# 12. HEAVY-MINERAL COMPOSITION OF THE MEDITERRANEAN NEOGENE SEDIMENTS, DSDP LEG 42A

E. M. Emelyanov and K. M. Shimkus, The Atlantic and Southern Branches of the P. P. Shirshov Institute of Oceanology, Academy of Sciences, Kaliningrad and Gelendgik, USSR

and

Kenneth J. Hsü, Geologisches Institut, Eidg. Technische Hochschule, Zürich, Switzerland

## ABSTRACT

We carried out a heavy mineral study of 150 DSDP Leg 42A samples from the Mediterranean. The results are interpreted by a comparison with the heavy-mineral provenance of the Holocene sediments. The western Mediterranean Neogene sediments, from Sites 371 and 372 in the Balearic Basin, and from Site 373 from the Tyrrhenian Basin, have a heavy-mineral composition similar to that of the Holocene sediments from nearby areas. This suggests that the sources for terrigenous clastics have remained nearly constant in the western Mediterranean. The effect of the Messinian salinity crisis has been minor, manifested only by a moderate increase of unstable species.

The Site 374 Messina Abyssal Plain sediments showed significant changes in the terrigenous component of the heavy-mineral suite. The Messinian and Quaternary suites have a large detrital component, but the heavy minerals in the early Pliocene sediments are mainly biogenic (fish teeth and bones).

The heavy-mineral composition of the sediments from the Cyprus Arc showed significant variations in response to Neogene tectonic activities and to the Messinian salinity crisis. The Taurus drainage system has always been a main source for the detritus of the Antalya Basin. However, ultramafic rocks from Troodos became a main source during Messinian time after the late Miocene deformation and uplift of Cyprus. The Nile River did not contribute much to the heavy-mineral suite except during the Messinian, when some of the Nile detritus was carried directly north and reached Sites 375 and 376.

The heavy-mineral suites of Site 377 and Site 378 sediments suggest derivation from the Peloponnesus-Crete-Rhodos drainage system; volcanogenic components in the Cretan Basin sediments did not become significant until the late Quaternary.

## INTRODUCTION

Terrigenous sediments from different sources are characterized by their distinct heavy-mineral composition (Emelyanov, 1972). The purpose of the present investigation is to determine the mineralogical composition of the fine sand to coarse silt (0.1-0.05mm) fraction of the Neogene sediments from the DSDP cores obtained during Leg 42A, and to relate the mineralogy to the geologic history of the Mediterranean during the late Cenozoic.

After visual inspection of the cores onboard ship, 150 samples, representing nearly the entire Neogene, were selected from the eight sites drilled during Leg 42A by one of us (KJH). The mineralogical and textural analyses were carried out in the Atlantic and Southern branches of the Oceanology Institute (Kaliningrad and Geledgik), USSR, by the senior authors (EME and KMS).

We gratefully acknowledge the help of N. G. Lozovaya and S. V. Chabashvili, who took part in the analytical work, and G. V. Zhuravlyova, A. I. Panikhina, and Ph.D. Stukanog, who carried out the grainsize analyses.

#### METHODS

The samples were boiled with pyrophosphate, or with ammonia hydrogen peroxide, to disaggregate individual grains. At the same time gypsum and the more soluble salts were dissolved. A preliminary determination of grain size, by differential settling, was made before we undertook the mineralogical investigations. Heavy minerals from the size-fraction 0.1-0.05 mm were separated with bromoform (s.g. 2.9), and were identified with the oil-immersion method. The composition of light minerals in samples from Sites 374-378 were also studied. In addition to DSDP samples, Holocene sediments samples from various Mediterranean localities near DSDP sites were analyzed to afford a means for comparison. The results of all textural and mineralogical studies are presented in Tables 1-7.

Heavy minerals are categorized into three groups: terrigenous, biogenic, and authigenic. The similarity of

|                            |       |              | Fractic       | on (mm)        |                 |         |
|----------------------------|-------|--------------|---------------|----------------|-----------------|---------|
| Sample<br>(Interval in cm) | >0.1  | 0.1-<br>0.05 | 0.05-<br>0.01 | 0.01-<br>0.005 | 0.005-<br>0.001 | < 0.001 |
| Site 371                   |       |              |               |                |                 |         |
| 8-2 100-102                | 5.55  | 12.00        | 31.92         | 14.15          | 2.67            | 33.70   |
| 8-2 120-122                | 4.61  | 12.00        | 33.06         | 17.70          | 17.70           | 14 70   |
| 8-2 135-137                | 6.68  | 17.44        | 42.92         | 13.62          | 13.62           | 5 72    |
| 8-3, 11-13                 | 6.11  | 11.92        | 32.86         | 9.84           | 17.66           | 21.61   |
| 8-3, 29-31                 | 20.89 | 17.38        | 24.18         | 21.48          | 13.37           | 2.70    |
| 8-3, 46-48                 | 13.14 | 18.73        | 35.59         | 5.59           | 11.19           | 15.76   |
| 8-3, 68-70                 | 27.85 | 16.78        | 21.82         | 2.75           | 16.32           | 14.48   |
| 8-3, 91-93                 | 4.21  | 10.98        | 29.67         | 4.32           | 27.57           | 23.25   |
| 8-3, 109-111               | 2.56  | 11.19        | 36.25         | 8.35           | 13.67           | 27.97   |
| 8-3, 132-134               | 7.13  | 13.33        | 32.59         | 7.59           | 16.76           | 22.59   |
| 8-3, 147-149               | 5.63  | 7.62         | 39.50         | 13.32          | 11.97           | 21.96   |
| Site 372                   |       |              |               |                |                 |         |
| 1-4, 24-26                 | 7.52  | 6.05         | 23.67         | 12.94          | 23.58           | 26.24   |
| 2-4, 16-18                 | 17.90 | 3.24         | 23.92         | 17.09          | 20.32           | 17.53   |
| 3-3, 17-19                 | 25.19 | 3.66         | 11.09         | 11.18          | 23.68           | 25.19   |
| 4-2, 6-8                   | 0.09  | 9.15         | 38.96         | 12.07          | 19.43           | 20.28   |
| 12-6, 20-22                | 1.35  | 1.86         | 14.82         | 16.58          | 35.65           | 29.74   |
| 13-6, 20-22                | 0.90  | 2.70         | 12.20         | 18.90          | 36.00           | 29.30   |
| 14-6, 70-72                | 1.14  | 1.93         | 13.72         | 15.56          | 39.05           | 28.58   |
| 15-6, 19-21                | 1.44  | 2.21         | 14.19         | 19.73          | 31.15           | 31.26   |
| 16-6, 10-12                | 0.72  | 1.59         | 15.92         | 19.19          | 32.80           | 29.77   |
| 17-6, 47-49                | 1.09  | 2.18         | 13.76         | 19.98          | 35.60           | 27.37   |
| 18-6, 35-37                | 1.21  | 1.82         | 16.55         | 16.89          | 33.36           | 30.15   |
| 19-6, 11-13                | 1.41  | 2.62         | 15.74         | 18.36          | 35.61           | 26.24   |
| 20-6, 20-22                | 0.25  | 0.99         | 16.16         | 15.66          | 31.28           | 29.66   |
| 21-0, 30-40                | 1.21  | 2.10         | 15.54         | 17.44          | 34.40           | 29.19   |
| 22-4, 13-13                | 2.76  | 2.00         | 14.65         | 17.42          | 30.12           | 21.33   |
| 24-6 42-44                 | 6.50  | 6.33         | 15.50         | 16.08          | 32.07           | 20.05   |
| 25-6 77-79                 | 4 94  | 4.02         | 15.52         | 12.72          | 26.10           | 25.50   |
| 26-5 15-17                 | 4 29  | 4.55         | 14.96         | 13 21          | 32 11           | 30.88   |
| 27-5. 56-58                | 10.59 | 6.78         | 13.13         | 13.88          | 29.02           | 26.59   |
| 28-6, 11-13                | 2.40  | 5.48         | 16.87         | 15.41          | 33.13           | 26.71   |
| 29-5, 118-120              | 3.07  | 8.27         | 25.83         | 18.33          | 26.51           | 17.99   |
| 30-6, 47-49                | 10.12 | 9.89         | 21.40         | 16.33          | 26.61           | 15.64   |
| 31-6, 10-12                | 2.60  | 7.24         | 34.63         | 16.99          | 23.12           | 15.41   |
| 32-6, 21-23                | 10.85 | 19.31        | 27.47         | 11.43          | 15.85           | 15.08   |
| 33-6,65-67                 | 2.75  | 4.86         | 26.01         | 15.80          | 35.09           | 15.48   |
| 34-5, 24-26                | 0.25  | 2.48         | 37.61         | 17.56          | 29.00           | 13.09   |
| 35-3, 29-31                | 0.13  | 3.70         | 38.90         | 19.26          | 24.49           | 13.52   |
| 36-6, 38-39                | 0.36  | 0.48         | 32.57         | 26.47          | 33.05           | 7.07    |
| 37-4, 19-20                | 0.18  | 1.17         | 36.61         | 21.28          | 25.25           | 15.51   |
| 38-6, 34-36                | 0.20  | 1.20         | 36.34         | 22.49          | 22.09           | 17.67   |
| 39-6, 38-60                | 0.46  | 9.81         | 36.60         | 24.40          | 25.77           | 2.96    |
| 40-0, 80-88                | 0.41  | 2.24         | 40.26         | 26.10          | 26.71           | 4.28    |
| 41-0, 3-3                  | 1.90  | 3.01         | 43.30         | 10.42          | 21.70           | 12.00   |
| 42-0, 11-19                | 1.89  | 3.87         | 41.19         | 10.45          | 19.22           | 8.90    |
| 44-6 47-49                 | 0.38  | 1.32         | 38.50         | 17.43          | 10.23           | 10.75   |
| 45-6 35-37                 | 0.25  | 3 22         | 49.70         | 12.02          | 16.06           | 16.06   |
| 46-3, 16-18                | 0.10  | 0.61         | 55.43         | 10.86          | 16.29           | 16.70   |
| Site 373                   |       |              |               |                |                 |         |
| 1-2, 64-66                 | 4.62  | 5.26         | 26.32         | 12.58          | 37.87           | 13.35   |
| 1 2 50 52                  | 5 51  | 8 50         | 20.08         |                | 53 92           |         |

 TABLE 1

 Grain Size (%) of the Mediterranean Cenozoic Sediments, Leg 42A

TABLE 2 Grain Size (%) of the Mediterranean Cenozoic Sediments, Leg 42A

| Sample            |         | Fractic  | on (mm)   |         |
|-------------------|---------|----------|-----------|---------|
| (Interval in cm)  | >0.1    | 0.1-0.05 | 0.05-0.01 | < 0.01  |
| Site 374          |         |          |           |         |
| 1-1, 123-125      | 1.36    | 28.03    | 49.68     | 20.93   |
| 2-1,93-95         | 0.17    | 3.56     | 56.01     | 40.26   |
| 2-2, 132-134      | 0.13    | 0.19     | 42.67     | 57.01   |
| 2-3, 114-116      | 0.45    | 2.52     | 61.93     | 35.10   |
| 3-1, 135-137      | 4.69    | 2.78     | 18.75     | 73.78   |
| 4-1, 140-142      | 0.07    | 0.26     | 16.06     | 83.61   |
| 4-2, 142-144      | 0.06    | 0.06     | 11.57     | 88.31   |
| 4-3, 140-142      | 0.17    | 0.94     | 50.28     | 48.61   |
| 4-4, 123-125      | 0.06    | 0.98     | 61.24     | 31.12   |
| 5-1, 126-128      | 0.09    | 10.40    | 60.00     | 29.51   |
| 5-2, 127-129      | 4.09    | 2.55     | 12.61     | 80.75   |
| 5-3, 136-138      | 4.00    | 2.06     | 12.66     | 81.28   |
| 5-4, 127-129      | 4.00    | 3.52     | 15.55     | /0.95   |
| 5-5, 136-138      | 3.54    | 2.70     | 12.00     | 81.10   |
| 6-1, 126-128      | 7.07    | 3.03     | 50.71     | 00.41   |
| 6-2, 110-112      | 0.28    | 2.33     | 10.20     | 40.00   |
| 6-3, 119-121      | 5.67    | 2.09     | 15.16     | 76 55   |
| 65 122 125        | 5.05    | 2.04     | 10.62     | 70.55   |
| 6 6 129 120       | 6.75    | 2.00     | 10.02     | 70.70   |
| 7-1 112-114       | 7.27    | 3.02     | 0.33      | 80.10   |
| 7.2 111.112       | 5 73    | 2.97     | 13.52     | 77 78   |
| 7-2, 117-119      | 3 35    | 2.07     | 10.73     | 83.45   |
| 7-4 125-127       | 2.62    | 2.68     | 15 38     | 79 32   |
| 7-5 125-127       | 4.63    | 3.88     | 12.85     | 78.64   |
| 7-6 132-134       | 4 74    | 3.52     | 12.11     | 79.63   |
| 8-1, 136-138      | 7.37    | 4.05     | 10.43     | 78.15   |
| 8-2, 120-122      | 6.37    | 3.80     | 11.60     | 78.23   |
| 8-3, 143-145      | 3.29    | 2.56     | 6.52      | 87.62   |
| 8-4, 127-129      | 3.50    | 3.34     | 7.05      | 86.11   |
| 9-1, 135-137      | 2.07    | 3.26     | 5.57      | 89.10   |
| 9-2, 144-146      | 3.85    | 3.61     | 5.84      | 86.69   |
| 9-3, 4-6          | 2.09    | 2.98     | 4.34      | 90.59   |
| 9-4, 135-137      | 3.82    | 3.08     | 12.69     | 80.41   |
| 10-1, 146-148     | 5.14    | 2.71     | 11.74     | 80.40   |
| 11-2, 86-88       | 1.65    | 2.87     | 31.18     | 64.30   |
| 12-1, 120-122     | 1.59    | 0.37     | 6.73      | 91.31   |
| 13-1, 128-130     | 0.0     | tr.      | 5.94      | 94.06   |
| 14-1, 128-130     | 0.0     | tr.      | 8.06      | 91.94   |
| 15-1, 128-130     | tr.     | 0.29     | 11.78     | 87.93   |
| Site 375          |         |          |           | are set |
| 2-4, 1-3          | 59.601) | 7.07     | 8.41      | 24.92   |
| 4-4, 99-101       | 0.14    | 0.07     | 13.79     | 86.00   |
| 5-4, 98-100       | 0.41    | 0.35     | 11.33     | 87.91   |
| 6-1, 117-119      | 27.562) | 32.46    | 25.15     | 14.83   |
| 6-2, 93-95        | 32.245) | 30.08    | 24.06     | 13.62   |
| 6-3, 132-137      | 13.49   | 29.98    | 30.93     | 25.60   |
| 6-4, 62-64        | 28.584) | 35.92    | 21.19     | 14.32   |
| 7-1, 110-112      | 0.78    | 51.30    | 50.69     | 17.22   |
| 2 5 2 5 4 0 - 4 2 | 0.00    | 5.96     | 26.08     | 20.40   |
| 0.1 08-100        | 0.06    | 0.17     | 13 50     | 86 32   |
| 10.2 114-116      | 13.06   | 10.96    | 10.78     | 65 20   |
| 11-1, 133-135     | 7.36    | 3.85     | 4.67      | 84.12   |
| Site 376          |         |          |           |         |
| 1-1, 99-101       | 1.12    | 1.44     | 20.21     | 77.23   |
| 1-3, 99-101       | 1.34    | 1.64     | 26.94     | 70.08   |
| 2-1, 125-127      | 2.94    | 9.28     | 29.88     | 57.90   |
| 2-3, 118-120      | 9.02    | 3.01     | 13.86     | /4.11   |
| 3-1, 125-12/      | 2.53    | 8.76     | 45.36     | 43.35   |
| 3-3, 99-101       | 4.85    | 2.70     | 23.05     | 69.40   |

detrital heavy-mineral suites may be masked by the great amounts and variation in the amounts of authigenic iron-sulfides which constitute more than 50% of the heavy-mineral composition in most samples. Subtle differences might indeed be obscured by the flooding of opaque minerals, but major variations are in most instances easily recognized, so that we did not recompute the heavy-mineral percentages by excluding the iron-sulfides.

# HOLOCENE HEAVY MINERAL PROVINCES

Emelyanov (1972) subdivided the Mediterranean Holocene sediments into 27 provinces on the basis of

| <b>FABLE</b> | 32- | Continued |
|--------------|-----|-----------|
|--------------|-----|-----------|

| Sample           |       | Fractio  | on (mm)   |        |
|------------------|-------|----------|-----------|--------|
| (Interval in cm) | >0.1  | 0.1-0.05 | 0.05-0.01 | < 0.01 |
| 4-1, 98-100      | 1.42  | 1.26     | 17.35     | 79.97  |
| 5-1,95-97        | 1.60  | 2.55     | 19.10     | 76.75  |
| 8-1, 128-130     | 4.52  | 3.30     | 52.26     | 39.92  |
| 8-3, 119-121     | 34.15 | 25.44    | 26.97     | 13.44  |
| 9-1,84-86        | 11.59 | 25.25    | 40.40     | 22.76  |
| 9-3, 121-123     | 0.25  | 11.30    | 64.41     | 24.04  |
| 10-1, 124-126    | 1.93  | 9.77     | 51.35     | 36.95  |
| 11-1, 137-139    | 0.64  | 0.75     | 24.63     | 73.98  |
| 12-1, 146-148    | 12.89 | 22.41    | 31.30     | 33.40  |
| 12-3, 93-95      | 8.01  | 41.41    | 30.36     | 20.22  |
| 13-1, 100-102    | 12.84 | 26.00    | 26.69     | 34.47  |
| 13-3, 78-80      | 1.74  | 33.65    | 25.65     | 38.96  |
| 15-1, 132-134    | 18.64 | 33.56    | 21.69     | 26.11  |
| 15-2, 31-33      | 4.51  | 11.83    | 41.59     | 42.07  |
| Site 377         |       |          |           |        |
| 1-1,99-101       | 1.63  | 13.17    | 48.41     | 36.79  |
| 1-2,48-50        | 0.35  | 0.71     | 16.27     | 82.67  |
| 1-2,101-103      | 37.56 | 9.18     | 13.00     | 40.26  |
| 3-1, 120-122     | 0.08  | 0.08     | 39.41     | 60.43  |
| 3-2, 62-64       | 0.11  | 0.11     | 42.75     | 57.03  |
| 3-2, 80-82       | tr.   | 0.16     | 45.10     | 54.74  |
| 3-2, 101-103     | 1.28  | 0.40     | 42.57     | 55.75  |
| 3-2, 120-122     | 0.10  | 0.10     | 42.93     | 56.87  |
| 4-1, 76-78       | 0.78  | 0.54     | 54.85     | 43.83  |
| 4-1, 120-122     | 0.41  | 1.03     | 45.86     | 52.70  |
| 4-2, 40-42       | 1.71  | 0.43     | 43.65     | 54.21  |
| 4-2 80-82        | 1.61  | 0.67     | 44 18     | 53 54  |
| 4-2 120-122      | 1 66  | 0.68     | 41 30     | 56 36  |
| 4-3 20-22        | 2.04  | 0.93     | 46.06     | 50.97  |
| 4-3 40-42        | 1 35  | 1.62     | 42.09     | 54 94  |
| 4-3 80-82        | 2.04  | 0.63     | 41 69     | 55 64  |
| 4-4 20-22        | 2.18  | 1.26     | 42.68     | 53.88  |
| 4-4, 80-82       | 3.42  | 2.08     | 39.93     | 54.57  |
| Site 378         |       |          |           |        |
| 1-1, 101-103     | 2.37  | 3.28     | 19.87     | 74.48  |
| 2-2,98-100       | 0.56  | 1.67     | 17.60     | 80.17  |
| 3-2, 98-100      | 0.66  | 1.89     | 17.47     | 79.98  |
| 5-2, 99-101      | 0.88  | 1.67     | 20.70     | 76.75  |
| 6-2,97-99        | 1.0   | 1.92     | 18.24     | 78.84  |
| 7-2, 104-106     | 0.77  | 1.47     | 16.38     | 81.38  |
| 8-2, 100-102     | 1.21  | 3.74     | 37.69     | 57.36  |

<sup>a</sup>Note: The >0.1 fraction was dispersed giving the following contents

| Total >0.1 | >1.0                                           | 1.0-0.5                                                                                                                                           | 0.5-0.25                                                                                                                                                                                                                          | 0.25-0                                                |
|------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|            | (% 0                                           | t total sam                                                                                                                                       | pie)                                                                                                                                                                                                                              |                                                       |
| 59.60      | 6.03                                           | 23.81                                                                                                                                             | 20.91                                                                                                                                                                                                                             | 8.85                                                  |
| 27.56      | +                                              | - 6.29 -                                                                                                                                          |                                                                                                                                                                                                                                   | 21.27                                                 |
| 32.24      | -                                              | - 8.28 -                                                                                                                                          |                                                                                                                                                                                                                                   | 23.96                                                 |
| 28.58      | +                                              | - 4.70 -                                                                                                                                          | $\rightarrow$                                                                                                                                                                                                                     | 23.88                                                 |
|            | Total >0.1<br>59.60<br>27.56<br>32.24<br>28.58 | Total >0.1         >1.0           (% o           59.60         6.03           27.56         +           32.24         +           28.58         + | Total >0.1         >1.0         1.0-0.5           (% of total sam           59.60         6.03         23.81           27.56         6.29         -           32.24         8.28         -           28.58         4.70         - | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

their heavy-mineral composition (Figure 1). Of those, we recognize four major types of heavy-mineral suites:

1) Mature Suite: The sediments of the southern Balearic Basin or of the Algerian province are characterized by a mature heavy-mineral suite (see Tables 3 and 4), as the source area is mainly an upland located in a wet and warm subtropical zone. Zircon and rutile are common and occur with lesser amounts of magnetite, epidote-zoisite, tourmaline, and apatite. Hydrous iron minerals are also abundant. Unstable heavy minerals from metamorphic terranes (micas and garnets)

## HEAVY MINERAL COMPOSITION OF NEOGENE SEDIMENTS

are present, but volcanogenic, unstable minerals, such as hornblende and pyroxenes, are rare or absent.

2) Volcanogenic Suites: The Holocene sediments of the eastern Tyrrhenian and of the Aegean provinces are characterized by the presence of an unstable heavymineral suite indicative of a Volcanogenic source (see Tables 3 and 4). Hornblende and monoclinic pyroxenes are abundant in the heavy fraction, whereas volcanic glass and ash materials are common in the light fraction. Such sediments are deposited in regions of active volcanism.

3) Ultramafic Suites: The Holocene sediments of the area around Cyprus are characterized by a heavymineral suite indicative of derivation from an ultrabasic terrane (see Tables 3 and 4). Orthorhombic pyroxene is a characteristic component; various other unstable minerals are present in varying amounts.

Regional Suites: The other heavy mineral 4) provinces of the Mediterranean are defined by the particular suites brought down by some major rivers or some major drainage systems. The Rhone, the Nile, the rivers from Corsica, from Sardinia, or from Sicily, all of them carry an assemblage typical of their sources (see Table 3). Epidote is, for example, a common mineral in several eastern Mediterranean provinces, whereas the micas are particularly abundant in the eastern Sicily assemblage. The sediments from the Nile are derived from desert weathering, and are characterized by smectite as a clay mineral and by a heavymineral suite consisting of a mixture of pyroxenes, hornblendes, epidotes, zircon, and opaque iron minerals.

The mineralogy of the Holocene sediments provides the key for the interpretation of the provenance of the Neogene sediments from these DSDP cores. The results of heavy-mineral investigations will be discussed by sites.

#### **SITE 371**

This site is within the Algerian province (Figure 1). All our samples from this site are Messinian mudstones; the 0.1-0.05 mm fraction constitutes 8%-19% of the bulk. Opaque and oxidized iron minerals (ilmenite, magnetite, goethite, etc.) are the predominant heavy minerals. Epidote-zoisite and micas are present in almost all the samples and actinolite-tremolite, zircon, tourmaline, rutile, and garnets occur in some sample. The late Miocene assemblage is thus very similar to that of the Holocene, except the mature minerals are less common in our samples (cf. Tables 4 and 5). We might conclude that the Messinian detritus was derived from the same terranes in North Africa as the present detritus, but the climate was more arid then, so that a greater amount of unstable heavy minerals was preserved and sedimented.

Noteworthy is the high goethite-content in the Site 371 Messinian sediments which are similar to the Holocene sediments of the area (Emelyanov, 1968, 1972). Studies of suspension in water indicated that the hydroxides did not all come from a detrital source. Some of the goethite may have been formed as colloidal iron by biogenic activities (Emelyanov and Shim-



Figure 1. Mineralogical provinces of the coarse (0.1-0.05mm) fraction of bottom sediments from the Mediterranean (Emelyonov, 1968, with some modifications). The solid arrows show the main sources and supply paths of detrital material; the dotted arrows show those of eolian material. - 200 - age of terrigenous-volcanogenic material in million/years (Emelyanov et al., 1973). Age of minerals are given after Emelyanov et al., 1973. In the southern basin the sediments are older (200-430 m.y.B.P.), in the northern part they are younger (50-200 m.y.B.P.).

|                                                                                                                                |                                                                                           |                                                                            |                                                              |                                                                                                 |                                                |                                                   |                                                               |                                                                            |                                               |                                                                                           |                                                               |                                                                                           | Prov                                                                                             | vinces                                                                                                                                                           |                                                                            |                                                                                                        |                                                                                                                      |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |                                                                            |                                               |                                                               |                                                                               |                                                                           |                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Minerals                                                                                                                       | 1                                                                                         | 2                                                                          | 3                                                            | 4                                                                                               | 5                                              | 6                                                 | 7                                                             | 8                                                                          | 9                                             | 10                                                                                        | 11                                                            | 12                                                                                        | 13                                                                                               | 14                                                                                                                                                               | 15                                                                         | 16                                                                                                     | 17                                                                                                                   | 18                                                                          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                 | 21                                                                         | 22                                            | 23                                                            | 24                                                                            | 25                                                                        | 26                                                                        |
| Heavy Subfraction<br>Opaque grains and                                                                                         | 2.3                                                                                       | 2.9                                                                        | 1.3                                                          | 2.1                                                                                             | 1.7                                            | 22.6                                              | 1.8                                                           | 2.0                                                                        | 0.7                                           | 8.3                                                                                       | 2.5                                                           | 2.0                                                                                       | 1.9                                                                                              | 4.4                                                                                                                                                              | 1.4                                                                        | 2.7                                                                                                    | 5.5                                                                                                                  | 4.8                                                                         | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.8                                                                | 2.2                                                                        | 0.7                                           | 1.6                                                           | 0.3                                                                           | 3.6                                                                       | 0.8                                                                       |
| rock fragments<br>Ore black<br>Ore red<br>Common                                                                               | 6.3<br>9.1<br>3.4                                                                         | 3.6<br>15.7<br>10.7                                                        | $4.0 \\ 19.0 \\ 25.0$                                        | $\frac{6.5}{20.2}$<br>14.8                                                                      | 6.3<br>11.4<br><u>25.5</u>                     | $\frac{16.3}{20.8}$<br>3.1                        | 9.3<br><u>19.8</u><br>10.3                                    | 9.3<br><u>27.9</u><br>13.2                                                 | 15.3<br>22.1<br>12.8                          | 0.4<br>35.3<br>10.0                                                                       | 3.1<br>21.5<br>27.7                                           | 6.9<br><u>15.3</u><br><u>27.1</u>                                                         | 0.0<br>15.4<br><u>32.3</u>                                                                       | 1.0<br>15.2<br>15.7                                                                                                                                              | $\frac{27.2}{19.0}$<br>20.0                                                | 8.6<br>13.4<br>6.3                                                                                     | 4.5<br>13.4<br>2.4                                                                                                   | $\frac{20.1}{8.6}$<br>4.5                                                   | <u>14.5</u><br>12.4<br>7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.1<br>15.8<br>16.2                                                | 2.3<br>9.7<br>11.8                                                         | 1.7<br>17.7<br>28.3                           | 0.0<br>13.5<br><u>47.9</u>                                    | 2.5<br>40.5<br>20.2                                                           | 1.4<br>16.8<br><u>46.7</u>                                                | 3.2<br>22.0<br>35.5                                                       |
| hornblende<br>Basaltic                                                                                                         | <u>31.1</u>                                                                               | <u>18.0</u>                                                                | <u>13.5</u>                                                  | 6.2                                                                                             | 7.2                                            | 8.6                                               | 8.5                                                           | 4.1                                                                        | 3.2                                           | 9.9                                                                                       | 9.7                                                           | 7.5                                                                                       | 19.0                                                                                             | 9.2                                                                                                                                                              | 6.9                                                                        | 5.8                                                                                                    | <u>15.2</u>                                                                                                          | 4.5                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.6                                                                | 8.8                                                                        | 5.6                                           | 5.9                                                           | 1.4                                                                           | 6.5                                                                       | 5.0                                                                       |
| hornblende<br>Fibrous                                                                                                          | 0.4                                                                                       | <u>6.4</u>                                                                 | 1.0                                                          | 0.1                                                                                             | 0.3                                            | 0.0                                               | 0.4                                                           | 0.3                                                                        | 0.0                                           | s.o. <sup>a</sup>                                                                         | s.o. <sup>a</sup>                                             | s.o. <sup>a</sup>                                                                         | 0.0                                                                                              | 0.3                                                                                                                                                              | 0.0                                                                        | 0.0                                                                                                    | 0.0                                                                                                                  | 0.0                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s.o. <sup>a</sup>                                                  | 0.7                                                                        | 0.2                                           | 2.7                                                           | 0.0                                                                           | s.o. <sup>a</sup>                                                         | 0.0                                                                       |
| amphiboles<br>Alkaline                                                                                                         | 0.7                                                                                       | 0.5                                                                        | 1.5                                                          | 0.1                                                                                             | 0.7                                            | 0.0                                               | <u>1.9</u>                                                    | 0.6                                                                        | 0.4                                           | 0.9                                                                                       | 0.6                                                           | 0.4                                                                                       | 1.3                                                                                              | 1.2                                                                                                                                                              | 0.9                                                                        | 2.5                                                                                                    | <u>4.7</u>                                                                                                           | 1.1                                                                         | s.o. <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                                                | 7.2                                                                        | 1.5                                           | 1.6                                                           | 2.9                                                                           | s.o."                                                                     | s.o.ª                                                                     |
| amphiboles<br>Monoclinic                                                                                                       | 0.3                                                                                       | 0.3                                                                        | 1.0                                                          | 0.4                                                                                             | 7.2                                            | 0.0                                               | s.o."                                                         | s.o."                                                                      | s.o."                                         | 0.0                                                                                       | s.o."                                                         | s.o."                                                                                     | s.o."                                                                                            | 0.0                                                                                                                                                              | 0.0                                                                        | 0.1                                                                                                    | s.o."                                                                                                                | 0.0                                                                         | s.o."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>a                                                           | 7.3                                                                        | 0.1                                           | 0.0                                                           | 0.0                                                                           | s.o."                                                                     | s.o."                                                                     |
| pyroxenes<br>Rhombic                                                                                                           | 1.2                                                                                       | 1.9                                                                        | 5.8                                                          | 23.9                                                                                            | 1.1                                            | 23.8                                              | 17.6                                                          | <u>9.2</u>                                                                 | 5.7                                           | <u>23.3</u><br>a                                                                          | 1.7                                                           | 2.7                                                                                       | 1.2                                                                                              | 1.2                                                                                                                                                              | 12.3                                                                       | 4.6<br>a                                                                                               | 1.1<br>a                                                                                                             | 38.6                                                                        | 41.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s.o.                                                               | 3.8                                                                        | 0.6<br>a                                      | 1.6<br>a                                                      | <u>6.2</u>                                                                    | 1.1<br>a                                                                  | 3.2<br>a                                                                  |
| pyroxenes<br>Epidote-zoizite<br>Garnets<br>Vellow and                                                                          | $\frac{1.3}{23.9}$<br>1.5                                                                 | 0.4<br><u>19.4</u><br>1.9                                                  | 1.5<br>12.4<br>1.0                                           | $\frac{2.1}{13.0}$<br>0.4                                                                       | 0.2<br>14.8<br><u>2.2</u>                      | <u>15.2</u><br>4.5<br>0.9                         | $\frac{1.3}{10.5}$<br>$\frac{5.5}{5.5}$                       | $\frac{3.0}{13.7}$<br>3.2                                                  | $\frac{4.8}{10.8}$                            | $\frac{11.8}{0.2}$                                                                        | $\frac{0.2}{12.5}$<br>0.6                                     | $\frac{13.2}{1.6}$                                                                        | $\frac{10.5}{0.4}$                                                                               | 0.3<br>10.2<br>1.1                                                                                                                                               | 0.3<br>8.6<br>0.5                                                          | <u>20.1</u>                                                                                            | s.o.<br>18.2<br>21.3                                                                                                 | 0.0<br>5.3<br>1.9                                                           | 1.0<br>4.6<br>3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5<br><u>33.0</u><br>0.6                                          | $\frac{0.4}{27.7}$                                                         | $\frac{15.1}{2.2}$                            | 8.0<br>0.6                                                    | 0.6<br>5.8<br><u>5.8</u>                                                      | $\frac{7.8}{0.7}$                                                         | $\frac{10.5}{1.7}$                                                        |
| brown mica<br>Green mica<br>Colorless mica<br>Zircon<br>Sphene                                                                 | 2.8<br>0.9<br>1.6<br>2.6<br>s.o. <sup>a</sup>                                             | 4.8<br>s.o. <sup>a</sup><br>1.9<br>1.8<br>s.o. <sup>a</sup>                | <u>5.2</u><br>s.o.a<br>s.o.a<br>3.0<br>1.4                   | 2.6<br>0.0<br>s.o. <sup>a</sup><br>1.0<br>s.o. <sup>a</sup>                                     | 7.2<br>s.o.a<br>0.7<br>1.8<br>s.o.a            | $1.3 \\ 0.0 \\ 0.0 \\ 1.7 \\ 0.4$                 | 3.0<br>s.o.a<br>s.o. <sup>a</sup><br>0.9<br>0.7               | 0.7<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>1.6<br>s.o. <sup>a</sup>  | $1.6 \\ 0.0 \\ 1.1 \\ 1.5 \\ 0.0$             | $0.6 \\ s.0.a \\ s.0.a \\ \frac{1.7}{s.0.a}$                                              | $\frac{4.8}{\text{s.o.a}}$<br>s.o. <sup>a</sup><br>4.1<br>0.6 | 2.9<br>s.o.a<br>0.8<br>2.4<br>s.o. <sup>a</sup>                                           | $\frac{7.0}{0.0}$<br>s.o. <sup>a</sup><br>$\frac{2.4}{1.3}$                                      | $\frac{17.7}{1.1}\\\frac{4.4}{2.6}\\s.0.^{a}$                                                                                                                    | 0.8<br>s.o. <sup>a</sup><br>0.0<br>1.2<br>1.1                              | $2.7 \\ 2.7 \\ 0.8 \\ \underline{1.6} \\ 0.8$                                                          | 3.2<br>3.2<br>0.8<br>s.o. <sup>a</sup><br>1.0                                                                        | s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>0.9<br>0.3<br>s.o. <sup>a</sup>   | 1.9<br>s.o. <sup>a</sup><br>0.6<br>0.8<br>s.o. <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\frac{6.4}{0.0}}{\frac{2.8}{\text{s.o.}^{a}}}$              | 6.1<br>1.4<br>1.7<br>1.4<br>s.o. <sup>a</sup>                              | 3.4<br>1.5<br>1.3<br><u>1.6</u><br>0.9        | 2.5<br>2.2<br>0.9<br>2.7<br>s.o. <sup>a</sup>                 | $0.4 \\ 0.0 \\ s.0.^{a} \\ 1.7 \\ \underline{2.8}$                            | 2.0<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>3.5<br>s.o. <sup>a</sup> | 2.0<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>5.5<br>s.o. <sup>a</sup> |
| minerals<br>Tourmaline<br>Disthene<br>Carbonates<br>Light Subfraction                                                          | 2.2<br>s.o. <sup>a</sup><br>0.0<br>4.8                                                    | 16.0<br>0.7<br>0.0<br>1.6                                                  | 2.1<br>0.7<br>0.0<br>0.6                                     | 0.5<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>4.1                                            | 1.1<br>s.o. <sup>a</sup><br>0.0<br>2.4         | 0.6<br>0.5<br>0.7<br>0.6                          | 0.5<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>3.7          | $\frac{1.4}{s.o.a}$<br>s.o. <sup>a</sup><br>3.0                            | $0.0 \\ 0.0 \\ 1.4 \\ 3.6$                    | 0.5<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>0.5                                      | $\frac{1.9}{0.6}$<br>s.o. <sup>a</sup><br>3.4                 | $\frac{1.3}{s.o.a}$<br>s.o. <sup>a</sup><br>2.7                                           | $\frac{1.9}{0.7}$<br>0.0<br>4.6                                                                  | 0.9<br>1.0<br>s.o. <sup>a</sup><br>5.0                                                                                                                           | 0.5<br>s.o. <sup>a</sup><br>0.0<br>0.3                                     | 0.4<br>0.9<br>0.0<br>3.9                                                                               | 1.1<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>2.5                                                                 | $0.1 \\ s.o.^{a} \\ 0.0 \\ 4.6$                                             | 0.7<br>s.o. <sup>a</sup><br>0.0<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1<br>s.o. <sup>a</sup><br>s.o. <sup>a</sup><br>s.o. <sup>a</sup> | $\frac{1.7}{0.6}$<br>$\frac{s.o.^{a}}{0.8}$                                | $\frac{3.5}{0.9}$<br>0.0<br>$\underline{4.1}$ | $\frac{3.1}{0.9}$<br>0.0<br>2.4                               | $\frac{5.8}{1.8}$<br>0.0<br>1.0                                               | $\frac{1.7}{0.8}$<br>$\frac{0.0}{2.7}$                                    | $\frac{3.4}{0.6}$<br>s.o.a<br>2.0                                         |
| Quartz-<br>plagioclasae<br>K-feldspars<br>Muscovite<br>Color mica<br>Volcanic glass<br>Volcanic ash<br>Calcite<br>Organogenous | $\begin{array}{r} \underline{67.2} \\ 1.6 \\ 0.0 \\ 4.2 \\ 1.0 \\ 0.0 \\ 4.7 \end{array}$ | 25.5<br>s.o. <sup>a</sup><br>0.5<br>1.8<br>s.o. <sup>a</sup><br>0.0<br>1.9 | 10.0<br>s.o. <sup>a</sup><br>0.5<br>0.0<br>1.8<br>0.0<br>2.2 | $ \begin{array}{r} 14.8 \\ 0.0 \\ 0.5 \\ 0.6 \\ \underline{25.1} \\ 0.0 \\ 1.3 \\ \end{array} $ | 21.3<br>0.0<br>0.0<br>1.1<br>0.0<br>0.0<br>4.9 | $17.8 \\ 4.2 \\ 0.0 \\ 0.0 \\ 48.1 \\ 0.0 \\ 1.9$ | 25.0<br>s.o. <sup>a</sup><br>0.5<br>14.9<br>1.3<br>0.0<br>6.4 | 20.6<br>s.o. <sup>a</sup><br>1.2<br>4.6<br>s.o. <sup>a</sup><br>0.0<br>7.4 | 9.8<br>1.0<br>0.5<br>0.8<br>2.4<br>0.0<br>5.3 | $\begin{array}{r} \underline{59.9} \\ 0.0 \\ 0.0 \\ 5.2 \\ 0.6 \\ 0.0 \\ 5.2 \end{array}$ | 28.8<br>s.o.a<br>0.5<br>1.5<br>0.7<br>0.0<br>6.4              | $\begin{array}{r} \underline{37.2} \\ 2.4 \\ 0.5 \\ 1.9 \\ 0.2 \\ 0.0 \\ 7.6 \end{array}$ | $\begin{array}{r} \underline{46.3}\\ 1.2\\ 0.5\\ 1.2\\ 0.0\\ 0.0\\ \underline{24.2} \end{array}$ | $     \begin{array}{r} 59.9 \\     \hline         {1.4} \\         {4.3} \\         {2.8} \\         {s.o.a} \\         {0.0} \\         {5.4}     \end{array} $ | 20.0<br>s.o. <sup>a</sup><br>0.5<br>3.5<br>s.o. <sup>a</sup><br>0.0<br>2.1 | $\begin{array}{r} \underline{52.3} \\ 0.0 \\ 1.6 \\ 2.8 \\ \text{s.o.}^{a} \\ 0.0 \\ 11.5 \end{array}$ | $\begin{array}{r} \underline{32.6} \\ \underline{s.o.a} \\ 0.7 \\ 1.3 \\ 0.0 \\ 0.0 \\ \underline{25.1} \end{array}$ | 11.5<br>s.o. <sup>a</sup><br>0.5<br>0.6<br>0.0<br>s.o. <sup>a</sup><br>15.9 | $21.7 \\ s.o.^{a} \\ 0.5 \\ 2.3 \\ \underline{8.3} \\ \underline{21.5} \\ 2.9 \\ 1.5 \\ 2.9 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5$ | 7.0<br>0.0<br>0.3<br>0.0<br>0.0<br>3.6                             | 32.0<br>s.o. <sup>a</sup><br>0.0<br>2.6<br>1.6<br>s.o. <sup>a</sup><br>3.1 | 19.6<br>0.0<br>0.5<br>0.6<br>0.0<br>26.1      | 23.1<br>s.o. <sup>a</sup><br>0.0<br>1.0<br>0.0<br>0.0<br>12.7 | $\begin{array}{c} 40.6 \\ 0.0 \\ 0.0 \\ 2.9 \\ 0.0 \\ 0.0 \\ 2.0 \end{array}$ | 25.7<br>s.o. <sup>a</sup><br>0.5<br>s.o. <sup>a</sup><br>0.0<br>10.9      | <u>32.6</u><br>s.o.a<br>0.5<br>s.o.a<br>s.o. <sup>a</sup><br>0.0<br>2.9   |
| carbonates                                                                                                                     | 13.4                                                                                      | 65.4                                                                       | 83.6                                                         | 54.3                                                                                            | 67.1                                           | 3.1                                               | 28.8                                                          | 55.0                                                                       | 69.3                                          | 6.0                                                                                       | 53.7                                                          | 45.5                                                                                      | 21.0                                                                                             | 22.6                                                                                                                                                             | 63.4                                                                       | 24.9                                                                                                   | 29.1                                                                                                                 | 54.0                                                                        | 37.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.5                                                               | 56.7                                                                       | 47.8                                          | 60.6                                                          | 39.4                                                                          | 39.6                                                                      | 52.4                                                                      |

 TABLE 3

 Average Mineral Composition (%) of Fractions 0.1-0.05 mm of the Mediterranean Recent Sediments Terrigenous–Mineralogical Provinces (after E. M. Emelyanov, 1964, 1975)

Note: Principal minerals are underscored by a solid line, minerals characteristic of the province given by a dashed line. Mineralogical provinces: 1 – The Sea of Marmora, 2 – Northern Aegean, 3 – The Sea of Crete, 4 – Santorin, 5 – Southern Peloponnesus, 6 – Kythera, 7 – Rhodes, 8 – Tavre, 9 – Cyprus, 10 – Pre-Nile, 11 – Levant, 12 – Ionian, 13 – Sirte, 14 – Eastern Sicilian, 15 – Calabrian, 16 – Puglia, 17 – Southern Adriatic, 18 – Northern Adriatic, 19 – Eastern Tyrrhenian, 20 – Southern Sardinia, 21 – Corsica, 22 – Provence, 23 – Valencia Balearic, 24 – Southern Spanish, 25 – Algerian, 26 – Tunisia-Sicillian.

<sup>a</sup>s.o. = single occurrence

HEAVY METAL COMPOSITION OF NEOGENE SEDIMENTS

|         |                      |      |               |      |     | Reccon | beum | iento rite | aroy | ne bite | 5 Dinic | u, ng | 741 |      |     |     |     |     |    |    |
|---------|----------------------|------|---------------|------|-----|--------|------|------------|------|---------|---------|-------|-----|------|-----|-----|-----|-----|----|----|
| Station | 1                    | 2    | 3             | 4    | 5   | 6      | 7    | 8          | 9    | 10      | 11      | 12    | 13  | 14   | 15  | 16  | 17  | 18  | 19 |    |
| 487     | 9.2                  | 56.0 | 11.1          |      |     | -      | -    | 2.8        | 0.2  | -       | 0.2     | 9.2   | 0.8 | -    | 8.4 | 0.5 | 0.5 | -   |    |    |
| 363     | 17.0                 | 23.0 |               | 18.0 |     |        | tr.  | 5.0        | 1.0  | _       |         | 5.0   | tr. | tr.  | tr. | 1.1 | 2.0 |     |    |    |
| 299     | 8.7                  | 18.5 | 0.9           | 8.9  | 0.8 | 0.2    | -    | 4.1        | 8.9  | 0.2     | 1.3     | 1.3   | 0.2 | 0.4  | 0.6 | 0.4 | 0.6 |     | -  |    |
| 307     | 9.3                  | 29.1 | 3.9           | 7.4  | 2.2 | 0.2    | -    | 15.2       | 5.6  |         | 0.5     | -     | 0.2 | -    | 1.2 | -   | 0.2 |     | -  |    |
| 396     | 20.9                 | 2.3  | $\rightarrow$ | 3.1  | -   | -      |      | 5.4        | 3.1  | _       | _       | 0.8   | 2.3 |      | 1   | 8.5 |     | 1.6 | 22 |    |
| 722     | 20.1                 | 24.8 |               | 13.1 | 2.1 | 2.6    |      | 6.8        | 6.8  | 0.3     | 0.3     | 1.6   | -   | 0.3  | 1.3 | -   | 0.3 | -   | -  |    |
| Station | 20                   | 21   | 22            | 23   | 24  | 25     | 26   | 27         | 28   | 29      | 30      | 31    | 32  | 33   | 34  | 35  | 36  | 37  | 38 | 39 |
| 487     |                      |      | -             | -    | 0.5 | 0.2    |      | -          | _    | _       | _       | _     | _   |      | -   |     | _   |     | _  | _  |
| 363     | -                    | -    | ~~            | 20.0 | tr. | tr.    | -    | -          | _    |         |         | -     | -   | tr.  | -   |     | -   | - 2 | -  | -  |
| 299     | $\sim \sim 10^{-10}$ | 0.2  |               | 1.1  | 0.4 | 0.2    |      | -          | _    |         |         | _     | -   | 40.2 | _   | -   |     |     |    | 22 |
| 307     | -                    | 0.2  | -             | 4.2  | 4.7 | _      |      | 22         | -    | -       | -       | -     | -   | 2.2  | -   | -   | _   |     | -  |    |
| 396     | 1.6                  | 3.9  |               | 31.8 | 7.0 | 8.5    |      | -          | -    | -       | -       | -     | -   | -    | -   | -   | -   | -   | -  |    |
| 722     | -                    |      |               |      | 4.7 | 2.6    |      |            |      | -       |         |       | -   | 0.3  | -   |     | _   |     |    | -  |

 

 TABLE 4

 Mineral Composition of Heavy (sp. weight >2.9) Subfraction 0.1-0.05 mm of the Mediterranean Recent Sediments Nearby the Sites Drilled, Leg 42A

Note: Minerals: 1 – ore black, 2 – hydrogoethite, 3 – leucozene, 4 – common hornblende, 5 – actinolite-tremolite, 6 – alkaline amphiboles, 7 – basaltic hornblende, 8 – epidote-clinozoizite and zoizite, 9 – biotite, 10 – chlorite, 11 – muscovite, 12 – zircon, 13 – apatite, 14 – sphene, 15 – rutile, 16 – garnet, 17 – tourmaline, 18 – staurolite, 20 – disthene, 21 – monazite and other rare, 23 – weathered grains, 24 – monoclinic pyroxenes, 25 – rhombic pyroxenes, 33 – carbonates.

kus, 1974). Recall that the Messinian mudstones at Site 371 overlie a buried basement high (see Site 371 Report, this volume). If this buried hill, with a magnetic anomaly, is indeed an old seamount, the rarity of volcanogenic heavy minerals suggests that the clastics were not derived locally, but were transported to this site from a distant source.

# **SITE 372**

This site is near the junction of three petrographic provinces: Algerian, Provencial, and Valencian-Balearic. The sediments studied range from early Miocene to Quaternary in age, and they are mainly marly oozes. The 0.1-0.05 mm fraction varies from less than 1% to 10%, except for the sample of Core 32 (19.3%).

Authigenic iron sulfides (pyrite and others) are the predominant heavy minerals. In all but a few samples, they constitute more than 80% of the heavy-mineral suite. Fish teeth and bones are present in almost all samples from Units I (Cores 1-3 and 9-33), but they are rare or absent in Unit IV (Cores 34-46) sediments, which were deposited at a considerably higher rate. Authigenic carbonates are present in small amount throughout. One notable exception is the occurrence of much (68%) barite in Sample 14-6, 7-72 cm.

Detrital heavy minerals are subordinate. Opaque and oxidized iron minerals, micas, chlorite, common hornblende are present in almost all samples. Fibrous amphiboles, epidote, garnet, zircon, sphene, and tourmaline occur in some. Other heavy minerals (pyroxenes, staurolite, kyanite) were found only in one or two of the samples studied. Only one sample of Messinian Sediment, a nannofossile ooze from Sample 4-2, 6-8 cm was studied. Its heavy-mineral composition is not significantly different from that of other Site 372 samples. The upper Burdigalian sediments (Cores 27-36) contain appreciable volcanogenic detritus, including pyroclastic debris and glasses similar to those found at Sites 122 and 123 (see Hsü, et al., 1973a,b). On the whole, the heavy-mineral composition of the Neogene sediments at this site did not vary significantly. Like those of the Holocene, the sources of the detritus could be traced to the Provence, the Pyrenace, and to the Balearic Isles (see Duplaix, 1972).

### **SITE 373**

This site is in the eastern Tyrrhenian petrographic provence. Only two samples were studied. They are Quaternary marl oozes. The heavy minerals are characterized by a volcanogenic suite of monoclinic pyroxenes, opaque ash particles, and glass shards. The detrital heavy minerals include fibrous amphiboles, epidote, and micas; their occurrence indicates that the detritus was derived from the Corsican drainage system (see Emelyanov, 1972).

### **SITE 374**

The site lies within the Ionian heavy mineral province. The samples studied include Pliocene-Quaternary marl oozes and Messinian mudstones. Those samples are distinctly finer grained than those from Sites 372, 375, and 376; all but one have less than 4% 0.1-0.05 mm fraction.

Authigenic sulfides are the predominant heavy minerals in the Pliocene-Quaternary sediments of Units 1a and 1b. Fish teeth and bones are dominant in the sediments of Unit 1c, which is characterized by a slow rate of sedimentation. Authigenic sulfides again predominate in the Messinian sediments (Unit IIIa).

The detrital heavy minerals are mainly micaceous; there may have been a sorting effect to exclude the more equant detrital heavy-mineral grains from the abyssal plain environment at times of pelagic sedimentation. Biotite, muscovite, and chlorite are common in practically all samples. They, especially the micas, are particularly abundant or dominant in Unit 1b and 1a samples. Oxidized iron minerals are abundant in some fine-grained or a slowly deposited sediments. Hornblende, epidote, and garnets occur in small quantities in some, and volcanogenic components are rare.

The light minerals of the 0.1-0.05 mm fraction of Site 374 samples were also studied. The Pliocene-Quaternary sediments of Units Ia, Ib, and the Messinian mudstones of Unit III are rich in quartz (up to 40%), whereas the slowly deposited Pliocene sediments of Unit 1b contain mainly foraminifers (>95%).

The abundance of micas in the heavy-mineral suite of the Site 373 samples suggests their derivation from the Sicilian drainage area; the predominance of micas are characteristic of the eastern Sicilian province (Emelyanov, 1968, 1972, 1975). However, the presence of other heavy minerals, and the high quartz/ feldspar ratio of the light fraction indicate contributions from African sources; the quartz grains were transported to their abyssal plain environment either by turbidity currents or by winds (Figure 2).

To summarize, the Messina Abyssal Plain was the site of detrital sedimentation during the late Miocene, when authigenic sulfides were also formed. The environment suddenly changed at the beginning of the Pliocene to one of slow marine sedimentation with little terrigenous influx, resulting in a heavy-mineral suite made up mainly of biogenic components. The detrital components increased again toward the end of Pliocene and during the Quaternary, with addition of micas from the Sicilian source and quartz from the African source.

# SITES 375 AND 376

The two sites are within the Cyprus petrographic province for the Holocene sediments. The Site 376 samples range from Quaternary to late Miocene and the Site 375 samples range from late Miocene to early Miocene in age. The samples studied include sands, muds, and oozes. The 0.1-0.05 mm fraction ranges from 25% to 35% in sandy sediments, but constitutes only 0.1% or less in the pelagic oozes (see Table 1). The mineralogical composition is influenced, to some extent, by the size-sorting effect, which may have concentrated equant grains in sandy sediments (e.g., Core 6 samples, Site 375) and micaceous flakes in fine oozes (e.g., Core 8, Site 375). However, not all the variations in mineral composition can be attributed to a sorting effect; we have detected major differences in the sources for the detritus at these two sites, particularly for sediments deposited during the late Miocene.

The Pliocene-Quaternary samples (Cores 1-5, Site 376) are marl oozes. The heavy-mineral suite consists mainly of epidotes, amphiboles, chlorite, and micas. Pyroxenes, spinel, and opaque iron minerals are present only in some of the samples studied. The suite seems to be a mixture of minerals derived from the metamorphic terranes of the Taurides province and those from the ophiolites of Cyprus.

The mineral composition of the Messinian samples (Cores 8-15, Site 376, Core 2, Site 375) differs significantly from that of the Pliocene-Quaternary Samples. Authigenic sulfides are less common, and carbonates are more abundant in the Messinian samples. The heavy-mineral suite includes significant ultrabasic elements: pyroxenes, spinels, and opaque iron minerals are present in practically all the samples; an especially large amount of brown-red spinel is present in Cores 11-15. Most of those materials are obviously derived from the ophiolites of the Troodos Massif, or those of southeastern Turkey. Also present in most samples are hornblende, sphene, garnet, and zircon. Those minerals, together with monoclinic pyroxene and ilmenite in the heavy fraction and quartz in the light fraction, are characteristic of the Nile province. Finally, the presence of epidotes, fibrous amphiboles, and other metamorphic minerals points to contribution from southern Turkey, but it seems that the Antalya Basin received far more detritus from Cyprus and from the Nile during Messinian time than it does today.

An anomalously high biotite content (70%) is present in Sample 376-9-3, 121-123 cm. Muscovite is also present, but equant heavy-mineral grains are very rare in this sample. The composition suggests that it was derived from a distant source.

The sediments from the upper Tortonian (Core 6) from Site 375 are turbidities from Unit 7 (see Site 375 Report, this volume); the size fractions greater than 0.5 mm constitute 1/3-2/3 of the bulk. Their heavymineral suite is significantly different from that of the Messinian sandy sediments. Several metamorphic minerals such as epidote, chlorite, chloritoid, and alkali amphiboles are either absent or less abundant in the Messinian sediments, whereas pyroxenes and spinels are less common in the Tortonian sediments. The mineralogy of the Tortonian sediments suggests their derivation from the Tauros drainage system, with little or no contribution from the Cyprus or from the Nile.

The lower Tortonian (Core 7), Serravallian, Langhian, and Burdigalian (Cores 7-11) are typical for those of pelagic or hemipelagic sediments. The predominant heavy minerals are either authigenic sulfides or biogenic teeth and bones. Chlorite and white mica are the most common micas in the detrital contribution. Since the micas probably came from the Tauride source, we interpret the difference in mineralogy between the coarse and finer sediments as being caused by size sorting.

To summarize, the heavy-mineral suites of the Site 375 and 376 sediments suggest that the Neogene detritus of the Florence Rise and Antalya Basin were derived mainly from the Tauros drainage system. The Cyprus source may have been an important contributor during the Messinian, but it became subordinate during the Pliocene-Quaternary. The sediments from the Nile rarely reached the Antalya Basin, except during the Messinian.

#### **SITE 377**

This site is in the eastern part of the Ionian petrographic province. Except for one Quaternary sandy sample (Sample 1-2, 101-103 cm), the samples studied are marls or muds. The samples are mainly Miocene and are fine grained; their 0.1-0.05 mm fraction constitutes from 0.1% to 2% of the bulk. 
 TABLE 5

 Mineral Composition (%) of Heavy (sp. weight >2.9) Subfraction 0.1-0.05 mm of the Sites 371-378 Sediments (Leg 42A)

|                                                                                                                                                      |                                                                              |                                                  |                                                                    |                                                                           |                                                                              |                                    |         | Te                                                             | errigeno                                                     | ous                      |                        |                                     |                                                                                          |                                                     |                                                                                         |                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|---------|----------------------------------------------------------------|--------------------------------------------------------------|--------------------------|------------------------|-------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Sample<br>(Interval in cm)                                                                                                                           | Heavy<br>Sub-<br>fraction<br>(%)                                             | Ore (Black, nonmagnetic)                         | Magnetite                                                          | Ore (Black, Nonmagnetic),<br>Age-oxidized                                 | Hydrogeothite, hematite, etc.                                                | Leucoxene                          | Spinel  | Common Hornblende                                              | Actinolite Tremolite                                         | Other Fibrous Amphiboles | Alkaline Amphiboles    | Basaltic Hornblende                 | Epidote-Clinozoizite                                                                     | Zoizite                                             | Biotite                                                                                 | Chlorite                                                       |
| Site 371                                                                                                                                             |                                                                              |                                                  |                                                                    |                                                                           |                                                                              |                                    |         |                                                                |                                                              |                          |                        |                                     |                                                                                          |                                                     |                                                                                         |                                                                |
| 8-2, 120-122<br>8-2, 135-137<br>8-3, 111-137<br>8-3, 29-31<br>8-3, 46-48<br>8-3, 68-70<br>8-3, 91-93<br>8-3, 109-111<br>8-3, 132-134<br>8-3, 147-149 | 3.63<br>5.46<br>6.16<br>5.99<br>6.23<br>5.45<br>5.17<br>3.11<br>4.49<br>0.34 | 2.3<br>0.7<br>-<br>4.5<br>7.2<br>1.9<br>-<br>2.6 | 0.3<br>0.7<br>7.4<br>6.7<br>1.5<br>2.3<br>0.9<br>0.5<br>1.5<br>2.8 | 38.2<br>29.3<br>21.6<br>25.0<br>36.8<br>19.7<br>12.3<br>9.7<br>5.7<br>6.6 | 17.4<br>31.2<br>34.6<br>30.7<br>27.3<br>41.4<br>38.3<br>34.0<br>34.7<br>35.2 | 0.7<br>0.7<br>-<br>2.5<br>-<br>1.2 |         | 0.3<br>0.3<br>1.2<br>1.0<br>-<br>0.6<br>1.3<br>-<br>0.3<br>0.9 | 1.0<br>0.7<br>-<br>0.3<br>-<br>0.6<br>-<br>0.3<br>0.3<br>0.3 |                          |                        | -<br>-<br>1.1<br>-<br>0.3<br>-<br>- | $\begin{array}{c} 1.7\\ 2.3\\ 0.3\\ 1.3\\ 0.4\\ 0.6\\ 1.3\\ 1.9\\ 1.5\\ 2.2 \end{array}$ | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} 1.3\\ 2.3\\ 0.9\\ 0.3\\ 0.4\\ 0.6\\ 1.3\\ 0.5\\ 1.5\\ 0.6\end{array}$ | 0.3<br>-<br>1.5<br>3.0<br>1.5<br>1.1<br>0.9<br>1.9<br>1.5<br>- |
| Site 372<br>1-4, 24-26<br>2-4, 15-18<br>3-3, 17-19                                                                                                   | 0.98<br>3.24<br>0.36                                                         | 8.0<br>0.8                                       | 0.7<br>1.3                                                         | 0.3                                                                       | 7.6<br>11.9<br>40.9                                                          | 0.7<br>3.0                         | 1   1   | 1.0<br>2.0<br>1.3                                              | 1.0<br>                                                      | 0.7                      | 0.7<br>-               | 1.1                                 | 0.7<br>14.0<br>2.1                                                                       | 1 1 1                                               | $1.0 \\ 1.0 \\ 0.8$                                                                     |                                                                |
| 4-2, 6-8<br>12-6, 20-22<br>13-6, 20-22<br>14-6, 70-72<br>15-6, 19-21<br>16-6, 10-12                                                                  | 0.43<br>0.03<br>1.34<br>2.10<br>4.91                                         | 1.9<br>0.7                                       | 1 1 1 1 1                                                          | 0.4<br>-<br>0.3<br>3.5                                                    | 1.7<br>1.2<br>1.0<br>1.7<br>1.3                                              | 0.4<br>-<br>0.3<br>0.3             |         | 0.3                                                            | 1111                                                         | 1111                     | 0.3<br>-<br>-<br>-     | 11111                               | 1.6<br>-<br>0.3<br>0.3                                                                   | 1.1.1.1.1                                           | 1.7<br>0.7<br>0.3<br>0.3                                                                | 1.1<br>-<br>1.0<br>-<br>1.0<br>0.3                             |
| 17-6, 47-49<br>18-6, 35-37<br>19-6, 11-13<br>20-6, 20-22<br>21-6, 38-40                                                                              | 11.83<br>1.04<br>0.74<br>2.82                                                | -<br>1.6<br>-                                    | -<br>0.4<br>-                                                      |                                                                           |                                                                              | 0.7<br>0.4                         | 1 1 1 1 | 1.0<br>-<br>0.3                                                | 1111                                                         | 1111                     | -<br>0.4<br>-          | 1111                                | 0.3                                                                                      |                                                     | 1.0<br>0.6<br>-<br>0.3<br>0.7                                                           | 1.0<br>-<br>0.7                                                |
| 22-4, 73-75<br>23-6, 139-141<br>24-6, 42-44<br>25-6, 77-79                                                                                           | 0.85<br>2.54<br>0.30<br>0.35                                                 | 0.7                                              | 0.2<br>3.0<br>4.5                                                  | 0.4<br>0.2<br>0.8<br>1.0                                                  | 2.5<br>1.3<br>1.1<br>1.4                                                     | 0.4                                | 0.000   | 0.4                                                            | 0.0.0                                                        |                          |                        | 1111                                |                                                                                          | 0.4                                                 | -<br>-<br>0.4                                                                           | 1.8<br>-<br>0.4                                                |
| 20-3, 13-17<br>27-5, 56-58<br>28-6, 11-13<br>29-5, 118-120<br>30-6, 47-49                                                                            | 0.80<br>0.84<br>0.33<br>0.64<br>0.27                                         | -<br>-<br>-<br>1.1                               | 2.1<br>-<br>-<br>0.7                                               | 2.3<br>2.9<br>1.4<br>0.3<br>1.1                                           | 13.2<br>0.3<br>2.1                                                           | 0.8<br>-<br>1.1<br>-<br>0.3        | 1111    | <br>0.3<br>                                                    | 1 1 1 1                                                      | -<br>-<br>0.3            | 1111                   | 1111                                | 1.0<br>-<br>0.3<br>-<br>0.3                                                              | 1 1 1 1                                             | 1.5<br>0.6<br>0.3<br>1.0                                                                | 1.4<br>2.7<br>0.6<br>1.4                                       |
| 31-6, 10-12<br>32-6, 21-23<br>33-6, 65-67<br>34-5, 24-26<br>35-3, 29-31                                                                              | 0.86<br>0.37<br>2.87<br>8.53<br>2.00                                         | 1.1.00.0.0                                       | 1 1 1 1 1                                                          | 0.3<br>0.7<br>-                                                           | 0.6<br>1.3<br>-<br>0.3                                                       | 3.7<br>-<br>-                      | 1 1 1 1 | 0.3<br>0.7<br>0.3<br>-<br>0.3                                  | 1.1.1.1                                                      | -<br>0.3<br>-            | 0.3<br>-<br>-<br>-     |                                     | 0.3<br>-<br>-                                                                            | 1111                                                | 0.3<br>0.3<br>0.3<br>-                                                                  | 0.7<br>1.3<br>-<br>0.3                                         |
| 36-6, 38-39<br>38-6, 34-36<br>39-6, 58-60<br>40-6, 86-88                                                                                             | 31.20<br>7.34<br>0.29<br>7.86                                                | 0.4<br>0.3<br>0.6<br>0.3                         | -<br>7.6<br>-                                                      | 1 1 1 1                                                                   | -<br>1.9<br>1.0                                                              | 0.7                                |         | 111                                                            | 0.3<br>-<br>0.3                                              | 1111                     | 1111                   |                                     | 0.3<br>-<br>0.3                                                                          | 1 1 1 1                                             | -<br>0.6<br>0.3                                                                         | 0.7                                                            |
| 41-6, 5-5<br>42-6, 77-79<br>43-6, 25-27<br>44-6, 47-49<br>45-6, 35-37                                                                                | 5.02<br>5.76<br>3.14<br>0.47                                                 |                                                  | 1.6                                                                |                                                                           | -<br>0.9<br>1.2                                                              | 0.8<br>-<br>0.6                    |         | -<br>-<br>0.3<br>0.3                                           | -<br>-<br>0.3<br>-                                           | E E T T T                | - F F I I<br>- F F I I | ê ê î î î                           | -<br>-<br>0.3                                                                            | 1111                                                |                                                                                         | -<br>0.3<br>1.2                                                |
| 40-3, 16-18<br>Site 373                                                                                                                              | 25.46                                                                        | 1.5                                              | 3.7                                                                | 3.7                                                                       | 3.0                                                                          | -                                  | -       | 1                                                              | -                                                            | -                        | -                      | 1                                   | -                                                                                        | -                                                   | 0.7                                                                                     | 1                                                              |
| 1-2, 64-66<br>1-3, 50-52                                                                                                                             | 0.96<br>8.95                                                                 | 3.8<br>0.6                                       | 2.8<br>0.3                                                         |                                                                           | 3.8<br>0.8                                                                   | 0.3                                | +       | 1.3<br>0.8                                                     | 3.8<br>1.4                                                   | -                        |                        | 1                                   | 2.0<br>3.1                                                                               | 0.5                                                 | 2.3<br>0.6                                                                              | 0.3                                                            |

|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |         |                                                                                                          | Te                                                  | rrigeno                              | ous                                                                                                                                                   |            |                              |          |                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | Terrige                             | nous-V     | olcano     | genous              |               |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------|------------|------------|---------------------|---------------|--------------|
| Muscovite                                                                                                                                                                                                                                                          | Green mica                                                                                                                                                                                                                   | Zircon                                                                                                                                                                                                                                                      | Apatite | Sphene                                                                                                   | Rutile                                              | Garnet                               | Tourmaline                                                                                                                                            | Staurolite | Chloritoid                   | Disthene | Rare (Topaz, Monazite, Andalusite)                                                                                                      | Carbonates | Weathered grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Monoclinic pyroxenes                                | Rhombic pyroxenes                   | Olivine    | Iddingsite | Ash, Rock fragments | Basic glasses | Acid glasses |
| 0.3<br>0.3<br>0.6<br>-<br>0.6<br>0.3<br>0.3<br>0.6                                                                                                                                                                                                                 | 1.7<br>1.6<br>-<br>1.3<br>-<br>1.2<br>0.3                                                                                                                                                                                    | -<br>0.6<br>1.0<br>-<br>0.3<br>-<br>0.3                                                                                                                                                                                                                     | 0.3<br> | -<br>0.6<br>0.4<br>0.3<br>-<br>0.3<br>0.3<br>0.6                                                         | 0.3<br>0.6<br>0.7<br>0.7<br>-<br>0.6<br>-<br>-<br>- | 1.0<br>-<br>2.5<br>1.4<br>0.6<br>2.0 | -<br>1.6<br>0.3<br>0.7<br>0.6<br>-<br>0.5<br>1.2<br>1.1                                                                                               | 经正式保险通过计划  | -<br>0.3<br>-<br>-<br>-<br>- |          | -<br>0.3<br>-<br>3.6<br>2.6<br>0.9<br>0.9<br>0.3<br>0.6<br>-                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>1.2<br>-<br>0.4<br>0.3<br>0.3<br>0.3<br>-<br>- | -<br>0.3<br>-<br>0.8<br>-<br>-<br>- | ALE EXTERT |            | 11111111111         |               | ELLAR LEVE   |
| $\begin{array}{c} 0.3\\ 1.0\\ 0.8\\ 1.1\\ 0.8\\ 0.3\\ -\\ 0.3\\ -\\ 0.3\\ 0.4\\ 0.7\\ -\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.4\\ -\\ 0.3\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8\\ 0.8$ | 1.9<br>4.7<br>-<br>-<br>-<br>0.3<br>-<br>-<br>-<br>-<br>-<br>-<br>0.2<br>-<br>0.4<br>-<br>-<br>-<br>-<br>0.5<br>-<br>-<br>-<br>0.5<br>-<br>-<br>-<br>0.5<br>-<br>-<br>0.5<br>-<br>-<br>0.5<br>-<br>-<br>0.5<br>-<br>-<br>0.5 | 0.3<br>0.3<br>0.4<br>0.3<br>-<br>0.7<br>-<br>0.4<br>-<br>0.4<br>-<br>0.4<br>-<br>0.3<br>0.9<br>1.1<br>-<br>0.4<br>-<br>0.3<br>0.9<br>1.1<br>-<br>0.4<br>-<br>0.3<br>0.9<br>1.1<br>-<br>0.3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |         | 0.3<br>0.4<br>-<br>-<br>-<br>0.3<br>0.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.3                                                 |                                      | 0.3<br>0.3<br>-<br>0.3<br>-<br>0.4<br>0.4<br>0.4<br>-<br>0.3<br>-<br>0.3<br>-<br>0.3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | 0.3                          | 0.3      | 0.3<br>-<br>0.4<br>0.3<br>-<br>0.6<br>0.3<br>0.3<br>0.4<br>0.4<br>-<br>0.5<br>-<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 |            | $\begin{array}{c} - \\ 1.0 \\ - \\ 1.1 \\ 1.6 \\ 1.4 \\ - \\ - \\ - \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0$ |                                                     | 0.3                                 |            |            | 0.7<br>             |               |              |
| 0.3                                                                                                                                                                                                                                                                | 0.5<br>0.3                                                                                                                                                                                                                   | 0.3<br>0.3                                                                                                                                                                                                                                                  | 0.8     | 0.3<br>0.3                                                                                               | 0.3                                                 | 0.8<br>0.3                           | -                                                                                                                                                     |            | 1.1                          | 1        | ÷                                                                                                                                       | 0.6        | 1.5<br>63.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.1<br>5.1                                         | 0.5<br>0.8                          | Ξ          | -          | 1.5<br>7.2          | 1 1           | 0.5<br>-     |

TABLE 5 – Continued

ŝ,

|                                                                                                                                                      |                                                                                                                                                                                                                                                                        | Bio-<br>genic                                                                                                                                                                                                                  |            |            |            |                                                                                                | A        | Authiger | nic, Ch      | emoger     | nic                              |                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------------------------------------------------------------------------------------------|----------|----------|--------------|------------|----------------------------------|-------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>(Interval in cm)                                                                                                                           | Heavy<br>Sub<br>fraction<br>(%)                                                                                                                                                                                                                                        | Teeth, Bones                                                                                                                                                                                                                   | Carbonates | Carbonates | Carbonates | Carbonates Undivided                                                                           | Siderite | Barite   | Zeolites     | Phosphates | Chamozite                        | Glauconite                                                  | Fe-Mn Concretions | Sulfides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total (%)                                                                                                                                                                                                                                                                                               |
| Site 371                                                                                                                                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |            |            |            |                                                                                                |          |          |              |            |                                  |                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| 8-1, 120-122<br>8-2, 135-137<br>8-3, 111-137<br>8-3, 29-31<br>8-3, 46-48<br>8-3, 68-70<br>8-3, 91-93<br>8-3, 109-111<br>8-3, 132-134<br>8-3, 147-149 | 3.63<br>5.46<br>6.16<br>5.99<br>6.23<br>5.45<br>5.17<br>3.11<br>4.49<br>0.34                                                                                                                                                                                           | FEETS EFFE                                                                                                                                                                                                                     | REFITER F  |            |            | 32.7<br>26.0<br>19.1<br>17.0<br>18.9<br>18.3<br>26.2<br>23.5<br>26.9<br>26.8                   |          |          | 111111111111 |            | 6. 6. 6. 1. 1. 1. 1. F. F. F. F. | 0.3<br>0.7<br>2.2<br>2.3<br>1.5<br>0.6<br>0.6<br>2.4<br>2.7 | 0.000.0000.000    | 1.0<br>0.3<br>6.2<br>3.7<br>2.5<br>5.4<br>3.8<br>21.6<br>13.9<br>15.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99.8<br>100.2<br>99.8<br>99.8<br>100.0<br>100.0<br>99.9<br>99.9<br>99.8<br>99.9                                                                                                                                                                                                                         |
| Site 372                                                                                                                                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |            |            |            |                                                                                                |          |          |              |            |                                  |                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} 1\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$                                                         | 0.98<br>3.24<br>0.36<br>0.43<br>0.03<br>1.34<br>2.10<br>4.91<br>1.51<br>1.52<br>0.85<br>2.54<br>0.30<br>0.35<br>0.60<br>0.33<br>0.64<br>0.27<br>0.86<br>0.37<br>2.87<br>8.53<br>2.00<br>31.20<br>7.34<br>0.29<br>7.86<br>2.77<br>5.02<br>5.76<br>3.14<br>0.47<br>25.46 | $\begin{array}{c} -\\ 0.3\\ 8.4\\ 2.5\\ 8.5\\ 2.7\\ 2.4\\ 2.1\\ 2.4\\ 1.7\\ 1.7\\ 4.8\\ 0.7\\ 3.7\\ 8.6\\ -\\ 27.4\\ 8.7\\ 6.0\\ 14.7\\ 2.1\\ 2.0\\ 4.9\\ 0.7\\ 1.3\\ -\\ 0.3\\ 0.4\\ 0.3\\ -\\ -\\ -\\ -\\ 0.8\\ \end{array}$ |            |            |            | 3.0<br>-<br>0.7<br>2.3<br>0.3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.3      |          |              |            |                                  |                                                             |                   | 86.0<br>27.5<br>31.9<br>88.3<br>78.2<br>91.1<br>25.7<br>91.9<br>84.4<br>98.08<br>88.4<br>94.7<br>88.8<br>82.0<br>90.8<br>82.4<br>94.7<br>82.8<br>80.1<br>57.35<br>84.6<br>78.3<br>91.9<br>83.2<br>93.7<br>99.5<br>91.7<br>89.5<br>91.7<br>89.5<br>84.4<br>94.0<br>96.4<br>94.2<br>88.4<br>94.0<br>18.8<br>82.8<br>83.2<br>93.7<br>99.5<br>91.7<br>89.5<br>84.4<br>94.0<br>96.4<br>94.2<br>88.4<br>94.0<br>18.8<br>82.8<br>82.4<br>94.7<br>83.2<br>83.2<br>93.7<br>99.5<br>91.7<br>84.4<br>94.0<br>96.4<br>94.0<br>18.8<br>82.8<br>82.8<br>82.4<br>94.0<br>18.8<br>82.8<br>82.8<br>82.4<br>94.0<br>18.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.9<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8<br>82.8 | 100.0<br>99.7<br>99.7<br>100.1<br>99.9<br>99.7<br>100.0<br>99.9<br>99.7<br>100.0<br>99.9<br>99.9<br>100.2<br>99.9<br>99.9<br>99.9<br>99.9<br>99.9<br>99.8<br>99.9<br>99.9<br>99.9<br>99.8<br>99.7<br>99.8<br>99.7<br>99.8<br>99.7<br>99.8<br>99.7<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 |
| Site 373                                                                                                                                             |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |            |            |            |                                                                                                |          |          |              |            |                                  |                                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                         |
| 1-2, 64-66<br>1-3, 50-52                                                                                                                             | 0.96<br>8.95                                                                                                                                                                                                                                                           | 0.5                                                                                                                                                                                                                            | -          | 1          |            |                                                                                                | -        | -        | -            | 1          | -                                | -                                                           | -                 | 58.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 99.8<br>99.4                                                                                                                                                                                                                                                                                            |

TABLE 5 – Continued

Authigenic sulfides are the predominant heavy minerals of the Miocene sediments. Chlorite is present in practically all samples studied and is particularly abundant in the Quaternary sediments. Opaque iron minerals are also common. Epidote, hornblende, micas, zircon, garnet, and oxidized iron minerals occur in some samples; pyroxenes and other heavy minerals are present only in a few samples. The light fraction was also studied. Aside from foraminifers and quartz grains, aggregates of clay minerals constitute the bulk of the 0.1-0.05 mm fraction of all samples.

The mineralogic composition of the Site 377 samples is not particularly distinctive. The abundance of chlorite is surprising, considering the rarity of chlorite in the Holocene sediments (cf. Tables 3 and 6); the difference may be attributed to size-sorting effects. On the whole, the neavy mineral composition is consistent with the interpretation of its derivation from the Peloponnesus-Crete drainage system.

# **SITE 378**

This site is within the Cretan heavy-mineral province. The samples studied are mainly Pliocene-Quaternary marl oozes, and the 0.1-0.05 mm fraction constitutes 1.5%-3.7% of the bulk.

Authigenic sulfides are the dominant heavy minerals, and constitute 75%-93% of the heavy-mineral suite. The detrital heavy minerals are hornblende, fibrous, and alkali amphiboles, epidotes, micas, garnets, and opaque iron minerals. Pyroxenes and other volcanogenic minerals are rare or absent. The heavy-mineral suite suggests a detrital source from the Crete-Rhodos drainage system; the volcanogenic components are far less common in the Pliocene-Pleistocene than in the Holocene sediments.

# NEOGENE SEDIMENTARY HISTORY AS DEDUCED FROM HEAVY-MINERAL STUDIES

The studies of heavy minerals revealed a difference in the sedimentary trends between the eastern and western Mediterranean basins. The heavy-mineral composition of the Neogene sediments at Sites 371 and 372 in the Balearic Basin, and of Site 373 in the Tyrrhenian Basin is practically identical or very similar to that of the Holocene. This suggests that the terrigenous source areas for the western Mediterranean sediments have remained relatively constant since Burdigalian time. The effect of the Messinian salinity crisis on the heavy-mineral composition was minor, and is manifested by a moderate increase of the relatively unstable species in the heavy-mineral suite.

The sediments from the Messina Abyssal Plain, Site 374, showed significant temporal changes in the heavymineral suites. The Messinian and the Quaternary suites have a large detrital component, but the heavy minerals in the early Pliocene sediments are mainly biogenic fish teeth and bones. This difference is related to change in rate of sediment accumulation. In early Pliocene, when the desiccated Mediterranean was again flooded by marine waters, much of the terrigenous material was trapped in drowned river valleys (Malovitsky et al., 1975; Cita et al., this volume). Only some of the finest suspensions could reach the abyssal plain sites such as Site 374.

The most significant temporal changes of the mineral composition occurred in the Florence Rise and the Antalya Basin region. The changes are related in part to tectonics, and in part to the Messinian salinity crisis. Geology on land, and structural interpretations of submarine seismic profiles indicate a late Miocene orogenic movement, when the Cyprus Arc was deformed (Site 375-376 Report). The uplift and possible exposure of the Troodos Massif on Cyprus may have provided the ultramafic heavy minerals for the Messinian sediments. The influx of the Nile detritus was probably related to the Messinian salinity crisis. Advocates of the desiccated deep-basin model suggested that the Mediterranean water level was lowered some 2 km during the Messinian desiccation (Hsü et al., 1973a,b; this volume). The data from Soviet scientists have also indicated that the Mediterranean level was substantially lower during the Messinian than it is now (Malovitsky et al., 1975). The coastline retreated considerably towards the basin center. The Nile acquired considerable vigor and carried a large sediment load at times of the lowered base-level of erosion. Furthermore, the Florence Rise probably did not reach its present height. The Nile sediments were transported directly north and some detritus was able to reach the Antalya Basin by wind transport or by other means. Prior to the Messinian, and during the Pliocene-Quaternary, the Nile detritus was transported eastward by surface currents, and only very little of the Nile load could reach the Antalya Basin by circumscribing the Cyprus Island (Figure 2). Therefore, the heavy-mineral suites of Sites 375 and 376 contained practically no Nile contribution except during deposition of the Messinian sediments.

Investigations of the heavy minerals of Sites 377 and 378 suggests that the Peloponnesus-Crete-Rhodos drainage system was an important contributor of detritus to the north and to the south of the Cretan Arc during much of Neogene time. Volcanogenic constitutes did not become important until the late Quaternary when the Santorini became active.

#### REFERENCES

- Duplaix, S., 1972. Les minéraux lourds de sables de plages et de canyons sous-marins de la Méditerrane Française. In Stanley, D. J. (Ed.), The Mediterranean Sea; Stroudsburg, Pennsylvania (Dowden, Hutchinson, Ross, Inc.), p. 293-304.
- Emelyanov, E. M., 1968, Mineralogiya peschanoalevritovykh fraktzii sovremennykh osadkov Sredizemnogo morya. (Mineralogy of sandy-aleuritic fractions of the recent Mediterranean sediments): Litologiya i poleznye iskopaemye, no. 2.
- , 1972, Principal types of recent bottom sediments in the Mediterranean Sea: their mineralogy and geochemistry. *In* Stanley, D. J. (Ed.), The Mediterranean Sea: Stroudsburg, Pennsylvania (Dowden, Hutchinson, Ross, Inc.), p. 355-386.

 TABLE 6

 Mineral Composition (%) of Heavy (sp. weight >2.9) Subfraction (0.1-0.05 mm) of the Sites 374-378 Sediments, Leg 42A

| Sample<br>(Interval in cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heavy<br>Sub-<br>fraction<br>(%)                                                                                                                                                                                                                                                                                                                   | Ore Black                                                                | Hydrogoethite                                                                                                                                                                                                                                                                                     | Leucoxene                                                            | Common Hornblende                                                                                                                                                                  | A ctinolite-Tremolite, etc.                                         | Alkaline Amphiboles                                      | Basaltic Hornblende                                 | Epidote-Clinozoizite, Zoizite                        | Biotite                                                                                                                                                                                                                        | Chlorite                                                                                                                                                                                                                                       | Muscovite                                                                                                                                                                                                                                    | Zircon                                                 | Apatite                                                | Sphene | Rutije                                      | Garnet                                                                                                                                                                                                                                                                       | Tourmaline | Staurolite                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------|
| Site 374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                                                                                                                    |                                                                     |                                                          |                                                     |                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                        |                                                        |        |                                             |                                                                                                                                                                                                                                                                              |            |                                        |
| $\begin{array}{c} 1\text{-}1, 123\text{-}125\\ 2\text{-}1, 93\text{-}95\\ 2\text{-}2, 132\text{-}134\\ 2\text{-}3, 114\text{-}116\\ 3\text{-}1, 135\text{-}137\\ 4\text{-}1, 140\text{-}142\\ 4\text{-}2, 142\text{-}144\\ 4\text{-}3, 140\text{-}142\\ 4\text{-}4, 123\text{-}125\\ 5\text{-}1, 126\text{-}128\\ 5\text{-}2, 127\text{-}129\\ 5\text{-}3, 136\text{-}138\\ 5\text{-}4, 127\text{-}129\\ 5\text{-}5, 136\text{-}138\\ 6\text{-}1, 126\text{-}128\\ 6\text{-}2, 110\text{-}112\\ 6\text{-}3, 119\text{-}121\\ 6\text{-}4, 117\text{-}119\\ 6\text{-}5, 123\text{-}125\\ 6\text{-}6, 128\text{-}130\\ 7\text{-}1, 112\text{-}114\\ 7\text{-}2, 111\text{-}113\\ 7\text{-}3, 117\text{-}119\\ 7\text{-}4, 125\text{-}127\\ 7\text{-}6, 132\text{-}134\\ 8\text{-}1, 136\text{-}138\\ 8\text{-}2, 120\text{-}122\\ 8\text{-}3, 143\text{-}145\\ 8\text{-}2, 120\text{-}122\\ 8\text{-}3, 143\text{-}145\\ 8\text{-}4, 135\text{-}137\\ 9\text{-}2, 144\text{-}146\\ 9\text{-}3, 4\text{-}6\\ 9\text{-}4, 135\text{-}137\\ 10\text{-}1, 146\text{-}148\\ 11\text{-}1, 86\text{-}88\\ 12\text{-}1, 120\text{-}122\\ 13\text{-}1, 128\text{-}130\\ 14\text{-}1, 128\text{-}130\\ 14\text{-}1, 128\text{-}130\\ 15\text{-}1, 128\text{-}130\\ 15$ | $\begin{array}{c} 1.58\\ 4.17\\ 8.13\\ 12.56\\ 2.47\\ 24.87\\ 5.26\\ 3.00\\ 2.63\\ 1.15\\ 0.60\\ 4.57\\ 0.10\\ 0.04\\ 0.08\\ 0.27\\ tr.\\ 0.02\\ 0.02\\ 0.02\\ tr.\\ 0.04\\ tr.\\ 0.04\\ tr.\\ 0.04\\ tr.\\ 0.01\\ 0.02\\ 0.02\\ 0.05\\ 0.07\\ 0.03\\ 0.05\\ 0.07\\ 0.03\\ 0.05\\ 0.07\\ 0.10\\ 0.53\\ 91.15\\ 45.45\\ 25.00\\ 0.20\\ \end{array}$ | $\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $       | $\begin{array}{c} 0.9\\ 2.3\\ 0.6\\ 1.5\\ 0.3\\ 0.7\\ 737.9\\ 2.7\\ -\\ 1.0\\ -\\ 2.8\\ 12.3\\ 4.5\\ 2.2\\ +\\ +\\ +\\ +\\ 20.0\\ +\\ +\\ +\\ +\\ 20.0\\ +\\ +\\ +\\ 1.0\\ +\\ -\\ 50.0\\ 16.1\\ 1.4\\ 5.2\\ 2.7\\ 1.5\\ 1.8\\ 12.3\\ 5.4\\ 1.8\\ 12.3\\ 5.4\\ 1.8\\ -\\ +\\ -\\ 8.0 \end{array}$ | 0.8                                                                  | 13.8<br>-<br>0.3<br>0.7<br>-<br>9.7<br>0.3<br>0.7<br>1.3<br>0.3<br>2.1<br>1.7<br>1.5<br>0.4<br>-<br>-<br>2.0<br>-<br>5.0<br>-<br>3.6<br>-<br>-<br>1.8<br>-<br>0.3<br>+<br>-<br>2.0 |                                                                     | 0.3                                                      |                                                     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.8<br>31.9<br>11.2<br>5.3<br>1.7<br>-<br>-<br>0.8<br>9.8<br>4.5<br>-<br>-<br>0.3<br>0.7<br>-<br>-<br>1.8<br>-<br>-<br>-<br>1.0<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | $\begin{array}{c} 9.4\\ 29.9\\ 34.2\\ 10.7\\ 5.8\\ 0.3\\ 3.3\\ 8.1\\ 32.4\\ 58.4\\ 3.7\\ 2.1\\ 63.2\\ 31.3.6\\ 19.4\\ -\\ ++\\ +\\ -\\ -\\ 54.0\\ +\\ +\\ 2.0\\ 60.7\\ 2.1\\ 3.4\\ 12.3\\ 1.4\\ 15.8\\ 5.4\\ 7.0\\ -\\ +\\ +\\ 2.0\end{array}$ | $\begin{array}{c} 1.3\\ 33.2\\ 49.2\\ 17.2\\ -\\ 0.7\\ 5.0\\ 1.6\\ 48.6\\ 13.1\\ 1.7\\ 1.8\\ 9.2\\ 5.3\\ 3.0\\ 3.2\\ -\\ +\\ -\\ -\\ -\\ 1.0\\ -\\ -\\ -\\ 1.0\\ -\\ -\\ 5.4\\ 0.7\\ 1.7\\ 6.8\\ 7.0\\ 7.1\\ -\\ -\\ +\\ +\\ 2.0\end{array}$ |                                                        | 0.8                                                    |        | 1.7                                         | $\begin{array}{c} - \\ - \\ - \\ 1.5 \\ - \\ 0.4 \\ - \\ - \\ 1.3 \\ 1.7 \\ 1.5 \\ - \\ + \\ + \\ 1.0 \\ + \\ + \\ 4.0 \\ - \\ - \\ - \\ 1.8 \\ - \\ 0.3 \\ - \\ - \\ 0.3 \\ - \\ - \\ - \\ - \\ - \\ 1.8 \\ - \\ - \\ 0.3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ | 1.7        | 0.8                                    |
| Site 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                    |                                                                          |                                                                                                                                                                                                                                                                                                   |                                                                      |                                                                                                                                                                                    |                                                                     |                                                          |                                                     |                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                              |                                                        |                                                        |        |                                             |                                                                                                                                                                                                                                                                              |            |                                        |
| 2-4, 1-3<br>4-4, 99-101<br>5-4, 98-100<br>6-1, 117-119<br>6-2, 93-95<br>6-3, 132-137<br>6-4, 62-64<br>7-1, 110-112<br>7-5, 40-42<br>8-3, 52-54<br>9-1, 98-100<br>10-2, 114-116<br>11-1, 133-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23<br>54.55<br>83.78<br>3.24<br>6.04<br>2.42<br>2.28<br>0.88<br>2.99<br>15.17<br>46.88<br>0.04<br>0.06                                                                                                                                                                                                                                           | 3.7<br>-<br>4.7<br>7.0<br>3.1<br>8.8<br>1.0<br>-<br>1.8<br>-<br>0.5<br>- | -<br>0.4<br>-<br>2.2<br>5.4<br>1.0<br>-<br>6.1<br>-<br>0.9                                                                                                                                                                                                                                        | 1.1<br>-<br>0.7<br>0.7<br>1.4<br>1.0<br>0.7<br>-<br>-<br>-<br>-<br>- | 4.8<br>0.3<br>-<br>21.1<br>21.8<br>19.8<br>18.9<br>2.1<br>0.7<br>-<br>0.3<br>0.9<br>4.0                                                                                            | 0.7<br>-<br>4.3<br>1.8<br>2.5<br>6.1<br>1.7<br>-<br>1.8<br>-<br>2.0 | 0.4<br><br>0.7<br>0.4<br>0.3<br>0.7<br><br>-<br>-<br>2.0 | -<br>0.7<br>0.4<br>0.4<br>0.3<br>-<br>-<br>-<br>2.0 | 8.9<br>                                              | -<br>-<br>1.4<br>0.7<br>0.3<br>3.4<br>1.0<br>3.5<br>-<br>-                                                                                                                                                                     | $\begin{array}{c} 0.7\\ 0.3\\ -\\ 6.8\\ 3.5\\ 9.3\\ 7.4\\ 24.3\\ 14.5\\ 40.3\\ 0.3\\ 1.9\\ 4.0 \end{array}$                                                                                                                                    | -<br>0.3<br>1.4<br>0.7<br>4.0<br>1.0<br>22.3<br>9.0<br>17.5<br>0.7<br>2.4<br>-                                                                                                                                                               | 1.1<br>-<br>-<br>1.1<br>0.4<br>-<br>-<br>0.9<br>-<br>- | 0.7<br><br>0.4<br>0.7<br>0.4<br>0.3<br><br><br>0.5<br> |        | -<br>0.4<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.5<br>-<br>1.8<br>1.4<br>1.1<br>0.7<br>-<br>1.8<br>-<br>0.5<br>-                                                                                                                                                                                                            | 0.3        | -<br>0.4<br>-<br>-<br>-<br>-<br>-<br>- |

|                                                   |                                                                                             |                                                |            |                                                                                                                   |                                                            |                   |                     |                                                            |                                                                   | Volca         | nogenic           |                                                           | Bio-<br>genic                                                                       |                                                                              |        | Authige  | enic, Cl   | nemoge     | nic               |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|---------------------|------------------------------------------------------------|-------------------------------------------------------------------|---------------|-------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------|----------|------------|------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chloritoid                                        | Disthene                                                                                    | Monazite and Other Rare Minerals               | Carbonates | Weathered Grains                                                                                                  | Monoclinic Pyroxenes                                       | Rhombic Pyroxenes | Olivine, Iddingsite | Spinel                                                     | Ash, Basalt and<br>Rocks Fragments                                | Brown Glasses | Colorless Glasses | Palagonite                                                | Teeth, Bones                                                                        | Carbonates                                                                   | Barite | Zeolites | Phosphates | Glauconite | Fe-Mn Concretions | Sulfides                                                                                                                                                                                                                                                                                    | Total (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                   |                                                                                             | 2.0                                            |            | $ \begin{array}{c} 1.9\\ 1.7\\ 7.5\\ -\\ 0.8\\ -\\ -\\ 1.8\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$ | 1.3<br>                                                    | 0.7               |                     |                                                            |                                                                   |               |                   | TELESCONDUCED CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR | $\begin{array}{c} 0.4 \\ - \\ 0.3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $ |                                                                              |        |          |            |            | 3.00              | $\begin{array}{c} 67.4\\ 0.3\\ 1.0\\ 65.0\\ 82.5\\ 93.6\\ 36.7\\ 10.5\\ 2.1\\ 21.0\\ 91.0\\ 95.4\\ 1.3\\ 14.1\\ 3.0\\ 65.2\\ +\\ -\\ -\\ -\\ 2.0\\ +\\ +\\ -\\ -\\ -\\ 2.0\\ +\\ +\\ +\\ -\\ 3.6\\ 7.1\\ 36.2\\ 1.1\\ 10.8\\ 12.2\\ 12.3\\ 1.8\\ 86.0\\ 98.4\\ ++\\ +\\ 76.0\\ \end{array}$ | 99.9<br>99.8<br>99.9<br>100.0<br>99.8<br>100.1<br>99.9<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>99.8<br>99.8<br>99.8<br>99.8<br>+<br>+<br>+<br>+<br>+<br>+<br>100.0<br>100.0<br>99.9<br>99.9<br>100.0<br>99.9<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>99.8<br>100.1<br>99.8<br>99.8<br>100.1<br>99.9<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.8<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>99.8<br>100.0<br>100.0<br>99.9<br>100.2<br>99.8<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 |
| -<br>0.7<br>0.7<br>0.4<br>1.0<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.5<br><br><br>0.4<br><br><br><br><br><br><br> |            | -<br>-<br>9.2<br>10.1<br>6.8<br>18.2<br>3.1<br>7.9<br>-<br>1.9<br>14.0                                            | 6.7<br>-<br>1.8<br>4.9<br>1.4<br>2.4<br>-<br>-<br>-<br>4.0 | 0.7<br>           |                     | 1.9<br>-<br>0.4<br>0.4<br>0.7<br>0.3<br>-<br>0.9<br>-<br>- | 1.5<br>-<br>6.8<br>4.9<br>4.7<br>4.4<br>-<br>2.6<br>-<br>0.9<br>- |               |                   | 111111111111                                              | 2.6<br>-<br>-<br>0.4<br>-<br>2.1<br>0.3<br>0.8<br>-<br>86.3<br>46.0                 | 1.5<br>-<br>2.9<br>6.3<br>7.5<br>4.7<br>3.1<br>1.7<br>7.0<br>-<br>0.5<br>4.0 |        |          |            |            |                   | 60.0<br>99.6<br>99.7<br>1.8<br>5.4<br>4.1<br>17.8<br>68.6<br>4.4<br>98.4<br>1.9<br>16.0                                                                                                                                                                                                     | 100.0<br>100.2<br>100.0<br>99.8<br>100.1<br>100.4<br>99.9<br>100.0<br>99.9<br>100.0<br>100.0<br>100.1<br>100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TABLE 6 – Continued

| 4                          |                                  | TABLE 6 – Continued |               |           |                   |                       |                     |                     |                       |         |          |           |        |         |        |         |         |
|----------------------------|----------------------------------|---------------------|---------------|-----------|-------------------|-----------------------|---------------------|---------------------|-----------------------|---------|----------|-----------|--------|---------|--------|---------|---------|
|                            |                                  |                     | ,             |           |                   | etc.                  |                     |                     | Zoizite               |         |          |           |        |         |        |         |         |
| Sample<br>(Interval in cm) | Heavy<br>Sub-<br>fraction<br>(%) | Ore Black           | Hydrogoethite | Leucoxene | Common Hornblende | Actinolite-Tremolite, | Alkaline Amphiboles | Basaltic Hornblende | Epidote-Clinozoizite, | Biotite | Chlorite | Muscovite | Zircon | Apatite | Sphene | Rutile  | Garnet  |
| Site 376                   |                                  |                     |               |           |                   |                       |                     |                     |                       |         |          |           |        |         |        |         |         |
| 1-1, 99-101                | 0.83                             | 1.3                 | 0.7           | 100       | 3.3               | 0.7                   | 4                   | 0.7                 | 13.7                  | -       | 2.6      | 12        | 0.7    | $\sim$  | -      |         | <u></u> |
| 1-3, 99-103                | 0.41                             | 7.7                 | 2.1           |           | 11.8              | 6.9                   |                     | 0.7                 | 31.2                  | —       | 3.5      | 0.7       | 0.7    | 0.7     | -      | -       | -       |
| 2-1, 125-127               | 1.94                             |                     | -             | -         | 0.7               | 1.8                   | -                   |                     | 0.4                   | 4.1     | 0.4      | 0.4       | -      | -       | -      | -       | -       |
| 2-3, 118-120               | 5.75                             |                     | -             | -         |                   | -                     | -                   | -                   | -                     | 0.7     | -        |           | -      | -       | -      |         | -       |
| 3-1, 125-127               | 0.20                             | 0.3                 | 0.3           | -         | 3.1               | 1.7                   | $\rightarrow$       |                     | 1.0                   | 28.5    | 0.3      | 2.1       | 0.3    | $\sim$  |        | -       | 0.3     |
| 3-3, 99-101                | 0.35                             | -                   | 1.0           | - 22      | 1.0               | _                     |                     |                     | 19.8                  | 4.9     | 1.0      | 1.0       | _      | <u></u> | _      | <u></u> | -       |
| 4-1, 98-100                | 0.53                             | 40.8                | 29.6          | 177       | 5.2               | 0.9                   | -                   | 7.0-5               | 7.0                   | 3.5     | 0.9      | -         | -      |         | -      | -       | -       |
| 5-1,95-97                  | 1.31                             | 0.4                 | 2.5           |           | 3.9               | 1.8                   |                     | -                   | 9.5                   |         | 0.4      |           | -      | —       |        |         | _       |
| 8-1, 128-130               | 0.90                             | 23.6                | ÷             | 0.7       | 17.0              | 0.8                   | 0.7                 |                     | 16.2                  | 1.5     | 4.1      | 0.4       | 0.7    | 0.4     | 0.4    |         | 3.3     |
| 8-3, 119-121               | 1.37                             | 24.0                | 3.1           |           | 21.9              | 1.0                   |                     |                     | 18.1                  | 0.7     | 2.4      |           | 1.0    | 0.7     | -      |         | 1.7     |

15.2

25.0

14.3

19.4

15.2

20.9

24.6

29.7

1.2

2.9

0.7

0.7

0.9

0.4

0.4

0.8

0.4

0.4

0.4

1.5

0.4

4.4

0.3

1.7

1.8

1.7

4.3

0.7

-

0.4

-

-

\_

0.7

0.3 24.9

-

\_

\_

-

-

-

\_

-

\_

-

\_

\_

-

-

-

-

\_

-

0.3

0.3

0.3

\_

---

-

Note: 1 - content of heavy (sp. weight >2.9) subfraction; 2-27 - terrigenous matter; 2 - ore opaque minerals (ilmenite, magnetite, titano-magnetite,

0.7

1.7

70.2

5.6

0.8

0.4

2.2

2.1

0.4

0.3

1.2

\_

-

0.3

1.3

\_

-

-

0.6

0.5

-

0.4

-

-

0.7

1.0

0.3

2.8

0.7

2.5

1.0

1.3

3.4

3.0

0.7

3.5

1.4

3.3

0.9

1.7

85.3

30.4

9.1

0.3

0.3

0.7

0.4

1.9

1.5

1.0

0.4

1.3

0.4

0.4

1.7

1.1

0.7

1.2

0.7

1.7

0.7

17.1

0.7

3.4

0.7

0.8

0.4

1.1

1.4

1.5

1.4

2.6

1.2

4.3

1.5

-

2.6

\_

+

0.4

-

0.6

0.5

0.4

0.4

0.4

\_

\_

0.7

0.3

0.6

0.7

1.3

0.3

0.7

0.3

0.7

0.8

0.4

0.3

0.4

\_

-

\_

\_

0.3

-

\_

-

\_

-

-

-

\_

0.4

0.4

0.4

-

0.3

-

-

0.3

0.3

0.7

0.4

0.8

1.1

0.4

1.4

0.4

0.4

\_

\_

\_

-

-

-

-

-

-

-

\_

\_

0.4

----

\_

0.4

-

0.3

-

-

-

-

\_

0.3

-

\_

\_

\_

-

\_

-

-

-

\_

\_

\_

-

-

\_

-

\_

-

\_

\_

-

0.3

0.3

0.7

0.8

\_

0.3

-

\_

\_

-

-

1.5

-

-

-

\_

---

-

\_\_\_\_

0.5

\_

-

\_

\_

\_

-

\_

\_

Tourmaline

-

-

--

0.4

0.3

---

0.8

-

0.7

0.4

-

-

\_

\_

-

\_

-

\_

-

-

-

\_

-

\_

-

0.4

-

 $\sim$ 

\_

\_

-

\_

-

-

1.4

2.2

4.5

0.7

0.4

2.1

0.4

3.1

0.4

\_

\_

\_

-

0.4

\_

0.8

0.4

-

0.7

0.4

0.6

0.3

-

-

0.3

0.7

Staurolite

--\_ ÷

\_

-\_

-

\_

0.3

-

\_

\_

\_

-

-

-

\_

-

\_

\_

-

-

---

-

-

--

-

-

\_

0.4

-

-

-

\_

\_

-

\_

-

-

-

-

15.9

1.3

16.8

21.0

5.5

16.3

15.3

20.2

11.9

17.0

1.2

4.3

3.0

0.7

\_

-

\_

\_

0.3

-

\_

-

0.4

-

0.4

0.4

0.7

1.5

0.7

0.6

9.4

2.3

0.7

0.3

2.6

0.8

0.4

3.5

0.7

0.7

1.7

1.2

2.9

-

0.3

-

\_

0.3

2.5

2.3

0.7

0.9

0.4

0.3

-

-

\_

-

-

2.1

1.0

4.9

1.5

3.6

8.2

2.4

7.0

3.9

2.2

-

-

-

----

-

0.6

-

\_

-

-

0.4

0.6

0.3

0.3

0.3

-

\_

-

-

\_\_\_\_

0.4

\_

-

0.4

-

\_

\_

\_

-

-

\_

-

\_

\_

\_

\_

-

\_

-

-

\_

\_

0.7

0.3

0.3

0.7

0.7

-

E. M. EMELYANOV, K. M. SHIMKUS, K. H. HSÜ

1.22

0.09

0.28

0.86

0.95

0.20

0.32

0.30

0.47

0.11

1.52

0.20

2.04

38.60

24.44

1.50

2.40

2.00

6.78

3.53

5.74

5.40

3.44

5.00

2.17

5.78

3.93

2.00

2.50

11.90

11.19

2.88

4.58

2.84

2.71

2.44

9-1, 84-86

9-3, 121-123

10-1, 124-126

11-1, 137-139

12-1, 146-148

13-1, 100-102

15-1, 132-134

12-3, 93-95

13-3, 78-80

15-2, 31-33

1-1,99-101

1-2, 48-50

3-2, 62-64

3-2, 80-82

4-1, 76-78

4-2, 40-42

4-2, 80-82

4-3, 20-22

4-3, 40-42

4-3, 80-82

4-4, 20-22

4-4, 80-82

1-1, 101-103

2-2, 98-100

3-2, 98-100

5-2.99-101

6-2, 97-99

7-2, 104-106

8-2, 100-102

chromite); 3 - leucoxene.

4-4, CC

Site 378

1-2, 101-103

3-1, 120-122

3-2, 101-103

3-2, 120-122

4-1, 120-122

4-2, 120-122

Site 377

1.4

8.2

8.4

2.5

10.7

5.1

6.7

4.4

4.4

-

1.3

0.3

+

1.5

1.3

5.8

7.0

7.6

10.7

11.8

16.0

8.1

9.6

8.0

0.3

0.3

0.3

0.3

6.7

0.3

0.7

11.3

0.3

6.7

7.5

1.8

1.0

0.4

\_

-

2.4

2.9

1.5

0.3

-

\_

2.2

4.2

14.4

16.3

8.9

6.5

3.2

3.4

1.5

0.4

4.5

0.7

0.3

0.7

0.3

|  | TAB | LE 6 | - Continued |
|--|-----|------|-------------|
|--|-----|------|-------------|

|            |          | ls                                                                                           |            |                                                                                                                                       |                                                                                                                                            |                                                                                                                                                     |                     |                                                                                                   | ,                                  | Volcano       | ogenou                                                                                                                                           | 5          | Bio-<br>genic                                                                                                                        | c Authigenic, Chemogenic                                                                                                         |                              |                         |            |            |                   |                                                                                                                                                            |                                                                                                                                                                    |  |  |
|------------|----------|----------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------------|------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Chloritoid | Disthene | Monazite and Other Rare Minera                                                               | Carbonates | Weathered Grains                                                                                                                      | Monoclinic Pyroxenes                                                                                                                       | R hombic Pyroxenes                                                                                                                                  | Olivine, Iddingsite | Spinel                                                                                            | Ash, Basalt and<br>Rocks Fragments | Brown Glasses | Colorless Glasses                                                                                                                                | Palagonite | Teeth, Bones                                                                                                                         | Carbonates                                                                                                                       | Barite                       | Zeolites                | Phosphates | Glauconite | Fe-Mn Concretions | Sulfides                                                                                                                                                   | Total (%)                                                                                                                                                          |  |  |
|            |          | 1.4<br>0.7<br>-<br>-<br>0.4<br>0.4<br>0.4<br>-<br>-<br>0.4<br>-<br>-<br>-<br>1.5<br>0.3<br>- |            | 29.4<br>7.6<br>4.5<br>-<br>2.4<br>-<br>2.6<br>-<br>0.7<br>5.5<br>3.8<br>10.1<br>4.5<br>6.0<br>4.0<br>7.8<br>8.0<br>4.0<br>5.6<br>10.0 | $\begin{array}{c} 1.3\\ 7.6\\ 2.2\\ -\\ 3.1\\ -\\ -\\ 1.8\\ 3.0\\ 12.7\\ 1.4\\ 0.7\\ 4.1\\ 4.5\\ 1.8\\ -\\ -\\ 0.7\\ 7.0\\ 4.8\end{array}$ | $\begin{array}{c} - \\ 0.7 \\ - \\ 0.3 \\ 1.0 \\ - \\ 0.7 \\ 0.3 \\ 0.3 \\ 0.3 \\ 1.5 \\ 0.8 \\ 0.7 \\ 0.4 \\ 0.3 \\ 0.4 \\ 1.8 \\ 1.3 \end{array}$ | 0.7                 | 0.7<br>0.7<br>-<br>-<br>0.7<br>1.1<br>1.7<br>-<br>0.7<br>12.0<br>2.8<br>2.8<br>1.5<br>23.2<br>9.6 |                                    | 0.7           | -<br>2.1<br>1.1<br>-<br>-<br>-<br>-<br>1.3<br>0.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | -<br>1.4<br>-<br>0.9<br>-<br>0.4<br>0.4<br>-<br>0.4<br>-<br>0.4<br>-<br>0.4<br>-<br>0.4<br>-<br>0.4<br>-<br>0.4<br>4.4<br>2.8<br>6.1 | 2.6<br>2.1<br><br>0.3<br>1.0<br>0.9<br>0.4<br>6.6<br>1.4<br>5.5<br>1.7<br>6.0<br>15.8<br>8.0<br>17.7<br>7.7<br>9.9<br>2.1<br>6.1 |                              | KTA CEAN GELT CEAN CEEN |            | 0.4        |                   | 41.2<br>6.2<br>84.3<br>98.4<br>54.6<br>69.3<br>8.7<br>77.8<br>12.2<br>1.0<br>47.2<br>8.1<br>0.7<br>3.0<br>25.2<br>2.1<br>31.0<br>2.2<br>2.1<br>31.0<br>2.2 | 100.3<br>100.0<br>99.9<br>100.0<br>99.6<br>100.0<br>100.1<br>100.4<br>100.2<br>99.9<br>100.2<br>100.0<br>100.0<br>100.0<br>100.3<br>100.0<br>100.3<br>99.7<br>99.7 |  |  |
|            |          |                                                                                              |            | $\begin{array}{c} 2.4\\ 27.5\\ 13.6\\ -\\ -\\ 22.3\\ 0.7\\ +\\ -\\ -\\ 6.3\\ 11.3\\ 3.6\\ 5.2\\ 5.6\\ 3.6\\ 1.1\\ 1.1\end{array}$     |                                                                                                                                            | 1.5<br>                                                                                                                                             |                     |                                                                                                   | 1.3                                |               | 1.3                                                                                                                                              |            | 1.2<br>                                                                                                                              | $1.2 \\ 2.9 \\ - \\ 0.7 \\ 0.3 \\ 1.3 \\ 0.7 \\ + \\ 0.4 \\ - \\ 0.7 \\ 5.2 \\ 1.8 \\ 0.4 \\ 1.6 \\ 1.3 \\ 0.7 \\ 0.8 \\ - $     |                              |                         |            |            |                   | 1.2<br>15.9<br>68.1<br>97.9<br>97.5<br>48.7<br>95.6<br>++<br>92.9<br>93.3<br>75.0<br>57.4<br>60.6<br>73.9<br>73.6<br>68.1<br>79.6<br>84.0<br>83.7          | 99.7<br>99.9<br>99.8<br>100.0<br>100.0<br>99.8<br>100.1<br>100.0<br>100.0<br>99.9<br>99.7<br>100.2<br>99.8<br>99.8<br>99.9<br>100.3<br>100.0<br>100.0              |  |  |
|            | 0.3      | 0.3<br>-<br>-<br>0.3<br>-                                                                    |            | <br>2.2<br>0.3<br><br>0.7<br>                                                                                                         | -<br>-<br>-<br>-<br>0.3                                                                                                                    |                                                                                                                                                     | 111 - ×             | <br>0.3<br>                                                                                       | -<br>-<br>-<br>0.7<br>0.3          |               | 0.3<br>-<br>-<br>-<br>0.3                                                                                                                        | 1111111    | 0.7<br>0.3<br>0.6<br>-<br>0.7<br>1.1                                                                                                 | 0.3<br>-<br>0.3<br>0.3<br>0.3<br>0.7<br>0.3                                                                                      | 0.3<br>-<br>-<br>-<br>-<br>- |                         | E E I 3    | 111111     | 111111            | 88.8<br>93.2<br>90.7<br>93.2<br>74.9<br>84.9<br>90.7                                                                                                       | 99.7<br>99.7<br>99.7<br>99.8<br>100.1<br>99.9<br>99.9                                                                                                              |  |  |



Figure 2. Diagram (compiled by E. M. Emelyanov and K. M. Shimkus) of the distribution of Nile sediment loads in the Mediterranean Sea at different stages of Quaternary (Q) and Neogene (N) periods (Malovitsky et al., 1975).

mulation in the Atlantic Ocean: Kaliningrad (Izd. Kaliningradskaya pravda).

- Emelyanov, E. M., Krylov, A. Y., Silin, Y. I., Shimkus, K. M., Tsovbun, Y. N., 1973. Vozrastnye provintsii terrigennovulkanogennogo materiala Sredizemnogo morya. (Age provinces of the Mediterranean terrigenous-volcanogenic material): Litologiya i poleznye iskopaemye, no. 4.
- Emelyanov, E. M. and Shimkus, K. M., 1974. Karbonaty, kremnezem i zhelezo vo vzvesi Sredizemnogo morya. (Carbonates, silica and ferrum in suspended matter of the Mediterranean sea): Okeanologiya, v. 14, p. 1.
- Hsü, K. J., Cita, M. B., and Ryan, W. B. F., 1973a. The origin of the Mediterranean Evaporite. In Ryan, W. B. F.,

Hsü, K. J., et al., Initial Reports of the Deep Sea Drilling Project, Volume 13: Washington (U.S. Government Printing Office), p. 1203-1232.

- Hsü, K. J., Honnorez, J., and Weibel, M., 1973. Petrography of the Valencia Trough volcanic rocks. *In Ryan*, W. B. F., Hsü, K. J., et al., 1973. Initial Reports of the Deep Sea Drilling Project, Volume 13: Washington (U.S. Government Printing Office), p. 767-771.
- Malovitsky, Y. P., Emelyanov, E. M., Kazakov, O. V., Shimkus, K. M., and Chumakov, J. S., 1975. Geological structure of the Mediterranean sea floor (based on geological geophysical data): Marine Geol., v. 18, no. 4.



 TABLE 7

 Mineral Composition (%) of Light Subfraction 0.1-0.05 mm of the Sediments, Leg 42A

|      | Sample         |      |      |             |      |      |               |     |      |     |               |     |      | Min                | erals |               |     |    |                  |                 |               |      |          |            |     |                 |       |
|------|----------------|------|------|-------------|------|------|---------------|-----|------|-----|---------------|-----|------|--------------------|-------|---------------|-----|----|------------------|-----------------|---------------|------|----------|------------|-----|-----------------|-------|
| (Ir  | nterval in cm) | 1    | 2    | 3           | 4    | 5    | 6             | 7   | 8    | 9   | 10            | 11  | 12   | 13                 | 14    | 15            | 16  | 17 | 18               | 19              | 20            | 21   | 22       | 23         | 24  | 25              | 26    |
| Sit  | e 374          |      |      |             |      |      |               |     |      |     |               |     |      |                    |       |               |     |    |                  |                 |               |      |          |            |     |                 |       |
|      | 1-1, 123-125   | 1.6  | -    | 0.3         | -    | 1.0  | -             | -   | 13.6 | 2.4 | 1.0           |     |      | $\sim - 1$         | 43.2  | 36.7          |     | -  | -                | -               |               | -    | -        | -          | -   | -               | 99.8  |
|      | 2-1, 93-95     | 2.7  | -    | 8.3         | 12.0 | 9.0  | 2.44          | -   | 10.3 | 2.7 | 2.4           |     | -    | -                  | 49.3  |               | -   | -  | -                | -               | 1.4           | 2.0  |          | -          | -   | -               | 100.1 |
|      | 2-2, 132-134   | 2.7  |      | 22.9        | 5.3  | 14.3 | 000           | -   | 0.7  |     | 0.3           | -   | -    | -                  | 49.5  |               | -   | -  | -                |                 | 4.0           | 0.3  | -        | -          |     | _               | 100.0 |
|      | 2-3, 114-116   | 17.1 | -    | 9.9         | 3.4  | 10.6 |               | -   | 13.0 | 5.1 | 3.4           | -   | -    | -                  | 29.0  |               | -   | -  | -                | -               | 1.7           | 6.8  | -        | -          | -   |                 | 100.0 |
|      | 3-1, 135-137   | 25.1 | _    | 0.3         | 0.3  | 1.0  | 100           | -   | 1.0  | 0.6 | 0.3           | -   | -    | _                  | 71.2  |               |     | -  | -                | -               | -             | -    | -        | _          | -   | -               | 99.9  |
|      | 4-1, 140-142   | 34.0 | 0.3  | 0.3         | -    | 1.3  | -             | _   | 26.6 | 4.2 | 3.5           | +   | -    | -                  | 20.5  | -             | +   | -  | 2                | -               | -             | 9.3  | -        | -          | -   | -               | 100.0 |
|      | 4-2, 142-144   | 38.9 | -    | 2.7         | 1.5  | 7.6  | -             | -   | 20.2 | 2.7 | 3.6           | 3.6 | 0.3  | -                  | 12.9  | 1.1           | 0.3 |    | -                | -               | -             | 4.2  | 0.3      | 0.3        | -   |                 | 100.2 |
|      | 4-3, 140-142   | 1.7  | -    | 772         |      | 2.7  |               | -   | 16.1 | 8.7 | 7.7           |     |      | 0.77               | 54.2  | 4.7           |     |    |                  |                 |               | 3.7  |          | 0.6        | 177 | 777             | 100.1 |
|      | 4-4, 123-125   | -    | 1.7  | 32.0        | 2.0  | 17.5 | 200           |     | 10.1 | 1.7 | 2.7           |     |      | -                  | 23.9  | 3.0           | 0.3 | -  | 1.77             | -               | 1.0           | 3.4  | -        | 0.7        |     |                 | 100.0 |
|      | 5-1, 126-128   |      | 2.0  | 0.3         | -    | 3.1  |               |     | 2.8  | -   | 0.7           |     | -    | -                  | 81.2  | 8.2           | -   |    | -                | -               | 0.3           | 1.4  | -        | -          | -   | <del></del>     | 100.0 |
|      | 5-2, 127-129   | 0.3  | -    | ÷           | -    | 0.7  | -             |     | 1.4  | 0.3 | 0.3           | -   | -    | $\sim -1$          | 96.9  |               | -   | -  | 2.5              | -               | -             |      | -        | <u></u>    | -   | $\rightarrow$   | 99.9  |
|      | 5-3, 136-138   | 1.0  | 1.6  | <del></del> |      | 0.9  | -             | -   | 1.3  | -   | 0.6           | -   | -    | -                  | 94.6  | 0.6           | -   | -  | 10 <del>11</del> | 0.3             | -             | -    | -        |            | -   |                 | 99.9  |
|      | 5-4, 127-129   | 0.7  | -    | -           | -    | 1.8  | $\rightarrow$ | -   | 1.1  | 0.7 | -             | -   | -    | -                  | 95.4  |               | -   | -  | -                | 0.3             | -             | -    | -        | -          | -   | ++ 1            | 100.0 |
|      | 5-5, 136-138   | 0.3  | -    | -           | -    |      | -             | -   | 0.7  | 0.3 | <del></del>   | -   | -    | $\sim \rightarrow$ | 98.1  |               | -   | -  | -                | 0.3             | -             | -    | -        | 0.3        | -   | <del>10</del> 0 | 100.0 |
|      | 6-1, 126-128   | 0.7  | -    | -           |      | -    | 1.000         | -   | 0.3  | 0.3 | 0.3           | -   |      | $\sim -$           | 98.4  | -             | -   |    |                  | -               |               | -    | -        | -          | -   | -               | 100.0 |
|      | 6-2, 110-112   | 0.3  | -    |             | -    | 1.5  | 222           | -   | 2.1  | -   | -             | -   | -    | _                  | 95.5  | $\rightarrow$ | -   |    | -                | 0.3             |               |      | -        | 0.3        | -   |                 | 100.0 |
|      | 6-3, 119-121   | 0.3  | -    | 113         | -    | 0.3  | 1000          |     | 0.3  |     | -             | ~   |      | $\sim =$           | 98.4  |               | -   |    | -                | 0.7             |               |      |          | 30.01      | -   | -               | 100.0 |
|      | 6-4, 117-119   | 0.3  |      |             | 12.2 | 1.7  |               |     | 0.3  |     | <u></u>       | -   |      | _                  | 97.6  | <u>19</u> 25  |     |    | _                | -               | 140           | -    | 121      |            | -   |                 | 99.9  |
|      | 6-5, 123-125   | 0.3  | -    | 100         | 0.3  | 0.3  | 0.222         | -   | _    |     | 1             | -   | _    | 22                 | 99.1  | 22.7          |     | _  |                  |                 |               | 222  | <u> </u> | 1423       | -   |                 | 100.0 |
|      | 6-6, 128-130   | -    | -    | -           | -    | 0.6  | -             |     | -    | -   | -             | ~   | —    | -                  | 98.7  |               |     | -  | -                | 0.6             | -             |      | -        | -          | -   | -               | 99.9  |
|      | 7-1, 112-114   | -    | -    | -           |      | 0.3  | -             | -   |      | -   |               | -   | -    | -                  | 98.8  | -             | -   | -  | -                | 0.9             |               | -    | -        | -          | -   | -               | 100.0 |
|      | 7-2, 111-113   | 1.0  | -    | -           | -    | 1.0  | -             |     | 0.3  | -   | 0.7           | 0.3 | -    | _                  | 96.2  | -             | -   | -  | -                |                 |               |      | -        | _          | -   |                 | 99.8  |
|      | 7-3, 117-119   | -    | 0.3  |             | -    | 0.3  | -             |     | -    |     | ++++          | -   | -    | -                  | 99.4  | -             |     | -  | -                | 0.3             |               | -    |          | -          |     |                 | 100.0 |
|      | 7-4, 125-127   | 0.3  | -    | 0.3         | -    | 0.6  | 0.000         | -   | 2.7  | -   | -             | ~   |      | -                  | 95.2  | -             | -   |    | -                | 0.3             | $\rightarrow$ | 0.3  |          | 0.3        | -   | -               | 100.0 |
|      | 7-5, 125-127   | 0.6  |      |             | 0.6  | 0.3  | 100           |     | 0.6  | -   | 0.3           |     |      | -                  | 97.0  |               |     |    | -                | 0.3             |               | 0.3  | -        | $\sim - 1$ | -   |                 | 100.0 |
|      | 7-6, 132-134   | 0.3  |      | -           | -    | 0.3  | -             | -   | 0.3  | -   | -             | -   | -    | $\sim -\infty$     | 99.1  | -             | -   |    |                  |                 | -             | -    |          | -          |     | -               | 100.0 |
|      | 8-1, 136-138   | -    | -    | 0.3         | -    | 0.3  | 2.000         | -   | 0.3  |     | $\rightarrow$ | -   |      | -                  | 98.8  |               | -   |    | -                | 0.3             |               |      | -        | -          |     |                 | 100.0 |
|      | 8-2, 120-122   | 0.3  |      | _           | -    | 0.9  | 044           |     | 0.6  | 0.3 | 0.3           | ~   |      | _                  | 96.8  |               | -   | -  | -                | _               |               | 0.6  | -        | _          | -   |                 | 99.8  |
|      | 8-3, 143-145   | _    | -    |             | -    | -    | 200           |     | -    | -   | -             | -   | -    | _                  | 99.7  |               |     |    | -                | 0.3             | -             | -    | -        | -          | -   | -               | 100.0 |
|      | 8-4, 127-129   | _    | 0.4  | 1           | -    |      | 100           | -   | 0.7  | -   | -             | -   |      | _                  | 97.8  | -             | 1.5 | -  |                  | 0.4             |               | 0.7  |          | -          | -   | -               | 100.0 |
|      | 9-1, 135-137   | 0.3  | _    | 0.3         |      | 0.6  | _             | -   | 0.7  | -   | 0.00          | 22  | _    |                    | 97.8  |               | 22  | _  |                  | 0.3             |               | _    | _        | _          | -   |                 | 100.0 |
|      | 9-2, 144-146   | 0.3  | -    | -           | 0.3  | 0.3  | -             | -   | 0.3  | -   | -             | 0.3 | -    | _                  | 97.9  | -             | -   | -  | -                | 0.6             |               | -    | -        | _          | -   | -               | 100.0 |
|      | 9-3. 4-6       | -    | -    | -           |      | 0.3  | -             | -   | _    | -   | -             | -   |      | _                  | 99.4  | -             | -   | _  | -                | 0.3             | -             | -    | -        |            | -   | -               | 100.0 |
|      | 9-4, 135-137   | 0.3  | _    | 0.3         |      | 0.6  |               | -   | 0.9  |     | -             |     | -    | _                  | 97.3  | -             |     |    | _                | 0.6             | -             | -    | -        |            | ~   | -               | 100.0 |
|      | 10-1, 146-148  | -    | -    | -           | -    | -    | -             | _   | 0.3  |     |               |     | -    | -0                 | 99.4  |               | -   | -  |                  | 0.3             | -             | -    |          |            | ~   | _               | 100.0 |
|      | 11-1.86-88     | _    | -    | 0.4         | 0.4  | 2.2  | _             | -   | 2.9  | -   | 0.4           |     | -    |                    | 93.5  | -             | -   | -  |                  | 0.4             | -             | -    | -        | -          | ~   | -               | 100.2 |
|      | 12-1, 120-122  | 10.4 | 19.5 | 3.2         | -    | 3.2  |               | -   | 9.7  | -   | 2.6           | 1.3 | -    | -                  | 45.5  | -             | 0.7 |    |                  | 1.9             | -             | 0.7  | -        | -          | -   | 1.3             | 100.0 |
|      | 13-1, 128-130  | 9.8  | 73   | 2.4         |      | 6.1  | -             | 1.2 | 40.2 | 1.2 | 4.9           | _   | -    |                    | 22.0  | -             | _   | -  |                  | _               | 1.2           | 3.7  | -        |            | -   | _               | 100.0 |
|      | 14-1, 128-130  | 0.5  | 2.6  | 0.5         | 0.5  | 1.0  | 0.5           | 0.4 | 15.9 | 1.0 | 2.6           | 1.0 | -    | -                  | 68.2  | -             | -   | -  | -                | -               | 2.5           | 1.5  | -        | -          | -   | 1.0             | 99.8  |
|      | 15-1, 128-130  | 71.4 | -    | 1.4         | 2.1  | 3.5  | -             | _   | 4.6  | 1.1 | 6.7           | 0.4 | -    | <u>_</u> (         | 4.3   | -             |     | -  | 142)<br>1        | -               | 1.4           | 2.5  | 0.4      | 0.4        | -   | -               | 100.2 |
| Site | e 375          |      |      |             |      |      |               |     |      |     |               |     |      |                    |       |               |     |    |                  |                 |               |      |          |            |     |                 |       |
|      | 2-4 1-3        | 81   | 07   | 0.4         | 2.2  | 15   | 0.7           |     | 1.8  | 0.7 | 1.1           |     |      |                    | 81.2  |               |     |    |                  | 07              |               | 0.4  |          |            |     | 0.4             | 00.0  |
|      | 4-9 99-101     | 6.8  | 5.8  | 0.6         | 1.0  | 13   | 1.0           | _   | 1 3  | 0.6 | 1.6           |     |      |                    | 74 2  |               | 0.6 |    | _                | 0.7             | 1.0           | 1.6  | 0.6      |            | 1.1 | 1.0             | 100.0 |
|      | 5-4 98-100     | 0.0  | 0.6  | 0.3         | 1.0  | 1.5  | 1.0           |     | 1.3  | 0.6 | 1.0           | 0.0 |      | 200                | 02.0  | 0.3           | 0.0 |    |                  |                 | 1.9           | 0.2  | 0.0      |            | -   | 1.0             | 00.0  |
|      | 6-1 117-110    | 5.1  | 16.4 | 0.4         | 5.9  | 2.2  | 15            |     | 18.2 | 87  | 36            | 0.9 |      |                    | 21 5  | 0.5           | _   |    | -                | 20 <del>-</del> | _             | 15.6 |          |            |     | _               | 100.1 |
|      | 6.2 93.95      | 11   | 20.5 | 0.4         | 6.0  | 67   | 1.5           |     | 77   | 25  | 8.8           |     |      |                    | 10 1  |               |     |    |                  |                 |               | 25.0 | -        | -          |     | _               | 00.6  |
|      | 6-3 132-137    | 1 1  | 13.9 | 1.9         | 7.8  | 85   | 1.0           |     | 131  | 8.9 | 5.7           |     |      | -                  | 12.1  | -             | _   | -  |                  | 107             |               | 23.0 | -        |            | _   | _               | 100.2 |
|      | 6-4 62-64      | 8.2  | 15.0 | 0.7         | 7.0  | 5.3  | 1.1           |     | 15.1 | 8.0 | 3.0           |     | 1000 |                    | 17.1  | _             | _   |    |                  |                 |               | 17.7 |          | _          |     |                 | 100.2 |
|      | 7-1 110-112    | 21   | 13.2 | 1.1         | 2.2  | 3.5  | 1.1           |     | 10.6 | 3.5 | 2.9           |     | 1.5  |                    | 10.5  | 127           | _   |    |                  | _               | -             | 10.6 | _        | ~          | -   | _               | 100.0 |
|      | 7-5 40-42      | 6.6  | 171  | 2.4         | 77   | 87   |               |     | 10.0 | 2.0 | 5.0           | _   | -    | _                  | 34.0  | 21            | _   | -  | -                |                 | -             | 10.0 | 1        | -          | _   | -               | 100.0 |
|      | 8-3 52-54      | 4.9  | 20.2 | 3.0         | 6.2  | 7.4  | 200           |     | 15.5 | 6.2 | 4.1           | 22  | 57   | 77                 | 20.6  | 2.1           |     | -  | 576              | 0.7             | ~~~           | 0.0  | 122      | -          | —   |                 | 100.0 |
|      | 0 0,0407       | 4.0  | 20.5 | 5.0         | 0.2  | 1.4  | _             |     | 10.0 | 0.5 | ····          | 4.4 | _    |                    | 20.0  |               | _   |    |                  | 0.7             |               | 0.7  | -        |            |     |                 | 100.0 |

TABLE 7 - Continued

| 9-1, 98-100<br>10-2, 114-116<br>11-1, 133-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111                                                                                                                                                            | 48.6                                                                                                                                           | 2.2<br>0.4                                                                                                      | 2.8                                                                                                                                                     | 4.4<br>0.4                                                                                                                      | 2 B 2                          | 1 1 1  | 6.1<br>0.7<br>0.3                                                                                                                                  | 2.2<br>0.4                                                                                                                                                      | 1.7<br>                                                                                                                                       | 0.6<br>0.7                                                                                                           |        | 1 1 1 | 26.5<br>97.0<br>98.8                                                                                                                                                                | 0.4                                                                                      |                         |                             | 1 1 1                     |                                                                                                                                                                                                  | 1 1 1         | 5.0                                                                                                                                | 1 1 1  | 1 1 1                                     | 111 | 1 1                  | 100.1<br>100.0<br>100.0                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------|-----------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------|-----|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                |                                                                                                                 |                                                                                                                                                         |                                                                                                                                 |                                |        |                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                               |                                                                                                                      |        |       |                                                                                                                                                                                     |                                                                                          |                         |                             |                           |                                                                                                                                                                                                  |               |                                                                                                                                    |        |                                           |     |                      |                                                                                                                                                           |
| $\begin{array}{c} 1\text{-1}, 99\text{-}101\\ 1\text{-3}, 99\text{-}101\\ 2\text{-1}, 125\text{-}127\\ 2\text{-3}, 118\text{-}120\\ 3\text{-}1, 125\text{-}127\\ 3\text{-}3, 99\text{-}101\\ 4\text{-}1, 98\text{-}100\\ 5\text{-}1, 95\text{-}97\\ 8\text{-}1, 128\text{-}130\\ 8\text{-}3, 119\text{-}121\\ 9\text{-}1, 84\text{-}86\\ 9\text{-}3, 121\text{-}123\\ 10\text{-}1, 124\text{-}123\\ 10\text{-}1, 124\text{-}123\\ 10\text{-}1, 124\text{-}126\\ 11\text{-}1, 137\text{-}139\\ 12\text{-}1, 146\text{-}148\\ 12\text{-}3, 93\text{-}95\\ 13\text{-}1, 100\text{-}102\\ 13\text{-}3, 78\text{-}80\\ 15\text{-}1, 132\text{-}134\\ 15\text{-}2, 31\text{-}33\\ \end{array}$ | 4.0<br>3.5<br>1.8<br>7.8<br>0.7<br>1.0<br>7.2<br>-<br>-<br>46.7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                    |                                                                                                                 | 2.8<br>1.1<br>0.7<br>-<br>1.0<br>1.7<br>1.4<br>4.7<br>12.6<br>6.5<br>4.0<br>1.7<br>4.3<br>10.3<br>11.6<br>2.1<br>1.4<br>20.8<br>0.7                     | 1.5<br>0.4<br>1.5<br>0.4<br>3.0<br>0.7<br>1.0<br>1.4<br>6.2<br>0.7<br>1.8<br>2.4<br>0.7<br>1.8<br>0.3<br>0.3<br>-<br>0.7<br>0.7 |                                |        | $\begin{array}{c} 2.5\\ 3.5\\ 1.5\\ -\\ 0.7\\ 2.1\\ 0.7\\ 12.4\\ 19.0\\ 18.7\\ 3.3\\ 18.2\\ 20.1\\ 10.3\\ 3.1\\ 5.2\\ 3.9\\ 2.0\\ 4.2 \end{array}$ | 0.3<br>1.4<br>-<br>1.3<br>0.7<br>1.0<br>0.4<br>15.7<br>8.5<br>1.1<br>8.4<br>8.6<br>3.9<br>2.7<br>4.8<br>2.8<br>2.3<br>1.8                                       | 0.3<br>0.7<br>0.4<br>-<br>0.7<br>0.3<br>-<br>0.4<br>8.8<br>11.2<br>6.5<br>0.7<br>14.5<br>6.8<br>1.8<br>0.3<br>0.7<br>14.5<br>1.4<br>-<br>19.4 | 1.5<br>37.4<br>77.4<br>77.4<br>85.5<br>0.3<br>-<br>-<br>0.4<br>0.4<br>0.3<br>0.7<br>0.4<br>0.3<br>-<br>-<br>0.3      |        |       | 85.2<br>51.8<br>14.6<br>91.5<br>7.2<br>95.6<br>92.8<br>86.6<br>21.9<br>26.9<br>27.0<br>36.4<br>26.9<br>27.0<br>36.4<br>26.3<br>33.4<br>48.4<br>56.7<br>54.3<br>71.9<br>58.3<br>61.4 | 0.9                                                                                      |                         |                             |                           | 0.6<br><br><br><br>0.4<br><br><br><br><br>0.4<br><br><br><br>0.4<br><br><br>0.4<br><br><br>0.4<br><br><br><br>0.4<br><br><br><br><br><br><br>0.4<br><br><br><br><br><br><br><br><br><br><br><br> |               | 0.3<br>0.4<br>1.1<br>-<br>-<br>0.3<br>0.7<br>21.2<br>17.0<br>20.5<br>2.6<br>21.2<br>15.5<br>7.8<br>8.2<br>5.2<br>6.3<br>7.0<br>7.0 |        | 1111111100 000111111100                   |     |                      | 99.9<br>100.2<br>100.1<br>100.1<br>100.0<br>99.9<br>100.0<br>100.0<br>100.0<br>100.0<br>100.1<br>100.6<br>100.0<br>99.9<br>100.1<br>99.9<br>100.1<br>99.9 |
| Site 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |                                                                                                                                                |                                                                                                                 |                                                                                                                                                         |                                                                                                                                 |                                |        |                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                               |                                                                                                                      |        |       |                                                                                                                                                                                     |                                                                                          |                         |                             |                           |                                                                                                                                                                                                  |               |                                                                                                                                    |        |                                           |     |                      |                                                                                                                                                           |
| 1-1, 99-101<br>1-2, 48-50<br>1-2, 101-103<br>3-1, 120-122<br>3-2, 62-64<br>3-2, 80-82<br>3-2, 101-103<br>3-2, 120-122<br>4-1, 76-78<br>4-1, 120-122<br>4-2, 40-42<br>4-2, 80-82<br>4-2, 120-122<br>4-3, 20-22<br>4-3, 40-42<br>4-3, 80-82<br>4-4, 80-82<br>4, CC<br>Site 378                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7<br>23.9<br>22.1<br>3.9<br>53.7<br>78.3<br>89.4<br>52.8<br>62.0<br>70.5<br>72.8<br>85.5<br>46.4<br>63.6<br>72.6<br>60.5                                     | 2.1<br>5.1<br>0.7<br>1.9<br>0.4<br>7.8<br>0.3<br>-<br>-<br>0.7<br>1.0<br>1.2<br>1.0<br>1.2<br>1.0<br>1.2<br>1.0<br>1.2<br>1.0<br>3<br>0.3<br>- | 0.3<br>0.7<br>0.8<br>0.3<br>0.4<br>-<br>0.3<br>0.4<br>-<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | $\begin{array}{c} 0.7 \\ - \\ 0.4 \\ 2.0 \\ 1.9 \\ 1.1 \\ 0.3 \\ 1.6 \\ 0.3 \\ 0.6 \\ 1.4 \\ 0.3 \\ 0.8 \\ 1.2 \\ 0.9 \\ 0.9 \\ 1.2 \\ 0.6 \end{array}$ | 0.3<br>-<br>0.7<br>1.5<br>2.2<br>0.7<br>0.8<br>0.3<br>1.3<br>1.4<br>-<br>0.3<br>0.7<br>0.6<br>0.6<br>0.3                        |                                |        | $\begin{array}{c} 1.4\\ 0.3\\ 0.7\\ 9.3\\ 25.5\\ 25.4\\ 5.9\\ 9.5\\ 12.3\\ 8.1\\ 4.2\\ 2.0\\ 8.5\\ 4.0\\ 4.8\\ 3.9 \end{array}$                    | $\begin{array}{c} 0.3 \\ 0.3 \\ - \\ 0.4 \\ 11.0 \\ 5.7 \\ 2.7 \\ 3.8 \\ 2.6 \\ 0.7 \\ 5.3 \\ 5.8 \\ 1.8 \\ 3.1 \\ 0.9 \\ 9.2 \\ 2.0 \\ 2.6 \\ 1.6 \end{array}$ | -<br>0.3<br>-<br>1.6<br>1.9<br>2.5<br>0.7<br>0.8<br>0.3<br>0.3<br>0.7<br>2.0<br>0.4<br>2.4<br>-<br>0.3<br>1.0<br>0.6<br>-                     | -<br>-<br>11.8<br>0.8<br>0.3<br>-<br>3.8<br>0.3<br>0.7<br>-<br>1.0<br>-<br>0.4<br>-<br>0.4<br>-<br>0.3<br>0.3<br>0.3 |        |       | 94.0<br>93.8<br>12.3<br>31.9<br>17.3<br>36.1<br>47.8<br>24.8<br>10.8<br>5.1<br>24.6<br>7.5<br>10.0<br>11.1<br>8.6<br>21.5<br>21.3<br>15.8<br>30.7                                   | -<br>81.8<br>0.4<br>-<br>1.1<br>-<br>-<br>0.3<br>1.4<br>-<br>0.3<br>-<br>0.3<br>-<br>0.9 |                         |                             |                           | 0.7<br>0.4<br>-<br>0.3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                          |               | 0.3<br>-<br>14.1<br>15.0<br>13.4<br>2.3<br>0.7<br>0.3<br>3.2<br>5.8<br>5.9<br>2.3<br>1.2<br>6.3<br>2.7<br>0.6<br>0.6               |        | 0.3                                       |     |                      | 99.8<br>100.1<br>100.0<br>99.8<br>100.1<br>100.0<br>99.8<br>99.8<br>99.8<br>99.9<br>99.9<br>99.9<br>99.9                                                  |
| 1-1, 101-103<br>2-2, 98-100<br>3-2, 98-100<br>5-2, 99-101<br>6-2, 97-99<br>7-2, 104-106<br>8-2, 100-102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3<br>-<br>1.7<br>0.3<br>0.3<br>-<br>0.7                                                                                                                      | -<br>-<br>1.1<br>-<br>12.1                                                                                                                     | 2.7<br>0.6<br>-<br>0.7<br>-<br>1.1                                                                              | 0.7<br>0.3<br>0.3<br>0.3<br>-<br>0.3<br>-                                                                                                               | 3.3<br>1.2<br>0.7<br>0.7<br>2.4<br>1.4<br>1.1                                                                                   | 0.3<br>0.3<br>-<br>-<br>-<br>- | 111111 | 12.3<br>1.6<br>2.0<br>1.9<br>2.5<br>3.9<br>2.5                                                                                                     | 3.3<br>3.2<br>1.0<br>2.7<br>9.8<br>4.9<br>2.5                                                                                                                   | 6.0<br>0.3<br>1.1<br>1.0<br>0.7<br>1.1                                                                                                        | -<br>-<br>1.1<br>-<br>12.1                                                                                           | 111111 | 11111 | 62.7<br>90.7<br>91.4<br>84.4<br>79.7<br>84.5<br>76.6                                                                                                                                | 5.6<br>0.3<br>-<br>1.7<br>1.8                                                            | -<br>-<br>-<br>-<br>0.3 | 0.3<br>-<br>1.9<br>-<br>0.7 | -<br>-<br>2.2<br>-<br>0.7 | 111111                                                                                                                                                                                           | 1 1 1 1 1 1 1 | 1.7<br>-<br>1.0<br>0.7<br>0.3<br>0.7<br>1.1                                                                                        | 111111 | -<br>0.6<br>0.3<br>0.3<br>-<br>0.7<br>0.3 |     | -<br>0.3<br>-<br>0.3 | 99.9<br>99.8<br>100.0<br>99.7<br>99.7<br>100.0<br>100.0                                                                                                   |

Note: Minerals: 1 - clay particles, 2 - weathered rock grains, 3 - colorless mica, 4 - yellow mica, 5 - green mica, 6 - serpentinite, 7 - rounded carbonates, 8 - quartz, 9 - feldspars (>1.545), 10 - feldspars (<1.545), 11 - colorless glasses, 12 - green glasses, brown, 13 - palagonite, 14 - foraminifera, 15 - other minerals, 16 - diatoms, 17 - radiolarians, their spines, 18 - spiculae, 19 - bones, teeth, 20 - wood, 21 - carbonates, 22 - zeolites, 23 - glauconite, 24 - phosphates, 25 - chalcedony etc., 26 - total in % from subfraction.