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ABSTRACT

Concentration gradients of Ca, Mg, K, Sr, and Li at Site 462, Leg 61, are linear with depth; large changes occur in
the unsampled, low-porosity limestone-chert zone between 375 and 445 meters. Correlations between Ca and Mg are
linear, but breaks occur in Ca-Sr and Ca-K correlations. These breaks imply release of strontium in the limestones
(recrystallization of carbonate) and uptake of potassium (formation of authigenic K-feldspar?).

INTRODUCTION

During Leg 61, interstitial waters were recovered in
Hole 462 in the Nauru Basin. Shipboard determinations
of calcium and magnesium contents indicate distinct in-
creases in calcium and decreases in magnesium concen-
trations with depth, with apparently a large discontinu-
ity across the 50-meter-thick section of limestone-chert
between 375 and 445 meters. For these reasons, we
found it imperative to augment the shipboard chemical
data with further analyses.

Methods used were essentially the same as those
described by Gieskes and Johnson (in press). The data
are presented in Table 1.

DISCUSSION

Sedimentation rates at this site have been less than 10
meters/106 years in the upper 350 meters and con-
siderably slower during the later history of the site (see
Site Summary). Consequently, only little sulfate reduc-
tion would be expected, in agreement with the data
(Table 1). Even below the chert complex, only a small
depletion in sulfate is noted. As a consequence of this
sulfate reduction, slight increases in alkalinity occur in
the upper 300 meters, but below the complex the values
are very low.

The data for Li, Sr, K, and even Si indicate linear
concentration changes with depth in upper 350 meters
(Figure 1). Below the chert complex, however, all data
show an offset in these trends, similar to those observed
for Ca and Mg on board ship.

In Figure 2 we present the correlation between Ca
and Mg at this site, and one notes a strong correlation
between Ca and Mg, with ΔCa/ΔMg = 1.1. We inter-
pret this correlation in terms of alteration of volcanic
matter in the volcanic sediments of Unit III and/or in
the underlying basalts. Further studies of oxygen iso-
topic composition of the pore waters will enable us to
estimate more accurately the mass balance of oxygen
and consequently the thickness of the reaction zone
(Lawrence et al., 1975; Gieskes and Lawrence, in press).
The break in the Ca and Mg concentration-depth pro-
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files can then be understood in terms of lower diffusion
coefficients in the limestone-chert layers. Similar obser-
vations have been made before at Sites 253 and 356
(McDuff, 1978).

Because of the good correlation between Ca and Mg
concentrations, we decided to investigate the correlation
among Ca and Sr and K. In these cases, one observes
only a linear correlation above the chert complex (data
on K are less reliable than those for Sr), but concentra-
tions below the chert complex are different from those
expected from an extrapolation of the correlation line;
specifically, one would expect zero potassium concen-
tration below 450 meters, and much higher strontium
concentrations. Thus, diffusion from Unit III cannot be
responsible for the observed gradients in Unit I and II,
and we must postulate a source for Sr in the chert-
limestone complex, as well as a sink for K. Since Unit
III consists mostly of volcanic sediments and such
sediments are not likely to be a major source for dis-
solved strontium, one must postulate that the strontium
source is associated with the recrystallization reactions
occurring in the chert-limestone complex. Similarly, the
formation of K-feldspar, associated with chert forma-
tion (Kastner and Gieskes, 1976; Gieskes and Lawrence,
in press), provides a convenient sink for K. Changes in
Li are too subtle to be readily interpreted in a similar
manner.

Dissolved silica also gradually increases with depth,
but this, rather than resulting from diffusion processes,
is more likely to result from increasing contributions,
with depth, of biogenic silica to the sediments. In the
absence of quantitative data on opal contents, this inter-
pretation relies mainly on the observed increased abun-
dance of radiolarians with depth. Dissolved-silica values
below the sill represent concentrations supported by the
volcanic sediments assemblage.
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Table 1. Interstitial-water data, Hole 462.

Core-
Section

1-6
5-4

10-4
16-3
20-4
2 6 ^
30-2
36-3
48-1
54-2
58-3

Depth
(m)

9.5
44.5
92

147.5
187
244
279
337.5
448.5
507
544.5

pH

7.65
7.54
7.42
7.25
7.22
7.21
7.23
7.21
7.33
7.54
7.58

Alka

(meq/1)

2.94
2.95
3.44
3.77
3.97
3.87
4.18
4.13
0.72
0.39
0.88

α a .
(× 10~3)

19.68
19.94
19.61
19.34
19.58
19.64
19.51
19.61
19.61
19.81
19.14

Sa

(× 10~3)

35.3
36.1
36.0
35.2
35.4
35.4
35.5
35.6
35.7
35.6
34.2

Caa

(mM)

10.5
11.6
12.2
13.8
14.8
15.7
16.6
17.5
55.0
57.1
58.0

Mga

(mM)

52.4
52.1
50.6
48.7
47.9
47.1
46.5
45.7
10.7
9.7

10.7

Sr
(mM)

0.095
0.115
0.127
0.148
0.180
0.201
0.212
0.223
0.488
0.461
0.458

Mn
(mM)

0.000
0.017
0.021
0.014
0.004
0.000
0.002
0.009
0.003
0.006
0.016

Li
(µM)

25.2
23.6
24.3
28.0
26.5
29.1
28.1
28.1
35.0
34.8
31.9

K
(mM)

9.9
7.1
8.4
8.2
8.8
8.2
8.0
8.0
2.7
2.8
2.5

Si
(µM)

446
527
686
746
806
889
907

1020
540
584
690

SO4

(mM)

31.4
29.9
27.7
28.4
28.4
27.9
27.9
27.9

24.9
—

NH3
b

(mM)

0.06
0.04
0.04
0.05
0.05
0.07
0.06
0.07
0.12
0.13
0.08

a Shipboard data.
b NH3 < 0.08 not reliable.
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Figure 1. Interstitial-water data, Hole 462. Lithology: I: calcareous and radiolarian oozes and chalks,
mainly turbiditic; II: cherts, chalks, limestones; III: volcanogenic and zeolitic sandstones, mudstones,
and limestones.
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Figure 2. Correlation diagram Ca-Mg, Ca-K, and Ca-Sr, Hole 462.
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