51. BASIC ORGANIC GEOCHEMICAL DATA OF LEG 48 MATERIAL

T. Doran, P.G. Johnson, P.J.D. Park, G.C. Speers, and J. Williams, Exploration and Production Division, BP Research Centre, Sunbury-on-Thames, Middlesex, England

INTRODUCTION

Composite samples from each of the sites drilled on DSDP Leg 48 were selected for examination by the shipboard geochemist. The samples were placed in carefully cleaned containers, supplied by British Petroleum Corporation. The canned samples were frozen immediately and maintained in this state throughout the leg and thereafter, prior to analysis. A list of the samples collected is given in Table 1 together with relevant characterization data from the summary log.

Additional samples from Site 402 were obtained from the IFP Laboratories in order to extend our coverage of the sampled intervals, particularly the more organic-rich Cretaceous shales. Details of these samples are also included in Table 1. Additional material supplied by the IFP Laboratories was in the form of dry, ground sediment.

EXPERIMENTAL METHODS AND RESULTS

The bulk of the water in the frozen samples was removed by freeze-drying, without disruption of the core material; residual water, remaining after this treatment, was removed by drying the samples over phosphorus pentoxide in a desiccator. Small portions of the dried cores were removed, mounted in resin and polished, and the reflectance of vitrinitic material present was determined by standard oil immersion procedures (Table 2). At this stage, small amounts of sample were also removed and used for kerogen preparation by hydrochloric acid/hydrofluoric acid treatment under nonoxidizing conditions. Visual microscopic examinations of the kerogen concentrates were made, the results of which are summarized in Table 3. Examination of the gross lithology and a brief X-ray diffraction analysis of each sample were made, the results of which are summarized in Table 4.

The remainder of each sample was then ground to <106 μ m BSS and stored for further use in clean, dry bottles. The bottles, and all other glassware used throughout the work, were thoroughly cleaned by washing first with methylene chloride, then by immersion in chromic acid and, finally, by washing with doubly distilled water; drying in an oven followed.

If sufficient sample was available, 100 g of core material was solvent extracted. This operation was carried out for 48 hours in a Soxhlet extractor fitted with a glass fiber thimble. The thimble had been extracted extensively with methylene chloride, followed by heating at 450°C for 16 hours. The solvent used in these extractions, and at all other stages of this work, had been previously redistilled from Analar Reagent grade material in a 40-plate distillation apparatus. Each solvent was tested prior to use by evaporating 300 ml to

dryness, dissolving in 10 μ l of solvent, and injecting 0.4 μ l of the solution directly into a gas chromatograph running at maximum usable sensitivity. Only solvents giving no peaks other than that of the solvent were used for this work.

The Soxhlet extracts were treated with copper powder to remove any elemental sulfur and filtered through a glass sinter. They were then evaporated to dryness by gentle blowing with filtered, dry nitrogen on a heated block maintained at 35°C. The residual total soluble extract (TSE) was weighed and then fractionated by liquid chromatography over silica gel. The n + p (saturate alkane) fraction was eluted by *n*-heptane and the combined aromatics + heterocyclics (A + H) and residual material were eluted by benzene/methanol (3:1 v/v). The per cent weight TSE for each sample is given in Table 5 together with other data obtained on the sediment extracts.

Three grams of unextracted material from each core was decarbonated using the following procedure: 30 ml 2N HCl was added to the sample and the bulk of the liquid decanted after effervescence had ceased. A further 30 ml of 2N HCl was added until no further effervescence occurred. A final treatment with 10 ml concentrated HCl (13N) was given with the container in an ultrasonic bath for 2 hours at 40°C. The mixture was diluted with distilled water and repeatedly washed until neutral. The residue was dried in a vacuum oven and, finally, in a desiccator over phosphorus pentoxide. The difference in weight between the initial and final material was used to calculate the per cent weight HCl soluble material given in Table 5. The total organic carbon content (TOC) of the decarbonated sediment was then determined by a standard combustion procedure, and the values used to calculate the various indexes are given in Table 5.

The n + p fractions obtained from the liquid chromatographic separations of the TSE were examined by gas chromatography. The columns used were SGE SCOT type with SE 30 as stationary phase and totally splitless injection was employed. Conditions for all runs were: initial hold for 12 minutes at 100°C, followed by programming at 3°C/ minute up to the final hold at 290°C. Flame ionization detectors and injectors were maintained at 350°C. Examples of the chromatograms obtained are shown in Figures 1 to 8. Carbon preference indexes (CPI) were calculated for *n*-alkanes in the C₁₈ to C₃₂ range, together with the pristane/ phytane ratio (Pr/Ph); these values are also included in Table 5. Distribution profiles of the *n*-alkanes were obtained from the quantitative date of the gas chromatograms and are illustrated in Figures 9 to 18.

A more detailed examination of a limited number of the n + p fractions was undertaken by capillary column gas chromatography/mass spectrometry, in order to obtain data

	Core	Section	Interval (cm)	Depth (m)	Stage	Lithological Description From Summary Report
Hole 399	2 2 2	1 2 3	5-7; 60-62 38-40; 114-116 20-22; 104-106	63.05-63.62 64.88-65.65 66.20-67.06	Pleistocene	Marly calcareous ooze
Hole 400A	8 8 8 8 8 8	1 2 3 4 5 6	27-29 27-29 27-29 26-28 31-33 31-33	141.27-141.29 142.77-142.79 144.27-144.29 145.77-145.79 147.31-147.32 148.81-148.83	Upper Pliocene	Nannofossil ooze
	18	1-7	(composite)	236.0-245.5	Upper Miocene	Nannofossil chalk
	29	1	0-22	340.50-340.77	Middle Miocene	Nannofossil chalk Marly nannofossil chalk
	39 39	1 2	0-10 0-10	435.50-435.60 437.0-437.1	Lower Miocene	Marly nannofossil chalk
	39	3	0-10	438.50-438.60		Nannotossil chalk
	49 49 49	2 3 4	0-10 0-10 0-3	532.0-532.1 533.5-533.6 535.0-535.3	Middle Eocene	Siliceous marly chalk
Hole 401	5	1-5	All 0-5		Middle Eocene	Nannofossil chalk
	14 14 14 14 14	1 2 3 4 5	1-8 1-8 1-6 1-6 1-7	198.51-198.58 200.01-200.08 201.51-201.56 203.01-203.06 204.01-204.07	Upper Palaeocene	Nannofossil chalk
Hole 402	1 1 1	1 2 3	1-5 1-5 1-7	40.01-40.05 41.51-41.55 43.01-43.05	Pleistocene	Nannofossil marly ooze
	5 5 5 5	1 2 3 4	15-23 10-17 0-9 0-9	127.65-137.73 129.10-139.17 130.50-130.59 132.00-132.09	Upper Eocene	Siliceous marly nannofossil chalk
Hole 402A	4 4 4	1 2 3 4	6-15 0-6 122-125 0-6	$\begin{array}{c} 165.06\text{-}165.15\\ 167.00\text{-}167.06\\ 169.72\text{-}169.75\\ 170.00\text{-}170.06 \end{array}$	Middle Eocene	Siliceous marly nannofossil chalk
	11	1			Lower Cretaceous	Calcareous mudstone
	16 16	1 2			Lower Cretaceous	Marly chalk
	18A 18A	1 2			Lower Cretaceous	Carbonaceous marly limestone
	18B 18B 18B 18B	1 2 3 4			Lower Cretaceous	
	32 32	2 3			Lower Cretaceous	Dolomitic marly limestone
	32	6			D1	Carbonaceous calcareous mudstone
Hole 403	333	1 2 3	53-60 126-131 37-45	14.53-14.60 16.76-16.81 17.37-17.45	Pleistocene	Calcareous mudstone
	14	1	63-67, 125-129, 144-150	119.13-117.17, 119.75-119.77, 119.97-120.0	Upper Miocene	Nannofossil ooze
	14	2	0-8	120.0-120.08	120201120 0000	
	26 26 26 26	1 2 3 4	0-6 0-1 0-6 0-6	232.50-232.56 234.0-234.01 235.50-235.56 237.00-237.06	Middle Eocene	Marly nannofossil chalk Siliceous nannofossil chalk
	29 29 29	1 2 4	9-17 78-83 6-13	261.09-261.17 263.28-263.33 265.56-265.63	Lower Eocene	Mudstone

TABLE 1 Samples Examined

	Core	Section	Interval (cm)	Depth (m)	Stage	Lithological Description From Summary Report
	35 35 35	1 2 3	72-82 89-96 128-136	318.72-318.82 320.39-320.46 322.28-322.36	Lower Eocene	Mudstone
	35	4	39-46	322.89-322.96		
	40	2	10-13, 50-53 105-109	375.10-375.13, 375.50-375.53, 376.05-376.09	Lower Eocene	Mudstone
	40	3	0-5, 88-91	378.00-378.05, 378.88-378.91		
Hole 404	17 17	1 2	87-90 20-33	294.87-294.90 295.70-295.83	Lower Eocene	Mudstone
	17	3	0-11	297.00-297.11		
	21 21 21	2 3 4	0-10 0-10 0-6	333.50-333.60 335.00-335.10 336.00-336.06	Lower Eocene	Mudstone
	22	2	16-24	343.16-343.24	Lower Eocene	Mudstone
	22 22	3 5	110-120 35-42	345.60-345.70 347.35-347.42		
Hole 405	4	1	0-22	36.50-36.72	Pleistocene	Marly nannofossil ooze
	10	1-7	All 0-5	84.00-93.5	Middle/Lower Eocene	Nannofossil ooze
	13 13 13	2 3 5	1-9 76-85 0-10	114.01-114.09 116.25-116.35 118.50-118.60	Lower Eocene	Siliceous marly nannofossil chalk mudstone
	17 17 17 17	2 3 4 5	110-120 110-120 50-60 50-60	162.10-162.20 162.60-162.70 164.50-164.60 165.50-165.60	Lower Eocene	Siliceous calcareous mudstone
	40	1 2	7-12, 144-150 29-33, 141-150	369.07-369.12 370.44-370.55 370.79-370.83	Lower Eocene	Siliceous calcareous mudstone
	42	1 3	7-17 18-27, 100-112	371.41-371.50 388.07-388.17 391.18-391.27 392.00-392.12	Lower Eocene	Siliceous calcareous mudstone
Hole 406	2 2 2	2 3 4	98-107 107-122 0-7	64.48-64.57 66.07-66.22 66.50-66.57	Pleistocene	Marly nannofossil ooze
	13 13 13 13	1 2 3 4	138-140 54-59 32-38 104-112	452.88-452.90 453.54-458.59 454.82-454.88 467.04-467.12	Upper Miocene	Nannofossil chalk
	24 24	1 2	33-43 67-75	556.83-556.93 558.67-558.75	Middle Miocene	Siliceous chalk
	32	3	17-26, 12-15	633.67-633.76 633.62-633.65	Upper/Middle Oligocene	Calcareous and siliceous chalk
	32 32	4 5	133-141 46-56	637.83-637.91 638.46-638.56		
	39	1	0-7	698.50-698.57	Upper Eocene	Calcareous and siliceous chalk
	39	2	26-34	700.09-700.24		
	39	4	17-24	702.67-702.74		
	39	5	69-70	704.69-704.70		
	47 47 47	1 2 3	100-104 40-51 93-99	775.00-775.04 776.40-776.51 778.43-778.49	Lower Eocene	Calcareous claystone

TABLE 1 – Continued

TABLE 2 Vitrinite Reflectance Measurements

(14m)	Mean Vitrinite Reflectance									
Core	Autochthonous	Allochthonous								
399-2	N.D.									
400A-8			0.86(6)							
400A-18	0.32(5)			1.27(10)						
400A-29		0.49(1)								
400A-39			0.82(9)	1.38(1)						
400A-49	N.D.									
401-5			0.89(3)							
401-14	N.D.									
402-1	0.33(19)		0.63(1)							
402-5	0.30(2)		0.92(1)							
402A-4	0.34(4)	0.57(1)	0.85(2)							
402A-11	0.37(9)	0.59(2)	0.84(9)							
402A-16	0.34(19)	0.58(2)								
402A-18A	N.D.									
402A-18B	0.34(20)									
402A-32	0.37(21)									
403-3	1000 000 000 1 000 000	0.45(7)								
403-14	N.D.									
403-26	N.D.									
403-29	0.28(20)									
403-35	0.25(10)		0.81(1)							
403-40	0.32(19)		0.60(1)							
404-17	0.33(3)		0.86(2)	1.08(3)						
404-21	0.33(2)		0.80(7)							
404-22	0.34(20)									
405-4			0.71(6)	1.20(5)						
405-10	N.D.									
405-13		0.59(2)	0.77(1)							
405-17	0.28(2)	0.46(4)	0.71(1)							
405-40	0.33(5)			1.13(1)						
405-42	0.36(9)	0.58(2)								
406-2	0.26(1)	0.45(5)	0.70(14)							
406-13	N.D.	10								
406-24	0.37(19)		0.82(1)							
406-32	0.32(2)		1000 COLOR OF CALCOR 1	1.02(1)						
406-39				1.06(1)						
406-47	N.D.			1000000000						

Note: Figures in parentheses are the number of separate determinations. N.D. = no determination possible.

on sterane and pentacyclane distributions. The results of these analyses are summarized in Tables 6 and 7.

The amount of soluble extract obtained from the various frozen composite shipboard samples was insufficient for stable carbon isotope determinations ($\delta^{13}C_{PDB-1}$) as well as for the other analyses normally undertaken. However, in the case of the larger samples subsequently made available from the IFP, sufficient extract was available for a comparison of the $\delta^{13}C$ values of the TSE and sediment kerogen, without precluding the other analyses. Extracts and kerogen concentrates were therefore quantitatively combusted to carbon dioxide and their ${}^{13}C'{}^{12}C$ ratios determined on a VG Micromass 602C Isotope Ratio Mass Spectrometer. Results of these measurements are given in Table 8.

ORGANIC GEOCHEMICAL SUMMARIES

Bay of Biscay

Site 399: Only shallow Pleistocene calcareous ooze examined. Low organic carbon content ($\sim 0.2 \%$ wt.) Very low maturity, indicated by visual kerogen studies. Evidence

for significant amounts of terrestrial plant debris as well as algal matter. Highly immature n-alkane distribution.

Site 400: Deepest sample collected by shipboard geochemist in middle Eocene at \sim 535 meters. Little autochthonous vitrinite evident in samples examined. Sample from Core 18 indicated low maturity with some evidence of reworked vitrinite present. Pliocene Core 8 showed evidence of terrestrial debris as well as algal matter, all of very low maturity. Very low organic carbon contents in highly calcareous samples. Generally low TSE/TOC ratios and low hydrocarbon contents, but *n*-alkanes had fairly low CPI values.

Site 401: No indications of autochthonous vitrinite. Both samples highly calcareous with very low organic carbon contents; *n*-alkanes had quite low CPI values.

Site 402: Shipboard samples only extended to middle Eocene, but were supplemented by IFP Lower Cretaceous samples. Low reflectivity autochthonous vitrinite present in nearly all samples indicating low maturity. Some evidence of reworked organic matter. Middle Eocene sample showed evidence of terrestrial debris and low maturity by visual kerogen studies. Lower Cretaceous shales showed marked evidence of terrestrially derived components and increased maturity compared with shallower samples. Organic carbon contents were moderate to good but hydrocarbon contents were low; n-alkanes still showed marked signs of immaturity. Sterane distribution patterns supported immature indications as did the pentacyclane distributions, with 17β H hopane as a major component. Extract/kerogen δ¹³C values suggested a coaly-type component was present in significant quantities.

Rockall Plateau

Site 403: Low reflectivity autochthonous vitrinite in lower Eocene samples. Visual kerogen studies indicated some terrestrially derived components to be present. Color measurements suggested maturity fairly high, but still below level for significant hydrocarbon generation. Organic carbon contents all low to very low with generally low SAC/TOC values; *n*-alkanes generally had CPI values >1.0. Sterane and pentacyclane distributions indicated higher maturity than Site 402 Cretaceous samples with the pentacyclanes having 17α H hopane as the major component.

Site 404: Samples confined to lower Eocene mudstones. Low reflectivity autochthonous vitrinite suggested low maturity. Visual kerogen studies indicated significant contributions of terrestrial organic debris and maturity level comparable to Site 403. Organic carbon contents were very low with low extracts and very low hydrocarbon contents. CPI values of *n*-alkanes supported maturity indications.

Site 405: Little evidence of autochthonous vitrinite. Low reflectivity of lower Eocene material indicated immaturity. Visual kerogen studies again suggested significant contribution of terrestrially derived detritus, with maturity comparable to, or possibly slightly lower, than Sites 403 and 404. Organic carbon contents all very low, but some high TSE/TOC values were present. Hydrocarbon contents were generally quite low, but *n*-alkane CPI values supported immaturity, with a much more mature value in the deepest sample examined.

.

Т

Descriptional

C.I. Marine

٦

						vascu	lar Plant I	Jebris		1 5	E		Color/	Maturation	Potential	Environment
	Miospores	Phytoplankton excluding Tasmanitids	Tasmanitids		Cuticles	Brown "Wood" (lignite)	Black "Wood" (vitrain fusain)	Finely Disseminated	Sapropelized	Amonthema fall	Amorphous (au	Preservation	1	t	Totenna	entiated a
Site Core	Trace/Rare Common Frequent Abundant		-	Reworking								ood air oor	Threshold?			farine Undiffere pen Marine tear-shore Marin testricted Marin conmarine inknown
Site 300	1-2 3 4 5	1-234 5	1 2 3	- 11	-2345	1-2345	1-2345	1-2 3 4 5	1-2 3 4 5	11-2 3	4 5	0 4 4	123	4 5 6 7		NOZWZD
Core 2	•	•		•	•	•	•	•	•	•		•	•			• ?
Hole 400A				+												
Core 8	•	•			•		•	•		•		•	•			•
Site 402				+						-						
Core 1	•	•	1	•	•	•	•	•				•	•		-	•?
Hole 402A				+												
Core 4	•	. •			•	8	•	•				•	•		2 GAS	· ·
Core 18B					. •			1							? GAS	1 :
Core 16		•						÷.							? GAS	•
Core 18A	Barren			1												Y
Core 32	•	•			•	•	•	•				•	•		? GAS	•
Site 403				+												
Core 29	•	•			•	•	•	•				•			GAS	•?
Core 40	•	•			•	•	•	•				•			GAS	•?
Site 404				+												
Core 21	•	•			•	•	•	•	•			.			GAS	•?
Core 22	•				•	•	•	•	•			•	•		GAS	•?
Site 405				1												
Core 40	•				•	•	•	•	•	•		•	•		-	•
Core 42	•	•			•	•	•	•	•	•		•	•		1 1 - 1	•
Site 406				+						-						
Core 24	•	•			•	•	•	•	?•		•?	•	•			•

TABLE 3 Visual Kerogen Descriptions

1. 01

Site 406: Autochthonous vitrinite reflectance values suggested some increase in maturity with depth, but all samples examined were immature. Visual kerogen studies on middle Miocene siliceous chalks indicated some terrestrially derived components as well as significant amounts of algal matter. Maturity of middle Miocene samples appeared quite low. Organic carbon contents were very low with low extracts and hydrocarbon contents. CPI values of n-alkanes

٢

were >1, but sterane/pentacyclane distributions were similar to Site 403.

Generally, all samples displayed immaturity and kerogens were dominantly gas prone. Eocene organic matter at Sites 403, 404, 405, and 406 appeared mature, or possibly in some components, more mature than organic matter in the Lower Cretaceous shales/mudstones from Site 402.

					X-Ray Diffraction Results	
	Hole	Core	Description of Hand Specimen	Abundant	Present	Trace
	399	2	Mudstone, calcareous, soft, gray	Calcite, quartz	Illite, kaolinite	Dolomite
	400A 400A 400A	8 18 29	Mudstone, calcareous, soft, light gray Mudstone, calcareous, soft, gray-white Lime mudstone, argillaceous, soft, chalky, light gray-white	na Calcite Calcite	na 	na Quartz, illite –
	400A	39	Lime mudstone, argillaceous, soft, chalky, light gray-white	na	na	na
North Margin, Bay of	400A	49	Lime mudstone, argillaceous, soft, chalky, flaky, light gray-green to buff	na	na	na
Biscay	401 401	5 14	Lime mudstone, slightly argillaceous, soft, chalky, light greenish white Lime mudstone, slightly argillaceous, soft, chalky, light buff	Calcite Calcite	Quartz, illite Quartz, illite	– Kaolinite, dolomite
	402	1	Lime mudstone, argillaceous, soft, chalky, light gray	Calcite, quartz	Illite, kaolinite	Chlorite, dolomite
	402	5	Lime mudstone, slightly argillaceous, soft, greenish white	na	na	na
	402A	4	Lime mudstone, slightly argillaceous, soft, greenish white	Calcite	Quartz, illite	
	403 403 403 403 403	3 14 26 29 35	Mudstone, calcareous, gray, soft, chalky Lime mudstone, chalky, soft, white Lime mudstone, chalky, soft, cream Mudstone, gray, friable, slightly micaceous and calcareous Mudstone, gray-green friable, silty texture,	Calcite Calcite Calcite Plagioclase, quartz Plagioclase, quartz	Quartz, illite – Illite/montmorillonite (M.L.) and heulandite Illite/montmorillonite	Kaolinite – – – Calcite
West Margin, Rockall Plateau	403	40	calcareous In thin section, abundant devitrified volcanic glass debris Mudstone, gray, calcareous	Plagioclase, quartz	(M.L.) and heulandite Illite/montmorillonite (M.L.) and heulandite	Calcite
	404 404	17 21	Mudstone, dark gray calcareous Mudstone, dark gray, calcareous	na Quartz	na Illite/montmorillonite (M.L.) plagioclase	na Kaolinite, heulandite
	404	22	Mudstone, mid gray, (calcareous), micaceous	na	na	na
Southern Margin, Rockall	405 405 405 405 405 405	4 10 13 17 40 42	Lime mudstone, buff, soft, chalky, fossiliferous, argillaceous Lime mudstone, light buff brown, chalky Lime mudstone, buff, chalky, argillaceous Mudstone, light gray, calcareous, chalky, soft Shale, calcareous, hard, light gray green with silicified bands Shale, light gray-green, calcareous, hard, fiscile (XPD42S) with burrows filled	Quartz, calcite Calcite Calcite Calcite 42S Calcite	Illite, plagioclase Plagioclase na Montmorillonite Plagioclase, mont- morillonite Plagioclase, mont- morillonite	Kaolinite Heulandite na Plagioclase –
Plateau			with green swelling clay (XRD42G)	42G Montmorillonite (?nontronite)	-	-
	406 406 406 406 406	2 13 24 32 39	Clay, highly calcareous, light gray Lime mudstone, white, chalky, compact Lime mudstone, gray, soft, chalky Mudstone, calcareous, light gray, hard, fissile Mudstone, light gray, calcareous, micro- coefficiency with black alow filled	Calcite Calcite Calcite Calcite	Plagioclase, illite 	Kaolinite – – –
	406	47	tossillerous with black clay-filled burrows and patches (SEM) Shale, (47 Gy) mid gray, soft, good fissility with thin black clay filled trace fossil tracks. Patches of green	(47 GY) Calcite (47GRN) Plagioclase	Montmorillonite/illite Montmorillonite/illite	-

TABLE 4 Observed Core Lithology (major components) of Selected Samples

Note: na: not analyzed.

	Organic Carbon and Soluble Extract Data										
Core	HCl Solu- bles (% wt.)	TOC (% wt.)	TSE (% wt.)	TSE/ TOC (‱)	<i>n</i> + <i>p</i> (% wt.)	SAC/TOC (°/)	CPI	Pr/Ph			
399-2	59.3	0.224	0.0109	49	16.8	8	2.45	0.89			
400A-8	58.7	0.244	0.0033	14	16.5	2	1.22	0.19			
400A-18	71.3	0.095	0.0013	14	15.7	2	1.24	0.43			
400A-29	86.6	0.046	0.0019	42	14.3	6	1.08	0.40			
400A-39	61.9	0.084	0.0026	31	17.80	6	1.30	0.52			
400A-49	21.4	0.063	0.0017	27	30.9	8	1.13	0.60			
401-5	58.2	0.062	0.0019	31	20.2	6	1.11	0.43			
401-14	56.0	0.055	0.0017	30	13.8	4	1.13	0.47			
402-1	33.7	0.431	0.0036	8	23.3	2	2.34	1.19			
402-5	62.7	0.131	0.0023	18	8.6	2	1.12	0.59			
402A-4	45.1	0.148	0.0004	3	10.71	0.8	1.27	0.34			
402A-11	34.8	0.700	0.0027	4	5.7	0.2	1.26	1.05			
402A-16	24.9	1.21	0.0053	4	10.2	0.4	1.65	1.55			
402A-18A	93.3	0.009	0.0020	222	6.3	14	0.97	1.09			
402A-18B	29.9	1.35	0.0052	4	6.8	0.3	1.79	1.70			
402A-32	22.0	1.23	0.0065	5	4.4	0.2	1.90	1.54			
403-3	58.2	0.129	0.0017	13	11.8	1.5	1.77	0.41			
403-14	97.4	0.022	0.0021	94	35.1	33	1.18	0.77			
403-26	85.5	0.028	0.0024	87	16.1	14	1.15	0.78			
403-29	16.1	0.394	0.0016	4	12.8	0.5	1.89	0.36			
403-35	38.4	0.068	0.0012	17	9.6	1.7	1.43	0.37			
403-40	24.1	0.342	0.0030	9	5.8	0.5	1.26	0.29			
404-17	23.6	0.092	0.0010	10	10.4	1.0	1.11	0.48			
404-21	19.2	0.105	0.0011	10	5.1	0.5	1.46	0.38			
404-22	17.5	0.239	0.0012	5	7.2	0.4	1.52	0.66			
405-4	51.0	0.074	0.0025	34	26.4	9	1.76	0.39			
405-10	47.5	0.042	0.0045	108	5.6	6	1.15	0.48			
405-13	42.4	0.092	0.0056	60	14.4	9	1.18	0.49			
405-17	30.0	0.154	0.0016	10	23.0	2.3	1.32	0.57			
405-40	20.6	0.159	0.0011	7	3.4	0.2	1.13	0.54			
405-42	35.2	0.207	0.0020	9	2.6	0.2	1.08	0.72			
406-2	31.3	0.117	0.0056	48	35.0	17	1.36	0.85			
406-13	88.5	0.051	0.0010	20	10.4	2.1	1.27	0.63			
406-24	67.6	0.214	0.0029	14	11.3	1.6	1.23	0.52			
406-32	79.5	0.033	0.0005	14	14.3	2.0	1.19	0.32			
406-39	75.4	0.059	0.0004	12	8.3	1.0	1.20	0.47			
406-47	30.5	0.090	0.0006	7	9.3	0.7	1.29	0.50			

TABLE 5 Organic Carbon and Soluble Extract Data

Figure 1. Gas chromatogram of n + p fraction, Site 399, Core 2.

Figure 2. Gas chromatogram of n + p fraction, Hole 400A, Core 49.

Figure 3. Gas chromatogram of n + p fraction, Site 401, Core 5.

Figure 4. Gas chromatogram of n + p fraction, Site 402, Core 5.

Figure 5. Gas chromatogram of n + p fraction, Site 403, Core 29.

Figure 6. Gas chromatogram of n + p fraction, Site 404, Core 21.

Figure 7. Gas chromatogram of n + p fraction, Site 405, Core 42.

Figure 8. Gas chromatogram of n + p fraction, Site 406, Core 47.

Figure 9. Distribution profiles of n-alkanes derived from gas chromatograms for Cores 399-2, 400A-8, 400A-18, and 400A-29.

Figure 10. Distribution profiles of n-alkanes derived from gas chromatograms for Cores 400A-39, 400A-49, 401-5, and 401-14.

Figure 11. Distribution profiles of n-alkanes derived from gas chromatograms for Cores 402-1, 402-5, 402A-4, 402A-11.

Figure 12. Distribution profiles of n-alkanes derived from gas chromatograms for Cores 402A-16, 402A-18A, 402A-18B, and 402A-32.

Figure 13. Distribution profiles for n-alkanes derived from gas chromatograms for Cores 403-13, 403-14, 403-26, and 403-29.

Figure 14. Distribution profiles for n-alkanes derived from gas chromatograms for Cores 403-35, 403-40, 404-17, 404-21.

Figure 15. Distribution profiles for n-alkanes derived from gas chromatograms for Cores 404-32, 405-4, 405-10, 405-13.

Figure 16. Distribution profiles for n-alkanes derived from gas chromatograms for Cores 405-17, 405-40, 405-42, and 406-2.

Figure 17. Distribution profiles for n-alkanes derived from gas chromatograms for Cores 406-13, 406-24, 406-32, and 406-39.

Relative	Starana	Core									
No. ^a	Designation	402A-16	402A-32	402A-18B	402-1	403-35	403-14	406-32			
20.8	S ₁						20	12			
21.1	S ₂	3					20	14			
21.6	S ₃	43	33	6	40		37	40			
21.7	S						21	13			
22.6	s ₅	19	17		18		15	24			
23.6	S		10								
24.0	S ₇	61	100	65	90						
24.4	S _e		18		15						
24.75	So	26	16		14						
24.9	s ₁₀	56	36	38	40						
26.0	S11	27.5	21	6	33	58	98	63			
26.3	s_{12}^{11}	24	18	13	36	52	81	50			
26.6	S12					23	40	19			
26.75	S14					23	61	36			
26.8	S15						57	31			
27.4	S16	30	32	21	35	49	46	30			
27.5	S17	39	29	29	76	100	100	70			
27.6	S_{10}^{17}	36	46	35	34	48	45	61			
27.65	S10						45	51			
27.8	S20	55	43	48	62	58	58	77			
28	S21	24	21		62	72	83	41			
28.25	S22	56	60	29							
28.4	S22	32	37	28							
28.5	S24	54	52	42	65	64	79	68			
28.6	S25	42.5	32	19	29	45	47	43			
28.7	S26				32	40	40	37			
28.9	S27	31	22	32	41	35	46	50			
29.2	S28	17	16	18	18	68	52	50			
29.4	S20	49	51	51	82	88	59	59			
29.6	S20	40	62	35	76	74	63	62			
29.8	S21	100	74	100	100	99	74	100			
30.65	Saa	32	36	30	20	8	101023				
30.8	S22	20	21	22	12112	171					
31.1	S24	17	26								
31.6	s35	21	13								

^aValues in relation to normal alkane eluting on 20-meter OV1 Jaeggi column; temperature programmed 80 to 260 at 4°C/min, 12 psi He.

Relative								
No. ^a	Tentative Identification	402A-16	402A-32	402A-18B	402-1	403-35	403-14	406-32
27.00	C ₂₇ Mono unsaturated triterpene	26	23	21				9
27.21	Unknown							19
27.39	Unknown					20	24	
27.43	Unknown					20		19
27.76	17-α H-Trisnorhopane	11	9	14	12	26	27	33
28.11	17-β H-Trisnorhopane	38	34	45	27	25	9	20
29.11	C20 Mono unsaturated triterpene	55	56	41	8			
29.20	17-α H-Norhopane	26		11	24	73	72	78
29.69	30-Normoretine	24	15	26	17	32	16	26
30.05	17-α H-Hopane	35	21	35	41	100	100	100
30.21	Mono unsaturated triterpene	27	27	19	10			
30.34	17-β H-Norhopane	54	38	64	31	19		16
30.43	C20 Saturated triterpane	22	16	15	11	22	15	24
31.05	C_{22}^{23} Diastereoisomer of 17- α H-homohopane	6			18	33	31	33
31.19	C_{22}^{-22} Diastereoisomer of 17- α H-homohopane	72	45	80	100	74	23	62
31.40	$17-\beta$ H-Hopane	100	100	78	47	37		37
31.53	Homomoretane	12		15		28		12
31.90	C_{22} Diastereoisomer of 17- α homohopane				9	26	11	23
31.20	17^{-2} H-Bishomohopane						12	21
32.46	Unknown					30		
32.63	17-β Homohopane	68	53	100	83	40		52
32.87	C22 Diastereoisomer of 17-a H-trishomohopane					28	7	14
33.17	C_{22}^{22} Diastereoisomer of 17- α H-trishomohopane					35	7	12
33.58	$17-\beta$ H-Bishomohopane	15	10	15				

 TABLE 7

 Relative Distributions of Pentacyclic Triterpanes From Selected Samples From Leg 48

^aValues in relation to normal alkane eluting on 20-meter OV1 Jaeggi column temperature programmed 80 to 260 at 4°C/min, 12 psi He.

TABLE 8 Stable Carbon Isotope Values of Kerogens and Extracts From Hole 402A, Leg 48

IFP Sample No.	Core	Section	δ^{13} % of Total Soluble Extract	δ ¹³ C‱ of Kerogen
24168	18	1-4	- 28.1	- 22.9
24169	11	1	- 27.1	- 23.4
24171	16	1-2	- 27.6	- 23.7
24172	18	1-2	- 26.1	- 24.0
24176	32	2, 3, 6	- 26.4	- 22.7