6. SITE 451: EAST EDGE OF THE WEST MARIANA RIDGE

Shipboard Scientific Party1

HOLE 451

Date occupied: 7 March 1978

Date departed: 13 March 1978

Time on hole (hrs): 152.5

Position: 18°00.88'N; 143°16.57'E

Water depth (sea level; corrected m, echo-sounding): 2060

Water depth (rig floor; corrected m, echo-sounding): 2070 Penetration (m): 930.5

Number of cores: 102

Total length of cored section (m): 930.5

Total core recovered (m): 280.1

Core recovery (%): 30

Oldest sediment cored:

Depth sub-bottom (m): 930.5 Nature: Tuffs and volcaniclastic breccias and conglomerates Age: Upper Miocene (NN 10) Measured velocity (km/s): 2.7

Basement: Questionable whether or not arc basement reached

Principal results: Site 451, located on the eastern edge of the West Mariana Ridge and drilled to a depth of 930.5 meters, yielded a sequence of biogenic oozes and volcaniclastic sediments. These sediments are divided into the following units: Unit 1, 36 meters of lower Pliocene to Quaternary, grayish brown foraminiferal ooze, grading downward through interbedded grayish brown foraminiferal-nannofossil and yellow and light yellow nannofossil-foraminiferal oozes to a basal light gray nannofossil ooze, with minor ash and pumice increasing in content downward; Unit 2, 29.5 meters of upper Miocene, olive and gray carbonate-rich vitric ash and minor layers of olive-gray and very dark gray vitric tuff with intervening layers of yellowish brown foraminiferal-nannofossil chalk; Unit 3, 865.0 meters of upper Miocene volcaniclastic sediments broadly divisible into seven sub-units consisting of interbedded, varicolored green, greenish black, dark gray, dark bluish gray to black, fine vitric tuffs, vitric and vitric-lithic tuffs, breccias, and conglomerates. Many of these lithologies are tuffaceous, some bearing nannofossils and some shallow-water shell fragments, including larger foraminifers and corals, all of the upper Miocene. Basaltic clasts in the breccias are highly vesicular and, along with the pyroclastic debris in the sediment, require explosive volcanism of the type associated with island arcs. Andesite cobbles and boulders that contain plagioclase, olivine, two pyroxenes, and opaque mineral phenocrysts are probably of calc-alkalic affinities. Accumulation rates of the lower part of this volcaniclastic sequence were about 400 m/m.y. Either a basaltic boulder or the brecciated upper surface of a lava flow was encountered in the last core.

BACKGROUND AND OBJECTIVES

The age and petrology of the sedimentary and volcanic rocks of the West Mariana Ridge were not well known. Therefore the principal objective of Site 451 was to obtain this knowledge by drilling through the sedimentary veneer into the arc basement; the overall objective was to gain an understanding of the role of remnant arcs in back-arc marginal basin evolution.

The West Mariana Ridge separates the 5-km-deep Parece Vela Basin, an extinct back-arc basin to the west, from the 4-km-deep Mariana Trough, an actively spreading back-arc basin to the east (Fig. 1). The northsouth trending ridge itself is generally less than 2 km deep and locally is within only 55 meters of the surface; it is interpreted to be a remnant arc left behind when the active volcanic Mariana arc broke away during back-arc spreading of the Mariana Trough (Karig, 1975). Karig and Glassley (1970) mention the presence of vesicular dacitic lavas and upper Pliocene sandstones and ashes dredged from the West Mariana Ridge at 3- to 4-km depths. They cite the high vesicularity to suggest that a shallow eruption of dacite took place and that the present depth of the dredge site required Ouaternary subsidence of parts of the West Mariana Ridge. Although the seismic-refraction profiles in the Philippine Sea did not include the West Mariana Ridge proper, a profile through the southern end of the Honshu Ridge, which begins north of the junction of the West Mariana and Mariana Ridges, showed a 3-km-thick section of a 3.3-km/s layer overlying the 4.6- to 5.5-km/s basement. Site surveys indicated that 700 meters of sediment overlie a 3.9-km/s basement layer at Site 451. The location of Site 451 on the eastern edge of the West Mariana Ridge contrasts with the location of Site 448 on the western edge of the Palau-Kyushu Ridge. The extremely deep sediment wedge on the western edge of the West Mariana Ridge and the dearth of sediments in the central part of the ridge make these parts of the ridge undesirable drilling targets.

Preliminary site surveys indicated that the West Mariana Ridge is bounded by a steep scarp facing the

¹ Loren Kroenke (Co-Chief Scientist), Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii; Robert Scott (Co-Chief Scientist), Department of Geology, Texas A&M University, College Station, Texas; Kathy Balshaw, Department of Geology, Rice University, Houston, Texas; Simon Brassell, School of Chemistry, University of Bristol, Bristol, United Kingdom; Pierre Chotin, Laboratoire de Géologie Structurale, Universite Pierre et Marie Curie, Paris, France (now at: Départment de Géologie, Université Moham-med V, Rabat, Morocco); Mary E. Heiman, Stratigraphy Laboratory, Mobil Oil Company, Dallas, Texas (now at: F and H Biostratigraphic Associates, Laramie, Wyoming); Teruaki Ishii, Ocean Research Institute, University of Tokyo, Tokyo, Japan; Barbara H. Keating, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii; Erlend Martini, Geologisch-Paläontologisches Institut, Johann-Wolfgang-Goethe-Universitat, Frankfurt am Main, Federal Republic of Germany; David P. Mattey, Department of Geology, Bedford College, University of London, London, United Kingdom (now at: Department of Geological Sciences, University of Birmingham, Birmingham, England); Kelvin Rodolfo, Department of Geological Sciences, University of Illinois, Chicago, Illinois; Renzo Sartori, Laboratorio di Geologia Marina del C.N.R., Bologna, Italy; Fritz Theyer, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii; John L. Usher, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; and Guram Zakariadze, Institute of Geology, Georgian Academy of Sciences, Tbilisi, U.S.S.R. (now at: V. 1. Vernadsky Inst. of Geochem. and Analyt. Chem., U.S.S.R. Acad. of Sciences, Vorobyewskoe chaussee 47A, 117334 Moscow, U.S.S.R.).

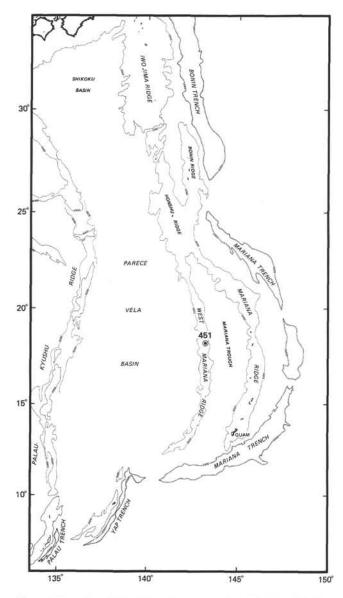
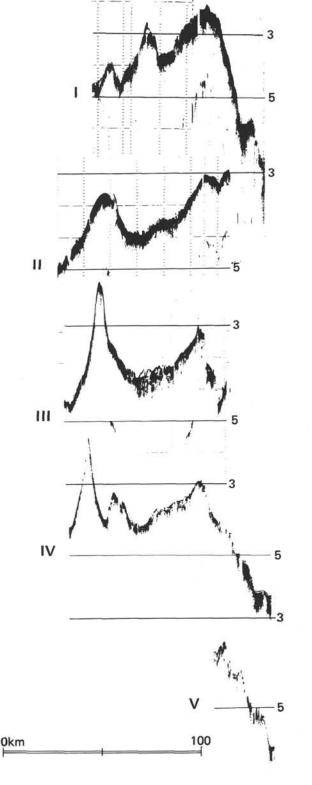
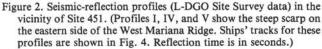




Figure 1. Location of Site 451 on the eastern edge of the West Mariana Ridge. (The site is indicated by a concentric circle.)

Mariana Trough (Figs. 2 and 3). The locations of the survey track lines are shown in Figure 4. Numerous volcanic peaks surmount the ridge within the vicinity of the survey. The eastern edge of the ridge also seems to be broken into a series of steps or ledges, some of which have sediment ponds (for example, see the central part of Profile V), perhaps an excellent place to attempt to reach basement. Sonobuoy results (Fig. 5) suggested that about 1 km of sediment (2.0 km/s) overlies a higher-velocity layer (4.2 km/s) that may be volcanicarc basement. (This is identical to the velocity of Site 448 arc-volcanic rocks.) The 5- to 6-km/s layer found 1.3 to 1.5 km below the 4.2-km/s layer may also represent oceanic basement. Semblance calculations made on the multichannel seismic data, also acquired during the site surveys in the vicinity of Site 451, indicate that approximately 700 meters of sediments overlie a 3.9-km/s basement layer. Murauchi et al. (1968) point out that at

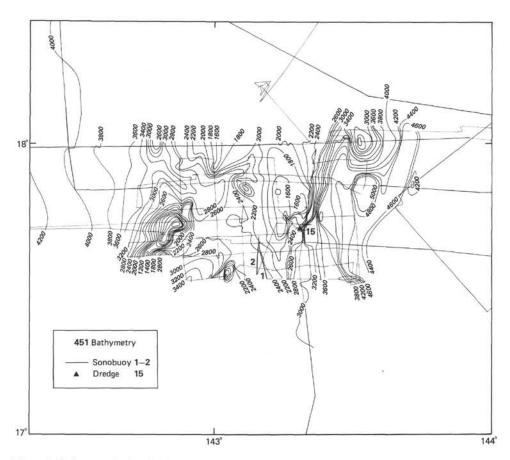


Figure 3. Bathymetry in the vicinity of Site 451 (L-DGO Site Survey data). (Note the steep scarp on the eastern side of the Mariana Ridge. Depths are in corrected meters.)

a considerable distance to the north of Site 451 the ridge is built up mainly of material with a 3.5-km/s velocity, based on the one refraction line across the Honshu Ridge. Dredging (locality shown in Figs. 3 and 4) recovered only weathered mafic rocks and sediments from a massive basement-type block that appears to dip gently to the west.

The broad objective of Site 451 was to compare the drilling results of Site 451 with drilling planned for Leg 60 on the active volcanic Mariana arc in order to determine whether the West Mariana Ridge actually is a remnant arc left behind the Mariana Ridge during back-arc spreading to form the Mariana Trough and to ascertain what the detailed evolution of this process includes. For example, the episodic nature of volcanism within the entire Palau-Kyushu-West Mariana-Mariana remnant arc-arc province was to be investigated, with particular attention to variability of magmas and magma sources in space and time. Timing of volcanic and structural events within the West Mariana Ridge was to be related to sedimentary and structural events in the Parece Vela Basin. Of particular interest was the structural and volcanic control of sedimentation on the West Mariana Ridge. The nature of metallogenesis in immature arcvolcaniclastic sediments and the roles of diagenesis and incipient hydrothermal mechanisms in metallogenesis

were especially important in conceptualizing ore formation in island arcs.

The specific objective was to drill through 0.7 to 1 km of sediments on the eastern side of the West Mariana Ridge and to penetrate the 3.9- to 4.2-km/s basement.

OPERATIONS

The final drilling location of Site 451 is situated about 240 km due east of Site 450. At 1130 Local Time (L), 7 March, approximately 17.5 hours after leaving Site 450, a brief seismic-profile survey was begun; at 1326 L the positioning beacon was dropped and normal site operations were begun (Fig. 6).

An attempt to retrieve a mudline punch core was made when the core bit had been lowered to 2081.5 meters. Although the depth was 11.5 meters below the precision depth recorder (PDR) depth, no weight indication of contact with the seafloor was felt. No sediment was recovered. The procedure was repeated with an additional joint of pipe to 2091 meters; on this attempt 4.2 meters of sediment were recovered and the water depth was set at 2086 meters from the rig floor.

The record of drilling operations is summarized in Table 1. At 38 meters sub-bottom, firm volcaniclastic material was encountered, and there was concern for the bottom-hole assembly (BHA) because the lower bumper

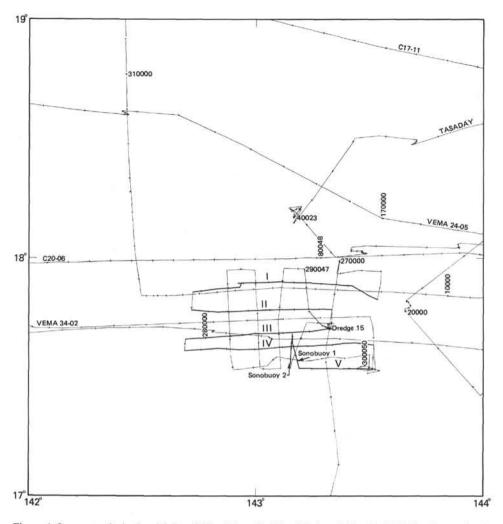


Figure 4. Survey tracks in the vicinity of Site 451 on the West Mariana Ridge (L-DGO Site Survey data). (The heavily drawn east-west lines with Roman numerals correspond to profiles shown in Fig. 2.)

subs were just reaching the seafloor. After a few meters were carefully drilled, somewhat softer material was encountered and the BHA was buried without incident.

Low core recovery from about 55 to 475 meters subbottom was attributed to semi-indurated tuff and ash beds; recovery improved as compaction and induration increased with depth.

Minor hole problems occurred at 537 meters and at 641 meters sub-bottom, created by the influx of excessive accumulations of cuttings in the hole. The hole had been kept clean by regular mud flushes in the course of drilling; it was concluded that "avalanches" of cuttings from the seafloor around the hole or from washouts in the upper part of the hole caused these problems. The lower influx (641 m) occurred during attempts to clear a plugged bit. The altered volcaniclastic material encountered showed a tendency to accumulate in a waxy claylike mass in the core catcher; this caused repeated jamming, which adversely affected core recovery. A similar buildup apparently occurred in the throat and jets of the core bit. The bit deplugger was run and the throat was opened, indicated by mud pump pressure. The next core barrel failed to seat, however, and even more severe

plugging resulted from a 3-meter core attempt. Several more wire-line runs were required to clear the bit completely, and a total delay of 7.5 hours resulted.

Normal operations continued until the final operating day of the leg. At a depth of 926.5 meters subbottom, core barrel 101 stuck at the bit, and three wireline runs (two sheared release pins) were required to retrieve it. A small lump of altered basalt was found imbedded in the clay-like material jamming the core catcher.

The penetration rate was much lower on the subsequent core, and it was decided to retrieve the core after 4 meters were cut to maximize basalt recovery. During the cutting of the core, however, the mud pump pressure increased markedly, indicating that the bit was plugging. Core recovery was only 40 cm, some of which was altered basalt. The amount was insufficient to determine whether the basalt was a large clast or part of a flow.

A last-minute attempt was made to clear the bit and cut one additional core. Pump pressure indicated the bit to be almost completely plugged, and the deplugger did not open the throat when it landed at the bit. The overshot was lowered and engaged the deplugger barrel. Sev-

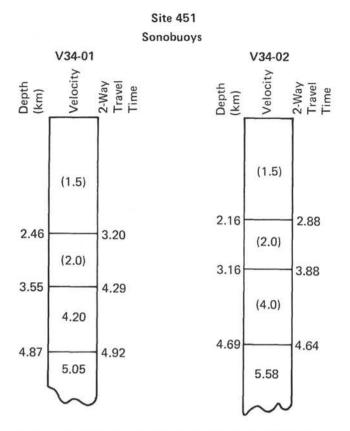


Figure 5. Results of the two sonobuoys shot on the West Mariana Ridge (L-DGO Site Survey data). (Significant topographic slopes along the line of these profiles reduce their accuracy.)

eral attempts were made to break through the obstruction by jarring the wire-line jars, but the deplugger became stuck without reducing the pumping pressure. Attempts to dislodge the deplugger resulted in a sheared release pin.

Operating time had run out and prospects for recovering any additional core were low. The drill string was retrieved, concluding drilling operations for Leg 59. On retrieval, the throat of the bit was found to be solidly packed with pulverized clay and rock for its entire length. The apices of all four cones of the bit had been broken off, leaving only the second row of inserts of two of the cones to trim the diameter of the core.

After the drilling equipment had been secured for sea, the vessel got underway for profile surveying at 1940 L, 13 March. On departure to the west to stream gear, the site was crossed on an easterly profile. The profile was continued 35 km to the east, and then a southerly course was set for Apra, Guam.

SEDIMENTARY LITHOLOGY

At Site 451, 930.5 meters of sediments and volcaniclastic rock were drilled and continuously cored. Basalt fragments recovered from the bottom of the hole may represent the upper surface of a lava flow, but otherwise no flows or igneous intrusions were encountered. Recovery was poor in the interval of poorly consolidated sediments from Cores 11 through 23 and 48 through 51.

The upper Miocene to Quaternary sedimentary section consists of two lithologies that contrast sharply in appearance and genesis, separated by a transition zone of intercalated beds of both lithologies with layers that are intermediate in composition. Thus, the sedimentary column is conveniently separable into three lithologic units (Fig. 7).

At the top, Unit 1 (36.0 m thick) consists of lower Pliocene to Ouaternary soft biogenous carbonate oozes. The uppermost two meters of Unit 1 are a grayish brown foraminiferal ooze that grades downward into delicately hued alternations of grayish brown foraminiferal-nannofossil ooze and light yellow-brown and yellow nannofossil-foraminiferal ooze (Core 2). The nannofossil-ooze layers become thicker down-core at the expense of the foraminiferal-nannofossil oozes; Cores 3 and 4 and the upper part of Core 5 are exclusively nannofossil-foraminiferal oozes, and the basal 20 cm of Unit 1 are a light gray nannofossil ooze. A single 20-cm thick, very dark gray bed of ash occurs in Core 3, 20 meters above the base of the unit. Pumice and glass fragments, locally brown or black and covered by manganiferous films, are present in Core 1. Glass (trace to 3%), crystal fragments (trace to 2%),

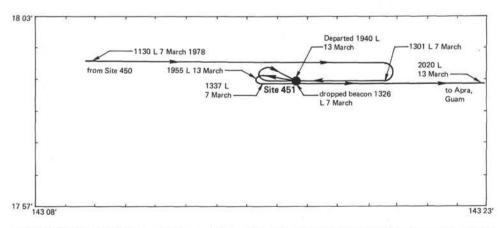


Figure 6. Track of the *Glomar Challenger* between Site 450 and 451 showing details of pre- and postsite surveys. (The • marks the site position.)

DRILLING TIME, MINUTES/METER 0 5 10 15	SITE 451 AGE 1 AGE 1	LITHOLOGY LITHOLOGY	FORAMINIFERAL	FORAMINIFERAL NANNOFOSSIL OOZE	FORAMINIFERAL 002E	CARBONATE-RICH FINE VITRIC TUFF	FINE VITRIC TUFF	VITRIC TUFF	TUFFACEOUS VOLCANICLASTIC BRECCIA AND CONGLOMERATE	BOULDER CONGLOMERATE VOLCANICLASTIC
	43.0 6 52.5 7 62.0	the unit. Uluit 2 (36.0–65.5 m). Olive and gray carbonate-rich VITRIC ASH with minor layers of olive-gray and very dark gray VITRIC TUFF.								
	8 9 81.0 90.5 10 90.5 11 100.0 12 109.5 13 119.0 14 128.5 15 18.6 19 166.5 19 176.0 18 165.5 20 185.5 21 195.0 22 244 23.0 26 23.0 28 27 28 271.0 280.5 100.0	Sub-unit 3a (65.5–280.5 m). Dark gray to black VITRIC TUFFS containing 20 percent shallow water shell fragments and fora- minifera, with minor gray and dark gray carbonater-ich VITRIC ASH, locally lithified to carbonater-ich VITRIC TUFFS, and minor grayish black FINE VITRIC TUFF.				-		F		
	290.0 299.5 32 33 309.0 34 35 36 37 36 37 36 37 36 37 38 36 36 37 38 36 38 36 38 36 38 36 38 36 38 36 38 38 36 38 38 36 38 38 36 38 38 38 38 36 38 38 38 38 38 38 38 38 38 38	Sub-unit 3b (280.5–413.5 m). Interbedded dark gray and very dark gray foram-rich VITRIC TUFF, and very dark gray and black VOLCANICLASTIC BRECIAS and CONGLOMERATES, in part tuffaceous, containing shallow-water forams and coral fragments. Sub-unit 3c (413.5–425.2 m). Very dark gray BOULDER VOLCANICLASTIC CONGLOMERATE with basilic clasts, grading down to VOLCANI- CLASTIC CONGLOMERATE and				-				
{	416.5 46 423.0 47 432.5 48 442.0 49 451.5	containing minor gray VITRIC TUFF and carbonate-rich VITRIC TUFF, dipping 20°. Sub-unit 3d (425.2–475.5 m). Black VITRIC TUFF with lesser black FINE VITRIC TUFF, as in Sub-unit 3a.					-	-	-	_= .

Figure 7. Lithology, age, core recovery, and drilling rate at Site 451. (The drilling rate is included here to show its correlation with lithology and lithologic boundaries. Core recovery is indicated by the solid symbol in the second left column. Lithologic symbols are summarized in the Introduction to this volume. Component percentages derived from smear slides and core descriptions are indicated in the eight columns on the right of the figure.)

DRILLING TIME, MINUTES/METER 0 5 10 15	SITE 451 AGE	LITHOLOGY	
L	461.0		
	470.5 473.5 52		_
	480.0		
	489.5		
	499.0 58 late Miocene		
ſ	508.5 57 518.0		
7	518.0		
	537.0		
ł	546.5	Sub-unit 3e (474.5–641.9 m). Interbedded black and greenish black VITRIC TUFF and dark	
L ₁	556.0	gray, grayish black, greenish black, and black VOLCANICLASTIC BRECCIAS and CONSLOWERATES, in part	
r ¹	565.5	University of the second secon	
r f	575.0 64		
ſ	584.5		
l	594.0 66 603.5		
	613.0		
L	622.5		
	632.0 70		
ł	641.5		-
7	651.0 72		
	660.5 73 670.0	Sub-unit 3f (641.9-703.6 m). Black VITRIC TUFF and lesser FINE VITRIC TUFF, as in	
]	679.5	Sub-units 3a and 3d.	
L	689.0		
	698.5 701.5 70		
5	708.0 78 late		
5	717.5 Miocene		
	727.0 81		
	746.0		
l	755.5		
1	765.5		
ſ	774.5		1
	784.0		
Γ	793.5 88 803.0	Sub-unit 3g (703.8–930.5 m). Interbedded greenish	
	89	black, gravish black, dark bluish grav and dark grav VITRIC TUFF, with greenish	
L	822.0	black, dark greenish gray and grayish olive- green VOLCANICLASTIC BRECCIAS and CONSLOWERATES, in part	
	831.5	tuffaceous.	
4	841.0 93		
	850.5		
1	860.0 95		
Ĺ	869.5 96 879.0		
Ļ	888.5		
_L	898.0		
5	99		
Ľ	917.0		
	926.5 930.5 102	BASALT7	1
ò			

Figure 7. (Continued).

Table 1. Coring summary for Hole 451.

Core No.	Date (March, 1978)	Local Time (L)	Depth from Drill Floor (m, top-bottom)	Depth below Sea Floor (m, top-bottom)	Length Cored (m)	Length Recovered (m)	Recovery (%)
1	7 7	2138	2086.0-2091.0	0.0- 5.0	5.0	4.2	84
23	7	2216 2258	2091.0-2100.5 2100.5-2110.0	5.0- 14.5 14.5- 24.0	9.5 9.5	8.8 9.5	93 100
4	7	2332 0037	2110.0-2119.5 2119.5-2129.0	24.0- 33.5 33.5- 43.0	9.5	9.1 5.9	96 62
6	8	0121	2129.0-2138.5	43.0- 52.5	9.5	9,5	100
7	8	0208	2138.5-2148.0	52.5- 62.0	9.5	1.4	15
8	8 8	0255 0335	2148.0-2157.5 2157.5-2167.0	62.0- 71.5 71.5- 81.0	9.5 9.5	3.7 0.4	39 4
10	8	0333	2167.0-2176.5	81.0- 90.5	9.5	1.2	13
11	8	0515	2176.5-2186.0	90.5-100.0	9.5	0.0	0
12	8	0602	2186.0-2195.5	100.0-109.5	9.5	0.0	0
13	8	0645 0739	2195.5-2205.0 2205.0-2214.5	109.5-119.0 119.0-128.5	9.5 9.5	0.0	0 28
15	8	0838	2214.5-2224.0	128.5-138.0	9.5	0.7	7
16 17	8 8	0936	2224.0-2233.5	138.0-147.5 147.5-157.0	9.5	0.1	1
18	8	1030 1116	2233.5-2243.0 2243.0-2252.5	157.0-166.5	9.5 9.5	0.0	0
19	8	1215	2252.5-2262.0	166.5-176.0	9.5	0.0	0
20	8	1340 1450	2262.0-2271.5 2271.5-2281.0	176.0-185.5 185.5-195.0	9.5	0.2	2
22	8	1525	2281.0-2290.5	195.0-204.5	9.5 9.5	0.1	2
23	8	1620	2290.5-2300.0	204.5-214.0	9.5	0.2	2
24 25	8	1740 1805	2300.0-2309.5 2309.5-2319.0	214.0-223.5 223.5-233.0	9.5 9.5	2.0	21.1 18.9
26	8	1905	2319.0-2328.5	233.0-242.5	9.5	0.5	5.3
27	8	2004	2328.5-2338.0	242.5-252.0	9.5	1.2	12.6
28 29	8	2106 2220	2338.0-2347.5 2347.5-2357.0	252.0-261.5 261.5-271.0	9.5 9.5	0.1 0.2	1.1 2.1
30	8	2322	2357.0-2366.5	271.0-280.5	9.5	0.1	1.1
31	9	0040	2366.5-2376.0	280.5-290.0	9.5	1.6	16.8
32 33	9	0149 0244	2376.0-2385.5 2385.5-2395.0	290.0-299.5 299.5-309.0	9.5 9.5	1.8	18.9 14.7
34	9	0352	2395.0-2404.5	309.0-318.5	9.5	1.8	18.9
35	9	0451	2404.5-2414.0	318.5-328.0	9.5	1.0	9.5
36 37	9	0550 0645	2414.0-2423.5 2423.5-2433.0	328.0-337.5 337.5-347.0	9.5 9.5	1.0 2.1	10.5 22.1
38	9	0800	2423.0-2442.5	347.0-356.5	9.5	3.6	37.9
39 40	9	0900	2442.5-2452.0	356.5-366.0	9.5	1.9	20.0
40	9	1010	2452.0-2461.5 2461.5-2471.0	366.0-375.5 375.5-385.0	9.5 9.5	4.2	15.8
42	9	1220	2471.0-2480.5	385.0-394.5	9.5	3.0	31.6
43	9	1323	2480.5-2490.0	394.5-404.0	9.5 9.5	0.1	1.0 12.6
44 45	9	1436 1559	2490.0-2499.5 2499.5-2502.5	404.0-413.5 413.5-416.5	3.0	1.2	53.3
46	9	1725	2502.5-2509.0	416.5-423.0	6.5	3.2	49.2
47 48	9	1831 1926	2509.0-2518.5 2518.5-2528.0	423.0-432.5 432.5-442.0	9.5 9.5	2.5	26.3
49	9	2017	2528.0-2537.5	442.0-451.5	9.5	0.2	5.3
50	9	2118	2537.5-2547.0	451.5-461.0	9.5	0.1	1.0
51 52	9	2424 2326	2547.0-2556.5	461.0-470.5 470.5-473.5	9.5	0.1	1.0 12.6
53	10	0305	2556.5-2559.5 2559.5-2566.0	473.5-480.0	3.0	2.5	38.5
54 55	10	0510	2566.0-2575.5	480.0-489.5	9.5	5.6	58.9
56	10	0625	2575.5-2585.0 2585.0-2594.5	489.5-499.0	9.5 9.5	4.4	46.3
57	10	0835	2594.5-2604.0	499.0-508.5 508.0-518.0	9.5	5.2 3.7	38.5
58 59	10	1000	2604.0-2613.5	518.0-527.5	9.5	2.9	30.5
60	10	1210 1415	2613.5-2623.0 2623.0-2632.5	527.5-537.0 537.0-546.5	9.5 9.5	2.4 2.7	25.3 28.4
61	10	1515	2632.5-2642.0	546.5-556.0	9.5	3.2	33.7
62	10	1705	2642.0-2651.5	556.0-565.5	9.5	3.2	33.7
63 64	10	1815 1921	2651.5-2661.0 2661.0-2670.5	565.5-575.0 575.0-584.5	9.5 9.5	6.1 5.6	64.2 58.9
65	10	2019	2670.5-2680.0	584.5-594.0	9.5	4.2	44.2
66	10	2134	2680.0-2689.5	594.0-603.5	9.5	6.1	64.2
67 68	10 10	2245 2358	2689.5-2699.0 2699.0-2708.5	603.5-613.0 613.0-622.5	9.5 9.5	3.8	40.0 43.2
69	11	0147	2708.5-2718.0	622.5-632.0	9.5	3.5	37.0
70	11	0325	2718.0-2727.5	632.0-641.5	9.5	3.0	31.5
71 72	11	0452 0612	2727.5-2737.0 2737.0-2746.5	641.5-651.0 651.0-660.5	9.5 9.5	7.4	77.9 52.6
73	11	0800	2746.5-2756.0	660.5-670.0	9.5	1.3	13.7
74 75	H	0945	2756.0-2765.5 2765.5-2775.0	670.0-679.5 679.5-689.0	9.5 9.5	1.6	16.8
76	11	1330	2775.0-2784.5	689.0-698.5	9.5	Tr.	0.0
77	11	1622	2784.5-2787.5	698.5-701.5	3.0	0.0	0.0
78 79	11	2213 0006	2787.5-2794.0 2794.0-2803.5	701.5-708.0 708.0-717.5	6.5 9.5	6.4 4.5	98.5 47.4
80	12	0132	2803.5-2813.0	717.5-727.0	9.5	7.2	43.2
81	12	0241	2813.0-2822.5	727.0-736.5	9.5	4.7	49.5
82 83	12	0430 0544	2822.5-2832.0 2832.0-2841.5	736.5-746.0 746.0-755.5	9.5 9.5	6.0 1.8	63.2 18.9
84	12	0710	2841.5-2851.0	755.5-765.0	9.5	4.9	51.6
85	12	0830	2851.0-2860.5	765.0-774.5	9.5	5.0	52.6
86 87	12	0951 1142	2860.5-2870.0 2870.0-2879.5	774.5-784.0 784.0-793.5	9.5 9.5	4.2 3.3	44.2 34.7
88	12	1400	2879.5-2889.0	793.5-803.0	9.5	4.1	43.2
89 90	12	1530	2889.0-2898.5	803.0-812.5	9.5	3.4	35.8
90	12	1701	2898.5-2908.0 2908.0-2917.5	812.5-822.0 822.0-831.5	9.5 9.5	2.0	21.0
92	12	2030	2917.5-2927.0	831.5-841.0	9.5	3.5	36.8
93	12	2202 2231	2927.0-2936.5 2936.5-2946.0	841.0-850.5 850.5-860.0	9.5 9.5	4.1 5.2	43.2 54.7
94		4431	2330.3-2940.0	0.00.0-000.0	2.3	5.0	52.6

Table 1. (Continued).

Core No.	Date (March, 1978)	Local Time (L)	Depth from Drill Floor (m, top-bottom)	Depth below Sea Floor (m, top-bottom)	Length Cored (m)	Length Recovered (m)	Recovery (%)
96	13	0203	2955.5-2965.0	869.5-879.0	9.5	3.4	36.0
97	13	0336	2965.0-2974.5	879.0-888.5	9.5	4.4	46.3
98	13	0545	2974.5-2984.0	888.5-898.0	9.5	5.7	60.0
99	13	0657	2984.0-2983.5	898.0-907.5	9.5	2.1	22.1
100	13	0837	2983.5-3003.0	907.5-917.0	9.5	2.1	22.1
101	13	1110	3003.0-3012.5	917.0-926.5	9.5	1.3	14.0
102	13	1302	3012.5-3016.5	926.5-930.5	4.0	0.2	2.1
Tota	d.				930.5	280.1	30.1

and feldspar and heavy minerals (trace to 1%) are very minor constituents.

Unit 2, 29.5 meters thick, consists of upper Miocene, carbonate-rich fine vitric tuff, fine vitric tuff, and nannofossil-foraminiferal ooze interbeds. The uppermost interbeds (80 cm thick) are two olive-gray and dark olive-gray ash beds (25 and 40 cm thick), intercalated with a nannofossil-foraminiferal ooze (15 cm thick). Below this intercalated zone are 8.7 meters of light olive-gray carbonate-rich ash layers (each <10 cm thick) interbedded with lithified dark olive-gray vitric tuff layers. In Core 6 the carbonate-rich ash layers increase in thickness to 70 cm, and the tuff layers increase in thickness to 35 cm. This general lithology continues down to a sub-bottom depth of 65.5 meters, the base of Unit 2.

The contact between Units 2 and 3 was not recovered but can be reasonably placed just below the lowermost beds of Unit 2, where core recovery dropped markedly as a consequence of the poorly consolidated vitric tuffs dominating the Unit 3 beds. Unit 3, 865.0 meters thick, extends from 65.5 meters to 930.5 meters sub-bottom and consists of upper Miocene fine vitric tuffs, vitric tuffs, and volcaniclastic conglomerates and breccias. Figure 7 shows the stratigraphic distribution of these rock types and the seven recognizable sub-units. This thickness may represent more than the complete Unit 3 section at Site 451, inasmuch as it is believed that the poorly recovered bottom 4 meters of the hole, where drilling rate slowed sharply, were drilled in igneous rock.

Only about 6% of the 215.0 meters of Sub-unit 3a were recovered in the coring. The predominant rock type is a black to dark gray vitric tuff, with lesser dark gray, very dark gray, and black fine vitric tuffs. The sediments are composed of about 25% glass and 45% clay alteration products. Calcareous material makes up most of the remainder, notably as burrow fillings in the fine tuffs and as shallow-water foraminifers (see the biostratigraphy section of this site report) and coral fragments in the coarser tuffs. Foraminifers commonly occur concentrated in laminae.

Approximately two-thirds of the 133.0-meter-thick Sub-unit 3b is composed of the same vitric tuff as is Sub-unit 3a, but in 3b there are interbeds with conglomerate and breccia layers 10 to 340 cm thick. Typical clast sizes are 0.5 mm in diameter, although rare clasts up to 3 cm occur. The clast:matrix ratio varies between 2:1 and 4:1; aphanitic and vesicular basalt account for more than half (rarely up to 90%) of the clasts, which are angular to subrounded. The matrix consists of fine glass and its alteration products. The sub-unit features laminated intervals of fine sand-sized clasts, graded bedding, load casts, and rare penecontemporaneous normal faulting of small displacement (5 mm) and disharmonic, recumbent folding (Fig. 8). Bioturbation of the finer beds occurs and is intense in one 40-cm-thick layer at the top of the sub-unit. Shallow-water foraminifers, coral fragments, and lignite fragments are present in the coarser layers.

Sub-unit 3c, 11.7 meters thick, features a boulder volcaniclastic conglomerate 4.6 meters thick at its top; the boulders are 20 to 30 cm in size within the core and are composed of plagioclase-olivine-phyric basalt and vesicular plagioclase-phyric basalt. This bed progressively becomes finer down-core, becoming a vitric tuff with intercalations of gray carbonate-rich tuff about 10 cm thick. Two other coarse beds, 40 and 70 cm thick, occur near the base of the sub-unit. Approximately half of the recovery from Sub-unit 3c is breccia and conglomerate.

Sub-unit 3d, 49.3 meters thick, is an interval much like Sub-unit 3a, in which poorly recovered vitric tuff predominates. Biogenic carbonate is present in small

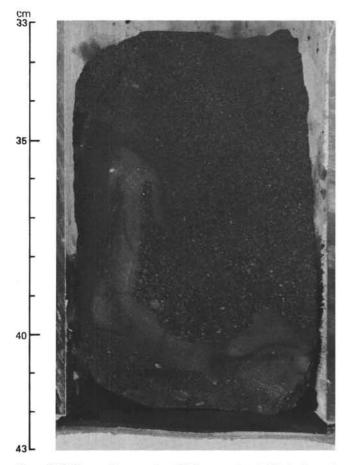


Figure 8. Disharmonic, recumbent folding associated with the base of a graded bed.

amounts as pelagic and benthic foraminifers and nannofossils. Some of the beds are black and structureless; others are dark gray and show lamination and crossbedding.

Sub-unit 3e, 167.4 meters thick, is an intercalated sequence of vitric tuffs, volcaniclastic breccias, and conglomerates much like those of Sub-unit 3b. Again, coarse beds comprise about one-third of the recovered material. The rock is more indurated and the glassy material more altered to clay. Subangular to subrounded clasts of altered basalts and andesites 3 to 4 mm in diameter occur as minor constituents. Clasts and matrix both contain very small amounts of disseminated pyrite. The clast:matrix ratio is about 4:1. Silicified foraminifers were observed in two of the cores; lignite lenses also are present.

Sub-unit 3f, 61.7 meters thick, is another interval dominated by black vitric tuffs and lesser fine vitric tuffs and characterized by poor core recovery. Andesite clasts occur in the coarser sediments of every core in the sub-unit.

Sub-unit 3g, either 222.9 or perhaps more than 226.9 meters thick, consists primarily of greenish black, dark greenish gray, and grayish olive-green coarse volcaniclastic breccias and conglomerates, in part tuffaceous, in layers 20 cm to 5 meters thick. Interbedded with them, in intervals typically about 1 meter thick, are greenish black, grayish black, dark bluish black, and dark gray vitric tuffs.

The depositional history of Site 451 on the West Mariana Ridge is one of rapid accumulation of great thickness of epiclastic volcanic sediments derived from relatively shallow water during the late Miocene. Many of the coarser clasts in Unit-3 sediments display rounding attributable to reworking in near-surface environments of high wave energy, and it is possible that some of these clasts may even have been rounded in a subaerial setting. Reworked shallow-water carbonate tests were also deposited with the Unit-3 sediments, although carbonate contents are strongly masked and diluted by the volcaniclastic components. Because lignite occurs as lenses and fragments isolated at one stratigraphic horizon, and because lignite does not form in marine environments, the lignite within tuffs was not formed in situ but was most probably derived by erosion of nearby volcanic islands.

In the latest Miocene, the supply of volcaniclastic material was reduced enough so that carbonates comprise a significant fraction of the Unit-2 sediments. By the Pliocene, volcanism had ceased altogether, and only carbonate oozes with insignificant ash admixtures were deposited until the present. At no time in the entire period of time recorded by the cored sequence does Site 451 appear to have been below the carbonate compensation depth (CCD).

BIOSTRATIGRAPHY

At Site 451, at least 926.5, if not 930.5 meters of sediment were cored. Foraminiferal-nannofossil ooze is present in the first five cores, changing to carbonaterich vitric ash and vitric tuffs downward. Volcaniclastic rocks occur with increasing frequency down-hole and dominate in the lower part of the hole.

In Cores 1 to 3 (0.0-24.0 m), foraminifers, calcareous nannofossils, and radiolarians are present, indicating an age of late Pliocene to late Quaternary. Diatoms occur only in the lower part of Core 1 and in Core 2 and are associated with rare silicoflagellates. Below Core 3 only calcareous nannoplankton and foraminifers remain, and these are common down to Core 14 (24.0-128.5 m), indicating an age of late Miocene to early Pliocene for this interval. Cores 15 to 19 (128.5-176.0 m) are essentially barren or had no recovery. From Core 20 downward, fossil occurrences are restricted to interbedded biogenic horizons in which poorly preserved upper Miocene nannofossils and the planktonic foraminifer Orbulina spp. (middle Miocene or younger) are present. Larger foraminifers are occasionally present from Core 31 downward. Coral fragments were also found (e.g., Core 91). The lowest nannofossil occurrence was noted in Core 85 (765.0-774.5 m), which is situated in the basal part of Zone NN 10 (Discoaster calcaris Zone, upper Miocene).

Calcareous Nannoplankton

In Cores 1 to 3 (0.0–24.0 m), Quaternary to upper-Pliocene calcareous nannoplankton assemblages are present, represented by calcareous nannoplankton Zones NN 21 (*Emiliania huxleyi* Zone) down to NN 16 (*Discoaster surculus* Zone) in successive order, with the exception of Sample 2,CC. Here an NN 21 assemblage was found that obviously represents material caved-in from above. Core 4 and the upper part of Core 5 (24.0–36.5 m) contain the lower Pliocene calcareous nannoplankton Zones NN 12 (*Ceratolithus tricorniculatus* Zone) to NN 15 (*Reticulofenestra pseudoumbilica* Zone), with rather common occurrences of ceratoliths.

The NN 11 assemblage is found in the lower part of Core 5 probably to Core 20 (36.5-185.5 m), although the lower part of this succession is obscured by nonrecovery and barren intervals. In Core 22 and downward to Core 64, several layers contain poorly preserved nannoplankton assemblages, which may belong to Zone NN 10 (D. calcaris Zone), because neither D. quinqueramus (first occurrence [FO] = base of Zone NN 11) nor D. hamatus (last occurrence [LO] = top of ZoneNN 9) were found in the volcaniclastic sediment. In Cores 78 and 80 the basal part of Zone NN 10 was reached, in which Catinaster calyculus (long-rayed specimens) is present. Some levels contain only solutionresistant forms inadequate for precise age determination. The preservation of calcareous nannofossils in Cores 3 to 14 is fair; and preservation in the two uppermost cores is good.

Foraminifers

Moderately well-preserved planktonic foraminifers are common to abundant in core-catcher samples from Cores 1 to 14, with benthic foraminifers common in the upper cores but rare below Core 5. Below Core 14 all foraminifers occur sporadically because the more abundant volcaniclastic sediments often dilute their presence; preservation is generally poor with increased induration of the sediments.

Mixing of foraminiferal faunas of different age in some of the samples from this site is evident (e.g., Sample 1,CC contains a mixture of foraminifers from Zones N.21 to N.23); this makes it difficult to determine the precise age of these samples.

The following upper Miocene to Quaternary planktonic foraminifer zones were recognized: probably N.23 in the upper portion of Core 1; probably N.22 from Sample 1,CC through Core 2, Section 1; N.21 from Core 2, Section 3 to Core 3, Section 5; N.19 from Core 3, Section 7 to Core 5, Section 1; N.17 from Core 6, Section 1 through Core 8, Section 6 (and Core 10, Section 1[?]).

Rare occurrences of *Candeina* as low as Core 25, Section 1 indicate the presence of Zones N.16/N.17 at least as far down as this. *Orbulina* spp. (middle Miocene or higher) occurs sporadically throughout the lower portion of the sedimentary section.

Reworked larger foraminifers occur sporadically from Core 31 downward. (The following information on these larger foraminifers and associated shallowwater fossils is a personal communication submitted by Dr. J. P. Beckmann, December, 1978.²)

Samples from Cores 31, 40, 42, 46, 47, 50, 69, 71, and 72 were available for investigation. Fossil remains that are generally regarded as shallow-water indicators were found in all of these cores except Core 69. The best faunas were recovered from Cores 40, 71 and 72, but even in these cores only *Amphistegina* spp. and *Ammonia* cf. *indopacifica* (Thalmann) are fairly common. The remaining taxa are represented in individual samples by only a few specimens (or fragments of specimens). Preservation is usually moderate to poor. Many specimens show signs of breakage or wear, and the material is commonly chalky or recrystallized into clear calcite. A thorough taxonomic study has not been attempted, and an open nomenclature is commonly used in the sample list that follows.

The most significant genera of larger foraminifers at Site 451 are Lepidocyclina, Miogypsina, Miogypsinoides, and Cycloclypeus. The group Operculina-Operculinella-Operculinoides is also present in most samples, but because of its limited stratigraphic use has not been studied in detail. Lepidocyclina is represented in the upper part of the studied interval (mostly Core 40) by L. cf. rutteni van der Vlerk, whereas in the lower cores (71 and 72) the specimens have broader equatorial chambers and resemble L. japonica (Yabe). A few fragments probably belonging to L. ferreroi Provale were found in Core 71. Miogypsina also occurs very rarely in Core 71. Two specimens of Miogypsinoides from the top sample (0-9 cm) of Core 71 seem to be close to M. complanata (Schlumberger) and are most probably reworked. The genus Cycloclypeus is taxonomically in a confused state, which limits its value for biostratigraphy. In this report, a group named C. cf. eidae/posteidae (mostly with 7-15 nepionic chambers) is distinguished from a few larger specimens with five or less nepionic chambers, here referred to as C. cf. carpenteri/guembelianus, following mainly the work of MacGillavry (1962).

The presence of presumably reworked specimens limits the value of the larger foraminiferal faunas for age determination. According to the recent stratigraphic compilations of Adams (1970), Haak and Postuma (1975), and Coleman (1978), the association of Cores 71 and 72 (with Lepidocyclina cf. japonica, L. cf. ferreroi, and Miogypsina sp.) would suggest the middle Miocene (early Tertiary f). The younger samples (particularly Core 40) with L. cf. rutteni might be slightly younger (early part of the late Miocene, late Tertiary f). The original life habitat of the fauna, following the models of Henson (1950) and

² Dr. J. P. Beckmann, Swiss Federal Institute of Technology, Sonneggstrasse 5, 8006 Zurich, Switzerland.

Chaproniere (1975), was probably a fairly shallow shelf (i.e., a forereef shoal). The associated megafossil remains (pelecypod fragments, echinoid spines, some bryozoans) give some further support to this assumption. The rare coral fragments may indicate the vicinity of a reef. The smaller benthic foraminifers (*Lenticulina, Bulimina, Asterigerina*, and others) in some samples suggest that faunal components of a slightly deeper-water origin may also be present.

The following is a list of larger foraminifers and associated microfossils found in samples from Hole 451. (All listed fossils are rare [one or few specimens], except where otherwise noted. The sections and intervals within each core are indicated.) Core 31

Core 31	And and a state of the second state of the sec
1, 24-26 cm:	Ammonia sp.
1, 38–40 cm	
1, 50–56 cm	No distinct shallow-water fossils
1, 88-90 cm	
Core 40	
2, 9-12 cm:	Ammonia sp., Cycloclypeus sp., Lepidocyclina sp., Operculinoides sp.
2, 37-41 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp. (fairly common), Cycloclypeus cf. eidae/posteidae, Cycloclypeus spp., Lepidocyclina sp., Operculina sp.
2, 66-70 cm:	Ammonia cf. indopacifica, Amphistegina spp. (fairly common), Cycloclypeus cf. eidae/posteidae, Lepidocyclina cf. rutteni, Operculina sp.
2, 95-97 cm:	Ammonia sp., Amphistegina sp., Cycloclypeus sp.
2, 97-99 cm:	Ammonia sp., Amphistegina sp., Cycloclypeus cf. eidae/posteidae, Cycloclypeus sp., Lepidocyclina sp.
	(Lenticulina sp.)
Core 42	S. S
2, 115-120 cm:	Ammonia sp., Amphistegina sp., Cycloclypeus sp., (?)Lepidocyclina sp., Operculina sp.
Core 46	
3, 3-6 cm:	Ammonia sp., Amphistegina sp. (?)coral fragment
3, 10-12 cm:	Operculinoides sp.
3, 22-24 cm: Core 47	Amphistegina sp., Operculina sp.
1, 86–88 cm:	Amphistoging on Ammonia on Onerouling on
	Amphistegina sp., Ammonia sp., Operculina sp., (?)Planorbulina sp.
1, 136–138 cm:	Ammonia sp., Amphistegina sp.
2, 18-22 cm:	Ammonia sp., Amphistegina spp.
Core 50	(Bulimina, Asterigerina)
Sample 50,CC:	Ammonia sp., Amphistegina sp.
bumpie so, ee.	Pelecypod fragments.
Core 69	recopped magnements.
1, 34–39 cm 2, 118–120 cm <i>Core 71</i>	No distinct shallow-water fossils
1, 0-9 cm:	Ammonia cf. indopacifica (fairly common), Am-
	phistegina spp. (common), Cycloclypeus cf. carpen-
	teri/guembelianus, Cycloclypeus sp., Lepidocyclina
	cf. japonica, Miogypsinoides cf. complanata, Oper- culina cf. complanata, Operculina sp., Sphaerogyp-
	sina sp.
1, 143-150 cm:	Pelecypod fragments, echinoid spines. Ammonia cf. indopacifica (fairly common), Am-
1, 145-150 cm.	phistegina spp. (fairly common), Cycloclypeus sp., Lepidocyclina sp.
	Pelecypod fragments, echinoid spines.
3, 113-120 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp (fairly common), Cycloclypeus sp., Heterostegina sp., Lepidocyclina cf. japonica,
	Miogypsina sp., Operculina cf. complanata, Planor- bulina sp.
	Pelecypod fragments, echinoid spines.
4, 122-132 cm:	Ammonia cf. indopacifica (fairly common), Am-
	phistegina spp. (fairly common), Cycloclypeus spp., Lepidocyclina cf. ferreroi, Lepidocyclina cf. japon-
	ica, Miogypsina sp., Operculinella sp.

	Pelecypod and gastropod fragments, bryozoans, coral remains.
5, 8-12 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp. (fairly common), Cycloclypeus spp.,
	Heterostegina sp., Lepidocyclina cf. japonica, Oper- culinella sp., Planorbulina sp. Pelecypod fragments, echinoid spines, bryozoans.
5, 93–98 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp. (fairly common), Cycloclypeus cf. eidae/posteidae, Cycloclypeus sp., Lepidocyclina cf. japonica, Operculina cf. complanata, Operculinella sp., Sphaerogypsina sp. (Lenticulina)
	Echinoid spines, bryozoans, coral fragments.
6, 140–145 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp. (fairly common), Cycloclypeus spp., Lepidocyclina cf. ferreroi, L. cf. japonica, Miogyp- sina sp., Operculinella sp., Sphaerogypsina sp. Echinoid spines.
Core 72	
1, 23–28 cm:	Ammonia cf. indopacifica (common), Amphistegina spp. (common), Cycloclypeus cf. eidae/posteidae, Cycloclypeus sp., Lepidocyclina cf. japonica, Oper- culina cf. complanata, Operculinella sp., Planor- bulinella sp. Pelecypod and coral fragments.
1,60 cm:	Lepidocyclina sp.
1, 103–105 cm:	Ammonia cf. indopacifica (common), Amphistegina spp., Cycloclypeus spp., Lepidocyclina cf. japonica, Lepidocyclina sp., Operculinella sp. Pelecypod fragments
1, 136–138 cm:	Ammonia cf. indopacifica (fairly common), Am- phistegina spp. (fairly common), Cycloclypeus cf. eidae/posteidae, Cycloclypeus sp., Lepidocyclina cf. japonica, Lepidocyclina sp., Operculinella sp. (fairly common), Sphaerogypsina sp. (Lenticulina)
2, 88–95 cm:	Pelecypod and (?)coral fragments. Ammonia cf. indopacifica (common), Amphistegina spp. (fairly common), Cycloclypeus cf. carpenteri/ guembelianus, Cycloclypeus cf. eidae/posteidae, Lepidocyclina cf. japonica, Operculinella sp., Sphaerogypsina sp. (Lenticulina)
	Pelecypod and (?)coral fragments, echinoid spines.

Radiolarians

The core-catcher samples of Cores 1 through 3 contain radiolarians in sufficient numbers to study; in Cores 451-4 and, -10, and Sample 14,CC, traces of this group were found, whereas all other cores appear to lack radiolarians.

The assemblage in Sample 451-1,CC, although belonging to the uppermost Pleistocene *Buccinosphaera invaginata* Zone (Nigrini, 1971), is mixed with elements of Pliocene to early Pleistocene and, in addition, contains a few Miocene orosphaerids. In Samples 2,CC and 3,CC the few species that are present do not allow a zonation; they do, however, indicate an age range from the late Pliocene to the early Pleistocene for the sediments.

Diatoms and Silicoflagellates

Diatoms occur only in the lower part of Core 1, in Core 2, and in the upper of Core 4. They are associated with rare silicoflagellates, sponge spicules, and endoskeletal dinoflagellates and were probably deposited during the late Pleistocene.

PALEOENVIRONMENT

In general, at Site 451, Cores 1 to 14 (except Cores 11–13, which had no recovery) contain common to abundant, moderately well-preserved calcareous nannofossils and planktonic and benthic foraminifers, suggesting deposition above the CCD. Cores 15 to 19 are either essentially barren, or there was no recovery. Below this level, planktonic foraminifers and nannofossils occur sporadically, possibly because of the dilution effect of the ash; preservation is often poor and seems to be associated with increasing induration of these sediments. Both of these fossil groups, however, were occasionally noted nearly to the bottom of the hole.

Benthic foraminifers are rare compared to the planktonic at Site 451, as is typical for sediments deposited at deep bathyal to abyssal depths above the CCD. The rare specimens that were observed in these samples include *Cibicides wuellerstorfi*, *Bulimina alazanensis*, *Gyroidina broeckhiana*, and other indicators of deep bathyal to abyssal waters.

From Core 31 downward, larger foraminifers occur sporadically. These shallow-water forms are reworked.

ACCUMULATION RATES

The depositional history of the sediments drilled at Site 451 can be broken down into four major phases, each characterized by a distinct average sediment accumulation rate (Fig. 9). The phases are gradational, and their boundaries are obviously influenced by the biostratigraphic data that control the overall curve of Figure 9.

In the first phase of deposition (above the bottom of the hole at 930.5 meters sub-bottom), over a span of only about 1.5 m.y. (until the early late Miocene), about 740 meters of volcanic debris consisting of ashes, tuffs, conglomerates, and breccias accumulated at a rate well over 400 m/m.y. On a fine scale, sedimentary structures such as graded bedding, slump features, channel cuts, and sharp fluctuations in size and lithologic character of clasts require that this deposition must have been episodic. In the early late Miocene, a decrease in the influx of volcaniclastic debris resulted in the second phase, during which depositional rates averaged 35 m/m.y. These rates prevailed until the early Pliocene, when a further decline occurred, during which predominantly biogenic sediments accumulated at about 10 m/m.y. It was finally during the Pleistocene that rates decreased to 5 m/m.y.

ORGANIC GEOCHEMISTRY

No gas shows were observed in the sediments of Site 451. The absence of significant hydrocarbon-gas generation within these sediments suggests that they are probably lean in organic matter.

The organic carbon and nitrogen contents were analyzed by methods discussed in the Introduction (this volume). These results, obtained from carbonate-free sediments, are given in Table 2 and plotted against depth in Figure 10. The erratic values of organic carbon

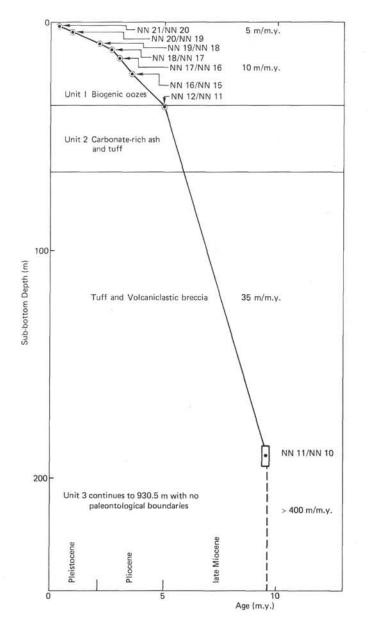


Figure 9. Accumulation rates estimated for the sediments drilled at Site 451. (The time scale and the calibration of the biostratigraphic zonal boundaries to this scale follow Schlanger et al. [1976]. The definition of the nannofossil zones is after Martini [1971]; that of the foraminiferal zones is after Blow [1969]. The horizontal bar shows the chronologic range of Zone NN 10 and the lowest level in Hole 451 at which an NN 10 assemblage was found. At this level in the hole, the fossils indicated that the base of Zone NN 10 was near. Between the NN 10/NN 11 boundary and the bottom of the hole a minimum depositional rate is shown by arbitrarily intersecting the horizontal bar at its oldest end. The dashed line indicates a minimum rate based upon an extrapolation to the lowest NN 10 assemblage.)

and nitrogen in Unit 1, a foraminifer-nannofossil ooze, cannot be readily explained, although it is perhaps significant that the C:N ratio remains roughly constant throughout Unit 1. The values of organic carbon and nitrogen for the vitric tuffs (Units 2 and 3) are low, resembling those of the same lithologies at Site 450. At one stratigraphic horizon, several brown-black seams

Table 2. Organic carbon and nitrogen contents (after carbonate dissolution).

Lithologic Unit or Sub-unit	Sample (intervals in cm)	Organic Carbon (wt. %)	Nitrogen (wt. %)	C:N (atomic ratio)
1	1-2, 31-32	0.22	0.015	17.2
1	1-3, 27-28	0.21	0.021	11.7
1	2-2, 126-127	0.19	0.019	11.7
1	2-5, 97-98	0.22	0.018	14.3
1	3-1, 40-41	0.10	0.009	13.0
1	3-4, 40-41	0.52	0.042	14.5
1	4-1, 130-131	0.35	0.030	13.7
1	4-4, 70-71	1.01	0.82	14.4
1	5-1, 88-89	0.44	0.032	16.1
2	5-4, 21-22	0.05	0.002	29.3
2	6-1, 106-107	0.05	0.004	14.6
2	6-4, 33-34	0.11	0.005	25.7
3a	14-1, 63-64	0.12	0.009	15.6
3e	56-3, 5-7	21.4ª		
		34.6 ^a 56.18 ^b	0.47	119.0

^a Shipboard measurements using two different standards (whole rock). ^b Shore-based measurement on kerogen concentrate.

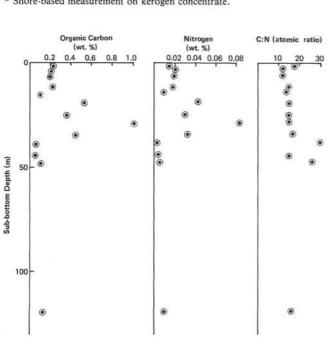


Figure 10. Results of organic carbon and nitrogen analyses plotted versus sub-bottom depth in meters.

present in the tuffs of Section 56-3 were analyzed to determine whether they were of organic origin. The high shipboard value for organic carbon, much greater than 20%, confirms that the material is akin to lignite in its carbon content. The value itself is, however, a minimum figure because the carbonaceous veins were not completely separated from their interbedded tuff. Two shipboard standards were used to calibrate the analysis of the lignite; one produced a calibration curve that gave 21 wt. % organic carbon for the sample, and the other gave 35 wt. % for the sample. Despite the imprecision of these shipboard analyses, the sample is thought to be of terrestrial origin because of its high C:N ratio (>44). Subsequent shore-based analysis of the separated kerogen gives a much higher organic carbon value (56.18 wt. %) with a higher C:N ratio of 119, confirming that the material is carbonaceous and of terrestrial origin.

Methods used in Rock Eval analyses are presented in the Introduction (this volume). The results of these analyses are summarized in Table 3. Sediments from Units 1, 2, and 3 all have undetectable S_2 responses, except for the lignite seams, which have a broad flat S_2 peak maximizing at 425°C on the boundary of the oil zone of maturation. The small S_3 peak suggests that the sediments consist of mature organic matter. They have a low hydrocarbon potential, characteristic of Type III kerogens of terrestrial original (Tissot and Welte, 1978).

Unfortunately, only about 5 mg of kerogen concentrate were recovered; this amount is insufficient for detailed analysis to obtain further information on the characteristics and origin of this lignite. Attempts to investigate its pyrolysis-GC, the best geochemical tool for dealing with such small amounts of material, were unsuccessful. Its organic-carbon content, C:N ratio, and Rock Eval response all suggest that it is of terrestrial origin. It could represent a distal input to the sedimentary sequence (e.g., by rafting), but a local origin seems more appropriate, because the interbedded tuff contains a locally derived volcanic input. The formation of lignite is thought to occur only in terrestrial or deltaic environments, so that its occurrence nearly 300 meters sub-bottom in a volcaniclastic-breccia sequence seems to indicate the presence of a nearby land mass when the sediment was deposited. The form of the lignite, as oriented lenses within the tuff, suggests that it was deposited by slumping or a similar phenomenon.

The high organic carbon and nitrogen values of some of the nannofossil oozes cannot be attributed to pipedope contamination, because they have no significant S_2 response in Rock Eval analysis. One possibility is that their carbonate was incompletely dissolved during sample preparation, although the consistency in their C:N ratios then becomes rather surprising. Misweighing is a further possibility, because these analyses were not duplicated (as were those for Sites 447, 448, and 449). Sputtering in the combustion furnace could also result in anomalously high values.

Table 3. Qualitative estimate of the relative amount of free hydrocarbons, bound hydrocarbons, and CO_2 from kerogen (and carbonate-rich sediments) based upon sizes of S_1 , S_2 , and S_3 peaks, respectively, from Rock-Eval analyses.

Lithologic Unit or Sub-unit	No. of Samples	Free Hydrocarbon (S ₁)	Bound Hydrocarbon (S ₂)	CO ₂ from Kerogen (S ₃)
1	9	+	_	-
2	3	+	-	-
3a	1	+	-	—
3e (lignite)	1	+	+ +	+

Note: - = undetectable, + = minor, + + = moderate relative amounts.

INORGANIC GEOCHEMISTRY OF INTERSTITIAL WATER

Samples for interstitial-water analysis were taken from four cores (451-2-4, 5-3, 14-1, and 34-1) and analyzed according to procedures outlined in the Introduction (this volume). The pH and alkalinity of Core 34, Section 1 could not be determined because its total porewater content was too low. The data are plotted in Figure 11. The increase in Ca²⁺ content and parallel decrease in Mg²⁺ content with depth probably reflects basalt alteration within the vitric tuffs and ashes, as discussed for Sites 450 and 448. The enhanced alkalinity at 38 meters depth (Section 5-3) suggests that there may be a minor zone of sulphate reduction in the sedimentary sequence at that level. The increase in pH with depth indicates that the CO₂ content of the pore water is decreasing and that the samples may therefore be saturated with calcite.

IGNEOUS PETROGRAPHY

Hole 451 was cored continuously to a total depth of 930.5 meters; predominantly volcaniclastic conglomerates and breccias and interbedded tuffs were recovered. Basalt fragments recovered from the bottom 4 meters of the hole, where the drilling rate appreciably slowed, may represent the brecciated upper surface of a lava flow; otherwise no lava flows or igneous intrusions were penetrated.

The volcaniclastic conglomerates and breccias generally contain clasts of devitrified and/or altered pumice, glass, basalts, and andesites. Rare clasts of relatively fresh igneous rock are found throughout the section. These range in size from 1 to 15 cm (average, 5 cm). Twenty of the least-altered clasts were studied in thin section and subdivided according to phenocryst assemblages. The total abundance of phenocrysts and groundmass constituents are given as percentages of the whole rock (e.g., the rock consists of 10% phenocrysts, 5% vesicles, and 85% groundmass), whereas the abundance of individual phenocrysts or groundmass constit-

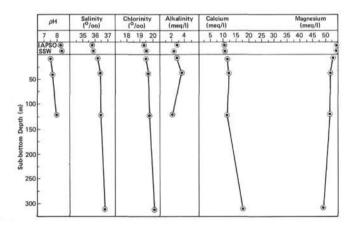


Figure 11. Results of analyses of interstitial water samples plotted versus sub-bottom depth in meters. (IAPSO standard and surface seawater [SSW] analyses are shown for comparison.)

uents are given as percentages of the total phenocrysts or total groundmass constituents (e.g., the phenocrysts consist of plagioclase [60%, 0.8 mm] and olivine [40%, 0.4 mm, altered to green smectite]; the groundmass consists of plagioclase [50%], both pyroxenes [20%], opaques [5%], and glass [25%]).

Five petrologic types are recognized:

1) aphyric or sparsely phyric basalt (2 clasts);

plagioclase-clinopyroxene-phyric basalt (3 clasts);

clinopyroxene-plagioclase-phyric basalt (1 clast);

4) plagioclase-clinopyroxene-magnetite-(olivine)phyric andesite (6 clasts); and

5) plagioclase-clinopyroxene-orthopyroxene-magnetite-(olivine)-phyric andesite (8 clasts).

Aphyric or sparsely phyric basaltic clasts contain very rare microphenocrysts of plagioclase $(0.2-0.3 \text{ mm}, \text{sub$ $hedral})$ and clinopyroxene (0.3-0.5 mm, subhedral) set in hyalopilitic groundmass consisting of glass (60%) and flow-aligned microlites of plagioclase (40%). Microphenocrysts of olivine are found in a few cases as smectite pseudomorphs.

Plagioclase-clinopyroxene-phyric basaltic clasts contain 12% to 45% phenocrysts of plagioclase (80-95%, 0.1-4 mm, sub- to anhedral, glomerophyric, complex twinning and zoning) and scattered phenocrysts of green clinopyroxene (5-20%, 0.3-2 mm, eu- to subhedral, glomerophyric). The groundmass is vitriophyric to hyalopilitic and is 25% to 75% crystalline.

The one clinopyroxene-plagioclase-phyric basaltic clast contains 35% phenocrysts of clinopyroxene (60%) and plagioclase (40%) set in a vitriophyric groundmass, similar to the second type.

Plagioclase-clinopyroxene-magnetite-(olivine)-phyric andesitic clasts contain 20% to 55% phenocrysts of plagioclase (65-90%, 0.3-5 mm, An50-60, sub- to euhedral, glomerophyric), scattered clinopyroxene (5-20%, 0.1-2 mm, rounded to euhedral, some partially resorbed), scattered magnetite (5-10%, 0.2-0.5 mm, subrounded octahedral), and rare olivine (0-10%, 0.1-2 mm, pseudomorphed by green and brown smectites). The clasts have 45% to 80% groundmass that is typically hyalopilitic, containing glass (40-60%) and flowbanded plagioclase microlites. Many petrographic features of these rocks suggest an andesitic composition (e.g., impoverishment of mafic constituents coupled with a plagioclase-phenocryst core composition of An₅₀₋₆₀, pronounced oscillatory zoning, repeated resorption followed by overgrowth, and strongly zoned glass inclusions).

Plagioclase-clinopyroxene-orthopyroxene-magnetite-(olivine)-phyric and esitic clasts are identical to those just described but contain othopyroxene as an additional phenocryst phase. These orthopyroxene phenocrysts are euhedral (4–10%, 0.2–1 mm, En_{80-70}) and contain common inclusions of magnetite. Orthopyroxene phenocrysts are sometimes partially or wholly replaced by smectites.

Preliminary comparison of volcanic sequences from Sites 451 and 448 identifies differences between the geologic evolution of the West Mariana and Palau-Kyushu Ridges. First, extensive deposits of late-Miocene(?) volcaniclastic breccias, conglomerates, and lithic and vitric tuffs encountered on the West Mariana Ridge are not characteristic of the Palau-Kyushu Ridge; during this same time interval about 100 meters of nannofossil ooze were deposited on the Palau-Kyushu ridge. The volcaniclastic sequence recovered at the Palau-Kyushu Ridge is older (middle Oligocene) and consists of alternations of volcaniclastic units with lava flows. Flows may be absent in the Miocene sequence of the West Mariana Ridge, with the possible exception of some brecciated basalts with nondiagnostic features at the bottom of Hole 451.

Although the volcanic suites of the Palau-Kyushu and the West Mariana Ridges are both arc-type volcanic suites and thus differ significantly from Layer 2 of typical oceanic crust, distinct differences between the basalts from the two ridges also exist: mineralogic evidence suggests that the proportion of high-alumina basalts, basaltic andesites, and andesites on the West Mariana Ridge is much higher than on the Palau-Kyushu Ridge. The West Mariana Ridge volcanic rocks are more similar to the Miocene volcanic rocks of Guam and Saipan (Larson et al., 1974; Tracey et al., 1964; Schmidt, 1957). In some basaltic andesites and andesites of the West Mariana Ridge, the presence of magnetite as a liquidus phase is noteworthy. This might be indicative of high oxygen and water fugacities in parental magmas characteristic of calc-alkalic volcanism.

The differences in the geologic evolution of the West Mariana and Palau-Kyushu Ridges are in good accordance with the hypothesis that the Parece Vela Basin formed as a result of inter-arc spreading from the middle Oligocene to the middle Miocene, with the West Mariana Ridge behaving as the active volcanic arc and the Palau-Kyushu Ridge as the remnant arc during that period of spreading.

METAMORPHIC PETROGRAPHY

Although no regional metamorphic rocks were observed in the 930.5 meters drilled at Site 451 on the West Mariana Ridge, much of the upper Miocene volcanic debris has been affected by low-grade hydrothermal activity over small stratigraphic intervals, marked by pyrite, zeolites, and clays. In a few cases, fine native copper veinlets were observed in a situation similar to those occurrences at Site 448, except the degree of alteration and abundance of alteration is much lower. There seems to be two types of alteration present: one is a very low-grade, gradual, pervasive increase in degree of alteration down-hole; the other seems to be relatively higher-temperature hydrothermal metamorphism of some parts of the sediment provenance unrelated to the present environment. Apparently this part of the provenance was more extensively altered because clasts of pyrite, clasts of rocks containing pyrite, and clasts of epidote(?) are fairly common.

PALEOMAGNETISM

No paleomagnetic samples were collected from Hole 451. The rock units at this site consisted of coarse to fine volcaniclastic rocks, for the most part. We encountered penecontemporaneous faults, folds, and slumps, as well as rigid-body faulting and uniform tilting, which make the hole unsuitable for paleomagnetic study. Rock magnetic studies of volcaniclastic breccias from Hole 448A (similar to those found in this hole) are described in a later chapter on paleomagnetism (Keating, this volume).

PHYSICAL PROPERTIES

Physical properties measured on the sediments recovered from Hole 451 include sonic velocity (horizontal and vertical), wet-bulk density, water content, porosity, and acoustic impedance. Methods and procedures are briefly summarized in the Introduction (this volume). Results are listed in Table 4 and are shown graphically in Figure 12.

Sonic velocities were measured on the least-disturbed sections of split cores from Unit 1 and on samples of the consolidated sediments of Units 2 and 3 in both vertical and horizontal directions. Velocities in calcareous oozes and tuffs of Units 1 and 2 range from 1.59 to 1.62 km/s. A significant increase in sonic velocity occurs in the more lithified tuffs and coarser volcaniclastic breccias of Unit 3. Velocities in Unit 3 range from 1.97 to more than 3.1 km/s, with no apparent increase with depth. The scattered values appear to correlate with the alternating lithologies. Although velocity anisotropy appears to be present, vertical velocity is not always lower than horizontal. This presumably reflects the unsorted, unoriented fabric of the coarse detritus. The velocity of one basalt cobble was measured at 4.75 km/s (Core 45, Section 1).

Wet-bulk density, porosity, and water content were measured on samples from Core 14 to the bottom of the hole. Poor core recovery precluded a continuous sequence of measurements between Cores 9 to 30. Corecatcher samples from this interval were used, however, to obtain supplemental values. Wet-bulk densities of 1.91 and 1.75 g/cm^3 from Cores 14 and 15, respectively, correspond to the uppermost semiconsolidated sediments (vitric tuffs of Sub-unit 3a). Porosity is about 47%, and water content ranges from 24% to 27% for Cores 14 and 15.

The wet-bulk density of the series of alternating coarse and fine volcaniclastic sediment comprising Subunits 3b to 3g (from 280.5 m sub-bottom to the bottom of the hole) average only slightly higher than those of Sub-unit 3a, ranging from 1.89 to 2.2 g/cm³. In this interval, water contents range from 15.8% to 24.24% and porosity values from about 34% to about 50%. In general, the density of coarse volcaniclastics is higher than that of the tuffs (Table 4). Acoustic impedance in Unit 3 ranges from 4.49 to 7.14 \times 10⁵ g/(cm²s), with no pronounced contrast present to indicate a strong reflector.

GEOPHYSICS

Site 451 is located on a terrace on the east face of the West Mariana Ridge. The site is located in about 2000 meters of water (Fig. 3), approximately 6 km west of the site originally selected. Because single-channel seismicreflection data showed no obvious sediment overburden, we approached the site with some misgivings. DurTable 4. Physical properties of sedimentary and igneous rocks from Hole 451.

						Wet-Bulk Dens	ity					
Sample hole-core-section)	Sub- bottom Depth (m)	So Hori- zontal	onic Velo	Vertical	Gravi- metric (g/cm ³)	Continuous GRAPE (section averages) (g/cm ³) ^b	Special 2-min GRAPE (g/cm ³) ^b	Water Content (%)	Poros- ity (%)	Calcu- lated Grain Density (g/cm ³)	Acoustic Impedance [× 10 ⁵ g/(cm ² s	
					(B) shirt y		(8)					
451-2-1	5.75	-		-	—	1.51		-	-		-	
451-2-3 451-2-4	8.75 10.95	_			_	1.56		47.63	_	-	_	
451-2-5	11.81	1.595	_	_	_	_	_			_	_	
451-3-3	18.25	-		_	_	1.51		_	_	_	—	
451-3-6	23.34	1.608		_	_	-						
451-4-3	27.24	1.587		_	_	_	1000		-			
451-4-3	27.75	—		-	-	1.49		—		-	—	
451-5-2	35.75					1.51					-	
451-5-3	37.70	1.639		-	-	-	-					
451-5-3	37.95	-	-	-				31.88	-		-	
451-5-4 451-5-4	38.75 38.96	1.634		_		1.72		-	-			
451-6-1	44.08	1.608	_	_	_	_	_	_	_	-	=	
451-6-3	46.17	1.616				<u> </u>					—	
451-7-1	53.25	_		<u></u>		1.50	_					
451-14-1	119.77	1.974			<u> </u>	_			1000	1000	3.77	
451-14-1	119.78	—	-	—	1.911	—	_	24.61	47.03	2.720	—	
451-14-1	120.45	_	_				_	29.16			_	
451-15-1	128.90	3.077	-	-	-	-				_	5.38	
451-15-1	128.91	_	_	_	1.747	_	_	27.15	47.43	2.421	—	
451-20,CC	176.10	2.373	_	—		—	_		_	_	_	
451-21,CC 451-23,CC	185.60 204.60	2.850 2.840		-		_	-		1	-	_	
451-24-1	214.00	2.040	_	2.414		_	_	_	=	_	_	
451-24-1	214.10	2.283	<u></u>			_			_	-	4.96	
451-24-1	214.10	2.205		_	2.172			15.45	33.54	2.763	4.90	
451-24-1	214.12	2.410	_	_				_	_	_	5.23	
451-25-1	223.73	2.385	—	—		-	10	-	-	-		
451-25-1	224.44	2.616	_	2.620		-	_	-		-	4.95	
451-25-1	224.45	-	_	-	1.888			28.31	53.46	2.908		
451-26-1	233.05	2.978	_	3.057			—		_		6.77	
451-26-1 451-27-1	233.06	2.876	1000		2.214			16.67	36.90	2.925	<u> 1975</u>	
451-27-1 451-28,CC	243.28 252.10	2.876	_	_			_	_	_	_	-	
451-29,CC	1.000 200	10000000	121 - 2-4					_	_			
451-29,000	261.60 281.69	2.929 3.375	_	3.332			_	_	Ξ	Ξ	7.14	
451-31-1	281.71	_	_	_	2.144		-	17.58	37.70	2.837	—	
451-32-1	291.17	3.138	—	—				—	—	_		
451-34-1	310.45	—	$\sim - 1$	-	-		_	22.97			-	
451-34-2	310.59	2.863	_	_	-		$()^{-1}$	-	—	-		
451-34-2	310.61	-	-	_	2.091	<u></u>		20.46	42.78	2.907		
451-34-2	310.62	2 820	-	2.918		6350	3. 	—	—	—	6.10	
451-36-1 451-36-1	328.27 328.31	2.830	_	_	_	_	2.006	_	_	_	_	
451-37-1	337.55	2.676	_	_	_		_	_	-			
451-37-1	337.60	2.070	_	_			1.922			_	_	
451-38-2	349.69	2.860	—	2.865	_			_	—	—	5.82	
451-38-2	349.70		-	-	2.030		_	22.28	45.21	2.880		
451-38-2	349.71		—	-	-	_	2.024	-	-	-		
451-39-1	357.23		_	_	_		2.118	-	<u>ب -</u> ا	—	-	
451-39-1	357.25	2.523	—	2.545		—	—	-	-		5.17	
451-39-1	357.27	2 060	_	2 006	2.030		2	22.68	46.05	2.910	5.81	
451-41-1 451-41-1	376.22 376.23	2.969	_	2.996	1.956	_	_	23.85 46.0		2.792	5.81	
451-41-1	376.26	_					1.948					
451-41-1	376.26	2.697	Ξ	=	_	_	1.948	_	Ξ.	_	_	
451-42-2	387.55		-	_	_	_	1.979	-	_	_	-	
451-44-1	404.74	2.586	-	—	-	3- 		—	—	-	_	
451-44-1	404.76		_	—	_	-	1.888	—	-	-	_	

Table 4. (Continued).

					V	Vet-Bulk Dens	ity				
Sample	Sub- bottom Depth	Sonic Velocity Hori-		Gravi- metric	Continuous GRAPE (section averages)	Special 2-min GRAPE	Water Content	Poros- ity	Calcu- lated Grain Density	Acoustic Impedance	
(hole-core-section)	(m)	zontal		Vertical	(g/cm ³)	(g/cm ³)b	(g/cm ³)b	(%)	(%)	(g/cm ³)	$[\times 10^5 \text{ g/(cm^2s)}]$
451-45-1	414.24	-	4.751 ^a	-	_	_	-	-	_	_	12.88
451-45-1	414.25		-	_	2.710	_	-	3.61	9.78	2.895	-
451-46-2	418.88		-				2.180	_		_	_
451-46-2	418.89	2.927	-	2.860	—	-	—	-		-	5.90
451-46-2	418.90	-	-		2.064			20.05	41.38	2.814	14 million
451-49,CC	442.40	-	_	_	_	(<u> </u>	1.914	_	-	~	_
451-49,CC	442.60	2.628	-		_				-		_
451-52-1	470.60	2.819	-	-	_	—	_		_		-
451-52-1	470.63	-	-	-		—	1.924		-	-	
451-53-2	475.38	3.129	—	3.115	_	—	-	_	—	-	
451-53-2	475.40	_			2.169	-	_	15.80	34.27	2.778	-
451-55-3	492.62	2.706	_	200		_			_	_	
451-55-3	492.64	_	-		—	-	2.061		-		
451-56-1	499.34	2.614	-	2.569	-	-			-		5.22
451-56-1	499.35	—	-		2.031	—		21.65	43.96	2.839	-
451-56-2	500.83	_					2.530				-
451-57-2	511.11	-	_				2.083				
451-57-2	511.15	2.661		2.711		—		_	-	-	5.45
451-57-2	511.16	_			2.010		1.954	22.57	45.36	2.848	
451-58-2	520.40	2.468		-	-	-	-	-	-	-	
451-58-2	520.41	-					1.933				-
451-59-1	528.42	_	100				2.175				—
451-59-1	528.45	2.926	1000	2.846		_			-	-	6.21
451-59-1	528.46	-		-	2.124	_	-	18.08	38.41	2.826	-
451-60-1	537.56	2.797		_	-	—			-	-	-
451-60-1	537.89	-			<u>1-(</u>	_	2.032		<u></u> ;		-
451-61-2	549.14	2.927	010	2.637		_					5.37
451-61-2	549.15	—	-	_	2.038			16.71	34.07	2.575	-
451-61-2	549.19	_		_		_	1.988	-	-		
451-62-2	558.73	—		-		_	2.063		-	-	-
451-62-2	558.76	2.763	-	2.808	<u>-</u>	-					5.71
451-62-2	558.77	_	_	_	2.032	<u></u>	-	20.11	40.86	2.745	_
451-64-3	578.80	2.701	-	2.557		_	_				5.37
451-64-3	578.81	$\sim - 1$		-	2.102	—	—	19.10	40.15	2.842	-
451-64-3	579.30	-	-	-	-	-	2.053	-	-		-
451-65-1	585.21	-	_	_	_	<u></u> /	1.930	_		_	-
451-66-1	594.21	3.029	_	2.033			—		-	<u></u>	4.49
451-66-1	594.22	-		—	2.210		—	18.02	39.83	3.011	—
451-66-1	594.89			_			2.115				
451-67-1	604.04	2.480		-		-		-	-		5.29
451-67-1	604.05	_	_	_	2.134	- <u>-</u>	-	23.16	49.42	3.242	
451-70-2	633.65	2.697	—	—		-	_				·
451-70-2	633.67			-			1.969				and the second sec
451-70-2	633.72	2.622	—	—		_	_			-	5.44
451-70-2	633.73	-		-	2.074	-	_	24.24	50.27	3.160	—
451-71-1	642.33	-	_	_		<u></u>	2.038	-			3 0
451-71-1	642.40	2.539	—	2.539			—				—
451-71-1	642.42		-	—	2.104	-		21.26	44.73	2.997	
451-72-2	653.06	2.753	—	2.646			—				5.95
451-72-2	653.08			-	2.247	-	-	18.52	41.62	3.136	
451-72-2	653.09	_	_	-	-		2.151	<u></u>	_	_	_
451-74-1	670.12	2.916	_	1. <u></u> .		200			-	-	
451-74-1	670.13	—	$\sim - 1$	$\sim - 1$	_		2.202				-
451-75,CC	679.90	3.069	—	—			2.222			_	
451-79-1	708.30	2.480		2.413				-			5.12
451-79-1	708.31	-	-	-	2.120		-	20.34	43.12	2.970	<u>-</u>
451-79-1	708.50		—	—	2.081	2000		23.55	49.00	3.119	
451-79-7	717.33		—	-	_		2.232			1000	
451-80-1	718.03	-	—		_		2.134	-	_	_	F 20
451-81-1	728.21	2.612	_	2.551	_		-				5.39

Table 4. (Continued).

					V	Vet-Bulk Dens	ity				
	Sub- bottom	Sonic Valocity			Gravi-	Continuous GRAPE (section	Special 2-min	Water	Poros-	Calcu- lated Grain	Acoustic
Sample (hole-core-section)	Depth (m)	Hori- zontal		Vertical	metric (g/cm ³)	averages) (g/cm ³) ^b	GRAPE (g/cm ³) ^b	Content (%)	ity (%)	Density (g/cm ³)	Impedance $[\times 10^5 \text{ g/(cm^2s)}]$
451-81-1	728.22	_			2.113	_		21.13	44.66	3.012	
451-84-4	760.27	2.737			_			_	_	_	
451-86-1	775.29	-	-		_	-	2.155	_	-	_	
451-86-2	776.13	2.484		2.376	—	-		_	_		4.89
451-86-2	776.14	-			2.057	—	-	20.66	42.51	2.839	
451-88-2	795.56	2.679		2.620	-	-	_		_	_	5.41
451-88-2	795.58				2.066			20.52	42.39	2.850	
451-90-1	812.68	—	-		—	_	2.167		-	-	-
451-92-1	832.85	2.678	-		-	-	-	_	-	_	_
451-94-2	852.75	2.805			—	-		$a \longrightarrow b$	-	—	_
451-94-2	852.76	_			_	_	2.247	(<u> </u>	_	-	—
451-95-1	861.05	2.734			_			_	_	_	_
451-99-1	898.64	2.973		_	-	-	_	_	_	-	—
451-99-1	898.65	_		-			2.222		-	-	—
451-100-1	907.53	2.531			_	-		_	_	-	_
451-102,CC	926.6	_	3.616 ^a	_	—	-		<u> </u>	_	-	_

^a Basalt average velocity.

^b Based on an assumed grain density of 2.75 g/cm³.

ing the approach, no discernible reflectors were observed in the reflection profile recorded on board the *Glomar Challenger* (Fig. 13). After crossing the objective site, the vessel came about on a reciprocal course, and the beacon was dropped over what appeared to be a "soft" seafloor reflector. We experienced initial concern, however, as to whether a hard basement was present near or at the surface and whether or not a sufficient thickness of soft sediment was present to facilitate burying the bottom-hole assembly. Thus, in spudding-in we exercised more than the usual amount of caution.

After a considerable depth had been penetrated in the drilling at Hole 451, the reason for the absence of discernible sub-bottom reflectors became obvious. No sharp contrast in acoustic impedance was encountered down-hole (see the section on Physical Properties, this chapter), which explains the lack of any strong reflector. Furthermore, the laboratory measured velocity of the highly altered basalt encountered at the bottom of Hole 451 at a depth of 926.5 meters sub-bottom is only about 3.6 km/s and thus is in the range of the basement velocities mentioned earlier.

SUMMARY AND CONCLUSIONS

Site 451, at 18°00.88'N and 143°16.57'E on the eastern side of the West Mariana Ridge, was drilled with the primary objective of determining the petrologic character of this formerly active volcanic arc as well as the timing of cessation of volcanism, particularly with reference to the age of the spreading of the Mariana Trough and the creation of the active volcanic arc—the Mariana Ridge—east of Site 451 (Fig. 1). Continuous coring at Hole 451 resulted in a total recovery of 280.1 meters out of 930.5 meters drilled. Hole 451 was terminated at 930.5 meters because of severe plugging of the bit and scheduling considerations. Sediments and sedimentary rocks were cored to a depth of 926.5 meters. Below that level, a decrease of drilling rate and recovery of altered basalt pieces suggest that 4.0 meters of basalt were encountered. A total of three major biogenous and volcaniclastic sedimentary units range in age from the late Miocene to the Quaternary. No unit is assigned to the small interval (4.0 m) of basalt at the bottom of the hole, because insufficient basalt was recovered to refute the possibility that the basalt is only a large clast.

The sedimentary section consists of:

Unit 1 (0.0-36.0 m), lower Pliocene to Quaternary calcareous biogenic oozes consisting of grayish brown foraminifer ooze, grayish brown foraminifer-nannofossil ooze, light yellow nannofossil-foraminifer ooze, and a light gray nannofossil ooze.

Unit 2 (36.0-65.5 m), upper Miocene to lower Pliocene olive-gray, carbonate-rich vitric ash with minor vitric tuff.

Unit 3 (65.5–930.5 m), upper Miocene volcaniclastic rocks consisting of seven sub-units:

Sub-unit 3a (65.5–280.5m), upper Miocene, dark gray to black vitric tuffs, vitric ash, and carbonate-rich vitric ash;

Sub-unit 3b (280.5-413.5 m), upper Miocene, interbedded dark gray vitric tuff and dark gray volcaniclastic breccias and conglomerates containing organic carbonate grains;

Sub-unit 3c (413.5-425.2 m), upper Miocene, dark gray boulder volcaniclastic conglomerate grading to carbonate-rich vitric tuff;

Sub-unit 3d (425.2–474.5 m), upper Miocene, black vitric tuff;

Sub-unit 3e (474.5-641.9 m), upper Miocene, interbedded black and greenish black vitric tuff and volcaniclastic breccias and conglomerates;

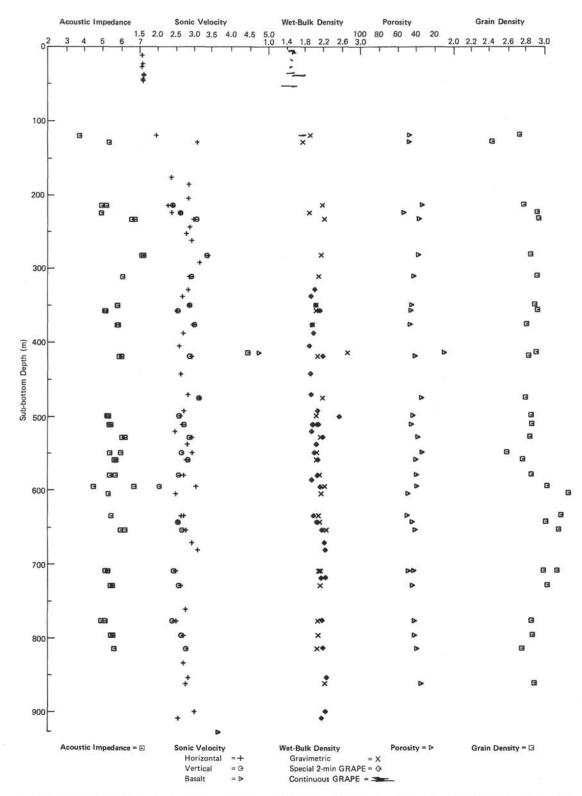


Figure 12. Physical properties of sedimentary and igneous rocks from Hole 451 plotted versus sub-bottom depth in meters. (Acoustic impedance is the product of velocity and bulk density. Sonic velocity measurements include horizontal and vertical velocity of sediments and average velocity of basalts. Gravimetric determinations of wet-bulk density are shown. Special 2-minute and continuous GRAPE determinations of wet-bulk density are also shown, based on an assumed grain density of 2.75 g/cm³. Porosity was determined gravimetrically, and grain density was calculated from porosity and bulk density.)

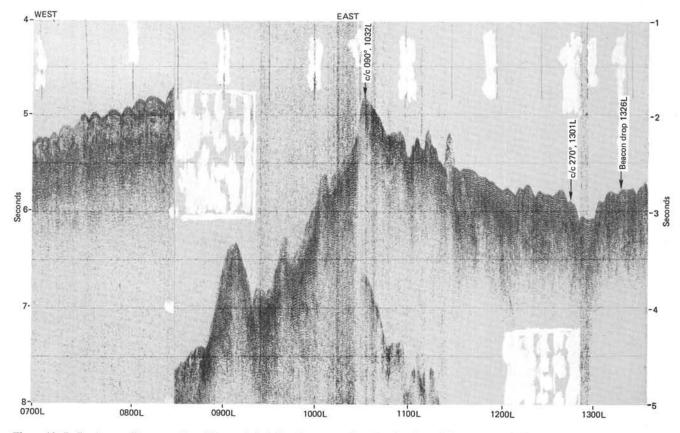


Figure 13. Reflection profile across Site 451 recorded during the approach to the site aboard the Glomar Challenger.

Sub-unit 3f (641.9–703.6 m), upper Miocene, black vitric tuff; and

Sub-unit 3g (703.6-930.5 m), upper Miocene, interbedded greenish black vitric tuff with greenish black volcaniclastic breccias and conglomerates.

The recovery of thick sequences of coarse, massive volcaniclastic sediments at Site 451 provides a unique opportunity to investigate tectonic, volcanic, and sedimentologic interrelationships. The repetitious sequences of coarse angular debris grading upward into fine bioturbated layers represent spasmodic deposition probably controlled by tectonic events, because sedimentologic evidence suggests that this debris was deposited in shallow-water to subaerial conditions and was not controlled by direct pulses of volcanic activity. Fragments of corals, gastropods, and larger foraminifers suggest significant reworking of shallow-water deposits. In addition, lenses of lignite in the tuffs are proof that a nearby vegetated land surface on the West Mariana Ridge existed. Scattered pumiceous layers may record local explosive andesitic volcanic events.

To elaborate on the previous discussion, in the last 4 meters of drilling (926.5–930.5 m), the drilling record shows that we encountered a unit resistant to drilling, which behaved in a manner similar to basalts encountered in previous sites. The drilling rate slowed in the unit from 4 minutes per meter to nearly 12 minutes per meter (Fig. 7). Although no clear evidence exists to determine absolutely that the rock recovered is a flow or

sill and not a clast, there is considerable circumstantial evidence that points in this direction: (1) the drilling record; (2) a green clay surrounding the crystalline rock that may be altered glass; (3) small fragments of the crystalline rock that are isolated in a green clay; (4) a 3.9-km/s basement was predicted close to this level, and the altered basalt has a velocity of 3.6 km/s; and finally (5) the unit above consists of coarse volcaniclastic debris, yet no coarse sedimentary debris surrounds the basalt itself. The basalt is extremely altered to green clays and is riddled with disseminated native copper (up to 5% or 10% in small pockets). Whether the basalt is only a boulder in the sedimentary sequence, an isolated intrusive body, or the uppermost section of the volcanic-arc basement, it is aphyric and very highly altered.

Within the volcaniclastic sediments five petrographic groups of volcanic clasts were found:

1) aphyric or sparsely phyric basalt;

plagioclase-clinopyroxene-phyric basalt;

clinopyroxene-plagioclase-phyric basalt;

 plagioclase-clinopyroxene-magnetite-(olivine)phyric andesite; and

5) plagioclase-clinopyroxene-orthopyroxene-magnetite-(olivine)-phyric andesite.

Groups 4 and 5 are most abundant, and their twopyroxene-plus-magnetite phenocryst assemblage in an andesite definitely suggests a calc-alkalic volcanic suite. This greater abundance of calc-alkalic rocks from the West Mariana Ridge compared to the Palau-Kyushu Ridge indicates a progression to more calc-alkalic and more siliceous rocks with time toward the active Mariana arc.

Although these sedimentary units consist predominately of volcaniclastic debris, calcareous fossils are present. Nannofossils give no indication of hiatuses; apparently a continuous upper-Miocene to Quaternary sequence exists. Although radiolarians, diatoms, and silicoflagellates, in addition to nannoplankton and foraminifers, are present above Core 3, only calcareous nannoplankton and foraminifers occur below this level. The nannofossil boundary NN 10/NN 11 is the only boundary found below the Pliocene/Miocene boundary (between 176.0 and 195.0 m), and no foraminifer boundaries were observed. However, in the 765.0 to 774.5 meter sub-bottom interval, the nannoplankton assemblage characterizes the base of NN 10 (upper Miocene). Below Core 31 (>282.0 m) larger foraminifers, coral fragments (Fig. 14), and gastropod fragments are present; this evidence suggests that the sediments were originally deposited in shallow waters (less than 100 m) and then were transported into deeper environments. Fragments of lignite within tuffs probably were not formed in situ because of the local occurrence of numerous isolated lenses, typically only 1 cm in diameter. A more likely origin would be the erosion of nearby existing lignite beds in the landmasses of the volcanic arc itself.

Accumulation rates were very high—400 m/m.y. during late Miocene volcanic activity, decreasing to 35 m/m.y. during late Miocene and early Pliocene. By late Pliocene, the rate was as low as 5 m/m.y. These changes reflect only cessation of volcanic activity, because the region stayed above the CCD throughout its history.

The most impressive feature of the physical properties data is the relative uniformity of acoustic-impedance values. Without differences in acoustic impedance, no reflecting horizons would be detected; this explains

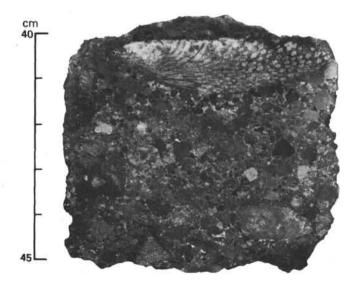


Figure 14. Coral fragment in Sub-unit 3g, indicating a shallow-water source for some of the sediment provenance.

why no obvious transparent sediment over-burden could be seen at Site 451.

The sequence of events at Site 451 from oldest to youngest can be summarized as follow:

1) A volcanic-arc basement $(3.5-4.2 \text{ km/s}, \sim 1.5 \text{ km}$ thick) was constructed (by 11 m.y. ago) on oceanic(?) basement (5-6 km/s).

2) In the next 2 m.y., about 850 meters of volcaniclastic debris accumulated at a rate of about 400 m/m.y.Locally, the arc was emergent.

3) Tilting (up to 25°) and normal faulting in these sediments occurred both penecontemporaneously by soft-sediment deformation and after induration by rigid-body deformation (Fig. 15, A-D).

4) A dramatic decrease in accumulation rate of volcanic ash marked the end of intense West Mariana Arc volcanism (at 9 m.y. ago).

5) Sporadic volcanism continued, however, for another 4 m.y. (9-5 m.y. ago). The source of the ash may have been waning volcanism of the West Mariana Arc, but the timing of initiation of rifting to form the Mariana Trough and of activation of the modern Mariana Arc is not very well known; the source of the ash may have been early volcanism from the Mariana Arc, windblown across the young, narrow Mariana Trough.

6) Only calcareous biogenous sediments accumulated from 5 m.y. ago to present.

Now that both arcs on either side of the basin and the basin itself have been drilled, a strong case for symmetric spreading can be built for the Parece Vela Basin using several lines of evidence: (1) The time of cessation of volcanism on the Palau-Kyushu Ridge, determined by paleontology, dates the probable initiation of the Parece Vela Basin formation by back-arc spreading (29-32 m.y.). (2) The identification of magnetic anomalies (Langseth, Mrozowski, this volume) in the Western Parece Vela Basin also dates the initiation of spreading (this date coincides with the cessation of volcanism). These anomalies give the time of extinction of the Parece Vela spreading system (about 14-18 m.y.). The Parece Vela Rift bisects the basin. (3) The age of the basement under Site 449 (24 m.y.), determined by paleontology, confirms the magnetic-age estimate; more important, all three dates fall close to a straight line on a time-versus-distance plot (Fig. 16); this requires a rather constant spreading rate (~3.0 cm/yr) and makes the strong case for spreading from the Parece Vela Rift to form the western side of the Parece Vela Basin. More circumstantial evidence must be used for the eastern side, because extrusive basement was never reached and the magnetic-anomaly pattern was not identified. (4) Sites 450 and 53 were drilled into intrusive igneous rocks rather than into extrusive basement; the ages of the oldest sediments encountered are approximately 17 and 18 m.y., respectively, and are several million years younger than basement ages predicted from the symmetrical spreading model (Fig. 16). (5) Site 54 was drilled in the eastern Parece Vela Basin closer to the IPOD Trough over a structure that is similar to the intrusive structures at Sites 450 and 53. Although evidence of the intrusive nature of Site 54 is absent (Karig, Ingle,

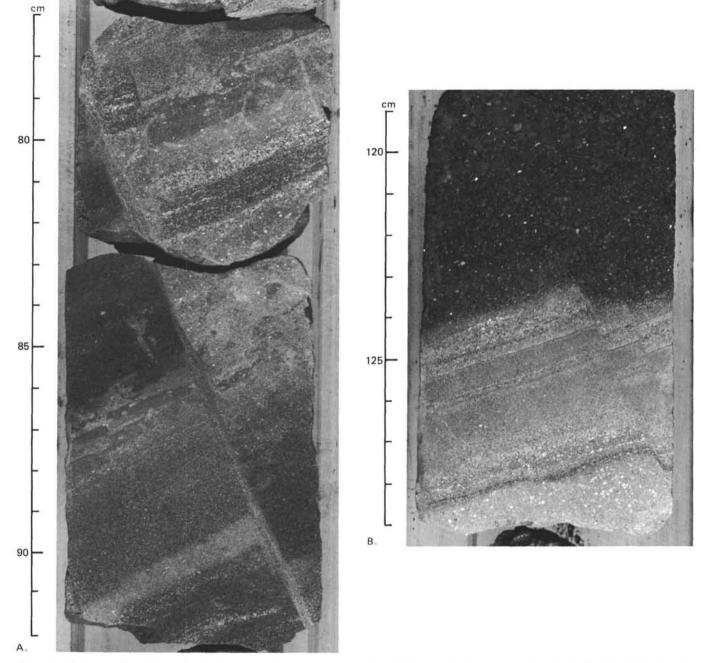
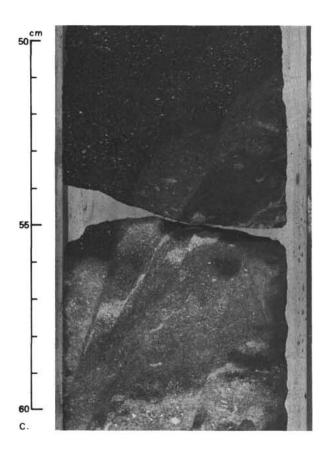



Figure 15. Rigid-body determination of lithified volcaniclastic debris in (A) Sub-unit 3b, Core 42, Section 1, in (B) Sub-unit 3b, Core 42, Section 2, in (C) Sub-unit 3c, Core 46, Section 2, and (D) Sub-unit 3e, Core 60, Section 2. (All of these appear to be normal faults with several centimeters of displacement except A, which must have greater than 15 cm of displacement.)

et al., 1975), it is possible that this site is also intrusive, particularly in light of the intrusions encountered in the northern extension of the Parece Vela Basin—the Shikoku Basin (Klein, Kobayashi, et al., in press)—on Leg 58. (6) The volcanism of the West Mariana Ridge ended intense activity about 11 m.y. ago and sporadic activity about 5 m.y. ago; that is, volcanism (and presumably subduction) continued for at least 8 m.y. after the end of spreading in the Parece Vela Basin. Careful measurement of the dimensions of the Parece Vela Basin (Fig. 17) shows that the eastern side is about 50 km closer to the IPOD Trough than is the western side. Rather than attribute this phenomenon to asymmetrical spreading, a more probable explanation may be that the western side of the West Mariana Ridge had been extended over the oldest marginal-basin crust during construction of the new arc; that is, not only was the arc side of a marginal basin affected by tectonism, offaxis intrusion, and inundation by arc-derived sediments, but it was also the platform upon which the arc grew.

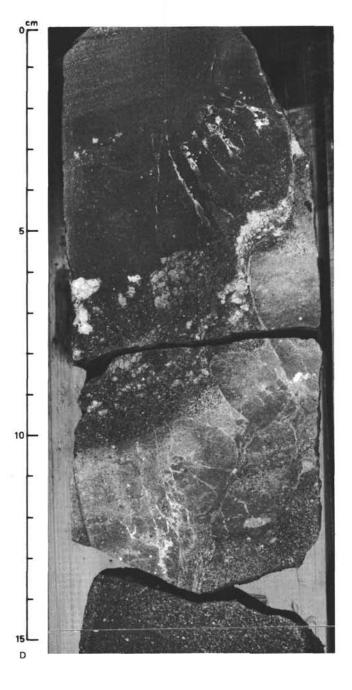


Figure 15. (Continued).

After rifting of the subduction side of the arc away from the remnant portion, a new "rear end" of the arc was rebuilt over the new basin floor.

REFERENCES

- Adams, C. G., 1970. A reconsideration of the East Indian letter classification of the Tertiary. Bull. British Mus. (Nat. Hist.), Geol., 19:87.
- Blow, W. H., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. Proc. First Conference Planktonic Microfossils, Geneva, 1967, 1:199-422.
- Chaproniere, G. C. H., 1975. Paleoecology of Oligo-Miocene larger foraminiferida, Australia. Alcheringa, 1:37.
- Coleman, P. J., 1978. Reflections on outer Melanesian Tertiary larger foraminifera. Bull. Min. Res. Geol. Geoph., 192:31.

- Haak, R., and Postuma, J. A., 1975. The relation between the tropical planktonic foraminiferal zonation and the Tertiary Far East letter classification. *Geol. en Mijnb.*, 54:195.
- Henson, F. R. S., 1950. Cretaceous and Tertiary reef formations and associated sediments in Middle East. Bull. Am. Assoc. Petrol. Geol., 34:215.
- Ingle, J. C., 1975. Summary of late Paleogene-Neogene insular stratigraphy, paleobathymetry, and correlations in the Philippine Sea and Sea of Japan region. *In* Karig, D. E., Ingle, J. C., Jr., et al., *Init. Repts. DSDP*, 31: Washington (U.S. Govt. Printing Office), 837-855.
- Karig, D. E., 1975. Basin genesis in the Philippine Sea. In Karig, D. E., Ingle, J. C., Jr., et al., Init. Repts. DSDP, 31: Washington (U.S. Govt. Printing Office), 857–879.
- Karig, D. E., and Glassley, W. E., 1970. Dacite and related sediment from the West Mariana Ridge, Philippine Sea. Bull. Geol. Soc. Am., 81:2143-2146.

- Karig, D. E., Ingle, J. C., Jr., et al., 1975. Init. Repts. DSDP, 31: Washington (U.S. Govt. Printing Office).
- Klein, G. deV., Kobayashi, K., et al., in press. Init. Repts. DSDP, 58: Washington (U.S. Govt. Printing Office).
- Larson, E. C., Reynolds, R. L., Merrill, R., et al., 1974. Major elements of petrochemistry of some extrusive rocks from the volcanically active Mariana Islands. Bull. Volcanol., 38:361-377.
- MacGillavry, H. J., 1962. Lineages in the genus Cycloclypeus Carpenter (Foraminifera). Koninkl. Ned. Akad. Wetenschap. Proc., B, 65:429.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. Second Planktonic Conference, Rome, 1970, 2:739-785.
- Murauchi, S., Den, N., Asano, S., et al., 1968. Crustal structure of the Philippine Sea. J. Geophys. Res., 73:3143-3171.

- Nigrini, C. A., 1971. Radiolarian zones in the Quaternary of the equatorial Pacific Ocean. In Funnel, B. M., and Riedel, W. R. (Eds.), *The Micropaleontology of Oceans:* New York (Cambridge Univ. Press), pp. 443-461.
- Schlanger, S. O., Jackson, E. D., et al., 1976. Init. Repts. DSDP, 33: Washington (U.S. Govt. Printing Office).
- Schmidt, D. G., 1957. Geology of Saipan: petrology of the volcanic rocks. U.S. Geol. Survey Prof. Paper 280-B: Washington (U.S. Govt. Printing Office), b127-b174.
- Tissot, B. P., and Welte, D. H., 1978. Kerogen. Petroleum Formation and Occurrence: Berlin (Springer-Verlag), pp. 142-147.
- Tracey, J. I., Schlanger, S. O., Stark, J. T., et al., 1964. General geology of Guam. U.S. Geol. Survey Prof. Paper 403-A: Washington (U.S. Govt. Printing Office).

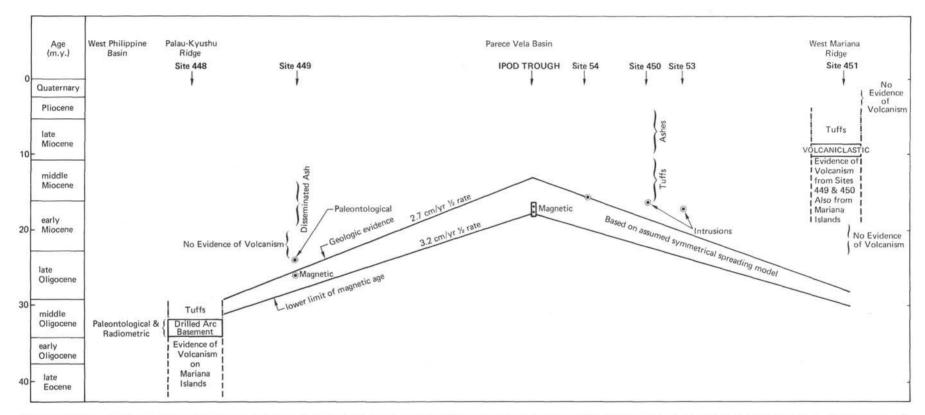


Figure 16. Time-versus-distance plot of the Parece Vela Basin along a profile drawn perpendicular to the IPOD Trough at 18 °N. (Solid lines on ridges indicate periods that have direct evidence of abundant volcanism, dashed lines are inferred volcanism based on indirect evidence, and dash-dot lines show periods of waning volcanism. The sloping lines indicate periods of back-arc spreading of the Parece Vela Basin—a line based upon geologic evidence and one on magnetic evidence are both drawn. Periods of lack of volcanism or presence of volcanism in the sedimentary record are depicted by braces.)

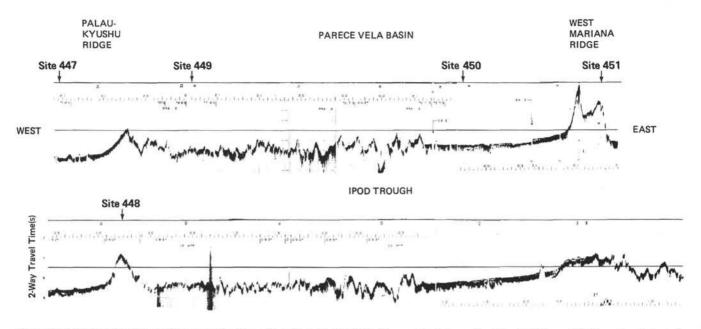


Figure 17. Seismic-reflection profiles across the Parece Vela Basin (L-DGO Site Survey data) along about the 17°60' parallel (above) and about the 15°70' parallel (below).

TE 451 HOLE CORE 1 CORED INTERVAL: (0.0-5.0 m	SITE		HOL STR.			RE 2	CORED INT	ERVAL:	: 5.0-14.5 m
AGE SECTION MAXIMOS FORAMS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION METERS SECTION SECTION METERS SECTION SEC	LITHOLOGIC DESCRIPTION	AGE	ZC	NE	FOSSIL HOSSIL	ACT.	METERS	GRAPHIC LITHOLOGY	SERUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC DESCRIPTION
Outerrary 19 NN 20 NN 21 22.N.23 N.33 N.22.N.23 22.N.23 N.20 N.21 22.N.23 N.23 N.22.N.23 22.N.23 N.23 N.22.N.23 22.N.23 Buckingstrate Plicente N.22.N.23 20 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N N 2 N	FORAMINIFERAL OOZE, prayich brown (10YR 5/2) passing gradually in Section 3 to FORAMINIFERAL MANNOFOSSIL OOZE, light relevants for brown sediment contains numerous and-sized brown burnles and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments, and gravel-sized (0.4-1.5 cm) black Microsoft pumice and glass fragments is uniformly soft; drilling disturbance is moderate to very intense, with soupy intervals. SMEAR SLIDE SUMMARY 2.20 3.42 3.90 (D) (D) TEXTURE: 3.0 di 0.2 4 Sint 35 di 0.0 2 4 Sint 35 di 0.0 10 TOTAL DETRITAL 11 2 TR COMPOSITION: Feldapar 1 TR Hay minerals 1 TR Amorph Fe agg. TR TR 1 Carbonate unspec. 20 5 5 2,5Y 6/4 Forminifers 57 20 25 Siduarie TR TR 1 Fish remains - </td <td>Quaternary</td> <td>NN 19</td> <td>N.21 N.22</td> <td>N Z F A</td> <td>G 1 G 2 G 3</td> <td></td> <td></td> <td></td> <td>2.5Y 6/2 2.5Y 6/2 2.5Y 6/4 NANNOFOSSIL-FORAMINIFERAL OOZE, mainly alternating gray/th-strown and light vellow/th-brown, with numerous internatarions of very pale brown and light browning que intervals. Numce and gats Tagments, brown or black where Mn-coated, are present mainly in the gray/th brown intervals. One score/access lagility incorum is settion 4. The sediment is uniformly volt; drilling disturbance is moderate in all sections. 2.5Y 6/4 SMEAR SLIDE SUMMARY 2.5Y 6/6 SMEAR SLIDE SUMMARY 2.5Y 6/6 2.5Y 7/4 TEXTURE: 1.52 1.107 2.51 2.75 3.30 5.48 6.4 2.5Y 7/4 2.5Y 7/4 TEXTURE: 0.0 (D) (D) (D) (D) (M) (M) (M) 1.5 2.5Y 7/4 2.5Y 7/4 TEXTURE: 2.5Y 6/2 2.5Y 6/2 Site 5.4 5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7</td>	Quaternary	NN 19	N.21 N.22	N Z F A	G 1 G 2 G 3				2.5Y 6/2 2.5Y 6/2 2.5Y 6/4 NANNOFOSSIL-FORAMINIFERAL OOZE, mainly alternating gray/th-strown and light vellow/th-brown, with numerous internatarions of very pale brown and light browning que intervals. Numce and gats Tagments, brown or black where Mn-coated, are present mainly in the gray/th brown intervals. One score/access lagility incorum is settion 4. The sediment is uniformly volt; drilling disturbance is moderate in all sections. 2.5Y 6/4 SMEAR SLIDE SUMMARY 2.5Y 6/6 SMEAR SLIDE SUMMARY 2.5Y 6/6 2.5Y 7/4 TEXTURE: 1.52 1.107 2.51 2.75 3.30 5.48 6.4 2.5Y 7/4 2.5Y 7/4 TEXTURE: 0.0 (D) (D) (D) (D) (M) (M) (M) 1.5 2.5Y 7/4 2.5Y 7/4 TEXTURE: 2.5Y 6/2 2.5Y 6/2 Site 5.4 5.5 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
	CARBON/CARBONATE: CARBONATE BOMB: 2:14 (0.1, 50.1, 6.1) 2, 14-15 (52) 3:90 (0.0, 58.5, 7.1) 3, 90-91 (61)	Late Pliocene	21 NN	N.21 iistocene	N A F A N A	G 5	Luntur huntur huntur		•	2.49 (70.9, 20.5, 8.7) 2.5Y 6/2 CARBONATE BOMB: 2.5Y 7/4 5, 74.75 (66) sooriaceous lapilis 2.5Y 6/4 2.5Y 6/4 2.5Y 6/4 2.5Y 6/2

Late Plicosne to Early F 2.2 11

7

G CC

(NN 21)

2.5YG 5/2

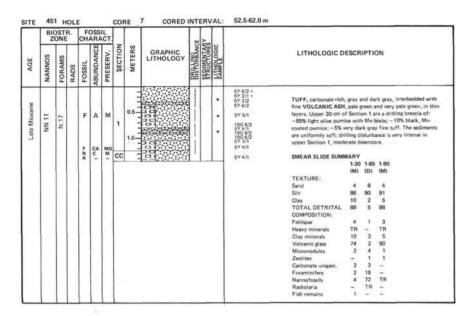
2.5YG 5/2

VOID

+++

SITE	BIO	STR.	11	OSS	IL I	IOR	E	3 CORED		14.5-24.0 m			BI	OSTF	. F	OSSI	L	RE	G CORED I		24.0-33.5 m	
AGE		FORAMS		NCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SERUMENTARY LITHOLOGIC		LITHOLOGIC DESCRIPTION	AGE	NANNOS		FOSSIL 5		PRESERV. SECTION	METERS	GRAPHIC LITHOLOGY	BISTURBANCE SERUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCRIPTION
	NN 17	N.21	N F	AA	GG	1	0.5			general color 2.5Y 5/4 2.5Y 5/2 mottles 2.5Y 3/2 layer 2.5Y 5/2 mottles 2.5Y 5/2 mottles	FORAMINIFERAL-NANNOFOSSIL OOZE, light vellowish brown, in Section 1 through upper portion of 5. Grayids brown and very dark gray mottles are frequent. Main features are not every dark grayins brown layer of volcanic and in Section 2, one yellowids brown fregments in Section 2 and 3. From upper part of Section 6 to Core-Catcher the settlement is NANNOFOSS FORAMINEERAL OOZE, pole yellow, with rare grayin brown mottles. The sections 1 to 5, side in the settlement is upper to in disturbance is moderate in Sections 1 and 5, side in the	ц.	NN 15		N	A	M 1	0.5			Mn-coated pumice clasts 2.5Y 5/2 mottles 2.5Y 7/4	NANNOFOSSIL-FORAMINIFERAL OOZE, alternately pale yellow and very pale brown. Sections 1 to 5: light yellowish brown FORAMINIFERAL OOZE in Section 9. Sight grayish brown mottles in Section 1. Some black pumics fragments (<2 m) overed by "calufitower" M occur in Sections 1 and 6. The sediment is uniformly of drilling disturbance is slight in Sections 1 to 4, moderate to intense in others.
	NN 16		N	A	G	2				2.5Y 5/2 10YR 3.5/2 ash layer pumice 1 cm diameter 2.5Y 5/2 mottles	Transining ones. SMEAR SLIDE SUMMARY 1-119 2-60 4-50 6-134 (D) (M) (M) (D) TEXTURE: 5 20 65 43 Shit 45 70 35 47 Clay 0 10 10 10			N.19			2	internation of the			10YR 8/4 2.5Y 7/4	SMEAR SLIDE SUMMARY 1140 2.60 5.25 6.83 (D) (D) (M) (D) TEXTURE:
			N	A	G	3	tradition in			2.5Y 5/2 mottles pumice lump	TOTAL DETRITAL TR B3 TR 2 COMPOSITON:				F	A	M 3	ti ti ti ti ti ti			10YR 8/4 2.5Y 7/4	Faidspar TR 1 TR 1 Meavy minerals TR TR 8 TR Cay minerals TR TR 8 TR Volcanic glass TR 1 1 1 Micronoclules 5 3 10 3 Zeolitet TR - - - Amorph Fe agg. 2 1 - - Chrohonate unspec. 5 10 10 55
Late Pliocene			N	A	G	4	Terline for			2.5Y 5/2 mottles 2.5Y 5/2 10YR 5/4 layer	Carbonate unspec. 25 - 5 20 Foraminfers 20 2 60 43 Nannofostilis 50 2 35 30 Radiolaria - - TR TR GRAIN-SIZE: 3-100 (44.6, 32.3, 23.1) CARBON/CARBONATE: 3-104 (40.74.1, 8.9)	Frida Blanna			N	A	M	the second second			10YR 8/4	Nannofossils 55 48 40 30 Redicilaria TR - Fish remains TR GRAIN-SIZE: 3-70 (23.9, 44.8, 31.3) CARBON/CARBONATE: 3-74 (0.0, 84.1, 0.1)
		N.21	N		GG		then had			2.5Y 5/2 with 10YR 3/1 mottles	CARBONATE BOMB: 3, 104-105 (78)		NN 15		NF	A	MM	time and		- 00000	2.5Y 7/4 10YR 5/1 10YR 8/4	CARDONATE BOMB: 3, 74-75 (85)
			Pleistocene H Z	AA	GG	5	Terrel marker			2.5¥ 5/2 mottles					N	A	M	the second se		**	Mn-coated pumice 2.5Y 6/4	
	NN 16		Late Pliocene to Early Ple a 2 m	AAR	MG	6 7 CC	and and and			general color 2.5Y 7/4 2.5Y 5/2			NN13/14		F Z R	CAC	6 MG 7 MG CC	-	++++++++++++++++++++++++++++++++++++	•		

432


SITE 451

	BIC	OSTR		FOS	SIL		Т					Т	Т	Т				BIC	STR.		FOSS	IL						
AGE		ONE		HAR	AC	SECTION	CLION	METERS	GR	APHI	GY	DISTURBANCE	ICTURES	J.E.		LITHOLOGIC DESCRIPTION	AGE		SWN	+	ABUNDANCE		SECTION	GRAPHIC	DISTURBANCE SEDIMENTARY STRUCTURES	OLOGIC		LITHOLOGIC DESCRIPTION
	14 NANNOS		-	> ARLINDA	N		0	4	-+,	+-,	+	- BIST	STR	SAM				NANNOS	FORAMS	-	> ABUN	R	S 2		SED	SAM	5Y 5/2	
A LINORIA	NN 12 NN 13/14	N.17-N.19 N.17		A 4 4 4	M	1	1		┼┼┼┼┼┼┼┼┼┼┼		*****				2.5Y 6/2 2.5Y 7/4 2.5Y 6/2	FORAMINIFERAL-NANNOFOSSIL ODZE, light browniah gray to pale yellow in Sections 1 and upper part of Section 2, gray to light gray in middle Section 2, Some black, Mn-coated pumice fragments (up to 3 cm) are present. From middle Section 2 downward, ifikriated, cuboratterich VOLCANIC ASH, with various tones of olive and gray. Color becomes gray or white in interval sentheled in fresh pumice fragments, (up to 3x4 cm), to olive gray to dark olive gray in some more linhtid layers of Section 4. Rare layers of white foraminofraal nanofossil ooze are interbedded with the ath. Olive-gray and dark olive-gray motiles occur in lower Section 3 and upper Section 4. The sediment is oft except for some thin more lithified ash intervals in Section 4. drilling disturbance is moderate in Sections 1 and 4. slight tisswhere.			N.17	F	Ā	, M	1 1.0			•	57 3/2 inhified 57 6/2 57 3/2 inhified 57 3/2 inhified 57 3/2 inhified 57 4/2 57 6/2 inhified 57 6/2 57 5/1 57 5/1	VOLCANIC ASH, carbonase-ich, grav to fight olive gr interbedded with VOLCANIC ASH and TURF, dark olive grav to very dark grav, more lithified, Ash layers are thin and frequent in Section 1, whereas from Sectio 3 downward only one thick layer occurs. Section 2 it ash containing large (but of Sacm), light grav, angular pumice clasts with numerous Mn bibls. Gray and bible, Sary are more large, pumics fragments are also probable, sometime large, pumics fragments are also probable. The locae. The occe is soft and the sut and that flavers are more lithified, diffling siturbance is signt in Sections 1 and 3, very intense in Sections 2 and 4 to 7. SMEAR SLIDE SUMMARY 1-30 1487 3-40 4-68 (M) (D) (D) (D) TEXTURE: Sand 20 7 10 2
		.19		20			E						11 C.1 11 11 11 11 11 11 11 11 11 11 11 11 1	•	2.5Y 5/0 2.5Y 7/0 2.5Y 8/8 2Y 5/6 5Y 5/6 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 6/1 5Y 7/2 motifie 5Y 5/2	SMEAR SLIDE SUMMARY 1-140 2-83 1-45 3-94 3-123 (D) (D) (D) (D) (D) (D) TEXTURE: 00 0 10 1 15 7 Sint 70 85 64 85 89 62 Clay 20 5 15 10 4 TOTAL DETRITAL 26 21 91 62 COMPOSITION: Eddspar 1 TR 1 3 Heavy minarais TR TR TR TR TR Oray minarais TR TR TR 5 77 45 Waronodule 3 2 TR 3 3			N.17	F	A	M	3		- 0 000 0	•	layer General color 5Y 6/1	Sitt 70 83 85 47 Clay 10 5 51 100 5 51 COMPOSITION: Editpar 5 3 2 1 Heavy minerals 10 17 75 14 9 92 CMPOSITION: Editpar 5 3 2 1 Heavy minerals 10 10 5 51 Volcanic glass 69 178 2 40 Milcronodules 4 3 3 1 2 Carbonati unspec. 3 10 10 - - Foraminifers 2 20 5 - Namofositis 5 53 72 4 Radiolaria - TR TR - 1 -
	11 NN	N.17-N.	F	A	n	4	R.					00			5Y 5/2 5Y 3/2 lithified 5Y 4/2 5Y 3/2 lithified 5Y 5/2 5Y 3/2 lithified 5Y 3/2 lithified 5Y 3/2 lithified 5Y 3/2 lithified 5Y 4/7	Micronodules 3 2 TR 3 3 Zeolitis - TR - - TR Carbonate unapec. 20 10 5 - 10 Foraminifers 25 15 5 1 10 Namofossilis 29 67 69 5 25 Raciclatria - 1 TR - TR Sponge spicules - TR TR - - Figh remains - - TR - - GRAIN-SIZE: - TR - -	Late Miocene	NN 11				4	4			•	5Y 5/3 lithified 5Y 3/1	GRAIN-SIZE: 1-71 (22.7, 59.6, 17.7) CARBONATE BOMB: 1, 70-71 (31)
			P N R	44	M	C	c								EY 6/2 velicanic sh cuttings	CARBON/CARBONATE: CARBONATE BOMB: 4-75 (0.0, 18, 1, 2.2) 4, 75-76 (17)			N.17	F	A	M E	5	3222333923323333333333333323232323333 322233332332				

SITE 451

 \sim

	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SFRUMENTARY	SAMPLE		LITHOLOGIC DES	CRIP	TION	I
	0.5	VOID	00000		•	5Y 5/1 ash and pumice 5Y 5/1	TUFF, carbonate-rich, VITRIC TUFF, dark g in Section 2, very dark Section 6. The tuff oo the calcareous layers w of volcanic glass. Abu pumice clasts, (<1 cm Sections 1 and 2. The abundant Individual ar	reenish curs as which d ndant,) occur lowern nd com	n gray to dari thin l lerives round in dri nost to posite	to greenish gray is olive gray in ithified layers in from alteration ed, well-sorted, gray Illing breecias in iff level contains gray burrows. The
		Voun	00			5Y 5/1 ash and pumice	fractured during drillin throughout the core.	ng; dist		fied and hard, has been ce is very intense
ļ	- 3	<u>u u 1999 - 1997 - 19</u>	1			5Y 5/1	SMEAR SLIDE SUMN			
j								1-80 (D)	3-28 (M)	6-96 (M)
		VOID					TEXTURE:			
J	1	1010					Sand	14	15	1
J							Silt	25	75	89
4	-	- autorn	1	11	1		Clay TOTAL DETRITAL	61 81	10 94	10 96
J			-00		1.1	5Y 4/1	COMPOSITION:	81	594	90
J	1.4		0		•	5G 4/2 + 5G 5/2 lithified	Feldspar	5	7	1
J			1			intrified	Heavy minerals	TR	2	1
J	1.5						Clay minerals	61	10	10
l							Volcanic glass	15	75	84
j	1.2						Micronodules	4	5	1
J	-						Zeolites	-	1	1
ļ	h jā						Foraminifers	5	-0	80
J		1					Nannofossils	10	-	1
-	-						Fish remains	-	-	1
							GRAIN-SIZE: 6-31 (14.9, 62.8, 22.4)			
J	12						0-31 (14.8, 02.8, 22.4)	1		
	-						CARBON/CARBONA 6-30 (0.0, 24.6, 3.0)	TE:		
1	-	VOID					ALCOONATE	2		
ļ	1.5						CARBONATE BOMB 6, 30-31 (26)	8		
J	1	1					0, 30-31 (20)			
	-	4								
ļ	1	1								
ļ		1								
ļ	1	1								
ļ		1								
ļ		-								
J	1	1								
J	1.1	1								
J	1	1								
J		1								
1	-	5d				5Y 4/1				
J	-	66								
J		66								
J	-									
1										

SITE 451 HOLE CORE 8 BIOSTR. FOSSIL ZONE CHARACT.

NANNOS FORAMS RADS

N.17

AGE

Late Miocene NN 11

ź

FOSSIL ABUNDANCE PRESERV. SECTION METERS

2

3

4

6

7 CC

munutur 5

VOID

-

5G 4/2

5Y 4/1 5Y 3/2 + 5Y 3/1

5Y 3/2, 5GY 5/1, 5Y 2/1

FAM

SITE 451 HOLE CORE 9 CORED INTERVAL: 71.5-81.0 m	SITE 451 HOLE CORE 14 CORED INTERVAL: 119.0-128.5 m
BIOSTR. FOSSIL ZONE FOSSIL ZONE CHARACT. VIJUE SONE CHARACT. VIJUE	BIOSTR. FOSSIL ZONE CHARACT BISTR. CHARACT COLORY CHARACT CHARACT CHARACT <
Set of Vitral Contract of the following lithotypes: ~ 00% free white Vitral Contract of the following lithotypes: Set of Vitral Contract of Vitra	F C P 1 5 5 7 1 5 5 5 5 5 5 5 5 5 5 5 5 5
SITE 451 HOLE CORE 10 CORED INTERVAL: 81.0-90.5 m	Structure Structure disturbance is slight. Structure Structure SMEAR SLIDE SUMMARY Structure Structure I.Structure Structure Structure I.Structure Structure Structure I.Structure Structure Structure I.Structure Structure I.Structure I.Structure
BIOSTR, FOSSIL ZONE CHARACT, NO LISUS SUBJUCT NO LISS SUBJUCT NO LISUS SUBJUCT NO LISUS SUB	F C M C
g F A M 1 G G F A M 1 G F F A M 1 G F F A M 1 G F F A M 1 G F F A M 1 G F F A M 1 G <td>Clay minerals 23 15 10 Volcanic glass 60 30 65 Micronobles 1 2 - Zeolites 1 1 1 1 Amorph Fe agg 1 - Carbonate unspec 3 - Foraminifers 1 5 1 Namonofesils 3 40 7 Radiolaria - 2 263 (42,6,44,6, 12,7) Wet buik density 1 CARBONATE BOMB: CARBONATE: Ponoity (%) 47 2,4950 (14) 2-51 (00, 14,6, 18) Grain density 22</td>	Clay minerals 23 15 10 Volcanic glass 60 30 65 Micronobles 1 2 - Zeolites 1 1 1 1 Amorph Fe agg 1 - Carbonate unspec 3 - Foraminifers 1 5 1 Namonofesils 3 40 7 Radiolaria - 2 263 (42,6,44,6, 12,7) Wet buik density 1 CARBONATE BOMB: CARBONATE: Ponoity (%) 47 2,4950 (14) 2-51 (00, 14,6, 18) Grain density 22
COMPOSITION: Feldspar 3 4 Clay minerals 5 5 Volcanic glass 23 15 Micronodules 4 3 Zeolites TR TR Amorph Fe agg. TR - Recrystalized carb. 5 4 Foraminfers - 7 Nanofositi 51 88 Diatoms TR -	SITE 451 HOLE CORE 15 CORED INTERVAL: 128.5-138.0 m
* Radiolaris 1 1 Scorap spicules TR TR Fab remains 1 – Site 451, Core 11 (90.5-100.0 m), Core 12 (100.0-109.5 m), and Core 13 (109.5-119.0 m): NO RECOVERY.	p p
	SMEAR SLIDE SUMMARY 1-30 (D) TEXTURE: Sand 10 Silt 90 Glay TR TOTAL DETRITAL 76 COMPOSITION: Feldspar 2 Heavy minerals 2 Gay minerals 1 Volcanic glass 20 PHYSICAL PROPERTIES: See Micronodules 1 For aminifiers 1 For aminifiers 1 For aminifiers 2 Namoformils 5 Grain Gensity 224

ZORE CHANACY N Y A C <thc< th=""><th>Τ</th><th>BIOS</th><th>TR.</th><th>FI CH</th><th></th><th>CT.</th><th></th><th></th><th></th><th></th><th></th><th>À.</th><th></th><th></th><th></th><th></th><th></th><th></th><th>BI</th><th>OSTR</th><th>CH</th><th>FOSS IARA</th><th>_</th><th>z</th><th></th><th></th><th></th><th>C SS CE</th><th></th><th></th><th></th><th></th><th></th></thc<>	Τ	BIOS	TR.	FI CH		CT.						À.							BI	OSTR	CH	FOSS IARA	_	z				C SS CE					
N R - C SX 2/1, SY 3/1, SX 3/1, S		NANNOS	RADS	FOSSIL	21	PRESERV.	SECTION	MEICUS	GR/	PHIC DLOG	RELLING	SEDIMENTA	SAMPLE	LITHOLO	GIC DESCF	RIPTION		AGE	NANNOS	FORAMS	FOSSIL	a .	PRESERV.	SECTIO		THOLO	CGY UNITING	DISTURBAN SERUCTURA LITHOLOGI LAMPLE		LITHOLOGIC DE	SCRIPT	ION	
Image: Constraint of the					-	-	xc[3			4			with 7 m vitric tuf diameter black ash	nm diameter c If (containing clasts of whit h flecks,	lasts of medium dark (foraminifers), 3 to 6 n te pumice, and minor (MARY CC	gray mm		-		NR	F -	in a	cci	3-3		2.4		50 2/h burrew	devitrified glass-rich CL through a 1.5 cm coars greenish-black FINE VI calcareous burrow and	AY. This er black V TRIC TUP 1 mm diar ARY	grades de ITRIC T FF with a neter put	UFF to 3 mm i nice fra
Heavy minerals 1 Petopar 4 0 5 Clay minerals 1 TR 1 </th <th></th> <th>Sand Silt Clay TOTAL COMPOS</th> <th>DETRITAL SITION:</th> <th>3 80 17</th> <th></th> <th>Send Silt Clay TOTAL DETRITAL</th> <th>(D) 9 51 40</th> <th>(D) 6 44 50</th> <th>(M) 6 28 66</th>														Sand Silt Clay TOTAL COMPOS	DETRITAL SITION:	3 80 17														Send Silt Clay TOTAL DETRITAL	(D) 9 51 40	(D) 6 44 50	(M) 6 28 66
														Heavy m Clay min VOlcanie Microno Recrysta	tinerals serals c glass dules allized carb.	30 7 5														Heavy minerals Clay minerals Volcanic glass Micronodules		50	

		ONE			OSS ARA						>			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANC	SERUCTORES	SAMPLE	LITHOLOG	SIC DESCRIPTION
							cc	-	50000000000000000000000000000000000000	1				fragments, white; probably washed hole lasts range in size from 1 to 8 cm diameter.

	BIO	OSTI		F(CH/	1.11						>					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY		SERUCEURES	SAMPLE		LITHOLOGIC DE	SCRIPT	ION
Late Miocene				FNR	C.R	9 F -	cc	1111		-		:	2.5Y 2.5/0 general color 2.5Y 2.5/0	TUFF, carbonate-rich, containing altered glass		spottled black and whtle, n 1.
00	1.0													SMEAR SLIDE SUMM	ARY	
e N	~											1			CC	1-23
ati															(D)	(D)
-														TEXTURE:		
														Sand	10	10
			1.1	1.0	11							- 1		Silt	80	60
				1.1								- 1		Clay	10	30
														TOTAL DETRITAL COMPOSITION:	14	57
			L											Feldspar	3	6
	<u> </u>	11	- 1		1	11						- 1		Heavy minerals	1	1
														Clay minerals	10	30
														Volcanic glass	TR	20
			1.0			. 1						- 1		Micronodules	7	1
	2	1				1						- 1		Zeolites	-	1
												- 1		Recrystallized carb.	15	5
														Foraminifers	1	15
												- 1		Nannofossils	63	20
		i 1												Radiolaria	-	1

(n)

	BIO	ONE	R.	FI CH	OSS AR/	IL CT.				w >					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SERIMENTARY LITHOLOGIC SAMPLE		LITHOLOGIC DESC	RIPTIO	N	
Late Miocene	401 NN			FNR	RF F	P.P. 1	CC	-	and the		8GY 2/1 stast 5G 2/1 general color 5B 6/1 bioturbation	FINE VITRIC TUFF, of greenish black glass a 3 cm thick intensely carbonate-rich tuff.	rich clay bioturbi	(altered	pumice) and
ate	~	11										SMEAR SLIDE SUM			
-													CC-7 (M)	CC-9 (D)	CC-15 (M)
		- 1										TEXTURE:	(141)	(D)	CONT.
		- 1										Sand	15	9	6
	1	11		111	1 1	1 1	1			1		Silt	70	25	89
												Clay	15	66	5
												TOTAL DETRITAL COMPOSITION:	88	95	89 5 8
	1 (Feldspar	3	4	1
												Clay minerals	15	66	5 2 3 2 5 5
												Volcanic glass	70	25 2	2
												Micronodules	5	2	3
												Zeolites	2	2	2
												Recrystallized carb.	2	-	5
		11										Foraminifers	з	-	
												Nannofossils	-	TR	77
												Radiolaria	-	-	TB
										I		Sponge spicules	-	-	TR
	1				1.1							Fish remains	-	- 1	-

	BI	OST	R,	FI CH	OSS AR/	IL ACT.					2			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	Here a	SEDIMENTAR STRUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCRIPTION	
ene							1	0.5	VOID	000		general color 5Y 4/1	TUFF, carbonste-rich, dark gra contains a clast ratio of 4:6, bio the biodists are foraminifers: th mainly glass. Some minor very o mottles. Section 2 contains blac drilling breccia. The sediment is is intense.	clasts: volcaniclasts; se volcanic clasts are fark gray burrows and k FINE VITRIC TUFF
Late Miocene	NN 107	N.16/17		F.N.	FR	MG	2 CC			0		general color 5Y 2/1 tuff fragments 5Y 2/1, 5Y 6/1 5Y 2/1 chilling gouge	PHYSICAL PROPERTIES: Wet buik dentity Parosity (%) Grain dentity	Section 1 11 cm 2.17 33.5 2.76

	BIC	ONE		F(CH/						<u></u>					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	BISHURBANCE SERIMENTARY	SAMPLE SAMPLE		LITHOLOGIC DESCR	IPTION	V
				FNR	1 1 1	P P -	cc				•	general color 2.5Y 2.5/0	TUFF, carbonate-rich, fragments and nanofi grained, glass-rich CLA large foraminifers.	ossils. Gr	ades into black, fine-
Late Miocene	1										- 1		SMEAR SLIDE SUM	ARY	
8	NN 102										- 1			CC-6	CC-19
£	2													(D)	(D)
ŝ	*												TEXTURE:		
З.													Sand	11	13
	L 0												Silt	64	47
		1 1				11					- 1		Clay	25	40
													TOTAL DETRITAL COMPOSITION:	45	80
													Feldspar	з	Б
													Heavy minerals	2	-
													Clay minerals	25	40
													Volcanic glass	15	35
													Micronodules	10	8 5 2
													Zeolites	2	5
											- 1		Amorph Fe agg.	÷	
											- 1		Recrystallized carb.	5	-
													Foraminifers	6	-
													Nannofossils	33	10
											- 1		Fish remains	1	

	BIC	ONE		FC CH/	ARA						2				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SERUCETURES	LITHOLOGIC	LITH	DLOGIC DESCRIPTI	ON
Late Miocene	NN 10	N.16-N.19		F FNR	F LL	M PM1	1 2 CC		0,10,20,20,20,20,20,20,20,20,20,20,20,20,20		000		pumice foraminifer-poor general color SY 4/1 foraminifer-poor composite burrow SY 4/1 Zoophycus burrow SY 6/1 Jaminations 5YR 3/3 SY 4/1 PHYSICAL PROPERTIES: Section 96 cm Wet bulk density 1.89 Porosity (%) 53.5 Grain density 2.91 CARBONATE BOMB: 1, 81-82 (13)	dark grw, rich in targ burrowed with localiz and motiling. The but foraminifers. From 14 to increased foraminif SMEAR SLIDE SUM TEXTURE: Sand Silt Clay	AARY 1.25 (D) 10 12 78 91 2 1 78 10 7 7 1 1 1

SITE 451

LITHOLOGIC DESCRIPTION

SITE	451	HOI	LE		_	CO	RE	26	CC	REDI	NTERV	AL:	233.0-242.5 m					SITE	451	н	IOLE	<u></u>		COR	RE 3	28 CORED INTERVA	L:	252.0-261.5 m		
AGE	Z	FORAMS NOT	CH	ABUNDANCE	ACT	SECTION	METERS	L	grapi Ithol	HIC OGY	BISILUNG BISILUNG SERUMENTARY SERUMENTARY	SAMPLE		LITHO	LOGIC DESCRIP	ION		AGE	MANNOS B	FORAMS	E	FOSSIL PAG	RACT	Iz	METERS	BILLING BILLING BILLING BILLING SFRIMENTARKE SFRIMENTARKE	SAMPLE		LITHOLOGIC DESCRIPTION	
			NR	R	P -	1 CC	0.5				000 000	•	5G 6/2 5Y 3/1 general color 5Y 7/1, 5GY 7/1		which locally enhan- grading in 20 to 28 (ized foram ce parallel cm interval	ninifer-enriched zones bedding. Very fine							cc				5Y 4/1 and 5Y 3/1	VITRIC TUFF, with foraminifers, dark gray; intervery dark gray vitric tuff low in foraminifers. The is hard and consists of several fractured pieces in t Core-Catcher.	sediment
Late Miocen	~															insely burn inburrowe intains mo	oderately-burrowed	SITE	451	н	IOLE			COR	E	29 CORED INTERVA	L	261.5-271.0 m		
															thin concentrations glass. The sediment drilling disturbance. SMEAR SLIDE SUM TEXTURE:	of slightly is uniform MARY 1-7	coarser volcanic	AGE	B SONNAN	FORAMS		FOSSIL POSSIL	RACT	IS	METERS	GRAPHIC SERVICE SERVICE SFRUGENTRES SFRUGENTRES	T		LITHOLOGIC DESCRIPTION	
												1	PHYSICAL PROPERTIES Wet bulk density Forolity (%) Grain density	: Section 1 6 cm 2.21 36.9 2.93	Sand Silt CDay TOTAL DETRITAL COMPOSITION: Feldspar Heavy minerals Clay minerals Clay minerals Clay minerals Clay minerals Volcanic glass Micronodules Zeolites Amorph Fe agg. Foraminifers Nannofossils Fish remains	23 72 79 2 TR 72 5 2 1 TR 72 7 2 7 7 7	1 =							cc			•	5Y 3/1	VITRIC TUFF, tich in foraminifers, very dark black and gray bioturbation, and one black, co layer (~0.5 cm) of vitric tuff poor in foraminif SMEAR SLIDE SUMMARY (M) TEXTURE: Sand 1 Sitt 33 Clay 66 TOTAL DETRITAL 78 COMPOSITION: Feldspar 1 Heavy minerals 1	arse
SITE	BIG	HO OSTR.		FOS	SIL	_	RE	27	co				242.5-252.0 m					ן ר											Clay minerais 66 Volcanic glass 10 Micronodules 1 Zeolites 1	
AGE	NANNOS	FORAMS	RADS	ABUNDANCE	PRESERV.	SECTION	METERS	1	GRAP	HIC .OGY	BISHURBANCE SERUMENTARY	LITHOLOGIC		LITHO	ILOGIC DESCRIP	FION		SITE	451	н	IOLE			COR	RE :	30 CORED INTERVA	L:	271.0-280.5 m	Recrystallized carb. 10 Nannofossils 10	
te Miocene	~				t P		0.5	The second second			•	•	5Y 2/1 general color 5Y 4/1 general color composite burrow 5Y 2/1 faulted lamination 5Y 3/1 laminations	6	foraminifers down to intensely disturbed of the tuff with mir and up to 2 mm thi Down section are ze	to 74 cm. by drilling nor foramin ck zones o ones of int	g and contain pieces inifer-enriched areas of coarser glass. tense bioturbation	AGE		FORAMS	E	FOSSIL PAG	RACT	S	METERS	BISHLARANCE SFRUMENCE	SAMPLE		LITHOLOGIC DESCRIPTION	
Late			F.	R	PP	C		1			•		5¥ 4/1		concentrations enha	inor scatte contains a ancing lam I from silt ment is un itely distur	ered foraminifers; sbundant foraminifer ninations, Basal 5 cm to medium sand-sized niformly hard and	Late Miocene	1			N	RP	cc	-			5Y 3/1	VITRIC TUFF, rich in foraminifers, very dark fine-grained, black where coarser. Strongly bio gray burrows.	

TEXTURE: Sand 4 Silt 73 Clay 13 TOTAL DETRITAL 85 COMPOSITION: Entreme

CARBON/CARBONATE: 1-51 (0.0, 6.8, 0.8)

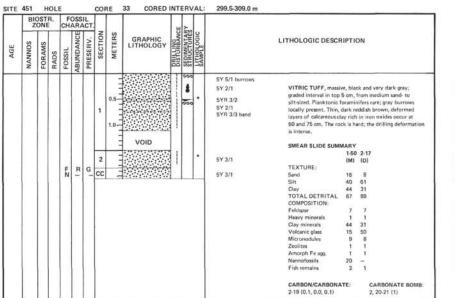
TEXTURE:

COMPOSITION: Feldspar Heavy minerals Clay minerals Volcanic glass

Micronodules Zeolites Nannofossils Fish remains

CARBONATE BOMB: 1, 52-53 (6)

1-60 (D)

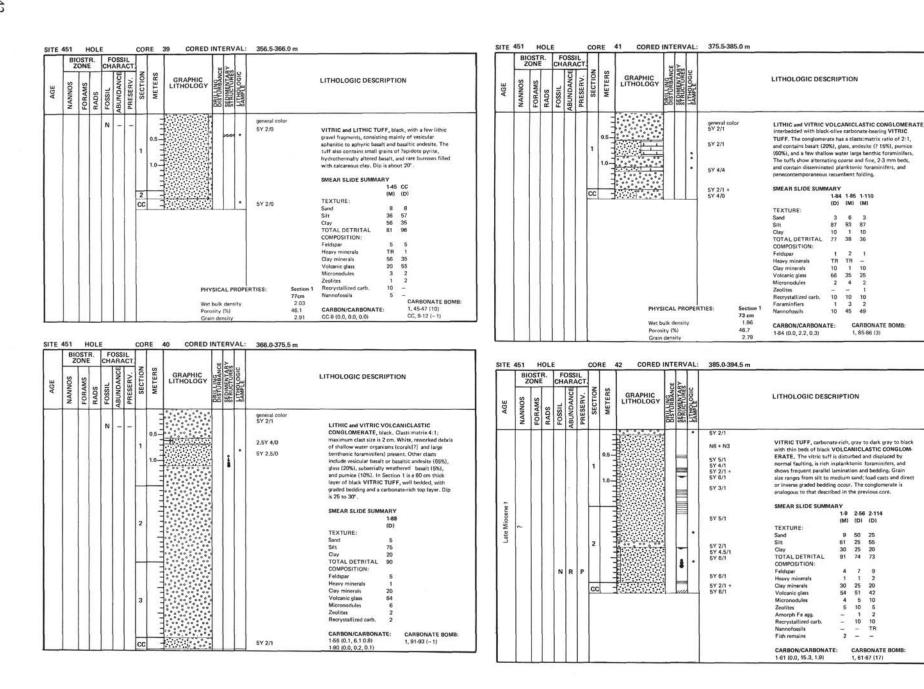

2 10 1 SITE 451 HOLE

CORE 28 CORED INTERVAL:

SITE 451 HOLE

CORE 26 CORED INTERVAL: 233.0-242.5 m

1	BIO	NE	CH	OSS	СT.							<u>س ></u>														BI	OSTR	c	FOS	SIL						w >								
SONNAN	NANNOS	FORAMS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	L	THO	HIC	DRILLING	SEDIMENTARY	LITHOLOGIC				LITH	DLOGI	C DESC	RIPT	TION	2			AGE	NANNOS	FORAMS	RADS	ABUNDANCE	PRESERV.	SECTION	METERS	Ľ	SRAPHI THOLO	GY	BISTURBANC SERUMENTAR STRUCTURES	LITHOLOGIC SAMPLE			LITHOLOG	IC DES	SCRI	PTION	
2	<i>x</i>		N	F	P	1	1.0						AL PR	563 563 574 574 574 574 574 574 577 574 577 577	r 4/1 r 5/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8/1 8	Section 121 cm 2.14	o black,	nsety bio intercals of a paralle ulting were and the set contain anisms is contain anis contain anisms	sturbatesteed in Star terbonate gravith- ith 5 cm the star gravith- ith 5 cm the star with slill imment is urbance JJMMAR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t, in Siction -rich fl green displa classic white write are plant thard, is slight 32 1-4 32 1-4 32 1-4 32 1-4 32 1-4 32 1-4 30 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ection 1 are: ine viti I amina scemen c conglimetric of the scene o	1 and ir ric tuff, tion aff ti comerate ked deb e benth the orig g and ti 42)	n the Co fected b ris of shared b ris of sh and cat aminae of aminae of	ore- dark V fark gray tallow raminifers bonate	Late Miosene	~			NR	P	1 CC	1.0						5GY 4/1 5Y 2/1 5Y 4/1 5Y 3/1 5Y 3/1 5GY 4/1 2.5Y 3/2	The ison of the second	reck is fine to a lining abundan tiftings enhances find a contains. STIC COMGU the abundant (i chyric): - 300 c volcanic rock ng deformation c volcanic roc	nedium t gray b by align ilso a bil ilso a b	sand- surrow grimeer ack L TTE in sists co- -30% - vhole - t. Y CC-244 (D) 10 28 87 10 10 28 87 10 10 72 5 7 1 17 R 7 2 5 7 1 1 3 1	at places, dark gray to bil izad, with three intervals , Parallel lamination is for is of plantknois foraminil THIC and VITRIC VOLC erval. The matrix is a fine noist of	s requent ifers. CANI- e tuff agio-

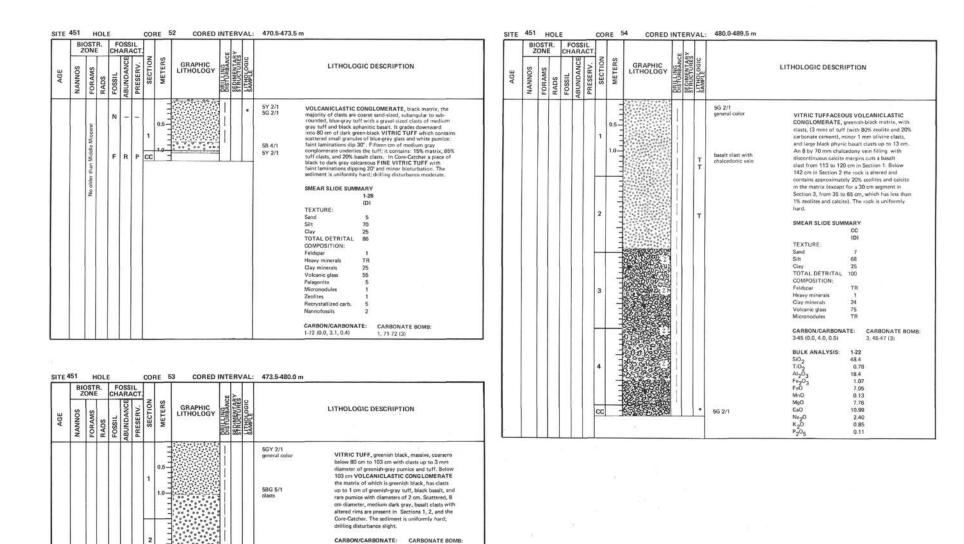


	BIC	OST	R.		OSS AR/	IL ACT.					>				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANC	SERUMENTAR	SAMPLE	LITHOLOG	IC DES	CRIPTION
				N	-	-	1 CC	0.5			•	•	GY 4/1 VITRIC VOLCANI greenish gray, Frage	LASTIC sents of b	a down core to LITHIC and CONCLOMERATE, dark asalt, glass, and pumice average Catcher some of them exceed
													SMEAR SLIDE SUI TEXTURE: Sand Sint City TOTAL DETRITAL COMPOSITION: Feldspar City microid Volcanic glass Micronodules Zeolites Recrystallized carb. Foraminifer Nannofossils Fish remains CARBON/CARBON 1-14 (0.0, 0.2, 0.1)	1-25 (D) 10 70 20 74 5 20 49 3 1 3 2 15 2	CARBONATE BOMB: 1, 1012 (-1)

	BIC	ONE			OSS ARA						>	Π					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTAR	LITHOLOGIC			LITHOLOGIC DESCR	RIPTI	ION
				N			1 2 CC	0.5				•	5Y 6/1 5Y 2/1 general color 5Y 4/1 basalt clasts burrows 5Y 5/1 5GY 4/1		Iamination or gray biotu fragments at 80 cm in Se cross-lamination and loas LITHIC and VITRIC VO interval, with rounded fr basalt, glass, pumice, and of finer tuff. Bedding dip SMEAR SLIDE SUMMA	is, the batio ction 3-casts LCAM agmen I rare a os 26 ¹ RY	Flatter with either parallel c; some vesicular batalt 1. Coarser (evels show rare b. A 1D-cm thick, black VICLASTIC CONGLOMERATE tit (severaging 0.5 cm) of acid volcanic rocks in a matrix 4. 2-8
									W		lk de γ (%	nsity)	ERTIES:	Section 2 11 cm 2.09 42.8 2.91	TEXTURE: Sand Silt Clay TOTAL DETRITAL COMPOSITION: Feldspar Heavy minerals Cagy minerals Volcanic glass Micronodules Zeolites Fish remains CARBON/CARBONATE 1-135 (0.0, 0, 7, 0.1)	7 38 35 95 5 TR 35 55 2 3 -	6 69 25 92 5 1 25 61 5 2 2 1 CARBONATE BOMB: 1, 136:137 (1-2)

	BIC	OST		F(CH/							ESY			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SERUCEORE	LITHOLOGIC	LITHOLOGIC DESCRIPTIO	N
e				N	R	P	1	0.5				•	VITRIC TUFF, black, interbedd VITRIC VOLCANICLASTIC CO dark greenish gray, with rounded basall fragments as in the previo	NGLOMERATE, purnice, glass, and is cores. The Core-Catche
Late Miocene	~			N			CC			9 0 0 0			contains admixtures of these lith SMEAR SLIDE SUMMARY 130 (D) TEXTURE: Sand 18 Sit 72 Clay 10 TOTAL DETRITAL 92 COMPOSITION: Feldspar 6 Heavy minerals 10 Volcamic glass 72 Micronodules 4 Zeolites 3 Fah creating 1	ologies, Bedding dips 34*
														CARBONATE BOMB: 1, 53-55 (~1)

ZONC DIALAGE DIAL DIAL <thdial< th=""> DIAL DIAL <</thdial<>	genera 5Y 2/1	general color 5Y 2/1	VITRIC TUFF, CONGLOMER.	C DESCRIPTION	
Image: Second	5¥ 2/1		CONGLOMER	F, black, and VOLCANICLASTI	
PHYSICAL PR	2.5Y 4 5GY 4 5GY 4 5Y 5 2.5Y 4 5Y 2/1		ratio is about 3 larger clasts do ~50-60% fine-g andesite; ~ 30% and ~ 10% alter oxidized volcan altered andesite intercalations o dark greenish g a few glankton	he conjournerate, the classmat bit: Class: verseq: 0.5 cm, but: voccur. Their composition is: privated to aphanetic basalt or bit & abhyric versicular altered vario his abhyric versicular altered vario his cocks.are present in the mate ab Below 200 cm, the viric tul of carbonateric nutf, grav tod for arbinateric nutf, grav tod tis foraminifera One of the but NNOFOSSIL CHALK. The dip E SUMMARY 2.73 2.77 2.150 3 (M) (M) (M) (M) (8 5 5 94 54 54 8 16 55 94 54 54 8 17 At 4 59 54 9 N: 3 2 2 1 TR 46 41 1 1 10 10 8 3 3 3 - TR 7 Carbo 3 1 Carbo 3 3 - TR 7 R 60 25 30 - - TR 7R 7 - RBONATE: CARBONATE I 2.3.21 2, 140-142 (-1	upper atrix much basaltic bas tic bas tic basaltic basaltic basaltic basaltic basaltic basaltic bas tic bas tic


SITE 451 HOLE CORE 43 CORED INTERVAL: 394	4.5-404.0 m	SITE	451	н	OLE		(ORE	45 COREC		ERVAL	NL: 413.5-416.5 m
BIOSTR. ZONE CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. CHARACT. SCONE UNIVERSITY SCONE SC	LITHOLOGIC DESCRIPTION	AGE	MANNOS 0	FORAMS	_	FOSSIL FOSSIL	_	SECTION METERS	GRAPHIC LITHOLOGY	BRILLING	SEDIMENTARY STRUCTURES LITHOLOGIC	LITHOLOGIC DESCRIPTION
SITE 451 HOLE CORE 44 CORED INTERVAL: 404	2/1 + 7/1 VITRIC TUFF, massive where coarse grained; carbonate-baaring and with intense light gray bioturbation where fine-grained;							1 1.0- 2 2			т	T general color 5Y 3/1 BOULDER VOLCAVICLASTIC CONGLOMERATE, with very dark gray matrix of volcanic tuff and coarse clasts. Exidots and hydrothermal pyrite are diffuse in the matrix. Boulders are 20 to 30 cm thick, composed of plagicolare phyric versicular basit, plagicolare- binime.phyric anydaloidb basit, and by a pale blue-green volcanic tuff hydrothermally altered. BULK ANALYSIS: 1-29 1-70 SiO2 0.59 0.60 AlgO3 19.8 19.8 FeaO3 1.20 1.21 FeO 7.91 7.97 MnO 0.18 0.18
AGE SERVICE ABUNDANCE ABUN	LITHOLOGIC DESCRIPTION	SITE	451	но	DLE			ORE .	46 COREC	Wet b Poros Grain	oulk den sity (%) a density	9.78 Poor 0.10 0.11
0.5 - 5Y: 1 - 6ee *	CARBONATE BOMB: 1, 85-86 (2)	AGE	B. NANNOS	SWENDE	C	ABUNDANCE 25	ACT.	SECTION METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES LITHOLOGIC	LITHOLOGIC DESCRIPTION
	21					N -	-	2 2		HYSIC	density (%)	SY 3/1 BOULDER VOLCANICLASTIC CONCLOMERATE, very dak gay, gading down.core to less coarse congionerate, year of action to formainfer-richer congionerate, black, to gay VIRIC TUFF with intercalations of gay clay- and carbonate-fich UII. The boulders consist mainly of plagicolase-olivine physic basalt. The virtic tuff is faulted are based on the formainfers. Bed configures and provide actionate-tuff. The carbonate-fic fick of a strenge public data and large bench formainfers. Bed public data and large bench formainfers. Bed provide action action of Section 3. The carbonate-fic fick of a strenge public data and large bench formainfers. Bed provide action action and large bench formainfers. Bed provide action action and large bench formainfers. Bed provide action action and strenge public data strenge public data and large bench formainfers. Bed provide action action action action action for Sit. SY 2/1 SME AR SLIDE SUMMARY 2.55Y 2/1 Z45 2-31 SOY 4/1 lavina SY 2/1 TEXTURE 5Y 2/1 SME AR SLIDE SUMMARY 2.55Y 2/1 SY 2/1 TEXTURE 5Y 2/1 Texture: 5Y 2/1 SY 2/1 Texture: 5Y 2/1 Texture: 5Y 2/1 Gay 20 7 Grave mineration action a

	BIC	ONE	R.	FC CH/	ARA						>					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDUMENTAF	LITHOLOGIC		LITHOLOGIC DESCR	IPTIC	ИС
	-		E.		AI I	A	1 2 <u>CC</u>	0.5			-	•	5Y 6/1 class general color 5Y 2/1 5Y 6/1 and 58G 5/1 class N4, N6, 5Y 2/1	clasts which are mainly to subrounded pumice altered to soft clay. Al occur. At places, some Trace components are large benthonic forami carbonate or silica. Th	gray i fragm so min tabula white nifers, e tuff i and bio 20°, tARY	ourser layers and acatered and gravish-blue gray, rounded ents, often almost completely or glass and basalt clasts or clasts show crude orientation fragments of shallow water consisting of rocrystalized a locally foraminifar-bearing, turbated or sand-sized and 2-33 (M) 10 87 3 8
														Clay minerals Volcanic glass Micronodules Zeolitos Recrystalized carb.	50 30 TR 20	3 5 1
														Foraminifers Nannofossils Fish remains	- - TR	2 TR

		ONE			OSS	CT.					×			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTAR	LITHOLOGIC		LITHOLOGIC DESCRIPTION
ate Miocene	NN 107			N	F	P	1 CC	0.5		000			5Y 2/1 general color N4	FINE VITRIC TUFF, black, with moderately fine laminations and cross-bedding and - 10% biogenic component in Section 1. The Core Catcher contains three fragments of medium dark gray bioturbated FINE VITRIC TUFF with 20-25% biogenic component (pelagic foraminifers and nanofossils).

	BI	ONE	R.	FI CH	OSS ARA	IL ACT.				3	>		
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	ISTURBAN	STRUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC D	DESCRIPTION
							CC	-		1			massive and structureliss, contains ins which include benthonic

BIOSTR. FOSSIL ZONE CHARACT LOSTR. FOSSIL ZONE CHARACT LOSTR. AU CHARACT LOSTR. AU C	CORE 48 CORED INTERVAL: NOLLD3 JUNCAL JUNCAL RAPHIC LITHOLOGY JUNCAL JUNCAL	432.5-442.0 m	SITE 451 HOLE CORE 51 CORED INTERVAL: 461.04	LITHOLOGIC DESCRIPTION
	cc	N5 VOLCANICLASTIC CONGLOMERATE, light to medium gray FINE VITRIC TUFF, and large medium gray FINE VITRIC TUFF, all drilling tragments, with approximately 30% biogenic material and minor bioturbation. This fine vitric tuff grades downward into a coarser dark gray VITRIC TUFF with one erosional contact visible in the transition zone.	CC	solor 5Y 2/1 FINE VITRIC TUFF, black, drilling breccia, moderately burrowed with thin laminations and approximately 10% foraminifers (<i>Orbubina</i>), One clast of black VITRIC TUFF present.

1.0 (0.0, 1.5, 0.2)

BULK ANAL VSIS

SiO₂ TiO₂ Al₂O₃ Fe₂O₃ FeO

MnO

MgO

CaO

Na20 K20 P205

40 cm

2.17

34.3

2.78

5G 2/1

PHYSICAL PROPERTIES:

Wet bulk density

Porosity (%)

Grain density

CC

1, 1-2 (-2)

2.3

48.2 0.76 19,4 0.99 0.55

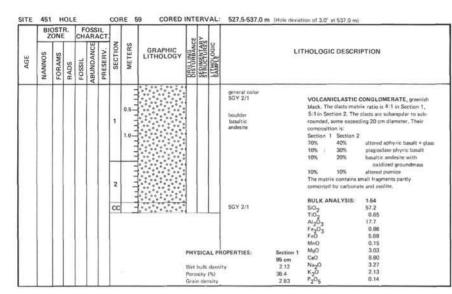
0.11

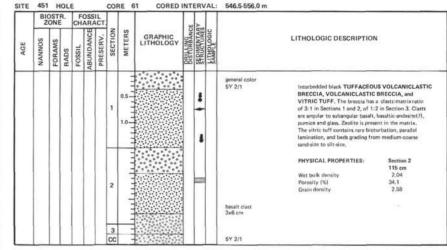
7.02

11.78

2.26

0,93

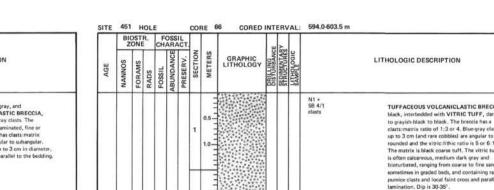

0.25

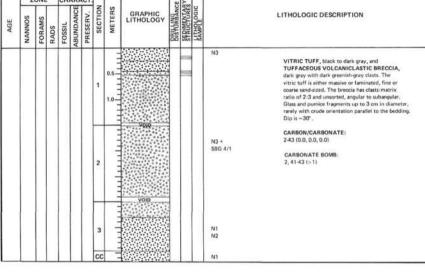

B	ZO	NE	CH	AR	ACT						2				Ι	BIOS	TR. NE	CH.	DSSI	CT.				>				
NANNOS	COMMUNI	FORAMS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPH	HIC OGY	DISTURBANC	SERIMENTARY STRUCTURES LITHOLOGIC		LITHOLOGIC DESCRIPTION	AGE	- CONTRACTOR	CUNNEN	RADS	FOSSIL	ABUNDANCE	PRESERV.	METERS	GRAPHIC	BRILLING	SFRUMENTAB	SAMPLE		LITHOLOGIC DESCRIPTION	
						1 2 3 CC	0.3					general color 5GY 2/1 10R 4/2 5GY 2/1	VITRIC TUFF, black interbedded with VOLCANICLASTIC CONGLOMERATE. Gradational contacts common. The clasts of plagicolase-phyric basaltic andexite, aphyric basalt, and real andexite occur in matrix of umaller lithic clasts and altered glass often replaced by grees smeetite, and intergravular and cavity- filling zeolitic and carbonate cement. Hydrothermal pyrite occurs sporadically in altered fragments of volcanic rocks. The tuff ranges from silt to very coarse tand-tized, and thows in places, graded bedding. CARBON/CARBONATE: 2:25 (0.0, 1.3, 0.2) CARBONATE BONB: 2, 24-25 [2]	Lase Micense	CO1 100			N	R	P	0.5 1 1.0 2 2			* *	•	general color 5Y 2/1 black lignite utripes	VITRIC and LITHIC TUFF and TU VOLCANICLASTIC CONGLOMER. These lithotypes form em-thick inter in lower Section 2, and thicker layer lower Section 3 and thicker layer lower Section 3 and Core Catcher so occur, floating in a tuffaceous groun composition includes basaltic andesi glass, and pumice. Difface grains of 1 pryfits are present. Graded bedding in light primer based bedding in light to the top. is - 25°. SMEAR SLIDE SUMMARY 24 CMM TEXTURE: Sand 3 Sit 97 COMPOSITION: Feldspar 1 Heavy minorals 2 Volcanic glass 7 Organic carbon 90 CARBON/CARBONATE: 1&3 (0.0, 1.1, 0.2) CARBONATE BOMB: 1, 82 & 81 (1-2) PHYSICAL PROPERTIES: Wet buik density Porosity (%) Grain density	ATE, black. rbedded laye rs elsewhere. cattered grant dmass. Clast ite, basalt, alt hydrotherma s common. B

5Y 2/1

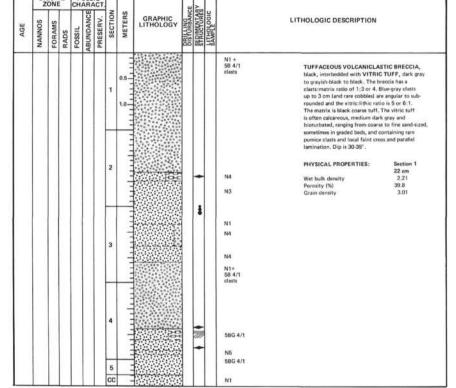
CC

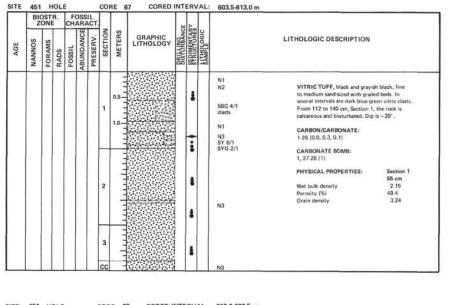
BIOSTR. FOSSIL ZONE CHARACT.		J 200				BIOST		RACT.	2 10	a Fee				
NANNOS FORAMS RADS FOSIL ABUNDANCE PRESERV.	GRAPHIC LITHOLOGY	DISTURBANCE SEPIMENTARY STRUCTURES LITHOLOGIC SAMPLE	LITHOLOGIC DES	CRIPTION	AGE	FORAMS		ABUNDANCE PRESERV.	SECTION	GRAPHIC LITHOLOGY LITHOLOGY	SAMPLE		LITHOLOGIC DESCRIPTION	
2		8	basi proce interbedded with N3 BEARING VTR grav, The consto 5Y 5/1 contains patches contains patches	2.5 2.6 2.7 (M) (M) (M) (M) 5 3 12 67 1 63 28 96 25 AL 84 9 33 4 1 3 1 TR - 28 96 25 51 2 25 51 2 25 2 TR 4 1 1 3			N		2 3 CC	3		5G 2/1 N3 and 5G 2/1	VOLCANICLASTIC BRECCIA, g to black, in upper Section 1. Clast is 3:11 clasts are -1:11 lithic virtic, unoriented. The matrix is line tuf clasts occur at the bottom of the VITRIC TUFF, dark gray to gree underlies the breccia; grain-size ra sand. CARBON/CARBONATE: 2:64 (0.0, 0.9, 0.1) CARBONATE BOMB: 2, 56-57 (1:2) PHYSICAL PROPERTIES: Wet bulk density Providy (%) Grain density	ts:matrix ratio , unsorted and If. The largest interval, nish gray,


BIOSTF	R. E	FOS	SIL								B	OSTR.	FI CH/	OSSIL	T.							
NANNOS FORAMS	RADS	FOSSIL	PRESERV	SECTION	METERS	GRAPHIC LITHOLOGY	BISHURBANC SERUMENTAR SERUMENTAR LUTHOLOGIC		LITHOLOGIC DESCRIPTION	AGE	NANNOS	FORAMS	FOSSIL	ABUNDANCE	PRESERV. SECTION	METERS	GRAPHIC LITHOLOGY	BISHUNNGANCI	SAMPLE		LITHOLOGIC DESCRIPTION	
ZOL NN		NN	PP				1 + + + + + + + + + + + + + + + + + + +	5GY 2/1 N4 N3 N2 5G 6/1 5G 2/1 N5 5G 2/1 N5 5G 2/1 N5 5G 2/1 N5 5G 2/1 N5 SY 6/1 burrows 5S 7/2 burrows SY 3/1 SY 8/2 SY	Ameniah-black VOLCANICLASTIC BRECCIA Baction 2, the core contains were il layers of very dark readibilitrome claver (veld VITRIC TUPE) and to carbonate-rick VITRIC TUPE) and to carbonate-rick VITRIC TUPE (veld VITRIC TUPE) and to carbonate-rick VITRIC TUPE) and the sectors of the secto	Late Miocene	VN 102		N	F	1 2 3 4 P cc	0.5			5Y 2/ 58 7/ 5YR 4 5G 4/ 5YR 4	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	VITRIC TUFF, dark gray to ver fine to coarse and dired. Often, atternaring black and fight fullid occur ingple, festion, and convo- gray biotutation is limited to th 1. Two grayth grain irregular in occur in Sections 1 and 2. Some almost entirity of sand- and gray and light bluich gray pumice ind the lower part of Section 4 and contain numerous, 1/2 cm, after vitric tatt and of indum bluich compact of rounded glass and p CARBON/CARBONATE: 3-98 10,0, 0.6, 0.11 CARBONATE BONB: 3, 97-98 (1) PHYSICAL PROPERTIES: Wet bulk density Prosisity (5) Grain density	very well faminated in -gray colors. In Section lute faminations, Dark as upper part of Section tervals of smeetite intervals consist elsized greenish-gray glass fragments. the Core-Catcher nate beds of black gray conglomerate,


SITE 451 HOLE

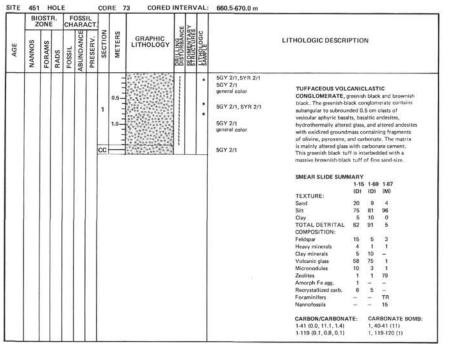
BIOSTR. ZONE


FOSSIL CHARACT.


CORE 65

CORED INTERVAL: 584.5-594.0 m

	BIC	OSTI		FI CH	OSS ARA						>	Π		
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTAR STRUCTURES	LITHOLOGIC	LITHO	OGIC DESCRIPTION
							1	0.5					graenish vitricith subangui and red-b pumice a vitric and benthoni	nd LITHIC VOLCANICLASTIC BRECCIA, black, massive; clats: matrix ratio is 5:1; ic ratio ranges from 1:1 to 1:4. Angular to ic unioned, unreinstand dasts of dark gaay cown baalt; of medium blue-gray glass and the main components. The matrix is is lithin tuff with trace darbits of shallow water foramitifiers. Lurgest fragments occor in 2 and 3; rounded and with alteration rims.
							2							

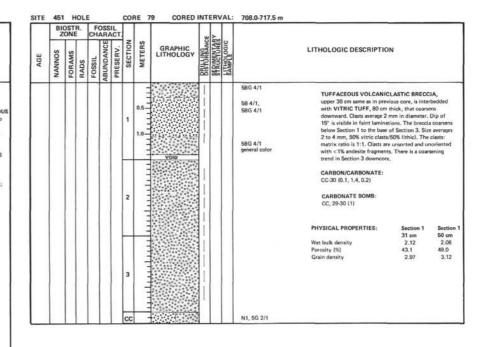

	BIC	OSTI	R.	F(CH/		CT.					×			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTAP	LITHOLOGIC		LITHOLOGIC DESCRIPTION
							2	0.5			• • •		N4 58 5/1 N3 N4 N3 58G 4/1 N2 N3	VITRIC TUFF, medium dark gray to dark gray and to gravith black. In upper Section 1 it grades downward to a VOLCANICLASTIC BRECCI, medium bluich gray with clastematrix ratio of 4:1 and vitricilithic ratio of 5:1. Other features include calcurous bioturbated intervals, faint parallel and lemicular bandingion, graded bedding, drag faulting. Dip is 25-30°. CARBON/CARBONATE: 2-85 (0.0, 0.4, 0.11 CARBONATE BOMB: 2, 64-65 (>1)
	1.00			1.1			CC	-			L	1 1	N3	

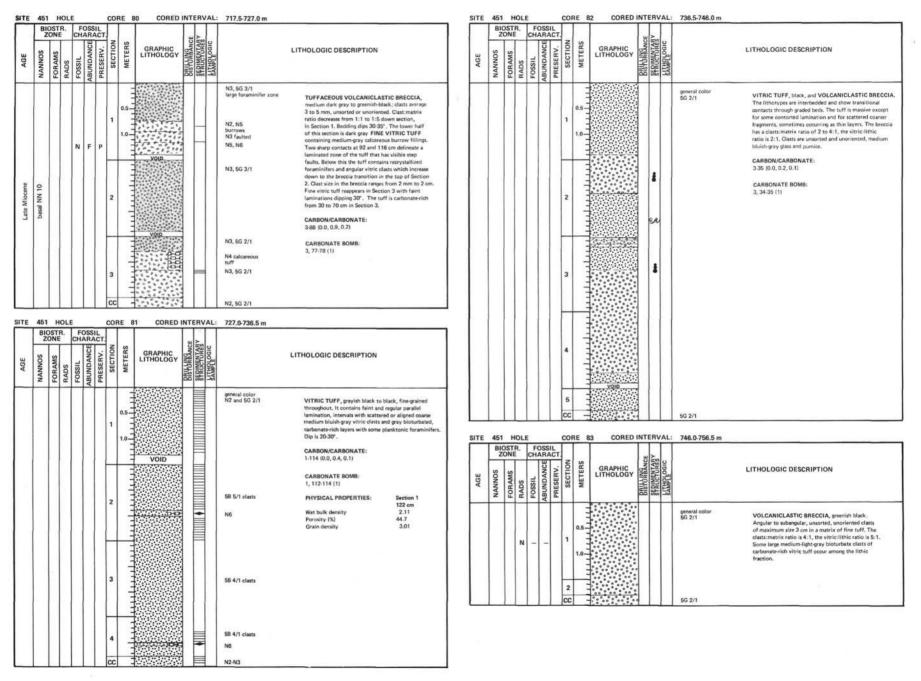
	BIC	ONE	R.		OSS AR/	ACT.					>		Τ					
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRULING	SERUCEURES	LITHOLOGIC	SAMPLE			LITHOLOGIC DES	CRIP	TION
					4		1	0.5						N5 N2-N3 5BG 5/1 clasts N2 5BG 5/1 clasts		black in Sections 1 and sand-size, with some m fragments; locally calc and cross lamination, i occasional thin and ver are common. VITRIC VOLCANICL	d 2: ran redium areous peneco ry fine	y to dark gray and to graying from silt to coarse blue gray granule-sized with Orbulina; parallel intemporaneous deformati duky blue-green laminae C BRECCIA, black with
							2		And the set of a set					N3 N2-N3		Core-Catcher. The clast clasts account for 95% devitrified pumice wit fine tuff. Dip is ~30°.	its mat of the h some	ctions 1 to 3 and in the trix ratio is 4:1, the vitric a total; they are mostly a pyroxene. The matrix is
														58 5/1		SMEAR SLIDE SUMM TEXTURE: Sand Silt	1-75 (M) 3 92	
							3	1		10.0						Clay	5 88	
				N	-	-	cc	-						58 5/1		TOTAL DETRITAL COMPOSITION: Feldspar Heavy minerals Clay minerals Volcanic glass Micronodules Zeolites	2 1 5 80 5 1	
									We	t bul	CAL I Ik der y (%) Iensit	nsity		RTIES:	Section 2 23 cm 2.07 50.2 3.16	Amorph Fe agg. Recrystallized carb, Fish remains CARBON/CARBONA 1-29 (0.0, 5.5, 0.7)	1 5 TR TR	CARBONATE BOMB: 1, 28-29 (5)

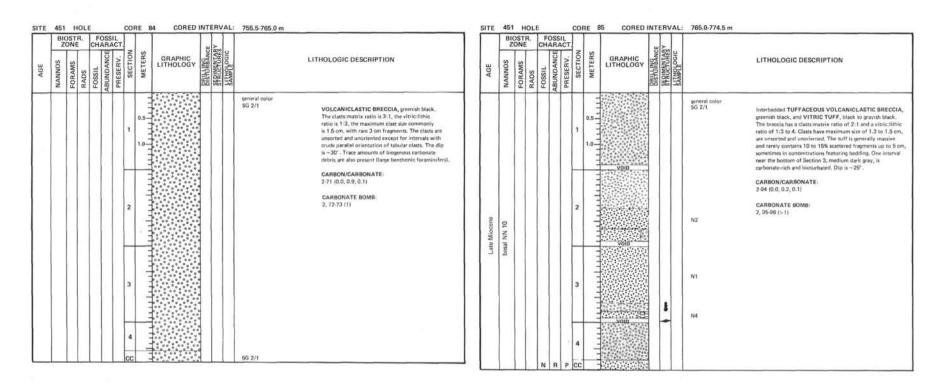
BIC	OSTR.	CH	OSSI	CT.	L									BIOS	STR. NE	FOS					u >				
NANNOS	FORAMS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES LITHOLOGIC SAMPLE		LITHOLOGIC DESCRIPTION	ξ.	AGE	NANNOS	FORAMS	FOSSIL	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SERUCTURESY	SAMPLE		LITHOLOGIC DESCRIPTIC	ON
			4					· · · · · · · · · · · · · · · · · · ·		58 5/1	VOLCANICLASTIC BRECCI gray, 4 mm class in the upper The clastmatrix ratio is 41:12 divitified pumbe with minor the matrix is fine tuff. Dipits is increase to -95% near the has become gravish black with ~	40 on of Section 1, lasts consist of pyroaxee inclusions, 30°, Marrix content of the unit. Coloir 3%.2 mm diameter fers1 in this transition C TUFF; a continuous Section 5 and the r downward. The ragments of coral seatmend lithle						1 2 3 4 CC					SGY 2/1 general color	VOLCANICLASTIC CONGLOM clasts are angular to subrounded, consisting of vesicular aphyric ba hydrothermally altered glas, are an oxilidred groundmass contain pyroxene, and carbonate. The with carbonate. Clasts:matrix, r disturbance is moderate. CARBON/CARBONATE: 3-566 (0.0, 3.4, 0.4) CARBONATE BOMB: 3, 56-58 (3.5) PHYSICAL PROPERTIES: Wet built density Parosity (%) Grain density	 - 5 cm diameter, malts, basaltic andes I altered andesites wing fragments of olivities matrix is cement

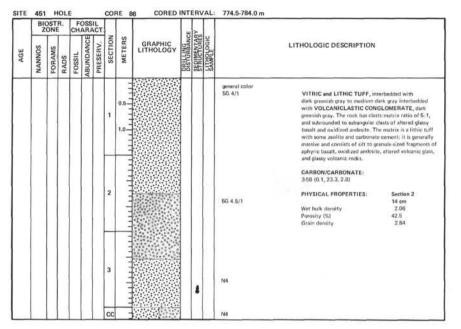
CC

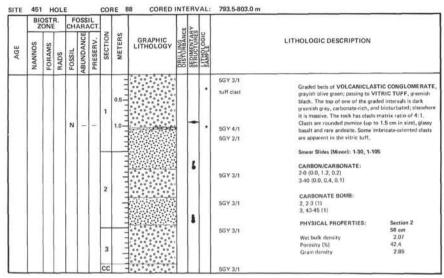
....

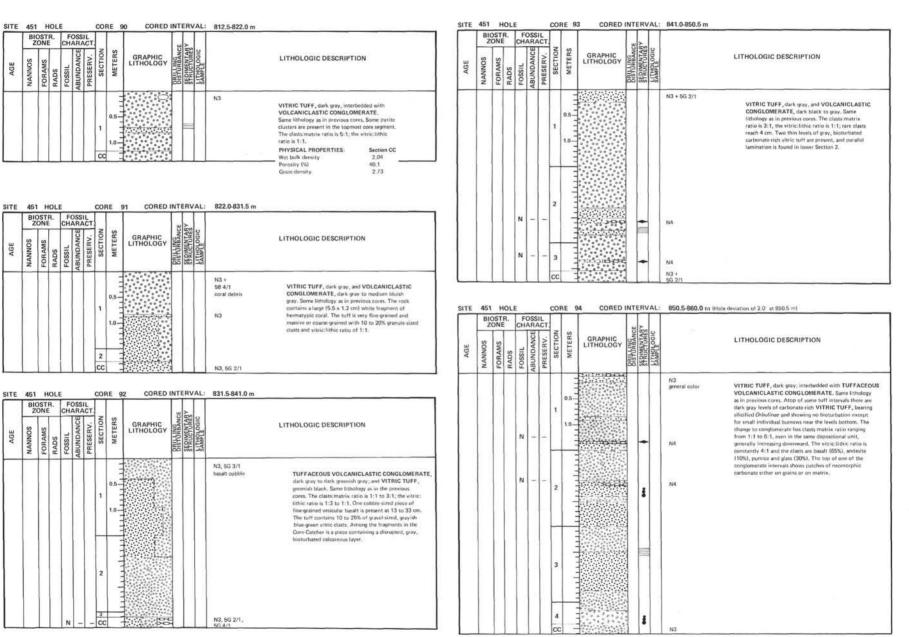



		ONE			OSS AR/	IL ACT.					>			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANC	SEDUMENTAR	LITHOLOGIC		LITHOLOGIC DESCRIPTION
							1 CC	0.5					N1/N2 general color N1/N2	VITRIC and LITHIC and TUFFACEOUS CONGLOMERATE TUFFS, black to dark gray, interbedded and coarsening down section. The clastimatrix ratio is ~5.1. Clast range from <0.3 mm to 2.5 mm downsection and consist of altered vitric volcanics (with of vitre and plagioclase phenocrysts), latered andesire, and volcanie glass.


	BIO	OST	R.		OSS ARA						>		
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	BISTURBANC	SERUCTURES	LITHOLOGIC	LITHOLOGIC DESCRIPTION
								0.5	1999 - 1999 -				N1/N2 VITRIC TUFF, black to dark gray; one piece recovered,
							1	0,5					NOTE: Site 451, Core 77, 698.5-702.5 m: NO RECOVERY,


		ONE			OSS AR/						2				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	BISTURBANC	SEDIMENTAR	LITHOLOGIC		LITHOLOGIC DESCRIPT	ION
							1	1.0					N1/N2 general color alterno andesite clast	VITRIC, LITHIC, and CRY CONSLOMERATIC TUFFS grade into one another throu- clast are subsnglat to sub- awarage diameter of 3.4 mm of 5.6 cm, in sosting or orise mainly of hydrothermally al and aphyric anderiste, and o of olivine, plagioclase, and d and matrix contain small gra The sediment is uniformly h slight. CARBON/CARBONATE: 2.22 (0.0, 0.7, 0.1)	, black to dark gray, ghout core. The bounded with an and occasional clasts intation. Clasts consist tered plagioclase-phyric asalts, with fragments arbonate. Both clasts ins of disseminated pyrite.


		ONE			OSS AR/	ACT.		<u>.</u>			>						
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SFRUMENTAR'	LITHOLOGIC		LITHOLOGIC DESCRI	PTIO	N	
							1	0.5					N1-5G 2/1 5G 2/1 general color	VITRIC TUFF, green vitric and lithic clasts to a gradational bound VOLCANICLASTICE in the breccia is 11.1.0 unoriented. The unit i	increas lary at BRECC lasts a	115 c 1A. The ange	size down section m with TUFFACEO he clasts:matrix ratio ular, unsorted, and
								111111	VQID	1			5G 4/1 general color	of vitric and lithic con unit is interbedded wi Section 2 and the low also contains intensely Normal and reversely	th vitri er port biotur	c tuffs ion of bated	i in the center of Section 3. Section 3 zones of chalk.
							2	11111					5Y 4.5/1 10YR 3.5/1	50 cm of Section 3. Ti 40 cm in Section 4. Cl dip on bedding is 35-4	he brec lasts an 0°.	cia co	arsens below
			N	R	P			111	cocaa	1			5Y 4.5/1, 5G 4.5/1 10YR 6.5/1	SMEAR SLIDE SUM		3-36 (M)	3-60 (M)
	~							1					5G 4.5/1	TEXTURE: Sand	3	4	1
E.	102					11		-		1.		•	7.5YR 5/2 bioturbation	Silt	96	96	97
ŏ	NN NN											1	7.5YR 4/2 mottle	Clay	1	0	2
Late Miocene	basal N		N	F	P			=	i inoc		-	:	10YR 5.5/2 black glass-rich layer	TOTAL DETRITAL COMPOSITION:	98	52	96
-	4	11		1			3	1		1	11		black glass-rich layer	Feldspar	2	3	1
- 1							3	-		11				Heavy minerals	1	1	
- 3		11		h -				1		1	11			Clay minerals	1	-	1
									2				5G 5/1	Volcanic glass	94	48	93
- 1						1 1		1		11				Micronodules	-	5	1
									VOID		8			Zeolites	TR	3	1
- 1						1.1		1.12			100		58G 4/1	Recrystallized carb.	2	40	1
								-						Nannofossils Fish remains	2	-	TR 1
								11						CARBON/CARBONA	TE:		
							4	1.3						1-85 (0.0, 5.7, 0.7)			
				1				1		1				2.101 (0.1. 38.6, 4.7)			
		11						17		h.				CARBONATE BOMB			
								-	VOID	11				1, 86-87 (5)			
							\vdash	-	1944 (MARK) 1711					2, 102-103 (34)			
							5	- IIII									



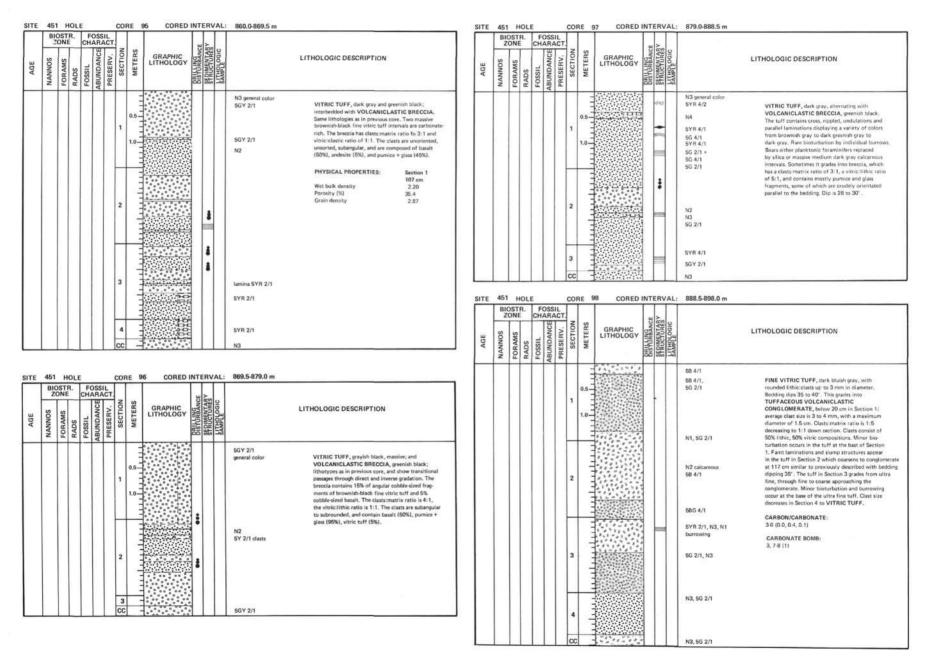
		ONE		FI CH/							×			
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	BISTURBANCE	SEDIMENTAS	LITHOLOGIC		LITHOLOGIC DESCRIPTION
cene				N	R	р	1	0.5 1.0 1.1 1.1 1.1			-		general color 5G 2/1 5GY 4.5/1	TUFFACEOUS VOLCANICLASTIC CONGLOMERATI black; interbedded with dark greenish-gray carbonate- rich TUFF. The rock has clasts:matrix ratio of 2:1. Uniorted, unoimented clasts are sobrounded to subanjula altered tufl, vitrophyrito basit, and oxidical and estic. The matrix consists of smaller clasts of the same ithiologies with some low-temperature hydrothermal calcite and zeolite coment. The tuff shows some gradation and parallel lamination; the carbonate-rich tuf- is intensity biotrubated.
Late Miocene	2						2	TT THE THEFT			8		andesite clast	CARBON/CARBONATE: 1-81 (0.0, 38.4, 4,7)
							cc	-					5G 2/1	

	BIC	ONE	R .	F(CH/	ARA	L CT.					2				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY		SERUCTURES STRUCTURES LITHOLOGIC		LITHOL	OGIC DES	CRIPTION
								0.5				5G 3/1	VOLCAN	ICLASTIC C	h black, interbedded with DNGLOMERATE, dark
							1	1.0		00.00		5G 3/1	described imbricatio	for the previo	logical characters are as sus core, including some s. The conglomerate intervals haracters:
								1				5GY 2/1	Section 1		
				Ľ.,				-				5GY 2/1	5 to 6:1 55%	1 to 3:1 14%	clasts:matrix ratio pumice
	1.1			1								1	40%	25%	altered batalt
								-					55%		fresh basalt
								1				5G 3/1	5%	6%	oxidized andesite
	1					1	2	-					CARBON	CARBONA	E:
								1		4			1-129 (0.0	0, 0.2, 0.1)	
										1			CARBON	ATE BOMB	
	1							1 1					1, 129-13		
							cc	-				5G 3/1			

NANNOS

BIOSTR. ZONE

BIOSTR. ZONE


NANNOS FORAMS

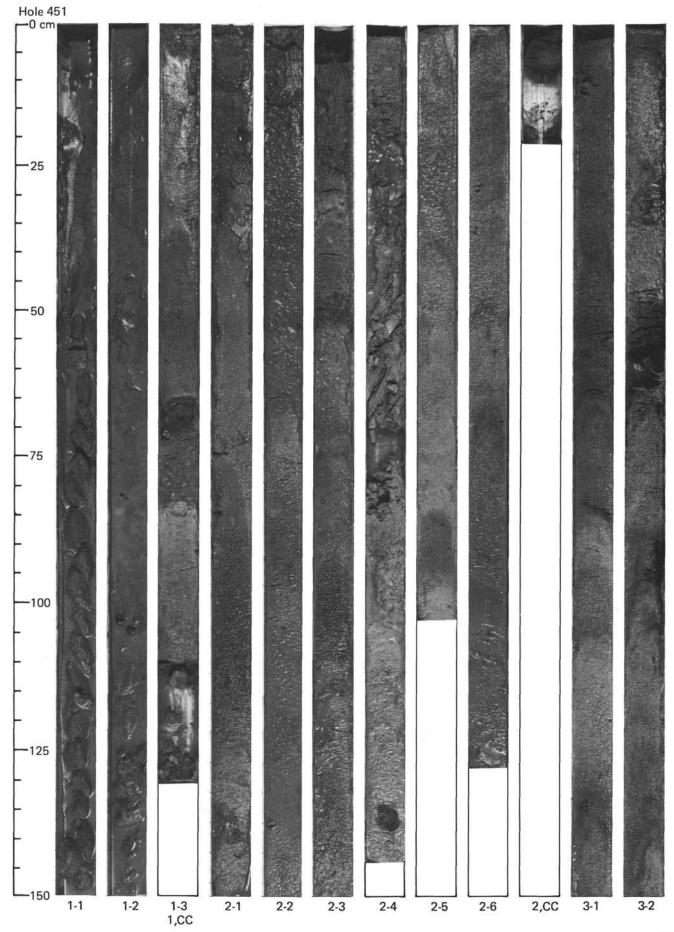
AGE

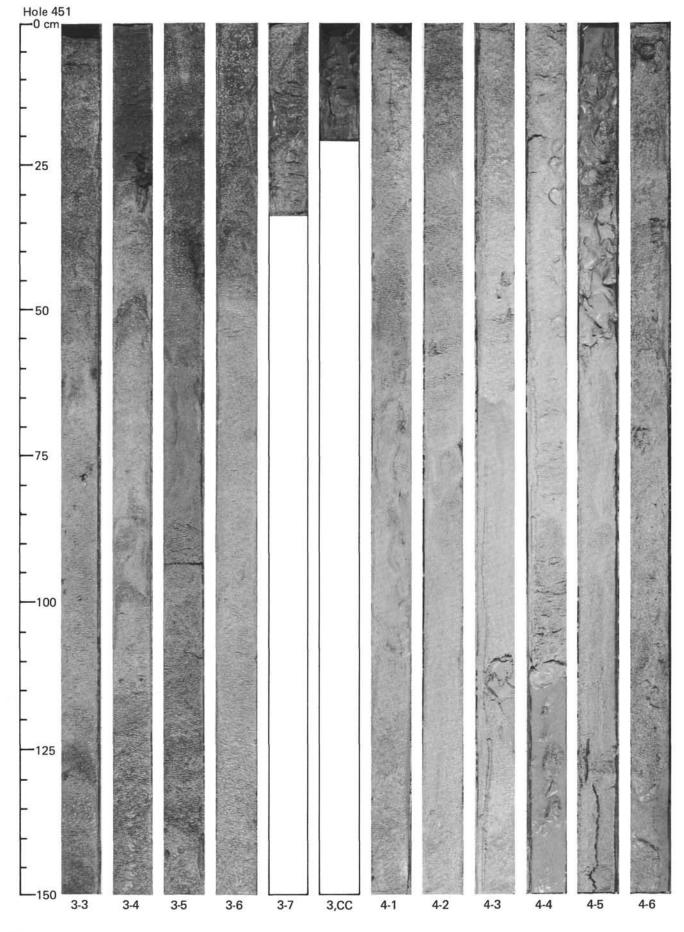
NANNOS

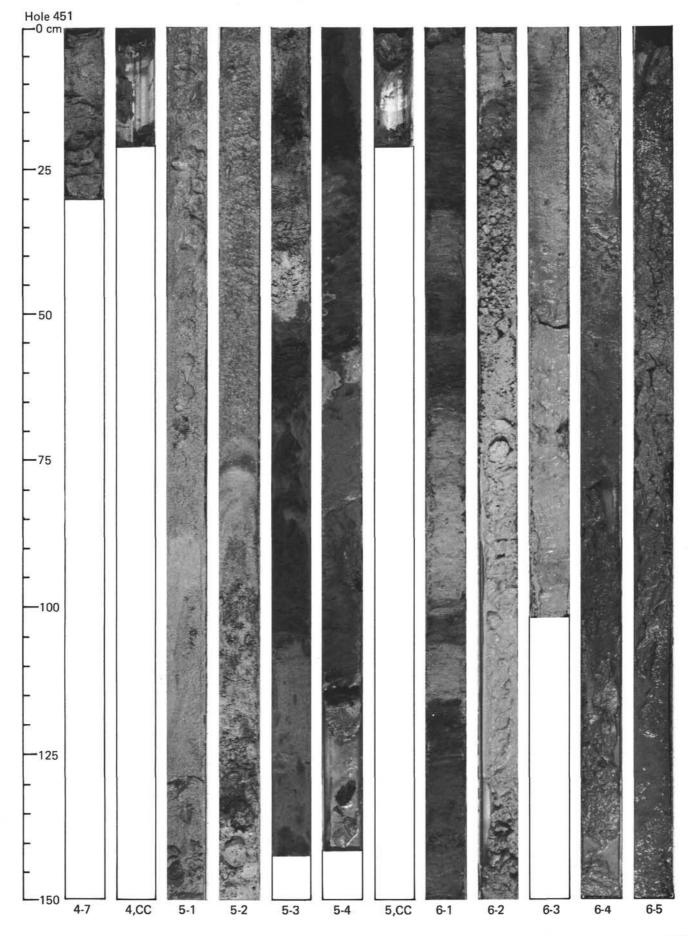
AGE

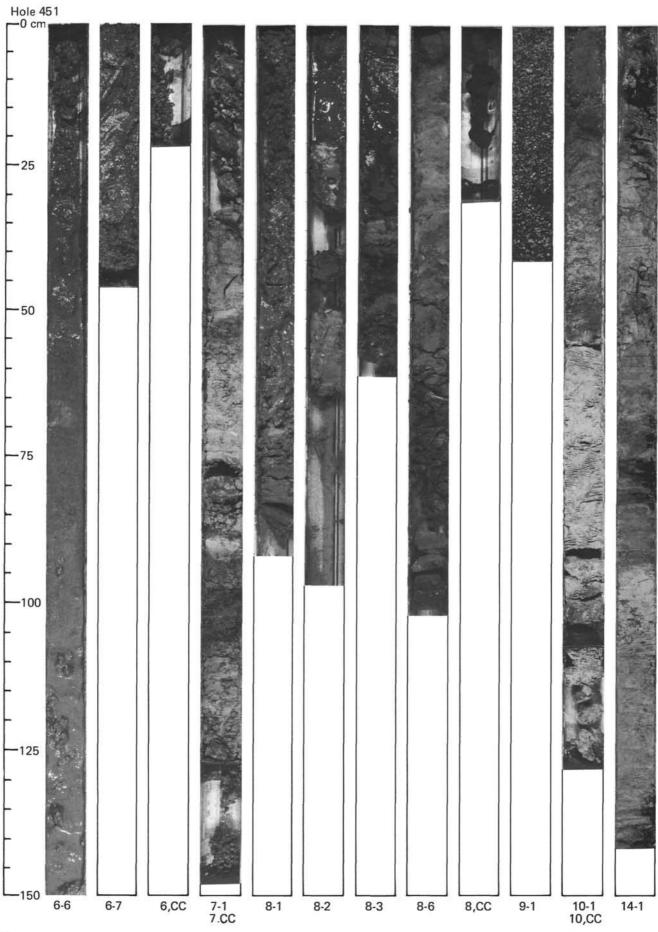
AGE

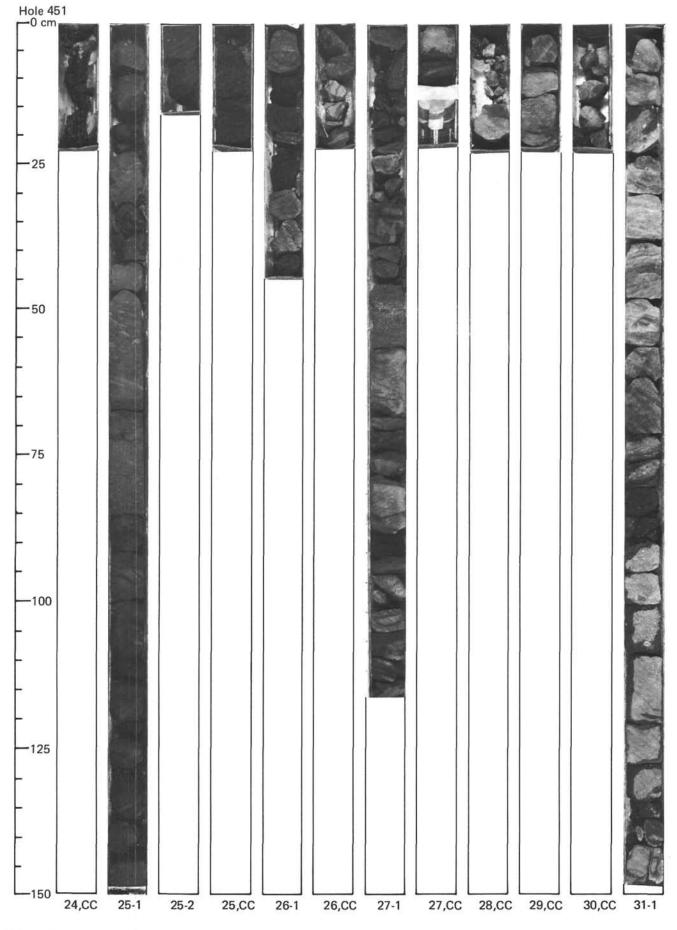
		ONE			OSS ARA	ACT.					>				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANC	SEDIMENTAR	LITHOLOGIC		LITHOLOGIC DESCRIPT	ION
							1	0.5					N3, 5YR 2/1 58 4/1 N3, 5G 2/1 5G 4/1 5GY 2/1	TUFFACEOUS VOLCANIC and FINE VITRIC TUFF, q containing vitric class with 4:1. Class size increases dow averaging 2 to 3 mm at the b 2 plots the lower 24 cm of Se laminated fine vitric suff and	nerally brownish black, a clast:matrix ratio of nonre in Section 1 ase of the section, Section ction 1 contain faintly
							2						N3, 5YR 2/1 N2, 5YR 2/1	CARBON/CARBONATE: 1-34 (0.0, 21.9, 2.7) 2-8 (0.0, 0.2, 0,1)	CARBONATE BOMB: 1, 36-39 (22)
							сс	-		1			N2, 5YR 2/1		

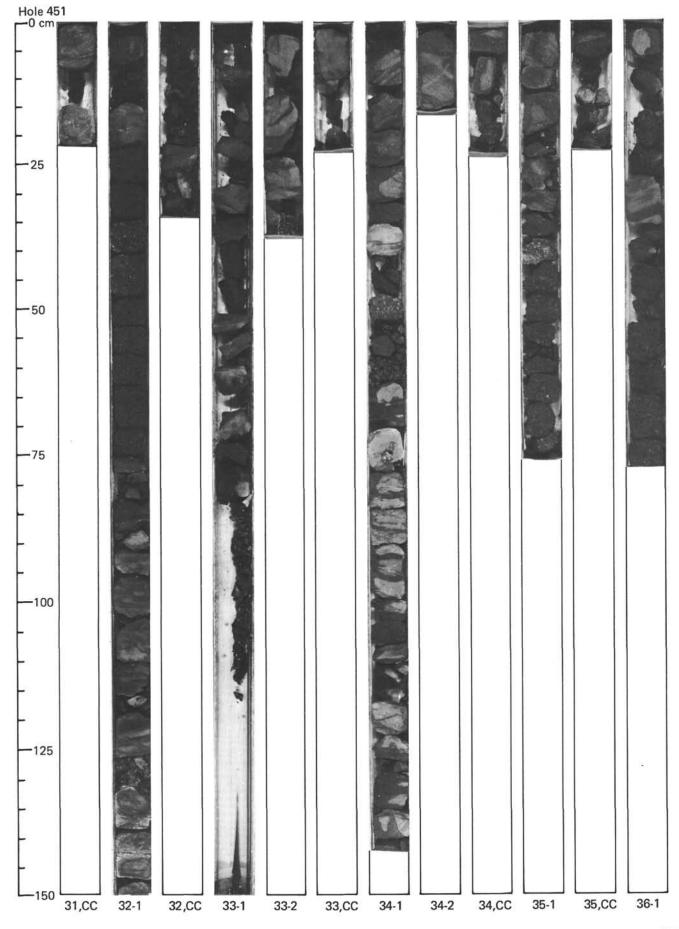

	BIC	ONE			ARA		_				7		
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTAR	LITHOLOGIC	LITHOLOGIC DESCRIPTION
							1	0.5			8		5YR 2/2 5G 5/2 VITRIC TUFF, dusky brown, and VOLCANICLASTIC CONGLOMERATE, grayish green. Same lithology of previous cores. The rock has class:matix ratio of 5:1. The class are subangular to subroanded and consist of 50% altered aphyric to aphanitic baselt and andesits, suff. 10% oxidized andesits 5WR 2/2 and 10% hydrothermally altered volcanic rocks with epidote 5G 4/1 rocks, abbre, gabbre odiorite.

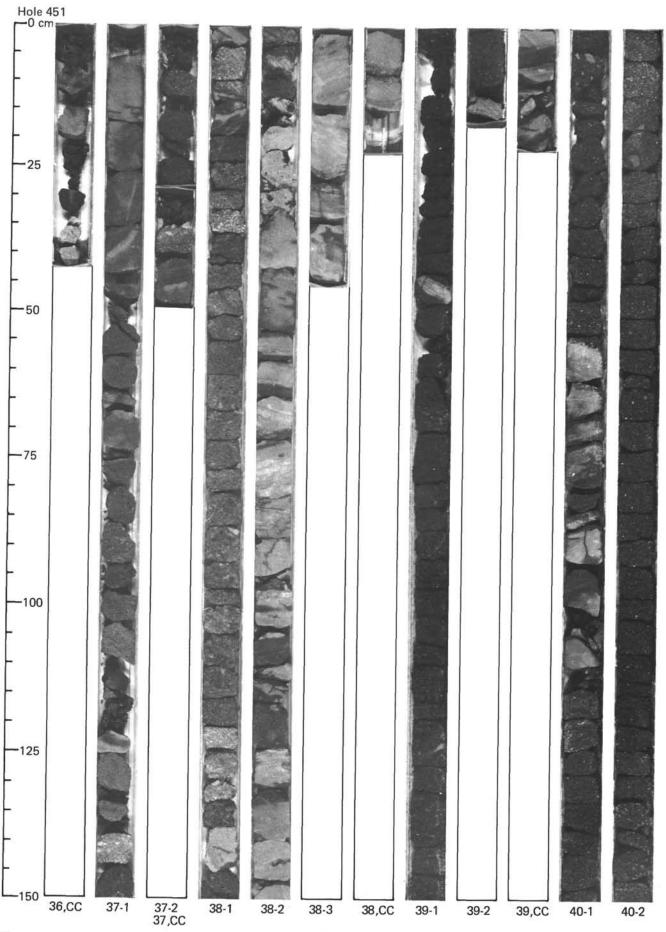

		ONE		FC CHA							>		
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTAR	SAMPLE	LITHOLOGIC DESCRIPTION
							1 2 CC	0.5					VITRIC and LITHIC TUFF, dark gray subangular to subrounded grains cemented with zeolites. Clasts average 3 mm in diameter increasing down section. They consist of aphyric and othyric basit, altered glass, and extrusive rocks with glassy matrix. The underlying VOLCANCILCASTIC CONGLOMERATE his an average clast size of 1 cm. Clasts consist of subangular to subrounded phyric and aphyric basit with a clast matrix ratio of 51. A 553 cm andesise clast is present between 44 and 49 cm in Section 1. Hydvotohermally altered andesise and basit clasts contain exploite coment. The withic and litheit tuff beneath this resentles its countercart at the top of the core and contains two altered andesite clasts between 126 and 135 cm in Section 1. The lower volcaniclastic conglomerate also resmbelies the uppe one.

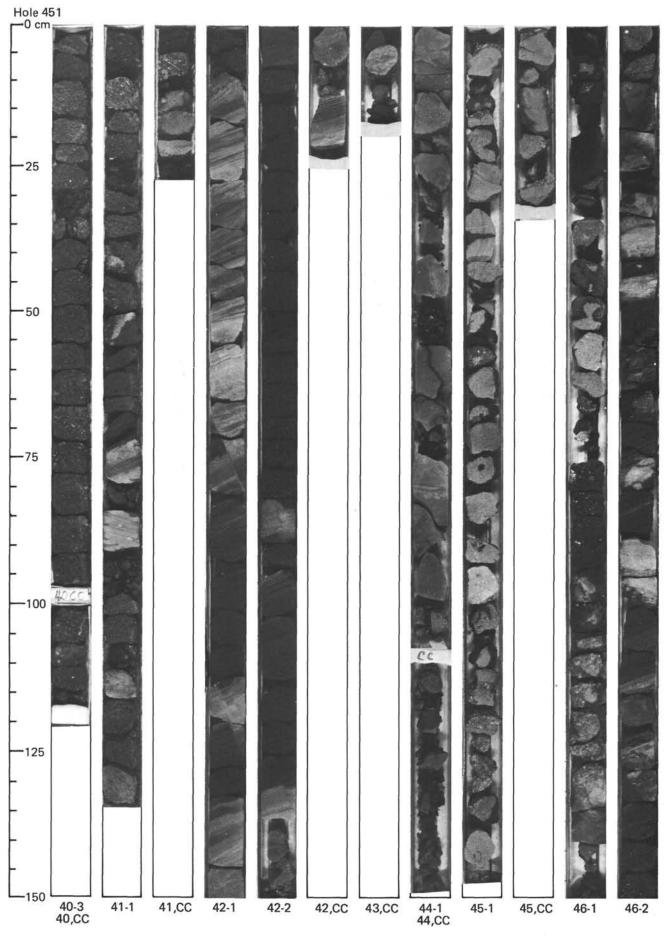

SITE 451 HOLE CORE 102 CORED INTERVAL: 926.5-930.5 m

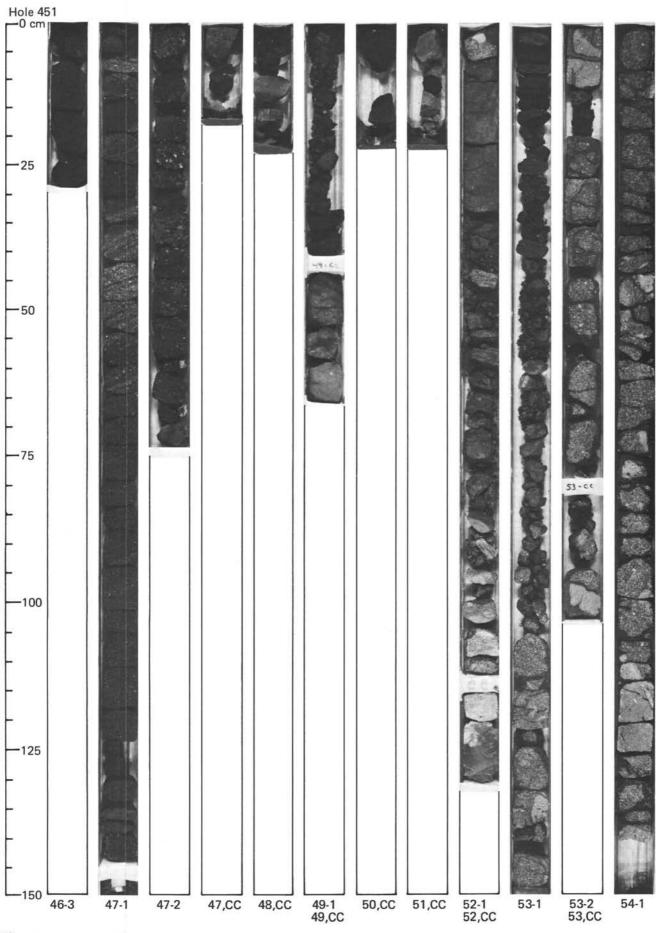

	BIC	ONE	R,	CH	OSS ARA	IL CT.					2				
AGE	NANNOS	FORAMS	RADS	FOSSIL	ABUNDANCE	PRESERV.	SECTION	METERS	GRAPHIC LITHOLOGY		SEDUMENTAR	LITHOLOGIC		LITHOLOGI	C DESCRIPTION
							cc	-	8 8 90 8 9 9 8 9 9 9 0 9 0 0 0 0 0	1			5G 4/1	Hydrothermally alten greenish-gray color, w smectite.	ed aphyric basalt, light vith vesicles filled by
														Texture: hyalopilitic Phenocrysts: plaglock 0.4-0.5 mm, subhe subhedral Groundmass: plaglock clinopyroxene 3%.	yroxene-plagioclase-phyric basalt
														BULK ANALYSIS: SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ Fe ₀ O MnO MgO CaO K ₂ O	CC-11 48.6 0.94 15.3 1.28 8.47 0.28 8.58 9.97 2.49 0.38

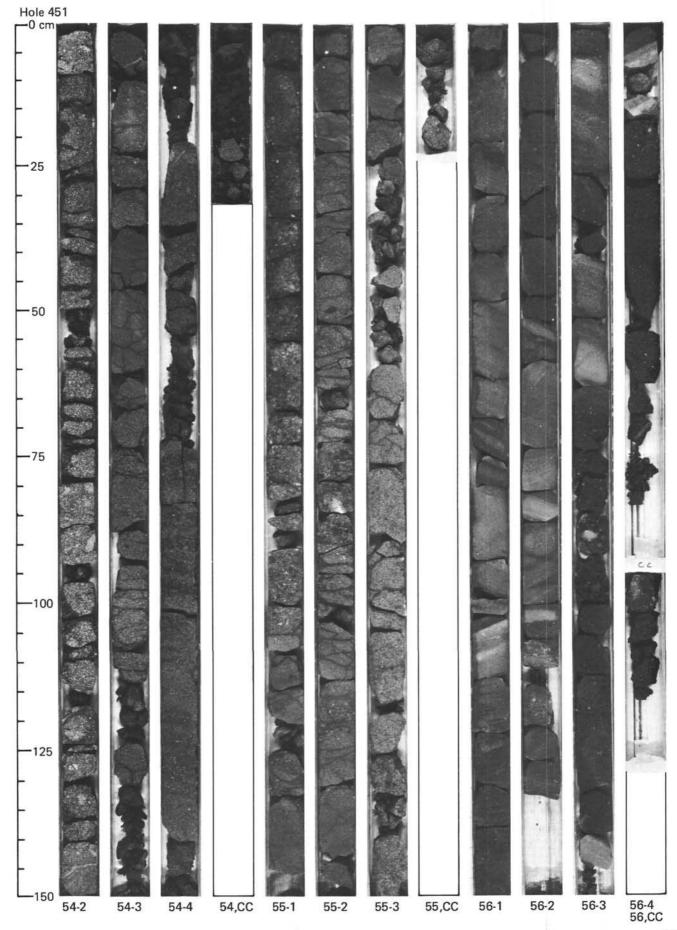


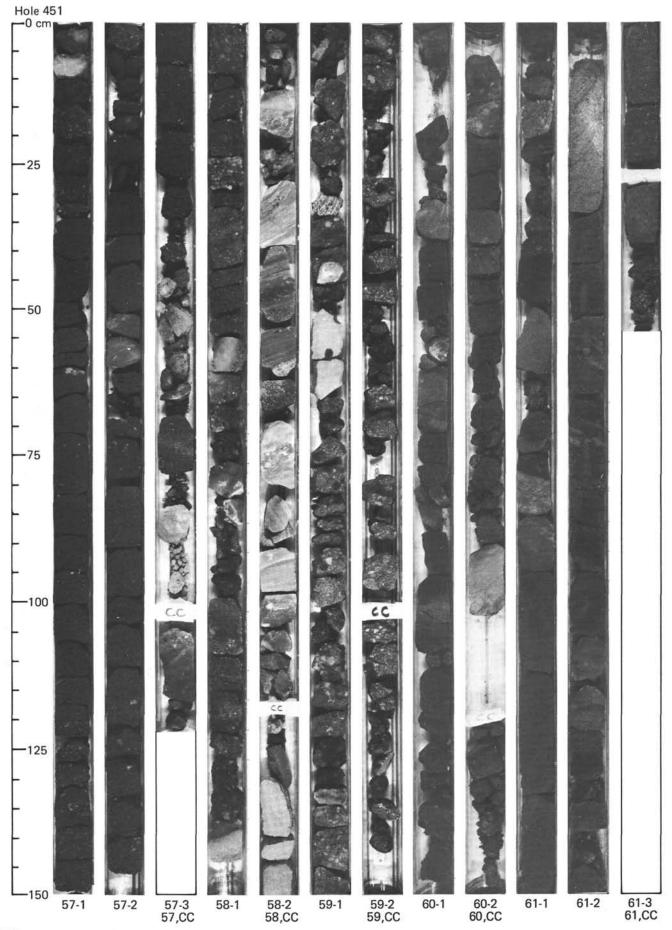


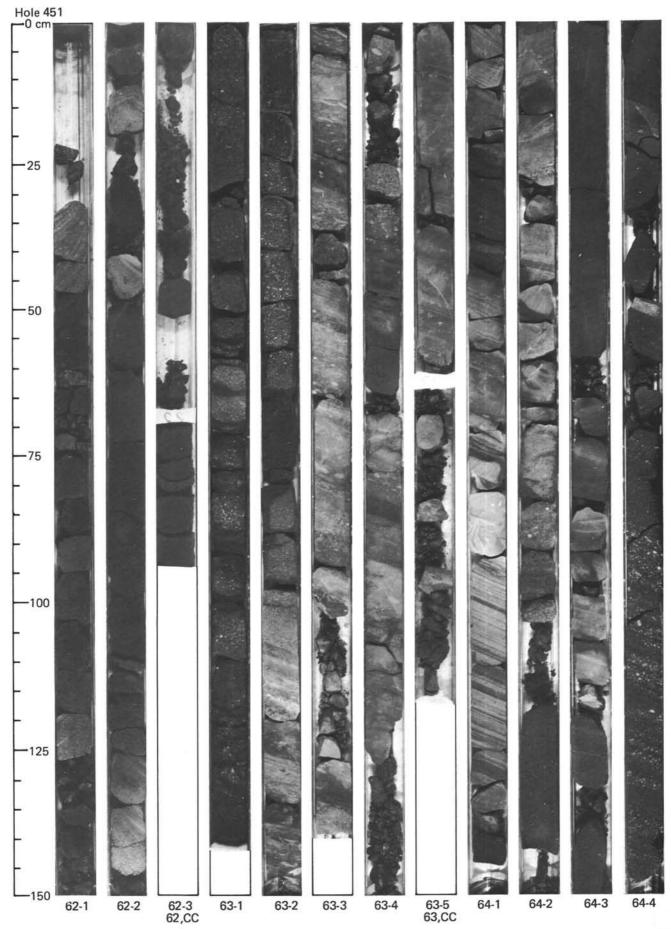


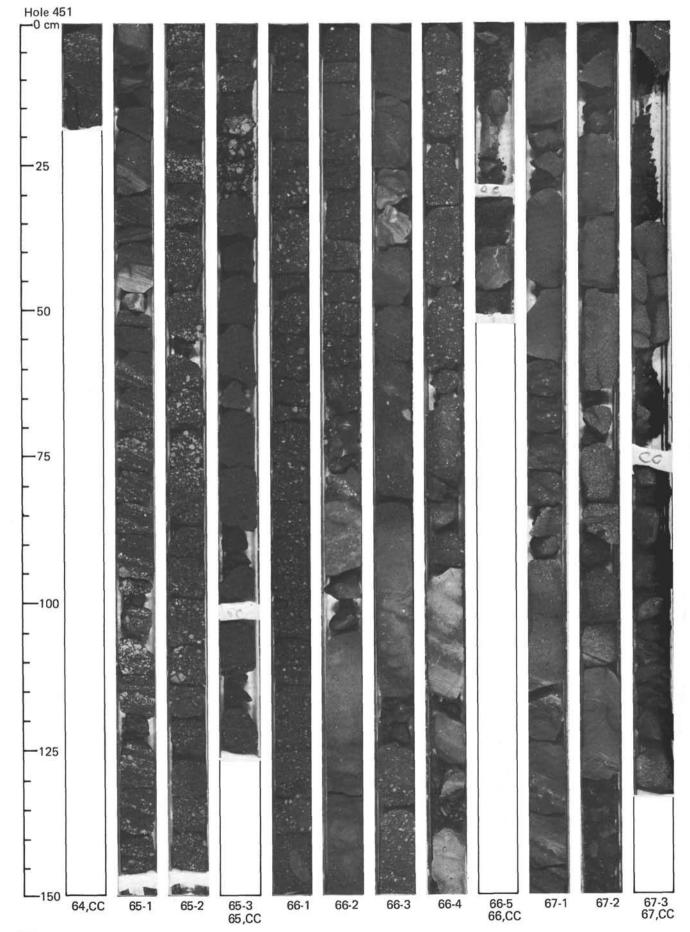

Hole 451											
- 125	14,CC	15-1	15,CC	16,CC	18,CC	20,CC	21,CC	22,CC	23,CC	24-1	24-2

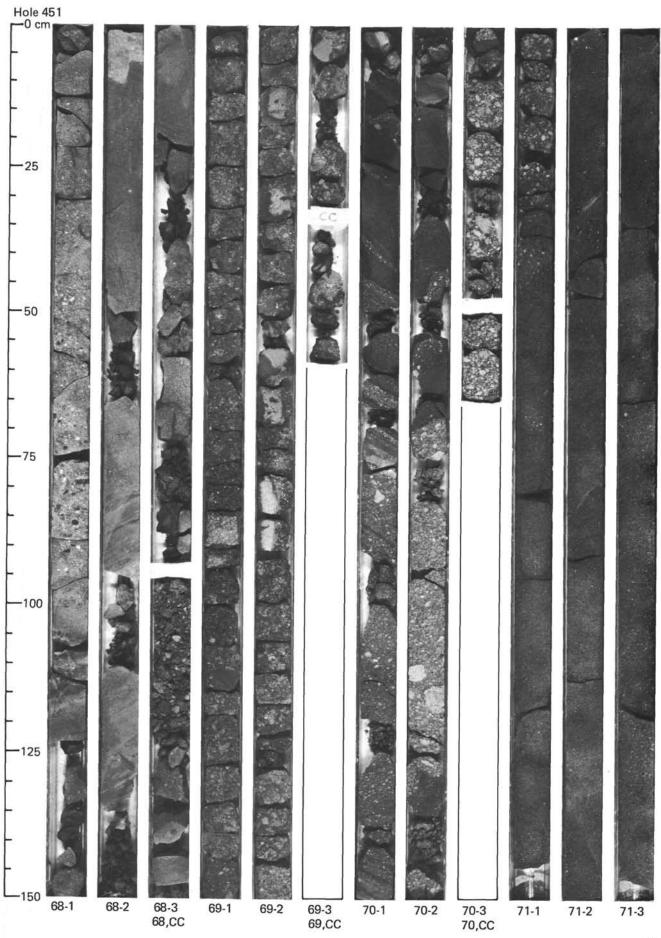


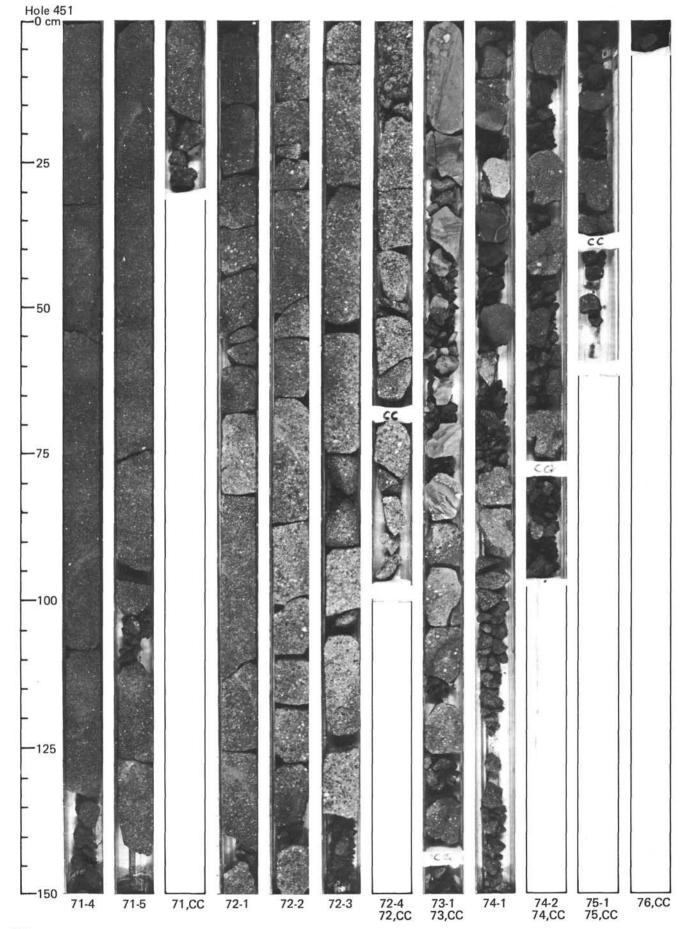


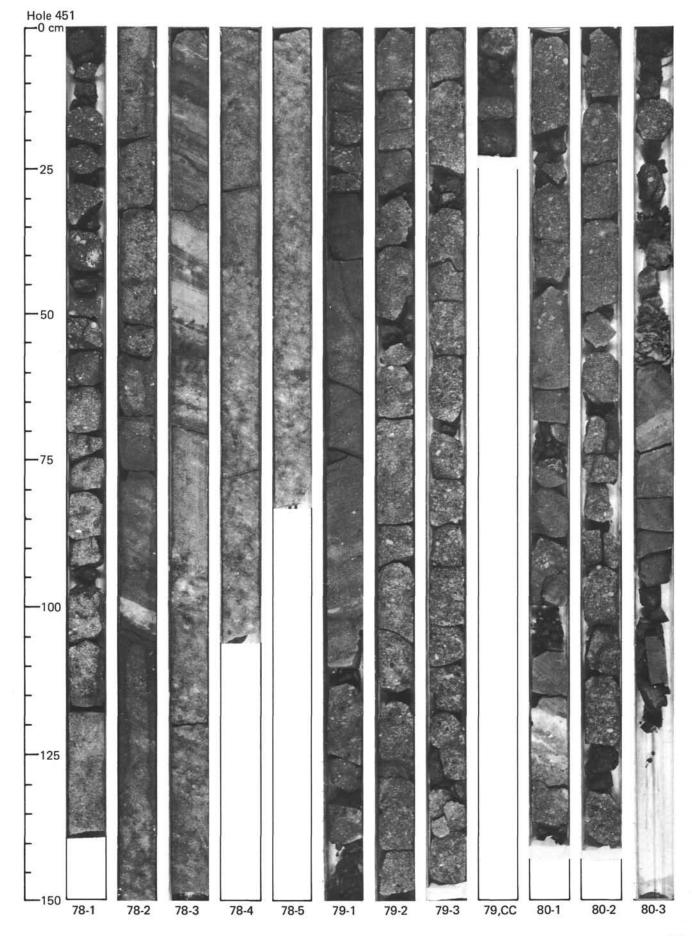


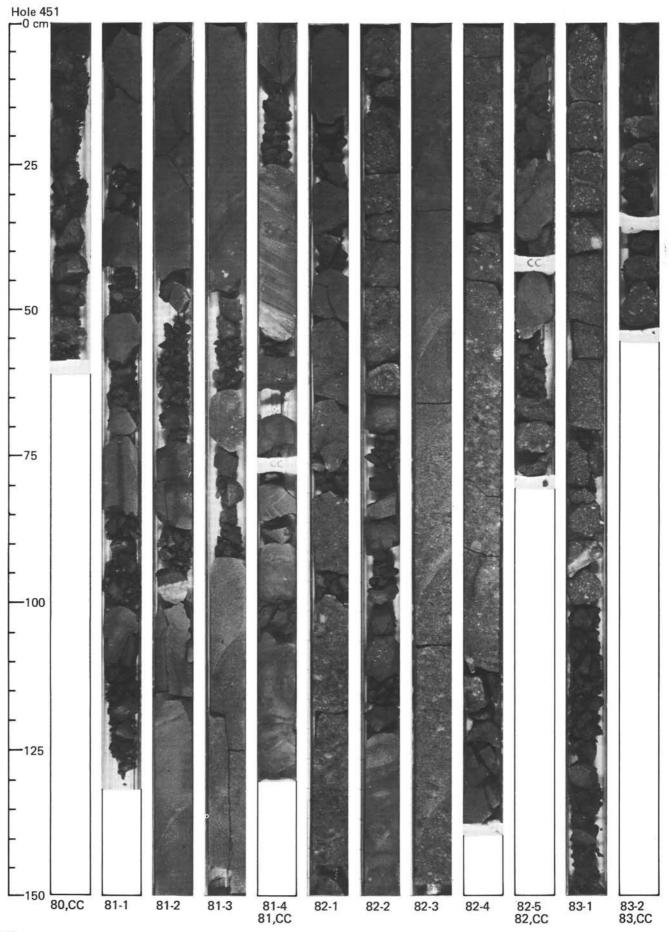





SITE 451






s.

