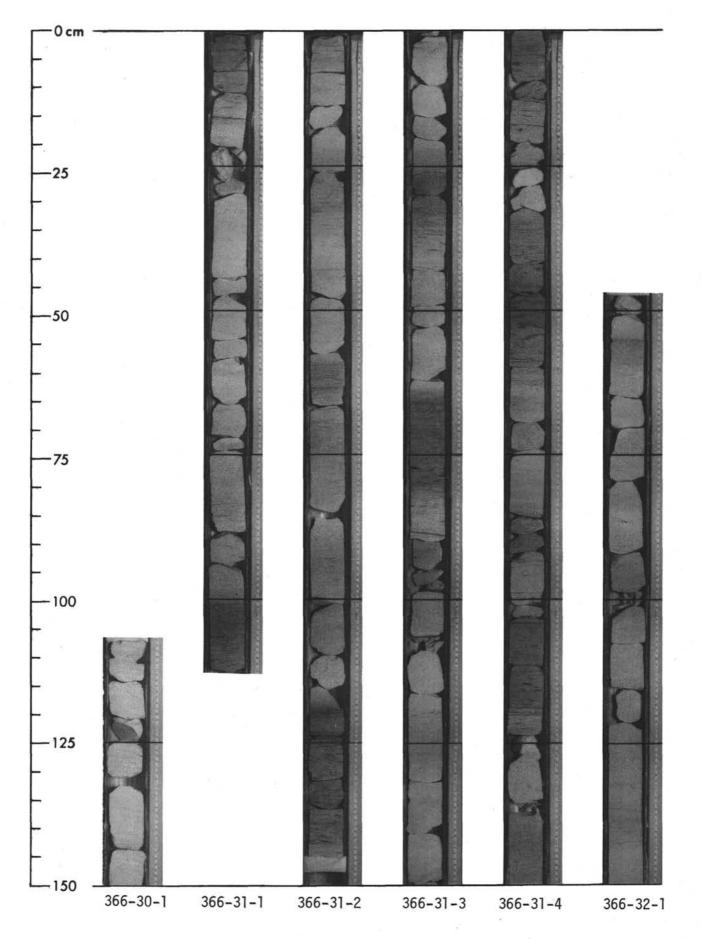


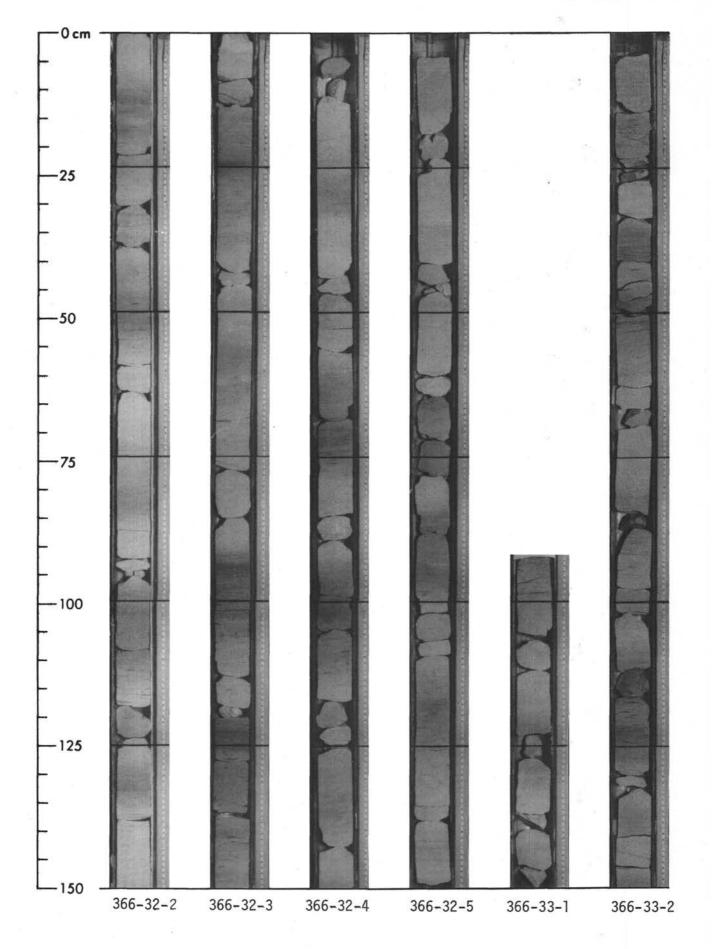


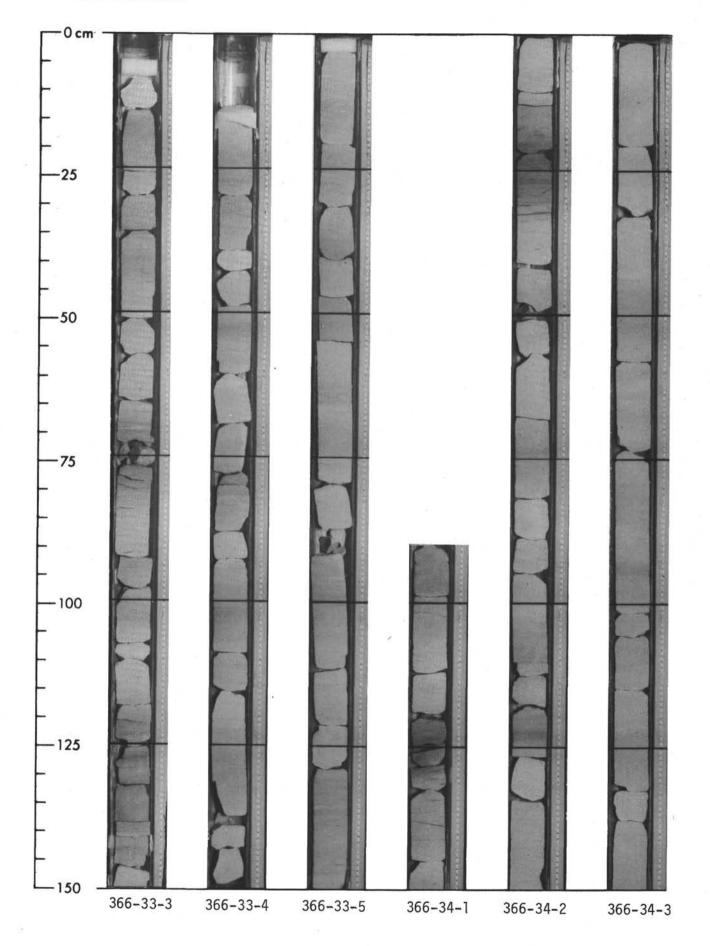

•

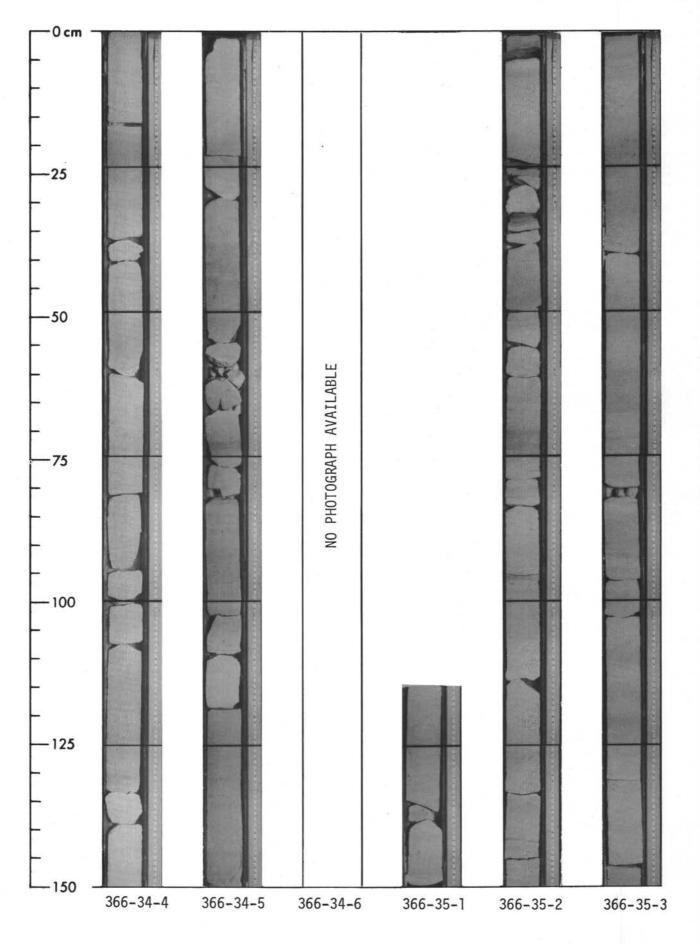


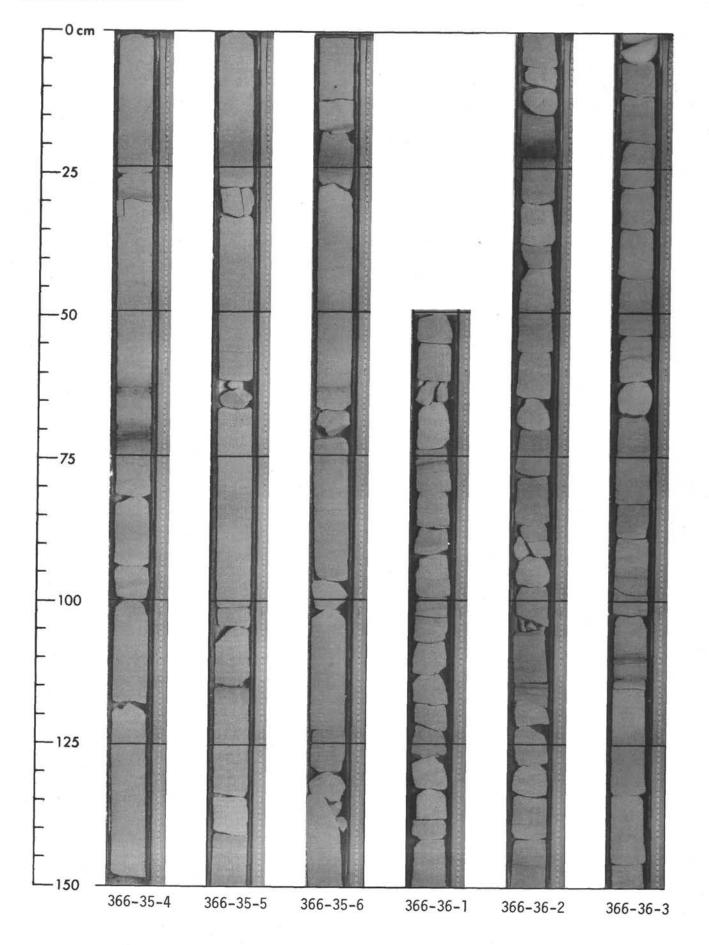


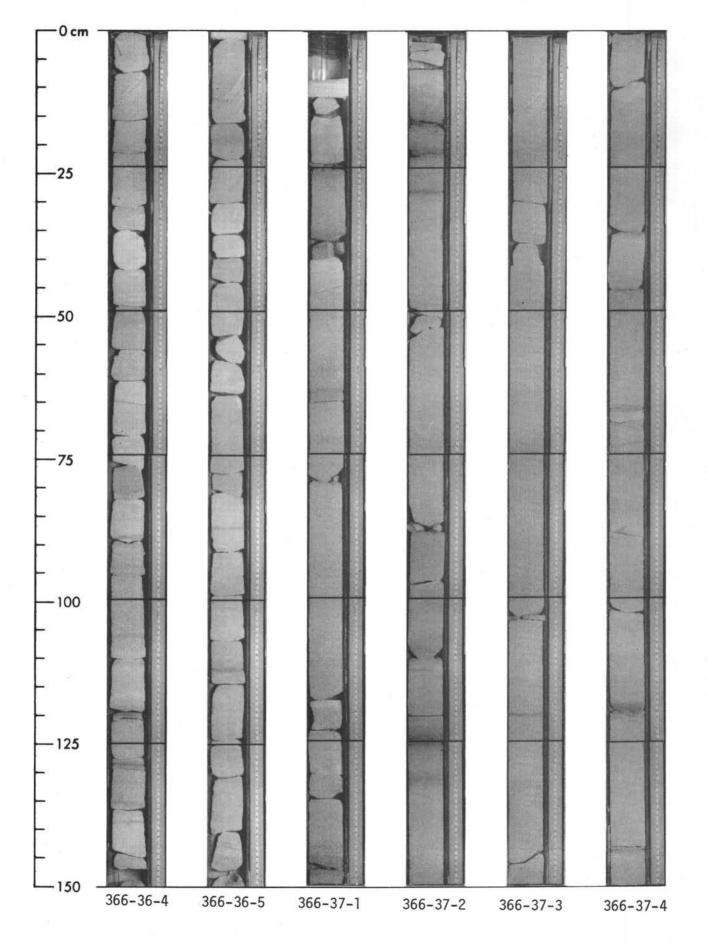


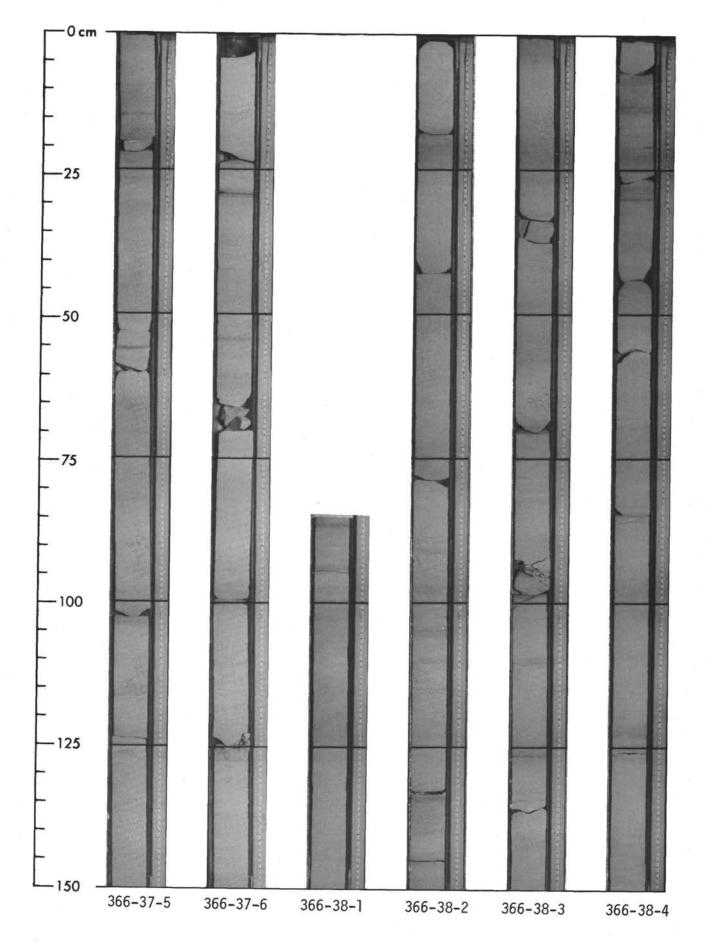


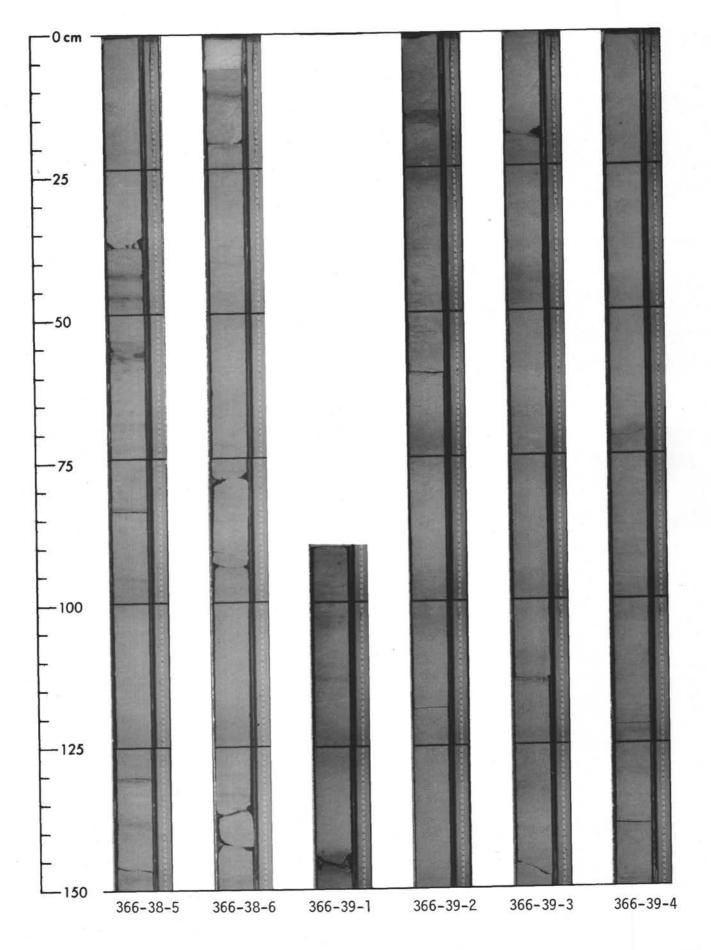


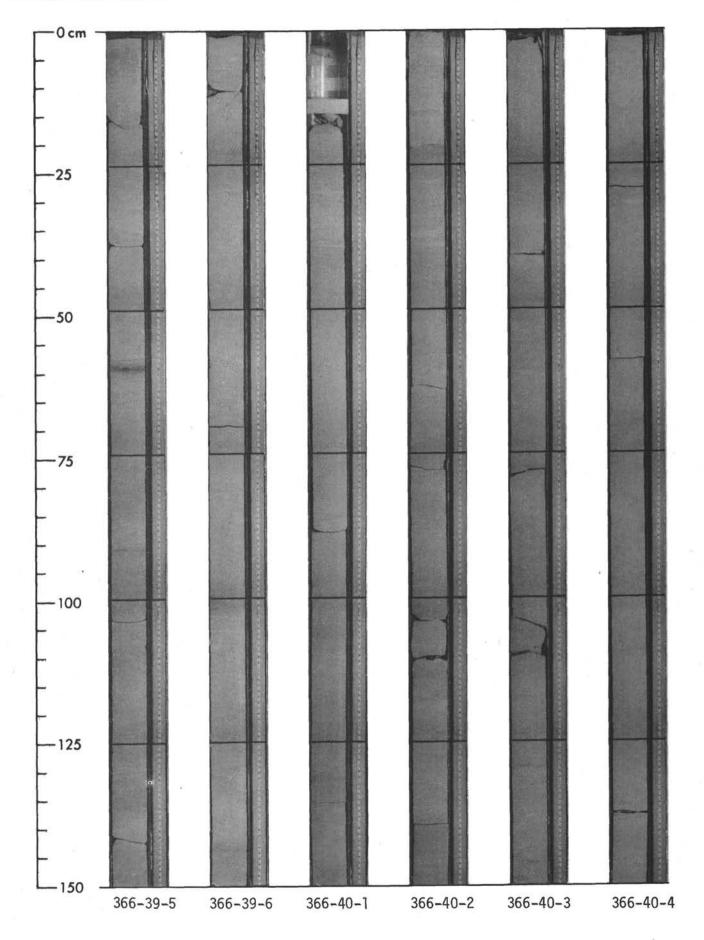


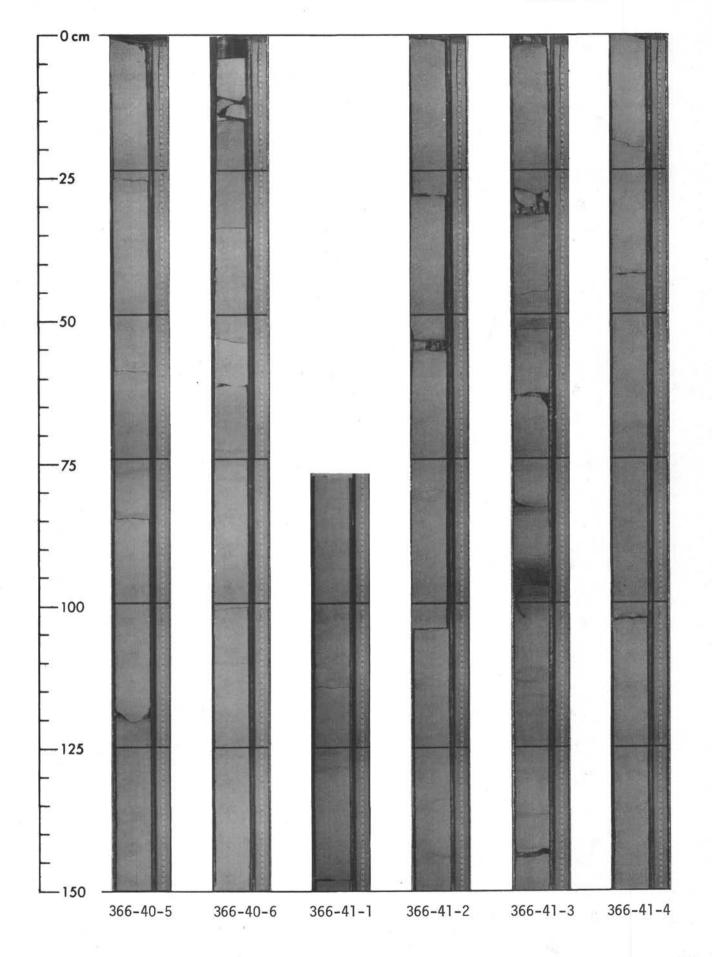


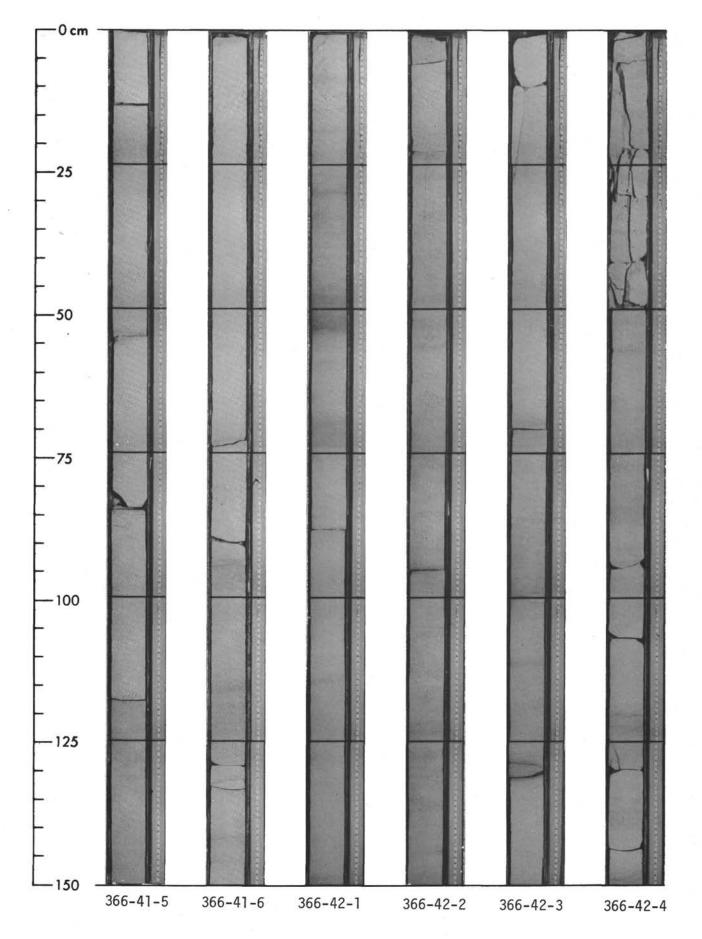


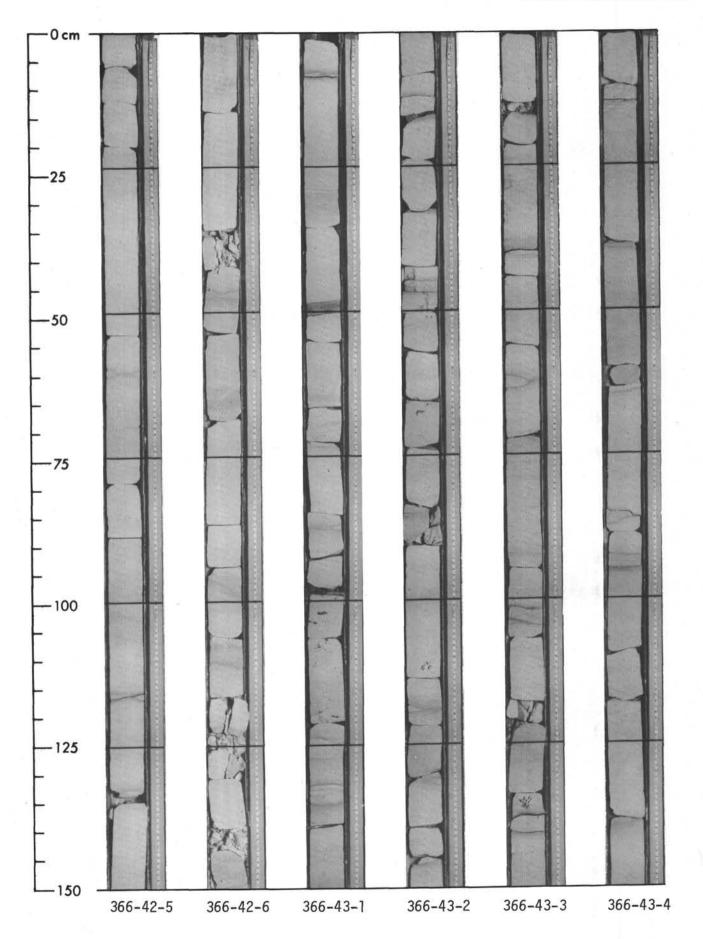


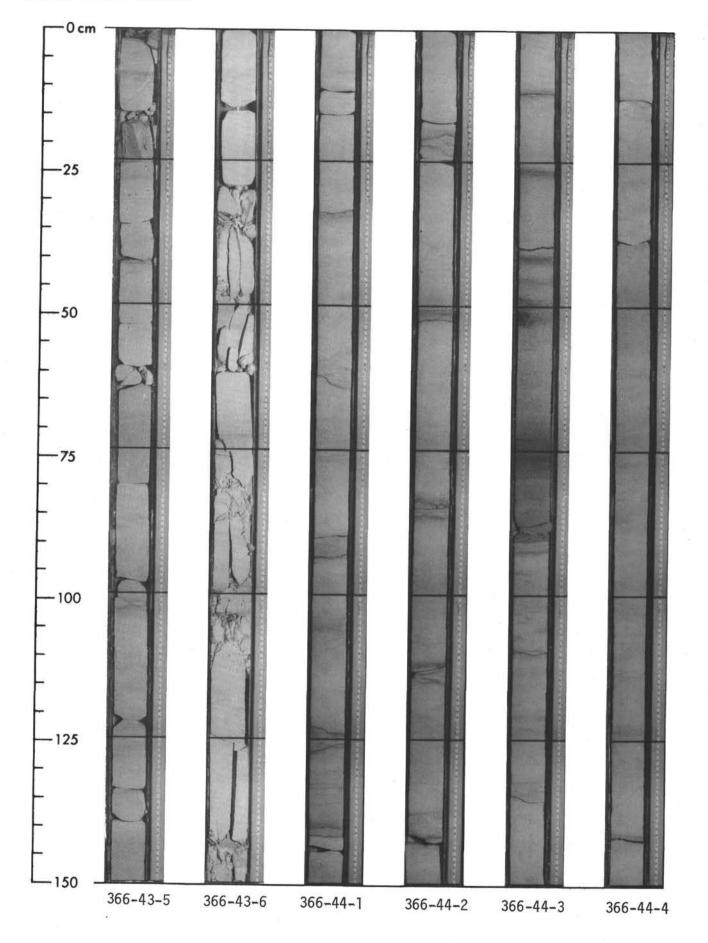


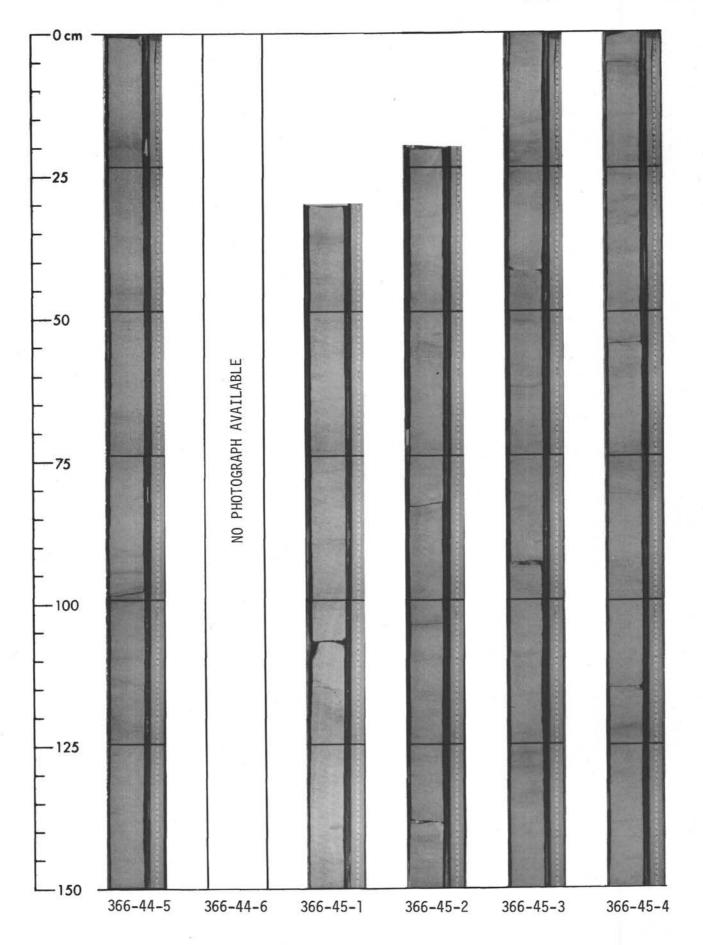


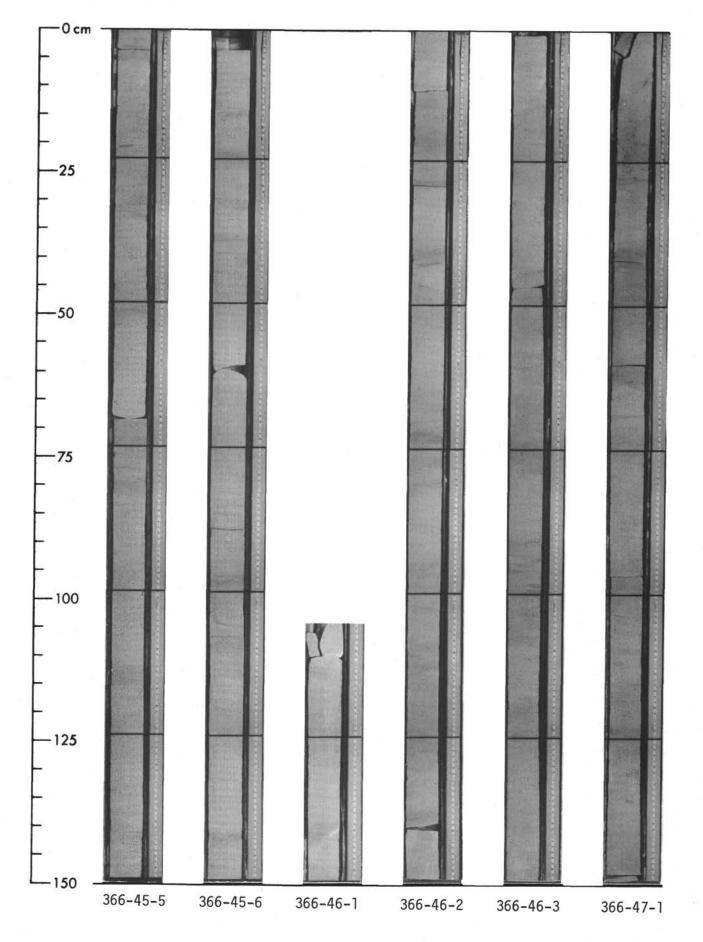


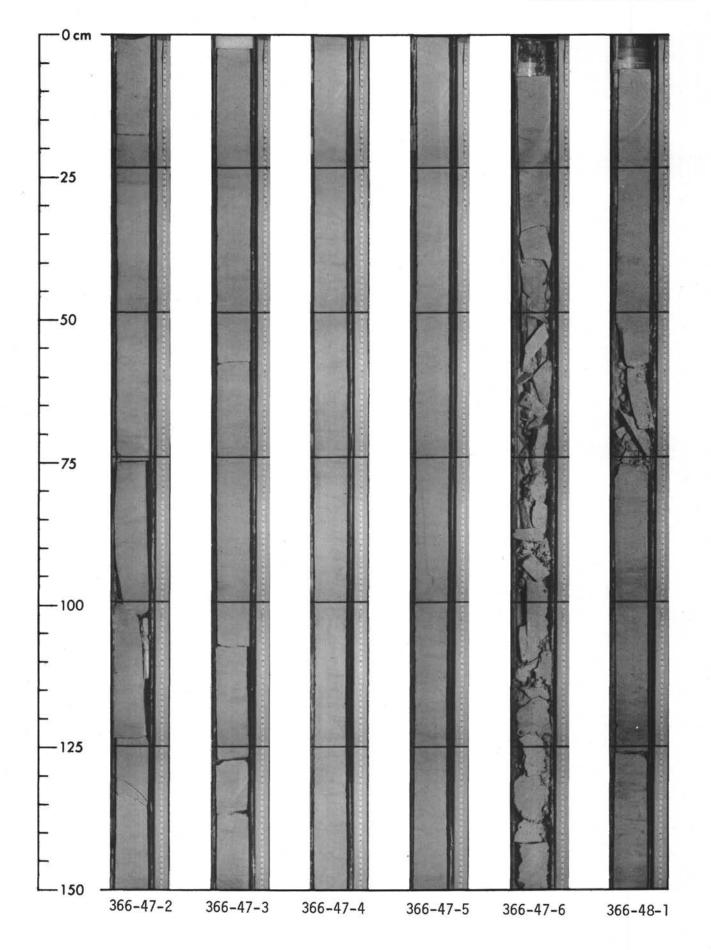


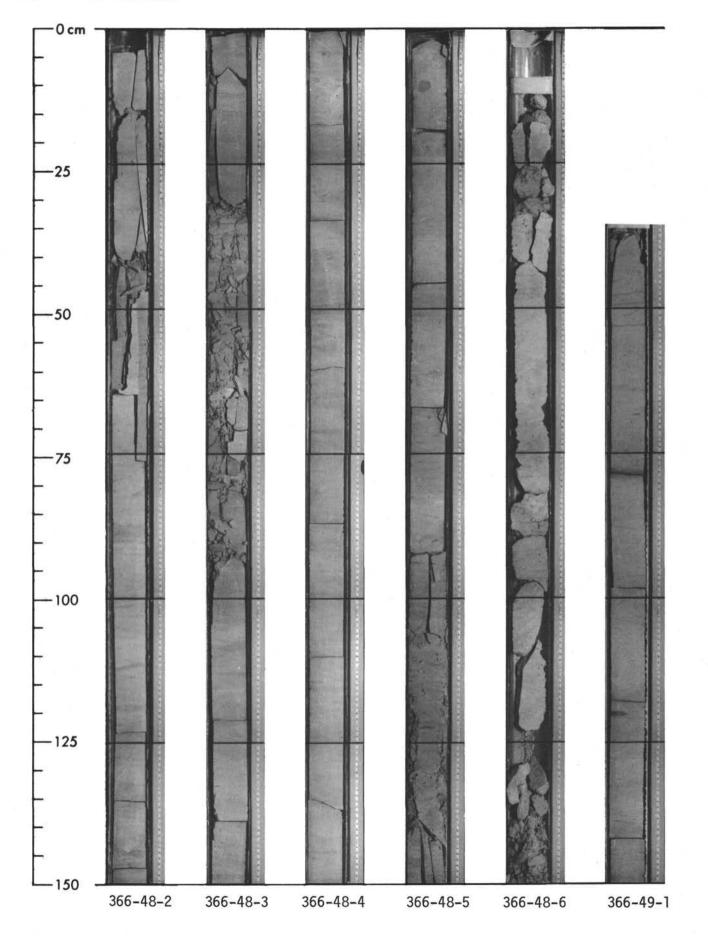


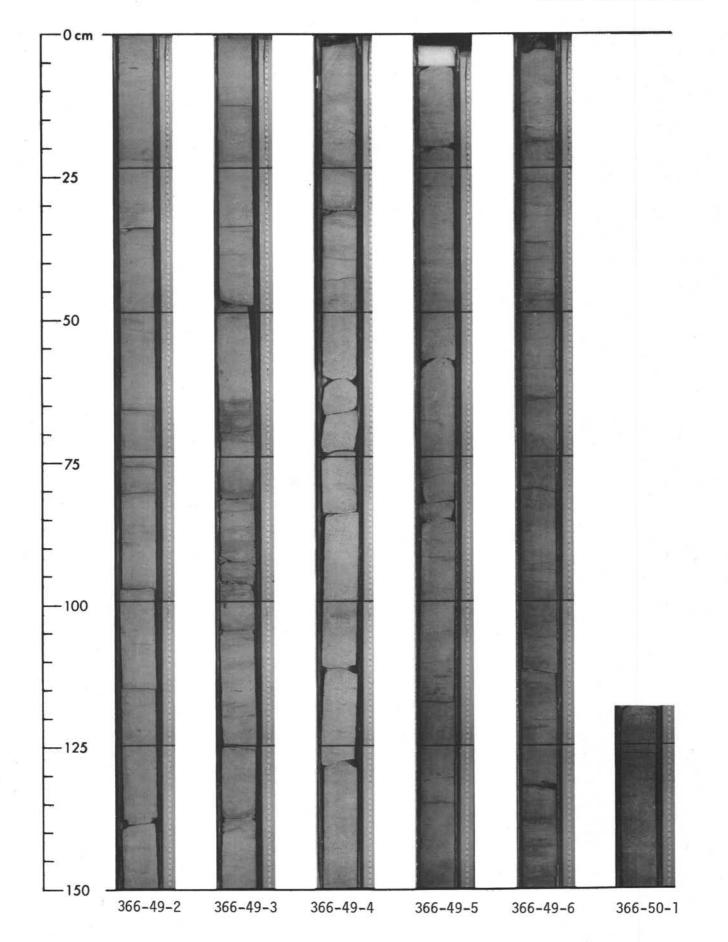


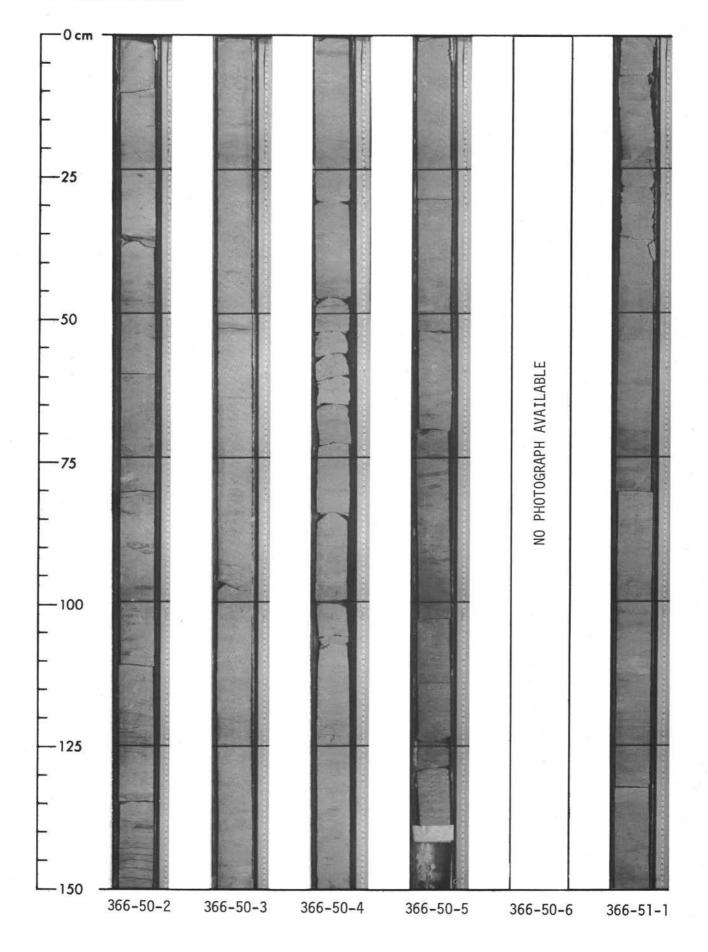


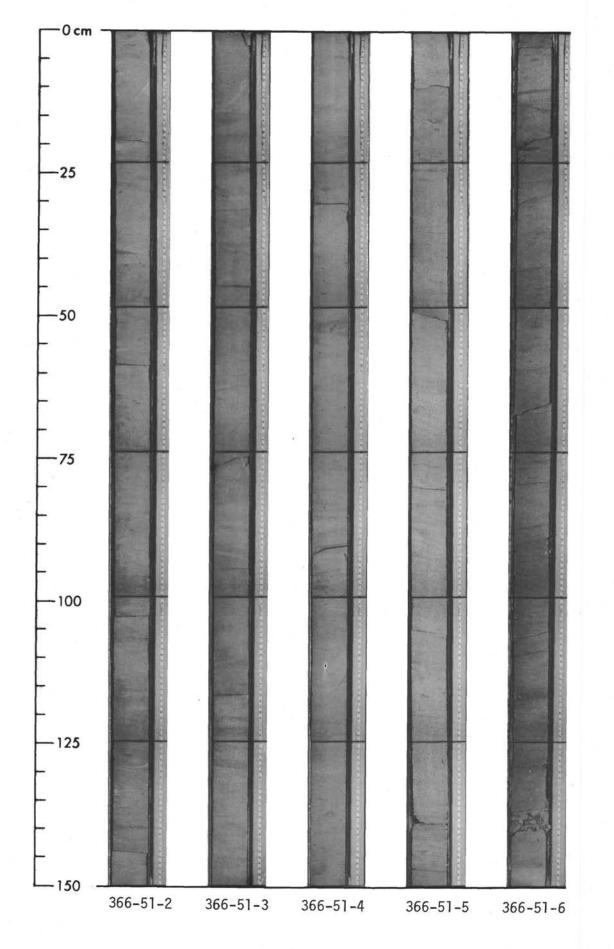


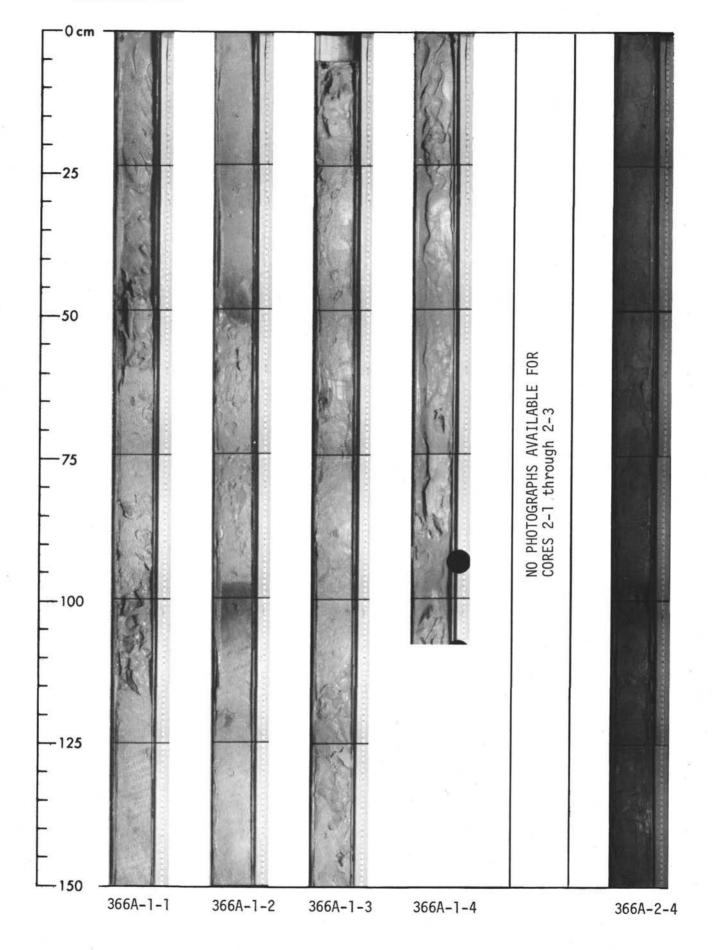


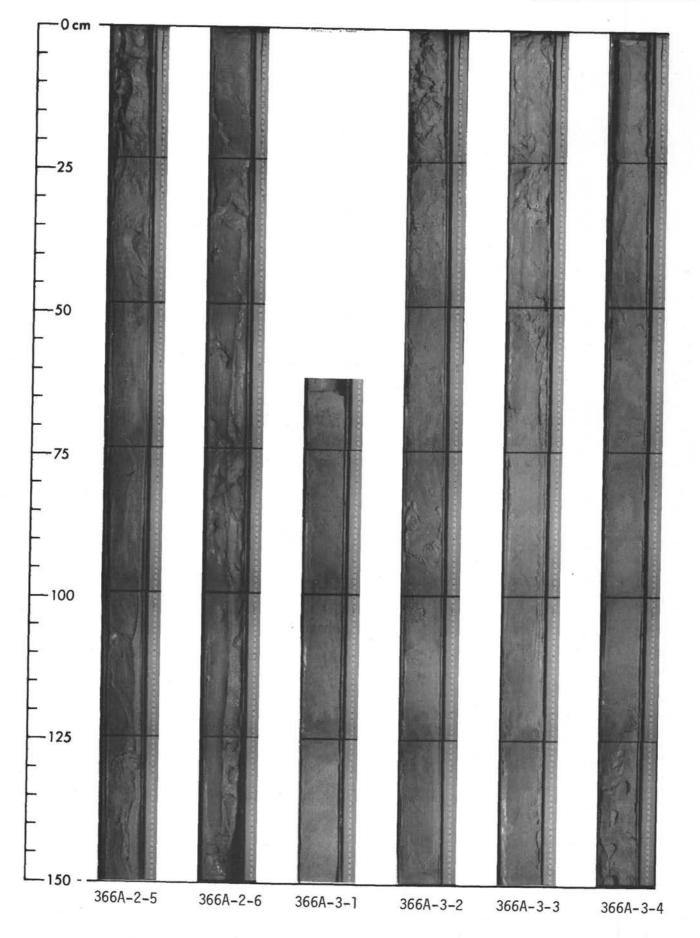




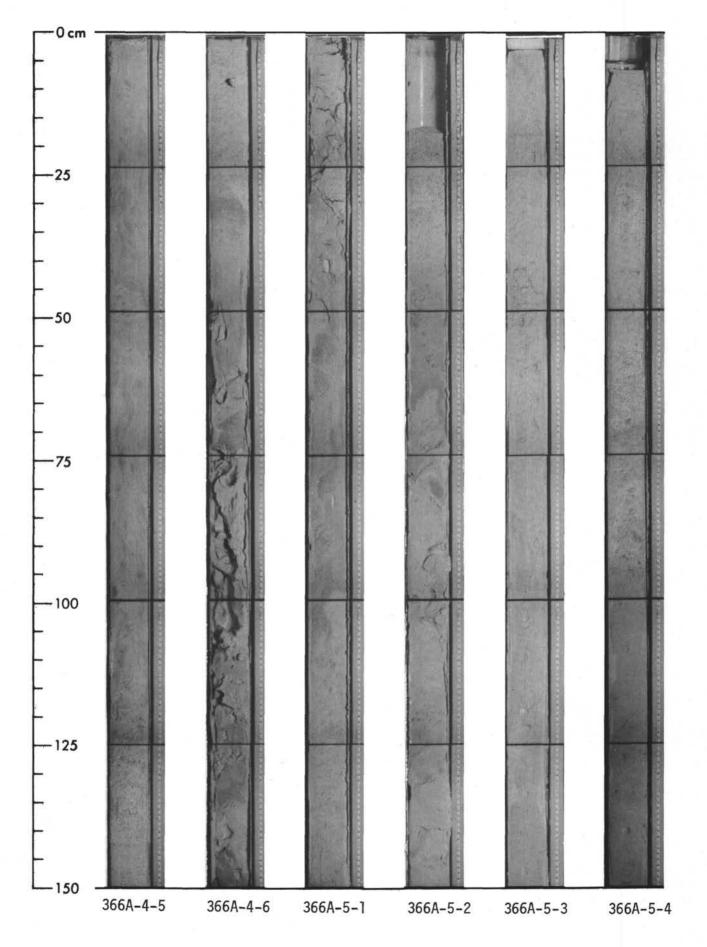


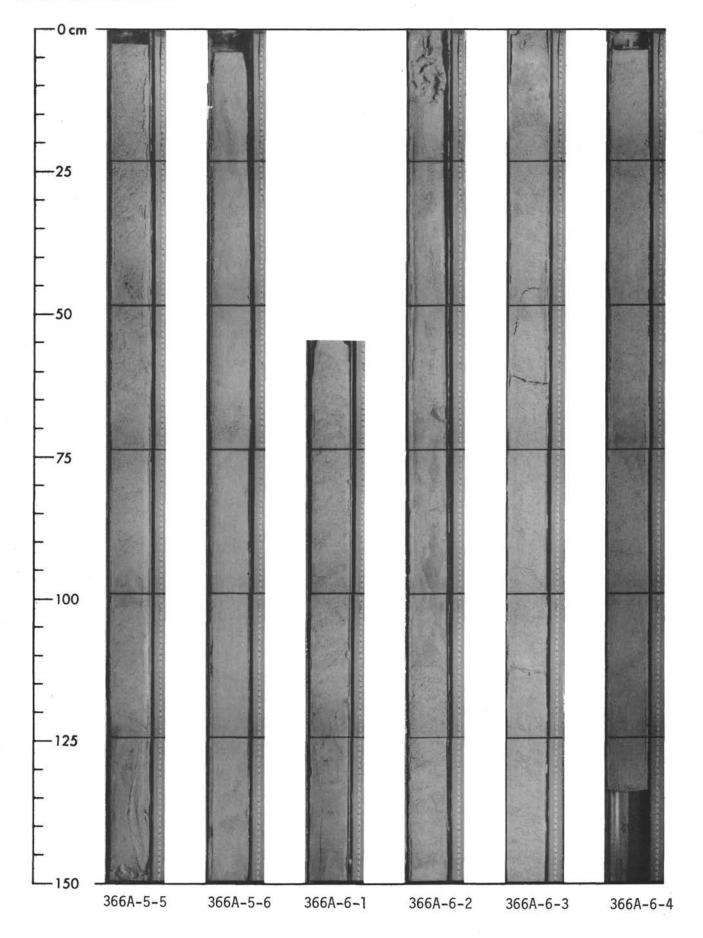


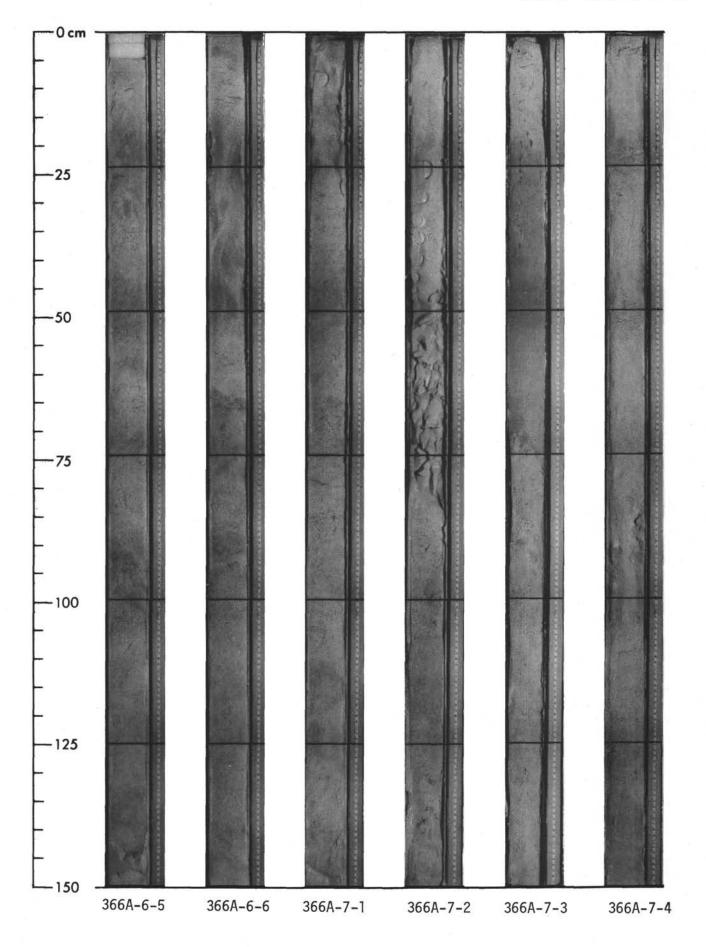


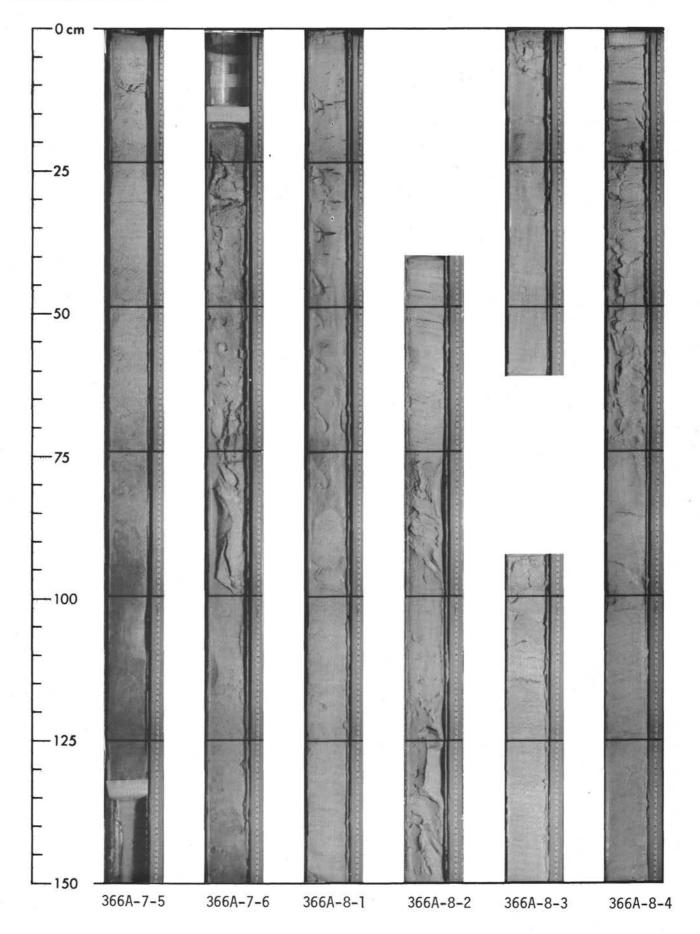


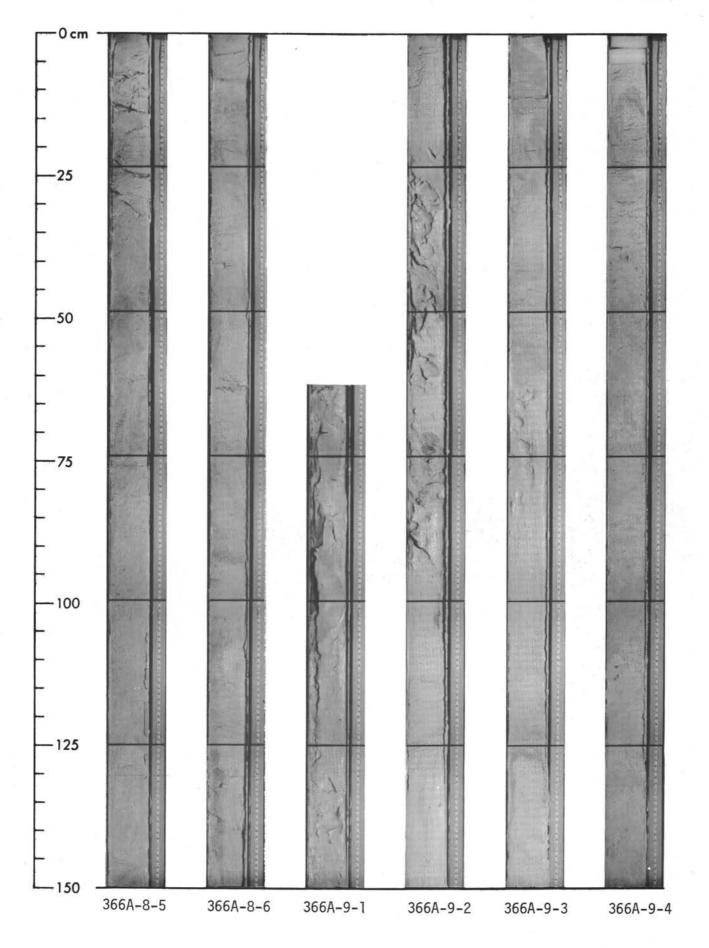


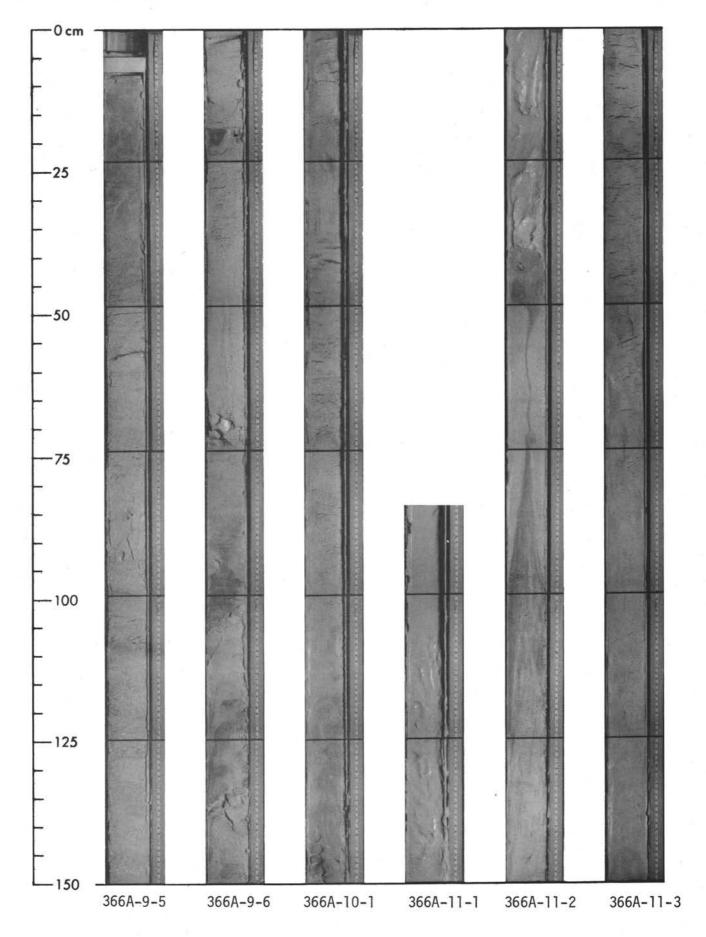


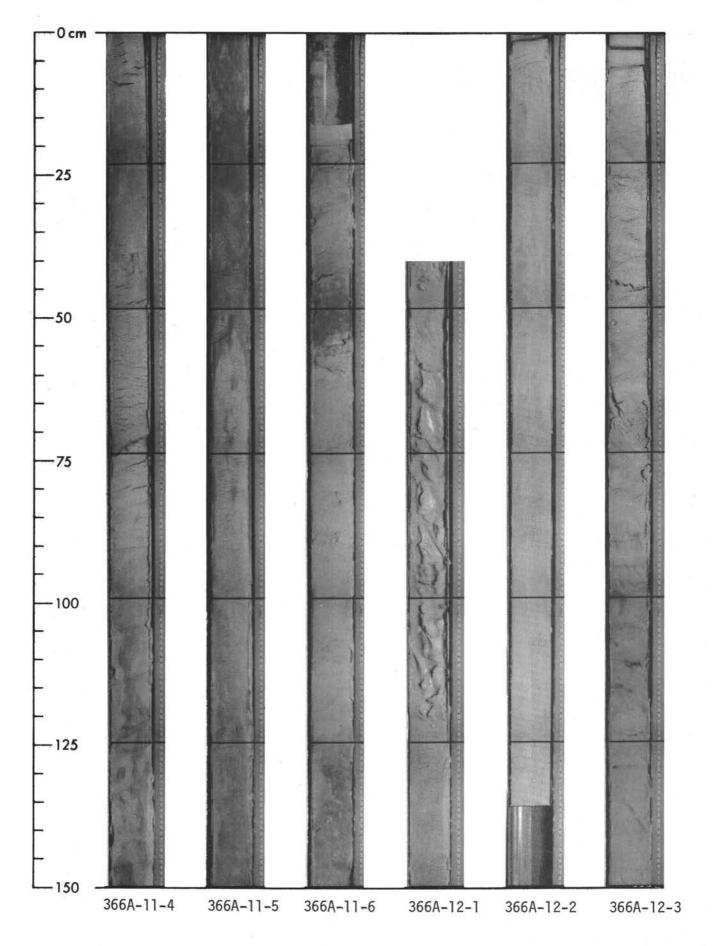


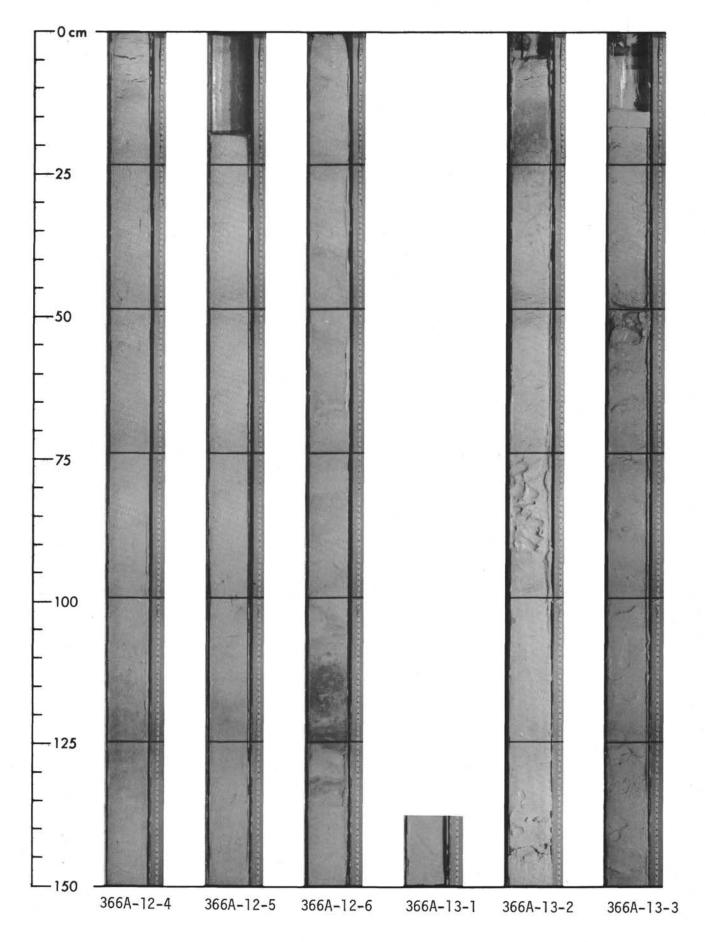


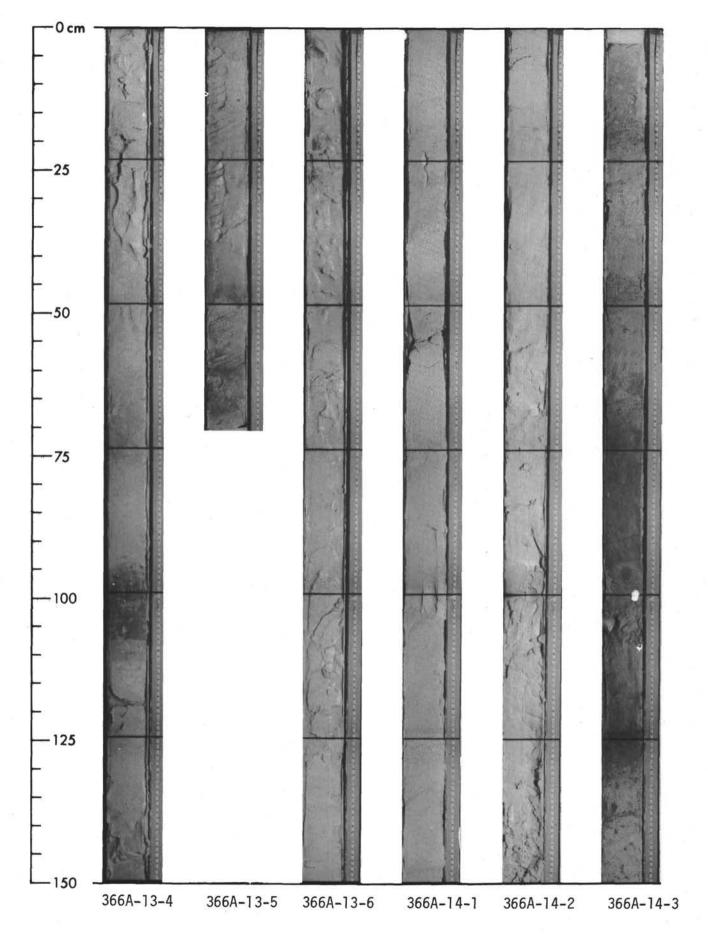

131

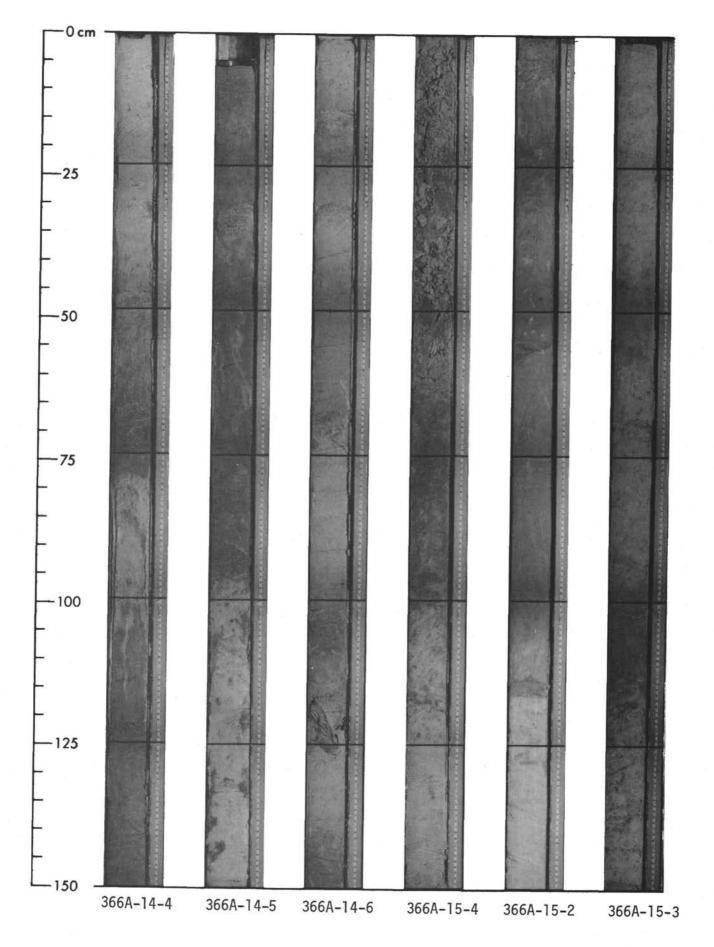


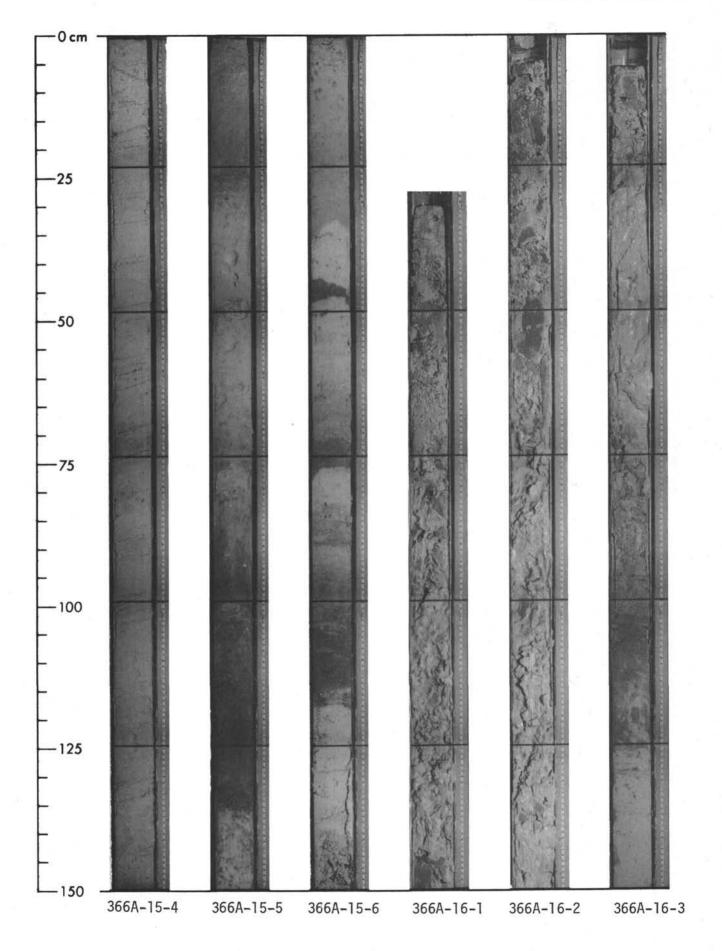


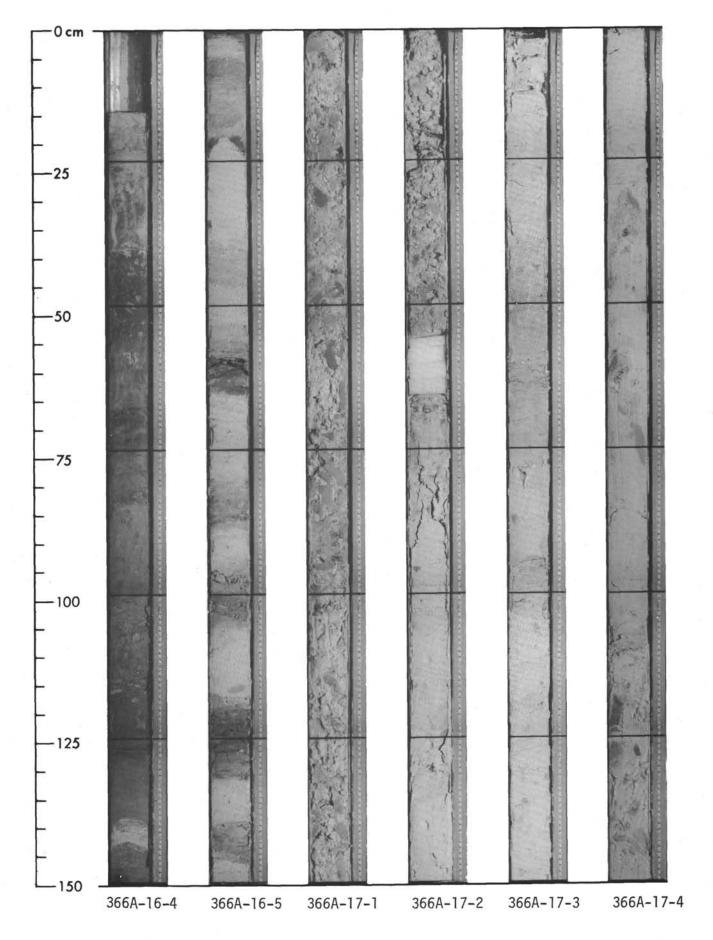


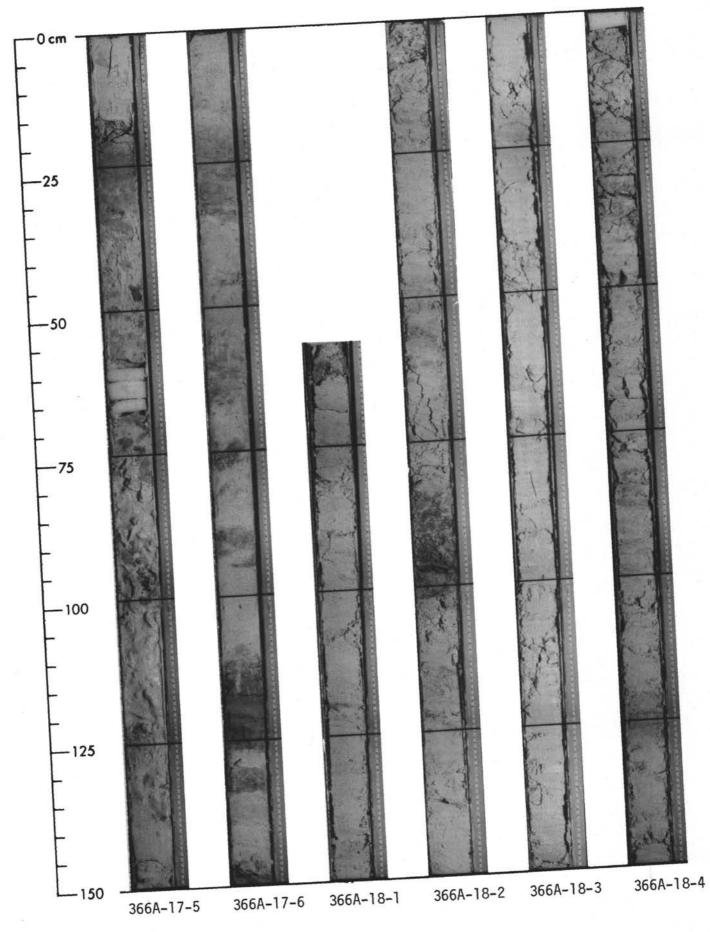


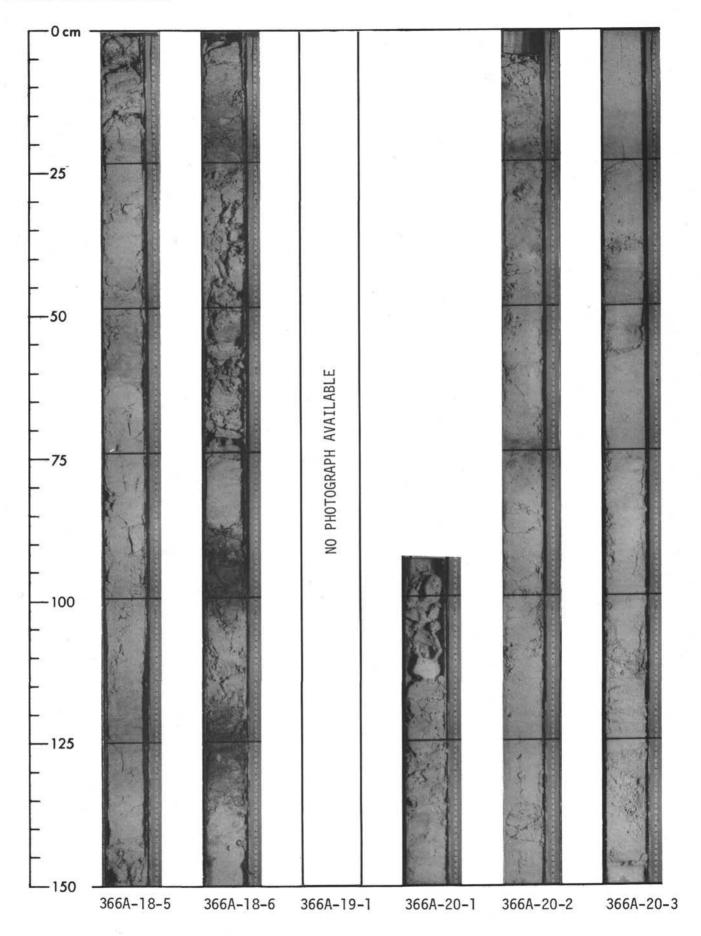

137

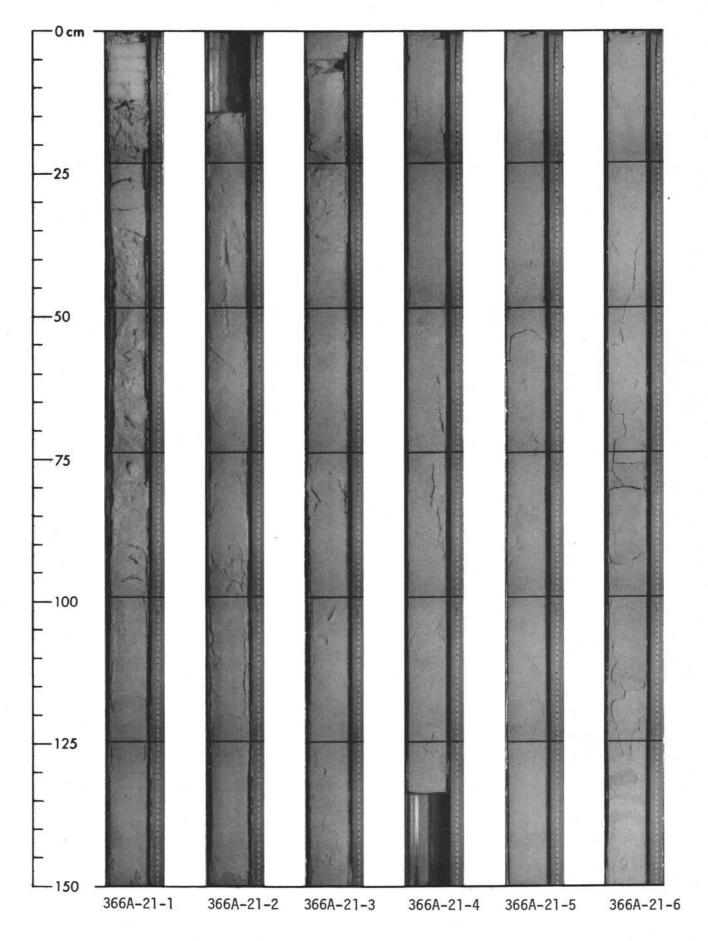


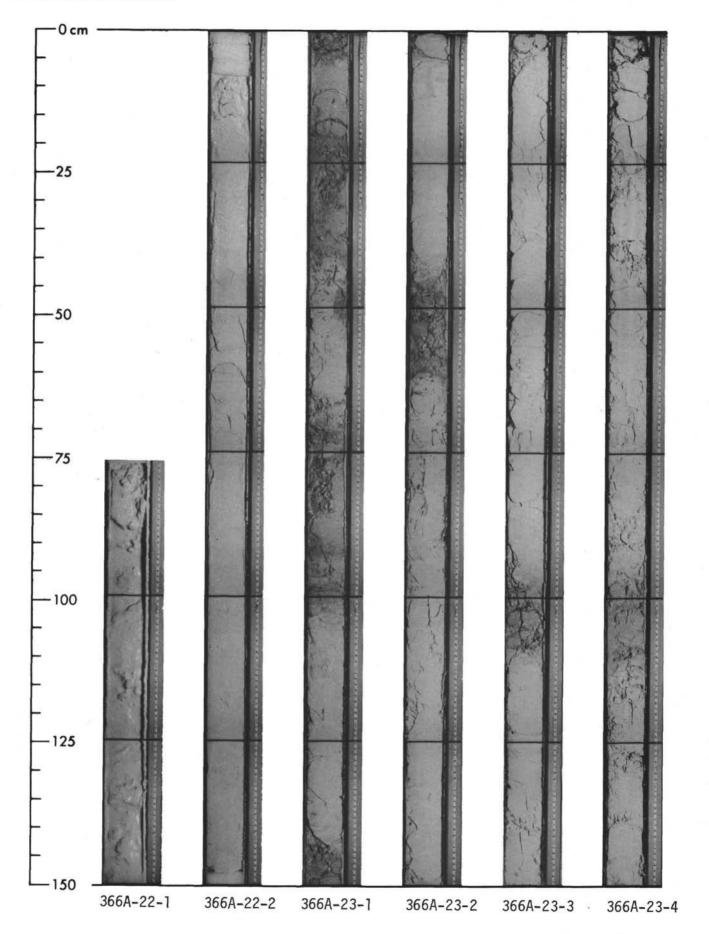

138

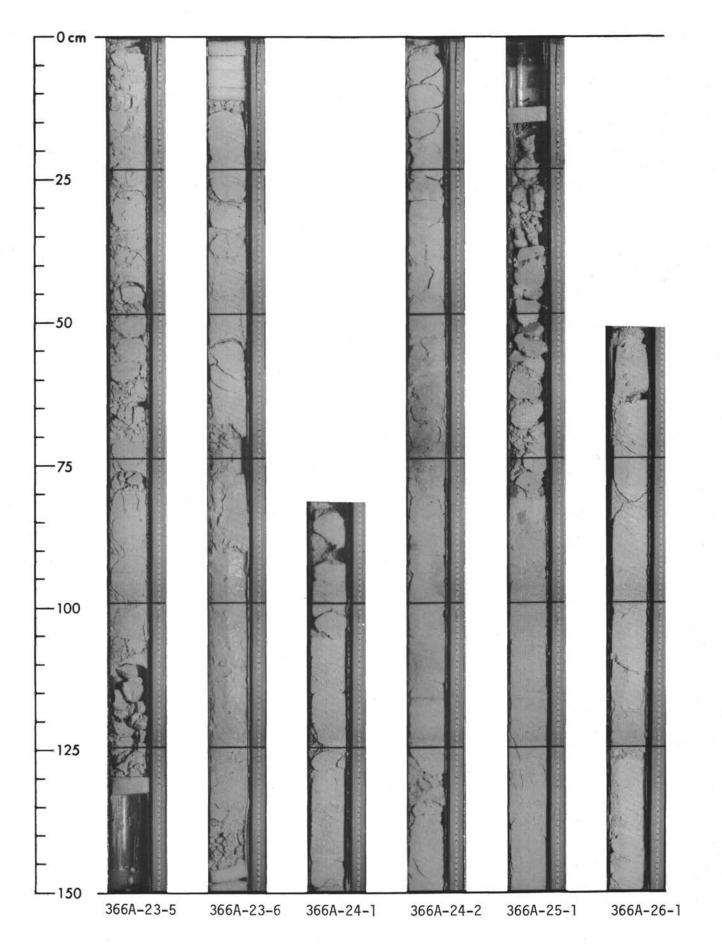


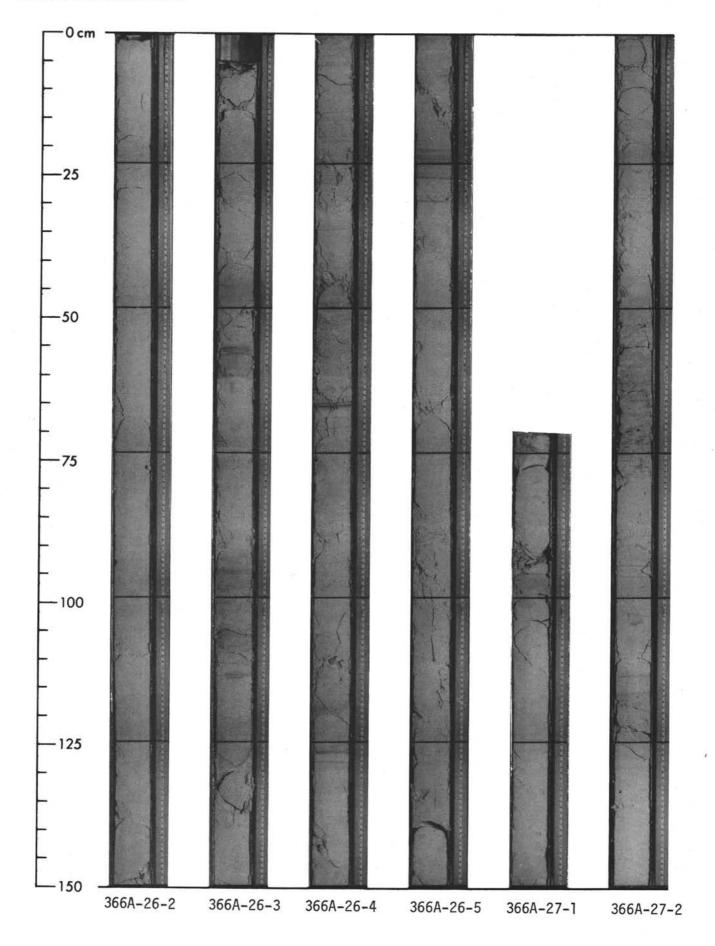


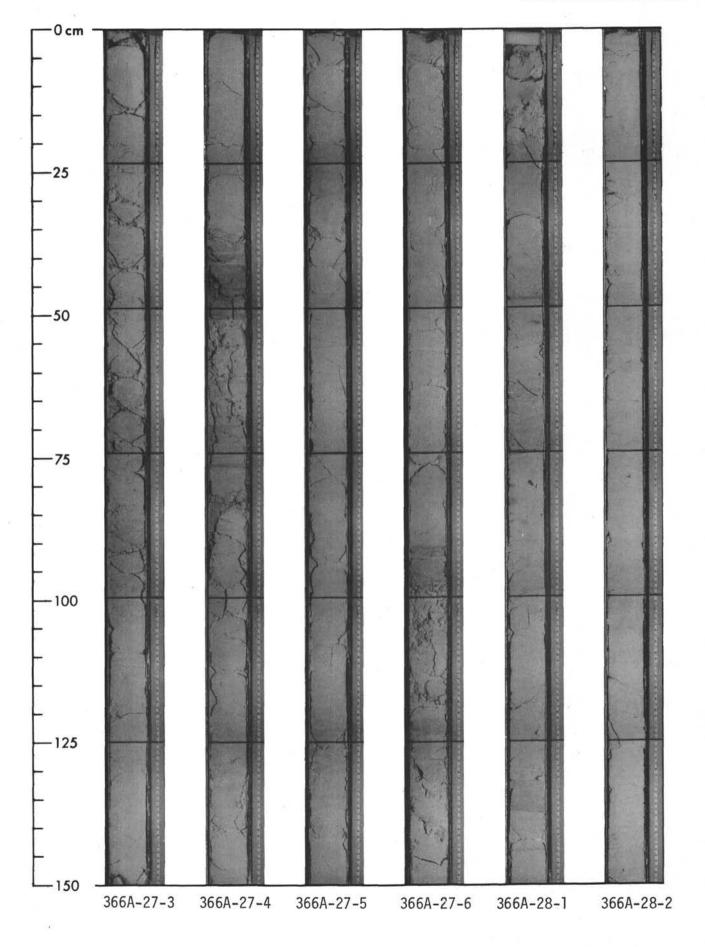


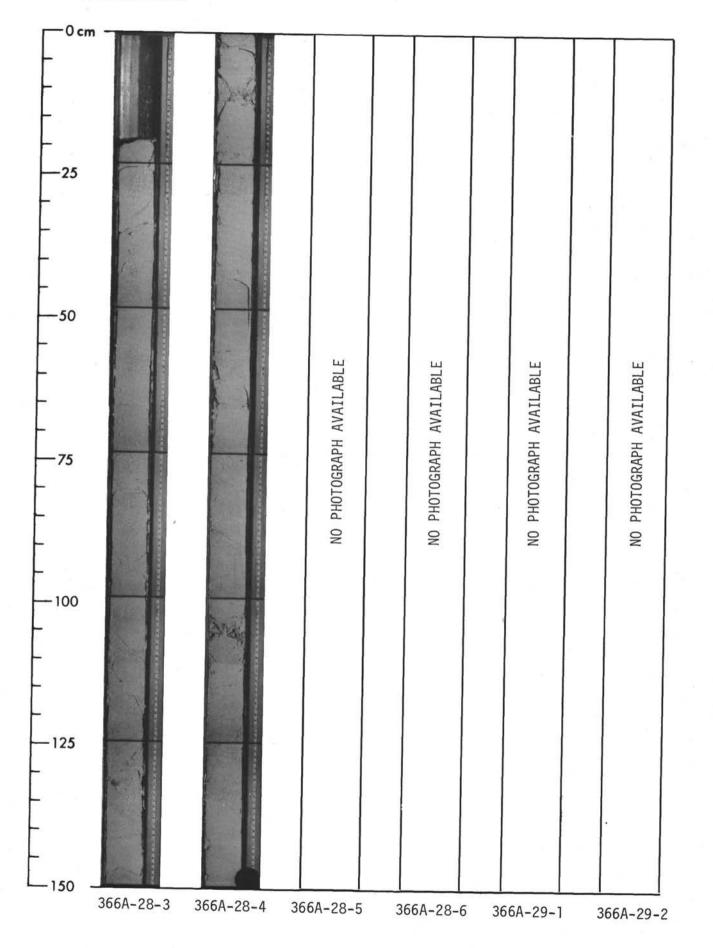


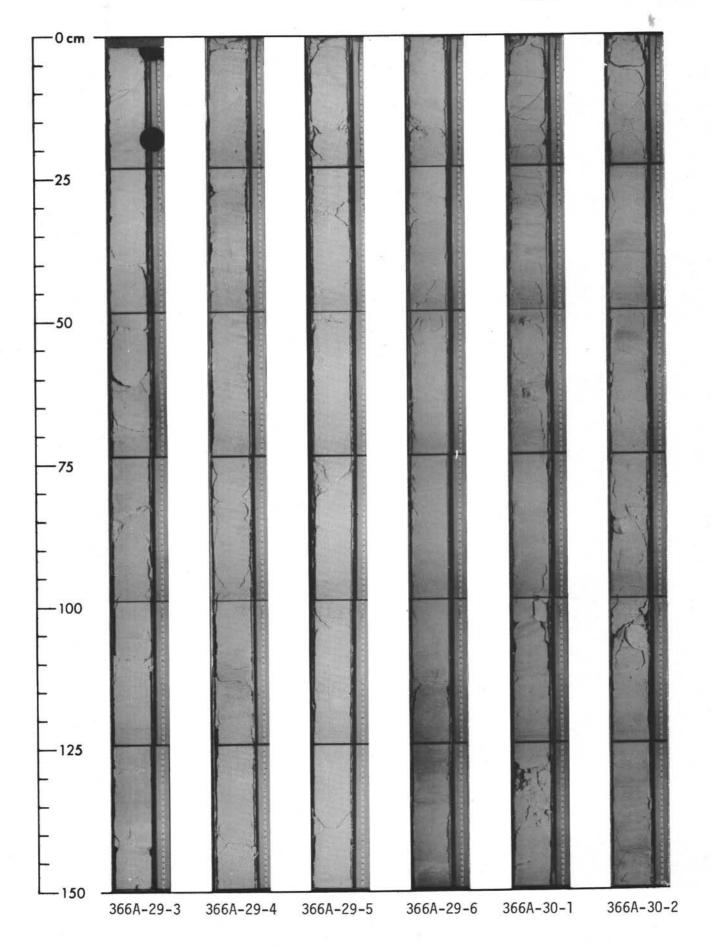


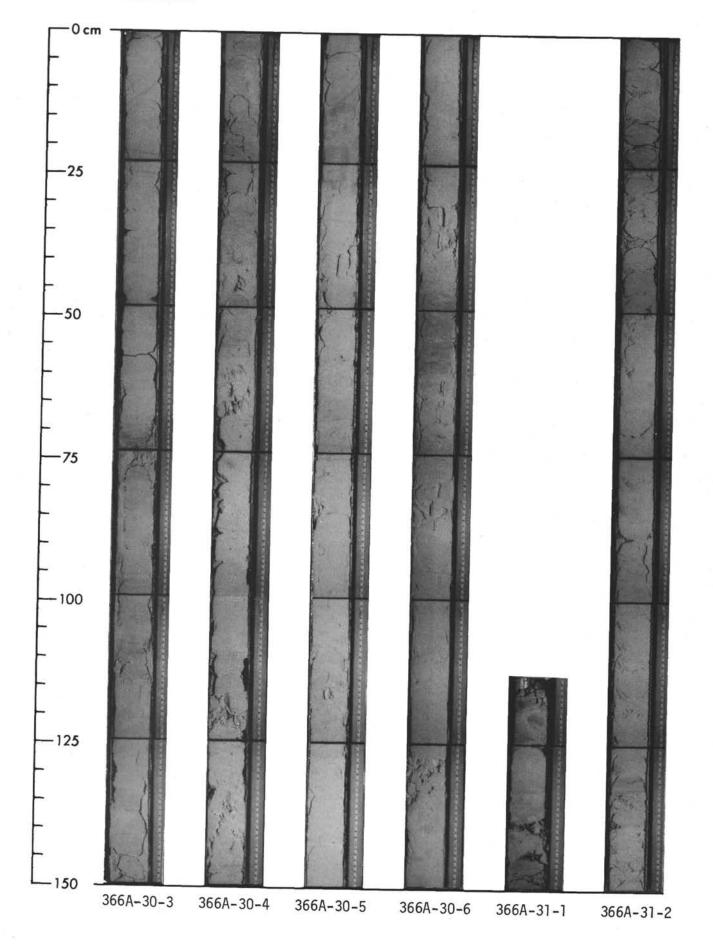


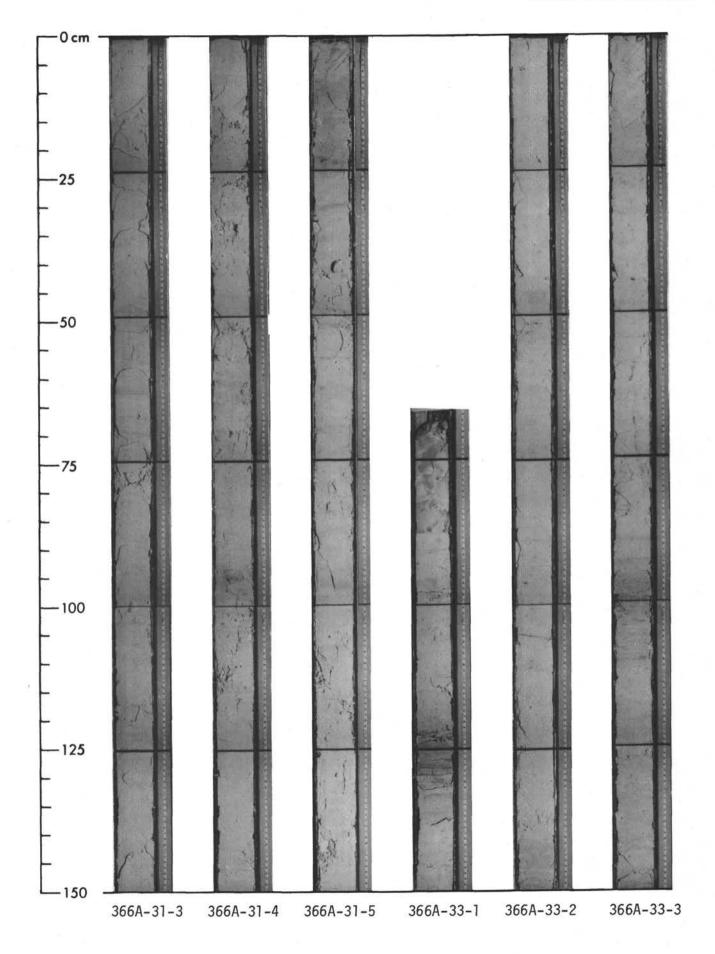


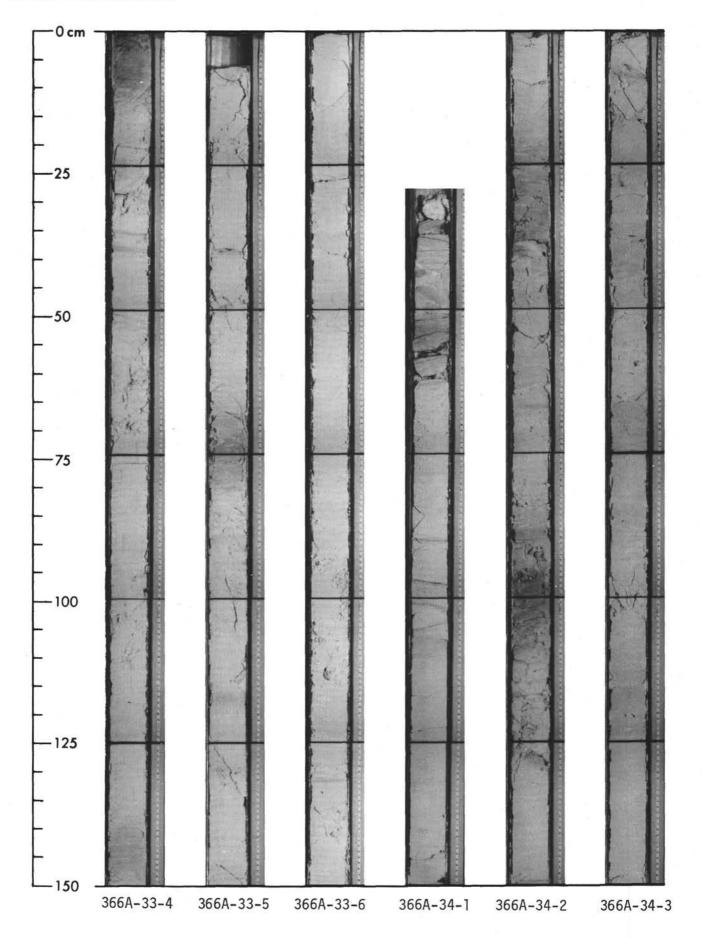


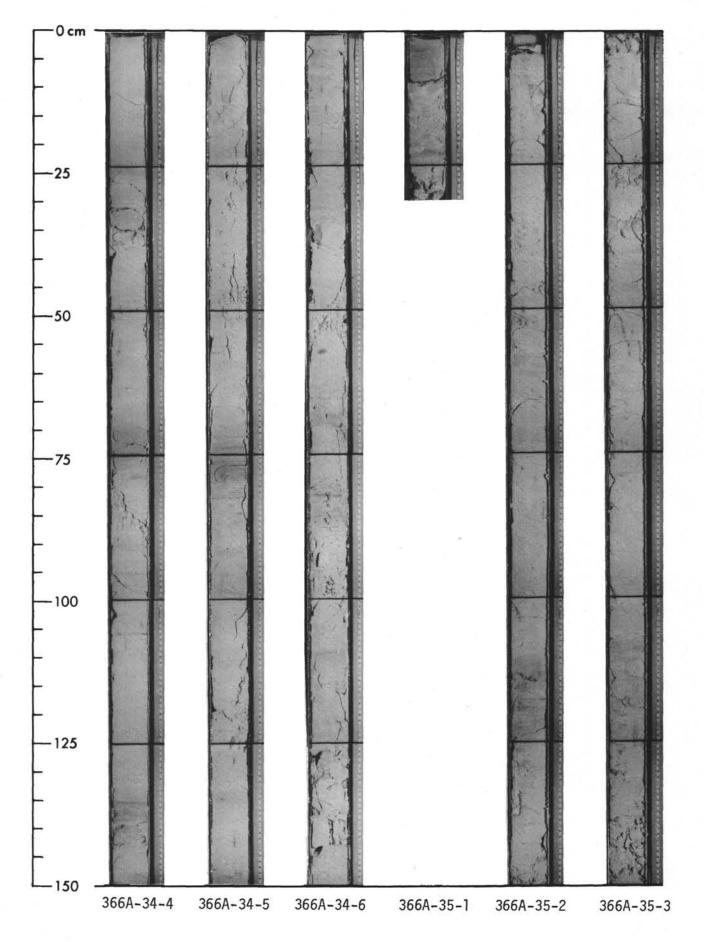











. 152

