3. SITE 379

The Shipboard Scientific Staff¹

Figure 1. Bathymetric chart showing the position of Site 379 and other Leg 42B sites in the Black Sea. Contour interval in meters.

SITE DATA

Dates: 1114, 23 May to 0500, 28 May 1975

Time: 114 hours

Position (Figure 1): 43°00.29'N, 36°00.68'E

Holes Drilled: 3

Water Depth by Echo-Sounder: 2165 corr. meters

Maximum Penetration: 624.5 meters (379A)

Total Core Recovered: 412.3 meters from 78 cores

Age of Oldest Sediment: Pleistocene

Principal Results: Site 379 was drilled in the central portion of the Black Sea (Figure 1) (43°00.29'N; 36°00.68'E) to a maximum penetration of 624.5 meters. Hole 379 was to test a pressure core barrel; Site 379A was the principal hole, and was continuously cored. Site 379B was spotcored mainly for geochemical samples. A total of 78 cores

obtained 412.3 meters of sediment; heat flow was measured at 12 depths. Gas content was high in almost all cores, but the methane/ethane ratio stayed within safety limits. The principal objective of these sites was to obtain as complete as possible a Pleistocene section for strati-

¹Ross, David A., Woods Hold Oceanographic Institution, Woods Hole, Massachusetts; Neprochnov, Yuri, P. P. Shirshov Institute of Oceanology, Moscow; Degens, Egon T., Geological-Palaeontological Institute, Hamburg, Germany; Erickson, Albert J., University of Georgia, Athens, Georgia; Hsü, Kenneth, Geologisches Institut der Eidgenössiche Technische Hochschule, Zürich; Hunt, John M., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; Manheim, Frank, University of South Florida, St. Petersburg, Florida; Percival, Stephen, Mobile Oil Corporation, Dallas, Texas; Senalp, Muhitten, Petrol Yeralti Jeologisi Ve Offshore-Servis Sefi, Ankara, Turkey; Stoffers, Peter, Laboratorium fur Sedimentforschung, Heidelberg, Germany; Supko, Peter, National Research Institute for Oceanology, Stellenbosch, South Africa; Traverse, Alfred, Pennsylvania State University, University Park, Pennsylvania; Trimonis, E.A., P.P. Shirshov Institute of Oceanology, Moscow.

graphic and biostratigraphic work. Based on micropaleontological, stratigraphic, and other studies, it seems clear that the entire section is Pleistocene in age.

The sediment section can be divided into nine subunits (Figure 2), but in general are of terrigenous origin. Sediments are mainly a dark greenish-gray to dark gray terrigenous mud, with occasional interbeds of silts, sandy silts, and sands. Some of the coarse beds are graded, suggesting that they were deposited from turbidity currents.

The fauna and flora from this site (and others in the Black Sea) were not very useful for dating purposes, but did occasionally indicate (when present) environmental changes. Periods of fresh or brackish water conditions were common in the past. Spores and pollen were especially useful, in particular using ratios of typical Steppe to Forest forms. These ratios indicate three cool or Steppe periods (called Alpha, Beta, and Gamma) and three warmer or Forest periods (called Celia, Betty, and Anna) which, besides being of environmental importance, permit some degree of correlation with Site 380.

Pore fluids were predominantly fresh to brackish in the upper 400 meters, but increased in salinity below that depth. The high gas content made the measurement of some physical properties such as porosity, sound velocity and wet bulk density difficult. Thermal conductivity was variable and showed no variation with depth. The average heat flow measured was $0.94 \pm 0.10 \times 10^{-6}$ cal/cm² sec, but two anomalously high temperatures were measured at 45 and 149.5 meters below the surface. Some subsurface seismic reflectors appeared to be correlative with lithologic changes.

BACKGROUND AND OBJECTIVES

The Black Sea is a large semi-enclosed marine basin having an area of $423,000 \text{ km}^2$ and a volume of $534,000 \text{ km}^3$. It is situated between two Alpine mountain ranges; the Pontic Mountains to the south, and the Caucasus Mountains to the east and north (Figure 3). The Black Sea is connected to the Mediterranean via the Bosporus, a narrow strait that has a sill depth of about 50 meters.

The Black Sea has been a sedimentary basin for probably as long as 200 million years, prior to that time it was a topographic high supplying sediments to the then forming and surrounding mountain ranges. Sediment thicknesses, in the Black Sea, are indicative of its long history and can be in excess of 16 km (Figure 4).

The Black Sea is of special interest to oceanographers because of its long history, because it is the largest body of anoxic water in the world, and because of its shallow connection to the Mediterranean. The latter has caused environmental conditions within the Black Sea to change considerably with Pleistocene sea-level variations. During the most recent drop in sea level, the Black Sea became disconnected from the Mediterranean and changed from a marine to a lacustrine environment (see Degens and Ross, 1974 and contained articles). When sea level rose starting about 15,000 years ago, it slowly returned to marine conditions reaching its present state about 3000 B.P. Possible past connections with the Caspian Sea also existed. These climatically controlled events and subsequent environmental changes have strongly influenced the characteristics of the Black Sea sediments. The study of the chemistry and paleontology of these sediments should aid in evaluating the climatic and geological history of the Black Sea as well as clarifying past worldwide sea level changes. The continuous and high sedimentation rate that has prevailed in the Black Sea should provide an extremely complete and useful Pleistocene section.

The main objectives of this site were:

1) to obtain as complete as possible a Pleistocene stratigraphic and biostratigraphic section.

2) to detail the interactions between the Black Sea and the Mediterranean, especially eustatic sea-level changes and stagnant cycles and establish a paleoclimatic and paleooceanographic record.

3) Select samples and perhaps drill a second hole for geochemical purposes. The main objectives of the geochemical program are:

a) to follow diagenetic changes, including the formation of hydrocarbons and the degradation of amino acids, carbohydrates, and porphyrins.

b) to observe the initiation of catagenesis (late diagenesis) which is believed to have started deeper than 500 meters.

OPERATIONS

Glomar Challenger approached the site area on a course of 072°G at about 9 knots. This path closely followed a previous Woods Hole Oceanographic Institution seismic profile (Cruise A-II 49 profile no. 25, see Ross, et al., 1974). Two satellite fixes were obtained near the site and a minor course adjustment was made. The final approach was made at about 5 knots at 075°G. The final position coincided with that of a recent detailed Soviet Survey (see Neprochnov, this volume). A 16-kHz beacon was dropped while passing over the site at 1030 local time (0730 GMT, 23 May 1975). The ship continued on course 0.75°G for 10 minutes during which time additional seismic profiling data were collected. By 1058 LCT the seismic arrays were aboard and the airguns secured and the ship made a Williamson turn to return to the site. By 1105 LCT we were maneuvering over the beacon and lowering of pipe was started at 1114 LCT. The site location, as determined by satellite fix was 43°00.29'N and 36°00.68'E. Water depth was 1166 uncorrected fathoms or 2165 corrected meters. Water depth from the drill floor was 2175 corrected meters (based on echo sounder), and bottom was encountered by the drill pipe at 2171 meters (Table 1).

As the drill string was being lowered a test was made, with about 1000 meters of pipe out, of a pressure core barrel to ascertain if it sat properly within the drill pipe. The pressure core barrel, designed to collect and maintain sediments and fluids at their ambient pressure, was also used to cut Core 1 at this site. A total of 7 meters was cut and 4 were recovered (see separate report by Burt Adams for evaluation of this device). This core ended Hole 379, and we then started Hole 379A at 2050 LCT 23 May with a 7-meter punch-in

Figure 3. General bathymetry and main physiographic features of the Black Sea (from Ross et al., 1974).

core. The Safety Panel had recommended for this site, as well as all others in the Black Sea, that continuous coring be done. A total of 68 cores was continuously cut at this site and only 2.5 meters was washed (Core 33).

Essentially all the cores collected were gassy, some to such a degree that core material was forcibly extruded by the gas pressure when the core reached deck. In some instances the material was almost explosive in nature when leaving the core nose. In addition, almost all recovered cores had extensive void areas due to the expanding gas. Nevertheless, because of the general softness of the sediment and the care of the drilling crew, we were able to achieve a 61% recovery ratio. In some instances increasing or maintaining a high pump pressure appeared to result in less gas in the cores. Gas content was monitored on all cores, and butylane and propane were detected in gas voids from Cores 31 and 32; however, the methane/ethane ratio clearly stayed within safety limits for these two cores as well as for all the other cores cut at this site.

The pressure core barrel was used a total of six times at Site 379. It was used twice on Hole 379, three times on Hole 379A at 301 meters [to cut 7 meters of core; the remaining 2.5 meters were washed (Core 33)], 377.5 meters and 558 meters, and once on Hole 379B at 7 meters.

Heat flow measurements were made at 10 depths during Site 379, Hole A: 45 meters, 92.5 meters, 149.5 meters, 197 meters, 244.5 meters, 292 meters, 339.5 meters, 396.5 meters, 425 meters, and 624.5 meters. Besides providing extremely valuable information, this large number of measurements was the most ever made on a DSDP hole. An additional two more measurements were made on Hole 379B at 35.5 meters and 159 meters.

The original plan for this site was to obtain a complete Pleistocene stratigraphic and biostratigraphic section. However, after drilling the first 200 meters it became clear that the sedimentation rate at 379A had been too high to allow us to even get near this objective. It appeared that over a kilometer of drilling would be necessary to reach even the end of the Pleistocene. In addition, about half the time allotted for this site (total of 6 days) was to be used in drilling a hole for geochemical sampling. Clearly if two continuously cored holes were to be drilled our penetration would be limited. A meeting of the scientific staff was held on 25 May and we unanimously agreed to combine the stratigraphy and geochemical objectives and divide the subsequent core material, and to only core for spot samples at 379B for the geochemists. By about 450 meters subdepth, it became evident that even with this combined approach we would not get through even a major portion of the Pleistocene. Following two more scientific meetings, it was decided on 27 May to end Hole 379A, collect some shallower cores on Hole 379B, and continue to Site 380 where, based on seismic profiles, a thinner Pleistocene and Pliocene section was possible.

Figure 4. Depth of basement in the Black Sea from Neprochnov, 1975. Solid lines (1) indicate deep seismic sounding profiles; wavy lines (2) indicate depth contours to basement in km; dashed lines (3) indicate interpreted depth contours to basement; dot and dashed lines (4) indicate land data.

Hole 379A was ended at about 0800 LCT on 27 May after Core 68 and a heat flow station, and the pipe was pulled up above the sea floor. The next hole was offset 50 feet to the south and 190 feet to the east or 200 feet at 105°T from Hole 379A. Drilling was delayed until about 1830 LCT on 27 May due to damage to core-line fair lead sheaves.

A total of 7 cores and 2 heat flow measurements was attempted at Hole 379B. Since we were so close to the original site and we saw no safety problems, it was felt that spot coring would pose no danger, nevertheless gas content was still monitored. The recovery ratio was less on this site than 379A, probably because of washing down to selected depths. At 0500 LCT on 28 May the drilling was terminated and the drill string was secured by 1000 LCT. By 1020 LCT on 28 May, we were heading towards Site 380.

LITHOLOGY

Hole 379A was continuously cored to a depth of 624.5 meters (Table 2). In general, the whole sequence can be considered as one large unit composed of dark greenish gray to dark gray terrigenous mud. The muds are silty clays to clayey silts with intercalations of thin sandy silt to sand laminae. Locally, the sands occur as beds up to 8 cm thick. The graded bedding observed in some of the coarser layers suggest that they may have been deposited as turbidity currents. In the lower part of the hole, cross lamination and burrowing could be observed. The sediments consist of quartz, feldspars,

clay minerals, detrital carbonates and smaller amounts of pyrite, heavy minerals, diatoms, nannofossils, and organic matter. The clays are dominated by smectite and illite with only little chlorite and kaolinite. The detrital carbonates are calcite and traces of dolomite. The carbonate content is in general low with an average of about 15%. Locally, small grayish white carbonaterich bands occur having a carbonate content as high as 60%, which indicates that in the lower part of the hole chemical sedimentation becomes more significant. Indigenous fossils, like diatoms, nannofossils, and foraminifers are generally rare and restricted to certain intervals.

Based on shipboard examinations and shorelaboratory results, the sedimentary section at 379A can be divided into nine subunits.

Subunit 1-Nannofossil Ooze (0-0.30 m) PC 1474²

Subunit 1 is a nannofossil ooze principally composed of the coccolith *Emiliania huxleyi*. This top unit was encountered in previous piston cores taken in the Black Sea and was not directly found as a layer in the DSDP cores. However, the occurrence of coccolith patches in the first DSDP core suggests the presence of this marine unit. The unit has an average thickness of about 30 cm in the A-II cores and was deposited during the present marine conditions in the Black Sea.

²Piston Core 1474 A-II Cruise 49 (see Ross and Degens, 1974, for location of cores).

TABLE 1 Coring Summary, Site 379

Core	Date (May 1975)	Time	Depth From Drill Floor (m)	Depth Below Sea Floor (m)	Length Cored (m)	Length Recovery (m)	Recovery (%)
Hole 3	379						
1	23	1905	2171.0-2178.0	0.0-7.0	7.0	4.0	57 ^a
Total					7.0	4.0	57
Hole 3	379A						
1	23	2050	2171.0-2178.0	0.0-7.0	7.0	7.0	100 ^b
2	23	2150	2178.0-2187.5	7.0-16.5	9.5	0.0	0p
3	23	2245	2187.5-2197.0	16.5-26.0	9.5	0.0	0
4	23	2323	2197.0-2206.5	26.0-35.5	9.5	6.3	66°
5	24	0020	2206.5-2216.0	35.5-45.0	9.5	0.0	100b,d
7	24	0328	2210.0-2223.3	54 5-64 0	9.5	6.6	69c,d
8	24	0440	2235.0-2244.5	64.0-73.5	9.5	6.5	68 ^{c,d}
9	24	0538	2244.5-2254.0	73.5-83.0	9.5	5.0	53c,d
10	24	0636	2254.0-2263.5	83.0-92.5	9.5	5.8	61 ^{c,d}
11	24	0837	2263.5-2273.0	92.5-102.0	9.5	5.8	61 ^{c,d}
12	24	0935	2273.0-2282.5	102.0-111.5	9.5	3.4	36 [°]
13	24	1040	2282.5-2292.0	111.5-121.0	9.5	8.5	89c,d
14	24	1139	2292.0-2301.5	121.0-130.5	9.5	9.0	95°,0
15	24	1255	2301.5-2311.0	140.0-140.0	9.5	9.5	46c,d
17	24	1520	2320 5-2320.5	140.0-149.3	9.5	1.4	15°
18	24	1627	2330.0-2339.5	159.0-168.5	9.5	1.9	20 ^c
19	24	1737	2339.5-2349.0	168.5-178.0	9.5	7.8	82 ^c
20	24	1835	2349.0-2358.5	178.0-187.5	9.5	3.15	33 ^c
21	24	1947	2358.5-2368.0	187.5-197.0	9.5	9.5	100 ^c
22	24	2145	2368.0-2377.5	197.0-206.5	9.5	7.6	800
23	24	2240	2377.5-2387.0	206.5-216.0	9.5	9.5	1000
24	24	2340	2387.0-2396.5	216.0-225.5	9.5	9.0	95
26	25	0130	2406.0-2415.5	225.5-255.0	9.5	5.6	59 ^c
27	25	0340	2415.5-2425.0	244.5-254.0	9.5	5.0	53°
28	25	0445	2425.0-2434.5	254.0-263.5	9.5	6.2	65 ^c
29	25	0605	2434.5-2444.0	263.5-273.0	9.5	8.5	89 ^c
30	25	0655	2444.0-2453.5	273.0-282.5	9.5	2.75	29 ^c
31	25	0758	2453.5-2463.0	282.5-292.0	9.5	5.25	550
32	25	1020	2463.0-2472.5	292.0-301.5	9.5	2.25	24° 7a,f
34	25	1230	2472.3-2482.0	311 0-320 5	9.5	7.9	830
35	25	1330	2491.5-2501.0	320.5-330.0	9.5	7.9	79 ^c
36	25	1430	2501.0-2510.5	330.0-339.5	9.5	6.6	69 ^c
37	25	1640	2510.5-2520.0	339.5-349.0	9.5	8.0	84 ^c
38	25	1745	2520.0-2529.5	349.0-358.5	9.5	9.05	95 ^c
39	25	1855	2529.5-2539.0	358.5-368.0	9.5	6.1	64 ^C
40	25	2002	2539.0-2548.5	368.0-377.5	9.5	6.6	690
41	25	2106	2548.5-2550.5	377.5-379.5	2.0	0.5	25"
42	25	2210	2550.5-2558.0	379.3-387.0	9.5	8.0	84C
44	26	0135	2567.5-2577.0	396.5-406.0	9.5	0.0	0
45	26	0245	2577.0-2586.5	406.0-415.5	9.5	6.2	65 ^c
46	26	0410	2586.5-2596.0	415.5-425.0	9.5	7.6	80 ^c
47	26	0625	2596.0-2605.5	425.0-434.5	9.5	5.8	61 ^c
48	26	0735	2605.5-2615.0	434.5-444.0	9.5	7.6	80 ^c
49	26	0845	2615.0-2624.5	444.0-453.5	9.5	7.9	830
50	26	0950	2624.5-2634.0	453.5-463.0	9.5	7.6	60C
51	20	1205	2034.0-2643.5	403.0-472.5	9.5	5.0	55C
53	26	1310	2653.0-2662.5	482.0-491.5	9.5	2.7	28 ^C
54	26	1420	2662.5-2672.0	491.5-501.0	9.5	7.5	79 ^c
55	26	1545	2672.0-2681.5	501.0-510.5	9.5	3.45	36 ^c
56	26	1645	2681.5-2691.0	510.5-520.0	9.5	6.2	65
57	26	1750	2691.0-2700.5	520.0-529.5	9.5	6.9	73 ^c
58	26	1850	2700.5-2710.0	529.5-539.0	9.5	6.6	69
59 60	26 26	$2010 \\ 2116$	2710.0-2719.5 2719.5-2729.0	539.0-548.5 548.5-558.0	9.5 9.5	9.1 7.5	96° 79°

Depth From Depth Below Length Length Drill Floor Sea Floor Cored Recovery Recovery Date Core (May 1975) Time (m)(m) (m) (%) (m) 4a 0.15 2225 2729.0-2733.0 558.0-562.0 4.0 61 26 53^c 2.9 62 26 2327 2733.0-2738.5 562.0-567.5 5.5 9.5 0.0 63 27 2738.5-2748.0 567.5-577.0 0 0045 37^c 64 27 0150 2748.0-2757.5 577.0-586.5 9.5 3.5 92° 65 27 9.5 8.75 2757.5-2767.0 586.5-596.0 0310 27° 9.5 66 27 0415 2767.0-2776.5 596.0-605.5 2.6 59^c 67 27 0630 2776.5-2786.0 605.5-615.0 9.5 5.6 72^c 9.5 27 615.0-624.5 68 0710 2786.0-2795.5 6.8 Total 622.0 379.1 61 Hole 379B 94b 1 27 1905 2171.0-2178.0 0.0-7.0 70 66 0^a 2 27 1955 2178.0-2185.0 7.0-14.0 7.0 0.0 14^c 3 9.5 27 2045 16.5-26.0 1.3 2187.5-2197.0 41^c 4 27 2255 2216.0-2225.5 45.0-54.5 9.5 3.9 5 27 2244.5-2254.0 9.5 3.4 36 2359 73.5-83.0 56^c 6 28 0108 2263.5-2273.0 92.5-102.0 9.5 5.35 7 28 0210 2292.0-2301.5 121.0-130.5 9.5 0.2 2 52C 9.5 8 28 0330 2301.5-2311.0 130.5-140.0 5.0 9 28 0445 2320.5-2330.0 149.5-159.0 9.5 3.45 36 80.5 29.2 36 Total

TABLE 1 – Continued

^aPressure core barrel. ^bPunch-in cores. ^cGassy core.

^dBroke circulation. ^eH₂S observed.

fWashed 2.5 meters.

TABLE 2 Lithologic Summary, Site 379

Subunit		Thickness (m)	Interval (m)	Core
1	Nanno ooze	0.30	0-0.30	1474 ^a
2	Sapropel	0.40	0.30-0.70	1474
3	Terrigenous mud	65	0.70-65	1-7
4	Diatomaceous nannofossil			
	mud	35	65-100	8-11
5	Sapropel	0.30	100-225	11
6	Terrigenous mud	125.5	100-225	12-24
7	Diatomaceous nannofossil			
	mud	~47	~225-~273	25-29
8	Terrigenous mud	~180	~273-453	30-49
9	Terrigenous mud with carbonate			
	varves	170	453-624.5	50-69

^aPiston Core 1474 A-II Cruise 49.

Subunit 2—Sapropel (0.30-0.70 m) PC 1474²

This subunit is also mainly known from A-II piston cores, where the nannofossil ooze (Subunit 1) is underlain by a sapropel that consists of about 40% to 50% organic matter by dry weight. Within the sapropel the water content is of the order of 90%, and occasionally thin nannofossil beds and fine layers of inorganically precipitated aragonite ("wheat grains") are found. The principal fossil species is *Braarudosphaera bigelowi*. No distinct sapropel layer was observed in the badly disturbed first DSDP core, but its presence was suggested by fragments. This subunit is related to the development of the H₂S zone in the Black Sea that started about 7000 years ago.

Subunit 3-Terrigenous Mud (0.70-65 m) Cores 1-7

This subunit is dark greenish gray detrital silty clay to clayey silt, and the upper part of this subunit corresponds to the detrital sediments obtained from previous piston cores (Unit III of Ross et al., 1974). Although many of the upper cores were badly disturbed by the drilling operation, some alteration of medium gray silty mud and greenish black clay intervals were found. Silt and fine sand occur as streaks and patches and occasionally as layers. The graded bedding of these suggest turbidites. The sediment is mainly composed of clay minerals, quartz, feldspar, heavy minerals, and detrital carbonates (calcite and traces of dolomite). On an average the carbonate content is 15%. The quartz and feldspar content is high (>30% on average), and plagioclase are often more abundant than quartz. Besides the abundant plagioclase, K-feldspar is present in quantities up to 8%. The clays are illite, smectite, with subordinate chlorite and kaolinite. The dominant heavy minerals are pyroxene, epidote, and green hornblende which are thought to reflect a southern or southeastern source area. Only reworked nannofossils of the Cretaceous and Tertiary were encountered. The varying amounts of diatoms (traces up to 20%) that are found in Core 4 to 9 are all fresh-water diatoms. Obviously, Subunit 3 was deposited in a fresh-water environment when no Mediterranean water could enter the Black Sea. The pollen data suggest a cold climate, probably corresponding to the Würm/Weichsel glacial stage. As there is some controversy concerning the correlation of Hole 379A and Holes 380/380A, no attempt of correlation is made in the lithology report. The

reader is referred to the individual synthesis chapters. Also, see palynology report for this site and for Site 380.

Subunit 4—Diatomaceous Nannofossil Mud (~65-100 m) Cores 8-11

This subunit consists of a dark greenish gray to medium gray mud characterized by the first appearance of marine diatoms, foraminifers, and nannofossils beneath the Holocene Black Sea deposits. Diatoms were found in Cores 10 and 11, and a brief fresh-water interval during this marine period in indicated by the intercalation of a thin layer of fresh-water diatoms. The marine influence is also shown by abundant Emiliania huxleyi and Ammonia breccarii found in Core 11, Section 5 and in the increase in pore-water salinity. In Core 11, Section 5, a distinct layering of fossil material could be recognized (Figure 5). The remainder of this subunit is composed of a mixture of nannofossils, diatoms, and terrigenous material. This subunit was cored again at Hole 379B at exactly the same depth interval, a point significant for cross correlation between Holes 379A and 379B. The pollen data suggest deposition of this subunit during a warm interglacial period that may correspond to the Eemian.

Subunit 5-Sapropel, Core 11

Subunit 5 is a black sapropel layer (Figure 5) that has a thickness of about 0.3 meter and is intensely compacted. Its organic carbon content can be as high as 15%. It has thin white layers composed of nannofossils or aragonite in typical "wheat grains" similar to the Holocene sapropel sequence. The nannofossils are *Braarudosphaera bigelowi* and *Syracosphaera pirus* which indicate brackish water conditions $(18^{\circ}/_{00})$ in the Black Sea. Manganosiderite was detected by X-ray diffraction. This subunit is interpreted as a shift from a fresh-water to a marine environment.

Subunit 6-Terrigenous Mud (100-225 m) Cores 12-24

Subunit 6 is a dark greenish-gray terrigenous mud, that resembles Subunit 3 in that clay, quartz, feldspar and detrital carbonates are the most common sediment components. Most of the recovered cores are badly disturbed. In the lower part of the subunit (Cores 19 to 24), beds of silt and sand are found within the mud in general cycles of 10 to 15 cm. These beds are mostly silt but some are composed of sandy material (Cores 20-3; 21-2). Most of the coarser grained beds have sharp upper and lower contacts and many appear graded. Some stringers of pyrite are scattered throughout the subunit, and quartz and feldspar content are generally high (25% to 30%). The clays are similar to Subunit 3, except that smectite seems to be more abundant. Carbonate content is generally low (10%-15%) and detrital dolomite is found in trace quantities. A decrease in pyroxene content is observed within the heavy mineral suite that might be a result of the instability of this mineral rather than indicating a change in source area. The nannofossils found in this subunit are all reworked. Diatoms are present in Cores 16, 18 and 19 to 24. The diatoms are all fresh-water

Figure 5. A black sapropel layer topped by a nannofossil ooze.

species with the exception of those in Core 18 which are characterized as marine. Basically, the subunit was deposited in a fresh-water environment with one brief marine invasion. The climate was cold (Weichselian), as indicated by pollen analyses, and the marine invasion is interpreted as a short interstadial period.

Subunit 7—Diatomaceous Nannofossil Mud (225-273 m) Cores 25-29

Subunit 7 is a diatomaceous nannofossil-rich terrigenous mud, that is distinguished by the presence of diatoms and nannofossils in various layers of the unit and by the first occurrence of authigenic carbonate. Several small sapropelic horizons also occur. One very distinct one (6% org C) was found in Core 29, Section 5 (Figure 6). Authigenic carbonate is present in 3 to 7 cm thick light gray massive beds (Sections 25-2 and 29-5). In Core 29, Section 5, a cyclic pattern of light gray micrite and medium bluish gray pyrite and carbonate-rich mud was observed (Figure 7). In the light gray structureless carbonate layers, carbonate contents ranged up to 74%, and consist principally of calcite. These carbonate layers are known for perialpine lakes under the name "Seekreide."

Braarudosphaera bigelowi was found in Sample 25-2, 3 cm and in Core 29 again indicating brackish-marine water conditions. Diatoms were reported in Core 25 and Cores 29-31 and are characterized as marine. The diatoms are often concentrated in olive-brown thin layers. A pale red sediment sequence suggesting more oxidizing conditions was found in Section 29-6. Layers of sandy silts are often present suggesting a turbidite origin. This subunit, as indicated by the pollen flora, was deposited under brackish-marine conditions in a warm climate. It may be correlative to the Holstein interglacial period.

Subunit 8-Terrigenous Mud (275-453 m) Cores 30-49

This subunit is a dark greenish gray terrigenous mud similar to Subunits 3 and 6. Turbidites are also common in this section, and they exhibit a kind of rhythmic pattern with thicknesses of 7 to 10 cm. The sands or sandy silts at the base of a turbidite measure between 0.2 and 3 cm. Besides the turbidites, thin light gray sandy silt to silt layers are found (e.g., Core 49) which sometimes show cross-bedding and ripples (Figure 8). These silt layers are characterized by abundant carbonate rock fragments and contain a different heavy mineral content (opaques, garnet) than the greenish gray coarse-grained turbidite layers (epidote, green hornblende, pyroxene, and often typical alkali hornblende). A windblown origin is suggested for the silt layers and they could be interpreted as a loess deposit.

No indigenous fossil material was encountered in this subunit. Pollen data indicate that the climate was cold from Core 30 to Core 43 (Windel/Elster?) (with a warm interglacial in Core 34) and warmer below Core 43.

Subunit 9—Terrigenous Mud With Carbonate Varves (453-624.5 m) Cores 50-68

Subunit 9 is basically also a terrigenous mud. It is distinguished from the previous units by the

Figure 6. Black sapropel layers intercalated in marly sediments.

Figure 7. Light gray structureless seekreide alternating with medium bluish gray marly sediments.

intercalation of carbonate-rich layers. These .ayers are predominantly found in Cores 50, 58, 60 and 65 and reveal a typical rhythmic pattern. The pattern consists of an alternating sequence of pyrite, dark clay, and calcite (Figure 9). The average thickness of one sequence varies between 3 and 6 cm but is commonly about 4 cm. From the bottom up, the sequence starts with a thin layer of pyrite, on the average 1 to 2 mm thick. Next is a dark clay that grades into a gray clay; finely dispersed pyrite grains were found throughout the gray sediment. The carbonate content of the clays is less than 10%. The gray clay is often mottled and white calcite from the overlying carbonate mud is found in the burrows. The sequence ends with a white to yellowish colored fine-grained carbonate mud consisting of silt-sized calcite particles, the carbonate content is as high as 63%. Pyrite nodules (1 to 2 mm in diameter) frequently occur in this part of the sequence. The boundaries between calcite and pyrite and clay and pyrite are always sharp and distinct. In certain parts of the unit, sand layers of up to 8 cm are found (Figure 10). The dominant lithology of Subunit 9 is a terrigenous mud consisting of quartz and feldspar (about 20% to 25%), clay minerals, and detrital carbonates (calcite and traces of dolomite). Indigenous fossils are extremely rare. There is a questionable occurrence of Braarudosphaera bigelowi in Core 50A. No diatoms or foraminifers were found. Dinoflagellates are fairly common in Core 64. The pollen data indicate that most of the unit was deposited in a more or less interglacial sequence, with an age at the base of perhaps Waalian.

The mechanism of the rhythmic seekreide pattern found in some of the cores is not yet fully understood. The cycles are unlikely to be seasonal because this would imply a sedimentation rate in the order of 40 meters per 1000 years, and this high rate is not in line with geothermal consideration. The cycles are likely to be related to the presence of a thermocline. Under anoxic conditions within the sediments, the pyrite and the dark clays could be deposited. Carbonate content within the dark clays is very low (0-5%) which might indicate carbonate dissolution. The breakdown of the thermocline would lead to sufficiently oxygenated bottom conditions and the development of chondritic burrowers. But the rate of sedimentation or some other factor did not permit sufficient residence time for the burrowers to produce a completely reworked and mottled sediment texture.

BIOSTRATIGRAPHY

Calcareous Nannoplankton-Hole 379

Only one sample (379-1, CC) was examined for age dating, zoning, and paleoenvironmental assignment. The sample contains floods of *Emiliania huxleyi* (Lohmann) together with frequent reworked Cretaceous and Eocene to Oligocene calcareous nanoplankton (see Table 3). A late Quaternary age is assigned to the sample based on the occurrence of *E. huxleyi* which is the nominal species of the Martini (1971) NN-21 calcareous nannoplankton zone. The

Figure 8. Light gray carbonate-rich sandy silt to silty layers intercalated in dark greenish gray terrigenous muds. Cross bedding and ripples are present.

paleoenvironment was probably brackish-water on the basis of Bukry's (1974) studies, and the absence of calcareous nannoplankton designated as normal marine by him.

Other Fossil Groups-Hole 379

No indigenous planktonic foraminifers for making age assignments, zonal assignments, and paleoenvironmental interpretations were found in Sample 379-1, CC nor were any reworked species encountered (see Table 3). Further, during the process of searching for planktonic foraminifers, estimates were made of other microfossils; however, no benthic foraminifers, ostracodes, diatoms, mollusc, siliceous spicules, or other microfossils were observed.

Calcareous Nannoplankton-Hole 379A

Two hundred thirty-five samples were examined for calcareous nannoplankton for purposes of age dating, zoning, and making paleoenvironmental interpretations. Indigenous species of calcareous nannoplankton are primarily restricted to the uppermost cores (Cores 1 through 11) and Core 25 (see Table 4). From Core 1 through Section 5 of Core 11, very rare to flood occurrences of *Gephyrocapsa caribbeanica* Boudreaux and Hay are found. Associated with these nannoflora are very rare to abundant reworked Cretaceous and Eocene to Oligocene calcareous nannoplankton. The absence of definite marine species of the genera Cyclococcolithina, Ceratolithus, Helicopontosphaera, and Rhabdosphaera suggests a brackish-water paleoenvironment according to the data of Bukry (1974).

The abundance of indigenous species (see Table 4) disappears abruptly below Section 5 of Core 11. Most of the remaining samples studied from Hole 379A contain only reworked Cretaceous and Eocene to Oligocene species. The only other definite occurrence of indigenous forms is in Core 25, Sections 2 and 3. At this horizon only *Braarudosphaera bigelowi* (Gran and Braarud) is found with very rare reworked Cretaceous and Eocene to Oligocene calcareous nannoplankton. In Sample 379A-25-2, 50-52 cm it is very rare as whole specimens and fragments and in Sample 379A-25-3, 134-135 cm it is abundant as whole specimens and fragments. Several very questionable occurrences of *B. bigelowi* are found in Samples 379A-19-5, 99-101 cm, 379A-21, CC, 379A-29, CC, and 379A-51, CC. These samples are questioned because of the extreme rarity of specimens. Frequent to common reworked Cretaceous and Eocene to Oligocene forms are associated with the indigenous flora. Bukry (1974) indicates that a nannoflora containing only *B. bigelowi* is probably indicative of brackish-water deposition.

Only the fossiliferous interval above Section 6 of Core 11 can be dated. It is assigned to the Quaternary based on the occurrence of *Gephyrocapsa caribbeanica* Boudreaux and Hay. No other age assignments can be made for Hole 379A because the only other occurrences of an indigenous species are those of *Braarudosphaera bigelowi* (Gran and Braarud) which ranges from Jurassic to Recent.

Other Fossil Groups-Hole 379A

One hundred eighty-four samples were examined for planktonic foraminifers for age dating, zoning, and making paleoenvironmental interpretations. None of the samples contained indigenous specimens of planktonic foraminifers. Small (juvenile) reworked globigerinids were found in Samples 379A-4, CC, 379A-17-1, 89-91 cm, 379A-21-4, 20-22 cm, and 379A-34, CC. A small (juvenile) globorotalid was found in Sample 379A-51-2, 24-26 cm. A specimen of Chiloguembelina sp. was found in Sample 379A-38, CC and a specimen of Pseudohastigerina sp. was encountered in Sample 379A-6-1, 74-76 cm. See report by Gheorghian (this volume) for additional comments. While examining the samples for planktonic foraminifers, the presence of all other groups of microfossils was noted and estimates were made of their abundance (see Table 4).

Benthic foraminifers are primarily restricted in their occurrence to samples from Cores 4 through 11 (see Table 4). Most of the occurrences reported from this

Figure 9. Rhythmic patterns of carbonate cycles. The base is a medium gray mud grading upward into a zone of chondritic burrows where it is topped by light gray seekreide or mud.

Figure 10. Sand layer intercalated in a terrigenous mud sequence.

	CALCAREOUS N	ANNOPLANKTON	FORAMINIFERS	DIAT	TOMS	OSTRA	CODES	MOLL	USCS	SILICEOU	S SPICULES
	INDIGENOUS	REWORKED		FRAGMENTS	COMPLETE	FRAGMENŢS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE
CORE	BARREN VERY RARE VERY RARE FRAGUENT FRAGUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FREQUENT COMMON ABUNDANT FLOOD	H BARREN VERY RARE FRARE FREQUENT ABUNDANT FLOOD	BARREN VERY RARE FRARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRARE COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRARE COMMON ABUNDANT FLOOD	BARREN VERY RARE VERY RARE FRARE COMMON ABUNDANT FLOOD	H BARREN VERY RARE FRARE FREQUENT ABUNDANT FLOOD	BARREN VERY RARE FARE FRARE COMMON ABUNDANT FLOOD	BARREN VERY RARE FRAGUENT FRAGUENT COMMON ABUNDANT FLOOD
					HOL	E 379					
1		•						•	•		•
					HOL	E 379B					
1 2 3 4 5 6 7 8 9											

 TABLE 3

 Distribution of Various Fossil Groups in Holes 379 and 379B at Site 379

interval are of *Ammonia beccarii* (Linne) together with rare occurrences of other benthic forms. Very rare to rare benthic faunas are encountered in the interval from Cores 13 through 7. In another chapter Gheorghian gives species determinations for indigenous and reworked benthics.

Diatoms are rare and sporadically distributed above Core 8. They are very rare in Core 1, rare in Cores 4 and 6, and very rare in Core 7 (see Table 4). From Cores 8 through 11 they constitute an important part of the flora. They occur sporadically between Cores 11 and 30 and are absent below Core 30. Diatoms are rare in Core 17, abundant in Core 18, very rare in Core 21, rare to floods in Core 24 through 25, abundant in Core 29, and very rare in Core 30. See reports by Jousé (this volume) and Schrader (this volume) for further discussions of diatoms.

Ostracodes are sporadically distributed throughout the cored interval (see Table 4). Further studies are those of selected samples by Olteanu (this volume), a more complete one by Schneider (this volume), and a preliminary one by Benson (this volume).

Molluscs are primarily restricted to Cores 1 through 11 where they are relatively abundant (see Table 4); however, they do occur rarely to frequently in Cores 16, 17, 23, 54, 57, and 64.

Siliceous spicules occur rarely and sporadically from Core 6 through Core 51 and are absent above and below this interval (see Table 4). No other microfossils or fish remains were observed in any of the samples.

Calcareous Nannoplankton-Hole 379B

Only nine samples were examined from Cores 1 and 3 through 9 from Hole 379B (see Table 3). All are core catcher samples except for 379B-6-4, 80-82 cm. Indigenous calcareous nannoplankton were restricted to samples from the upper six cores. These samples contained Gephyrocapsa caribbeanica Boudreaux and Hay. Frequencies varied from barren in the sample from Core 3, to very rare occurrences in samples from Cores 1 and 4, to rare in the sample from Core 5, and finally to floods in samples from Core 6. This fossiliferous interval is assigned to the Quaternary based on the occurrence of G. caribbeanica. According to the data of Bukry (1974) the paleoenvironment would be interpreted to be brackish-water based on the absence of normal marine species. Reworked Cretaceous and Eocene to Oligocene calcareous nannoplankton species were observed in all nine samples studied with very rare to abundant frequencies.

Other Fossil Groups-Hole 379B

Nine samples were examined for planktonic foraminifers for purposes of age dating, zoning, and making paleoenvironmental interpretations. No indigenous planktonic foraminifers were observed. A discussion of reworked species is given by Gheorghian (this volume). While studying the samples for planktonic foraminifers, estimates were made of other fossil group occurrences (Table 3).

Benthic foraminifers are restricted to the samples from Cores 4 through 6 (see Table 3). As previously discussed for Hole 379A, the faunas consist of *Ammonia beccarii* (Linne) with very rare occurrences of other species. Species determinations for benthic foraminifers are discussed by Gheorghian (this volume).

All other groups of fossils—diatoms, ostracodes, molluscs, and siliceous spicules—are primarily restricted to the samples from Cores 3 through 6. The only exception is that the core-catcher sample from Core 7 contains very rare diatom fragments. No fish remains or other fossil groups were observed.

PALYNOLOGY

All core-catcher samples recovered, Cores 1-68, contained palynomorphs, extracted by conventional palynological methods. Shipboard, the procedure consisted of prolonged heating in 20% HCl, followed by heating in Calgon detergent, and a float-sink procedure with ZnCl₂ solution, specific gravity 2.0. Shore procedure was the same, except that 52% HF digestion was substituted for detergent-dispersion. This produced cleaner and more concentrated residues, but an interesting aspect of the shipboard work was that acceptable preparations were obtained from all samples without the use of HF.

The palynofloras obtained consisted of pollen, embryophytic spores, fungal spores, algal remains, acritarchs, and dinoflagellates. The gross palynological results for Hole 379A are displayed in Figure 11. "Steppe-Forest Index" (SFI) as a general climatic indicator, was calculated for each core-catcher sample, using the following ratio:

Artemisia + Chenopodiaceae + Amaranthac

(The above) + Pinus + Cedrus + Picea + Abies + Quercus + Alnus + Ulmaceae (and other tree genera)

The larger the number obtained, the more indication of comparatively cool/dry conditions in the Black Sea drainage. Modern surface sediments of the Black Sea vield a SFI of about 10%.

A "Marine-Influence Index" (MI) was calculated as the following ratio:

Dinoflagellates + Acritarchs

Dinoflagellates + Acritarchs + Total Pollen

Note, however, that some dinoflagellates are freshwater forms, and "acritarchs," while presumably algal, are by definition a heterogeneous group of unknown exact relationship, and presumably include fresh-water forms. Even the modern Black Sea is far from full marine and yet surface sediments produce a high (ca. 40%) "Marine-Influence Index." A very low MI does indicate fully non-marine environment, however. One especially characteristic bag-like dinoflagellate, as yet unnamed ("dinoflagellates 19-20"), is plotted separately as a percent of dinoflagellates and acritarchs because its appearance in the record is characteristically sudden and dramatic. (This fossil was known on shipboard as "bag 51".)

The significance of the palynological curves for Site 379 is best understood by comparison with those for Holes 380-380A, which represent a more complete record. The probably cool periods "Alpha," "Beta," and "Gamma" of Holes 380/380A would appear to be represented at Hole 379A by less clearly expressed steppe peaks culminating at Cores 59, 32, and 16, respectively. The low SFI below Core 62 seems clearly to represent the end of the "Pre-Alpha" of 380/380A, but the long Pliocene-late Miocene record of the lower part of Holes 380/380A and 381 was not penetrated at Site 379.

The MI curve for Site 379 agrees with that at 380/380A in general outline but not in detail, which may indicate the influence of local environment at the site of deposition—for example, locally abundant pollen/spore deposition would depress the MI value somewhat. However, the MI peaks associated with the "Alpha" period are shown also at Site 379 (although the numbers are lower) and, especially the peaks of "dinoflagellates 19-20" that characterize "Alpha" at Site 380, are seen also at Site 379, along with some earlier "dinoflagellates 19-20" peaks (Cores 27-28 and 36-37) that do not have equivalents at Hole 380.

Based on abundant pollen of Tsuga (hemlock), other conifer pollen, abundant Ulmaceae pollen (elm family), the MI, SFI, and dinoflagellate information, Cores 60-68 of Hole 379 ("Pre-Alpha") seem to correlate with Cores 36-41 of Hole 380A. These levels in the two holes both belong to about the Waalian, or are $\pm 1,000,000$ yr B.C.

 TABLE 4

 Distribution of Various Fossil Groups in Hole 379A at Site 379. (RW = Reworked)

 HOLE 379A

	CALCAREOUS N	ANNOPLANKTON	FORAMINIFERS	DIAT	OMS	OSTRA	ACODES	MOLL	USCS	SILICEOUS	SPICULES
	INDIGÉNOUS	REWORKED		FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE
CORE	BARREN VERY RARE RARE RARE COMMON ABUNDANT FLOOD	BARREN VERY RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FARE FREQUENT ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FRAUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RAREV RARE RECUENT COMMON ABUNDANT FLOOD
-		>	1	1	>		1		1	1	1
1			$ \rangle$	\rangle		\rangle	(>		
2	11			1				1	[l	1
3				Î I					1		1
4		ļί		j	5		2	L'I	}		
5				1) 	1 1 1		
6	13	2		5	\sum		K	\leq	Ś		2
7	$ \langle$	\leq	\langle	5	}		ſ	\leq	>	X	
8		$\left \right\rangle$	K RW		\geq	ζ	Ļ	\leq	ζ		L
-	\mathbf{r}		RW	5	\leq	l	5	\leq	1		\leq
9	$\langle \rangle$		2	5		5	$ \rangle$		2		
10		$ \rangle$	$ \rangle$		5		\geq		2		

43

SITE 379

TABLE 4 - Continued

	CALCAREOUS NA	ANNOPLANKTON	FORAMINIFERS	DIATO	OMS	OSTRA	CODES	MOLI	USCS	SILCIESOL	SPICULES
	INDIGENOUS	REWORKED		FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE
CORE	BARREN VERY RARE FRAGUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRACUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FAREOUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRACUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRACUENT COMMON ABUNDANT FLOOD
24		>								5	5
25	\geq			\sum	{	L				Ş	$\left \right\rangle$
26		2								-	7
27		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$				$\left \right\rangle$					
28	-	5									
29		>		$\sum_{i=1}^{n}$	ζ					$\left\{ \right\}$	$\left\langle \right\rangle$
30	-	`\	Î			\$	/	1	t I	Ś	5
31		ζ				$\left \right\rangle$	\rangle				
32				1							
33						1			I.	1	

45

 TABLE 4 – Continued

HOI E 379A				
	1101	-	270	
		-		444

			FORAMINIFERS	DIAT	OMS	OSTRA	CODES	MOL	111505	SULICEOU	S SBICLULES
	INDIGENOUS	REWORKED	I ONAMINI ENS	EDACMENTS	COMPLETE	EDACMENTE	COMPLETE	EDACMENTE	COMPLETE	SILICEOU	S SFICULES
	INDIGENOUS	REWORKED		FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE	FRAGMENTS	COMPLETE
CORE	BARREN VERY RARE RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FAREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRACUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FAGUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FRARE FRACUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FAREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE RARE FREQUENT COMMON ABUNDANT FLOOD	BARREN VERY RARE FARE FARE FREQUENT COMMON ABUNDANT FLOOD
					1		/	1	1	1	1
47						5					
48		}				\leq	>				
49							/				
50						5					
51			RW								
52		1				\geq					
-	41						2				
53											
54)			
							5	1			
55							1				
56											

SITE 379

SITE 379

47

Figure 11. Basic palynological data, Hole 379A, based on core-catcher samples (see similar chart for Site 380).

GEOCHEMISTRY

Gas Analysis

Biogenic methane is common in reducing environments, and it was present in practically all Black Sea cores. The solubility of methane in seawater is about 100 times greater at a depth of 2500 meters than at the surface. Consequently, as the core comes to the surface, gas pockets form and compress the adjacent core material. These gas pockets were sampled continuously with depth in the core and analyzed on a Carle gas chromatograph.

Carbon dioxide also is a major gas product from the microbial and chemical decomposition of organic matter during early diagenesis. At Site 379 the mole ratio of CH_4/CO_2 was about 100 over the range from the site sediment surface to 200 meters below the mudline. At greater depth, it increased erratically, reaching 750 at 275 meters and 1500 at 600 meters. The decrease in CO_2 at depth below 200 meters correlates

with the increase in calcium and magnesium in the pore water.

No ethane was encountered in the first 65 meters of core after which it increased erratically as shown in Figure 12. The mole ratio of CH_4/C_2H_6 decreased from about 27,000 at 65 meters to around 4000 at 600 meters. These concentrations are typical of early diagenetic production of ethane.

The odor of hydrogen sulfide was noted in one of the shallow cores. There was no evidence of it after the first few cores.

Pore Fluids

Pore fluids in cores from Holes 379A and 379B were dominated by fresh-brackish waters in the upper 400 meters, after which a strong increase in salinity was observed. Within the freshened section several major cycles could be observed (Figure 13). The shaded cycles correspond, respectively, to marine episodes designated as Mindel-Riss and Riss-Würm by Jousé and Mukhina

Figure 12. Mole ratio of CH_4/C_2H_6 with depth from cores taken at Site 379.

(this volume). The subpeak in salinity at 50-100 meters correlates very well with interstadial-type floral indices, and the presence of brackish-marine nannofossils. More specific details of the pore fluid composition are given in Manheim and Schug (this volume). In interpreting pore fluid data one must bear in mind the effect of diffusion, which tends to smooth out peaks, and permeate underlying sediments with the character of bottom waters and sediments that succeed them. These relationships are shown schematically in Figure 14.

The second major observation, observed in the lower part of the section, is the occurrence of brines exceeding both the current salinity of Black Sea bottom waters $(22^{0}/00)$ and Mediterranean waters. An increase of calcium and magnesium, largely in the form of chlorides, can be accounted for only by ocean-derived evaporative brines or solid evaporites of ocean origin. The onset of the brines is marked by increasing evidences of carbonate precipitation and accumulation in the sediments, and corrosion and chemical weathering of organism remains below 400 meters. The brines may have played a role in the formation of wheat grain-shaped aragonite crystals that distinguish some Black Sea layers.

Electrical resistivity studies showed decreases in diffusive permeability of 3 to 7 times free-water diffusion constants

Below 400 meters cementation phenomena account for further decreases to 1/20 meter of free fluid diffusive mobility (see Manheim, this volume).

PHYSICAL PROPERTIES

Water Content, Porosity, Density, and Thermal Conductivity

The high gas content of the cores recovered from Site 379 rendered them unfit for the determination of either porosity or wet bulk density values requiring volumetric measurements. Water content data, however, should be valid, if the interstitial pore water has not undergone movement in response to the creation of interstitial gas bubbles.

Water content decreases with depth from maximum values of about 35 weight percent near the mudline to about 20 weight percent at 622 meters (Figure 15). The high variability of the water content data (19.7% to 33.0%) in the upper 51 meters probably reflects the presence of highly porous sandy layers which have lost substantial proportions of their interstitial water during and after recovery, description, and sampling of the core.

Wet bulk density increases smoothly with depth from very low values (1.45 g/cc) near the top of the hole to 1.9 to 2.0 g/cc near 600 meters subbottom (Figure 16). The observed densities may be lower than in situ densities due to the presence of interstitial gases in the form of tiny bubbles.

Thermal conductivity values are highly variable, ranging from values of 2.37 mcal/cm sec°C near the top of the borehole (28 m subbottom) to 3.27 mcal/cm sec°C near 600 meters subbottom (Figure 17). The mean of all the thermal conductivity data obtained at Site 379 was 2.82 ± 0.26 mcal/cm sec°C. No systematic increase in conductivity with depth is noted. The highest values (3.06 ± 0.17 mcal/cm sec°C) are associated with terrigenous muds recovered from the interval 340 to 460 meters subbottom. Slightly lower values (2.90 and 2.76 mcal/cm sec°C) are characteristic of the terrigenous muds, nannofossil diatom marls, and the dolomite-rich muds above and below that interval.

The general smoothness of the downward increase in wet bulk density and the decrease in water content suggest that the main factors responsible for these changes is normal compaction. The more variable thermal conductivity data, on the other hand, suggest that vertical variations in the amounts of interstitial gases in the sediments may have a larger effect on the thermal properties than on the wet bulk density. This is reasonable in view of the very large contrast between the thermal conductivity of air and that of water or mineral grains.

No sound velocity data were obtained at this site because the high gas content of the sediment cores precluded passage of the 400-kHz signal through the sediment, or attenuated it to such an extent that accurate determination of the first arrival became impossible.

The wet bulk density, water content, and thermal conductivity data discussed above are listed in Tables 2, 3, and 4 of the Appendix.

Figure 13. Salinity variations of pore fluids in cores from Holes 379A and 379B.

Heat Flow

Ten downhole temperature measurements were made at Site 379 between 35.5 and 624.0 meters subbottom. Anomalously high temperatures were recorded at 45.0 meters subbottom and more strikingly, at a depth of 149.5 meters. The remaining downhole temperature data plus an estimate of bottom water temperature recorded in the drill pipe and thermal conductivity data permit calculation of five interval heat-flow values ranging from 0.77 to 1.21×10^{-6} cal/cm²sec between the sea floor and 425.0 meters subbottom. The average and standard deviation of these interval heat-flow values is 0.94 $\pm 0.10 \times 10^{-6}$ cal/cm²sec, and is considered to be the best heat flow value for this site. Additional measurement details and discussion of the significance of these data are available in a chapter by Erickson (this volume).

CORRELATION OF REFLECTION PROFILES AND LITHOLOGIES

In recent years several seismic investigations have been made in the central part of the Black Sea basin. Deep seismic sounding (DSS) have shown a large thickness of sediments and in the area of Site 379 about

50

10 km have been detected (Goncharov et al., 1972; Neprochnova, 1975). A widespread refractor (seismic velocity 3.0 km/sec) is found in this area at a depth of about 1 km and several good reflections have been obtained from this boundary by explosive techniques.

Continuous seismic profiling records have been obtained from the Black Sea Soviet expeditions in 1968 and later years (Sagalevich et al., 1970) by the American research vessel *Atlantis* II in 1969 (Ross et al., 1974) and by a French expedition in 1973. A special survey of the Site 379 area was taken be the Soviet R/V *Akademik S. Vavilov* in 1974 (see report by Malovitsky et al., this volume). Generally the profiles taken by this expedition from the central part of the Black Sea basin, about 1 km of the sediment penetrated, and usually showed a thinly layered, nearly horizontal structure.

The seismic profile and line drawing interpretation of the profile taken by *Glomar Challenger* on departure from Site 379 going to the west is shown in Figure 18. Two airguns of 40 in.³ and 10 in.³ were used and the recording was made within the frequency band of 40-160 Hz. The profile shows a penetration of about 0.8 seconds two-way travel time (DT). Numerous seismic reflectors have been picked from this interval. The main ones are shown in Table 5 and Figure 19.

Figure 14. Schematic drawing of "original" bottom water-paleosalinity relationships (solid line) and pore fluid distributions at later date, Site 379.

The depths of reflectors 4-10 were calculated by assuming a sound velocity of 1.80-1.85 km/sec since sonic velocity measurements on the cored sediments were unsuccessful because of their high gas content. This velocity range is probably fairly accurate for the upper 1 km of sediment and is similar to special measurements made with a multichannel receiving system using explosives northeast of Site 379 (Goncharov et al., 1972). For the upper reflectors 1-3, velocities from DSS data were used (Neprochnov and Semenov, 1972). The depth and boundary velocity of reflector 11 was also taken from DSS data (Neprochnova, 1975).

On the basis of seismic reflection profile data, the sediment column was divided into several sections with different densities of reflectors (number of reflectors per unit of depth interval) (see middle part of Figure 19).

A comparison of the layers with lithology (right part of Figure 19) shows that some of the reflectors may correlate with lithologic changes. Thus, reflector 2 may correspond to the marl layer at a depth of about 90 meters. Reflector 4 probably corresponds to the upper part of a turbidite sequence. Reflector 8 may correspond to the boundary between calcareous mud and dolomite-rich mud at a depth of about 460 meters. It is also interesting to correlate refractors with measured bulk wet densities of cored samples (see Figure 19).

Figure 15. Plot of water content data versus sub-bottom depth at Site 379. Water content data were calculated by weighing sediment samples obtained by syringe techniaues before and after drying.

Most reflectors occur at the intervals where the density changes. Reflectors 2, 4, 6, and 7 also correspond to reductions of penetration rates.

SUMMARY AND CONCLUSIONS

Site 379, Holes 379, 379A, and 379B were drilled at 43°00.29'N and 36°00.68'E at a water depth of 2159 meters in the abyssal plain of the Black Sea. Hole 379 was just a test for a pressure core barrel. Hole 379A was cored continuously (except for one 2.5-m section) to a depth of 624.5 meters. A total of 68 cores and 10 heat flow measurements was taken. Seven additional cores, mainly for geochemical studies, and two heat flow measurements were made at Hole 379B.

Generally all the cores collected from these sites were gassy and in several instances sediment material was forcibly extruded by gas pressure from the core barrel once the cores were on deck. Most recovered cores had void areas due to the expanding gas. Gas content was monitored on all cores and methane and CO_2 were the most common gases, with considerably smaller amounts of ethane. Butylanes and propane, probably from early diagenesis of organic matter, were detected from Cores 31 and 32 in a few parts per million, but the

Figure 16. Plot of wet bulk density versus sub-bottom depth at Site 379. Wet bulk density data were obtained using the gamma ray attenuation technique.

methane/ethane ratio for these and all other cores clearly stayed within safety limits.

The main objective at this site was to obtain as complete as possible a Pleistocene and Pliocene stratigraphic and biostratigraphic section. This in turn, would permit an extremely detailed evaluation of Pleistocene sea-level changes and a description of the recent history of the Black Sea. A separate hole was also planned at Site 379 for geochemical studies. Our main objective at Site 379 was not completely successful because sedimentation rates were much higher than anticipated, and the decision was made to pursue this main objective at Site 380 where the sedimentary sequences appeared to be thinner.

A total of nine sedimentary units was defined in Hole 379A. These included two near-surface units sampled by piston coring from an earlier *Atlantis* II cruise.

Figure 17. Plot of thermal conductivity data versus subbottom depth at Site 379.

Terrigenous mud (Units 3, 6, and 8) generally with turbidite sequences was the most common unit. Unit 4, a diatomaceous nannofossil mud, is, except for its diatoms and nannofossils, similar to Unit 3. This fossil assemblage occurs again in Unit 7 which is a nannofossil diatomaceous marl. Unit 1 was nanno ooze composed primarily of *Emiliania huxleyi*. Sapropels (Units 2 and 5) of about 30 cm thickness were found in two instances.

Unit 9, a dolomitic rock mud, is especially interesting in that it has a rhythmic pattern consisting of an alternating sequence of dark clay, dolomite and pyrite. The sequence, generally 3-6 cm thick, starts with a fine layer of pyrite (1-2 mm thick) at the bottom followed by dark clay grading upwards into a light clay. This clay layer is overlain by a white dolomite, some of which occurs in small burrows in the underlying clay. The uppermost part of each cycle is a yellowish colored layer of dolomite. All boundaries are generally distinct.

The sediments are all of Pleistocene age, although older reworked fossils were common. Shipboard analysis of fossil content was mainly limited to corecatcher samples.

Calcareous nannoplankton were found from Cores 1-10 and dated them as late Quaternary in age. Cores 11-68 were devoid of indigenous calcareous nannoplankton. Planktonic and benthic foraminifers were generally too rare to be of stratigraphic or ecologic use. Ostracodes and diatoms were found and may be of later use after land-based laboratory studies.

Figure 18. Seismic profile and interpretation of the profile taken on departure from Site 379.

Figure 19. Corrected depth of principal seismic reflectors (see Table 5) and their possible correlation with bulk wet density and lithology.

Spores and pollen were very abundant and mainly of Quaternary age. Preliminary analysis of the spore and pollen data show that 40 of the 68 core-catcher samples indicate an apparent "glacial" or cool, dry environment; while 25 seem to be closer to an

		TA Site 379	BLE 5 Seismic	Data
Reflector	DT (sec)	V (km/sec)	H (m)	
1	0.013	1.6	10	
2	0.10	1.7	85	Velocities from DSS data
3	0.17	1.8	153	
4	0.20	1.8 ^a	180	
5	0.24	1.8 ^a	216	
6	0.33	1.8 ^a	297	
7	0.40	1.85 ^a	370	
8	0.50	1.85 ^a	462	
9	0.62	1.85 ^a	574	
10	0.73	1.85 ^a	675	
11			1000	From DSS data; $V_B = 3.0 \text{ km/sec}$

^aAssumed velocity.

"interglacial" or warm, moist environment. The lower third of the section tends to have less "glacial" indications and higher organic residues, plant debris, and floras dominated by conifer pollen than the upper two-thirds.

The main objective of the organic geochemical program is to study the diagenetic and catagenic changes in organic matter. This objective has received little attention in marine sediments from intermediate depths (20 to 500 m). Numerous samples, and entire portions of cores (158 sections were frozen) were taken for later land-based analyses.

The inorganic geochemical program included interstitial water measurements of salinity, chlorinity, calcium and magnesium, and electrical resistivitydiffusivity studies on on the sediment-water system.

Among the preliminary results are:

1) Low interstitial salinities were found below the previously known (piston cores) salinity gradient from present day to Neoeuxinian (Glacial max) strata. These salinities, are about $4-6^{\circ}/_{00}$ S or $2.5-4.00^{\circ}/_{00}$ Cl, in the interval 30-350 meters, are broken by two peaks of somewhat greater salinity. These are possibly remnants

of more saline episodes in the Black Sea, such as may have characterized interglacials or interstadials.

2) A marked increase in salinity, and especially calcium and magnesium, occurs toward the bottom, reaching $40.5^{\circ}/_{00}$ S and 120 and 83 mmole/l of calcium and magnesium, respectively. The calcium concentration is more than 10 times that of normal seawater, and is presumed to be formed by MgCl₂-rich residual brines reacting with calcium carbonate to form dolomite, noted in the basal cores.

3) The diffusive permeability of the sediment decreases more sharply with depth than the absolute porosity, reflecting probable blockage by cementation processes, rather than extensive consolidation. However, the lowermost clays are still far from being good sealing beds and readily permit diffusion of dissolved salts and gases.

A total of 12 temperature measurements was made at the three holes. The data show a nearly linear increase in temperature with depth at a rate of 3.2 to 4.0°C/100 meters which may in turn suggest fairly constant bottom water temperatures. The temperature data can put restraints on some of the proposed climatic models since the temperature curve can be changed by the sedimentation rate. Anomalously high temperatures measured at 149.5 meters and 55 meters are believed to be due to a geochemical reaction that occurred as the measurements were being made. The physical property program was not very successful at this site because of the effect of the high gas content on these properties.

The seismic profiles made over Site 379 show differing densities of reflectors per unit depth that may correlate with sediment type. For example high densities are found at about the depth where turbidite sequences were drilled.

An accurate appraisal of environmental conditions in the Black Sea during the time interval (whatever it is) covered by our cores is premature at this time. Final conclusions must await further studies, especially by the paleontologists and the geochemists (see lab-based reports, this volume). However, it appears that we penetrated both the Würm (Weichselian) and Riss (Saalian) glacial periods and ended perhaps in the Mindel-Riss (Holsteinian) interglacial. A further evaluation can be made after the study of data from Site 380. Most of the section cored is mainly nonmarine although two or three major marine periods have been detected by faunal and interstitial water measurements. Later conditions, near end of section cored, are either a playa lake or evaporitic.

REFERENCES

- Bukry, D., 1974. Coccoliths as paleosalinity indicators—evidence from Black Sea. *In* Degens, E. T. and Ross, D. A. (Eds.), The Black Sea—geology, chemistry, and biology: Am. Assoc. Petrol. Geol. Mem. 20, p. 353-363.
- Degens, E. T. and Ross, D. A., 1974. The Black Sea-geology, chemistry, and biology: Am. Assoc. Petrol. Geol. Mem. 20.
- Gheorghian, M., 1974. Distribution pattern of benthonic foraminifera on continental shelf of Black Sea off Rumania. In Degens, E. T. and Ross, D. A. (Eds.), The Black Sea—geology, chemistry, and biology: Am. Assoc. Petrol. Geol. Mem. 20, p. 411-418.
- Goncharov, V. P., Neprochnov, Yu. P., and Neprochnova, A. F., 1972. The bottom relief and deep structure of the Black Sea Basin: Nauka, USSR.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation: Second Plank. Conf., Proc. Rome, v. 2, p. 739-785.
- Neprochnova, A. F., 1975. The structure of the sediment layer of the Black Sea Basin: Oceanologya, no. 4.
- Neprochnov, Y. P. and Semenov, G. A., 1972. Application of dynamic peculiarities of water waves for the study of sedimentary layer of deep sea basin. *In* Structure of the western part of Black Sea depression: Nauka (Moscow) USSR.
- Ross, D. A., Uchupi, E., and Bowin, C. O., 1974. Shallow structure of Black Sea. *In* Degens, E. T. and Ross, D. A. (Eds.), The Black Sea—geology, chemistry, and biology: Am. Assoc. Petrol. Geol. Mem. 20.
- Sagalevich, A. M., Shechvatov, B. V., and Udintsev, G. B., 1970. Seismic profiling in the Black Sea, Vestnik Akademii Nauk USSR, No. 10.

Site	379	Hole A	Co	ore 1	Cored	Inter	va1	: 0.0-7.0 m	Site	379	+	ole /	L.		Core	4	Cored Int	terva	:26.0-35.5 m	
AGE	ZONE	FOSS CHARAC NONNON	OTHERS OTHERS	MCTEDS	LITHOLOG	THENTST	I THO SAMPLE	LITHOLOGIC DESCRIPTION	AGE		ZONE	POLLEN H	DSS11 RACTE OSLEVECOD	OTHERS 25	SECTION	METERS	LITHOLOGY	DRILLINGDIST.		THOLOGIC DESCRIPTION
	NN-21 Emiltania huxteyi Zone	A		0.1 1.0 2 2	V010 V010 V010 V010 V010 V010 V010		4 9 12 6 8 9 6 13	$ \frac{58\ 6/1}{5} $ $ \frac{58\ 6/1}{5} $ $ \frac{58\ 6/1}{5} $ $ \frac{58\ 6/1}{5} $ $ \frac{56\ 6/1}{5} $ $ \frac{56\ 74\ 7/1}{5} $ $ \frac{56\ 74\ 7}{5} $ $ \frac{56\ 7}{5} $ $ \frac{56\ 7}{5} $ $ \frac{57\ 76\ 7}{5} $ $ \frac{56\ 7}{5} $ $ \frac{56\ 7}{5} $ $ \frac{57\ 76\ 7}{5} $ $ 57\ 76\$							0 1 1 2 3 4 5	.5	VOID VOID VOID VOID VOID VOID VOID VOID		56 4/1 56 4/1 and 56 2/1 streaks 5 5 5 5 5 5 5 5 5 5 5 5 5	Dark greenish gray TERRIGENOUS MUD to CLAY. Silty sand layers which suggest graded bedding occur in Sections 4 and 5. Abundant diatoms occur at the start of the turbidite sequence in Section 5. Streaks of lightbluish gray and grayish black material (pyrite- 10%) are present throughout the whole core. DOMINANT LITHOLOGY: SS 3-135 cm 50% Clay 25% Quartz and Feldspar 24% Carb. unspec. 35 5-127 cm 30% Quartz and Feldspar 30% Quartz and Fe

55

Site 379	Ho	ole	A		Co	-e 6	Core	I Inte	rva	1: 45.0-	-54.5 m		Site	379	Hole	A		Co	re 7	Cored In	terv	al:	54.5-64.0 m	
AGE	ZONE	POLLEN 2		L ER STATE	SECTION	METERS	LITHOLO	IGY	DRILLING DIST.	LITHO.SAMPLE	L	ITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN	FOS HARA SONNAN	OSTRACOD. OSTRACOD	SECTION	METERS	LITHOLOGY	DRILLINGDIST.	LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
	NN-21 Emiliania hukleyi Zone	s	F -	- F	2 2 3 4 4 5 6	0.5-	VOIC VOIC			34 105 128 64 146	56 4/1 58 5/1 to 56 4/1 dark greenish gray 56Y 2/1 to 56Y 2/1 to 56Y 4/1 with streaks of 56 2/1 greenish black 56 4/1 Alternating 56 2/1 greenish black 56 2/1 greenish black 56 2/1 greenish black 56 2/1 greenish black 56 2/1 greenish black 56 2/1 greenish black	Dark greenish gray TERRIGENOUS CLAY to TERRIGENOUS MUD. All sections contain streaks of SANDY MUD, 2 to 5 cm SILT AND fine SAND LAYERS are present in Sections 5 and 6. The Core Catcher is rich in DIATOMS. DOMINANT LITHOLOGY: SS 1-75 cm stream fieldspar 15% Catay 10% Quartz and Feldspar 15% Catay 10% Quartz and Feldspar < S% Diatoms Tr Glauconite Smear Slide CC 15% Quartz and Feldspar < S% Unspec. carbonate < 10% Diatoms 70% Clay X-ray: 00% Clay X-ray: 5-00 to 62 5-118 to 119 6-42 to 44 Calcite 8% 10% 10% Colomite 0% Tr Tr Quartz 36% 25% 29% Feldspar 29% 11% 14% Layered silicates 27% 56% 47% Carb. bomb 8% 10% 10% Grain Size: 5-118 to 119 Sand 60% Silt 33% Clay 7% Carbonate: 2-32 to 38 12% 0.4%	Exp	anatory Zone NN-21 Emiliania huxleyi Zone	S-T notes	A	Chapt	0 1 2 3 4 5 - Ccr 1	0.5	V01D V01D V01D V01D V01D		98 140	5G 6/1 mixed with 5G 4/1 streaks of 5G 2/1 5G 2/1 5G 2/1 5G 2/1 5G 2/1 5G 2/1 5G 2/1 5G 4/1 5G 4/1 5G 4/1 5G 4/1 5G 4/1	Greenish gray to dark greenish gray TERRIGENOUS MUD with streaks of darker material. Sand patches are present in Section 5. DOMINANT LITHOLOGY: SS 2-98 cm 60% Clay 10% Quartz and Feldspar 20% Carb. unspec. 10% Nannos MINOR LITHOLOGY: SS 5-40 cm 60% Quartz and Feldspar 5% Mica 5% Heavy minerals 20% Clay 5% Cogaues Tr Glauconite 5% Carb. unspec. $\frac{X-ray}{2}$: Calcite $\frac{5-120 \text{ to } 122}{5}$ Feldspar silicates $\frac{5-120 \text{ to } 122}{5}$ Carb. bomb 12% $\frac{5-120 \text{ to } 122}{5}$ Silt 57% S3. Clay S3. Calcite $\frac{5-120 \text{ to } 122}{5}$ Carb. Jomb 12% $\frac{5-125 \text{ to } 137}{5}$ Sand $\frac{48}{48}$ $\frac{0.58}{5}$ Clay 39% 36%

56

SITE 379

Site 379	Hole A	Core 8 Cored Inter	al: 64.0-73.5 m		Site	379	Hole A		Core 9	Cored In	terval:	73.5-83.0 m	
AGE Zone	FOSS CHARAC N9110d	ULLERS OCTRACOO OTHERS SECTION NETLERS AND OTHERS OF THERS OF THE OTHERS OF THE OTHERS OF THE OTHER OF THE OTHER O	LITHOLOGIC DES	CRIPTION	AGE	ZONE	CHARA CHARA NANNOR	OSTRACOD. 1315 OTHERS	SECTION METERS	LITHOLOGY	DRILLINGDIST. LITHO.SAMPLE		LITHOLOGIC DESCRIPTION
NN-21 Emiliania huxievi Zone	S F -	0 vol0 1 0.5- vol0 1 1.0- vol0 2 vol0	95 95 95 95 95 95 95 95 95 95	LATOMACEOUS TERRIGENOUS MUD. ATOMS occur in Sections MUDFOSSIL are rare. THOLOGY: and Feldspar nspec. LOGY: and Feldspar nspec. $\frac{24}{112} \frac{5-31 \text{ to } 33}{21 \text{ to } 33} \frac{6-94 \text{ to } 96}{102}$ $\frac{24}{112} \frac{21}{112} \frac{102}{102}$ $\frac{24}{212} \frac{21}{112} \frac{102}{212}$ $\frac{555}{112} \frac{605}{75} \frac{473}{212}$ $\frac{555}{112} \frac{605}{75} \frac{473}{222}$ $\frac{24}{112} \frac{5-31 \text{ to } 33}{75} \frac{5-94 \text{ to } 96}{222}$ $\frac{5}{5} \frac{493}{455} \frac{5-94}{385}$ $\frac{CaCO_3}{172} \frac{Corg}{0.85}$	Expl	NN-21 Emflianța huxleyi Zone	S C otes in	Chapter	0 0.5 1 1.0 2 3 4 5	V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D	106 84 94 10	5GY 4/1 5GY 4/1 5GY 4/1	Dark greenish gray DIATOMACEOUS TERRIGENOUS MUD with streaks and patches of fine sand. NANNOFOSSILS are present. DOMINANT LITHOLOGY: SS 3-94 cm 30% Quartz and Feldspar 30% Carb. unspec. 10% Diatoms X-ray: 4-73 to 75 5-142 to 144 Calcite 7% 12% Quartz 18% 15% Feldspar 13% 7% Layered silicates 62% 665 Carb. bomb 7% 12% Grain Size: Sand 7% 3% Sil 65% 67% Clay 28% 29%

SITE 379

57

Site 379	Hole	A		Core 1	0	Cored I	nterva	a1:8	3.0-92.5 m	2		Site	379	Hole	A	(Core 1	1 Co	red Inte	erval	92.5-102.0	m					
AGE ZONE	DOLLEN D	FOSSI ARACT GONNAN	OTHERS 2	SECTION	LI	THOLOGY	DRILLING DIST.	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION		AGE	ZONE	POLLEN	FOSSI HARACT UUDE ALSO	OTHERS	SECTION METERS	LITH	OLOGY	DRILLING DIST.			LITHOLOGIC	ESCRIPTIO	(
NN-21 Emiliania huxieyi Zone	T	A		0 0 0 0 0 0 0 1 0 0 5 3 6 6 6		V010 V010 V010 V010 V010 V010 V010 V010		1110 90 - 100 128	56 4/1 56 2/1 56 6/1 56 2/1 56 4/1	Dark greenish gray alte laminae (1-5 cm) of TER CLAY to TERRIGENOUS MUD nannofossils; diatoms a while nannofossil horiz at the end of Sections Some organic rich patch present. DOMINANT LITHOLOGY: SS 5-100 cm 30% Quartz and Feldspar 15% Clay 5% Carb. unspec. 2% Diatoms 3% Nannos MINOR LITHOLOGY: SS 6-130 cm 10% Quartz and Feldspar 10% Quartz and Feldspar 10% Quartz and Feldspar 10% Quartz and Feldspar 10% Carb. unspec. 5% Diatoms X-ray: 6-113 to 115 Calcite 25% Quartz 13% Feldspar 10% Layered silicates 52% Carb. bomb 25% Grain Size: 6-113 to 115 Sand 0% Silt 65% Clay 35% Carbonate: CaCO ₁ 1-120 to 130 112	ernating RRIGENOUS D rich in are present 20ns occur 5 and 6. hes are	Exp	lanatory	S	in C	hapter	0 0.5 1 1.0 2 3 3 4 5 Core Catche				5 N4 0 5GY 2 N4 - 5GY - 7 N4 - 5GY - 84 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	4/1 Cal Dol Zol Eaver Si Araa 5/2 Sec Car Dol Qua Gal Car Car Car Car Car Car Car Car Car Car	Medium g MARL. Patches in Secti abundant abundant also pre- found be is obser Section the sedi greenish DOMINANT SS 4-125 10% Clay SS 4-5 10% Clay SS 4-10% Clay SS 4-5 10% Clay SS 4-10% Clay SS 4-5 10% Clay SS 4-10% Clay SS 4-5 Clay SS 4-5 Clay SS 4-5 Clay SS 4-5 SS 4-5	ray to dar ray to dar of white n of white n in Sectio fine lami composed o fine arag sent. A sai tween 52 t ent is cor gray TERR LITHOLOGY Cm Sec. 5 20-21 25 15% 12:- 0% 0 20% 14 15% 12:- 0% 0 20% 14 15% 26:- 15% 12:- 0% 15% 12% 0% 0 20% 14 15% 26:- 15% 12:- 0% 14% 0% 0 12% 0% 0 20% 14 15% 12% 0% 12% 0% 12% 0% 12% 0% 12% 0%	k gray 1 anno ooz 2. Namno ooz 2. Namno ooz nated 1 6 form 105 105 105 105 105 105 105 105 105 105	AANNOFO teare top of is are is occur is occ	SSIL present getting Section com- are s ng yer MUD. 40-41 10% 2% 24% 42% 0% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 12% 10% 10% 10% 10% 10% 10% 10% 10

58

SITE 379

	CH	FOSS ARAC	TER	2	N	s		DIST.	MPLE	
ZONE	POLLEN	NANNOS	OSTRACOD	OTHERS	SECT10	METER	LITHOLOGY	DRILLING	LITH0.SA	LITHOLOGIC DESCRIPTION
					0 1 2 3	0.5	V010 V010 V010 V010 V010 V010		50	Dark greenish gray to olive gray TERRIGENOUS MUD. Patches of fine sand occur in Section 2. Graded bedding is present in Section 3. 22 DOMINANT LITHOLOGY: SS 1-50 cm 35% Quartz and Feldspar 5% Norite 50% Carb. unspec. 5% Nannos (reworked) 24/1 $\frac{X-ray:}{Carb. termorked}$ 24/1 $\frac{X-ray:}{Carb. termorked}$ 25% Outright 1-136 to 138 Calcite 13% Feldspar 4% Layered 511 cates 67% Carb. bomb 13% $\frac{1-136 to 138}{Sand}$ $\frac{1-136 to 138}{Silt}$ Silt 41% Clay 56% $\frac{Carbonate:}{0.7\%}$ 3-36 to 72 $\frac{CaCO_3}{11\%}$ $\frac{Corg.}{0.7\%}$

Site	379	Hole	A			Cor	e 13	Cored In	terv	al:	.5-121.0 m
	110	0	FOS	SIL	R	ž	s		DIST.	MPLE	
AGE	ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECTIO	METER	LITHOLOGY	DRILLING	LITH0.SA	LITHOLOGIC DESCRIPTION
						0					
						1	0.5	Ŵ		106 129	Dark greenish gray TERRIGENOUS MUD. Grayish black (SGY 2/1) layers and patches of coarser silt to sandy silt occur throughout the core. Due to gas expansion, numerous 5-10 cm voids are present in the core. DOMINANT LITHOLOGY: SS 1-106 cm 30% Quartz and Feldspar 20% Clay 5% Opaques
						2	freefea				$\begin{array}{ccc} 5GY \ 4/1 & 30\% \ Carb. \ unspec. \\ 5\% \ Nannos \ (reworked) \\ & & \\ & & \\ \hline \frac{\chi - ray:}{Calcite} & \frac{4-29 \ to \ 31}{12\%} & \frac{6-9 \ to \ 11}{15\%} \\ & & \\ \hline Dolomita & 2\% & 2\% \end{array}$
							THE THE			135	Quartz 21% 30% Feldspar 9% 32% Layered 56% 21%
						3	han han				Grain Size: 6-9 to 11 Sand 6% 23% Silt 81% 49% Clay 13% 28%
						4	and and an				<u>Carbonate:</u> 5-1 to 7 <u>155</u> 0.6%
						5	unitanitan				
						6	and and an				
		_	_	_	_	Co Ca	re tcher				

: 3/2	non	e A		C	ore	14	- 8	Cored	Int	terv	21:1	21.0-130.5 m				Site	37	9	Hole	A		Core	15	Cored	Interv	ra1:	: 130.5-140.0 m
ZONE	POLLEN	FOS CHARA SONNAN	OSTRACOD. 312	OTHERS	SECTION	METERS	LI	THOLO	GY	DRILLING DIST.	LITH0.SAMPLE		LITHOLOGIC DESC	RIPTION		AGE		ZONE	POLLEN	FOSS	OSTRACOD. AT TI	SECTION	METERS	LITHOLOG	DRILLING DIST.	LI THO. SAMPLE	LITHOLOGIC DESCRIPTION
					0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	55		3			85	56Y 4/1	Dark greenis with occasic medium grain core. DOMINANT LIT SS 4-85 cmt SS 4-85 cmt SS 70 quite SS 70 qu	h gray TER mal patches red sand. A hpresent thi HOLOGY: ind Feldspan inerals ispec. reworked) <u>CaCOs</u>	RIGENOUS MUD s of fine to few 5-15 roughout the c							0 0 1 1 1 2 3 4 5 6 Con	*	VOID VOID VOID VOID		39	Dark greenish gray TERRIGENOUS MUD with occasional lenses of even darker SANOV MUD which contains slightly less carbonate. DOMINANT LITHOLOGY: SS 2-39 cm 405 Quartz and Feldspar 35 Min 56Y 4/1 15 Clay 2-55 to 65 CaCO ₁ Corg. 2-55 to 65 CaCO ₂ C

60

SITE 379

5G 4/1

Pyrite rich layer

Pyrite rich layer

Core Catche PRPP

$\frac{1}{2} = \frac{1}{2} = \frac{1}$			i c	FOS	SIL	R	L			IST.	PLE		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ANE	ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECTION	METERS	LITHOLOGY	DRILLING D	LITH0.SAM	LITHOLOGIC DESCRIPT	TION
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0	1.0	V010 V010 V010 V010 V010		148 23 68 114	TERRIGENOUS MUD greenish gray (1) 56 2/1 of sandy mud la cycles of 10-15 layers suggest 00MINANT LITHOLI 56 6/1 SS 2-114 cm 10% Quartz and i 60% Clay 56 2/1 30% Carb. unspet Tr Nannos X-ray: Sec. 1 90/1000 Sec. 1 90/11 Calcite 155 2/1 56 2/1 Calcite 156 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 56 2/1 57 2/1 58 2/1 59 2/1 50 122 20 122	basically dark 56 4/1). A number yers occur in general cm. Most of these grading. 06Y: Feldspar c. 2 91-97 94-95 19-121 15% 3% 20% 0% 0% 0% 0% 0% 0% 15% 3% 20% 58
							3	untun nafantun	VOID		112	56 4/1 Calcite 4% Quartz 18% 56Y 4/1 Feldspar 56Y 4/1 Feldspar 56 4/1 Carb. bomb 4% Grain Size: Grain Size: 56 4/1 Sand 0% Silt 55% Clay 45% Clay 40%	18% 19% 8% 55% 18% 2 <u>1 4-122 to 124</u> 0% 47% 53% 07
			т				6	re					

		FO	SSIL	R	N	5		DIST.	MPLE	
ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SELTIC	METER	LITHOLOGY	DRILLING	LITH0.SA	LITHOLOGIC DESCRIPTION
				L	0					TERRICHAR MIC + CANDY MIR
					1	0.5	ORG. CH.			<u>X-ray:</u> Calcite <u>3-89 to 91</u> Calcite <u>4</u> % Dolomite <u>2</u> % Quartz <u>22%</u> Feldspar <u>6%</u> Layered silicates <u>64%</u>
					2	and and and	ORG. CH.			Garb. bomb 6% Grain Size: 3-89 to 91 Sand 0% Silt 84% Clay 16%
					3	and and and	<u>void</u>			5Y 2/1 pyrite rich organic mud layer 5G 4/1
	т	-	-	-	00	ore atcher				

Site 379	Hole A	Core	21 Cored In	terva	1: 187.5-197.0 m	511	e 379	н	ole A			Core	22	Cored Ir	terva	11:	197.0-206.5 m
AGE ZONE	FOSSIL CHARACTE SONNAN POLLEN	OTHERS 20 SECTION	LITHOLOGY	DRILLING DIST.	LITHOLOGIC DESCRIPTION	AGE	ZONF	-	POLLEN POLLEN	OSTRACOD OSTRACOD	OTHERS N.	SECTION	METERS	.ITHOLOGY	DRILLING DIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
	S-T	0 0.3 1 1.0 2 3 4 5 6 6	98 98 98 98 98 98 98 98 98 98 98 98 98 9		Dark greenish gray (56 4/1) TERRIGENOUS MUD. Sandy mud layers occur in the lower part of the core. DOMINANT LITHOLOGY: SS 6-77 cm SOT Quartz and Feldspar SS theavies 205 Clay 205 Carb. unspec. Tr Nannos X-ray: Calcite 4-14 to 16 6-20 to 22 Dolomite 22 05 Quartz 165 203 Feldspar 83 83 Layered Silicates 565 655 Carb. bomb 203 45 Grain Size: Sand 4-14 to 16 6-20 to 22 Sili 62 455 Clay 325 555 Carbonate: 4-0 to 10 93 0.652 Carbonate: 4-0 to 10 93 0.655				S			0 1 1 2 3 4 5 6		000° CH		48 80 1233 7 68	Dark greenish gray (56 4/1) TERRIGENOUS MUD. Several sandy mud layers occur Some suggest grading. X-ray: Calcite 2-48 to 49 2-58 to 51 Calcite 153 143 Guartz 153 143 Guartz 153 143 Guartz 153 143 Carb. bomb 195 24x Carb. bomb 112 4/115-117 Quartz 195 107 Dolomite 02 22 02 Quartz 195 163 317 Feldspar 55 65 73 Layered silicates 543 523 Carb. bomb 223 203 10% Grain Size: 333 4224 563 Sand 075 53 433 Clay 333 4224 563 Sand 075 075 183 Gray 333 4224 563 Carbonate: CacOs 0.652 56 56 4/11 55 <

63

Site 379	Hole	A		Core	23	Co	red I	iterv	al:	206.5-216.0 m		Site	379	Hole	A	C	ore a	24	Cored In	terv	al: 1	216.0-225.8 m
AGE ZONE	borren	FOSSI IARACT SONNYN	OTHERS DTHERS	SECTION	METERS	LITH	OLOGY	DRILLING DIST.	LI THO. SAMPLE	LITHOLOGI	SIC DESCRIPTION	AGE	ZONE	POLLEN	RACTI GUDARTSO	OTHERS 3	SECTION	MELERS	LITHOLOGY	DRILLING DIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
	s			0 1 1 2 3 4 5 6	5				20 25	Basic gray A numb layers gradat are b FeS (1) DOMINA 55 2-2 55 (c) 25% Ca Tr Na X-ray: Calcit Quartz Feldsp Layere Carb. <u>Grain</u> 2 Sand Silt Clay	c lithology is a dark greenish (SGY 4/1) TERRIGENOUS MUD. mber of sandy mud to muddy sand rs occur. Some of them suggest ation. Top of the graded intervals blackish (N3) due to more abundant (lower carbonate content). NANT LITHOLOGY: -25 cm Uartz and Feldspar Heavies Clay Carb. unspec. Nannos C $\frac{2-25 \text{ to } 27}{16}$. bomb 16% n Size: -2-25 to 27 18 60% 39%			s -			0 0.5 1 1 2 3 4 5 6		086. CH. 086. CH. 086. CH.		54	Basic lithology of Sections 2 and 4 is a dark greenish gray (56 4/1) TERRIGENOUS MUD. A number of sandy mud layers are found. Some suggest grading. Also locally thin blackish layers (N3) (rich in iron sulfides) occur. Section 6 is composed of olive gray (SY 4/1) DIATOMACEOUS MUD. Layers with very abundant diatoms occur 30-36; 60-70; and 103-106 cm. DOMINANT LITHOLOGY: SS 2-54 cm 15% Quartz and Feldspar 5% Heavies 65% Clay 15% Carb. unspec. Tr Diatoms and Nannos LITHOLOGY: SS 6-54 cm 10% Quartz and Feldspar 15% Diatoms 55% Clay 10% Carb. unspec. <10% Silicoflagellates <10% Pyrite $\frac{X-ray:}{Calcite}$ $\frac{2-52}{10\%}$ $\frac{2-53}{16\%}$ $\frac{54}{10\%}$ Dolomite 0% 0% Quartz 20% 17% Feldspar 7% 7% Layered silicates 54% 7% Calcite $\frac{10\%}{10\%}$ $\frac{662}{5\%}$ $\frac{54}{7\%}$ Dolomite 1% 0% Quartz 20% 17% Feldspar 6% 7% Layered silicates 54% 71% Carb. bomb 20% 5%

SITE 379
		c	FO: HAR	SSIL	R	NC	S		DIST.	MPLE		
AGE	ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECTIC	METER	LITHOLOGY	DRILLING	LITHO.SA		LITHOLOGIC DESCRIPTION
						0	0.51111111111	V010		10	5Y 4/1 5Y 4/1	Basic lithology (Sections 1, 2, and 3) is an olive gray (5Y 4/1) DIATOMACEOUS MARL. NANNOFOSSILS are present. Wood fragments are abundant in Section 3. Locally there are thin layers of sandy mud and layers which are mainly composed of authigenic carbonate with abundant pyrite. Sections 5 and 7 are a dark greenish gray TERRIGENOUS MUD (5G 4/1). Several sandy mud to muddy sand layers are
						2		0%6. 0		83 140	5G 4/1 5GY 4/1	present; some suggest grading. DOMINANT LITHOLOGY (Sections 1 and 3): SS 1-10 cm 10% Pyrite- 10% Carb. unspec. 20% Diatoms 10% Quartz and Feldspar
						3	THE THE PARTY I	VOID		14 90 106	56 4/1 5Y 4/4 56 4/1	DOMINANT LITHOLOGY (Sections 5 and 7): 20% Quartz and Feldspar 50% Clay 10% Pyrite 20% Carb. unspec. Probably authigenic carbonate.
						4		ORG. CH.			5Y 5/6 5G 4/1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
						5		VOID VOID		72 88		Carb. bomb 29% 9% 19% 7% Grain Size: 7-45 to 47 7-124 to 126 0% Sand 0% 0% 0% Silt 63% 65% 0% Clay 37% 35% 35%
						6		ORG. CH.				
		S-T		_	_	Co Ca	re					

0 Dark greenish gray TERRIGENOUS MUD. 0.5 VOID VOID Some sandy mud layers suggest grading. There are darker layers at the lower part of the section (FeS 7 VOID 1.0 VOID VOID Calcite 1.0 127 Core Catcher 127 Core Catcher 127	AGE	FOSSIL CHARACTER	WELLERS SECTION	DEFORMATION LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
			0 7 7 0.5 7 V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D V01D		Dark greenish gray TERRIGENOUS MUD. Some sandy mud layers suggest grading. There are darker layers at the lower part of the section (FeS <u>X-ray:</u> Calcite <u>1-136 to 137</u> <u>1-142 to 143</u> Quartz 14% <u>15%</u> Feldspar 8% 7% Layered silicates 60% 60%

The		F	05511				-	oured.	1	1	w			Г	Т		T	FOS	IL	Ť	T		F	1 m	1	
AGE	ZONE	POLLEN	RACTE GODERACON	OTHERS	SECTION	METERS	<u>u</u>	THOLOG	Y	DRILLING DIS	LITH0.SAMPL		LITHOLOGIC DESCRIPTION	AGE		ZONE	POLLEN	HARAC	OSTRACOD. H	OTHERS SECTION	METERS	LITHOLOGY	DRILLING DIS	LITH0.SAMPL		LITHOLOGIC DESCRIPTION
					0 1 2 3	0.5		ORG. CH. ORG. CH.			90	56 4/1	Dark greenish gray (56 4/1) TERRIGENOUS MUD. Abundant sandy mud layers are present, some suggest grading. Local subtle variations to more darker color occur (FeS). DOMINANT LITHOLOGY: SS 4-90 cm [0. 40, 60] 205 Quartz and Feldspar 60% Clay 20% Carb. unspec. Tr Nannos MINOR LITHOLOGY: SS 4-80 [40, 60, 0] 65% Quartz and Feldspar 5% Heavies 20% Rock fragments 10% Carb. unspec. Carbonate: 4-0 to 12 CaCon Corg. Corg.							2	0.5	V01D			56 4/1	Dark greenish gray TERRIGENOU MUD with abundant sand layers some suggest grading. X-ray: Galcite 5% Quartz 20% Feldspar 6% Layered 5% Carb. bomb 5% Grain Size: 3-30 to 32 Grain Size: 3-30 to 32 Sand 0% Silt 47% Clay 53%
		S-T -	_		4 5 Co Ca	re		V010			80									4	5	VOID VOID VOID			5G 4/1	

Core Catcher

Site 379	н	ole A		Ci	re a	8	Cored	Inte	erva	1:25	254.0-263.5 m	Site	379	Н	ole /		C	one 29	9 Cored I	nterv	al: 263	.5-273.0 m	
AGE ZONE		POLLEN	OSTRACOD. OSTRACOD	OTHERS	METEDE	L	ITHOLO	IGY	DRILLING DIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE		POLLEN	OSTRACOD. OSTRACOD	OTHERS 2	METERS	LITHOLOGY	DRILLINGDIST.	LITH0.SAMPLE		LITHOLOGIC DESCRIPTION
	S	-T -		2 2 3 4 5 6 6	0.9		VOID ORG. C VOID VOID DRG. C VOID VOID VOID			4	Dark greenish gray (56 4/1) TERRIGENOUS MUD with abundant muddy sand to sandy mud layers suggesting turbidites. X-ray: Calcite 225 Quartz 165 Feldspar 7% Layered silicates 65% Carb. bomb 12% 56 4/1 Grain 512e: Sand 0% Silt 68% Clay 32%				S-T			0.5 1.0 22 33 44 55 66	VOID VOID VOID ORG. CH.		100 110 1 55	56Y 4/1 N8 56Y 4/1 N3 5Y 5/6 N5 4/1 N3 5B 5/1 5Y 5/6 5Y 4/1 to 56 4/1 10R 6/2 10R 6/2	Sections 1 to 3 are basically a 56 4/1 CALCAREOUS MUD with a number of sand layers, some show grading. In Sections 4 and 5 and top of 6 DIATOMS and SILICOFLAGELLATES? are abundant, often concentrated in olive brown (5Y 5/6) thin layers. Two SAPROPEL LAYERS occur at Section 4, 127 to 134 cm and Section 5, 0 to 13 cm. Section 5 shows cycles of medium bluish gray (5B 5/1) pyrite rich marly micrite to light gray (N3) pure micrite. The micrite suggests authigenic precipitation, (SECKREIDE). A sequence of pale red (10R 6/2) calcareous mud (carb. >15X) topped by sandy mud to muddy sand is present in the lower part of Core 6. The upper olive gray part shows only thin coarse layers containing abundant pyrite. X-ray: Sec. 4 Sec. 5 Calcite 132 22X 82 212 22 Sec. 5 5 69-70 75-76 90 Calcite 11X Tr 11X 13X Sugart 11X 24X 77X Feldspar 33 22X 82 21X 22X Sec. 5 5 69-70 75-76 90 Calcite 11X 65X 25X 61X Duartz 17X 66X 25X 61X Duartz 17X 66X 25X 63X Carb. bomb 33 26 22X 82 Carb. bomb 13 06 00 00 Layered silicates 73X 265 22X 82 Carb. bomb 13 66% 27X 633 Sec. 6 Sec. 5 Calcite 13X 66% 27X 633 Carb. bomb 15X 66X 21X Carb. bomb 15X 66X 21X Carb. bomb 55 6X 21X

Hole A Core 30 Cored Interval: 273.0-28	2.5 m	Site 379	Hole A	Core 31	Cored Interval:	282.5-292.0 m
FOSSILL CHARAGETER SUBJECTION CHARAGETER SUB	LITHOLOGIC DESCRIPTION	AGE ZONE	FOSSIL CHARACTER DOLLEN OSTRACOD	OTHERS SECTION METERS	ADDILLING DIST. LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
0 0.5 1 0.6. CH. 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Dark greenish gray (5G 4/1) TERRIGENOUS MUD.			0	V010	Dark greenish gray (56 4/1) TERRIGENOUS MUD. 56 4/1
2 VOID				2	0RG. CH. V01D	
				4	ORG. CH.	
				5	0 0 0 0 0 0 0 0 0 0	
			s-T	Core Catcher		

Site 379

ZONE AGE

		c	FOS	SSIL	R	z	6		DIST.	MPLE	
AGE	ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECTIC	METER	LITHOLOGY	DRILLING	LITHO.SA	LITHOLOGIC DESCRIPTION
Ţ						0				П	Dark secondat any TERRITERION WIT
							0.5				Site 379A, Core 33, 301.5-311.0 m: PRESSURE CORE BARREL, NO RECOVERY
						1	1.0	VOID			
						Ц	1111				
							111				
						2	Line 1	ORG. CH.			
							0014				
		5	-	-	_	Con	re cher				

Site 379	Hole	A			Cor	e 34	Cored In	terv	a]:	311.0-320.5 m
		FOS	SIL	R	NO	S		DIST.	MPLE	
AGE ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECT10	METER	LITHOLOGY	DRILLING	LITHO.SA	LITHOLOGIC DESCRIPTION
	Γ				0				Γ	
					1	0.5	ORG. CH.			Dark greenish gray TERRIGENOUS MUD. Coarser small sandy mud layers are present, some suggest grading. DOMINANT LITHOLOGY: SS 2-64 [0, 30, 70] 305 Quartz and Feldspar 305 Clay 405 Carb. unspec.
					2	distant	VOID		15 64	X-ray: 2-131 to 133 6-84 to 86 Calcite 16% 31% Quartz 33% 14% Feldspar 8% 13% Layered 43% 42%
						1				Carb. bomb 16% 31%
					3		ORG. CH.			$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
					4	munitum	VOID		13	
					5	multin	ORG. CH.			
	т	-	_	_	6 Co Ca	re	VOID VOID			
Explanatory	note	in	Cha	nte	- 1				-	

$\frac{1}{10} \frac{1}{10} \frac$	Site 379 Hole A
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	POLICEN POLICING
$S = F = \frac{Core}{Catcher}$	S F

Site 379	Hole A	Core 37 Cored Inter	val: 339.5-349.0 m	Site 379 Hole A Core 38 Cored Interval:	349.0-358.5 m
AGE ZONE	FOSSIL CHARACTER NVNNNOS OSTRACOD	OTHERS SECTION METERS METERS ADOTOHLIT	Source of the second se	AGE CONTEN AGE CONTEN AGE CHERS AGE CHERS AGE CHERS AGE CHERS AGE CHERS AGE CHERS AGE CHERS AGE CHERS	LITHOLOGIC DESCRIPTION
	s - F	0 0.5 1 0.5 VOTO 1 0.5 VOTO 2 ORG. CH. VOID	139 139 139	0 0 0.5 0R6. CH. 1.0 00 2 V010 2 V010 0R6. CH. 000 3 000 000 000 000 0000 000 000 000 <td< td=""><td>Dark greenish gray (56Y 4/1) TERRIGENOUS MUD. The coarser layers are more light olive gray (5Y 6/1). Some of the layer suggest grading. DOMINANT LITHOLOGY: SS 6-40 cm [0, 15, 85] 15% Quartz and Feldspar 40% Carb. unspec. X-ray: 4-83 to 85 6-9 to 11 Calcite 15 10% Quartz 15% 13% Feldspar 45 3% Layered 11% Grain Size: Grain Size: Sand 4-83 to 85 6-9 to 11 Sand 20% 07% Ciay 82% 81%</td></td<>	Dark greenish gray (56Y 4/1) TERRIGENOUS MUD. The coarser layers are more light olive gray (5Y 6/1). Some of the layer suggest grading. DOMINANT LITHOLOGY: SS 6-40 cm [0, 15, 85] 15% Quartz and Feldspar 40% Carb. unspec. X-ray: 4-83 to 85 6-9 to 11 Calcite 15 10% Quartz 15% 13% Feldspar 45 3% Layered 11% Grain Size: Grain Size: Sand 4-83 to 85 6-9 to 11 Sand 20% 07% Ciay 82% 81%

SITE 379

Site 379 Hol	ole A Core 39 Cored Interval: 358.5-368.0 m		Site 379 Hol	le A Core 40	Cored Interval: 368.0-377	.5 m
AGE ZONE	FOSSIL CHRARACTER NULL SUMMW NELL SUMMW NULL SUMMW NULL SUMMW NULL SUMMW NULL SUMMW NULL SUMMW NULL SUMMW NULL SUMMW SUMMS SUMMW SUMM SUMM	LITHOLOGIC DESCRIPTION	AGE ZONE POLLEN	FOSSIT CHARACTER 05TRACC00 SECTION METERS METERS	DRILLING DIST. LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
	0 0 1 0.5 1 0.5 1 0.6 2 0R6. CH. 3 39 3 78 4 0R6. CH. 5 1 5 1 5 1 5 1 6 1 7 1 7 1 <td>Dark greenish gray (56 4/1) TERRIGENOUS MUD with numerous greenish gray (56 7/1) corser horizons. Some of these sandy mud layers suggest grading. DOMINANT LITHOLOGY: SS 3-39 cm 105 Quartz and Feldspar 605 Clay 305 Carb. unspec. X-ray: 2-ray: Calcite $\frac{3-99 \text{ to } 100}{55} \frac{3-101 \text{ to } 102}{55}$ Quartz 24% 18% Feldspar 8% 6% Layered $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Calcite $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Calcite $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Carb. bomb 5% 5% Carb. bomb 16% 19% Carb. bomb 16% 19% $\frac{5-60 \text{ to } 62}{55}$ Carb. bomb 1% Grain Size: $\frac{5-60 \text{ to } 62}{18}$ Carb. bomb 1% Grain Size: $\frac{5-60 \text{ to } 62}{18}$ Silt 39% Clay 60%</td> <td></td> <td></td> <td>0RG. CH. VOID VOID ORG. CH. VOID VOID VOID VOID VOID</td> <td>Dark greenish gray (56 4/1) TERRIGENOUS MUD. Numerous sandy mud layers, some show grading. $\frac{X-ray:}{2-126 to 128} \frac{4-16 to 18}{104}$ Quartz 19% 18% Feldspar 9% 5% Layered silicates 62% 67% Carb. bomb 10% 10% $\frac{6-58 to 60}{13\%}$ Quartz 20% Feldspar 5% Layered silicates 62% Carb. bomb 13% Grain Size: $\frac{2-126 to 128}{13} \frac{4-16 to 18}{0\%}$ Silt 38% 49% Clay 61% 51% Sand $\frac{5-58 to 60}{1\%}$ Silt 38% 49% Site 379A, Core 41, 377.5-379.5 m: 0.5 m RECOVERE SAME FACIES, NOT SHOWN</td>	Dark greenish gray (56 4/1) TERRIGENOUS MUD with numerous greenish gray (56 7/1) corser horizons. Some of these sandy mud layers suggest grading. DOMINANT LITHOLOGY: SS 3-39 cm 105 Quartz and Feldspar 605 Clay 305 Carb. unspec. X-ray: 2-ray: Calcite $\frac{3-99 \text{ to } 100}{55} \frac{3-101 \text{ to } 102}{55}$ Quartz 24% 18% Feldspar 8% 6% Layered $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Calcite $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Calcite $\frac{3-104 \text{ to } 105}{165} \frac{3-107 \text{ to } 108}{192}$ Carb. bomb 5% 5% Carb. bomb 16% 19% Carb. bomb 16% 19% $\frac{5-60 \text{ to } 62}{55}$ Carb. bomb 1% Grain Size: $\frac{5-60 \text{ to } 62}{18}$ Carb. bomb 1% Grain Size: $\frac{5-60 \text{ to } 62}{18}$ Silt 39% Clay 60%			0RG. CH. VOID VOID ORG. CH. VOID VOID VOID VOID VOID	Dark greenish gray (56 4/1) TERRIGENOUS MUD. Numerous sandy mud layers, some show grading. $\frac{X-ray:}{2-126 to 128} \frac{4-16 to 18}{104}$ Quartz 19% 18% Feldspar 9% 5% Layered silicates 62% 67% Carb. bomb 10% 10% $\frac{6-58 to 60}{13\%}$ Quartz 20% Feldspar 5% Layered silicates 62% Carb. bomb 13% Grain Size: $\frac{2-126 to 128}{13} \frac{4-16 to 18}{0\%}$ Silt 38% 49% Clay 61% 51% Sand $\frac{5-58 to 60}{1\%}$ Silt 38% 49% Site 379A, Core 41, 377.5-379.5 m: 0.5 m RECOVERE SAME FACIES, NOT SHOWN

S-T - - Cor Cat Explanatory notes in Chapter 1

Core Catche

72

Site 379	Hole A	Core 42	Cored Interva	al: 379.5-387.0 m	Site 379 Hole A Core 43 Cored Interval: 387.0-396.5 m
AGE ZONE	FOSSII CHARACTI NANNOS NANNOS NANNOS POLLEN	SECTION METERS	DRILLINGDIST.	LITHOLOGIC DESCRIPTION	BOX HITHOLOGIC DESCRIPTION HITHOLOGIC DESCRIPTION HITHOLOGIC DESCRIPTION
	ST	0 0.51 1 1.0 2 2 4 4 - Core Catcher	VOID VOID VOID VOID ORG. CH. VOID VOID VOID VOID	Dark greenish gray (56 4/1) TERRIGENOUS MUD with numerous silt to sandy mud layers, some suggest grading. Some clay layer without any carbonate content or in Section 5. DOMIMANT LITHOLOGY: SS 3-119 cm 255 Quartz and Feldspar <55 Pyrite 305 Carb. unspec. The bottom of the coarser layers are often rich in pyrite. X-ray: X-ray: X-ray: Z-ray: Calcite 3-37 to 39 Grain Size: Sand 3-37 to 39 Silicates 63% 63% Silicates 53% 63% Silicates 53% 50% Sili 49% 50% Sili 25% 27	

Site 379	Hole A	Core 45 Cored Interv	al:406.0-415.5 m	Site 37	79	Hole A Co	ore 46 Cored In	iterval: 415.5-425.0) m
AGE ZONE	FOSSI CHARACT SONN	METERS SECTION METERS METERS ADOTOHLIT	LITHOLOGIC DESCRIPTION	AGE	ZONE	FOSSIT CHABACTER ANNOS STRACOD THERS OLLEN	LITHOLOGY	ITHO.SAMPLE	LITHOLOGIC DESCRIPTION
	Т —	O O 0.5 0RG. CH. 1.0 0RG. CH. 2 V010 3 0RG. CH. 0 0RG. CH. 3 0RG. CH. V010 0RG. CH. V010 V010 5 V010 V010 V010 6 0RG. CH. 6 0RG. CH.	Dark greenish gray TERRIGENOUS MUD with numerous silt layers, some suggest grading.The bottom of the silt layers in Section 4 is pyrite rich.DOMINANT LITHOLOGY: SS 2-86 cm 105% Quartz and Feldspar 35% Carb. unspec.X-ray*: 2-91 to 93 4-49 to 51 Calcite Quartz 40%A-49 to 51 Calcite Quartz 40%Calcite 2-91 to 93 4-49 to 51 Calcite Quartz 40%6-138 to 140 Calcite 16% Dolomite Calcite 23%Carb. bomb 20% 20%Carb. bomb 20% 20%Carb. bomb 20% 20%Carb. bomb 20% 20%Carb. bomb 20% 20%Carb. bomb 18% Grain Size: 20%Carb. bomb 18% Grain Size: 20%Carb. bomb 18% Grain Size: 20%Carb. bomb 18% Grain Size: 	Explan	atory n	т — с — с оtes in Chapter :	0.5 0RG. CH. 1.0 VOID		Dark greenish gray TERRIGENOUS MUD with lighter colored layers of silt to sandy mud, some of them indicate turbidites. X-ray: Calcite 19% 20% Quartz 22% 30% Feldspar 11% 15% Layered 33% Carb. bomb 20% 22% Garb. bomb 20% 22% Garb. bomb 22% Grain Size: 2-112 to 114 4-86 to 88 6-12 to 14 Sand 2% 15% 22% Silt 61% 70% 85% Clay 37% 29% 13%

Site 379	Hole A Core 47 Cored Inter	rval: 425.0-434.5 m	Site 379 Hole A Core 48 Cored Interval: 434.5-444.0 m
AGE ZONE	CHARACTER NOTTO		VICTOR CONTRACTOR VICTOR VICTO
	0 0 1 0.5 1 0.6. СН. 1 0.0 2 V010 V010 V010 V010 V010 V010 V010 V010 V010 V010 V010 0R6. СН. V010 V010 V010 0R6. СН. V010	Dark greenish gray TERRIGENOUS MUD with detrital silt rich layers, some graded. The darker N3 intervals are at most pure clay. DOMINANT LITHOLOGY: SS 4-74 cm 303 Quartz and Feldspar 403 Clay 305 Carb. unspec. Some carbonate seems to be of authigenic origin. 56 4/1 X-ray: 2-48 to 50 4-14 to 16 Calcite 2-48 to 50 4-14 to 16 Calcite 11x 42x Carb. bomb 27x 13x Grain Size: Carb. bomb 27x 13x Silt 73x 55x Clay 15x 38x 34 56 4/1 130	$T = F = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

75

Site 379	Hole	A	Core 49 Cored Inte	erval: 444.	.0-453.5 m	Site	379	Hole A		Co	re 50	Cored In	terv	val:4	453.5-463.0 m
AGE 70NF	5 POLLEN	FOSSIL ARACTER OOSLAGCOD	NOLICIAN KITHOLOGY	DRILLING DIST. LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN R	RACTER COUNTER	OTHERS	METERS	LITHOLOGY	DRILLINGDIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
	Т		0 0 0 0 0 0 0 0 0 0 0 0 0 0	87	Dark greenish gray (56 4/1) TERRIGENOUS MUD with numerous lighter colored layers of detrital stit. These layers have sharp lower contacts and some exhibit obvious size grant and Feldspar 355 Clay 305 Carb. unspec. Probably some authigenic calcite present. X-ray: 1-21 to 23 5-80 to 82 Calcite 19% 18% Dolomite 2% 2% Quartz 21% 14% Feldspar 10% 4% Layered silicates 48% 62% Carb. bomb 21% 20% Grain Size: Terb. bomb 21% 20% Grain Size: Sand 0%% 65% Clay 13% 34% Carbonate: 5-122 to 130 Corg. 5-122 to 130 Corg.			т		0 11 2 3 3 4 4	0.5	VOID ORG. CH.		90	Dark greenish gray CALCITE rich MD with numerous sill layers occurs in Sections 1 to 3. In the upper part of Section 5 a distinct cyclic sedimentation occurs. The cycles are about 3-6 on thick and consist of greenish gray (56Y 6/1) nearly pure SEEKREIDE and dark greenish gray (56Y 4/1) calcite rich mud. At the base the sequence starts with a fine layer of pyrite, an average 1 to 2 mm thick. There follows a dark clay which facts into the gray clay. Through- out the gray clay mottling occurs and white SEEKREIDE from the over- lying calcite rich mud has been drawn into the burrows. The sequence closes with a white colored SEEKREIDE pundary between the SEEKREIDE and pyrite and clay are always sharp and distinct. Probably authigenic calcite. X-ray: Calcite Te 183 5-31 to 39 Quartz 144 185 Feldspar 7/3 88 Pyrite Tr Tr Layered sillicates 613 43X Carb. bomb 185 31% Grain Size: Sand 05 Sill 603 Clay 403 SGY 4/1 alternating

Site 379	1	ole A		(tore	51	Cored	nterv	al:4	63.0-472.5 m	Sit	e 379	Hole	εA		Co	re 52	Cored In	terv	a1: 4	472.5-482.0 m
AGE	ZONE	POLLEN HANNOS	OSSIL RACTE OSLEVCOD	OTHERS 20	SECTION	METERS	LITHOLOG	DRILLINGDIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN	FOS HARA SONNAN	OSTRACOD. OSTRACOD	OTHERS SECTION	METERS	LITHOLOGY	DRILLING DIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
					0 1 1 2 3	1111 Suntantantantantantantantantantantantanta	ORG. CH. VOID VOID ORG. CH.		78 80 137	Dark greenish gray CALCITE RICH MUD with abundant lighter gray layers of detrital silt, sharp lower contacts, some layers show grading. Medium dark layers (M4) are interspersed with the dark greenish gray calcareous mud. They are very low in carbonate. DOMINANT LITHOLOGY: SS 4-137 2S% Detr. carb. 20% Quartz and Feldspar 5S% Clay MINOR LITHOLOGY (dark layer): SS 4-88 <5% Detr.carb. 10% Quartz and Feldspar 85% Clay $\frac{X-ray:}{2-144 \text{ to } 146 6-114 \text{ to } 115 19\% 10\% 19\% 10\% 19\% 10\% 19\% 10\% 19\% 10\% 19\% 10\% \text$			T			0 1 2 3 4	0.5	VOID VOID ORG. CH.		26	Dark greenish gray (56Y 4/1) TERRIGENOUS MUD with abundant greenish gray (56Y 6/1) distrital silt layers in a sequence between 5-10 cm. DOMINANT LITHOLOGY: SS 3-26 cm [0, 30, 70] ISS Quartz and Feldspar 50% Clay 50% Carb. unspec. X-ray: Calcite 1-31 to 33 Calcite 19% Quartz 16% Feldspar 10% Layered silicates 55% Carb. bomb 19% Grain Size: I-31 to 33 Sand 0% Silt 65% Clay 35%
		т			6 Core Cate	trialities and trialities when	ORG. CH.		129		Exp	lanatory	notes	in (Chapt	er l					4

SITE 379

Hole A Core 53 Cored Interval: 482.0-491.5 m		Site .	379	Hole A	i	Co	re 54	Cored In	iter	val: 4	191.5-501.0 m
FOSSIL CHARACTER NULLOS ECHARACTER NULLOS ELEKS NULLES ELEKS NULLOS ELEXS NULLOS EL	LITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN	OSTRACOD STRACOD	OTHERS	METERS	LITHOLOGY	DRILLING DIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
T	Dark greenish gray CALCITE RICH MUD with numerous silt layers, some show grading.					2		ORG. CH.			Dark greenish gray (56 4/1) CALCITE RICH MUD with numerous silt layers, some look graded, others laminated. $\frac{X-ray:}{Calcite} \frac{4-24 to 26}{255}$ Quartz 155 Feldspar 55 Layered siltcates 553 Carb. bomb 253 Grain Size: Sand $\frac{4-24 to 26}{15}$ Silt 712 Clay 283
						5	and and an an	ORG. CH.			

Core Catcher

78

Site 379

AGE

Site 379	Hol	le A		(Core	55	C	ored I	nterv	val:	1:501.0-510.5 m	Site	379	Hol	e A		Co	re 56	Cored In	ter	val:	510.5-520.0 m
AGE ZONE	POLI EN	FOR SOUNDA	OSTRACOD DY N	0THERS	SECTION	METERS	LIT	HOLOGY	DRILLINGDIST.	LITHO SAMPLE	HILLITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN	FO CHAR SONNAN	OSTRACOD, OSTRACOD	OTHERS SECTION	METERS	LITHOLOGY	DRILLINGDIST.	LITH0.SAMPLE	LITHOLOGIC DESCRIPTION
	τ			-	0 0 1 1 1 2 2 3	5 0 11111111111111111111111111111111111	OR OR OR	G. CH.		11	Cycles 2-5 cm thick of CALCITE RICH MUD (5GY 6/1) grading up to medium dark gray (N4) CLAY. The light colored layers are burrowed down into the black clay. DOMINANT LITHOLOGY: SS 2-110 cm [0, 20, 80] 10% Quartz and Feldspar 45% Clay 5% Pyrite 40% Calcite						0	0.5	VOID ORG. CH.		25 43	Cycles of grayish olive CALCITE rich MUD to dark (N4) CLAY. Silt layers are present at 45 and 120 cm in Section 1 and at 17 19, 29, 30, 54, 140 and 150 cm in Section 3. DOMINANT LITHOLOGY: SS 1-43 cm [0, 40, 60] 35% Clay 2% Pyrite and Micronodules 60% Calcite 15% Nonnos (reworked) X-ray: 1-51 to 53 Calcite 15% Dolomite 2% Quartz 35% Feldspar 26% Layered silicates 22% Carb. bomb 17% Grain Size: 1-51 to 53 Sand 6% Silt 77%

6

Catche

Site 379	Hole A	C	ore 57	Cored I	nterv	al:	520.0-529.5 m	Site	379	Ho1	eΑ)	Core	58 Cored In	ter	val:	529.5-539.0 m
AGE ZONE	FOSS CHARAC NONNON	OTHERS NATURA	METERS	LITHOLOGY	DRILLINGDIST.	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION	AGE	ZONE	POLLEN	CHAR SONNAN	OSTRACOD. TTSS	OTHERS 2	SECTION	LITHOLOGY	DRILLINGDIST.	LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
	51 —		0.5 1 1.0 22 33 4	ORG. CH.		131	Distinct cycles of CALCITE rich MUD and CLAY as seen before. Burrowing of the lighter CALCITE RICH mud into the clay is observed. Detrital silt layers are present. DOMINANT LITHOLOGY: SS 3-131 cm [0, 60, 40] 40% Clay 60% Calcite $\frac{X-ray:}{5-100 \text{ to } 102} \frac{\text{CC}}{25\%}$ Quartz 19% 12% Feldspar 12% 55% Carb. bomb 26% 25% Carb. bomb 26% 25% Carb. bomb 26% 25% Carb. bomb 26% 25% Carb. bomb 26% 25% Silt 78% 64% Clay 21% 36%							0 1 1 2 3 4	ORG. CH.		90	2-5 cm cycles of greenish gray (SGY 6/1) clay and medium gray (N5) calcite rich mud. The lighter material is burrowed down into the darker clay. For detailed description of these cycles see Core 50. Numerous silt layers occur, some are laminated, some suggest grading. DOMINANT LITHOLOGY (Carbonate): SS 4-90 cm 60% Carbonate DOMINANT LITHOLOGY (Clay): SS 4-90 cm 85% Clay 60% Carbonate DOMINANT LITHOLOGY (Clay): SS 4-92 cm 85% Clay 10% Quartz and Feldspar 35% Pyrite and Opaque X-ray: <u>Calcite 18% 28%</u> Dolamite 0% 1% Quartz 18% 11% Feldspar 11% 4% Layered sillcates 53% 56% Carb. bomb 18% 29% Grain Size: <u>Calcit 22%</u> Silt 73% Clay 25%

S

111

Core Catcher

Sit	379	Hole	A		Co	re	59	Cored 1	interv	a1:	539.0-548.5 m		Site	e 37	9 H	lole A		Co	re 60	0 0	Cored Int	erva	: 548.5-558.0 m		
AGE	ZONE	POLLEN	FOS HARA SONNAN	OSTRACOD BIL	OTHERS	METEDS	LICI CUO	LITHOLOGY	DRILLINGDIST.	LITH0.SAMPLE	LITHOLOGIC	DESCRIPTION	AGE		ZONE	POLLEN 2	OSTRACOD. TISS	OTHERS 2	METERS	LIT	THOLOGY	DRILLINGDIST.	LIT	HOLOGIC DESCRIPTION	
					3			VOID VOID ORG. CH.		51 110 140	The top greenist TERRIGES silt and 3 the c; gray car gray (NE DOMINANT SS 3-51 [0, 65, 452 Quan SS Hear 15% Clay DOMINANT 3-110 cn 10% Quar 20% Carb 20% Car	of the core is a dark h gray (5GY 4/1) NOUS NUD with abundant d sand layers. In Section yclic deposition of greenish fonate mud and dark greenish 5) clay starts again. T LITHOLOGY: TLITHOLOGY: T LITHOLOGY (5GY 6/1): m rtz and Feldspar yite bonate (calcite) T LITHOLOGY (N3): m 90] rtz and Feldspar yies b. unspec. 100 to 102 3-83 to 95 5-32 to 44 17% 11% 12% 37% 21% 12% tes 28% 64% 63% comb 19% 11% 19% 12e: 100 to 102 3-83 to 95 4% 0% 86% 55% 10% 40% te: caCos Corg. o 150 19% 0.4% 13 23% 0.5%	Expl	llanı	atory no	tes in	Chap	2 3 4 5 - CC C	0.5-		6. CH.		Site 379A,	Distinct cycles of SEEKREIDE and CLAY. See description Core 50. X-ray: 2-56 to 57 2-58 to 59 2-75 to 1 Calcite 23% 58% 32% Quartz 24% 7% 15% Feldspar 12% 3% 7% Layered silicates 39% 32% 46% Carb. bomb 25% 58% 32% Calcite 63% 22% Dolomite 0% 0% 0% Quartz 6% 15% Feldspar 0% 5% Layered silicates 31% 53% Carb. bomb 63% 22% Calcite 63% 22% Calcite 63% 22% Calcite 53% 23% Carb. bomb 63% 22% Calcite 55% 0-562.0 m: NO RECOVERY	<u>34</u>
		ST	-	F	- 0	atch	er	5																	

Site 379	Hole	A		Co	re 6	2	Cored 1	nter	va1	562.0-567.5	m					Site	379	Hole	A		Cor	e 64	Cored 1	nter	val:5	77.0-586.5 m		
AGE ZONE	POLLEN	FOSS	OSTRACOD. HI	OTHERS	METERS		LITHOLOGY	DRILLING DIST.	I THO SAMPLE		L	.ITHOLOGI	IC DESCRI	PTION	а.	AGE	ZONE	POLLEN	FOS HARA SONNEN	OSTRACOD, 11 IS	SECTION	METERS	LITHOLOGY	DRILLING DIST.	LITH0.SAMPLE	1	LITHOLOGIC DESCRIPTION	
	Ţ	-	F		0.5 1.0		V01D			Site 37	79A, Core	SEEKRE interb X-ray: Calcit Dolomi Quartz Feldsp Layere silli Carb. 63, 567.	EIDE and 1 bedded. 4-35 to te 16 tite 22 cates 622 bomb 18: 5-577.0 m	CLAY cyc1 37 % % % % %	COVERY						0 1 2 3 4	1.0	VOID VOID ORG. CH. VOID VOID		95		Dark greenish gray (5GY 4/) SEEKREIDE to CALCITE RICH SANDY MUD. Lower part of the core is a turbidite. DOMINANT LITHOLOGY: SS 1-95 cm 40% Carb. 60% Clay	

VOID VOID VOID

15

Core Catcher

.

Site 379	Hole A	Core 65	Cored Interv	val: 586.5-596.0 m_	Hole A Core 66 Cored Interval: 596.0-605.5 m	
AGE	FOSSI CHARACT NANNON NANNOSTRACOD	OTHERS 2 SECTION METERS	LITHOLOGY NOUTIT	STARKS: LITHOLOGIC DESCRIPTION	FOSSIL CHARACTER UNARACTER NUCLING NUTHOLOGY NUCLING N	LITHOLOGIC DESCRIPTION
		0 0.5 1 1.0 2 2 3	ORG. CH.	$\begin{array}{c} Cycles of light olive gray (5% 6/1) CLAYEY SEEKREIDE and TERRIGENOUS MUD to CLAY as described before (See Core 50). \\ Occasional intercalation of laminated and cross-laminated, silt layers occur. \\ DOMINANT LITHOLOGY (5Y 6/1): SS 6-65 cm 2000 SS Authigenic calcite SS 6-70 cm 2000 Clay 2000 Authigenic calcite SS 6-70 cm 2000 Clay 35% Carb. unspec. 5% Quartz and Feldspar \frac{X-ray:}{55} Calcite \frac{108}{128} \frac{228}{228} \frac{553}{555} Calcite \frac{108}{128} \frac{228}{255} \frac{553}{255} Calcite \frac{108}{128} \frac{228}{255} \frac{553}{255} Calcite \frac{108}{128} \frac{228}{255} \frac{553}{255} Calcite \frac{108}{128} \frac{228}{255} \frac{553}{255} Calcite \frac{108}{128} \frac{228}{255} \frac{255}{255} \frac{255}{255} Calcite \frac{555}{255} \frac{555}{255} \frac{255}{255} \frac{255}{255}$	0 0.5 1 1.0 2 2 3 0R6. CH. 4 VOID 4 VOID 4 Core Core Core Core Core Core	Dark greenish gray (56 4/1) TERRIGENOUS MUD. A turbidite of sandy silt to silt size is present between 117 to 132 cm. X-ray: 4-109 to 111 Calcite 12% Quartz 23% Feldspar 43% Layered silicates 22% Carb. bomb 12% Grain Size: Sand 4-109 to 111 Sand 4-109 to 111 Sand 52% Clay 7%
		6 Core Catche	ORG. CH.	<u>Carbonate:</u> 4-37 to 49 <u>T38</u> <u>0.58</u> 65	notes in Chapter 1	

SITE 379

83

.

- -- --

Site 379	Hole A	Core 67 Cored Inte	val: 605.5-615.0 m		Site 3	79	Hole A		Core 68	Cored In	terval:	615.0-624.5 m
AGE ZONE	FOSSIL CHARACTE NANNOS NANNOS NANNOS	AECTION AETERS ABOTOHLIT	LITHOLOGIC DESCR	RIPTION	AGE	ZONE	FOSS CHARAG SONNAN	OTHERS BIT	SECTION METERS	LITHOLOGY	DRILLING DIST. LITHO.SAMPLE	LITHOLOGIC DESCRIPTION
		0 0.5 1 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	70 Distinct cycl of olive gray SEEREIDE wife gray (SG 4/1) black MUD to before (Core The cycles ar turbidites (Core organic and p to sand. Abun occur at the in Section 2. DOMINANT LITH SS 6-110 cm 40% Carb. (Au 10% Quartz ar 5% Pyrite 45% Clay X-ray: Calcite	lic alterations / (SY 6/1) CLAYEY th dark greenish CLAY as described 50). re interrupted by Section 2, 95-130 s, 35-120 cm). ss consist of th diant wood chips top of the turbidite WLOGY: Athigenic calcite) nd Feldspar 20 33 33 35 33 35 35 33 35 35 35					0 0.5 1 1.0 2 2 2 3 3 4 4	V01D V01D ORG. CH. V01D V01D V01D V01D V01D V01D V01D V01D	118	Upper part of the Section is a TERRIGENOUS MUD (56 4/1). The lower part of the section shows cycles of SEEKEIDE with CLAY as described in Core 50. Inter- calation of thick silt layer are frequent, most are graded, thinner ones are laminated. SS 3-118 cm 35% Carb. unspec. 5% Opaque 5% Heavies 55% Quartz and Feldspar SS 5-45 cm 45% Carb. (Dolomite and Calcite) 5% Pyrite and Opaque 50% Clay $\frac{X-ray:}{3-133 \text{ to } 135} \frac{5-97 \text{ to } 99}{28X}$ Calcite 19% 32% Dolomite 3% 0% Quartz 15% 17% Feldspar 6% 7% Layered silicates 57% 44% Carb. bomb 22% 32% Feldspar 38% Feldspar 38% Layered silicates 14% Carb. bomb 12% Grain Size: $\frac{3-133 \text{ to } 135}{2-97 \text{ to } 99}$ Sand $\frac{2%}{28} \frac{27}{28}$ Silt 72% 71% Clay 26% 27%

		c	FOS	SIL	R	N		IST.	ADI F				
JAL I	ZONE	POLLEN	NANNOS	OSTRACOD.	OTHERS	SECTION	LITHOLOG	DRILLING D	LITHO SAM			L	ITHOLOGIC DESCRIPTION
						0	0.5 VOID				5Υ	3/2	Olive gray (5Y 3/2) nannofossil rich mud to medium gray NAMNO OOZE. DOMINANT LITHOLOGY: SS 4-70 cm SSX Nannos 45% Clay $\frac{X-ray:}{Calcite} \frac{1-41 to 42}{133}$ Quartz 18% Feldspar 6%
						2	VOID						Layered silicates 63% Carb. bomb 13%
						3	VOID VOID				5Y	3/2	<pre>Cores 1, 2 - No recovery Cores 3, 4, 5 - Entire core removed for organic geochemistry sample Cores 7 - 20 cm recovery Cores 8, 9 - Entire core removed for organic geochemistry sample</pre>
						4	VOID		70	-	N5		
						5					5Y 5Y (N8 N5	3/2 5/2 streaks)	
						6	VOID VOID		10		N5		

SITE 379

1. 10.

113

