1) Red tropical soil between lava flows
432A-2-CC, 0–10 cm

2) Conglomerate above volcanic rocks
432A-2-1, 2–9 cm

3) Contact between lava flows
433C-25-1, 90–110 cm

4) Contact between lava flows
433C-26-3, 100–120 cm

5) Contact between lava flows
433C-34-6, 40–60 cm
Initial Reports of the Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LV

covering Leg 55 of the cruises of the Drilling Vessel Glomar Challenger
Honolulu, Hawaii to Yokohama, Japan
July—September 1977

PARTICIPATING SCIENTISTS
E. Dale Jackson (deceased), Itaru Koizumi, Gennady Avdeiko, Arif Butt, David Clague, G. Brent Dalrymple, H. Gary Greene, Anne Marie Karpoff, R. James Kirkpatrick, Masaru Kono, Hsin Yi Ling, Judith McKenzie, Jason Morgan, and Toshiaki Takayama

Shipboard Science Representative
R. James Kirkpatrick

Editor
James Shambach

Prepared for the NATIONAL SCIENCE FOUNDATION National Ocean Sediment Coring Program Under Contract C-482 By the UNIVERSITY OF CALIFORNIA Scripps Institution of Oceanography Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References to this Volume:

It is recommended that reference to whole or part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or, where the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date is the correct date, not the printed date.

Mailing dates of the more recent Initial Reports of the Deep Sea Drilling Project are as follows:

Volume 43—February, 1979
Volume 47—Part 1, September, 1979
Volume 47—Part 2, November, 1979
Volume 48—August, 1979
Volume 49—March, 1979
Volume 51, 52, 53—Part 1, January, 1980
Volume 51, 52, 53—Part 2, February, 1980
Supplement to Volumes 38-41—January, 1979

Printed September 1980

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402
Foreword

For the three and one-half years between 1872 and 1876, the H.M.S. CHALLENGER—after which D/V GLOMAR CHALLENGER is named—undertook the world’s first major oceanographic expedition. It is fitting that our century should have its counterpart to that famous ship a century ago whose voyages helped establish oceanography as a science. It is equally fitting that GLOMAR CHALLENGER should be plying the same waters one century later seeking answers to new questions concerning the history of our planet and the life it supports. The fundamental advancement of our knowledge of the earth will lead to enhanced capabilities to understand its processes and to use its natural resources intelligently.

The Deep Sea Drilling Project is being undertaken within the context of the National Science Foundation’s Ocean Sediment Coring Program. The Foundation is funding the project by means of a contract with the University of California, and the Scripps Institution of Oceanography is responsible for its management. The University has, in turn, subcontracted with Global Marine Incorporated for the services of the drilling ship, GLOMAR CHALLENGER.

Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES consortium has convened advisory panels for that purpose, consisting of a large number of distinguished scientists from the academic institutions, Government agencies, and private industry of many countries. Altogether, the project has involved the active interest and participation of many of the world’s best scientists and technologists.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific, and Indian Oceans, the Gulf of Mexico, Caribbean Sea, and Mediterranean Sea, and Antarctic waters, the scientific objectives that had been set forth were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. Emphasis was placed on broad reconnaissance and on testing the involvement of the mid-oceanic rise systems in the development of the ocean basins.

From these concepts come major interpretations of the results of the drilling as they bear on patterns of sedimentation and physical and chemical characteristics of the ancient oceans.

As a result of the success of the Deep Sea Drilling Project, the National Science Foundation extended its contract with the University of California to encompass an additional 36 months of drilling, allowing GLOMAR CHALLENGER to continue operations throughout the oceans of the world in exploring the deep ocean floors for a period presently extending one full decade. Scientific interest will involve major effort in drilling deeply into the oceanic crustal igneous rocks to study the processes and mechanisms leading to the formation of the oceanic crust.

These reports contain the results of initial studies of the recovered core material and the associated geophysical information. The contribution to knowledge has been exceedingly large and future studies of the core material over many years will contribute much more.

The importance of the work of the Deep Sea Drilling Project and D/V GLOMAR CHALLENGER is internationally recognized. In response to this recognition, a number of nations are providing partial support. Effective January 1974, the USSR and the Federal Republic of Germany entered into agreements with the United States for participation and support. Similar arrangements were agreed to by Japan in July 1975, the United Kingdom in September 1975, and France in January 1976.

All people, in their lives, activities, and industry, should benefit greatly from the project—from the technological advances that are being made and through the information being obtained on natural resources.

R. C. Atkinson
Director
Washington, D.C.
October 1976
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics, formed in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group, Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution, expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of this original group was later enlarged in 1968 when the University of Washington became a member, and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l'Exploitation des Océans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University's Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965, on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific Oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members which were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism, that afford a new scope for studies of the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories on shore, is published after the completion of each cruise. These reports are a cooperative effort of the scientists participating in the cruise and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea, are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p. xix) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling ability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses had been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep-sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet, have led to specific predictions that could be tested best by an enlightened program of sampling of deep-sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, is elegant testimony of the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and all humanity for many years to come.
MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):*

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany

University of California at San Diego, Scripps Institution of Oceanography

Centre National pour l'Exploitation des Océans, Paris

Columbia University, Lamont-Doherty Geological Observatory

University of Hawaii, Hawaii Institute of Geophysics

University of Miami, Rosenstiel School of Marine and Atmospheric Science

Natural Environment Research Council, London

Oregon State University, School of Oceanography

University of Rhode Island, Graduate School of Oceanography

Texas A & M University, Department of Oceanography

University of Tokyo, Ocean Research Institute

USSR Academy of Sciences

University of Washington, Department of Oceanography

Woods Hole Oceanographic Institution

*Includes member organizations during time of the cruise.

OPERATING INSTITUTION:

W. A. Nierenberg, Director
Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California

DEEP SEA DRILLING PROJECT

Dr. W. A. Nierenberg
Principal Investigator

Dr. M. N. A. Peterson
Project Manager

Mr. Frank C. MacTernan
Principal Engineer and Deputy Project Manager

Dr. David G. Moore
Chief Scientist

Dr. Stan M. White
Associate Chief Scientist for Science Operations

Dr. John L. Usher
Associate Chief Scientist for Science Services

Dr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Valdemar Larson
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Mr. Robert S. Bower
Contracts Officer

Ms. Sue Strain
Personnel Officer
Participants Aboard
GLOMAR CHALLENGER for Leg Fifty Five

Dr. E. Dale Jackson (deceased)
Co-Chief Scientist
U.S. Geological Survey

Dr. Itaru Koizumi
Co-Chief Scientist
College of General Education
Osaka University
1-1 Machikaneyama-cho, Toyonaka-shi
Osaka 560
Japan

Dr. Gennady Avdeiko
Igneous Petrologist
Institute of Volcanology
Far East Science Center
USSR Academy of Sciences
Petropavlovsk-Kamchatsky
USSR

Dr. Arif Butt
Paleontologist
Institut für Paläontologie und Geologie
Universität Tübingen
Sigwartstrasse 10
74 Tübingen
Federal Republic of Germany

Dr. David Clague
Igneous Petrologist
Department of Geology
Middlebury College
Middlebury, Vermont 05753

Dr. G. Brent Dalrymple
Igneous Petrologist
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Dr. H. Gary Greene
Geophysicist
U.S. Geological Survey
345 Middlefield Road
Menlo Park, California 94025

Dr. Anne Marie Karpoff
Sedimentologist
Institut de Géologie
1, rue Blessig
67084 Strasbourg
France

Dr. R. James Kirkpatrick
Igneous Petrologist and Shipboard Science Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Dr. Masaru Kono
Paleomagnetist
Geophysical Institute
University of Tokyo
Bunkyo-ku
Tokyo 113
Japan

Dr. Hsin Yi Ling
Paleontologist
Department of Oceanography
University of Washington
Seattle, Washington 98195

Dr. Judith McKenzie
Sedimentologist
Eidg. Technische Hochschule
Geologisches Institut
Sonneggstrasse 5
CH-8006 Zürich
Switzerland

Dr. Jason Morgan
Physical Properties Specialist
Geological Engineering Program
Princeton University
Princeton, New Jersey 08540

Dr. Toshiaki Takayama
Paleontologist
Department of Geology
Kanazawa University
Kanazawa
Japan

Mr. Glen Foss (18 June - 23 July 1977)
Mr. Barry Robson (24 July - 6 September 1977)
Cruise Operations Managers
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Melvin Fields
Weatherman
NOAA - National Weather Service
439 West York Street
Norfolk, Virginia 23510
Captain Loyd Dill (18 June - 23 July 1977)
Captain Joseph A. Clarke (24 July - 6 September 1977)
Captains of the Drilling Vessel
Global Marine Inc.
Los Angeles, California 90017

Mr. Cotton Guess (18 June - 23 July 1977)
Mr. James Ruddell (24 July - 6 September 1977)
Drilling Superintendents
Global Marine, Inc.
Los Angeles, California 90017

Mr. Pierre Cambon
X-Ray Fluorescence Specialist
Centre Océanologique de Bretagne
BP 337
29273 Brest
France

Mr. Ted Gustafson (18 June - 23 July 1977)
Mr. Burnette Hamlin (24 July - 6 September 1977)
Laboratory Officers
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Don Cameron
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Kathy O'Neill
Curatorial Representative
Lamont-Doherty Geological Observatory
Palisades, New York 10964

Mr. Robert Byrnes
Downhole Instrument Specialist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Bongard
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin George
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Jurel
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Prescott
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Brennan
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Cindy Deen
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publication Staff

Publications Manager
Marianna Lee

Editors
Susan Orlofsky
Robert Powell
James Shambach
Larry N. Stout

Production Manager
Raymond F. Silk

Production Assistants
Elaine M. Bruer
Madeleine A. Mahnken

Production Coordinators
Mary A. Young
Janice E. Bowman

Art Supervisor
Virginia L. Roman

Illustrators
Myrtali Anagnostopoulou
Tommy F. Hilliard
Elizabeth R. Peters
Kathleen Sanderson
Alice N. Thompson (this volume)
JOIDES Advisory Groups

Executive Committee
Dr. Maurice Rattray, Jr.
University of Washington
Professor Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John V. Byrne
Oregon State University
Dr. Paul M. Fye
Woods Hole Oceanographic Institution
Dr. William Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. Charles E. Helsley
Hawaii Institution of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Monsieur Yves La Prairie
CNEXO
Dr. Ryuizo Marumo
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. Worth D. Nowlin, Jr.
Texas A & M University
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Academician A. V. Sidorenko
Academy of Sciences of the USSR
Dr. Manik Talwani
Lamont-Doherty Geological Observatory

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. A. Richards
Lehigh University
Professor D. D. Bernoulli
Geologisch-Paläontologisches Institut, Basel
Mr. R. E. Boyce (ex-officio)
Scripps Institution of Oceanography
Dr. William R. Bryant (ex-officio)
Texas A & M University
Dr. S. E. Calvert
Institute of Oceanographic Sciences
Dr. C. J. Clausen
Norges Geotekniske Institutt
Dr. J. Connoly
Era North America Inc.
Dr. G. R. Heath
University of Rhode Island
Dr. G. H. Keller
Oregon State University
DR. A. P. Lisitzin
Academy of Sciences of the USSR
Dr. Frederic Melieres
Université Pierre et Marie Curie
Dr. G. Muller
Laboratorium für Sedimentforschung, Heidelberg
Advisory Panel on Organic Geochemistry
Dr. Keith Kvenvolden
U.S. Geological Survey
Dr. Earl W. Baker
Northeast Louisiana University
D. Ellis E. Bray
Mobil Oil Company, Inc.
Dr. Geoffrey Eglinton
University of Bristol
Dr. J. Gordon Erdman
Phillips Petroleum Company
Dr. Eric Galimov
Academy of Sciences of the USSR
Dr. John M. Hunt
Woods Hole Oceanographic Institution
Dr. Richard D. Mclver
Esso Production Research Laboratory
Dr. Erwin Suess
Oregon State University
Dr. B. Tissot
Institut Français du Pétrole
Dr. Dietrich Welte
Lehrstuhl für Geologie, Geochemie, und Lagerstraten des Erdols und der Kohle
Mr. Oscar Weser (ex-officio)
Scripps Institution of Oceanography
Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Advisory Panel on Information Handling
Dr. M. A. Rosenfeld
Woods Hole Oceanographic Institution
Dr. D. W. Appleman
Smithsonian Institution
Mr. J. G. Barr
Standard Oil Company of California
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. H. Glashoff
Bundesanstalt für Geowissenschaften und Rohstoffe
Mr. P. Grim
Environmental Data Service
Dr. J. C. Kelley
San Francisco State College
Dr. A. Loebllich, Jr.
University of California, Los Angeles

Professor L. Sitnikov
Académy of Sciences of the USSR
Dr. J. Usher (ex-officio)
Scripps Institution of Oceanography
Dr. T. Worsley
University of Washington

Advisory Panel on Pollution Prevention and Safety
Dr. Hollis Hedberg
Princeton University
Dr. George Claypool
U.S. Geological Survey
Dr. Joe S. Creager (ex-officio)
University of Washington
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Dr. Louis E. Garrison
U.S. Geological Survey
Dr. H. Grant Goodell
University of Virginia
Dr. Arthur E. Green
Exxon Production Research Laboratory
Dr. Brian T. R. Lewis
University of Washington
Dr. Maurice Rattray, Jr. (ex-officio)
University of Washington
Dr. Seiya Uyeda
University of Tokyo
Mr. Oscar E. Weser
Scripps Institution of Oceanography

Advisory Panel on Inorganic Geochemistry
Dr. Joris M. Gieskes
Scripps Institution of Oceanography
Dr. Wallace S. Broecker
Lamont-Doherty Geological Observatory
Dr. D. S. Cronan
Royal School of Mines, London
Mr. John I. Ewing (ex-officio)
Woods Hole Oceanographic Institution
Dr. Heinrich D. Holland
Harvard University
Dr. Ian R. Kaplan
University of California, Los Angeles
Dr. Frank T. Manheim
U.S. Geological Survey

Dr. K. K. Turekian
Yale University

Dr. I. M. Varentsov
Academy of Sciences of the USSR

Dr. K. H. Wedepohl
Geochemisches Institut der Universität, Göttingen

Industrial Liaison Panel

Mr. W. A. Roberts
Phillips Petroleum Company

Mr. Fred C. Ackman
Esso Exploration, Inc.

Mr. Melvin J. Hill
Gulf Oil Corporation

Monsieur Gilbert Rutman
Société Nationale des Pétroles d’Aquitaine

Dr. G. Sassmanhausen
Voritzender des Vorstandes der Preussag A.G.

Advisory Panel on Ocean Crust

Dr. J. R. Cann
University of East Anglia

Dr. Nicolay Belyaevskii
Academy of Sciences of the USSR

Dr. Leonid V. Dmitriev
Academy of Sciences of the USSR

Dr. Paul J. Fox
State University of New York at Albany

Dr. Jean Francheteau
CNEXO

Dr. J. M. Hall
Dalhousie University

Dr. C. G. A. Harrison
Rosenstiel School of Marine and Atmospheric Science

Dr. Stanley R. Hart
Massachusetts Institute of Technology

Dr. James R. Houghton (ex-officio)
Woods Hole Oceanographic Institution

Dr. E. D. Jackson*
U.S. Geological Survey

Dr. Kuo Kusihiro
University of Tokyo

Dr. Roger L. Larson
Lamont-Doherty Geological Observatory

Dr. James H. Natland (ex-officio)
Scripps Institution of Oceanography

*deceased

Dr. W. Schreyer
Ruhr-universität, Bochum

Advisory Panel on Ocean Margin (Active)

Dr. Seiya Uyeda
University of Tokyo

Dr. Michael Audley-Charles
Royal School of Mines, London

Dr. René Blanchet
Centre de Recherche en Géologie

Dr. Creighton Burk
Marine Sciences Institute

Dr. Joe S. Creager (ex-officio)
University of Washington

Dr. Kazuo Kobayashi
University of Tokyo

Dr. I. P. Kisminskaya
Academy of Sciences of the USSR

Dr. Loren W. Kroenke
Hawaii Institute of Geophysics

Dr. LaVern D. Kulm (ex-officio)
Oregon State University

Dr. Keith Kvenvolden
U.S. Geological Survey

Dr. William J. Ludwid
Lamont-Doherty Geological Observatory

Dr. David G. Moore (ex-officio)
Scripps Institution of Oceanography

Dr. Gordon Packham
University of Sydney

Academician A. V. Pieve
Academy of Sciences of the USSR

Dr. David W. Scholl
U.S. Geological Survey

Dr. Roland von Huene
U.S. Geological Survey

Advisory Panel on Ocean Margin (Passive)

Dr. Joseph A. Curray
Scripps Institution of Oceanography

Dr. A. W. Bally
Shell Oil Company

Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe

Professor Dr. D. Bernoulli
Geologisch-Palaontologisches Institut, Basel

Mr. John I. Ewing
Woods Hole Oceanographic Institution

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Advisory Panel on Ocean Paleoenvironment

Dr. Yves Lancelot
CNEXO

Dr. Wolfgang Berger
Scripps Institution of Oceanography

Dr. P. I. Bezrukov
Academy of Sciences of the USSR

Monsieur J. Debyser
CNEXO

Professor B. M. Funnell
University of East Anglia

Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science

Dr. Kenneth Hsi
Eidg. Technische Hochschule

Dr. J. Kennett (ex-officio)
University of Rhode Island

Dr. V. Krasheninnikov
Academy of Sciences of the USSR

Dr. Richard D. McIver
Esso Production Research Laboratory

Dr. T. C. Moore, Jr.
University of Rhode Island

Dr. I. Premoli-Silva
Instituto di Paleontologie

Dr. N. Shackleton
University of Cambridge

Dr. Y. Takayanagi
Tohoku University

Dr. H. Thierstein
Scripps Institution of Oceanography

Dr. J. Usher (ex-officio)
Scripps Institution of Oceanography

Dr. Tj. H. van Andel
Stanford University

Dr. E. L. Winterer (ex-officio)
Scripps Institution of Oceanography

Dr. T. Worsley
University of Washington

Advisory Panel on Site Surveying

Dr. Brian T. R. Lewis
University of Washington

Dr. William R. Bryant
Texas A & M University

Dr. Elizabeth T. Bunce
Woods Hole Oceanographic Institution

Dr. LeRoy M. Dorman
Scripps Institution of Oceanography

Dr. Davis A. Fahlquist
Texas A & M University

Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Charles E. Helsley (ex-officio)
Hawaii Institute of Geophysics

Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe

Dr. Donald M. Hussong
Hawaii Institute of Geophysics

Dr. L. Kogan
Southern Branch of the Institute of Oceanology, USSR

Dr. I. P. Kosminskaya
Academy of Sciences of the USSR

Dr. Marcus G. Langseth
Lamont-Doherty Geological Observatory

Dr. Sadanori Murauchi
Chiba University

Dr. Shozaburo Nagumo
University of Tokyo

Dr. Vince Renard
Centre Océanologique de Bretagne

Dr. Roland Schlich
Observatoire Géophysique du Parc St.-Maur

Dr. Roland von Huene
U.S. Geological Survey

Dr. S. White (ex-officio)
Scripps Institution of Oceanography

Stratigraphic Correlations Panel

Dr. R. H. Benson
Smithsonian Institution

Dr. W. A. Berggren
Woods Hole Oceanographic Institution

Professor Dr. H. M. Bolli
Eidg. Technische Hochschule, Zurich
Deep Sea Drilling Project
SAMPLE DISTRIBUTION POLICY*

Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He also is responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient, and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031) Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientists two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JODIES Advisory Panel(s). If approved, the requested samples will be taken, either by the shipboard party if the workload permits, or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible, prior to the cruise or, as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. Investigations not completed in time for inclusion in the Initial Reports for a specific cruise may not be published in other journals until final publication of that Initial Report for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Chief Science Editor.

*Revised October 1976
2. Distribution of Samples for Research leading to Publication other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first obtain sample request forms from the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (ICD). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with 10ml sized samples or less. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the curators and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; however contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;

(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;

(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP Repositories, the GLOMAR CHALLENGER's Library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;

(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous and metamorphic rocks, will be returned to the appropriate repository at the end of each cruise or at the publication
of the Initial Reports for that cruise. These smear slides and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers
As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093

Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:
 - Analytical water content, porosity, and density
 - Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
 - Acoustic velocity by Hamilton Frame Method
 - Thermal conductivity
 - Heat flow (in situ)
 - Natural gamma radiation (discontinued after Leg 19)
 - Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:
 - Core photographs
 - Visual core descriptions
 - Smear slide descriptions
 - X-ray diffraction
 - X-ray fluorescence
 - Total carbon, organic carbon, and carbonate determinations
 - Grain-size determinations (sand, silt, clay)
 - Interstitial water chemistry
 - Gas chromatography

D. Igneous rock data include:
 - Core photographs
 - Visual core descriptions
 - Rock chemistry
 - Paleomagnetics
 - Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:
 - Site positions
 - Sub-bottom depths of cores
 - Master Guide File (a searchable core data summary file)
II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (see below), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to Initial Reports and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the Initial Reports, and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>1</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>2</td>
</tr>
</tbody>
</table>

PART I: INTRODUCTION AND EXPLANATORY NOTES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION AND SUMMARY OF RESULTS FROM DSDP LEG 55, THE HAWAIIAN-EMPEROR HOT-SPOT EXPERIMENT</td>
<td>3</td>
</tr>
<tr>
<td>Everett D. Jackson, Itaru Koizumi, G. Brent Dalrymple, David A. Clague, R. James Kirkpatrick, and H. Gary Greene</td>
<td></td>
</tr>
</tbody>
</table>

2. EXPLANATORY NOTES FOR DSDP LEG 55 SITE CHAPTERS

<table>
<thead>
<tr>
<th>Site</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE 430: δjINSEAMOUNT</td>
<td>45</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 431: YÔMEI SEAMOUNT</td>
<td>77</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 432: NINTOKU SEAMOUNT</td>
<td>95</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 433: SUIKO SEAMOUNT</td>
<td>127</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
</tbody>
</table>

PART II: SITE REPORTS

<table>
<thead>
<tr>
<th>Site</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE 430: δjINSEAMOUNT</td>
<td>45</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 431: YÔMEI SEAMOUNT</td>
<td>77</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 432: NINTOKU SEAMOUNT</td>
<td>95</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>SITE 433: SUIKO SEAMOUNT</td>
<td>127</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
</tbody>
</table>

PART III: PALEONTOLOGY AND SEDIMENTOLOGY

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. BIOSTRATIGRAPHIC SUMMARY OF DSDP LEG 55: EMPEROR SEAMOUNT CHAIN</td>
<td>285</td>
</tr>
<tr>
<td>Itaru Koizumi, Arif Butt, Hsin Yi Ling, and Toshiaki Takayama</td>
<td></td>
</tr>
<tr>
<td>8. BIOSTRATIGRAPHIC AND PALEOENVIRONMENT ANALYSES OF THE SEDIMENTS AT THE EMPEROR SEAMOUNTS, DSDP LEG 55, NORTHWESTERN PACIFIC: CENOZOIC FORAMINIFERS</td>
<td>289</td>
</tr>
<tr>
<td>Arif Butt</td>
<td></td>
</tr>
<tr>
<td>9. PALEOCENE SHALLOW-WATER FACIES AT EMPEROR SEAMOUNTS: DSDP LEG 55, NORTHWEST PACIFIC</td>
<td>327</td>
</tr>
<tr>
<td>Herbert Hagn, Arif Butt, and Heinz Malz</td>
<td></td>
</tr>
<tr>
<td>10. CALCAREOUS NANNOFOSIL BIOSTRATIGRAPHY, LEG 55 OF THE DEEP SEA DRILLING PROJECT</td>
<td>349</td>
</tr>
<tr>
<td>Toshiaki Takayama</td>
<td></td>
</tr>
<tr>
<td>11. RADIOLARIANS FROM THE EMPEROR SEAMOUNTS OF THE NORTHWEST PACIFIC: LEG 55 OF THE DEEP SEA DRILLING PROJECT</td>
<td>365</td>
</tr>
<tr>
<td>Hsin Yi Ling</td>
<td></td>
</tr>
<tr>
<td>12. SILICOFLAGELLATES AND EBRIDIANS FROM LEG 55</td>
<td>375</td>
</tr>
<tr>
<td>Hsin Yi Ling</td>
<td></td>
</tr>
<tr>
<td>13. NEOGENE DIATOMS FROM THE EMPEROR SEAMOUNT CHAIN, LEG 55, DEEP SEA DRILLING PROJECT</td>
<td>387</td>
</tr>
<tr>
<td>Itaru Koizumi</td>
<td></td>
</tr>
<tr>
<td>14. PALYNOLOGICAL STUDY OF SAMPLES FROM SITES 430, 431, 432, 433</td>
<td>409</td>
</tr>
<tr>
<td>E. V. Koreneva</td>
<td></td>
</tr>
<tr>
<td>15. SHALLOW-WATER CARBONATE SEDIMENTS FROM THE EMPEROR SEAMOUNTS: THEIR DEAGENESIS AND PALEOGEOGRAPHIC SIGNIFICANCE</td>
<td>415</td>
</tr>
<tr>
<td>Judith McKenzie, Daniel Bernoulli, and Seymour O. Schlanger</td>
<td></td>
</tr>
<tr>
<td>16. GEOCHEMISTRY OF THE LEG 55 SEDIMENTS</td>
<td>457</td>
</tr>
<tr>
<td>I. O. Murdmaa, V. V. Gordeev, T. G. Kuzmina, N. V. Turanskaya, and G. P. Avdeiko</td>
<td></td>
</tr>
<tr>
<td>17. MINERALOGY AND GEOCHEMISTRY OF SEDIMENTARY DEPOSITS ON EMPEROR SEAMOUNTS, SITES 430, 431, AND 432: AUTOGENESIS OF SILICATES, PHOSPHATES, AND FERROMANGANESE OXIDES</td>
<td>463</td>
</tr>
<tr>
<td>Anne Marie Karpoff, Irene Peterschmitt, and Michel Hoffert</td>
<td></td>
</tr>
<tr>
<td>18. THE SEDIMENTARY DEPOSITS OF SUIKO SEAMOUNT (LEG 55, SITE 433): FROM THE REEF ENVIRONMENT TO THE PELAGIC SEDIMENTATION</td>
<td>491</td>
</tr>
<tr>
<td>Anne Marie Karpoff</td>
<td></td>
</tr>
</tbody>
</table>

xxiii
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. VOLCANICLASTIC CONSTITUENTS IN THE LEG 55 SEDIMENTS</td>
<td>503</td>
</tr>
<tr>
<td>Ivar Murdmaa and G. P. Avdeiko</td>
<td></td>
</tr>
<tr>
<td>PART IV: PETROLOGY, MINERALOGY, AND GEOCHEMISTRY OF IGNEOUS ROCKS</td>
<td>507</td>
</tr>
<tr>
<td>20. PETROLOGY AND GEOCHEMISTRY OF VOLCANIC ROCKS, DSDP LEG 55, EMPEROR SEAMOUNT CHAIN</td>
<td>509</td>
</tr>
<tr>
<td>R. James Kirkpatrick, David A. Clague, and Walter Freisen</td>
<td></td>
</tr>
<tr>
<td>21. TRACE-ELEMENT GEOCHEMISTRY OF THOLEIITIC BASALTS FROM SITE 433C, SUIKO SEAMOUNT</td>
<td>559</td>
</tr>
<tr>
<td>David A. Clague and Fred A. Frey</td>
<td></td>
</tr>
<tr>
<td>22. PETROGRAPHY AND CHEMICAL COMPOSITION OF THE LAVA FLOWS FROM THE EMPEROR SEAMOUNTS, DSDP LEG 55</td>
<td>571</td>
</tr>
<tr>
<td>G. P. Avdeiko, S. A. Khubunaja, and J.V. Vande-Kirkov</td>
<td></td>
</tr>
<tr>
<td>23. LEG 55, EMPEROR SEAMOUNTS: TRACE ELEMENTS IN TRANSITIONAL THOLEIITES, ALKALI BASALTS, AND HAWAIITES — MANTLE HOMOGENEITY OR HETEROGENEITY AND MAGMATIC PROCESSES</td>
<td>585</td>
</tr>
<tr>
<td>P. Cambon, J. L. Joron, H. Bougault, and M. Treuil</td>
<td></td>
</tr>
<tr>
<td>A. E. Bence, S. R. Taylor, and M. Fisk</td>
<td></td>
</tr>
<tr>
<td>25. MINERAL CHEMISTRY OF BASALTS FROM OJIN, NINTOKU, AND SUIKO SEAMOUNTS, LEG 55 DSDP</td>
<td>607</td>
</tr>
<tr>
<td>David A. Clague, Martin R. Fisk, and A. E. Bence</td>
<td></td>
</tr>
<tr>
<td>26. Fe-Ti OXIDE MINERALOGY OF DSDP LEG 55 BASALTS</td>
<td>639</td>
</tr>
<tr>
<td>Masaru Kono, David Clague, and Edwin E. Larson</td>
<td></td>
</tr>
<tr>
<td>PART V: GEOPHYSICAL AND TECTONIC STUDIES</td>
<td>713</td>
</tr>
<tr>
<td>27. STABLE ISOTOPIC STUDY OF CARBONATE MINERALS FROM THE BASALT FLOWS ON SUIKO SEAMOUNT: DSDP LEG 55, HOLE 433C</td>
<td>653</td>
</tr>
<tr>
<td>Judith McKenzie</td>
<td></td>
</tr>
<tr>
<td>28. CONVENTIONAL AND 40Ar/39Ar K-Ar AGES OF VOLCANIC ROCKS FROM OJIN (SITE 430), NINTOKU (SITE 432), AND SUIKO (SITE 433) SEAMOUNTS AND THE CHRONOLOGY OF VOLCANIC PROPAGATION ALONG THE HAWAIIAN-EMPEROR CHAIN</td>
<td>659</td>
</tr>
<tr>
<td>G. Brent Dalrymple, Marvin A. Lanphere, and David A. Clague</td>
<td></td>
</tr>
<tr>
<td>29. K-Ar MINIMUM AGE FOR MEIJI GUYOT, EMPEROR SEAMOUNT CHAIN</td>
<td>677</td>
</tr>
<tr>
<td>G. Brent Dalrymple, Marvin A. Lanphere, and James H. Natland</td>
<td></td>
</tr>
<tr>
<td>30. AGE AND CHEMISTRY OF VOLCANIC ROCKS DREDGED FROM JINGU SEA MOUNT, EMPEROR SEAMOUNT CHAIN</td>
<td>685</td>
</tr>
<tr>
<td>G. Brent Dalrymple and Michael O. Garcia</td>
<td></td>
</tr>
<tr>
<td>31. Rb-Sr SYSTEMATICS OF BASALTS FROM THE HAWAIIAN-EMPEROR VOLCANIC CHAIN</td>
<td>695</td>
</tr>
<tr>
<td>Marvin A. Lanphere, G. Brent Dalrymple, and David Clague</td>
<td></td>
</tr>
<tr>
<td>32. THE CLAYSTONE LAYER BETWEEN TWO BASALT FLOWS IN HOLE 432A: AN ARGUMENT FOR THE EMERGENCE OF NINTOKU SEAMOUNT</td>
<td>707</td>
</tr>
<tr>
<td>Anne Marie Karpoff</td>
<td></td>
</tr>
<tr>
<td>33. PHYSICAL PROPERTIES OF BASALTS FROM DSDP LEG 55</td>
<td>715</td>
</tr>
<tr>
<td>Masaru Kono, Yozo Hamano, and W. Jason Morgan</td>
<td></td>
</tr>
<tr>
<td>34. MAGNETIC PROPERTIES OF DSDP LEG 55 BASALTS</td>
<td>723</td>
</tr>
<tr>
<td>Masaru Kono</td>
<td></td>
</tr>
<tr>
<td>35. PALEOMAGNETISM OF DSDP LEG 55 BASALTS AND IMPLICATIONS FOR THE TECTONICS OF THE PACIFIC PLATE</td>
<td>737</td>
</tr>
<tr>
<td>Masaru Kono</td>
<td></td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>36. GEOMAGNETIC PALEOINTENSITY MEASUREMENTS ON LEG 55 BASALTS</td>
<td>753</td>
</tr>
<tr>
<td>Masaru Kono and Toshiyuki Tosh</td>
<td></td>
</tr>
<tr>
<td>37. SEISMIC STRATIGRAPHY AND VERTICAL TECTONICS OF THE EMPEROR SEAMOUNTS, DSDP LEG 55</td>
<td>759</td>
</tr>
<tr>
<td>H. Gary Greene, David A. Clague, and G. Brent Dalrymple</td>
<td></td>
</tr>
<tr>
<td>38. GEOPHYSICAL OBSERVATIONS TAKEN UNDERWAY ON GLOMAR CHALLENGER — LEG 55</td>
<td>789</td>
</tr>
<tr>
<td>H. Gary Greene</td>
<td></td>
</tr>
<tr>
<td>39. PRE-LEG 55 SITE SURVEY GEOPHYSICAL DATA FROM R/V S. P. LEE CRUISE LEE8-76-NP</td>
<td>801</td>
</tr>
<tr>
<td>G. Brent Dalrymple, H. Gary Greene, Byron D. Ruppel, Theodore E. Bear, and David A. Clague</td>
<td></td>
</tr>
<tr>
<td>40. BATHYMETRY OF THE EMPEROR SEAMOUNTS</td>
<td>845</td>
</tr>
<tr>
<td>David A. Clague, G. Brent Dalrymple, H. Gary Greene, Donna Wald, Masaru Kono, and Loren W. Kroenke</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 41. ON POSSIBLE CONTINUATION OF THE HAWAIIAN-EMPEROR CHAIN IN KAMCHATKA

G. P. Avdeiko

PART VI: APPENDICES

I. MINERALOGY OF THE SEDIMENTARY SECTIONS ENCOUNTERED ON LEG 55 (SITES 430 THROUGH 433), BASED ON X-RAY DIFFRACTOMETRY

Ulrich Mann and German Müller

II. LEG 55 SEDIMENT GRAIN SIZE AND CARBON/Carbonate Data

The Leg 55 Scientific Staff

INDEX

851

861

863

855
EVERETT DALE JACKSON
1925—1978

By their very nature Deep Sea Drilling Project cruises are highly cooperative ventures, and Leg 55 was no exception. More than any single person, however, Dale Jackson was responsible for the conception, the execution, and the success of this leg. Dale was coauthor and principal motivator of the original proposal, submitted to JOIDES in 1971 and again in 1975, for drilling in the Emperor Seamounts. He was not only the principal architect of Leg 55, he was also the shepherd, guiding the proposal through the various committees for consideration and approval, and serving as Leg 55 Co-Chief Scientist. To Dale, Leg 55 was the natural and essential culmination of the Hawaiian hot-spot experiment, a project that occupied much of his time from 1970 on, and he was always eager to explain or argue its importance to all who would take the time to listen. From inception to shipboard report, Leg 55 was Dale’s cruise, and its undeniable success is a fitting testimonial to his perspicacity and leadership. Dale died on July 28, 1978, three days before the scientific staff assembled in La Jolla for the post-cruise meeting. His absence has been and continues to be felt, but he left us all enriched because his life and career touched ours in a special way. We are pleased to dedicate this volume to his memory as an outstanding scientist, an inspiring colleague, and a compassionate and understanding friend.

The Scientific Staff
Leg 55
March, 1979
ACKNOWLEDGMENTS

We want to thank the following friends and colleagues, whose skill, expertise, and willing assistance were prime factors in the success of Leg 55 and the quality of this volume: Captain J. A. Clarke, the officers, and crew of the D/V Glomar Challenger, who got us where we needed to go and made the passage a pleasant one; James Ruddel and the drilling crew, who brought up from the ocean floor what we came to get, in spite of numerous obstacles; Burnette Hamlin and the DSDP shipboard technical staff, who managed to complete a seemingly neverending series of tedious but invaluable shipboard tasks with unfailing good humor; Barry Robson, who was always there to share our disappointments and then somehow set things right; J. D. Shambach, whose editorial skills and attention to detail turned a motley collection of papers into a coherent volume; Janice Bowman, Mary Young, Elaine Bruer, Madeleine Mahnken, and the DSDP production staff, whose skill and hard work are evident on every page of this volume; and A. N. Thompson, P. A. Swenson, and S. A. Bailey, who turned our doodlings into finished and informative art. Finally, we want to acknowledge all those whose efforts resulted in a program for scientific drilling the deep sea—without them the Hawaiian–Emperor hot-spot experiment would have remained unfinished.

Scientific Staff

Leg 55