2. SITE 463: WESTERN MID-PACIFIC MOUNTAINS¹

Shipboard Scientific Party²

HOLE 463

Date occupied: 2 August 1978 (1708Z)

Date departed: 10 August 1978 (1515Z)

Time on hole: 190.2 hours

Position (latitude; longitude): 21°21.01'N; 174°40.07'E

Water depth (corrected m, echo sounding): 2525

Bottom felt (m, drill pipe): 2532

Penetration (m): 822.5

Number of cores: 92

Total length of cored section (m): 822.5

Total core recovered (m): 301.8

Core recovery (%): 36.6

Oldest sediment cored:

Depth sub-bottom (m): 822.5 Nature: limestone Age: Early Cretaceous (Barremian)

Basement: Not reached

Principal results: The main objectives at Site 463 (Fig. 1) were to continuously core to igneous basement, in order to determine the geologic history of the western Mid-Pacific Mountains and to recover a complete pelagic record for biostratigraphic and paleoceanographic interpretations. Igneous basement was not reached, even though 822.5 meters were cored. The sediments and sedimentary rocks were divided into four major lithologic units (Fig. 2). The oldest unit, at least 190 meters thick, is interbedded pelagic and clastic limestone of Early Cretaceous (Barremian) age. Shallow-water carbonate debris containing oolites, mollusk fragments, stromatolite fragments, and rare glauconite grains makes up most of the clastic limestone beds. An overlying unit, 45 meters thick, consists of cyclic carbonaceous limestone of Early Cretaceous (early Aptian) age, with volcanic ash. The abundant ash in this interval indicates frequent volcanic activity on nearby islands. The high organic-carbon content of some beds is strong evidence for a sequence of anoxic events that are of at least regional and possibly worldwide importance. The overlying unit, 136 meters thick, is composed of multicolored pelagic limestone beds with chert as a common component; it is early Aptian through middle Albian in

age. The top unit is divided into two sub-units. The oldest sub-unit is 405 meters thick and ranges in age from late Albian to early Maastrichtian. Rock and sediment types are nannofossil and foraminifer chalk, nannofossil and foraminifer ooze, and limestone with minor amounts of chert and porcellanite. The youngest subunit of the top lithologic unit, 47 meters thick, is nannofossil ooze of early Eocene through Pleistocene age. The calcareous planktonic faunas and floras in the Miocene and Pliocene oozes are heavily dissolved, despite the relatively shallow depth of deposition at this site. The base of the youngest sub-unit marks a major hiatus between lower Eocene and lower Maastrichtian sediments. Seismic-reflection profiles show three major reflectors. The top one, observed only on the 3.5-kHz records, marks the boundary between the Tertiary and Maastrichtian nannofossil-ooze beds. The second one marks the top of the limestone beds, at about 250 meters, that lie within the lower sub-unit of lithologic Unit I. The third marks the boundary between the top lithologic unit and the underlying unit of Lower Cretaceous limestone beds, at about 450 meters sub-bottom depth. At least two reversed-polarity intervals can be identified in the Chiastozygus litterarius nannoplankton zone, which may correlate with anomaly M0 or a reversed interval that was identified at DSDP Hole 361 in the south Atlantic.

BACKGROUND AND OBJECTIVES

The late Mesozoic and Cenozoic paleoenvironment of the central North Pacific region was the main target of the sites drilled during Leg 62 of the Deep Sea Drilling Project. The deposits were expected to contain remains of several, if not all, important pelagic microfossil groups. The selected sites were therefore located on structural highs where calcareous sediments are preserved, whereas calcareous components have been dissolved over wide regions of the deep North Pacific basins. Carbonate deposits capping the Mid-Pacific Mountains (Hamilton, 1956) southwest of the Hawaiian Ridge were chosen to be drilled at the first site. We planned to recover upper Mesozoic and Cenozoic sedimentary sections, as well as to reach rocks of the Upper Jurassic(?)-Lower Cretaceous volcanic platform of the northwestern Mid-Pacific Mountains (Larson, 1976). The primary objective at this site, however, was to obtain lower Tertiary and upper Mesozoic sections. The lower Tertiary and upper Mesozoic planktonic record is scanty in this part of the North Pacific; thus, good and complete sections were needed for both biostratigraphic and paleoceanographic interpretations. The study of upper Mesozoic and lower Tertiary sediments from this locale would provide fundamental insight into the characteristics of planktonic communities, paleocirculations, and fertility patterns during a period of major biological crises associated with the Mesozoic/Cenozoic boundary.

The Mid-Pacific Mountains constitute one of the large aseismic rises in the central and northern Pacific Ocean whose nature, origin, and age are disputed. General morphology of the Mid-Pacific Mountains is shown

Initial Reports of the Deep Sea Drilling Project, Volume 62.

Jörn Thiede (Co-Chief scientist), Department of Geology, University of Oslo, Blindern, Oslo 3, Norway; Tracy L. Vallier (Co-Chief scientist), U.S. Geological Survey, Menlo Park, California; Charles Adelseck, Jr., Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Anne Boersma, Lamont-Doherty Geological Observatory, Palisades, New York; Pavel Čepek, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Federal Republic of Germany; Walter E. Dean, U.S. Geological Survey, Denver, Colorado; Naoyuki Fujii, Department of Earth Sciences, Kobe University, Nada, Kobe, Japan; Vladimir I. Koporulin, Geological Institute, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.; David K. Rea, Department of Atmospheric and Oceanic Science, University of Michigan, Ann Arbor, Michigan; Constance Sancetta, Lamont-Doherty Geological Observatory, Palisades, New York; William Sayre, Department of Oceanography, University of Southampton, Suta University of Science and Technology, Ames, Iowa); André Schaaf, Institut de Géologie, Strasbourg, France; Ronald R. Schmidt, Institute of Earth Sciences, Iowa State University of Science and Technology, Ames, Iowa; Edith Vincent, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California; Kenneth E. Windom, Department of Earth Sciences, Iowa State University of Sciences, Iowa State University of Science, Iowa State University of Science and Technology, Ames, Iowa; Edith Vincent, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California; Kenneth E., Windom, Department of Earth Sciences, Iowa State University

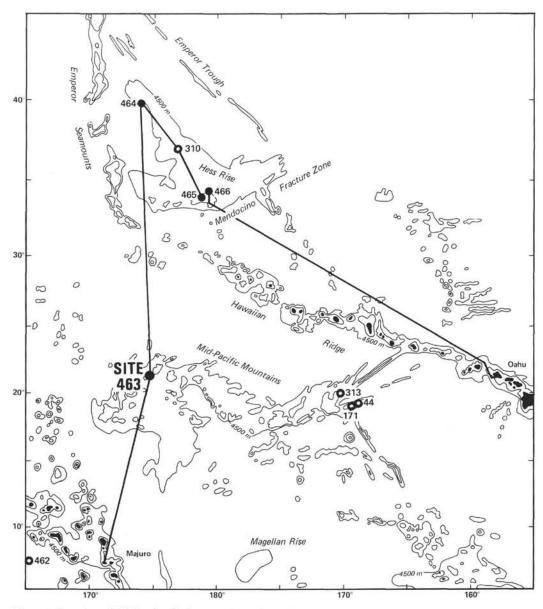


Figure 1. Location of DSDP sites in the central North Pacific.

in Figure 3. It is not clear how its position is related to the ancestral plates of the Mesozoic Pacific Ocean (Larson, 1976). Basaltic rocks recovered at Sites 313 and 171 in the eastern Mid-Pacific Mountains are believed to represent the volcanic basement (Larson, Moberly, et al., 1975), but they do not necessarily date the main constructional phase of the volcanic edifice. It is interesting to note that the ages obtained for the volcanic rocks found at Site 313 are 30 m.y. younger than that from Site 171 (Saito and Ozima, 1973). Dredge hauls from guyots on the main Mid-Pacific Mountains platform indicate that during late Early and Late Cretaceous times the guyots were volcanic islands surrounded or capped by coral reefs (Hamilton, 1956). Since that time they must have undergone considerable subsidence (Winterer, 1976), because most of them are now under a few hundreds to a few thousands of meters of water.

The Mid-Pacific Mountains consist of several segments thought to be part of an ancient fracture-zoneridge-crest system that separated the North and South Pacific Plates during the Early Cretaceous (Larson, 1976). Sites had been drilled during DSDP Legs 6 (Heezen, Fischer, et al., 1971), 17 (Winterer, Ewing, et al., 1973), and 32 (Larson, Moberly, et al., 1975) in the Mid-Pacific Mountains, but the holes are on the northeastern segment, which probably followed one of the old fracture-zone trends.

The generalized lithologies of Holes 171 and 313 from the northeastern Mid-Pacific Mountains and a reconstruction of their probable paleodepths of deposition are shown in Figure 4. Dominantly calcareous Upper Cretacous and Cenozoic sediment sections at both sites have a hiatus across the Cretaceous/Tertiary boundary, and volcaniclastic sediments were observed in Cam-

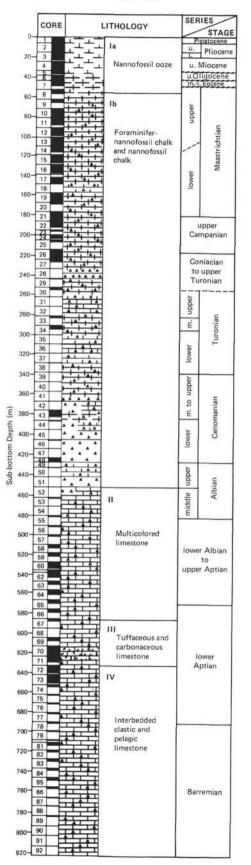


Figure 2. Lithologic column of Hole 463, Mid-Pacific Mountains.

panian deposits. A thick volcaniclastic and limestone sequence reaching back into Cenomanian time had to be penetrated at Site 171 before recovering probably displaced, weathered basalt of the volcanic edifice (Winterer, Ewing, et al., 1973). Reworked fossils in the Cenomanian and plant remains in the volcaniclastic Turonian and Coniacian suggest that part of Horizon Guyot reached above the sea surface during Late Cretaceous time. Unfortunately, the oldest sediments recovered at Site 171 were not cored continuously. This, together with poor recovery, makes it impossible to reconstruct the earliest history of this site in detail, although a reconstruction of its subsidence suggests that the region around this site reached above the sea surface for at least the first 6 m.y. of its existence. It is not clear whether the basalt recovered below the oldest sediments at Site 313 (Larson, Moberly, et al., 1975) represents an extrusive or intrusive volcanic rock, but its mineral assemblages suggest that it formed late in the volcanic evolution of these seamounts (Marshall, 1975).

During Leg 62, we planned to sample the segment of the Mid-Pacific Mountains along the western arm that follows an ancient fracture-zone trend close to the intersection with the fossil ridge crest (Larson, 1976). Magnetic anomalies M22 and M20, which abut this part of the Mid-Pacific Mountains northwest of Site 463, suggest that the floor of the adjacent deep northwest Pacific Basin is 140 to 150-m.y. old. All paleontological data and absolute ages of volcanic rocks from the Mid-Pacific Mountains indicate that they are Early to mid-Cretaceous in age. Although these ages range over a relatively wide time span, at least from Early to Late Cretaceous, age relationships among the various segments of the Mid-Pacific Mountains are not clear.

Apparently suitable drill-site locations had been found along the *Mahi* 7004 seismic-reflection profile (Fig. 5A). The anticipated sediment section close to proposed drill site MM-1 (Site 463) was believed to comprise an approximately 900-meter-thick section. Three subsurface reflectors were thought to represent Eocene cherts, interfaces between the oceanic basement and overlying Mesozoic limestones, and interfaces between these limestones and the upper Mesozoic to lower Cenozoic chalks (Fig. 5B).

OPERATIONS

Leg 62 began after scientific staff members were exchanged in Majuro lagoon (Marshall Islands) on 28 July at 0300Z. The first site to be investigated was 874 miles northeast of Majuro Atoll. Air-gun and magnetometer gear were streamed at 0455Z, and we proceeded toward Site 463 on a heading of 015° (Rea et al., this volume). At 1346Z on 2 August, we turned to a heading of 289°, paralleling the *Mahi* 7004 trackline (Fig. 6). At 1645Z, speed was reduced to 5 knots, and at 1708Z on 2 August the beacon was dropped. We continued on a course of 289° for a half hour, pulled in the gear, and returned at 1752Z to the beacon. At 1942Z, pipe lowering commenced. After the bottom-hole assembly and two stands of drill pipe were made up and run, a test was made on the new pressure core barrel (PCB). It was allowed to

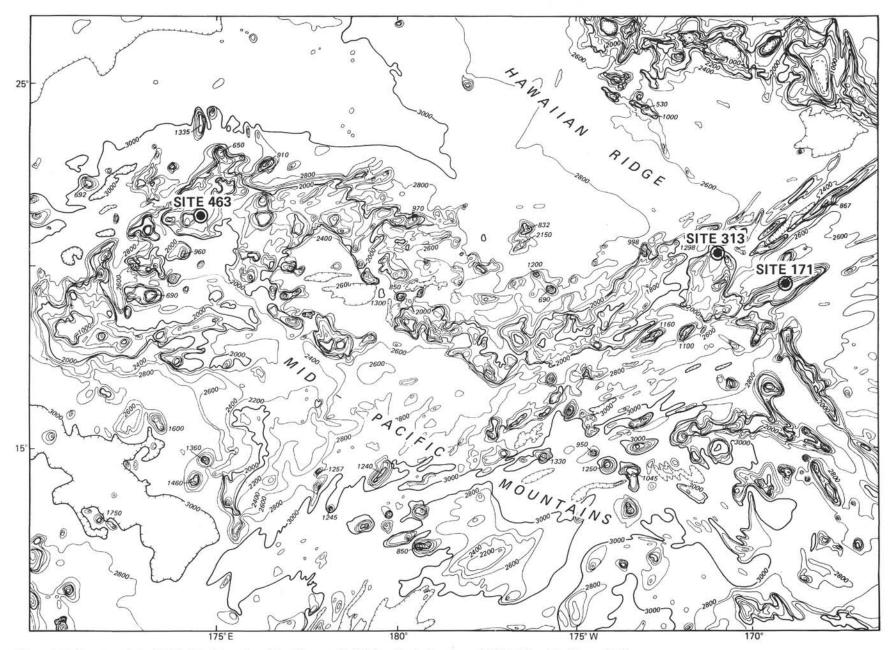


Figure 3. Bathymetry of the Mid-Pacific Mountains (after Chase et al., 1971), with the locations of DSDP Sites 463, 313, and 171.

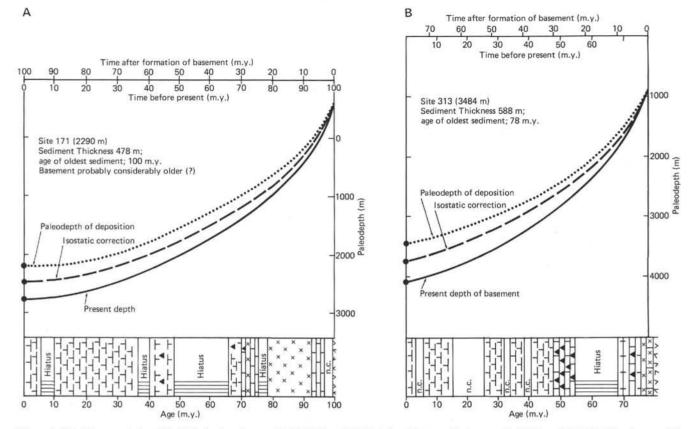
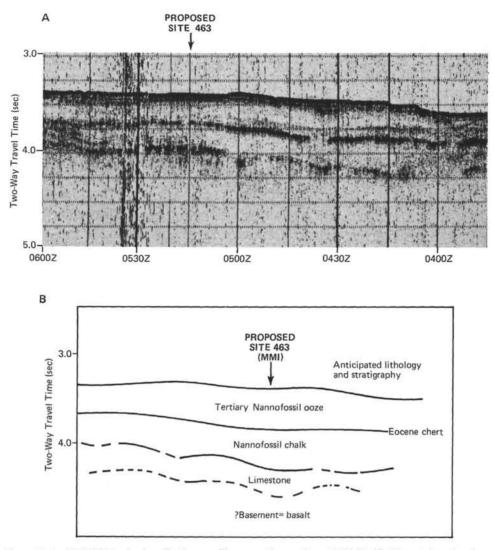
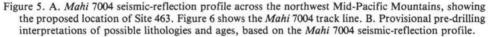


Figure 4. Subsidence and simplified lithologic columns of DSDP Sites 171 (A) (after Winterer, Ewing, et al., 1973) and 313 (B) (after Larson, Moberly, et al., 1975) in the eastern Mid-Pacific Mountains.


free fall at this point to determine if the tool would operate properly after landing. After this test, the drill pipe was made up and run to 2525 meters, when the Bowen sub was picked up. The hole was spudded, and the mud line was established at 2532 meters.


Water depth at Site 463 is 2525 meters (corrected from echo sounding; 2532 meters as measured by pipe length). A 5-second air-gun profile shows a sedimentary sequence nearly 1-second thick (Fig. 7), consisting of at least three acoustic layers. Acoustic basement is not visible. The proposed drilling program consisted of a single-bit hole to be continuously cored through the 900-meter ooze-chalk-limestone section and 100 meters into oceanic basement, or until bit destruction.

On-site operations were routine. A bit with a 2.25inch (570 mm) opening was run, rather than one with a normal 2.5-inch (635 mm) opening, in order to accommodate the pressure core barrel. Therefore, all cores cut at Site 463 have a somewhat smaller diameter than cores cut at previously drilled DSDP sites. The hole was continuously cored to 34 meters sub-bottom, where the first PCB core was taken (34.0-38.0 m sub-bottom). The hole again was cored continuously to 199.5 meters, where the next PCB core was taken (Core 23, 195.5-199.5 m sub-bottom); subsequently, the hole was continuously cored to a total sub-bottom depth of 822.5 meters, where it was abandoned because of bit destruction.

A drilling problem developed while Core 47 was being cut. After 4 meters had been cut, the pipe became stuck and could not be rotated, nor could water be circulated. However, the bumper subs still could be moved, which indicated that the pipe was stuck below this point. After working the pipe for 2 hours with pulls of up to 475,000 pounds, the inner core barrel was retrieved, and circulation was regained. Then 50 barrels of mud were added, and after 20 minutes the pipe came free and remained free until the hole was completed.

At 0239Z (1439L) on 3 August, the first core was on board, and we cored continuously until 0852Z (2052L) on 10 August. Ninety-two cores were attempted, to a final sub-bottom depth of 822.5 meters (Table 1). Recovery was 301.8 meters. Core recovery for the hole averaged 36%. The main reason for the lower recovery was the chert, which was encountered early and again intermittently as the hole was deepened. Higher-thannormal pump pressure was required to prevent plugging of the bit, which resulted in washing away of softer sediments. The bit wore out before basement rocks were penetrated. We left the site at 1530Z (Fig. 6) on 10 August, and steamed 065° to stream the geophysical gear. After streaming the gear, we returned to the beacon, passing it about 600 meters to the north on a heading of 245°. A course of 245° was maintained for about 1 hour, and we turned to a course of 132° at 1719Z and to 020° at 1805Z in an attempt to pass over the beacon. This course took us west of Site 463, and we missed by more than 2 miles. We continued on a course of 020° for about 1 hour, and about 1940Z we turned to a new course for Site 464.

LITHOLOGIC SUMMARY

Lithologic Subdivision

The sediment section at Site 463 is subdivided into four lithologic units, the uppermost being subdivided into two sub-units (Table 2). Divisions are based mainly on composition, diagenetic features, and sedimentary structures. Some of the basic sediment data obtained from this site are given in Appendices A through C. Complete tabulation of $CaCO_3$ and organic-carbon contents are given in Dean (this volume).

Sub-unit IA: Nannofossil Ooze (0-46.8 m)

The sediment of this sub-unit is highly disturbed to soupy nannofossil ooze, dominantly very pale-brown (10YR 7/4, 10YR 7/3, 10YR 8/3), light-gray (10YR 7/2), light-yellowish-brown (10YR 6/4), pale-brown (10YR 6/3), and white (10YR 8/2, 10YR 8/1). Mottles and burrows of similar lithology and color are common. Most contacts in the section are gradational. A transition occurs over a 1-meter interval in Core 2 (7.5-8.5 m), where the nannofossil assemblage increases to over 80% discoasters (Fig. 8). Discoasters remain abundant (80-98% of all nannofossils) down to Core 4 (29 m). Below 34 meters in Core 4, discoasters constitute less than 30% of the nannofossil assemblage. Four small fragments of Eocene(?) chert, 1 to 4 cm in diameter, grayish-brown (10YR 5/2) and gray (N6), occur near the base of Unit IA at 44 to 45.5 meters.

The boundary between Sub-units IA and IB is in Section 3 of Core 7, at 46.8 meters sub-bottom. It is easily distinguished by a color change from brownish-white (10YR 8/2) above to stark white (lighter than 10Y 8/1) below a sharp but disturbed contact. The first appearance of discoasters in the section, and the change from predominant chalk below to ooze above, occurs at this boundary. It also marks an early Eocene to early Maastrichtian hiatus.

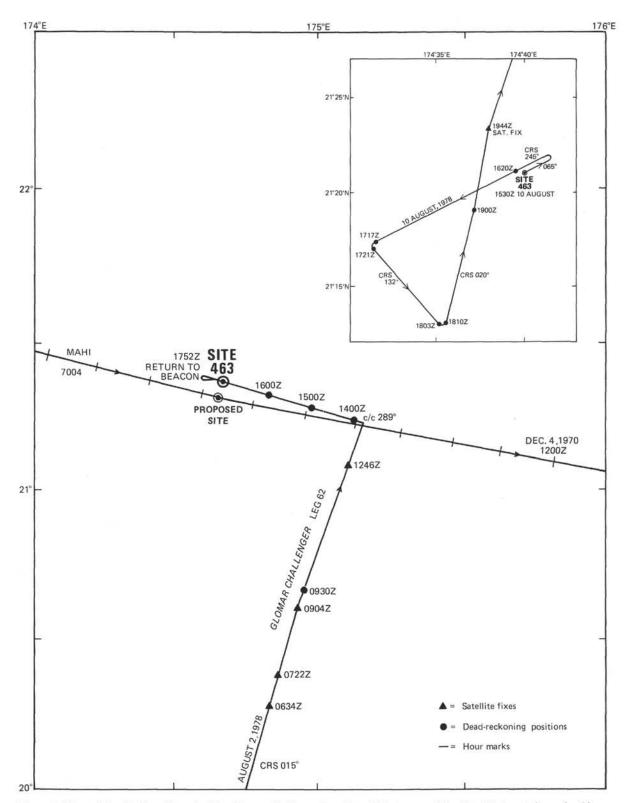


Figure 6. Chart of the *Mahi* profile and of the *Glomar Challenger* Leg 62 track line approaching Site 463. Insert shows the *Glomar Challenger* track line leaving Site 463.

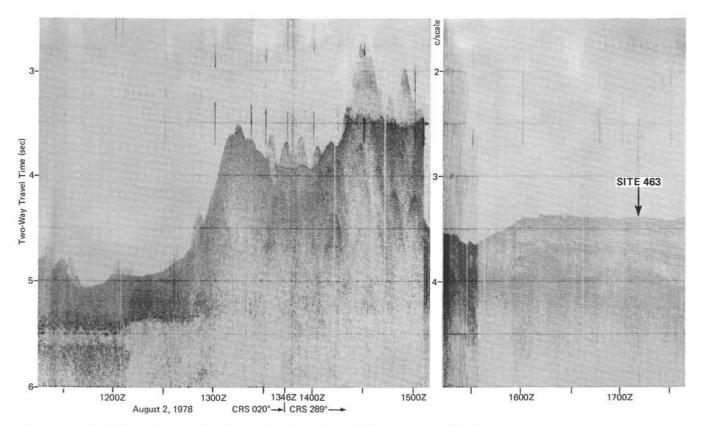


Figure 7. Glomar Challenger Leg 62 seismic-reflection profile made during the approach to Site 463.

Sub-unit IB: Foraminifer Nannofossil Chalk and Nannofossil Foraminifer Chalk (46.8-452 m)

The chalk is characterized by its very stark white color (10YR 8/1, N8, 2.5Y 8/1, and lighter shades). An exception is the interval in Cores 26 and 27 from 219 to 226.5 meters, which is pinkish-gray (7.5YR 7/2, 7.5YR 7/3) and pink (7.5YR 8/4). The chalk in the upper part of Unit IB is very uniform (no mottling or bedding). Faint greenish laminations appear in Core 21, in three 2-to 3-cm intervals. Mottling, burrows, and laminations are more common in Core 27 and below, but for the most part the chalk is uniform and shows no structures. In many intervals, a soupy, highly disturbed sediment is encountered; it appears to be formed largely by drilling disturbance of a poorly lithified chalk. We have described these soupy intervals as "ooze," even though we have some reservations about use of this term.

The composition of the chalk varies down-section. At the boundary with Sub-unit IA, foraminifers constitute less than 10% of the smear-slide components (Appendix A). Planktonic foraminifers are abundant in the >63mm size fractions (Appendix B). Their abundance increases to over 30% in Core 11, and remains high through Core 15; it then becomes variable, usually less than 20%, throughout the remainder of Sub-unit IB. Thus, the compositional range of nannofossil chalk to foraminifer nannofossil chalk to nannofossil foraminifer chalk is present in this sub-unit.

Chert, a common component of Sub-unit IB, occurs for the most part as drilling fragments within the soupy sections, and as "drilling biscuits" within the moreindurated chalk intervals (Hein et al., this volume). It is highly variable in color, showing various shades of red, brown, yellow, gray, and black. Some of the gray chert is banded and burrow-mottled. Silicified chalk is closely associated with the chert in Cores 30, 31, 32, 33, and 42; because of its hardness, it may appear to be limestone. White porcellanite commonly is observed as rims on the chert.

The transition between Sub-unit IB and Unit II occurs at about 452 meters. Unfortunately, Core 51 (442.5-452 m) consists of only a few chert fragments and cannot be used to determine precisely the boundary. Core 50 belongs in Sub-unit IB, and Core 52 belongs in Unit II; the boundary between the two units arbitrarily has been placed at the bottom of Core 51. The boundary marks the transition from chalk to limestone (except for the silicified limestones described from Sub-unit IB), which can also be observed as a change from strongly recrystallized carbonate (identified as "carbonate unspecified" in Appendix A) to unrecrystallized nannofos-

Table 1. Site 463 coring summary.

Date Core (Aug No. 1978		Time (L)	Depth From Drill Floor (m) Top Bottom	Depth Below Sea Floor (m) Top Bottom	Length Cored (m)	Length Recovered (m)	Percent
1	3	1439	2532.0-2537.5	0.0-5.5	5.5	5.42	98.5
2	3	1533	2537.5-2547.0	5.5-15.0	9.5	9.40	99.0
3	3	1616	2547.0-2556.5	15.0-24.5	9.5	7.98	84.0
4	3	1704	2556.5-2566.0	24.5-34.0	9.5	9.34	98.3
5	3	1852 1947	2566.0-2570.0 2570.0-2575.5	34.0-38.0 38.0-43.5	4.0	3.02 8.23	75.5 100+
7	3	2041	2575.5-2585.0	43.5-53.0	9.5	5.14	54.1
8	3	2146	2585.0-2594.5	53.0-62.5	9.5	4.05	42.6
9	3	2234	2594.5-2604.0	62.5-72.0	9.5	4.35	45.8
10	3	2333	2604.0-2613.5	72.0-81.5	9.5	9.25	97.3
11 12	4	0047 0144	2613.5-2623.0	81.5-91.0	9.5	6.80 9.02	71.6
13	4	0247	2623.0-2632.5 2632.5-2642.0	91.0-100.5 100.5-110.0	9.5 9.5	9.02	95.0
14	4	0345	2642.0-2651.5	110.0-119.5	9.5	6.57	69.2
15	4	0448	2651.5-2661.0	119.5-129.0	9.5	8.60	89.5
16	4	0540	2661.0-2670.5	129.0-138.5	9.5	8.80	92.6
17	4	0649	2670.5-2680.0	138.5-148.0	9.5	9.53	100+
18 19	4	0744 0847	2680.0-2689.5 2689.5-2699.0	148.0-157.5 157.5-167.0	9.5 9.5	0.59 9.65	6.2 100 +
20	4	0950	2699.0-2708.5	167.0-176.5	9.5	1.41	14.8
21	4	1044	2708.5-2718.0	176.5-186.0	9.5	9.32	98.1
22	4	1146	2718.0-2727.5	186.0-195.5	9.5	6.64	69.9
23	4	1245	2727.5-2731.5	195.5-199.5	4.0	1.50	37.5
24	4	1338	2731.5-2737.0	199.5-205.0	5.5	4.23	76.9
25 26	4	1436 1528	2737.0-2746.5 2746.5-2756.0	205.0-214.5 214.5-224.0	9.5 9.5	2.82 8.80	29.7 92.6
27	4	1640	2756.0-2765.5	224.0-233.5	9.5	2.34	24.6
28	4	1746	2765.5-2775.0	233.5-243.0	9.5	0.06	0.6
29	4	1848	2775.0-2784.5	243.0-252.5	9.5	0.83	8.7
30 31	4	2005 2115	2784.5-2794.0 2794.0-2803.5	252.5-262.0	9.5 9.5	3.01	31.7
31	4	2212	2803.5-2813.0	262.0-271.5 271.5-281.0	9.5	0.51	5.4 2.6
33	4	2316	2813.0-2822.5	281.0-290.5	9.5	2.97	31.2
34	5	0020	2822.5-2832.0	290.5-300.0	9.5	4.08	43.0
35	5	0137	2832.0-2841.5	300.0-309.5	9.5	0.34	3.6
36	5	0314	2841.5-2851.0	309.5-319.0	9.5	0.15	1.6
37 38	5	0427 0526	2851.0-2860.5 2860.5-2870.0	319.0-328.5 328.5-338.0	9.5 9.5	0.02	0.2 9.1
39	5	0636	2870.0-2879.5	338.0-347.5	9.5	0.88	2.4
40	5	0849	2879.5-2889.0	347.5-357.0	9.5	0.12	1.2
41	5	0952	2889.0-2898.5	357.0-366.5	9.5	0.13	1.3
42	5	1103	2898.5-2908.0	366.5-376.0	9.5	0.16	1.6
43 44	5	1216 1319	2908.0-2917.5	376.0-385.5	9.5	6.40	67.0
45	5	1421	2917.5-2927.0 2927.0-2936.5	385.5-395.0 395.0-404.5	9.5 9.5	1.12 0.05	11.8
46	5	1525	2936.5-2946.0	404.5-414.0	9.5	0.99	10.4
47	5	1631	2946.0-2955.5	414.0-423.5	9.5	0.08	0.8
48	5	1859	2955.5-2959.5	423.5-427.5	4.0	4.25	100 +
49	5	2049	2959.5-2965.0	427.5-433.0	5.5	0.05	0.9
50 51	5	2200 2300	2965.0-2974.5 2974.5-2984.0	433.0-442.5	9.5 9.5	0.93 0.13	9.8 1.4
52	6	0024	2984.0-2993.5	442.5-452.0 452.0-461.5	9.5	0.13	2.4
53	6	0212	2993.5-3003.0	461.5-471.0	9.5	1.66	17.5
54	6	0406	3003.0-3012.5	471.0-480.5	9.5	0.31	3.3
55	6	0530	3012.5-3022.0	480.5-490.0	9.5	1.00	9.5
56	6	0732	3022.0-3031.5	490.0-499.5	9.5	1.30	13.7
57 58	6	0944 1255	3031.5-3041.0 3041.0-3050.5	499.5-509.0 509.0-518.5	9.5 9.5	2.42 4.30	25.5 45.0
59	6	1627	3050.5-3060.0	518.5-528.0	9.5	4.68	49.3
60	6	2005	3060.0-3067.5	528.0-535.5	7.5	5.82	77.6
61	6	2207	3067.5-3069.5	535.5-537.5	2.0	1.70	85.0
62	7	0102	3069.5-3079.0	537.5-547.0	9.5	4.64	48.8
63 64	777	0328	3079.0-3088.5 3088.5-3098.0	547.0-556.5 556.5-566.0	9.5 9.5	3.55 4.02	37.4 42.3
65	7	0820	3098.0-3107.5	566.0-575.5	9.5	3.35	42.3
66	7	1138	3107.5-3117.0	575.5-585.0	9.5	3.40	35.8
67	7	1345	3117.0-3126.5	585.0-594.5	9.5	2.98	31.4
68	7	1551	3126.5-3136.0	594.5-604.0	9.5	0.57	6.0
69 70	777	1927 2355	3136.0-3145.5	604.0-613.5 613.5-623.0	9.5 9.5	3.60	37.8 100+
70	8	0358	3145.5-3155.0 3155.0-3164.5	623.0-632.5	9.5	9.61 5.56	58.5
72	8	0813	3164.5-3174.0	632.5-642.0	9.5	6.60	69.5
73	8	1336	3174.0-3183.5	642.0-651.5	9.5	6.20	63.2
74	8	1654	3183.5-3193.0	651.5-661.0	9.5	2.07	21.8
75	8	1855	3193.0-3202.5	661.0-670.5	9.5	1.01	10.6
76 77	8	2149 0027	3202.5-3212.0	670.5-680.0	9.5 9.5	1.37	14.4 14.8
78	9	0027	3212.0-3221.5 3221.5-3231.0	680.0-689.5 689.5-699.0	9.5	1.41	14.8
79	9	0430	3231.0-3240.5	699.0-708.5	9.5	0.79	8.3
80	9	0706	3240.5-3242.0	708.5-710.5	2.0	0.75	37.5
81	9	1010	3242.5-3250.0	710.5-718.0	7.5	2.30	30.7
82	9	1310	3250.0-3259.5	718.0-727.5	9.5	1.33	14.0
83	9	1703	3259.5-3269.0	727.5-737.0	9.5	2.50	26.1
84 85	9	1932 2252	3269.0-3278.5 3278.5-3288.0	737.0-746.5 746.5-756.0	9.5 9.5	2.07	21.8 34.8
86	10	0226	3288.0-3297.5	756.0-765.5	9.5	1.35	14.2
87	10	0551	3297.5-3307.0	765.5-775.0	9.5	0.78	8.2
88	10	0854	3307.0-3316.5	775.0-784.5	9.5	0.60	6.3
89	10	1200	3316.5-3326.0	784.5-794.0	9.5	1.10	11.6
	10	1522	3326.0-3335.5	794.0-803.5	9.5	0.24	2.5
90		1010	2225 5 2245 0				
	10	1818 2052	3335.5-3345.0 3345.0-3354.5	803.5-813.0 813.0-822.5	9.5 9.5	0.03 0.10	0.3

sils and foraminifers. It also marks the transition from uniform, massive carbonates above to multicolored carbonates below.

Unit II: Multicolored Limestone and Silicified Limestone (452-587.7 m)

The sediment in this unit is characterized by limestone and silicified limestone showing cyclic color variation on the scale of about 1 to 20 cm (Fig. 9). Most of the carbonate is recrystallized, but nannofossils and foraminifers are still recognizable in most smear slides (Appendix A). An important diagenetic overprint of silicification occurs in Unit II, silica replacing up to 80% of some limestones. Silica contents range from about 10 to 80% in the silicified limestone.

Most intervals show common horizontal laminations and burrowing, although a few (generally those lightest in color) appear massive and uniform (Fig. 9). Burrows are distorted and flattened because of compaction (Fig. 9). For the most part, laminae appear wavy and may be either continuous or discontinuous across the core. The cyclic nature of the sediments may indicate that the sediments underwent a period of differential lithification, existing alternately as beds of ooze and chalk and (or) beds of chalk and limestone. This is shown by selective fracturing and plastic deformation observed in adjacent layers. Contacts between cycles may be either sharp or gradational, but most are gradational and burrowed.

Graded beds are present in Cores 56, 59, and 60 (e.g., Core 56, Section 1, 82–97 cm). The gradations are generally marked by a color change from dark at the base of the bed to light at the top. All the sediments in the graded beds appear to be pelagic; the upper parts of the graded beds are nannofossil limestone, whereas the bases are enriched in foraminifers and radiolarians. Cores 60, 61, 63, 64, 66, and 67 have coarse layers (1–8 cm thick) enriched in radiolarians. Some of the coarse layers exhibit erosional basal contacts, but the layers appear to be uniform, coarse-grained intervals, rather than parts of graded units.

The colors of this cyclic unit are variable downsection. In Cores 52 through 55, the cycles are alternations of white limestone and pale-green or greenish-gray limestone. Cores 57 through 65 have cyclic color alternations of pink, green, brown, and white. Cores 66 and 67 consist of alternations of gray and green limestone. The coarse-grained, ungraded layers (previously described) are very pale brown (10YR 7/3) in Cores 60, 61, and 63, and light greenish-gray (5Y 7/1 and 56Y 7/1) in the remainder of the cores in this unit.

Chert is a common component of Unit II and is found as drilling fragments, nodules, and larger layers (Hein et al., this volume). The chert is very similar in most respects, including the range of colors, to that described from Sub-unit IA.

The boundary between Units II and III is determined by the highest occurrence of ash beds as a common component of the sediments. There is one ash layer above the lower Unit II boundary in Core 62, but this appears to be an isolated occurrence. The boundary between the

Unit	Lithology	Cores	Sub-bottom Depth (m)	Thickness (m)	Age (m.y.)
IA	Nannofossil ooze	1-7	0-46.8	46.8	Pleistocene-e. Eocene (0-50)
IB	Foraminifer nannofossil chalk and nannofossil foraminifer chalk	7-51	46.8-452	405.2	E. Maastrichtian to 1. Albian (67-103)
п	Multicolored limestone and silicified limestone	52-67	452.0-587.7	135.7	L. Albian to e. Aptian (103-112)
ш	Tuffaceus and carbonaceous limestone	67-71	587.7-632.5	44.8	Early Aptian (112-113)
IV	Interbedded pelagic and clastic limestone	72-92	632.5-822.5	190.0	E. Aptian to Barremian (113–117)

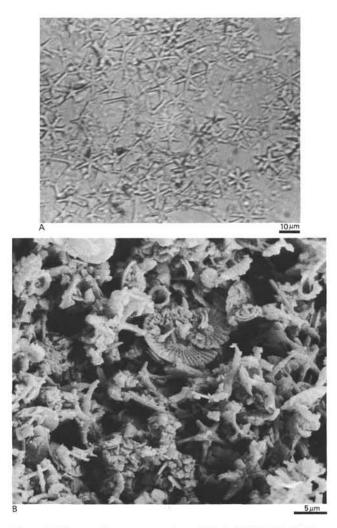


Figure 8. Pliocene discoaster ooze from Lithologic Unit IA. A. Plane light (\times 80). B. SEM photomicrograph (bar scale = 5 μ m; 463-2-5, 100-101 cm).

two units is placed at the top of the ash bed in Core 67, Section 2, at 73 cm.

Unit III: Tuffaceous and Carbonaceous Limestone (587.7-632.5 m)

The distinguishing characteristics of this unit are the occurrence of ash beds and limestones enriched in ash and organic carbon. These appear within a sequence of

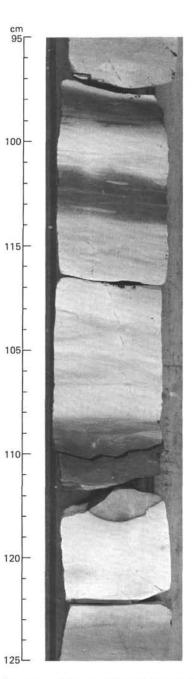
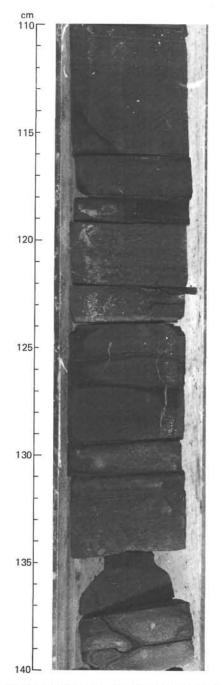



Figure 9. Sedimentary structures in the multicolored limestone of Lithologic Unit II (463-59-2, 95-125 cm).

cyclic color alternations somewhat similar to those found in Unit II. The cycles are color variations of white, gray, and green, with darker beds of tuff and carbonaceous limestone, on the scale of 1 to 65 cm. Tuff beds are greenish-black (56Y 2/1) and greenish-gray (5Y 6/1, 5G 4/1); the carbonaceous limestone is olive-black (5Y 2/1) to greenish-black (56Y 2/1), with organiccarbon concentrations to >7% (Dean and Claypool, this volume). Intervals enriched in organic carbon are horizontally laminated, without any zones of disturbance or burrowing (Fig. 10). The lower contacts of the organic-carbon-rich beds are mostly gradational, and

the upper contacts are usually sharp, but exceptions are common. The highest concentration of organic carbon is in Core 70.

The tuff (ash) beds commonly have horizontal laminations, but several are massive (Vallier and Jefferson, this volume; Hein and Vanek, this volume). The top and bottom contacts of the tuff beds may be sharp or gradational. Most gradational contacts are bioturbated.

The lighter-colored beds in Unit III (those without high concentrations of organic carbon or ash) are usually burrowed and have wavy laminations. The upper and lower contacts of these beds usually are gradational. Chert, is common as fragments and layers within Unit III. Most of this chert is various shades of gray, although some dark-reddish-brown chert is present.

The boundary between Units III and IV, at the bottom of Core 71, is marked by the disappearance of ash beds as a common component of the sediment.

Unit IV: Interbedded Pelagic and Clastic Limestone (632.5-822.5 m)

This unit consists of pelagic limestones and marlstones interbedded with clastic, mostly calcareous turbidite and debris-flow deposits. The amount of clastic sediments increases down-section through Core 89. Cores 90 to 92 do not contain clastic limestone, but this may be the result of selective recovery of the pelagic limestone; these three cores recovered less than 60 cm of a total of 28.5 meters cored.

The upper part of Unit IV (Cores 72–74) shows cyclic color alternations of various shades of olive, green, and white, similar to those in Units II and III. Burrowing, wispy discontinuous laminae, and streaks are common. Most contacts are burrowed and gradational, but those at the bases of redeposited beds are sharp. The first two clastic turbidites, encountered going down-section occur in Core 73; they are pale-olive (5Y 6/2) and gray (5Y 6/1) and are composed of granule-size and smaller clasts of carbonate, pyrite, glauconite, and quartz.

In the remaining cores (75-92), the dominant pelagic component is light-gray and white limestone, with dark and contorted laminations (Fig. 11) some of which are stylolitic seams. Clastic limestones are interbedded with the pelagic limestones. Some of the clastic beds are turbidites similar to those described above, but most are massive beds with rounded clasts showing little or no gradation in grain size. There is an overall trend for the maximum size of clasts to increase with increasing depth in the section (Figure 12). The clast sizes range from less than 1 mm to several centimeters in diameter; the clasts are in a silt- and clay-sized matrix. These massive clastic units first appear in Core 80, and are common through Core 89. Typical clasts within these massive beds consist of fine-grained limestones, oolites, echinoderm and mollusk fragments, glauconite, quartz, stromatolite fragments, and basalt(?) chips (Fig. 13). The massive intervals of clastic sediment have a yellow-gray (5Y 7/1) groundmass, the largest clasts being white (5Y 8/1), rounded, fine-grained limestone.

A few marlstone beds, generally showing fine bedding and laminations, are also present in Unit IV. These

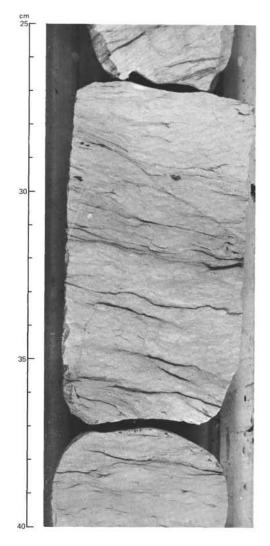


Figure 11. Pelagic limestone with contorted laminations from the interbedded clastic and pelagic limestones of Lithologic Unit IV (463-77-1, 25-40 cm).

are dark greenish-gray (56 4/1) and appear to be pelagic.

Conclusions

Site 463 contains an incomplete record of sedimentation and dissolution from the earliest Barremian to Recent. Middle Miocene to late Oligocene, late Oligocene to late Eocene, early Eocene to early Maastrichtian and Campanian to Santonian hiatuses are the only important interruptions in the record. The site has remained well above the CCD throughout its history. Important aspects of the sediments recovered at Site 463 are:

1) Sediments of late Pliocene to late Miocene age (8.5-29 m) are nannofossil ooze; discoasters comprise 80 to 98% of the nannofossil assemblage. This is probably the result of increased discoaster productivity, as well as selective dissolution of coccoliths.

2) The hiatuses at this site are essentially the same as those at Site 171 on Horizon Guyot, but different from those at Site 313 in the eastern Mid-Pacific Mountains.

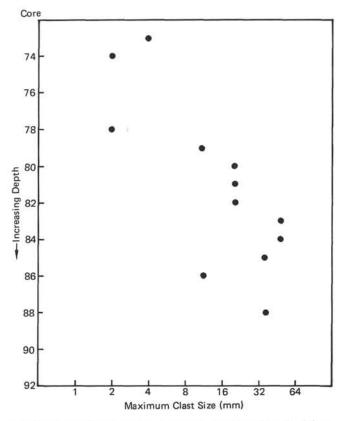


Figure 12. Variation in maximum clast size as a function of sub-bottom depth, Lithologic Unit IV.

3) A thick middle to Upper Cretaceous section provides an excellent record of sedimentation. A very high rate of sedimentation in the early Maastrichtian to late Campanian ($\sim 42 \text{ m/m.y.}$) marks the estimated time of equatorial crossing.

4) Cyclic alternations of multicolored limestones overlying carbonaceous limestones of early Aptian age at this site are similar to cyclic multicolored lithologies which overlie anoxic sedimentary sequences of the same age in the Atlantic. Tuffaceous sediments, recording a period of high volcanic-ash deposition, are interbedded with the carbonaceous limestones.

5) The oldest unit in the stratigraphic sequence at Site 463—the interbedded shallow-water clastic limestone and pelagic limestone—probably represents the shallowest depositional environment. Progressively younger sediments were deposited in progressively deeper water as the site subsided.

The sedimentation history at Site 463 can be summarized briefly as follows. During late Barremian time, the site was close to an oceanic volcanic island which apparently was associated with shallow-water carbonate banks. Existence of the shallow-water carbonates is documented by the presence of displaced stromatolites, oolites, and fragments of echinoderms and large mollusks in the clastic limestone beds of Unit IV (Fig. 13).

As the volcanic basement subsided, shallow-water sediments were redeposited at intermediate depths, forming clastic-limestone layers interbedded with pelagic

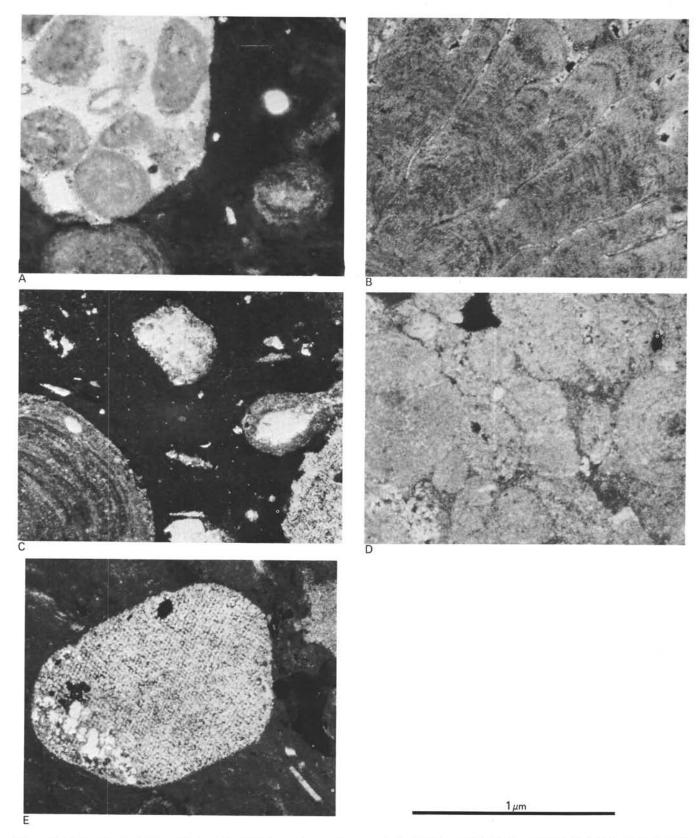


Figure 13. Carbonate clasts from Lithologic Unit IV (bar = 1 mm; all cross-polarized light). A. 80-1, 9-11 cm (709.5 m). Oolites and a clast of oosparite in a micritic calcite matrix. B. 85-2, 136-138 cm (749.5 m). Part of a stromatolite fragment. C. 85-1, 76-78 cm (747.3 m). Oolites in a matrix of micrite and sparry calcite cement. D. 85-1, 59-61 cm (747.1 m). Part of a large oolite. Fossil fragments and other calcite debris "floating" in a matrix of micritic calcite. E. 84-1, 20-22 cm (737.2 m). Fossil fragment with reticulate pattern, partly replaced by SiO₂, in a matrix of micritic calcite.

limestones (Unit IV, Barremian to early Aptian). The pelagic limestones and the lack of a diverse benthicmollusk fauna suggest that water depth must have been greater than wave base (greater than about 200 m). Continued subsidence during deposition of Unit IV is indicated by a decrease in the maximum size of clasts within the clastic limestone in progressively younger sediments (Fig. 12). Most of the massive redeposited beds, which are up to 1 meter thick, show little or no grain-size grading. This lack of grading tends to rule out turbidity currents as a mode of transport of the shallowwater clasts. The lack of size gradation and roundness of the clasts suggests transport by debris flows, which in turn suggests relatively short distances of transport. The uppermost clastic bed in this unit is a granule-size carbonate turbidite in Core 73. The younger carbonate sediments are entirely pelagic.

Shortly after deposition of the last clastic carbonate beds in the early Aptian, the sedimentary sequence at Site 463 was marked by a sudden influx of relatively large volumes of volcanic ash, indicating nearby volcanic activity. Volcanic activity lasted approximately 1 m.y. (the time represented by Unit III). The presence of volcanic ash is coincident with carbonaceous limestone (organic-carbon content of as much as 7% by weight), which indicates sediment accumulation under reducing conditions. Whether the association of volcanic ash and organic matter is fortuitous or causal is not known.

The multicolored limestone of Unit II was deposited from the early Aptian to the late Albian. The association of carbonaceous sediments underlying multicolored (green, gray, pink, and red) cyclic sediments is known from a number of sites in the Atlantic (e.g., Sites 105 and 367) and is almost exactly repeated at Site 463, although multicolored sediments are somewhat younger in the Atlantic (Late Cretaceous). The significance of this relationship is not known.

The remainder of the Cretaceous sediments is represented dominantly by foraminifer nannofossil ooze and chalk, with well-preserved microfossils. This suggests that the sediments were deposited above (or near) the Cretaceous lysocline. High sedimentation rates characterize the strata of the early Maastrichtian, a time when the site apparently crossed the equatorial zone of high productivity.

Accumulation of sediment during the Cenozoic was much reduced in comparison to the Cretaceous. Approximately 35 m.y. of the Cenozoic record is missing, and the pre-Pliocene record which is present has an average accumulation rate of only 1.0 m/m.y. The dominant sediment type is nannofossil ooze with moderate to good preservation of microfossils, suggesting deposition between the lysocline and the CCD.

Carbonate diagenesis at Site 463 reflects the normal progression of ooze to chalk to limestone. The transition from ooze to chalk occurs across the early Eocene to Maastrichtian hiatus and, because of poor recovery of sediment near the hiatus, is not fully documented. The upper part of Unit II shows chalk alternating with ooze, the degree of lithification increasing progressively to the bottom of the unit. The transition from chalk to limestone is not well documented, because of a high abundance of chert in that interval and poor core recovery. A diagenetic trend is apparent in the wispy and wavy laminations, which become progressively darker and better defined with depth, and eventually develop into thin, dark stylolitic seams. This suggests that pressure solution, due to increasing burial, selectively occurs within these laminae, ultimately forming the stylolitic seams.

Replacement of $CaCO_3$ by SiO_2 , filling of voids by SiO_2 , and recrystallization of radiolarians are common phenomena in Units IB to IV. The general sequence of silicification (Fig. 14) appears to be as follows:

1) The chambers of foraminifers are partly to completely filled with SiO_2 .

2) The chambers of foraminifers are filled with SiO_2 , radiolarians are recrystallized, and some of the CaCO₃ matrix is replaced by SiO_2 .

3) The matrix is completely replaced by SiO_2 , leaving only the test walls of foraminifers as $CaCO_3$.

4) Complete replacement of $CaCO_3$ by SiO_2 , and formation of chert.

INTERSTITIAL-WATER GEOCHEMISTRY

Results of shipboard measurements of pH, alkalinity, salinity, calcium, magnesium, and chlorinity, in interstitial water from seven whole-core sediment samples are presented in Figure 15. Values of pH are low relative to surface sea water, ranging from 8.0 in the first core to 6.76 in Core 43, Section 3, 94-100 cm. Both pH and alkalinity are largely controlled by bacterial production of CO₂ and equilibrium with carbonate minerals. Because of the high carbonate content of the sediments at Site 463, the interstitial waters are probably close to saturation with respect to CaCO₃, as CaCO₃ is dissolved to offset CO₂ produced by bacterial activity. As a result, alkalinity remains relatively constant with depth, whereas the calcium concentration increases markedly with depth (Fig. 15). An increase in calcium-ion concentration in interstitial waters commonly is observed in carbonate-rich deep-sea sediments, particularly in areas with rapid rates of sediment accumulation, and is attributed to dissolution of CaCO3 at depth (Sayles and others, 1973).

At Site 463, the increase in calcium with depth is almost matched by a decrease in magnesium; this inverse relationship might imply formation of dolomite, although none was observed in smear slides of the sediments. Salinity and chlorinity show little variation from normal surface sea water, both increasing slightly with depth (Fig. 15).

The greatest change in interstitial-water chemistry appears to occur below 225 meters sub-bottom (Fig. 15). Unfortunately, poor recovery prohibited collection of interstitial water between Cores 27 and 43 to better define these changes. This zone of change is indicated by increases in salinity, chlorinity, and calcium, and by decreases in pH and magnesium; calcium shows the greatest change. There is no apparent change in the sediments that would indicate an increase in rate of dissolution of CaCO₃ between 225 and 480 meters.

PHYSICAL PROPERTIES

The wet-bulk density of soft sediments was measured by the analog GRAPE for Cores 1 to 6, and on three points per section using 2-minute GRAPE for Cores 7 to 48. For pieces of firm sediment (chalk, limestone, and chert), both the 2-minute GRAPE and gravimetric methods were used. Sound-velocity measurements occasionally were made on the Saran-wrapped half cores of firm pieces of chalk, and on almost all mini-core samples normal to both the vertical and horizontal directions. All measured values of sound velocity, wet-bulk density, porosity, and water content are shown in Figure 16.

The sedimentary column penetrated at Site 463 has been divided into four major and four minor acoustic units, which are related to the lithologic units and seismic-reflection data. The values of wet-bulk density and interval velocity (Appendix D) are averaged for each acoustic unit and listed in Table 3.

The limestone samples (below Core 26) show velocity anisotropy, and the mean value of the velocity ratio of horizontal to vertical direction is about 1.045 under wet and 1-bar conditions (described in detail by Fujii, this volume).

PALEOMAGNETISM

Nearly 100 samples of Cretaceous limestones were taken for paleomagnetic measurements (Sayre, this volume). A large proportion of the samples of the multicolored limestones (Unit II) and tuffaceous and carbonaceous limestones (Unit III) carry a stable component of magnetization, often similar in direction to the natural remanent magnetization. The pelagic and clastic limestones (Unit IV) are more weakly magnetized, and directional data are less reliable. At least two reversedpolarity intervals can be identified in the Chiastozygus litterarius nannoplankton zone of the early Aptian, which may correlate with anomaly M0 or a reversed interval identified in sediments at DSDP Hole 361 (Keating and Helsley, 1978). The rest of the Aptian and lower Albian seems to be normally magnetized. A paleolatitude estimate for Units II and III is approximately 10° farther south than that predicted by recent reconstructions, the difference perhaps being due to the effects of compaction, inclination error, the offset dipole, off-vertical drilling, or errors in reconstruction.

CORRELATION OF SEISMIC-REFLECTION PROFILES AND DRILLING RESULTS

Two strong reflectors are distinct on both the *Mahi* 7004 (Fig. 5A) and the *Glomar Challenger* (Fig. 7) airgun reflection profiles. These reflectors can be correlated with a boundary between lithologic units and with lithologic changes that occur within units. Less-distinct reflectors within acoustic units probably correspond to beds with relatively higher seismic velocities, e.g., limestone and chert layers in the nannofossil-chalk sequence in acoustic unit II.

Correlation of the seismic-reflection profiles with drilling results (Fig. 17) shows four acoustic units, of which three can be related to lithologic units and subunits (Table 2). These four acoustic units include (1) a top unit (corresponding to Lithologic Unit IA) of nannofossil ooze about 0.06 sec (two-way time) thick; (2) a second unit (top of Lithologic Sub-unit IB), with a thickness of about 0.24 sec thick, consisting of chalk and nannofossil ooze; (3) a third unit, corresponding to the bottom part of Lithologic Sub-unit IB with a thickness of about 0.19 sec, made up of chalk, limestone, and chert; and (4) a fourth acoustic unit (Lithologic Units II, III, and IV), mostly limestone, partly silicified limestone, and rare chert. The nannofossil ooze of acoustic unit I is not resolvable on the air-gun seismic-reflection profiles, but a 3.5-kHz profile (Fig. 18) shows an upper transparent layer that corresponds to this unit. No internal reflectors are visible on the 3.5-kHz profile.

The second acoustic unit consists of two major sediment types—ooze and chalk. All transitions occur between foraminifer-nannofossil and nannofossil-foraminifer oozes, through nannofossil and foraminifer chalks. A strong reflector at about 0.3 sec DT sub-bottom corresponds to a lithification change from mostly chalk to a sequence of limestone and chalk with common chert. This reflector marks the boundary between acoustic units II and III. Limestone beds probably are responsible for the strong reflectors.

The bottom acoustic unit (unit IV), which corresponds to Lithologic Units II, III, and IV, has many strong reflectors that most likely correspond to limestone strata. The variations in lithologies used to define the lithologic units cannot be resolved on the seismic-reflection profiles.

Interval velocities, calculated for the acoustic units by averaging measurements of individual samples, correspond fairly well to expected interval velocities calculated from thicknesses of the drilled units. Acoustic unit II has an expected velocity of about 1.76 km/s, which is near the velocity of 1.73 km/s calculated from measurements of individual samples. The third acoustic unit has an expected velocity of about 2.10 km/s, which also corresponds well to the average measured velocity of 2.14 km/s obtained from the individual samples. Acoustic unit IV has a large range of measured velocities, from 2.76 km/s in the Aptian ashy and carbonaceous limestone beds to 3.63 km/s in the partly silicified limestone strata of the Barremian sequence. Basement is not apparent on either of the air-gun seismic-reflection profiles, and it is impossible to calculate its sub-bottom depth from the available data.

BIOSTRATIGRAPHY

Biostratigraphic Summary

The 822.5-m-thick sedimentary section continuously cored at Site 463 represents a sequence from Quaternary to Barremian. Included are two substantial hiatuses of 16 to 17 m.y., spanning intervals from the Maastrichtian through part of the Eocene, and the uppermost Oligocene through the middle Miocene, respectively. Another shorter hiatus of about 7 m.y. spans the Santonian and lower Campanian, and a very condensed series

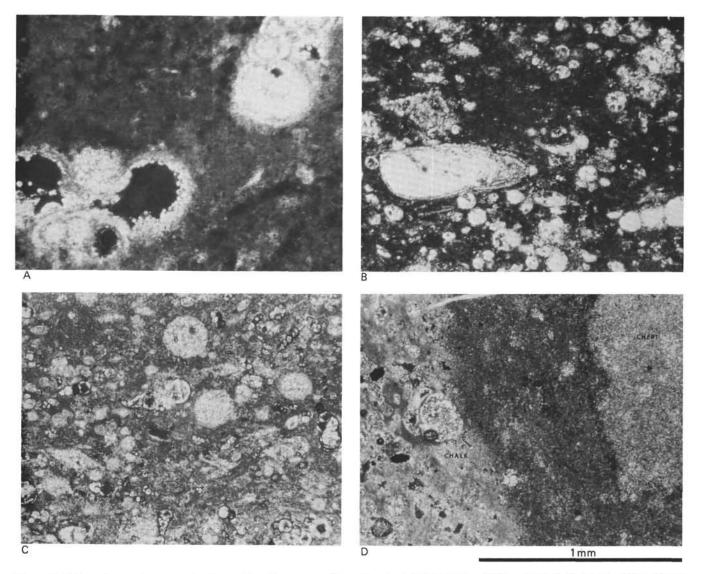


Figure 14. SiO₂-replacement sequence (not in stratigraphic sequence; bar = 1 mm). A. 57-2, 54-56 cm (502 m; Unit II). Chambers of foraminifers partly to completely filled with SiO₂. Tests of foraminifers and matrix are still CaCO₃ (cross-polarized light). B. 50-1, 58-60 cm (434 m; Unit IB). Radiolarians and foraminifers filled with SiO₂, and some of the CaCO₃ matrix replaced by SiO₂. Foraminifer tests still CaCO₃ (cross-polarized light). C. 36-1, 0-2 cm (310 m; Unit IB). Radiolarians and foraminifers filled with SiO₂. Matrix mostly microcrystalline SiO₂ with some CaCO₃. Foraminifer tests still CaCO₃ (plane polarized light). D. 38-1, 10-11 cm (329 m; Unit IB). Replacement of chalk (left) by chert (right), with a transition zone between (darker gray in center). Radiolarian and foraminifer tests filled with SiO₂ throughout (cross-polarized light). E. 69-2, 148-150 cm (607 m; Unit III). Radiolarian(?) filled with sparry calcite, and with a scalloped overgrowth of SiO₂. Matrix is microcrystalline SiO₂ matrix (right) (cross-polarized light). G. 61-3, 109-111 cm (539.5 m; Unit II). Contact between altered volcanic ash (right) and micritic calcite matrix with foraminifers (left) (cross-polarized light). H. 79-1, 7-9 cm (699.8 m; Unit IV). Parallel orientation and imbrication of carbonate clasts at contact between bed of clastic limestone and bed of siliceous limestone and chert (cross-polarized light).

(with possible hiatuses) encompasses the middle Eocene through most of the Oligocene. The Cenozoic sequence (47 m) is very condensed, whereas Cretaceous deposits (775.5 m) constitute the largest part of the sedimentary sequence.

A summary of the various fossil-group zonations plotted against sub-bottom depths is presented in the graphic hole summary (Fig. 19).

The sedimentation-rate curve is shown in Figure 20. There is good agreement between calcareous nannofossils and planktonic foraminifers in age assignments of recovered sediments throughout the upper 560 meters. Below that level, foraminifers are absent, and sediments were dated by nannofossils. Radiolarian zonation was possible only for Lower Cretaceous strata; it appears to be in general agreement with the calcareousplankton zonation. However, because its calibration to the absolute time scale and to other fossil-group zonations is poorly documented, the age assignment for the radiolarian zones represented on Figure 20 remains tentative. No diatoms were observed.

The section consists, from top to bottom, of:

1) 34 meters of upper Neogene (upper Miocene to Quaternary) nannofossil ooze (Cores 1-4) which contains abundant calcareous plankton. Nannofossils are mostly well preserved, whereas planktonic foraminifers

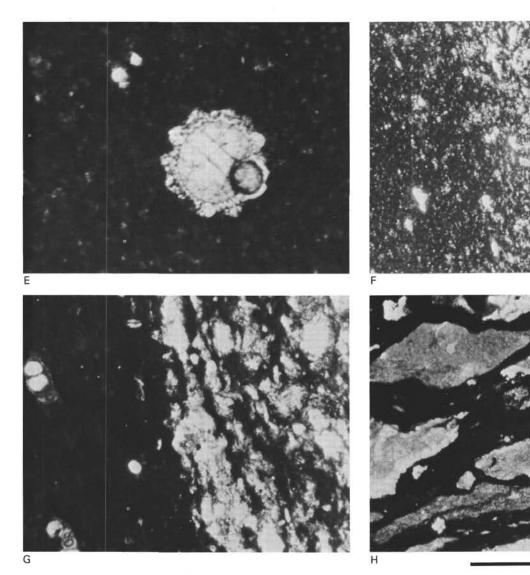


Figure 14. (Continued).

are moderately well preserved. Of special interest is the extraordinary abundance of discoasters in upper Miocene and Pliocene assemblages. Although condensed, the sequence appears continuous. Core 4 contains a mixture of reworked sediments of early and middle Miocene, Oligocene, Eocene, and Late Cretaceous ages.

2) A hiatus at about 34 meters (between Cores 4 and 5), spanning the entire middle and lower Miocene and uppermost Oligocene, equivalent to a time span of about 16 m.y.

3) 12.8 meters of Paleogene nannofossil ooze (Cores 5 and 6 and upper 3.3 m of Core 7) which contains abundant, moderately well preserved calcareous plankton. This section is extremely condensed, with a possible hiatus between the middle Eocene and the Oligocene. Reworking of Eocene floras was noted in some Oligocene samples.

4) A hiatus at 46.8 meters (Core 7, Section 3, 30 cm) which encompasses most of the lower Eocene, the entire Paleocene, and part of the Maastrichtian. It represents a time span of approximately 17 m.y.

5) >350 meters of Upper to middle Cretaceous chalk and limestone (lower part of Core 7 through Core 47) which contain common to abundant, poorly preserved calcareous nannoplankton and abundant planktonic foraminifers. The latter are mostly well preserved in the Maastrichtian to upper Campanian (Cores 7-27) and moderately well preserved in the Coniacian to upper Albian (Cores 28-51). Compared to other Pacific Cretaceous sections, the preservation of foraminifers throughout the upper and middle Cretaceous section at Site 463 is remarkably good and consistent. The section appears continuous, except for a possible hiatus (or very condensed section) which encompasses the lower Campanian and Santonian, (a time span of about 6 m.y.). Displaced shallower-water benthic foraminifers were found in most of the Maastrichtian sediments, and in a few Cenomanian horizons.

1mm

6) 400 meters of Lower Cretaceous pelagic limestone (Cores 48-92), interbedded with clastic limestone in the lower 190 meters. Calcareous nannofossils are common and poorly preserved. For aminifers are rare and poorly

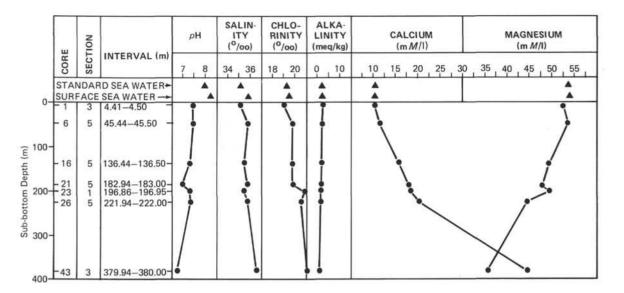


Figure 15. Interstitial-water geochemistry, Site 463.

preserved down to Core 63 (preservation becoming poorer downward in the section as recrystallization increases), and are virtually absent below that level.

Radiolarians, which were absent in the overlying sediments, are common in this part of the sequence; above 660 meters (Core 74), they are confined to sandy layers and are recrystallized, whereas below that level they occur throughout the section and are well preserved. However, from nannofossil, paleomagnetic, and sedimentation-rate data, the lowermost sediments appear to be Barremian, approximately 118 m.y. old, near the late/early Barremian boundary.

Nannoplankton

Calcareous nannofossils are present in all 92 cores from Site 463.

An abbreviated Cenozoic section with several hiatuses is recorded in the first seven cores of nannofossil ooze; thereafter, a relatively complete section of early Maastrichtian to Barremian age was recovered from chalks and limestones to the sub-bottom depth of 822.5 meters.

Cenozoic

Species assemblages of late Miocene to Recent, Oligocene, and early to middle Eocene age are recognized in the first seven cores. A large hiatus between the early Eocene and early Maastrichtian is recorded in Section 7-3, in which a foraminifer nannofossil chalk is first encountered.

An apparently complete upper Miocene to Recent sequence of nannofossil zones (NN11–NN21) is recognized in the first four cores. The nannofloras are abundant and mostly well preserved (slight to moderate etching). The upper Miocene and Pliocene assemblages are marked by an extraordinary abundance of discoasters and occasionally ceratolithids. In most samples, this dominance is accentuated by dissolution of most of the smaller coccoliths.

The top of Core 1 tentatively has been assigned to the Gephyrocapsa oceanica (NN20)/Emiliania huxleyi (NN21) zonal interval. Sample 463-1-1, 97 cm can be assigned to the Gephyrocapsa oceanica (NN20) Zone. Samples from Sections 1-2 and 1-3 are assigned to the Pseudoemiliania lacunosa (NN19) Zone. Samples from Sections 1-4 to 4,CC contain a succession of species, mostly discoasters and ceratolithids, readily assignable to the standard zones of late Miocene to Pliocene age. Samples from Core 4 contain, in addition to the restricted index species Discoaster quinqueramus (NN11), an irregular mixture of reworked index species of early and middle Miocene, Oligocene, and early to middle Miocene age. Allochthonous species of Oligocene and early to middle Eocene age are the same as those found below in stratigraphic superposition (Core 5 to Section 7-3).

The next distinct biostratigraphic unit (Core 5 to Section 6-6) is recognized by the presence of Sphenolithus predistentus, S. distentus, and S. speudoradians. The co-occurrence of these species permits assignment to the Sphenolithus predistentus (NP23)/Sphenolithus distentus (NP24) zonal interval. Samples from this interval do not contain helicosphaerids, pontosphaerids, or rhabdosphaerids. Nannofossil assemblages are abundant, but generally slightly to moderately overgrown. Certain samples contain reworked species of early to middle Eocene age.

Sample 6,CC contains a diagnostic and moderately well-preserved assemblage of middle Eocene age which probably correlates with the lower part of the *Discoaster tani nodifer* (NP16) Zone. Samples from Sections 7-1 to 7-3 contain moderately well-preserved nannofloras of the *Discoaster lodoensis* (NP13) Zone, of late early Eocene age.

Mesozoic

Abundant to rare, but poorly preserved nannofossil assemblages are found throughout the Cretaceous section. The Cretaceous sediments in Samples 463-7-3, 30 cm through 92,CC can be divided into 12 intervals.

1) Lower Maastrichtian (7-3, 30 cm to 16,CC): Arkangelskiella cymbiformis Zone.

2) Upper Campanian to lower Maastrichtian (17-1, 29-30 cm to 22,CC): *Tetralithus trifidus* Zone.

3) Upper Campanian (23-1, 51-52 cm to 25-2, 62-63 cm): *Tetralithus gothicus* Zone.

4) Coniacian to upper Campanian (25,CC to 30,CC). The common to abundant assemblages in this interval are characterized by the lack of certain index species. The upper limit of this zonal interval is determined by the first occurrence of *Tetralithus gothicus*, and the lower limit by the last occurrence of *Corollithion achylosum*.

5) Turonian (31,CC to 37,CC). The top of this zonal interval is determined by the last occurrence of *Corollithion achylosum*, and the lower limit by the last occurrence of *Lithraphidites alatus*.

6) Uppermost Albian to lowermost Turonian (38-1, 29-30 cm to 50-1, 52-53 cm): *Lithraphidites alatus* Zone.

7) Upper Albian (50,CC to 52,CC): Eiffellithus turriseiffeli Zone.

8) Middle Albian (53-1, 122–124 cm to 55-1, 22–23 cm): *Prediscosphaera cretacea* Zone.

9) Lower Albian (55-1 [base] to 59,CC): Parhabdolithus angustus Zone (upper part). The upper limit of this zonal interval is determined by the first occurrence of *Prediscosphaera cretacea*, and the lower limit by the last occurrence of *Nannoconus bucheri*.

10) Upper Aptian (60, CC to 65-1, 7-8 cm): Parhabdolithus angustus Zone (lower part). This zonal interval can be characterized by the co-occurrence of Lithastrinus floralis and Nannoconus bucheri.

11) Lower Aptian (65,CC to 78-1, 87-88 cm): Chiastozygus litterarius Zone.

12) Barremian (79-1, 36-37 cm to 92,CC): Micrantholithus obtusus Zone. The absence of resistant Calcicalathina oblongata strongly suggests that drilling at Site 463 terminated in sediments of Barremian age.

Foraminifers

A visual estimate of the relative abundance of the main components of the sediment coarse fraction is presented in Appendix B. Foraminifers are the dominant constituent of the Neogene, Paleogene, and Cretaceous ooze and chalk recovered in Cores 1 through 50. They are moderately well to poorly preserved in the Neogene (Cores 1-4), moderately well preserved in the Oligocene (Core 5), well preserved in the Eocene through Coniacian (Cores 6-27), and moderately well-preserved in the remaining Cretaceous chalks (Cores 30-50); in the latter, recrystallization is noticeable, and chalk aggregates constitute a significant amount of the coarse fraction.

In the Lower Cretaceous limestone, below Core 50, radiolarians and limestone chips constitute the main components of the coarse fraction. Foraminifers are rare and poorly preserved in Cores 52 to 67 (Albian and Aptian), becoming rarer and more poorly preserved as recrystallization becomes more and more pronounced down-section; foraminifers disappear below Core 67.

Neogene

The highest sample from Core 1 (1-1, 7-9 cm) is Quaternary in age (Zone N22), as indicated by the presence of *Globorotalia truncatulinoides*. Section 1,CC is attributed to the upper Pliocene (N21), based on the presence of *Globigerinoides fistulosus* at a biostratigraphic level above the last occurrence of *Sphaeroidinellopsis* spp. (known to have become extinct 2.8 m.y. ago), as the latter species were not found. Although rare occurrences of temperate species (*Globorotalia crassaformis*, *G. inflata*) were observed, the faunal assemblage appears to represent significantly warmer water than that at the top of the core. Two tropical species, *S. dehiscens* and *G. cultrata*, constitute most of the fauna.

Section 2,CC is lower Pliocene (N19-N20), based on the co-occurrence of *Sphaeroilinellopsis* spp. and *G. tumida*. The fauna is largely dominated by two resistant, warm-water species, *Sphaeroidinellopsis seminulina* and *S. subdehiscens*, probably as a result of dissolution of a warm-water assemblage.

Because of poor preservation and probable dissolution of most of the taxa, the age of Section 3, CC cannot be determined precisely. It belongs to the zonal interval from N14 to N19 or N20 (middle Miocene to lower Pliocene), as shown by the occurrence of "Globigerina" nepenthes. This species dominates the fauna and is accompanied by common S. seminulina and S. subdehiscens. Section 4, CC contains the same middle Miocene to lower Pliocene planktonic assemblage as above, but mixed with a large amount of Eocene and Oligocene faunas and a few Upper Cretaceous species.

Benthic foraminifers are characteristic of a bathyal environment. They include Favocassidulina favus, Planulina wuellerstorfi, Melonis pompilioides, Oridorsalis umbonatus, Eggerella bradyi, Uvigerina sp., and Stilostomella sp.

Paleogene and Cretaceous

Paleogene foraminifers occur in Cores 4 to 7, and Cretaceous foraminifers in Cores 7 to 67. Whereas Paleogene faunas are strongly mixed, a probably continuous and generally well-preserved Cretaceous sequence was recovered.

The Paleogene contains admixtures of Oligocene, Eocene, and Paleocene forms. Index fossils include C. cubensis, and G. ampliapertura in the Oligocene and G. barri, M. aragonensis, T. cerroazulensis, M. aegra, and M. velascoensis in the Paleocene.

Maastrichtian. the *G. contusa* (Cores 7–12) and the *G. scutilla* (Cores 15–20) zones were recognized. The foraminifers are well preserved, and are faunas diverse. The late Maastrichtian index species *Raceniguembelina fructicosa* is not present at this site.

Campanian. the zonal interval from the G. calcarata Zone to the G. subspinosa Zone (Cores 21 - 25) and the G. elevata Zone (Cores 24 and 25) were recognized. Fossils are well preserved, although there are large con-

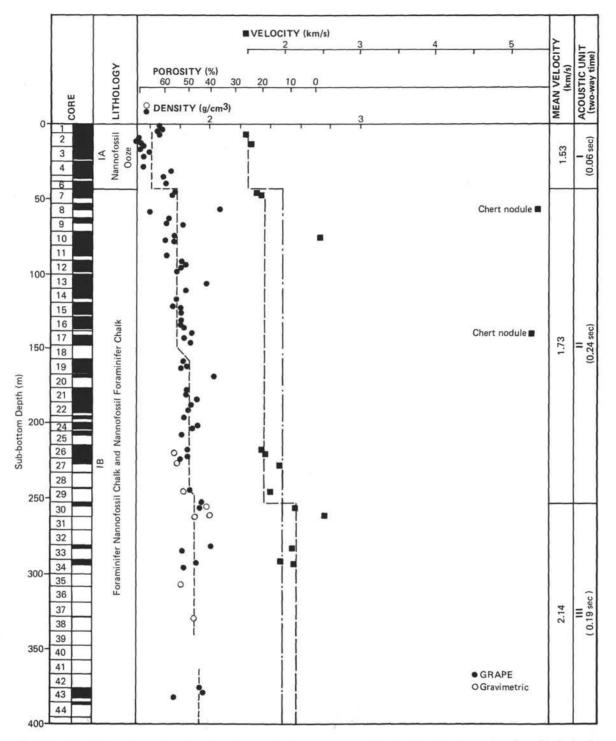


Figure 16. Wet-bulk density and compressional-wave velocity along the vertical direction plotted as a function of hole depth (see Appendix D for individual measurements). Lithologic unit, mean wave velocity, and two-way travel times are also indicated. Broken lines indicate mean values of wet-bulk density and velocity for each subdivided layer; dash-dot lines indicate values averaged over each lithologic unit.

centrations of test fragments. G. subspinosa is present in the G. elevata Zone, placing it in the Campanian, not the Santonian.

Turonian to Coniacian. the G. rensi-G. sigali (Cores 6-29), G. helvetica (Cores 33-34), and H. lehmanni (34,CC-38) Zones were identified. Whiteinella and Rotalipora are present, along with several species of

heterohelicids and globigerinids. The planktonic foraminifers are only moderately well preserved, and occasionally badly recrystallized (30,CC). Benthic foraminifers are rare.

Cenomanian. The R. cushmani Zone (Cores 39-43) and the R. gandolfi-R. greenhornensis zonal interval (Cores 44-47) were recognized. Rotaliporids are numer-

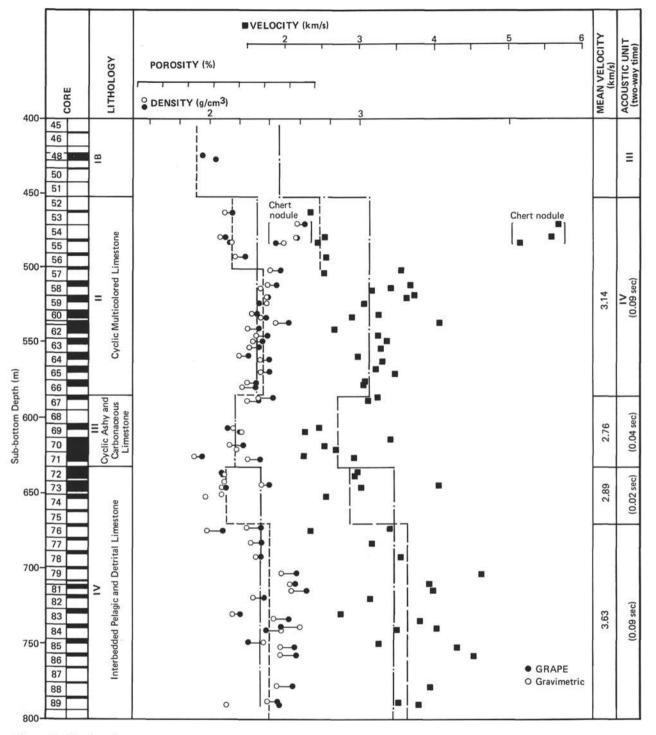


Figure 16. (Continued).

ous, diverse, and generally well preserved; they include *R. reicheli, R. turonica, R. brotzeni, R. appeninica*, and *R. montsalvensis*.

Albian. Planktonic foraminifers are occasionally moderately well preserved, but poor preservation is more typical through this interval. Species of *Praeglo*botruncana, *Ticinella*, and *Rotalipora* and numerous hedbergellids are present. No shackoinids were found at this site.

Aptian. The foraminifers are small and very poorly preserved. Only Globigerinelloides algerianus and a few

small hedbergellids are present, along with some benthic foraminifers.

Radiolarians

Abundance and Preservation

Three intervals can be defined in the sedimentary sequence at Site 463 on the basis of radiolarian occurrences:

1) Cores 1 through 55, in which radiolarians are mainly absent. Only a few un-identifiable fragments were found in Cores 1, 2, 30, 52, and 53.

Table 3. Physical properties of acoustic units at Site 463.

Acoustic Unit	Sub-bottom Depth (m)	Density (g/cm ³)	Velocity (km/s)	DT (sec)	Lithologic Unit
I	0-47	1.61	1.53	0.06	IA
	(45-450)*	(1.83)*	(1.95)	(0.41)	(IB)
II	7-250	1.82	1.73	0.24	IB
III	250-450	1.91	2.14	0.19	IB
IVA	450-588	2.15	3.14	0.09	II
В	588-633	2.18	2.76	0.04	III
С	633-670	2.13	2.89	0.02	IV
D	670-823	2.41	3.63	0.09	IV

Note: A value in parenthesis is simple average for lithologic Unit IB.

2) Cores 56 through 74, in which radiolarians are confined to sandy layers. The tests are usually recrystallized, and many internal molds of iron oxide or pyrite (with or without the original skeleton) were observed. The interval molds are composed of iron oxide down to Core 63, and or pyrite below that level.

3) Cores 75 to 92, in which mostly well-preserved radiolarians occur consistently throughout the section.

Internal molds of pyrite were also observed in this interval.

In the lowermost few cores, a few samples contain well-preserved tests together with recrystallized tests and internal molds. The co-occurrence of these three types of radiolarians probably results from turbidite displacement. Displacement in these samples is also suggested by (1) low-diversity assemblages, (2) sorting of the abundant, well-preserved, spherical tests, and (3) fragmentation of all *Nasselaria* tests.

Radiolarian Biostratigraphy

The zonation of Foreman (1975), established at DSDP Leg 32 sites, was followed. Three zones were identified in the Lower Cretaceous: the Acaeniotyle umbilicata Zone in Cores 56 through 70, the Eucyrtis tenuis Zone in Cores 70 through 89, and the Sethocapsa trachyostraca Zone in Cores 89 through 92. The calibration of these radiolarian zones to the absolute time scale and to calcareous-fossil zonations, however, is poorly documented. At this stage of knowledge, chronostratigraphy of the Lower Cretaceous is difficult to establish solely on the basis of radiolarians.

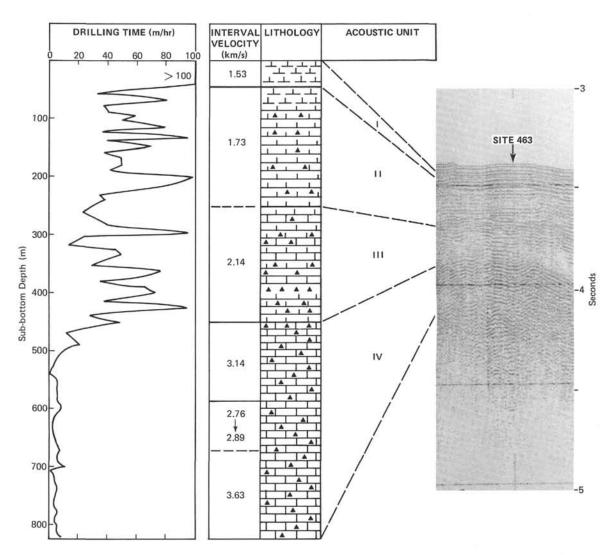


Figure 17. Correlation of drilling time, lithology, acoustic units and seismic-reflection profile at Site 463.

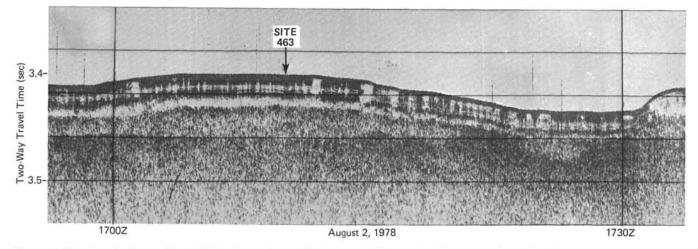


Figure 18. Seismic-reflection profile (3.5 kHz) along Glomar Challenger track line, made during approach to Site 463.

From the data of calcareous plankton, paleomagnetics, and sedimentation rates at Site 463, it appears that the *A. umbilicata/E. tenuis* zonal boundary occurs in the Aptian, and the *E. tenuis/S. trachyostraca* boundary in the Barremian.

SEDIMENTATION RATES

Average sedimentation rates at Site 463 have been estimated (Table 4) using the time scales given in the Introduction to this volume. Corrections for differential compaction have not been applied. Data from each fossil group are reported on Figure 20, a mean sedimentation-rate curve.

The oldest reliable paleontological datum recognized at Site 463 is the last occurrence of the nannofossil Nannoconus colomii, which marks the Aptian/Barremian boundary. Sediments deposited during the early late Aptian in the interval between the level of this datum (718 m) and 556.5 meters (where the G. algerianus planktonic-foraminifer zone was identified, in good agreement with the P. angustus/C. literrarius nannofossil-zone boundary) accumulated at an average rate of 36 m/m.y. Assuming a constant sedimentation rate for the lowermost 104.5 meters of the section, the hole terminated in Barremian sediments approximately 118 m.y. old (at the upper/lower Barremian boundary). This is in good agreement with the nannofossil data, as the species Calcicalathina oblongata, which last occurs in the uppermost lower Barremian, was not found.

The relatively high sedimentation rate of 36 to 37 m/m.y. for the lower 265 meters of Hole 463 probably resulted from the influx of debris from shallow-water carbonates. The sedimentation rate of the overlying pelagic limestone decreases to an average value of 11 m/m.y. during the late Aptian through the early Santonian. From an examination of the sedimentation-rate curve for that interval of time, it appears that sedimentation decreased slightly in the late Albian, whereas it increased in the early and middle Cenomanian during the time of maximum chert deposition (poorest recovery in Cores 40 through 50).

The highest occurrence of the nannofossil Nannoconus bucheri, whose level of extinction marks the Aptian/Albian boundary, is deeper than the level of this boundary as indicated by the sedimentation-rate curve (Fig. 20), and it is probable that the upper range of this species is curtailed here.

Sedimentation during the late Santonian and most of the Campanian appears to have been very reduced, having a low value of 2 m/m.y. This was followed by an abrupt and marked increase during the late Campanian and early Maastrichtian. Sediments were deposited during that time at an average rate of 42 m/m.y. This high value may result from the equatorial crossing of the site at this time, according to the Lancelot and Larson (1975) tectonic model for Pacific Plate motion (Fig. 21). It is also noticeable that an influx of displaced shallowwater benthic foraminifers occurred in the sediments deposited during that interval of high accumulation rate.

A major hiatus of 17 m.y. spans the Cretaceous/Tertiary boundary. Sedimentation resumed very slowly in the late early Eocene. During the remainder of the Paleogene, sediments accumulated at the very reduced average rate of 0.5 m/m.y. Although a number of fossil zones were recognized in their normal sequential order, some hiatuses may have occurred during that interval of time.

After a major hiatus of 16 m.y., spanning the late Oligocene and the entire early and middle Miocene, sedimentation resumed again in the late Miocene. It was accompanied by reworking of sediments deposited during the preceding time of slow deposition or nondeposition at the site (Late Cretaceous, Eocene, Oligocene, early and middle Miocene). From that time, sedimentation appears to have been undisturbed and continuous through the late Miocene to Pleistocene, although very slow (average rate 3.5 m/m.y.).

SUMMARY AND CONCLUSIONS

Regional Framework

The Mid-Pacific Mountains, presently located in the central subtropical North Pacific (Fig. 1) are an ancient structural high rising 2000 to 3000 meters above the surrounding abyssal plain, whose crust is believed to be

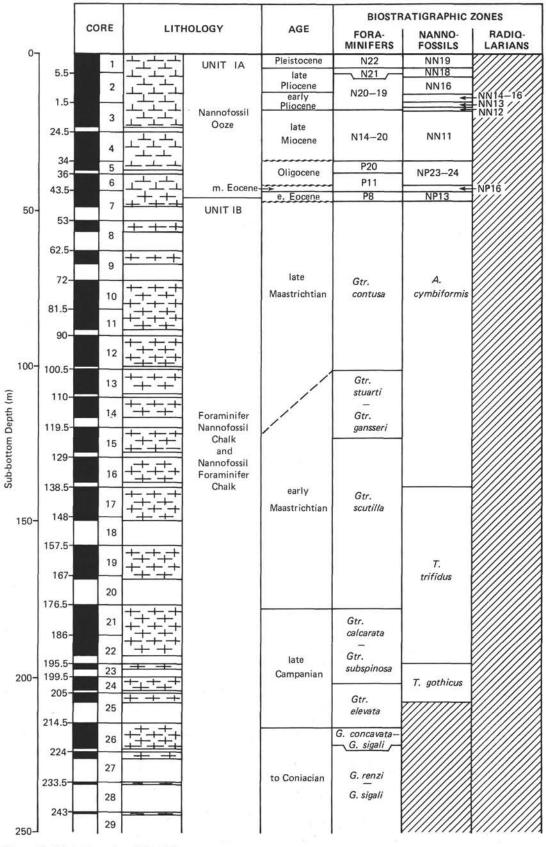


Figure 19. Biostratigraphy of Site 463.

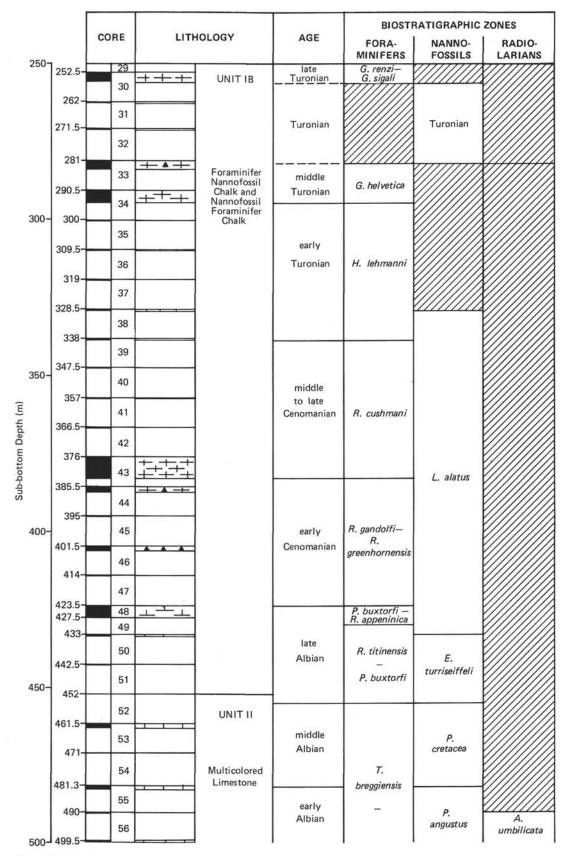


Figure 19. (Continued).

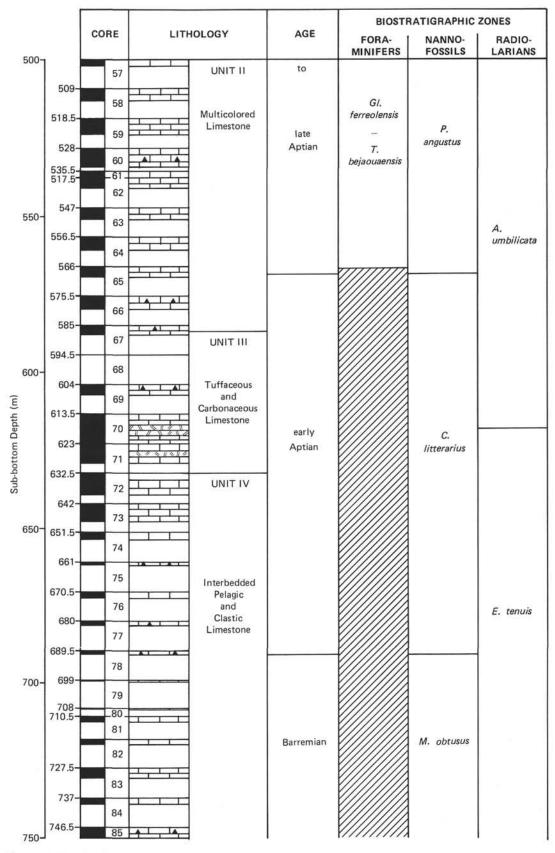


Figure 19. (Continued).

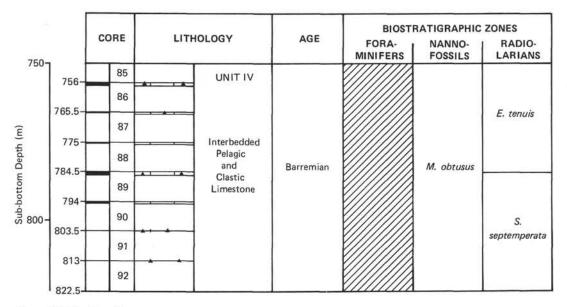
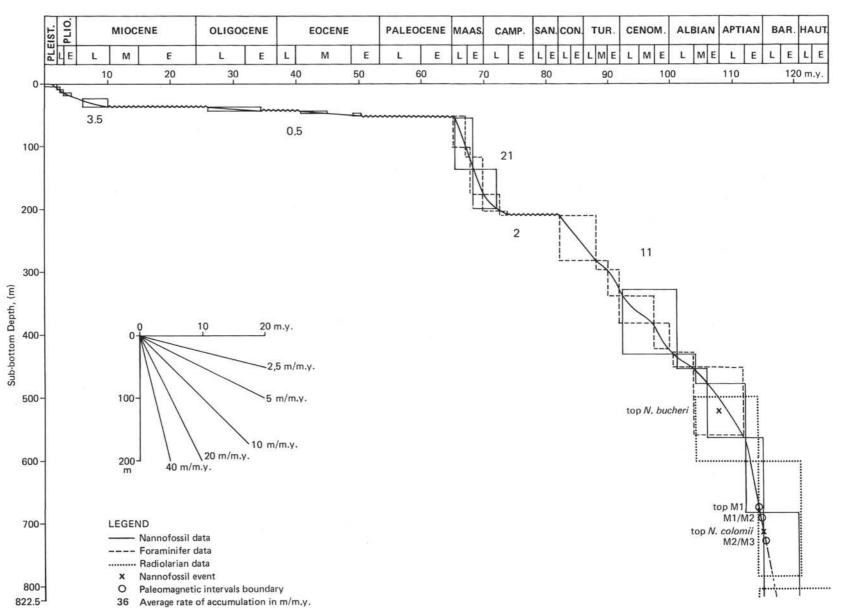


Figure 19. (Continued).

Late Jurassic to Early Cretaceous in age (Larson, 1976). Because of their structurally high position, the western Mid-Pacific Mountains were expected to be a favorable locale for obtaining a thick, homogeneous fossiliferous sediment section for studies of the Mesozoic and Cenozoic paleoenvironments of the central Pacific. It was hoped that the age of the oldest sediments and recovery of basement rocks would help unravel the history of construction, destruction, and subsidence of one of the major aseismic rises which constitutes a fragment of the ancient Mesozoic Pacific Plate. Horizontal movement of the western Mid-Pacific Mountains (Fig. 21) could be documented by studies of microfossils, lithologies, sedimentation rates, and paleomagnetism. Because the eastern segment of the Mid-Pacific Mountains was drilled during DSDP Legs 6, 17, and 32, a location on the western Mid-Pacific Mountains segment was selected for Site 463 of DSDP Leg 62.

Stratigraphic Framework

The sedimentary sequence recovered from Hole 463 provides a record of carbonate sedimentation from the Early Cretaceous through the Quaternary. A site-summary chart (Fig. 22) presents most of the geochemical, physical-properties, grain-size, and mineralogical data.


The site has been situated above the CCD throughout its history. The Lower Cretaceous (Barremian) to Quaternary sediments have two 16- to 17-m.y. hiatuses that span intervals from the late Maastrichtian through early Eocene and late Oligocene through middle Miocene. A minor hiatus, or condensed section, occurs in the late Coniacian to early Campanian interval.

The sediment section is divided into four major units, based on lithology. From oldest to youngest, these are a Barremian and lower Aptian limestone unit (Unit IV), a mid-Aptian ashy- and carbonaceous-limestone unit (Unit III), an upper Aptian and lower Albian limestone unit (Unit II), and an upper Albian through Quaternary chalk and ooze unit (Unit I). The youngest unit is further divided into two sub-units, the older is late Albian to late Maastrichtian in age (Sub-unit IB) and the younger is early Eocene to Quaternary in age (Sub-unit IA).

Unit IV, the Barremian and lower Aptian limestone sequence, is more than 190 meters thick. The exact thickness cannot be ascertained, because coring terminated in the unit. The rocks are pelagic limestone and marlstone, interbedded with clastic limestone that contains shallow-water debris, including mollusk, echinoderm, and stromatolite fragments, oolites, rare glauconite, and basalt fragments. Both the frequency of clasticlimestone beds and the maximum sizes of the clasts increase down-section (Fig. 12). The sedimentation rate was high, even though compaction and recrystallization effects have not been accounted for in the calculation (Fig. 20). Nannofossils, poorly preserved and sparse, are not older than Barremian. Foraminifers are absent, probably because of recrystallization. Radiolarians are moderately well preserved, and the lower 20 meters belong to the Sethocapsa trachyostrata Zone, which has been correlated with both Valanginian nannofossils and Barremian foraminifers of DSDP Sites 306 and 307.

At least two reversed-polarity intervals have been identified in the early Aptian. *Chiastozygus litterarius* nannoplankton zone, in sediment Units III and IV, which may correlate with anomaly M0, or with a reversed-interval identified at DSDP Hole 361. The lower-most sediments are thought to be Barremian, (about 118 m.y. old) based on nannofossil and sedimentation-rate data. Strong seismic reflectors, as observed on air-gun seismic-reflection profiles, occur throughout this unit (Fig. 7). Average velocities (V_p) are 3.63 km/s for the section below 670 meters, and 2.89 km/s from 630 to 670 meters (Fig. 17).

Unit III is a 45-meter-thick, lower Aptian cyclic limestone unit that contains abundant volcanic ash and a sequence of organic-rich limestones. The volcanic ash and carbonaceous limestones are superimposed on an

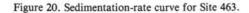


Table 4. Thicknesses and sedimentation rates at Site 463.

Series/Stage	Sub-bottom Depth of Lower Boundary (m)	Thickness (m)	Average Sedimentation Rate (m/m.y.)
Pleistocene-upper Miocene	34	34	3.5
Oligocene-Eocene	46.8	12.8	0.5
Maastrichtian	176.5	129.7	52
Campanian	214.5	38	5
Santonian	224	9.5	6
Coniacian	262	38	10
Turonian	290.5	28.5	5
Cenomanian	433	142.5	18
Albian	528	95	12
Aptian	718	190	27
Barremian	822.5	104.5	36

alternating cyclic limestone unit similar to the overlying unit. The almost complete disappearance of volcanicash beds marks the boundary between Units III and IV. The organic-rich zone, confined to Cores 70 and 71, at depths of 613 to 623 meters, has a maximum organiccarbon content of about 7%. Chert occurs in the unit, but is relatively rare. Foraminifers are absent, but both nannofossils and radiolarians are present. The nannofossils are poorly preserved, but readily identifiable. Radiolarians are reworked and are found in sand layers; part of the radiolarian fauna is probably displaced. The calibration of radiolarian zones to the absolute time scale and to calcareous-fossil zonations is poorly documented at present. Physical properties reflect the volcanic and organic-carbon constituents of the sediment. Velocities (V_p) are low, with a mean of about 2.76 km/s (Fig. 17).

Unit II, the lower Aptian to lower Albian pelagic limestone, is 136 meters thick and represents about 9 m.y. of deposition. A notable characteristic of this unit is its several pastel colors, which seem to alternate in cycles. Contacts between cycles or colors are both gradational and sharp, although most are gradational and burrowed. Graded beds are rare and made up entirely of microfossils, with foraminifers and radiolarians at the base and calcareous nannofossils at the top. Chert is a common component. Radiolarians are reworked and occur only in sand layers. Internal molds consist of iron oxides down to Core 63, and below that core of pyrite. Above Core 56, radiolarians are absent. Foraminifers are rare and poorly preserved; nannofossils are common

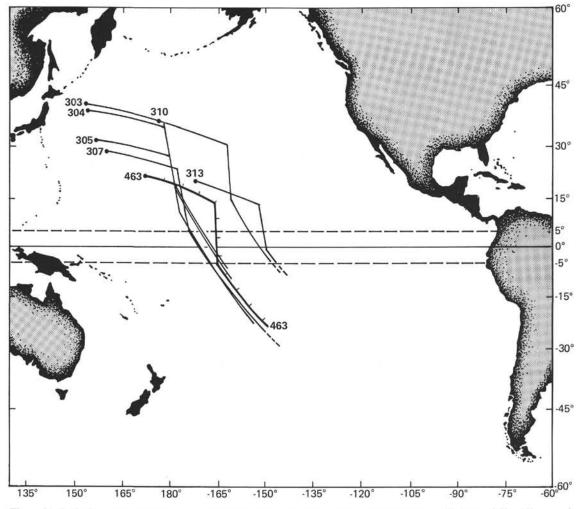


Figure 21. Paths back-tracked through geologic time (10-m.y. increments) for DSDP Leg 32 drill sites and Site 463, according to the rotation model of the Pacific Plate described by Lancelot and Larson (1975).

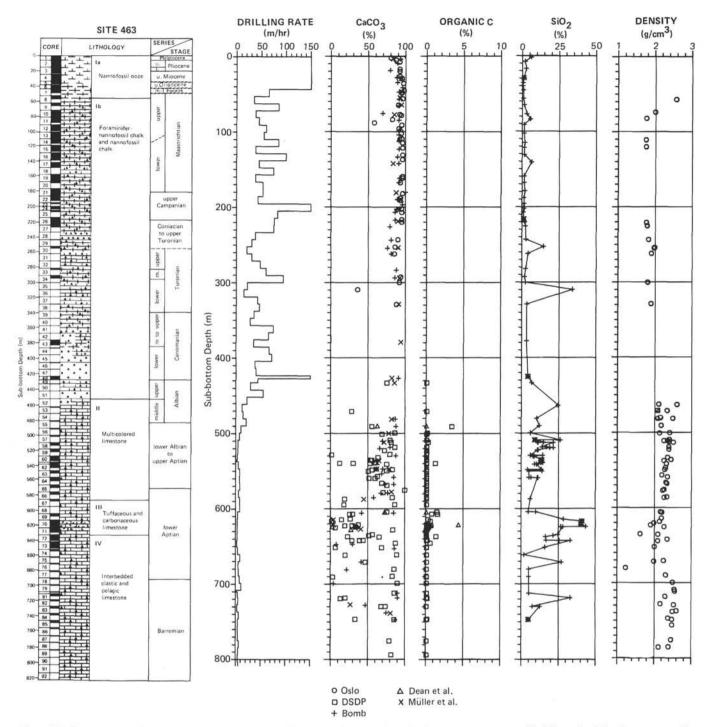


Figure 22. Site-summary chart, Site 463, western Mid-Pacific Mountains. The data for the summary are compiled from the following sources: % CaCO₃ and % organic carbon from Dean (this volume); density, % porosity, water content (% water), and sound velocity from Appendix D (this chapter) and Fujii (this volume); % sand, silt, and clay from Appendix E (this chapter); and clay mineralogy from Appendix C (this chapter) and Nagel and Schumann (this volume).

to rare, and also poorly preserved. Sedimentation rates are relatively low (~15 m/m.y.) compared with those of the underlying units. The top of this unit marks a major acoustic boundary that shows up as a very strong reflector on air-gun seismic-reflection profiles (Fig. 17). Velocities (V_p) measured in the laboratory average about 3.14 km/s. Nannofossil foraminifer chalk and foraminifer nannofossil chalk are the major lithologies of Unit IB, which makes up 405 meters of late Albian to late Maastrichtian age sediment ($\sim 103-67$ m.y.). Rare chert, porcellanite, and limestone constitute parts of the stratigraphic sequence. The chalk is very uniform, mostly stark white, with some mottling, burrows, and

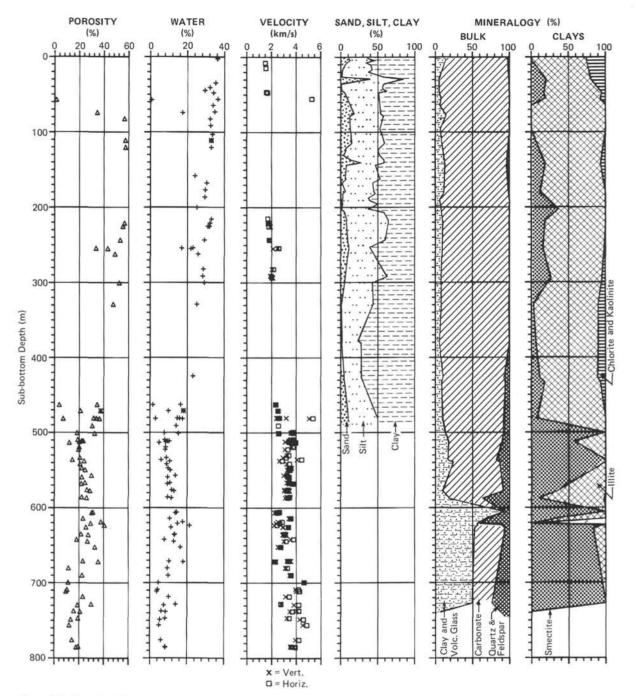


Figure 22. (Continued).

laminations. Foraminifers are well preserved in Santonian through upper Maastrichtian sediments, and are moderately well preserved in the older part of this unit. Nannofossils are abundant to common, and most are poorly preserved. Certain key species are absent in sediments of late Turonian to late Campanian age. Radiolarians are absent. The top of the unit is marked by a 17-m.y. late Maastrichtian to early Eocene hiatus. Sedimentation rates from late Albian to early Santonian averaged about 15 m/m.y., followed by a late Conacian to middle Campanian hiatus. Rates abruptly increased during the late Campanian and early Maastrichtian to about 42 m/m.y. This increased rate probably corresponds to the equatorial crossing of the site (Lancelot and Larson, 1975), and in small part to an influx of displaced shallow-water components. Sound velocity (V_p) measurements on individual samples averaged 1.73 km/s, which agrees well with the interval velocity measured on the air-gun seismic reflection profiles.

The top unit of Hole 463, Unit IA, is 47 meters thick and spans the early Eocene to Pleistocene (about 50 m.y.). The sediment is mainly nannofossil ooze with varying amounts of foraminifers. The sequence is greatly condensed; a major hiatus of about 16 m.y. occurs in the latest Oligocene through middle Miocene interval, separating 13 meters of Paleogene ooze from 34 meters of Neogene ooze. A hiatus may occur between the Eocene and Oligocene strata. Nannofossils are well preserved in the Neogene, and moderately well preserved in the Paleogene. An extraordinary abundance of discoasters occurs in the upper Miocene and Pliocene assemblages. Planktonic foraminifers are moderately well to poorly preserved in the Neogene and Oligocene, and well preserved in the Eocene. Siliceous microfossils are absent from the Paleogene, when sedimentation rates averaged only about 0.5 m/m.y. The slow deposition in part may be caused by short-time hiatuses. Sedimentation rates averaged about 3.5 m/m.y. in the late Miocene to Pleistocene, and all calcareous-microfossil zones are present. Sound velocities (V_p) of individual samples average about 1.53 km/s and agree well with the expected interval velocity calculated from seismicreflection profiles.

Post-Depositional Changes

Major post-depositional (diagenetic) changes in the sediment column involved calcium carbonate changing from biogenic ooze through chalk to limestone, silica changing through porcellanite to chert, and alteration of volcanic ash to smectite and other clay minerals.

Carbonate diagenesis at Site 463 apparently reflects the normal progression from ooze to chalk to limestone, similar to that outlined by Schlanger and Douglas (1974). Microscope evidence shows a major reduction in calcareous microfossils with depth, a reduction in porosity with depth, and the development of cement and overgrowths on undissolved microfossils. This diagenesis is also reflected by changes of physical properties with depth. Major changes in carbonate diagenesis are apparent at about 250 meters, where some chalk beds have been transformed to limestone, and at about 450 meters (between Units I and II), where most chalk has been converted to limestone.

Silica diagenesis is evident throughout most of the Cretaceous strata in Hole 463. All graduations from siliceous limestone to porcellanite to chert are evident. Significant changes can be observed from microscope studies, including replacement of calcite by silica minerals, void filling, and recrystallization of radiolarians (Fig. 12). Diagenesis has not followed a simple progression, as outlined by Wise and Weaver (1974); rather, it seems to have been influenced more by the lithologies and mineralogies of the sediment (Lancelot, 1973) and by burrows (Hein et al., this volume).

Lithologic Unit III contains organic-rich limestone and volcanic ash. The organic-carbon content of one sample is over 7%. The volcanic ash has changed in part to clay, probably caused by a glass-to-smectite conversion.

Physical properties of the sediments reflect the diagenetic changes. Density and sound velocity increase with lithification, whereas porosity decreases. The oozechalk-limestone transitions show the progressive changes well. Ooze has high porosity (50-70%), low density (1.5-1.7 g/cm³), and low velocity (1.53 km/s). Chalk has lower porosity (45-60%), higher density (1.7-2.0 g/ cm³), and higher velocity (1.7-1.9 km/s). Limestone in lithologic Unit 4 has high density $(2.1-2.4 \text{ g/cm}^3)$ and high velocities (2.9-3.6 km/s). Limestone in Unit 3, with its included volcanic ash and organic carbon, has a density of almost 2.2 g/cm^3 and a velocity of 2.76 km/s, values significantly lower than those in both underlying and overlying limestones. The acoustic stratigraphy reflects the diagenetic changes, as shown by Schlanger and Douglas (1974). Prominent reflectors occur at ooze/ chalk and chalk/limestone transitions, and possibly where thick chert beds are present.

Depositional History of the Western Mid-Pacific Mountains from Early Cretaceous to Recent Times

The litho- and biostratigraphic framework obtained from the sediment column penetrated at Site 463 allows us to describe the evolution of the depositional environment in the wesern Mid-Pacific Mountains. At present, the age of the Mid-Pacific Mountains is not well known (Larson, 1976). However, the oldest sediments at Site 463 are of Barremian age, approximately 20 m.y. older than those overlying basaltic rocks at Site 171 (Winterer, Ewing, et al., 1973), and approximately 40 m.y. older than those overlying the volcanic basement at Site 313 (Larson, Moberly, et al., 1975). It is clear, therefore, that the structural high of the western Mid-Pacific Mountains is considerably older than previously believed. Comparison with the results obtained at the other sites, where basement rocks have been reached after penetrating the entire sediment column (Fig. 1), makes it clear that the Mid-Pacific Mountains represent a complex structural high whose segments have been built or added to by volcanic events stretching over the extraordinarily long time of at least 40 m.y.

It is difficult to reconstruct the paleodepth of the oldest deposits at Site 463 because they consist of pelagic limestones interbedded with layers rich in clastic calcareous components (Fig. 13), probably displaced from contemporary neritic environments nearby. Shallow-water fossil assemblages dredged from the flanks of several guyots in the Mid-Pacific Mountains (Hamilton, 1956; Lonsdale et al., 1972) support the idea that many of the submarine volcanoes which surmount this platform were tropical islands surrounded by reefs or carbonate banks during parts of the Early and Late Cretaceous. These deposits, probably close to the coast lines of the ancient volcanic islands, plus the shape and size of the largest components in the detrital limestones, suggest that the source for this material was close by, probably the flat-topped seamount which was crossed during the approach to the site (Fig. 7; Rea et al., this volume).

Because all shallow-water components are apparently displaced, they do not offer direct evidence for the paleodepth of their host strata. The associated pelagic limestones unfortunately lack any fossil evidence of abundant benthic fauna (except large burrows). Because it is known that diverse mollusk faunas populated the flanks of adjacent guyots down to several hundreds of meters water depth (Kauffman, 1976), we assume that these limestones were laid down in intermediate water depths. The rapidly diminishing sedimentation rates (Fig. 20), the decreasing number of layers with displaced material, and the decreasing size of the reworked limestone clasts (Fig. 12) in successively younger sediments indicate that the depositional paleoenvironment at Site 463 deepened rapidly during late Barremian and early Aptian time.

During an approximately 2-m.y. interval in Aptian time (about 112-113 m.y. ago) ashes, which occur as dark readily discernible horizons in the pelagic deposits, mark a period of extensive volcanic activity, which may be contemporaneous with the generation of the volcanic basement of the eastern Mid-Pacific Mountains (Winterer, Ewing, et al., 1973). In part of this interval, the greenish-black and greenish-gray volcanic ashes are intercalated with greenish-black to olive-black limestones and marly clays. The extraordinarily high organiccarbon content and the lamination of several intervals in these rocks (Fig. 10) suggest the development of an oxygen-poor depositional environment. Although most of this interval reveals signs of benthic life, several horizons with thin laminations suggest that the interface between reducing and oxidizing environments coincided with the benthic boundary, or even that it moved into the overlying water masses. Because well-oxygenated sediments of the same age have been sampled elsewhere in the deep Pacific basins (Schlanger and Jenkyns, 1976), the possibility of an ocean-wide euxinic paleoenvironment in the mid-Cretaceous Pacific can be excluded. Although the development of an oceanic midwater oxygen minimum has been suggested as a possible cause for the widespread occurrence of anoxic lithofacies not only in the Pacific, but also in the Indian and Atlantic Oceans, the coincidence of the oxygen-poor paleoenvironment with significant Early Cretaceous volcanism in the western equatorial Pacific, as observed in the Mid-Pacific Mountains and other locations, requires further investigation.

After cessation of volcanic activity during the Aptian, deposition of calcareous sediments continued as the site slowly subsided. The pink, pale-green, greenishgray, brown, and white limestones with their frequent and apparently cyclic color changes, the graded coarser beds enriched in foraminifers and radiolarians at their bases, and the wavy laminations document a period of pelagic sedimentation at this site (Fig. 9). It is particularly interesting to note that the guyots adjacent to Site 463 no longer contributed shallow-water debris, as the displaced material consists entirely of siliceous and calcareous remains of fossil plankton.

The thick interval of Upper Cretaceous calcareous ooze and chalk (more than 400 m) with extraordinarily well-preserved microfossils represents the time when this site passed under the high-productivity zone of the equatorial current system (Fig. 21). Important changes in the sedimentation rates of the dominantly pelagic biogenic deposits suggest that major fluctuations of this current regime were not restricted to the Cenozoic (van Andel et al., 1975), but that they occurred during late Mesozoic times as well.

The calcareous-ooze sequence deposited during the Cenozoic at Site 463 is unexpectedly thin and incomplete. This interval, less than 50 meters thick, includes long hiatuses spanning the late Oligocene to middle Miocene and late Maastrichtian to middle Eocene, whereas the condensed sections between these hiatuses and deposits younger than middle Miocene are typical examples of sediments laid down at intermediate water depths, well above the CCD, under the oligotrophic central subtropical water masses of the North Pacific. The hiatuses are the result of major revolutions of the intermediate water masses, which lead not only to hiatuses, but also to the widespread occurrence of reworked pelagic fossils of Miocene, Oligocene, Eocene and Late Cretaceous age. The upper Miocene and Pliocene nannofossil oozes consist almost entirely of discoasters; it is not vet clear whether this peculiar composition is the result of specialized algal floras in the oligotrophic central subtropical North Pacific surfacewater masses, or the result of selective dissolution of the smaller coccoliths and (or) of mechanical separation of the biogenic sediment components.

Highlights of the Site 463 Coring Record

1. Recovery of Barremian to Quaternary sediments document a 118-m.y. history of the western Mid-Pacific Mountains, which once reached above the sea surface but have subsided to 2 to 3 km water depth.

2. Horizons with displaced shallow-water carbonate components interbedded with pelagic limestone of Barremian and early Aptian age document the presence of a shallow-water carbonate environment in the Mid-Pacific Mountains.

3. Penetration of a lower Aptian sequence of volcanic ashes, clays, and carbonaceous limestones which are in part intensely laminated, indicating a series of paleoceanographic events resulting in deep-sea sediments with high organic-carbon concentrations.

4. Recovery of volcanic ashes which date the Early Cretaceous eruptive events in the western Mid-Pacific Mountains.

5. Successful construction of an Early Cretaceous biostratigraphic framework.

6. Recovery of an expanded calcareous Upper Cretaceous sedimentary section with uniquely well-preserved foraminifer and nannofossil taphocoenoses.

7. Penetration of an unexpectedly thin, partly condensed, and incomplete Cenozoic section with horizons where calcareous fossil assemblages are severely affected by dissolution.

8. Correlation of the seismic reflectors to chalk, chert, and limestone interfaces by means of sediment physical properties. The absence of Cenozoic chert layers and the condensed and fragmentary Cenozoic record of Site 463 were unexpected.

REFERENCES

Chase, T. E., Menard, H. W., and Mammerickx, J., 1971. Topoggraphy of the North Pacific: La Jolla (Univ. Calif.).

- Foreman, H. P., 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 579-670.
- Hamilton, E. L., 1956. Sunken islands of the Mid-Pacific Mountains. Geol. Soc. Am. Mem., 64.

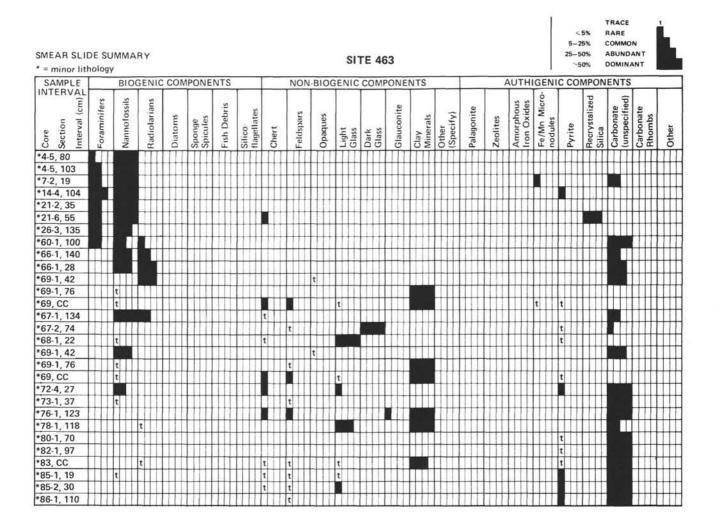
- Heezen, B. C., Fischer, A. G., et al., 1971. Site 44. In Fischer, A. G., Heezen, B. C., et al., Init. Repts. DSDP, 6: Washington (U.S. Govt. Printing Office), 17-39.
- Kauffman, E. G., 1976. Deep-sea Cretaceous macrofossils: Hole 317A, Manikiki Plateau. *In Schlanger*, S. O., Jackson, E. D., et al., *Init. Repts. DSDP*, 33: Washington (U.S. Govt. Printing Office), 33:503-535.
- Keating, B. H., and Helsley, C. E., 1978. Magnetostratigraphy of Cretaceous age sediments from Sites 361, 363, and 364. *In* Bolli, H. M., Ryan, W. B. F., et al., *Init. Repts. DSDP*, 40: Washington (U.S. Govt. Printing Office), 459-468.
- Lancelot, Y., 1973. Chert and silica diagenesis in sediments from the Central Pacific, In Winterer, E. L., Ewing, J. I., et al., Init. Repts. DSDP, 17: Washington (U.S. Govt. Printing office), 377-405.
- Lancelot, Y., and Larson, R. L., 1975. Sedimentary and tectonic evolution of the northwestern Pacific. *In* Larson, R. L., Moberly, R., et al., *Init. Repts. DSDP*, 32: Washington (U.S. Govt. Printing Office), 925–939.
- Larson, R. L., 1976. Late Jurassic and Early Cretaceous evolution of the western central Pacific Ocean. J. Geomagnet. Geoelec., 28:219-239.
- Larson, R. L., Moberly, R., et al., 1975. Site 313: Mid-Pacific Mountains. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 313–390.
- Lonsdale, P., Normark, W. R., and Nowman, W. A., 1972. Sedimentation and erosion on Horizon Guyot. *Geol. Soc. Am. Bull.*, 83:289–316.

- Marshall, N., 1975. Petrology and structural composition of basaltic rock recovered on Leg 32, Deep Sea Drilling Project. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 563-570.
- Saito, K., and Ozima, M., 1973. K-Ar ages of six DSDP Leg 17 samples. Rock Magnet. Paleogeophys., 1:98-101.
- Sayles, F. L., Manheim, F. T., and Waterman, L. S., 1973. Interstitial water studies on small core samples, Leg 15. In Heezen, B. C., MacGregor, I. D., et al., Init. Repts. DSDP, 20: Washington (U.S. Govt. Printing Office), 783-805.
- Schlanger, S. O., and Douglas, R. G., 1974. The pelagic ooze, chalk, limestone transition and its implications for marine stratigraphy. *Internat. Assoc. Sedimentol. Spec. Publ.*, 1:117-148.
- Schlanger, S. O., and Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events: causes and consequences. *Geol. Mijnb.*, 55:179-184.
- van Andel, Tj. H., Heath, G. R., and Moore, T. C., 1975. Cenozoic history and paleoceanography of the central Equatorial Pacific Ocean. Geol. Soc. Am. Mem., 143.
- Winterer, E. L., 1976. Anomalies in the tectonic evolution of the Pacific. Am. Geophys. Union, 19:269-278.
- Winterer, E. L., Ewing, J. I., et al., 1973. Site 171. In Winterer, E. L., Ewing, J. I., et al., Init. Repts. DSDP, 17: Washington (U.S. Govt. Printing Office), 283-334.
- Wise, S. W., and Weaver, F. M., 1974. Chertification of oceanic sediments. Internat. Assoc. Sedimentol. Spec. Publ., 1:301-326.

APPENDIX A Smear-Slide Summary, Site 463

SMEAR SLII * = minor lith										S	ITE	463	Ľ.									5-2 25-5 >5	0% 0%	TRAI RAR COM ABUI DOM	E MON NDA	NT	Ŀ
SAMPLE		BIOGENI		IPONE	NTS	-		NON	BIO	GEI	NIC	сом	PON	EN	TS	_		- +	UTH	1	NIC	CO	-	IEN.	TS	-	-
Core Section Interval (cm)	Foraminifers	Nannofossils Radiolarians	Diatoms	Sponge Spicules	Fish Debris	Silico- flagellates	Quartz	Feldspars	Heavy	l inht	Glass	Dark Glass	Glauconite		Clay Minerals	Other (Specify)	Palagonite	Zeolites	Amorphous Iron Oxides	Fe/Mn Micro-	nodules	Pyrite	Recrystalized	Carbonate	(unspecified)	Carbonate Rhombs	Other
1-1, 110			Ш	Ш			Ш		Ш	t	Ш	Ш	Ш	Π				Ш	Ш	t	\square	Ш	Ш		П	Ш	Ш
1-2, 110 1-3, 70	+		++++	++++			+++		##	t	+++	+++	\square	++				+++	$\left \right \right $		++	##			++	₩	
1.4,70	-		++++	++++	++++	++++	+++	++++	\mathbb{H}	t	+++	+++	$\left\{ + \right\}$	++		-+++-		+++		t	++	+++			++	+++	++++
2-1,70										t																	
2-1, 135	-		++++	++++					-	1	111	+++						+++		t	++	+++		+++	++	₩	
2-2, 20 2-2, 110	+		++++	+++	$\left \right $	++++	+++		$\left \right $	t	+++	+++	+++	++		+++		₩	$\left \right $	t	++	+++		+++	+	₩	++++
2-3, 100			1111				111				+++	+++		tt							Ħ				11		
2-4, 100											111										1	Ш					
2-5, 100 2-6, 80			++++	++++-			++++		+++		+++	++++	+++					+++-		t	++	+++		+++	++	+++-	+++++
2-7,25			++++	++++		1	+++	++++		t	+++	+++	+++	ł		+++		+++		t	++	\mathbb{H}		++	++	\mathbb{H}	++++
3-1, 100										Ť				1						t							
3-2, 100			1111				++++				111							111		111	11	111		111		111-	444
3-3, 100 3-4, 100			++++	++++	$\left \right \right $		+++		+++		+++	+++	$\left \right $	++		+++-		+++	$\left\{ + + + + + + + + + + + + + + + + + + +$	+	++	+++		+++	+	+++	++++
3-5, 100			1111				111					+++		tt				111		Ť	Ħ	ttt			Ħ	ttt	
3-6,40										t										t		Ш				Ш	
3, CC 4-1, 100				<u> </u>			+++									++++								111		+++	++++
4-2, 100			$\left\{ + + + \right\}$	++++			+++	++++	\mathbb{H}	t	+++	+++		H		+++-		+++	$\left\{ + + + + + + + + + + + + + + + + + + +$	t	++	+++			Ħ	+++	++++
4-2, 130										T				IT							T				1	Ш	
4-3, 100	-		$\left\{ \left \right\rangle \right\}$	++++			+++		11									111		t	++	111		111	4	111	
4-4, 100	+	t		++++	\mathbb{H}	+++++	+				+++	+++		++			++++	+++		t	++	+++		+++	+	₩	++++
4-6, 100	+										111	111		Ħ				ttt	1111		Ħ	ttt			tt	tt	
4, CC			Ш	Ш			TH											111	Ш	t	\prod	Ш			\square	Ш	
5-1, 100 5-2, 100	+		$\left\{ + + + + + + + + + + + + + + + + + + +$	$\left\{ + + + + + + + + + + + + + + + + + + +$			+++	+			+++	+++	$\left \right $	++-				+++	$\left \right \right $	+++	+	$\left \right $		+++	+	+++	
5, CC							+++		Ht		111	+++	H	H				Ħ	\mathbb{H}		++	ĦĦ	HH		Ħ	+++	HHH
6-1, 100											Ш			I											Ш		
6-2, 100 6-3, 100							+++			11			11							+++		111		111	++	111-	
6-4, 100					HH	++++	+++		\mathbb{H}	+++		+++	$\left \right $	+				+++		+++	+	₩		+++	+	+++	HHH
6-6, 11												ttt		Ħ							Ħ	ttt			Ħ		
6-6, 30																					\square						
7-1, 100			++++	++++		++++	+++			+++	+++	+++					++++	+++	$\left \right \right $	+++	++	+++			+	+++-	++++
*7-2, 19				++++-			+++														++				H		++++
7-2, 100																				\square					Ħ		
7-3, 20 7-3, 40			++++				+++			11	111			Ц.						11	1	111				111-	444
7-4, 20			++++	++++-		++++	+++	+++-			+++	+++	+++				+++	+++	+++	+++	+	+++			₩	+++-	
7, CC			1111				111														#	ttt			Ħ	tt	
8-1, 100												Ш		T							11				T		
8-2, 40 8-2, 115			++++				+++-				111	##						111-		111	#				++		++++
9-1, 20			++++				+++	+++-		H	+++	+++	\parallel	\mathbb{H}		+++		+++	$\left \right \left \right $	+++	++-	+++		t	+	+++	++++
9-1,79																				111				t		ttt	
9-2, 71	-													П							1			\prod	T		
9-3, 40 10-1, 20	+		╉╫╫╋	++++			+++	+++			+++	+++		+++		++++	++++	+++		1++	++	+++		t	++	+++-	++++
10-1, 135	H									H	\ddagger						++++				+			+++	$^{++}$	+++	++++
10-2, 50											Ш									111					11		
10-3, 60 10-6, 4			++++	+++++			+++-	+++-		#	+++	+++		11		++++	++++	+++-		+++	++-	+++		t	++	+++	++++
10-6, 60		+++	++++		+++-		+++	++++	++-		+++	+++		H		++++	++++	+++		+++	+	+++		+++	+	+++-	++++
11-1, 100							111				Ш										11						

SMEAR SLID * = minor lith												TE 46								5-2 25-5 `>5	i0% i0%	TRACE RARE COMMO ABUND DOMIN	ON ANT ANT	
SAMPLE			SENIC	CON	IPONE T	NTS			NON	-BIOC	SENIC	COM	PONE	NTS	1	+	A		1	IC CO		VENTS	1	
Core Section Interval (cm)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge Spicules	Fish Debris	Silico- flagellates	Quartz	Feldspars	Heavy Minerals	Light Glass	Dark Glass	Glauconite	Clay Minerals	Other (Specifv)	Palagonite	Zeolites	Amorphous Iron Oxides	Fe/Mn Micro- nodules	Pyrite	Recrystalized	Carbonate (unspecified)	Carbonate Rhombs	Other
11-2, 25																				1111		t		
11-5, 75 12-1, 100					++++	++++	++++	+++-			++++	$\left\{ + + + + + + + + + + + + + + + + + + +$		++++	+++	++++		$\left\{ + + + \right\}$		++++	$\left\{ + \right\}$	++++		++++
12-4, 100																								
13-1,70														Π						1111				
13-3, 70 13-6, 70					$\left\{ \right\}$			111								++++			++++	++++		++++	++++	+++++
14-1, 100														++++		1111				<u>++++</u>		1111		
14-1, 100																								
14-3, 100 *14-4, 164								+++	+++			$\left \right \right $		++++	++++	++++			++++			++++	$\left\{ \left \right\rangle \right\}$	+++++
15-1, 90																				- ++		111		
15-3, 90									11						Ш									
15-5, 90 16-1, 120				+++					+++-					++++				$\left \right \right $	++++			++++	₽₩	+++++
16-3, 70					++++			++++	+++					+++										
16-6, 50																					Ш			
17-1, 90 17-3, 100					++++									++++		++++			+++	++++		++++	$\left\{ \left\{ \right\} \right\}$	+++++
17-6, 90														++++						++++		+++	++++	+++++
18-1, 5																								
19-1, 70 19-3, 70					$\left \right \right $															++++		++++		+++++
19-3, 70					$\left\{ + + + + + + + + + + + + + + + + + + +$			+++			$\left\{ \right\}$			++++	$\left \right $	++++			$\left \right + \left \right $	++++	$\left\{ \left \right\rangle \right\}$	++++	++++	+++++
20-1, 80																								
21-2, 70																								
21-4, 70 22-1, 80	-		-+++-		++++-			++++	+++	t	$\left\{ + \right\}$				+++	++++			$\left \right \right $	++++		++++	++++	+++++
22-3, 80																					t			++++
22-5, 40																								
23-1, 70 24-1, 70					$\left\{ \right\}$			111								++++				$\left \right \left \right $		111	1111	
24-1,70	÷			+++	$\left \right \left \right $				+++	+++				++++				HH	+++	+++	t		+++	++++
25-1,70	+													111									1111	
26-2,80																								
26-4, 80 26-5, 35	-							++++	+++		++++-		++++	++++		++++			+++	++++		++++	++++	+++++
26-6, 85			++++						+++					++++						++++	t	++++	++++	++++
27.1,85																						t		
29-1, 70 30-1, 20						111		111	+++-						111	1111				1111		t	1111	
30-2, 82			++++	+++					+++					+++	$\left\{ + + \right\}$			$\left \right $	+++			t	++++	+++++
31-1, 33			t								t											ŤH		
31-1, 110																								
33-2, 40 34-1, 35			++++	+++				1111										$\left \right \right $				++++	 	+++++
34-1, 75			+++					++++							$\left \right \right $					łłłi		+++	++++	++++
34-3, 45																								
34-3, 80 35-1, 20		the								444														
36-1, 18			++++	+++	++++			++++	+++-	+++		+++	+++			++++		++++	t					++++
38-1, 25																								
39, CC	1														Ш				t					ШП
40, CC 42, CC	-+-		+++	+++				++++	++++				+++									t		++++
43-1,75	+							++++			t		+++	++++		++++	++++			t		++++	t	++++
43-3,85													11							t	t			
43-5, 85	4		+11					+111	11			t		HII	HII	H						111	\prod	Π
44-1, 82				111				1111							Ш					t	t		Ш	Ш


Appendix A. Continued.

SMEAR SLIE * = minor lith			RY									SIT	ГЕ 4	63									5- 25-1	5% 25% 50%	TRACE RARE COMM ABUND DOMIN	DN DAN		
SAMPLE		BIOC	GENIC	CON	PONE	NTS	-	_	NO	N-BI	OGI	INIC	CON	PON	ENT	S	-	1	1	AUTH	1.	-	c co	-	NENTS	5	_	_
(cm)	Foraminifers	ssils	ans			LIS.	~		1787					te				a		aus	Fe/Mn Micro-			Recrystalized	(jed)			
on val (min	Nannofossils	Radiolarians	smo	nles	Fish Debris	Silico- flagellates	4	Feldspars	>	rals			Glauconite		Minerals	Other (Specify)	Palagonite	ites	Amorphous Iron Oxides	N N	ules	e	ysta	Carbonate (unspecified)	Carbonate	Rhombs	5
Core Section Interval	Fora	Nanr	Radi	Diatoms	Sponge Spicules	Fish	Silico- flagell	Quartz	Feld	Heavy	Minerals	Light Glass	Dark	Glau	Clav	Mine	Other (Speci	Palaç	Zeolites	Amo	Fe/N	nodules	Pyrite	Recry	Carb	Carb	Rho	Other
48-1,80			ĪĪ	Ш	IIII	ΠĪ	IIII	Ш	ΤĪ		Ī	ШĨ	Π	ШŤ	ШĨ	Ī	ΠĪ	TIT	Ш	Π	П	П	t	Ш		Ţ	Π	Ш
48-3, 60 49, CC	+			+++	++++	++++	++++				1	t	$\left\{ + + \right\}$	₩	+++	₩	$\left \right \right $	++++	+++	++++	۲		+++		t	╂	++-	
50-1,45												t				tt					Π		t					
52, CC 53-1, 103	-	-										Щ		111-		1					11				-	4		
54, CC	-			+++	++++						++	+++		++		╫		++++	+++	 	₩	H	+++			H	++-	
54, CC																Ħ						Ш				H		
55-1, 3 55-1, 60	+			+++		+++	++++					+++		₩					+++		₩		+++			t	┈	
56-1,88			t													Ħ					Ħ					ľ		
56-1,93					\square	HT						11				1		111	11		1	H	t	111		11	11	
56-1,96 57-1,29								+ +		++-						++-			+++		+					+	H	
57-1, 112	T																		Ш	Ш		Ш						
57-1, 145 58-1, 91				+++	+++	+++	$\left \right \left \right $			+		+++		+++	$\left \right $	++-	$\left \right $		+++	$\left \right \right $	╂		+++		-	H	++	
58-1, 95								t													tt		t					
59-2, 18											1	t				1			11	Ш		Ш				t		
59-2, 28 60-2, 119		2		+++		+++	++++			+	+			+++	$\left \right $	╫	$\left \right \right $		+++	$\left \right $	╈	₩	+++			+	++	
60-2, 125											1	t									I	Ш				Ħ	Ħ	
62-1, 83 62-1, 99		t		+++												++-			+++	t	++		+++			-		
62-1, 106		t						t	t		H			$^{++}$		Ħ				t	Ħ					H		
62-1, 137		t														1				t	1							
62-2, 24 62-2, 32		t t		+++	++++	++++	++++	$\left \right $		++-		+++	t	+++		++			+++	t	+++		+++		-	H	┈	
*62-2, 70		t						t	t							Ħ					Ħ				t			
*62-2, 122 62-2, 132		t				$\left \right \left \right $		t					t							t						t		
63-2, 5						+++	++++			+++		Ħŧ		+++	+++	H		++++	+++		Ħ	Hł	111	HH	t	H	Ħ	
63-2, 30												##		111							T	Ш				H		
63-2, 45 64-1, 35			t		+++				t	+++	++	₩		₩		++			+++	$\left \right \right $	₩		+++	++++		₩		
64-1, 68										t																Ħ		
65-1, 20 65-2, 65				+++			$\left \right \left \right $			t	1										#	Ш	+++			++		
66-1, 108								t			1			₩		+					+		+++			Ħ		
*66-1, 140												Ш							Ш			Ш	Ш					
*61-1, 28 68-1, 22		t			$\left \right \left \right $			t	t	+++				╢		-			+++		╂		t			╢		
69-1, 10								t	t																			
69-1, 140 69, CC								t	t					111-														
70-1, 4		t		+++						t				+++		+			+++		╫		t t			H	+++	
70-1, 67		t														0	Organi	cs		Ш	#	Ш	t			H		
70-1, 95 70-2, 40		t		+++	$\left \right \left \right $					+++						++	t		+++	$\left \right \right $	++	$\left \right \right $	t	$\left \right \right $		Н		
70-6, 30																					++					H		
70-7, 17	11			111		Ш							Ш	111		П	Ш		111	Ш	T	11	Ш			H	П	
71-1, 20 71-2, 80		+++								++			$\left \right \right $	+++		Н		++++	+++	$\left\{ + + \right\}$	+	$\left \right \right $	+++	+++		++		++
71-4, 39																						Ħ						
72-2, 15	++++		t	+++						+++	1			\prod		1			+++		#	##		$\left \right \right $		H		
72-4, 27												+++		+++-		+++		+++++			+	H	+++	+++		H	++	
73-1, 100			t								1					Ħ				ПЦ	Ħ	Ш				H		
73-3, 87				Ш	Ш								Ш						111	Ш		Ш						

Appendix A. Continued.

Appendix A. Continued.

MEAR SLIE = minor lith SAMPLE				CON	1PONE	NTS			NOA	BIO		E 463		NITS						5-2 25-5 `5	5% 15% 10%	TRACE RARE COMMO ABUND DOMINA	ANT	Ļ
Section all	Foraminiters	Nannofossils	Radiolarians	Diatoms	Sponge Spicules	Fish Debris	Silico- flagellates	Quartz	Feldspars	Heavy Minerals			Glauconite	Clay Minerals	Other (Specify)	Palagonite	Zeolites	Amorphous Iron Oxides	Fe/Mn Micro-	Pyrite	Recrystalized	Carbonate (unspecified)	Carbonate Rhombs	Other
73-3, 97	TT	TTT	TTT	TTT	TIT	TTT	tim	TT	tītī	TTT	TTT	TIT	TT	tīīī	TTT	TT	TTT	titt	ttt	t	TTŤ		TT	TTT
73-3, 107																				t				
74-1, 149																		ΠT		t				
74-1, 108										1111		1111					IIII			t		1 3		HH
76-1, 38													t				IIII	TTT	TTT	t				
78-1, 71																	THT	TTT		t				
80-1,70										1111										t				
80-1,40	TH				1111				1111	1111	111	111		1111		111		1111	1111				+++	1111
82-1,45								t	t			111						1111		t	1111		111	HH
82-1, 133								111	1111	1111		1111								t				HH
83-1, 27														t							1111			HH
84-1, 10												111											111	
84-1, 126																111								
86-1, 27											1111	++++				+++				+			+++	++++

							Bu	lk Mineralogy	(%)					Cla	y Mineralo	gy (%)	
Core	Section	Interval (cm)	Sample	Sub-bottom Depth (m)	Clay Minerals + Volcanic Glass	Quartz	Feldspar	Carbonates	Opal-CT	Pyrite	Clinoptil- olite	Others	Smectite	Illite	Chlorite	Kaolinite	Other
Ť.	3	20-22	1	3.21	14.1	2.6	-	83.3	-		100		-	74.5	17.9	7.6	-
4	4	82-84	2	29.33	4.8	1.0	-	94.2					20	60.0		201	-
7	3	90-92	3	47.41	5.1	-	-	94.9	-			_	17.1	77.7		5.2	Cpt
8	2	35-37	4	54.86	7.7	_		92.3					19.5	73.4		7.1	Cpt
9	2	46-48	5	64.47	5.8	-	-	94.2	-					100			Cpt
10	4	88-90	6	77.39	14.4	1		84.6	_		-	_		100	_		Cpt
12	4	56-58	7	96.07	6.4	_	_	93.6			_			100	_		Cpt
17	3	83-85	8	142.34	12.8	3.9	_	83.3	-	-	_		18.9	74.5	_	6.5	-
21	3	130-132	9	180.81	11.5	1.3	_	87.2		_			11.7	88.3	_	200	-
22	3	110-112	10	190.11	5.8	Tr.		94.2	-		-	-	22.6	77.4			
24	3	61-63	11	203.12	7.8	-	_	92.2	-	_	_		36.0	64.0	-	-	-
26	3	124-126	12	218.75	9.8	0.5		89.7		_	_	_	18.4	81.6	_		_
30	1	106-108	13	253.57	9.1	0.5	_	90.4		-	-		15.4	82.5	0.3	1.7	-
34	3	70-72	14	294.21	7.7	-	_	92.3		-	-	-	26.4	68.7		4.8	_
38	1	31-33	15	328,82	7.9	1.1		91.0	_		_		2.9	87.0	1.4	8.7	-
43	3	45-46	16	379.45	5.3	0.5	_	94.2	_		-	-	6	83.7	5.2	5.1	
48	3	50-52	17	427.01	10.3	7.6	_	82.1	_	_		_	11.1	77.8		1.1	_
50	ĩ	36-38	18	433.37	8.5	5.6		85.9		_	_	_	18.1	75.1	6.7		
55	1	100-101	19	481.50	9.7	8.2	-	82.1	_	_			7.7	92.3		-	
57	1	81-82	20	500.21	13.6	8.2	_	78.2	_	_	_	_	100	_	_		_
58	3	7-8	21	512.07	17.8	10.4		71.8					58.3	41.7			-
61	1	107-108	22	536.57	16.8	7.8	_	65.4		_	_	_	100	_	_	-	
62	2	15-20	23	539.17	24.1	9.1	4.0	62.8		_	_		100		_	_	_
66	2	84-86	24	577.85	9.4	8.5	4.0	82.1		_		_	35.3	64.7	_	_	_
67	2	108-109	25	587.58	19.1	36.0	_	44.9		_		_	10	87.8	2.2	-	_
69	ĩ	145-146	26	605.45	92.4	-	3.0			4.6			100	-	_		_
70	i	96-97	27	614.46	68.0	15.6	5.0	3.8	8	1	4		33.4	66.6			-
70	6	40-41	28	621.40	56.0	22.2	_	3.8	11	7	-	_				_	_
70	7	25-26	29	622.75	57.0	3.9		32.0			7		100		121	2	
71	3	100-121	30	627.20	52.8	5.2	~1	41.0			1	_	83.5	16.5		-	
82	cc	0-1	31	727.30	19.0	34.1	~1	26.9		_		-	100	10.5	- 21		- 2
84	2	46-47	32	738.96	6.6	12.6		80.8		-			100		- E -	100	123

APPENDIX B Coarse-Fraction Components, Site 463.

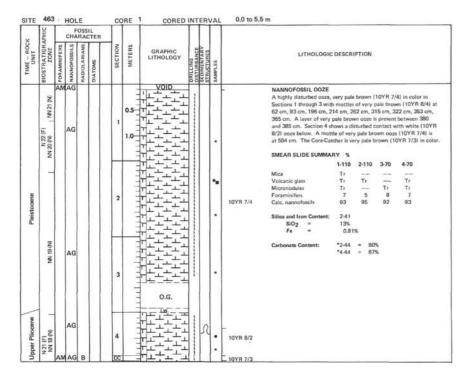
							C	oarse-l	Fractio	n Con	npone	nts							P: present R: rare < 5%
	Foraminifer Preservation	Planktonic	Foraminifers	aminifers	8	cules		agments	Echinoderm Fragments	ents	ass	ins			Rhombs	egates		nents	R-C: rare to common C: common to abundant 25-50% A: abundant 75% VA: very abundant >90%
Sample	Foraminifer	Whole	Fragments	Benthic Foraminifers	Radiolarians	Sponge Spicules	Ostracodes	Mollusk Fragments	Echinoderm	Fish Fragments	Volcanic Glass	Quartz Grains	Mica	Pyrite	Carbonate Rhombs	Chalk Aggregates	Limestone	Chart Fragments	P: poor M: moderate G: good Comments
1-1, 7-9 cm 1,CC 2,CC 3,CC 4,CC 5,CC 6,CC 7,CC 8,CC 9,CC 10,CC	M M P M G M-G M M-G	A C-A C C A C-A A VA VA VA VA	C C-A A R-C C-A R R R-C R-C R-C	R R R R R R R R R R R R R R R R R R R	Р	P P	R R	Р	P P R P P	P P R		Р							
11,CC 12,CC 13,CC 14,CC	M M M G	VA VA VA VA VA	R-C R-C R-C R-C	R R R R		Р			P			R						R R R R	
15,CC 16,CC 17,CC 18,CC 19,CC	G G G	VA VA VA	R-C R-C R-C	R R R														R R)
20,CC 21,CC 22,CC 23,CC 24,CC	G G G	A A A A	C C C C	R R R		Р	Р	Р										R R R	Lot of small sized
25,CC 26,CC 27,CC 30,CC 31,CC	G G P-M	A A A	C C C	R R R	R											R	VA	R R R-C	
33,CC 34,CC 35,CC 37,CC 38,CC	M M P P	VA VA VA VA VA	с с с с с с с	R R R R R					Р					Р		R R R R		P R R R) very small coarse fraction
39,CC 40,CC 41,CC 42,CC 43,CC	M P-M P-M M	A C C C C	C R R R R	R R R R	R											R-C C A C		P R-C R R R	} very small coarse fract.
44,CC 46,CC 48,CC 49,CC 50,CC	M M M M	C C A C	R R R R R	R R R R	A P C	Р	Р							Р		R C C R R		A C	very small coarse fraction
52,CC 53,CC 54,CC 55,CC 56,CC	M P VP P	R-C R R-C R R	R R R	R R R	A A A												R-C R-C R-C VA R	R-C	
57,CC 58,CC 59,CC 63,CC 64,CC	P P P	R R R		R	R-C A												VA VA VA VA		
65,CC 66,CC 67,CC 70,CC 75,CC	P P	P R			A C	P R			P*	Р				R	R		VA VA C A VA	R	*silicified

APPENDIX C Bulk Mineralogy and Clay Mineralogy, Site 463 (see Nagel and Schumann, this volume)

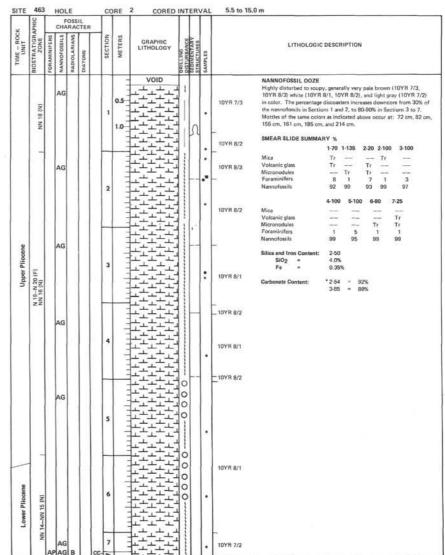
APPENDIX D Physical-Property Measurements, Site 463 (see Fujii, this volume)

					Velocity (km/s)			GRAPE Wet-Bulk Densi (g/cm ³)	ity			Gravim	etric			
6	C -1	Interval	Sub-bottom Depth		Hori	iz.			Porosity	Heat Conductivity	W.C.	Den. (g/	Porosity	Impedance		Mean Wet-Bull
Core	Sect.	(cm)	(m)	Vert.	н1	H ₂	Mean	$(\varrho_g = 2.7)$	(%)	(kcal/mh• °C)	(%)	cm ³)	(%)	$(10^{5} \text{ g/cm}^{2} \cdot \text{s})$	Remarks	Density
1		#1)	0.0-5.5					#2)							#1) Averaged ±5 cm Nannofossil Ooze BRN (10YR 8/4)	
	2	75						1.66	62.2		37.52				(I-A: cores 1 to 6)	
	3	45						1.67	61.7						(1-A: cores 1 to 6)	
2	4	40	5.5-15.0					1.65	62.8 62.2						(1-A: cores 1 to 6) (1-A: cores 1 to 6) (10YR 7/3 ~ 8/2)	
4	2	75 75	5.5-15.0		1.50			1.52	70.4					2.28	(1-A: cores 1 to 6) (101R 7/3 - 8/2) (I-A: cores 1 to 6) (10YR 7/3 - 8/2)	
	3	75						1.51	71.0					2120	(I-A: cores 1 to 6) (10YR $7/3 - 8/2$)	
	4	75						1.54	69.3						(I-A: cores 1 to 6) (10YR 7/3 - 8/2)	
	6	75			1.125			1.55	68.8					2.40	(I-A: cores 1 to 6) (I0YR 7/3 - 8/2)	
3	7	20-23	15.0-24.5		1.55			1.54	69.3					100000	(I-A: cores 1 to 6) (10YR $7/3 \sim 8/2$)	
5	2	75 75	15.0-24.5					1.54	66.6						(I-A: cores 1 to 6) (10YR 7/3) (I-A: cores 1 to 6) (10YR 7/3)	
	5	75						1.56	68.2						(I-A: cores 1 to 6) (10YR 7/3)	
	6														(incomplete data belt slipping)	
4	3	75	24.5-34.0					1.56	68.2						Nannofossil ooze (10YR 7/4 ~ 7/2)	
-	6	75	24.0.28.0					1.74	57.3						Nannofossil ooze (10YR $7/4 \sim 7/2$)	
5	1	75 56-58	34.0-38.0					1.69	60.6		36.45				Nannofossil ooze (10YR 7/4 ~ 7/2)	
6	2	10	38.0-43.5					1.70	60.0		50.45				Nannofossil ooze (10YR 7/4 ~ 7/2)	
		120-122						#2)			33.25				#)2) Analog GRAPE data	
7	1	2000	43.5-53.0												Cores 7 to 48	
		121-126									30.45				Foraminifer Nannofossil Chalk	
	2	30, 75, 120(#3)						1.76	56.1						(10YR 7/3) and Nannofossil Foraminifer Chalk	
	2	50, 75, 120						1.70	2011						(1-B: cores 7 to 51)	
	3	30, 75, 120		(10)	1.60			1.75	56.9					2.80	Nannofossil Foraminifer Chalk	
		124-126		(106)	1.68			10.020	2013		35.30			2.94	(I-B; cores 7 to 51)	
8	1	30, 75, 120	53.0-62.5					1.33	81.8						Nannofossil Foraminifer Chalk (I-B: cores 7 to 51)	
	2	30, 75, 120						2.07	37.4						Nannofossil Foraminifer Chalk	
	~	50, 10, 100							2714						(I-B: cores 7 to 51)	
		119-121			5.34(?)					2.59	0.55	2.57	1.38	13.72	(Chert nodule)	
	3	25, 50						1.60	65.9						(10YR 7/3)	
9		26-27 35, 70, 120	62.5-72.0					1.73	57.9		37.73				(Chert nodule)	
2	2	30, 75, 122	02.3-72.0					1.71	58.1						(Chert nodule)	
		36-38						1000			35.01				(5000 00000)	
	3	30, 80, 90						1.81	53.3						(Chert nodule)	
10	1	100-102	72.0-81.5		2.45(?)					2.61	35.96	1.00	24.01	4.88	(Chert nodule)	
10	4	77-80 30, 75, 120			2.45(:)			1.76	56.1	2.51	17.94	1.99	34.91	4.00	(Chert nodule) Foraminifer Nannofossil Chalk	
		50, 15, 120						1170	2011						(10YR 7/3) and	
	5	30, 75, 120						1.70	59.9						Nannofossil Foraminifer Chalk	
	6	30, 75, 120						1.76	56.4	2.52	22.25	1.00			Nannofossil Foraminifer Chalk	
11	1	88-90 25, 50	81.5-91.0					1.71	59.0	2.73	33.35	1.76	57.2		(Nannofossil Chalk) (Nannofossil Chalk)	
12	1	16-17	91.0-100.5					1.71	59.0		33.67				(Naliliolossii Chaik)	
	2	30, 75, 120						1.81	53.3						(Nannofossil Chalk)	
	3	30, 75, 120						1.83	51.8						(Nannofossil Chalk)	
	4	30, 75, 120						1.80	53.9 55.0						(Nannofossil Chalk) (Nannofossil Chalk)	
13	5	30, 75, 120 94–95	100.5-110.0					1.78	55.0		34.66				(Nannotossii Chaik) Foraminifer-Nannofossil Chalk	
1.5	5	30, 75, 120	100.5-110.0					1.97	43.5		54.00				Foraminifer-Nannofossil Chalk	
14	1	30, 75, 120	110.0-119.5					1.83	52.2						Foraminifer-Nannofossil Chalk	
	22.5	102-104							12120 E.V.	2.74	34.09	1.75	58.1		(Foraminifer-Nannofossil Chalk)	
15	3	30, 75, 120	110 5 120 0					1.78	54.9 55.9						(Foraminifer-Nannofossil Chalk) Foraminifer-Nannofossil Chalk	
12	3	30, 75, 120 78-80	119.5-129.0					1,70	55.9	2.76	37.08	1.75	58.2		(10YR 8/1)	
	3	30, 75, 120						1.80	53.7		0.100	(*****))			(lighter than 10YR 8/1)	
	5	30, 75, 120						1.80	54.0						(lighter than 10YR 8/1)	
16	2	30, 75, 120	129.0-138.5					1.80	53.8						(with chert chips)	
	4	30, 75, 120 30, 75, 120						1.80 1.82	53.5 52.6						(with chert chips) (with chert chips)	
	0	50, 75, 120						1.02	32.0				_		(with energemps)	

					Velocity (km/s)			GRAPE Wet-Bulk Density (g/cm ³)				Gravimo	tric			
			Sub-bottom		Hori	z.				Heat		Den.				Mean
Core	Sect.	Interval (cm)	Depth (m)	Vert.	H	H ₂	Mean	$(\varrho_g = 2.7)$	Porosity (%)	Conductivity (kcal/mh•°C)	W.C. (%)	(g/ cm ³)	Porosity (%)	Impedance (10 ⁵ g/cm ² •s)	Remarks	Wet-Bul Density
17	1	45-47	138.5-148.0		5.23(?)										Chert nodule	
	2	30, 75, 120						1.87	49.5						Foraminifer-Nannofossil Chalk	
	4	30, 75, 120						1.82	52.8						(disturbed with chalk pieces)	
19	6	30, 75, 120 60-62	157.5-167.0					1.87	49.8		24.95				Foraminifer-Nannofossil Ooze Foraminifer-Nannofossil Chalk	
19	2	30, 75, 120	157.5-107.0					1.82	52.7		24.73				Foraminifer-Nannofossil Chalk	
	4	30, 75, 120						1.84	51.6						Foraminifer-Nannofossil Chalk	
	6	30, 75, 120						1.80	53.8						(with chert chips)	
20	1	70, 90, 110	167.0-176.5					2.02	40.6						(with chert chips)	
		80-82	1000								31.60				(with chert chips)	
21	12	53-55 30, 75, 120	176.5-186.0					1.84	51.4		30.69				(with chert chips) (chert chips)	
	4	30, 75, 120						1.84	51.3						(chert chips)	
	6	30, 75, 120						1.90	41.5						(chert chips)	
22	1	55-51	186.0-195.5								30.48				Foraminifer-Nannofossil	
								1.00							2 C M () A () C () C	
	2 4	30, 75, 120 30, 75, 110						1.87	49.8 51.0						(chalk and chert) (Ooze and chalk)	
23	ĩ	35, 80, 115	195.5-199.5					1.82	52.4						(Ooze and chalk)	
24	i	30, 75, 120	199.5-205.0					1.92	46.8						(Ooze and chalk)	
		66-68									26.02				(Ooze and chalk)	
	3	40,80						1.88	48.7						(Ooze and chalk)	
25	2	40, 80	205.0-214.5	21.20	1.20			1.81	53.0						Foraminifer-Nannofossil Chalk	
26	1	58-61 110-112	214.5-224.0	(1.69)	1.69			(1.85)			34.20			3.13	Foraminifer-Nannofossil Chalk	
	3	30, 75, 120						1.85	51.0		34.20				(some chert frag.)	
	6	30, 75, 120						1.85	51.0						(firm and soupy)	
	5	46-48		1.71	1.74		1,73			2.74	33.32	1.76	57.2	3.06	Foraminifer-Nannofossil Chalk	
															(Firm) (Minicore)	
	5	50-52		1.72	1.73		1.73								Foraminifer-Nannofossil Chalk	
27	1	50, 90, 130	224.0-233.5					1.80	54.1						(Firm) (split core) Foraminifer-Nannofossil Chalk	
21	4	30, 90, 130	224,0-235,5					1.00	54.1						(Firm) (Pink 7,5YR 8/4)	
		108-109									33.13				(1000) (1000 (1000))	
		140-142		1.91	1.78		1.85			2.74	32.18	1.78	55.9	3.40		
	CC				5.30(?)										Chert nodule	
29	1	40	243.0-252.5				1.00	1.86	50.5						(5YR 7/1)	
		34-36 52-54		1.79	1.81		1.80	(1.84)		2.75	30.17	1.82	53.7	3.29	(firm Chalk) (firm Chalk)	
30	1	30, 75, 120	252.5-262.0					1.94	45.6	2.13	50.17	1.04	55.1		Limestone and Chalk	
50	14	130-132	20210 20210								23.79				Linestone and Chan	
	2	30, 75, 120						1.93	46.1						Nannofossil Chalk and Limestone	
	00	87-89		2.14	2.21		2.18			2.70	22.61	1.97	43.5	4.22	Chalk (light grey green)	
21	CC	1.6	262.0-271.5	2.51	2.60(?)					2.48 2.75	17.50 26.72	1.99	33.9 49.5	4.99	Limestone (white)	
31 33	1	4-6 30, 75, 120	262.0-271.5 281.0-290.5					2.00	41.5	2.13	20.72	1.90	49.3			
33		107-109	20110-27012					2.00	4112		29.73					
		137-139		2.06	2.17(?)		2.12	(2.00)						4.12	(firm Chalk)	
33	2	30, 75, 120	1230/21260/2					1.81	53.0		10.576.5					
34	1	108-110	290.5-300.0		2.00		1.07	(1.81)			29.37			2.22		
	2	70-72 20, 75, 120		1.91	2.00		1.96	1.90	47.8					3.46	Foraminifer-Nannofossil Chalk	
	÷.	142-144		2.10	2.02		2.06	(1.90)	41.0					3.99	Foraminifer-Nannofossil Chalk	
	3	35, 65						1.82	52.3				•	2.50	(grey stripe Vel to H)	
35	CC	17-18	300.0-309.5							2.68	30.26	1.80	53.2			
38	1	40-42	328.5-338.0					1.02	46.0	2.69	26.08	1.89	48.1			
43	1	30, 75, 120	376.0-385.5					1.93	46.0 44.6							
	3	20, 50, 80 25, 50						1.75	57.0							
48	1	119-121	423.5-427.5					1.1.1 M	- 7.4M		23.85					
1000	2	30, 75, 120	- mmasaul 1770 1770					1.96	44.1							
	3	25, 60, 85	1012101000000	1212223	0.55	10000	131212	2.05	39.1		1.0		22.07		0	10 100
53	1	121-123	460.5-471.0	2.365 5.77(?)	2.32 5.59	2.37	2.35	2.15 2.64	32.65 0.37	2.70 2.67	17.01	2.11 2.60	35.07 4.02	5.04 15.12	Green Limestone Chert (pale brown)	(2.13) (2.62)


Appendix D. Continued.

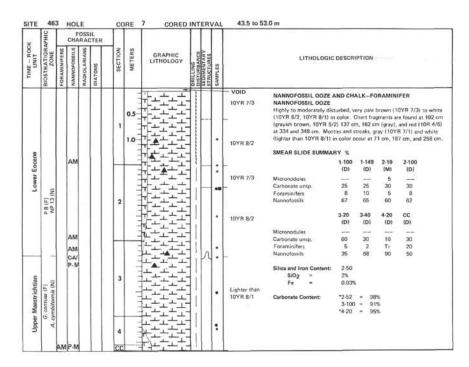
					Veloc (km/			GRAPE Wet-Bulk Density (g/cm ³)				Gravim	etric			
Core	Sect.	Interval (cm)	Sub-bottom Depth (m)	Vert.	Ho Hi	oriz. H2	Mean	$(q_g = 2.7)$	Porosity (%)	Heat Conductivity (kcal/mh•°C)	W.C. (%)	Den. (g/ cm ³)	Porosity (%)	Impedance (10 ⁵ g/cm ² ·s)	Remarks	Mean Wet-Bulk Density
54	CC	(0.1.)	471-480.5	2.54(?)	2.55	2.53	2.54	2.11	35.24	2.73	18.69	2.08	37.96	5.32	Limestone (white)	(2.10)
54	CC.		4/1-400.5	5.52(?)	5.61	2.33	5.57	2.60	2.86	2.67	1.94	2.59	4.89	14.32	Chert (pale brown)	(2.60)
55	1	19-21	480.5-490	2.40	2.42	2.43	2.42	2.17	31.55	2.70	15.23	2.16	32.16	5.20	Limestone (Green)	(2.17)
		79-81		4.93(?)	5.3	_	5.15	2.45	12.05	2.61	2.97	2.50	7.23	12.20	Chert (Gray)	(2.48)
56	1	93-95	490-499.5		2.56			2.24	27.33	2.70	14.62	2.18	31.12	5.66	Limestone (Gray)	(2.21)
57	1	86-88	499.5-509	3.56	3.70	3.73	3.66	2.48	13.12	2.73	7.91	2.41	18.60	8.70	Limestone (brown)	(2.46)
227	2	2-4		2.53	2.56	2.60	2.56	2.14	33.59	2.69	15.88	2.14	33.10	5.41	Limestone (Gray)	(2.14)
58	1	40-42	509.0-518.5	3.66	3.77	3.81	3.75	2.45	15.08	2.72	8.19	2.40	19.17	8.88	Limestone (pale-brown)	(2.43)
	2	53-55		3.41	3.44	3.59	3.48	2.39	18.70	2.73	9.85	2.35	22.57	8.08	Limestone (light Gray)	(2.37)
	cc	29-31 (5)		3.09	3.42	3.44	3.32	2.39 2.51	18.74	2.74 2.72	8.77 5.01	2.39	20.48 12.27	7.39 9.46	Limestone (Green and plate brown)	(2.39) (2.51)
59	L.C.	65-68	518.5-528	3.62	3.75	3.95	3.90	2.41	11.63	2.72	8.77	2.31	20.42	8.69	Limestone (pale brown) Limestone (White)	(2.31)
29	3	89-91	516.5-526	3.08	3.33			2.36	20.05	2.72	8.51	2.39	19.82	7.32	Limestone (white)	(2.38)
60	2	61-63	528-535.5	3.25	3.40			2.32	22.80	2.70	10.69	2.39	24.00	7.51	Limestone (pale brown)	(2.30)
-	4	67-69	ar de tot i set at et é af	2.91	3.19			2.38	19.13	2.71	9.12	2.36	20.98	6.90	Limestone (dark brown)	(2.37)
61	1	48-50	535.5-537.5	4.07	4.45			2.53	10.16	2.69	6.16	2.45	14.73	10.13	Limestone (brown)	(2.49)
62	1	15-17	537.5-547	2.64	2.85			2.33	21.95	2.65	11.11	2.26	24.46	6.08	Limestone (Grey) (coarse grain)	(2.30)
	3	95-97		3.23	3.48			2.39	18.82	2.67	4.26	2.82	21,01	7.61	Limestone (pale brown-Gray)	(2.36)
63	1	9-11	547-556.5	3.37	3.61	3.51	3.50	2.35	21.03	2.67	10.06	2.30	22.58	7.84	Limestone (pale brown and Pink)	(2.33)
	2	117-119		3.28	3.51	3.42	3.40	2.34	21.58	2.70	11.39	2.27	25.29	7.56	Limestone (white)	(2.31)
64	1	35-37	556.5-566	2.98	3.23	3.25	3.15	2.26	26.35	2.71	14.20	2.20	30.48	6.65	Limestone (white)	(2.23)
(ana)	2	110-112	0.010110200100	3.31	3.44	3.42	3.39	2.40	17.78	2.74	9.82	2.35	22.53	7.86	Limestone (brown)	(2.38)
65	1	64-66	566-575.5	3.23	3.44	3.39	3.35	2.31	23.27	2.74	11.14	2.31	25.11	7.46	Limestone (pale brown to pink)	(2.31)
20	2	40-42		3.46	3.81	3.69	3.65	2.40	18.19	2.71	9.67	2.34	22.06	8.20	Limestone (pale brown)	(2.37)
66	1	57-59	575.5-585	3.06	3.35	3.30	3.24	2.32	22.81	2.71	12.12	2.26	26.74	7.01	Limestone (white to gray)	(2.29)
(7	2	20-21	585-594.5	3.04	3.44	3.21	3.23	2.32	22.45	2.71	13.45	2.22	29.15	6.90	Limestone (Gray)	(2.27)
67	2	69-71 21-23	585-594.5	3.24	3.49 3.33	3.47 3.36	3.40 3.29	2.43 2.34	16.38 21.65	2.72 2.71	9.84 12.04	2.34 2.26	22.48	7.73	Limestone (Gray)	(2.39) (2.30)
69	2	25-26	607-613.5	2.15	2.62	5.50	3.29	2.14	33.17	2.69	12.04	2.20	26.60 31.85	5.27	Limestone (Gray)	(2.30)
09	4	98-100	007-015.5	2.13	2.43			2.14	29.65	2.73	14.26	2.21	30.71	5.01	Limestone (Gray-Green)	(2.13)
70	1	59-61	613.5-623	3.42	3.58			2.19	30.42	2.55	11.02	2.19	23.56	7.49	Limestone (Gray) Black inclusion	(2.19)
	4	66-68		2.53	3.00			2.23	28.00	2.83	18.39	2.14	38.37	5.53	Limestone (Gray)	(2.19)
	5	113-115		2.67	2.68					2.39	15.40	1.98	29.84	5.29	Limestone (Black)	(1.98)
71	1	21-23	623-632.5	2.24	2.45			1.95	44.89	2.51	22.23	1.90	41.14	4.31	Limestone (Green)	(1.93)
71	2	121-123	623-632.5	2.93	3.38	3.36	3.22	2.34	21.64	2.70	11.77	2.26	25.99	6.34	Limestone (white) Coarse grain	(2.30)
72	2	102-104	632.5-642	2.98	3.12			2.09	36.47	1.79(?)	13.90	1.62	21.96	6.23	Limestone (Gray)	(2.09)
	3	30-32	0.000	2.92	3.06			2.09	36.72	2.52	13.61	2.10	27.92	6.12	Limestone (Gray)	(2.10)
73	1	8-10	642-651.5	3.56	3.78			2.40	17.91	2.65	8.00	2.35	18.35	8.46	Limestone (light Gray)	(2.38)
74	2	103-105 76-78	151 5 161 0	3.01 2.56	3.18			2.11	35.49	2.49	13.30	2.09	27.32	6.32	Limestone (Gray)	(2.10)
76	1	41-43	651.5-661.0 670.5-680	3.40	2.76 3.55			1.99	42.72	2.47	16.75	2.00	32.69	5.11	Limestone (Green)	(2.00)
10	1	123-125	010.3-000	2.33	2.30			2.34 2.09	21.52 36.58	2.62	10.66 18.64	2.25	23.41 36.13	11.80 4.75	Limestone (White, black inclusion) Limestone (Gray)	(2.30) (2.04)
77	1	30-32	680-689.5	3.16	3.29			2.35	20.74	2.63	9.70	2.28	21.61	7.32	Limestone (White, black strips)	(2.32)
78	1	44-46	689.5-699	3.55	3.58			2.34	21.40	2.69	10.16	2.31	22.92	8.25	Limestone (White, black strips)	(2.32)
79	1	42-44	699-6708.5	4.61	4.63			2.54	6.94	2.69	4.66	2.49	11.35	11.69	Limestone (White)	(2.53)
80	- î	36-38	708.5-710.5	3.93	4.17			2.57	7.75	2,72	4.24	2.54	10.50	10.04	(Coral Reef Sed) (Pebbly)	(2.56)
81	1	76-78	710.5-718.0	3.97	4.05			2.65	3.26	2,71	3.79	2.55	9.43	10.32	(Coral Reef Sed.) Pebbly Limestone	(2.60)
82	1	31-33	718.0-721.5	3.12	3.43			2.36	20.23	2.68	10.48	2.29	23.45	7.25	Limestone (Gray)	(2.33)
83	1	66-68	721.5-737.0	2.75	2.74			2.20	29.64	2.66	14.32	2.16	30.26	6.00	Limestone (White)	(2.18)
	2	30-32		3.80	4.19			2.43	15.87	2.88	7.68	2.53	18.97	9.42	Limestone (White and Gray Stripe)	(2.48)
84	1	28-30	737.0-746.5	4.02	4.20			2.48	18.05	2.90	6.24	2.60	15.83	10.21	Limestone (Pebbly)	(2.54)
06	1	114-116	746 8 786 0	3.46	3.67			2.38	19.28	2.88	8.66	2.49	21.06	8.43	Limestone (light Gray)	(2.44)
85	1	43-45 62-64	746.5-756.0	3.24	3.68			2.26	26.42	2.70	8.45	2.37	19.54	7.50 0.3	Limestone (Gray)	(2.32) (2.53)
86	1	6-8	756.0-765.5	4.29 4.53	4.59 4.87			2.57 2.58	7.62	2.71 2.68	5.61	2.48 2.48	13.56 12.28	11.46	Limestone (Pebbly) Limestone (White)	(2.53)
88	1	82-84	775.0-784.5	3.93	4.87			2.56	8.10	2.68	6.07	2.45	14.53	9.84	Limestone (White)	(2.53)
89	i	38-40	784.5-794.0	3.52	3.58			2.45	14.70	2.72	8.48	2.39	19.75	8.52	Limestone (Feooly)	(2.31)
		96-98	104.0-194.0	3.78	3.92			2.46	14.70	2.36	8.04	2.12	17.85	9.30	Limestone (Gray, Coarse Grain)	(2.42)


Note: (?) = measurement of direction is questionable.

API	PENDIX	E		
Grain-Size	Analysis,	Site	463	

			Interval	Sub-bottom Depth	Sand	Silt	Clay	
Hole	Core	Section	(cm)	(m)	(%)	(%)	(%)	Classification
463	1	2	28.0	1.78	10.8	25.3	64.0	Silty clay
463	1	4	28.0	4.78	12.5	33.7	53.8	Silty clay
463	2	2	60.0	7.60	8.3	25.5	66.2	Silty clay
463	2	4	60.0	10.60	5.7	34.7	59.6	Silty clay
463	3	2	58.0	17.08	2.4	40.1	57.5	Silty clay
463	3	4	58.0	20.08	2.1	35.1	62.8	Silty clay
463	4	2	58.0	26.58	1.5	56.3	42.2	Clayey silt
463	4	4	58.0	29.58	39.3	44.9	15.8	Sandy silt
463	5		54.0	36.04	0.5	57.5	41.9	Clayey silt
463	6	2	42.0	39.92	1.0	55.2	43.8	Clayey silt
463	6	2 2 4	42.0	42.92	1.1	55.7	43.2	Clayey silt
463	7		60.0	45.60	2.4	59.7	38.0	Clayey silt
463	7	2 3	110.0	47.60	5.4	45.8	48.8	Silty clay
463	10	3	70.0	75.70	18.1	35.7	46.2	Silty clay
463	10	5	70.0	78.70	12.1	45.4	42.5	Clayey silt
463	12	4	40.0	95.90	12.8	39.7	47.5	Silty clay
463	13	2	58.0	102.58	13.7	41.8	44.5	Silty clay
463	14	4	40.0	114.90	15.1	44.3	40.6	Clayey silt
463	15	2	67.0	121.67	6.7	45.5	47.8	Silty clay
463	15	4	67.0	124.67	7.1	43.3	49.6	Silty clay
463	16	2	54.0	131.04	3.9	48.9	47.2	Clayey silt
463	16	2 6	54.0	137.04	13.8	44.7	41.5	Clayey silt
463	17	2	103.0	141.03	27.8	30.9	41.2	Sand-silt-cla
463	17	4	103.0	144.03	7.8	39.0	53.2	Silty clay
463	19	2	118.0	160.18	6.1	46.3	47.6	Silty clay
463	19	4	60.0	162.60	7.4	45.9	46.7	Silty clay
463	20	1	68.0	167.68	1.8	41.4	56.9	Silty clay
463	21	2	109.0	179.09	6.4	38.3	55.2	Silty clay
463	21	4	107.0	182.07	2.8	43.8	53.4	Silty clay
463	22	2	40.0	187.90	2.7	34.5	62.8	Silty clay
463	22	4	57.0	191.07	1.8	37.4	60.8	Silty clay
463	23	1	25.0	191.07	2.7	47.6	49.7	Silty clay
463	24	2	116.0	202.16	1.0	36.0	63.1	Silty clay
463	25	2	40.0	202.10	5.5	53.0	41.5	Clayey silt
463	26	2	87.0	206.90	8.0	56.1	35.9	Clayey silt
463	26	4	92.0	219.92	7.7	56.5	35.8	Clayey silt
463	20	2	24.0	219.92	17.8	47.9	34.3	Clayey silt
463	29	1	52.0	243.52	9.4	50.5	40.1	Clayey silt
463	30	1				28.1	60.9	
	34	2	66.0	253.16	11.0			Silty clay
463 463	34	cc	42.0	292.42	6.2 5.2	56.7 37.6	37.1 57.2	Clayey silt
463			14.0	300.44				Silty clay
	38	1 2	10.0	328.60	1.2	42.7	56.1	Silty clay
463	43		40.0	377.90	1.8	21.4	76.8	Clay Siltu alau
463	43	4	40.0	380.90	1.5	26.1	72.4	Silty clay
463	48	2	100.0	426.00	4.7	23.2	72.1	Silty clay
463	55	1	92.0	481.42	10.8	39.3	49.8	Silty clay

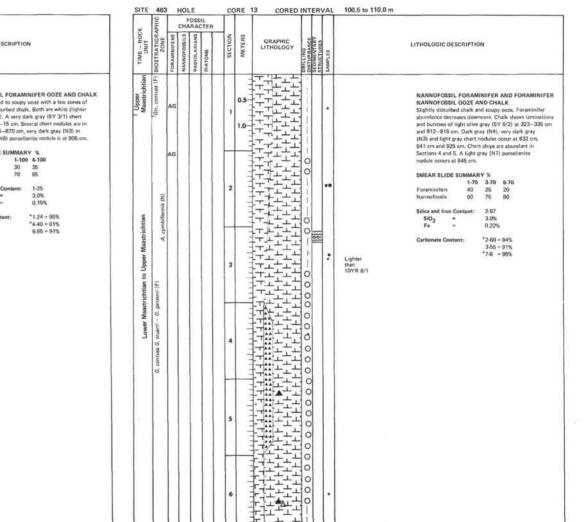
Information on core description sheets, for ALL sites, represents field notes taken aboard ship under time pressure. Some of this information has been refined in accord with postcruise findings, but production schedules prohibit definitive correlation of these sheets with subsequent findings. Thus the reader should be alerted to the occasional ambiguity or descrepancy.

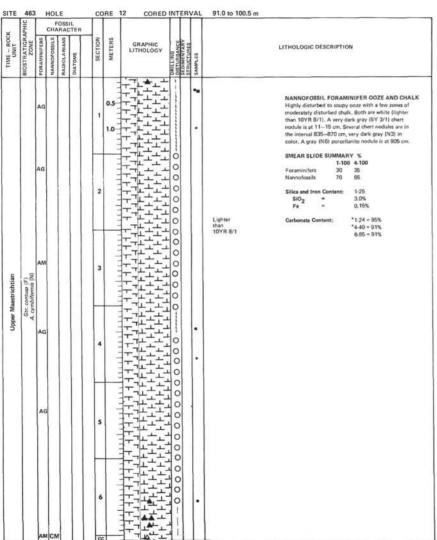


S
F
TT.
4
6

APHI	FOSSIL CHARACTER	_	90					×	APHIC	CHAR.	SSIL		10							
BIOSTRATIGR. ZONE FORAMINIFERS	NANNOFOSSILS HADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	ZONE	FORAMINIFERS NANNOFOSSILS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	STRUCTURES SAMPLES		LITHOLOG	IC DESCRIPTION		
N 14-M 19-20 (F) NN 12 (W) NN 13 (N)	AG AG AG	3	0.5		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10YR 7/3	NANNOFOSSIL OOZE Soupt to very highly disturbed, yellowish brown (10/YR 6/4) to very pate brown (10/YR 6/3) to pate brown (10/YR 6/3) to white (10/YR 6/2) in color. Discosters are about 95-98% of the nanofossis. No mottles or structures. SMEAR SLIDE SUMMARY % 1-100 2-100 3-100 4-100 5-100 6-40 CC Volcanic glass	ootine	st-Eccene-Oligocane-Miocene Feraminites er and middle Eccene, Oligocane and middle Miocene revorking)	AG AG AG AG AG AM		1			•	10YR 8/3	NANNOFOSSIL OOZ Soupy to very disturb 10YR 7/41 to white (1 10YR 6/41 in color- color occur at 272 cm 855 cm, and 830.940 nannofossil in the fin lower part of the core ocza, and Sections 3, nannofossil ocze. SMEAR SLIDE SUM Votcanic glass Micronodules Carbonate unpp. Foraminifers Nannofossils Radiolariane Ouartz Votcanic glass Micronodules Carbonate unpp. Foraminifers Nannofossils Radiolariane Ouartz Silica and Iron Conter Fe = Carbonate Content:	rd ocer, very pale by Wort 8/2, 10/r 8 // Mortise and burrows 355-370 cm, 680-5 Sections 1, 2, and 1 three lactions, the Sections 1, 2, and 1 1-100 2-100 	own (107) 10 light: of similar 82 cm, 38 in at abb cmeCatd anaty fore 2.130 	R 8/3, 10 yellowish lithology 8 cm, 810 ut 95-98% to 35-60% her are nai aminiferal
A	AG AG PAG B	5 6 CC	a surger a surger and a surger of the surger			10YR 7/3			Mixed Cretaceous- NN 11 (with lower	АМ		5		1 1 <td></td> <td>10YR 7/3</td> <td></td> <td></td> <td></td> <td></td>		10YR 7/3				

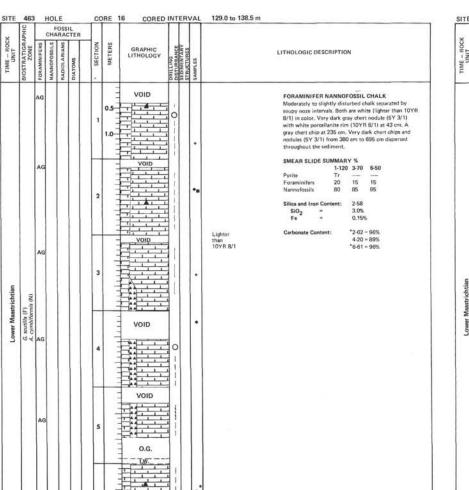
×	APHIC	2		OSS	TER	6												
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRI	PTION		
			AG				1	0.5				:	10YR 8/3	NANNOFOSSIL OOZE Highly disturbed very pa poze. Occasional white (60 cm, 87 cm, and 123 c barrel occurs at the top a 275-285 cm). Discoaster cores, about 30% of the r SMEAR SLIDE SUMMA	10YR 8/1 m. Conta ind bottor s are less nannofoss	and ligt mination n of the abundan	ter) streeks by the pre core (0-35 c	and mottles at tsure core m, and
e	F) 24 (N)					1	_			11					1-100	2-100	CC	
Oligocene	P 20 (F) NP 23-NP 24 (AG					0.000				•		Foraminifers Nannofossils	7 93	9 91	3 97	
	NP						2	0000				•	10YR 8/2	Silica and Iron Content: SiO2 = Fe =	2-28 1.0% 0.04%			
								100				•		Carbonate Content:	1-83 *2-50	= 89 = 97		

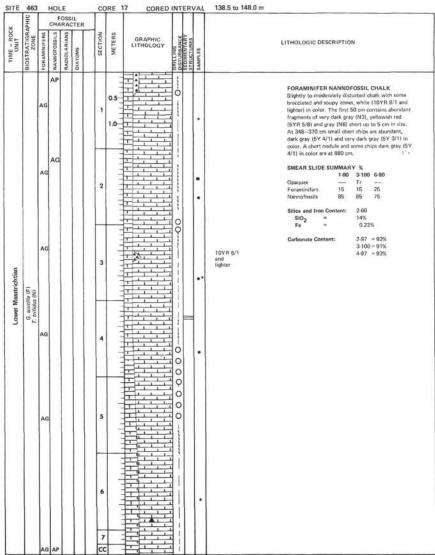

	PHIC			OSS	IL											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION			
	(M)		AG			2	0.5		0 0 0 0		10YR 8/2	FORAMINIFER NAM Soupy to highly disturbe to very pake irown (10Y) and lighter) are found at cm. A small piece of che SMEAR SLIDE SUMMAN 1-100 Ceic, rhombs — Foraminiters 10 Nannofossils 90 Silica and Iron Content: SiO2 * Fe * Carbonate Content:	d uniform ooze, wi R 7/3) in color. St 58 cm, 110 cm, 34 rt is at 790 cm.	4-100 	white (1	0YR 8/
Oligocene	NP 23-NP 24 (with lower and middle Eocene reworking) (N)		AG			3	1. The first state of the second state of the			•	10YR 8/2 to 10YR 7/3					
	NP 23-NP 24 (with ic					4	and the state of t				10YR 8/2					
			AG			5										
Middle Eocene	£ Z		AM			6				2	- _10YR 8/1					
Mid	P 11 (F) NP 16 00	A	AM			cc	-	타다			10YR 8/2					


THIC			OSS RAC	TER												
UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCR	IPTION	Ĕ.			
Upper Maastrichtian G. contues (F) A. combificentia (N)					1	0.5		000000000000000000000000000000000000000	• • • •	10YR 8/1 ard lighter	NANNOFOSSIL CI Highly breadated at and lighter) in color fragments of chert, 195 cm depth, Fror color (2YR 3/4), CI 255 and 270 cm. SMEAR SLIDE SU Carbonate unspec. Foraminifers Nannofosiis Silice and from Con SiO ₂ = Fe = Fe = Carbonate Content	nd soupy . Brecci less than n 195–2 a diamet hert frag MMARY 1-100 20 5 75 tent:	a conta n 1 mm 250 cm er, are ments i	ins abur in size, large fri present, are also 2-115 3 5 72 98%	idant to abo agment mostly found i	ut s of red in

, H			OSSIL											
BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURGANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTIO	N		
Upper Masstrichtian Contrast (F) 4. constraint (N)		C-A4		22	0.5		000000000000000000000000000000000000000	•	Lighter than 10YR 8/1	FORAMINIFER N The entire core is a the interval from 2 white (lighter chan 3/4) chert nodule i (10YR 8/1) address 4/4) chert nodule i rims of white (10Y SMEAR SLIDE SL Carbonate unspec- Foraminifes Nannofossils Silica and from Cor SiO ₂ = Fe = Carbonate Content	soupy 6-150 10YR 1 with a w 5 cm. A & fragm R 8/1) MMAR 1-20 Tr 20 80 tent:	breccia cm white B/1). A is drifte point dark ye tents with are at 1	of chall ch is oo reddish rcellanit illow br th porce 70 and 2-71 	t except for ze. Both are brown (5YR te rim own (10YR clanite

SITE 463 HOLE	CORE 10 CORED INTERVAL	72.0 to 81.5 m	SITE 463 HOLE CORE 11 CORED INTERVAL	81.5 to 90.0 m
	RECTION BECTION C CTOR C CTOR C C CTOR C C C C C C C C C C C C C C C C C C C	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
Upper Maartrichtian Upper Maartrichtian G. contear (F) A. Symbilioumis (N) BY DY DY DY DY DY DY DY	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	High breccia (0-40 cm) and soupy core (below 40 cm), white (lighter than 10YR 8/1) in color. Chert and porceliante ond/set at 2, 119, 1227, 300, 352, 348, 373, 389, 419, 616, 620, 654, 687, 730, 756, 758, 730, 756, 758, 730, 756, 757, 730, 756, 758, 750, 750, 756, 750, 750, 756, 750, 750, 756, 750, 750, 757, 750, 756, 750, 750, 750, 750, 756, 750, 750, 750, 750, 750, 750, 750, 750		Lighter han Light disturbes ones of chaik in a soury core. Both are white (lighter than 10YB 8/1), forarminifies increase in abundance down core. A light gray motile is in the chaik at 120 cm. Chert nodules gray (N7 and 10YB 6/1) medium gray (SY 6/1) and vorther (10YB 8/1, and SY 6/1) medium gray (SY 6/1) and vorther (10YB 8/1, and SY 6/1) are found at 36, 50, 134, 214, 665 and 680 cm. Some of the chaik thoost alminications (210 cm.) SMEAR SLIDE SUMMARY % 100 YR 8/1 Lighter than IOYR 8/1 Carbonate Contem: 2-73 SiO ₂ - 12% Fe - 12% Fe - 12% Fe - 273 - 58%




CC 7

Ū.,	-	463	-	FC	JSSI	L		DRE	14 CORED INTER	T	110.0 to 119.5 m		40 DIH	_		FOS	SIL	R		RE	15 C
TIME - ROCK	DICETOATOO A	ZONE	-		RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DVUTTING	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC	ZONE		NANNOFOSSILS BACHOLABLANS			SECTION	METERS	GRAP LITHO
r Maastrichtian			AG				1	0.5		•	NANNOFOSSIL FORAMINIFER CHALK AND COZE Sighthy disturbed chaik with scorpy coze intervals. Dark gray (N3) and dark red (2.5YR 4/8) deet chips and pobles are found in the intervals from 0–40 and 150– 244 cm. Gray (N8) laminae in the chaik occur at 346– 348, 501–506, and 552–555 cm. The gray is due to pyrite, than NB SMEAR SLIDE SUMMARY % 1-100 1-120 3-100 4-104 (M) Pyrite2 Foraminilers 35 35 40 38 Namotosiai 65 55 00 60 Silice and Iron Content: 4-52 SiO2 =35	Lower Maatrichtian to Upber Maatrichtian		~	AG				1	0.5	
Lower Maastrichtian to Upper		A. cymbiformis (N)	AG				3	and the state of t			Fe ⁻ = 0.19% Carbonate Contant: ^{11.46} = 92% 2.100 = 91% N8 ^{14.46} = 96%	Lower Maastrichtian	G. scutills (F)	cymbiformis (N)	G				3	and an alternative state	
			AG				4	CONTRACTOR OF A							AG				4	and and and and and	
			AM	см			5	-													

SITE	463	-	HOI			CO	RE	15 CORED	INTER	VAL	119.5 to 129.0 m
×	APHI		CH/	OSS	TER						
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES	LITHOLOGIC DESCRIPTION
Upper Maastrichtian	ti – G. gansseri (F)	AG				1	0.5		0	•	NANNOFOSSIL FORAMINIFER CHALK AND FORAMINIFER NANNOFOSSIL CHALK Chait, moderately to atjahrly disturbed with soopy zones of ooze. White (lighter than 10YR 8/1) in color, Chert fragments, very dark grav (N3) in color, with light grav (N1) rims of porcellanite are at 7–15 cm and at 810–857 cm.
Uppe	G. stuarti					H			ó		SMEAR SLIDE SUMMARY % 1-80 3-90 5-90
	0	AG					1		9		Micronodules Tr
						11	-		1il -	1.1	Zeolite Tr Tr Calcite rhombs Tr Tr
						2	-		ó	•	Foraminifers 30 35 20
						1	1.5		0		Lighter Nannofossils 70 65 80
									0		10YR 8/1 Carbonate Content: *2:59 = 96% 3:80 = 91%
Lower Maastrichtian	G. scutilia (F) A. cymbiformir (N)	AG				3	1 I I I I I I I I I I I I I I I I I I I		00	:	
		AG				4	state and each	VOID Image: A state of the state of t			
		АМ				5	secol secol second		0000		
						6		VOID			
_		AG	AM			CC	-	1	0		

TIME - ROCK UNIT

chtian

Maastr

Lower

×	DHIO			RAC	TER						
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
Lower Maastrichtian	G. scutilla (F) T. trifidus (N)	АМ	A/ P-M			1	0.5		00000	2.5Y 8/1	NANNOFOSSIL CHALK Slightly disturbed chaik (0–10 cml and drilling braccia below – chalk mixed with chert. Chert fragments are several mm in diameter and are white (2.5Y R/I) gray (N5) and red (2.5Y R 4/6). SMEAR SLIDE SUMMARY % 1-5 Foraminifers 8 Nannofossili 92

~	PHIC		СНА	OSS	TER			19 CORED	Ш	Τ					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTIC	N	
		AG				1	0.5			•		Moderately to sligh highly disturbed to (NB) in color. Abu in color, with some rims at 8–13, 110 852 and 905 cm. 2 327–402, 620–63 SMEAR SLIDE SU Calcite Rhombs	ntly diat soupy ndant c e having 117, 1 cones of 10, 670- JMMAF 1-70 Tr	urbed d breccia hert nod light gr 33143 chert d -678 and Y % 3-70 	and coze. Both white lules very dark gray (N av (N7) porcellanits), 152, 210, 394, 696, hips are at 0–230, d 790–794 cm.
		AG				2	tri tri ti			•		Foraminifers Nannofossils Silica and Iron Cor SiO ₂ = Fe =		20 80 2-60 3.0% 0.14%	
strichtian	(F) (N)	AG				3	101 Print Print		0000-	•	NB	Carbonate Conten	82		98% 92% 98%
Lower Maastrichtian	G. scutilla (F) T. trifidus (N)	AG				4			1	•					
		AG				5									
						6			-0000						
				AM		7									

OUTE

10

462 1101 5

10

ACCES INTERVAL

157 E to 167.0 m

	APHIC			OSS	TER							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADICLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DE	SCRIPTION
Lower Maastrichtian	. scunila (F) T. trifidus (N)		CP			1	0.5		0 0	• • •	Brecciated to hi color (N8). Che N8 color (N3), at 9	R NANNOFOSSIL CHALK ghly disturbed chaik, white in rt nodules, very dark gray in 0 and 130 cm. Chert chips, very in color, in the intervals from 00–115 cm.
2	3	AG	P			oc					SMEAR SLIDE Foraminifers Nannofossils	SUMMARY % 1-80 20 80
											Silics and Iron SiO ₂	3.0%
											Fe Carbonate Cont	1

	PHIC		CH	FOSS	TE	R					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS.	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Lower Maastrichtian	G, scutilla (F)	AG AG					1			8.8	FORAMINIFER NANNOFOSSIL CHALK White (N8, 10YR 8/1) chails. Slightly to highly disturbed, Intervals at 184–186 cm, 198–200 cm and 481–494 cm show faint greenish horizontal wavy laminetion or streks, Brown to dark horizontal wave laminetion or streks, Brown to dark horizon, and 867–870 cm. SMEAR SLIDE SUMMARY % 2.35 2.70 4.70 6.65 (M1 (M1 (M1 (M1 For annofesis 20 15 15 Nannofossis 80 80 80 85 80 Chert fragment 2.103 3104 = 100% *4.110 = 98% *4.110 = 98% *4.110 = 98% *4.110 = 98% *4.110 = 98% *4.110 = 98% *4.110 = 98% *4.110 = 98%
Upper Campanian	G. calcarata – G. subspinota (F) T. tr						5			•	10YR 8/1
		AG	AP				7		표		NB

SITE			н	DLE		_	1	COF	RE	22		CORE	DI	NTE	RV	AL	186.0 to 195.5 m			_								5	ITE	-	-	HOL			C	ORE	24		ORE		RVA	AL.	199.5 to 205.0 m
TIME - ROCK UNIT	BIOSTRATIGRAPHIC	ZONE	PORAMINIFERS	IAR	ACT	ER	at the second se	section	METERS	ļ	LITH	PHIC	Y	DISTURBANCE	STRUCTURES	SAMP'LES		Ţ	U	тно	LOGICE	DESCR	IPTIC	DN .					TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	HANNOFOSSILS	SINNS	DIATOMS	SECTION	METERS		GRA LITHO	LOGY	DRILLING	SEDIMENTARY STRUCTURES SAMPLES	SAMILES	
Upper Campanian	G. calcarata - G. subspinosa (F)	A						1				· · · · · · · · · · · · · · · · · · ·					NB			Alte great Dark and 1 645- SME Opar Cher Fora Nant Silic Silic F	mating of ter disturt c reddish 91 cm, R -657 cm, CAR SLID ques t minifers nofossils a and Iror iO ₂	nelk an bance. brown eddish E SUM	d ooz Both (5YR brown 1-80 Tr 12 87 87 en1:	e with are whi 3/3) o n ohert 3/80 Tr 12 88 2-54 3.09 0.12 *2-58 3-10	the coze : ite (lighte hert is for (5YR 4/3) 5-40 	C AND OC Anthowing II than N8 and at 3 3) is at	he		Upper Campanian	G. altevata (F) G. calcarata – G. subspinosa (F) T. gothicus (N)	AG	CAV			2	1.0	HH						Lighter than N8
		A	.G A	P				4 5 5			-		רות הנהנהו הנהנה הנהוה		•	•												Г	TE NORT	BIOSTRATIGRAPHIC ZONE		CHAP	SSIL	ER	SECTION	METERS				DESTURBANCE	Τ		205.0 to 214.5 m
SITE	4							COF	E S	23		CORE	EDI	NTE	BV	-L	196.5 to 199.5 m												nian	cus (N)					1	0.5			늪				
TIME - ROCK UNIT	HIC	_		FO	ACT	ER		T	METERS			PHIC		DISTURBANCE		Τ			u	тно	DLOGIC (DESCR	IIPTIC	N				2	Upper Campa	G. elevata (F) T. gothicus	AG	АМ			2		נרערערערערער					-	NB
Upper Campanian	Icarata - G. subspinots (F)	T. gothicut (N)	A	P				1	0.5 1.0					00			Lighter than N8			Alte high Red inte SMI	ernating la nly disturt Idish brow rval 0–5 EAR SLII aminifers	ayers o bed. Bi vn (5Y cm, DE SU	f ooze oth wit 'R 4/4 MMAI 1-70 35	e and c hite {lig) chert RY %	halk with phter than	K AND O the coze N8) in cc present in	more blor,			3	AG	AP			.22	-							
	G. cal	١.	AG A	P	В			20				<u> </u>	-							Nan Sillie S	nofossils cs and Iro SiO2 Fe bonate C	on Con = =	65 tent:		%																		

LITHOLOGIC DESCRIPTION

SMEAR SLIDE SUMMARY % 1-70 3-70

Silica and Iron Content: 2-119

Chert Foraminifers Nannofossils

> SiO₂ Fe -

Carbonate Content:

LITHOLOGIC DESCRIPTION

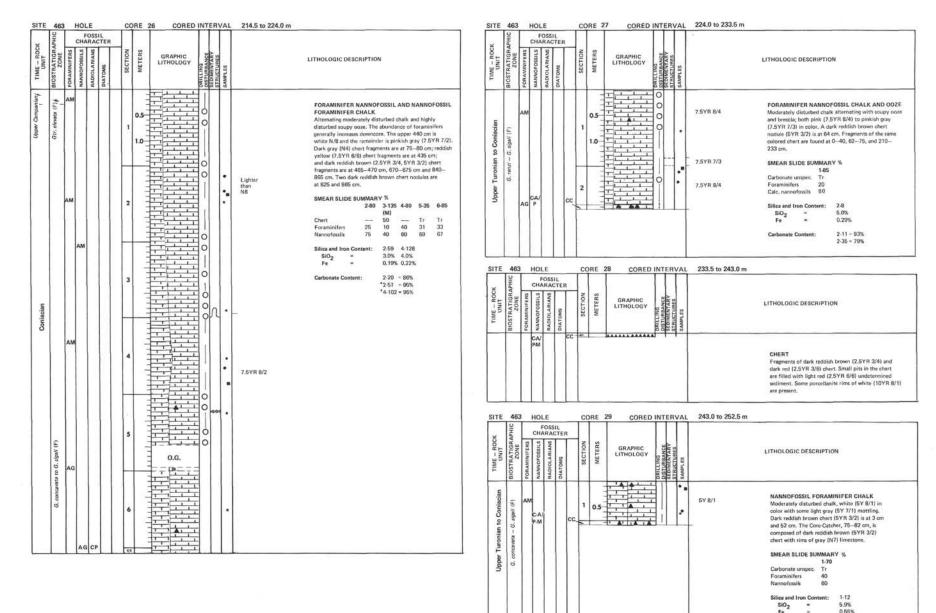
SMEAR SLIDE SUMMARY % 1-90 17 83

 Silics and Iron Content:
 2-53

 SiO2
 =
 2.0%

 Fe
 =
 0.08%

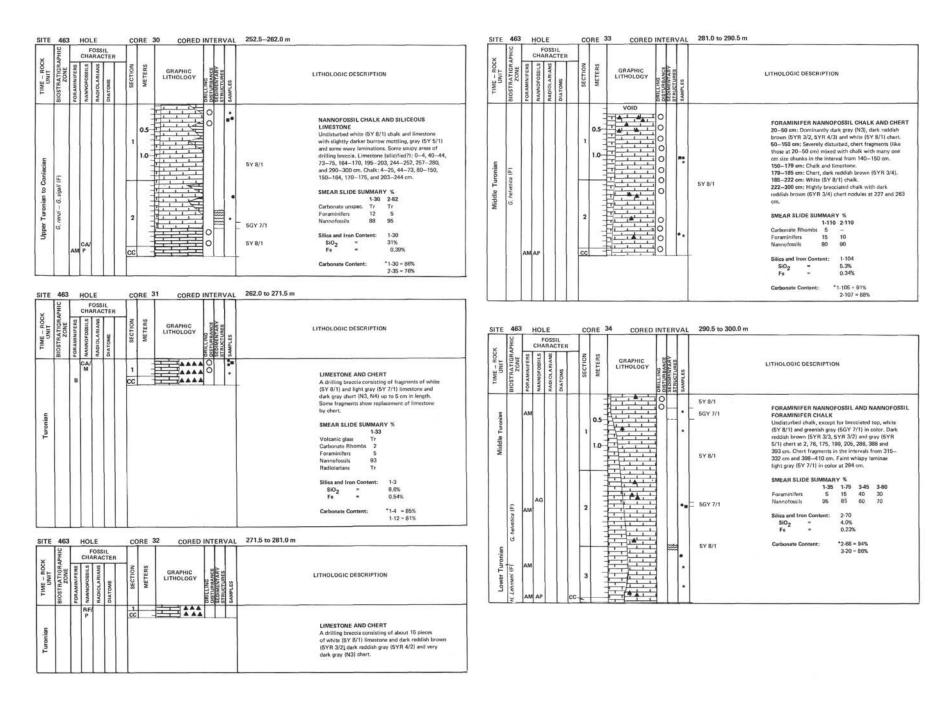
Foraminifers Nannofossils

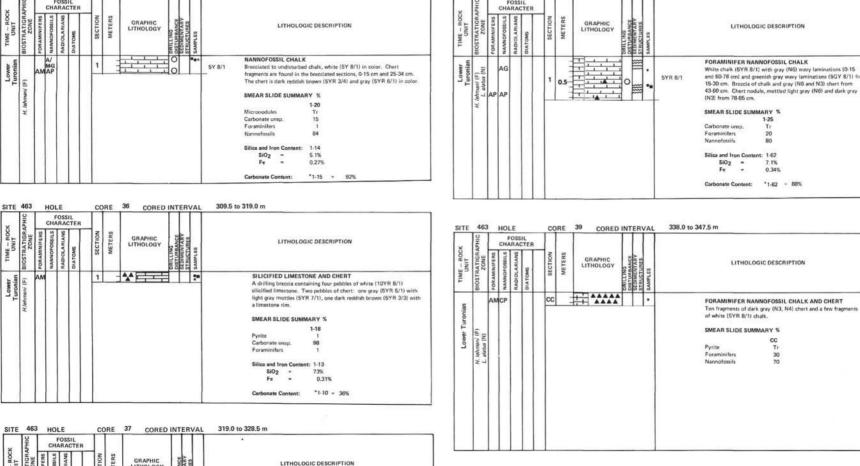

Carbonate Content:

FORAMINIFER NANNOFOSSIL CHALK AND OOZE FORAMINIFER NANNOFOSSIL CHALK AND UDZE Mainly chalk with come intervisil of ooze, white [N8 and lighter) in color. The chalk is moderately disturbed with the ooze more highly disturbed. Chert nodules, dark reddish brown (5YR 3/3) in color, are at 10, 21, and 130–140 cm. The nodule at 10 cm also has a band of white (5YR 8/1) chert.

2·28 = 86% *2·51 = 95%

FORAMINIFER NANNOFOSSIL CHALK AND OOZE Alternating layers of chalk and ooze — the core being more highly disturbed. Cherr pables, dark roddish torown (5YR 3/4) in color, are at 80 cm, and fragments of the same colored chert are mixed into the Core-Cetcher, 417–430 cm,

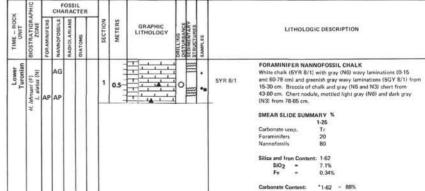

3.0% 0.16% *2-121 = 95% 3-34 = 88%



SITE 463

Carbonate Content:

*1-12 = 90% 1-58 = 81%



SITE 463 HOLE

FOSSIL BIOSTRATIG Lower ū ł 5

SITE 463 HOLE CORE 35 CORED INTERVAL 300.0 to 309.5 m TIME - ROCK UNIT

CORE 38 CORED INTERVAL 328.5 to 338.0 m

TIME - ROCK UNIT METERS DRILLING DISTURBANCE SEDIMENTARY LITHOLOGIC DESCRIPTION LITHOLOGY EC1 AND ADI AP AI NANNOFOSSIL CHALK One fragment of white (5YR 8/1) chalk, 2 cm in diameter. í.

90

TIME - ROCK

SITE 463 HOLE CORE 40 CORED INTERVAL	347.5 to 357.0 m	SITE	E 46	3 но	LE		CORE 42 CORED INTERVAL	366.5	to 376.0 m
FOSSIL FOSSIL CHARACTER SOURT ATTICITY CHARACTER C	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIFERS	FOSSIL	T	SECTION METERS AMARTING AMARTICINA AMARTICIN		LITHOLOGIC DESCRIPTION
Middle to Upper Cenomanian R. cushman ¹ L. aloua (N) 	CHERT-FORAMINIFER NANNOFOSSIL CHALK Pebbles of Jark orga (N3) to gray (N8) cher with some mottles of lighter gray (N6). The chert pubbles have white (N8) porcelianite rim. One fragment of white (IOVR 8/1) chark, SMEAR SLIDE SUMMARY % CC Carbonate unsp. Tr Foraminifert 25 Nannofossils 75	Middle to Upper Cenomanian	1 alana IM	CMA	a				CHERT AND FORAMINIFER NANNOFOSSIL LIMESTONE Black (5Y 2/1) chert fragments and white (N8) limestone fragments. SMEAR SLIDE SUMMARY % CC Calc. rhombs Tr Foraminfer 15 Nannofossils 85
SITE 463 HOLE CORE 41 CORED INTERVAL	357.0 to 366.5 m	SITI	E 4	63 HO		-	CORE 43 CORED INTERVAL	376.0	to 385.5 m
FOSSIL CHARACTER SUDCENTRALES S	LITHOLOGIC DESCRIPTION	TIME - ROCK	HC	ci	FOSSIL	T	RECTION RETERS M		LITHOLOGIC DESCRIPTION
Middle to Upper Cenomenian B. coshneni (f) L. aener (N)	CHERT Pour pieces of black(ISY 2/1) chart, one with some carbonate adhering to it.	Middle to Upper Ceromanian	R. customani				1 1	N8 Lighter than N8	FORAMINIFER NANNOFOSSIL OOZE White INB and lighter) soupy ooze with a few intervals of chalk, Dark gray (N41 to black (N2 Chern coldues at 11 cm, 251 cm, 275 cm, and 675 cm. The interval from 150 cm to 395 cm contains chert fragments. SIMEAR SLIDE SUMMARY % 1-75 3-855 5-30 Volcanic glass Tr — Tr Tr Tr 7 Other Tr Tr 7 Other Tr Tr 7 Chert Tr Tr 7 Other Tr Tr 7 Micromodules — Tr 7 Privile Tr 7 Tr 7 Micromodules — Tr 7 Micromodules — Tr 7 Proximilien 11 15 7 Namotoxist 89 85 93 Silica and Iron Content %: 1:39 = \$302 Silica and Iron Content %: 1:39 = \$002 % Fe = 0.62%

SITE 463

*	PHIC			RAC	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
Lower Cenomanian	gundolfi-R. greenhornensis {F} L. eletus (N)	см	AP			1	0.5		00000			N2 CHERT AND NANNOFOSSIL CHALK to Drilling Brecia N5 0.98 cm: Drilling induced graded bed of chert chips, black (N2) to gray (N5). 10 mm at the bottom to 1 mm at the too 80-86 cm: White (N8) disturbed chalk with chert chips. N8 86-115 cm: Very dark gray (SY 3/1), gray (N6) and black (N2) ch SY 3/1 SMEAR SLIDE SUMMARY % 1-82 Chert Tr Pyrite Pyrite Tr Foraminiters Nanofonilis 92

	APHIC			OSS RAC	TER				П		
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Lower Cenomanian	L. alatus (N)		F-C /P				1	*******			CHERT Five pebbles of chert, gray (NS) to dark gray (N4). White (NB) porcellanite on one fragment.

e	VPHIC	3	CHA	RAC	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
Lower Cenoman	R. gandolfi to R. greenhornensis (F) L. alatus (N)	CM	AP			1 CC	0.5				CHERT G-77 cm: Graded drilling brecola of chert, gray (N4, N5) and red (10R 3/0) in color, with some white (N8) porcellamite, 0.5-1 mm at the top and 2 cm at the bottom. 77-103 cm: Pebbles of light gray (N7) and dark gray (N4) chert.

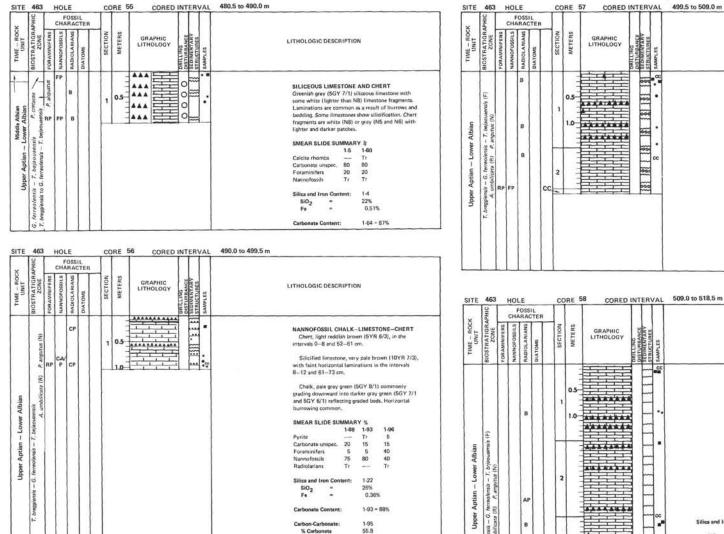
APHIC		0		RAC		1						
TIME - ROCK UNIT BIOSTRATIGRAPI	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
Lower Cenoman	L. alotus (N)		P			CC.						CHERT Very dark gray (N4), gray (N5) and light gray (N7) In color, Irregularly mottled with some white (N8) porcellanite.

SITE 463 HOLE CORE 48 CORED INTERVAL 423.5 to 427.5 m

×	APHIC	c		RAC	TER										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOG	A DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC D	SCRIPT	ON	
Lower Cenoman	R. greenhornensis (F)						1					drilling, Chips	han N8) (flight gr , 130–1	halk, high ay (N6, N7 7, 209–2	ly disturbed by 7) chert are present 37, 308–320, and
	gandolfi -								르네			Pyrite	1-8 Tr		
	pun					- H	+	1411	<u>- 1</u>	11		Carbonate uns		Tr	
	8.9								는 1			Foraminifers Nannofossils	10	10	
			- 1		11				크네			Nannotossiis	87	90	
							1	1111				Silica and Iron	Content:	2.27	2.28
E	(1)	СМ					2	- 1 14 1		11	Lighter	SiO2	-	8.7%	9.8%
Upper Albian	appenninica () L. elatus (N)								-11	11	than N8	Fe		0.29%	0.30%
A P	Ninio Us				11				- 1	11	0.120	Carbonate Con	tent	3-70 -	91%
bbe	alat						- 1		-	11				100	
2	18-1						-			11					
	buxtorH-R.						- 1	1	그님						
	tor								-	1.1					
	pm						3		1	•					
	σ,							1111							
			A/			cc			크						
_	L	AM	M				< 1	1 1 1 1	11						

×	APHIC			RAC	TER						
TIME - BOCK UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	RUCTUR	LITHOLOGIC DESCRIPTION
Upper Albian	appenninice (F) alarus (N)	AM	AP			cc	112			1.	CHERT AND FORAMINIFER NANNOFOSSIL CHALK Three peoblem of banded dref gravy (N6), light grav, (N7), and white (N8) in color. One white (N8) pabble of halk. SMEAR SLIDE SUMMARY %
5	P. buxtorfi-R.										CC Micronodules 1 Chert 5 Foraminiters 15 Cale, namofossilis 79

	PHIC			RAC	TER									
TINU	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTIO	N
Upper	buxtorfi (F) L. alatus (N) turriseifleli (N)	см	A/ M-G F-C/ P			1 CC	0.5		1 000 1 000 1 000	4 I	N5 to N7 БҮ 8/1	chert. 25–30 cm: Two (NB) in color. 30–91 cm: Chalk (no color on char burrow mottling.	eces of gr aleces of r , white (f t) with da One piec with dark	ay to light gray (N5–N7) siliceous limestone white (8) to very very pale green rker green gray (5GY 6/1) e at 60–65 cm is pale blue (r (5BG 6/1) mottling.
	R.ticinensis to P. hu E. tu											SMEAR SLIDE S Volcanic glass Pyrite Carbonate unspe Foraminifers Nannofossits Silica and Iron C SiO ₂ = Fe Carbon-Carbonat % Carbonate	1-45 Tr Tr 5 92	1.39 15% 0.5% 1.39 75.8


PHIC		c	FOS	SIL						
TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FORAMINIFERS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
ddie Albi nsis (F)		C RP	P		CC	0.5			cc	SILICIFIED LIMESTONE AND CHERT (Drilling Breccia) 0-105 cm: Sard of limestone and chert fragments, white (NB), gray (NB) and brown (7.5YR B/4, 7.5YR 4/4) in color. 105-105 cm: Lange regments of chert, light gray (N6, N7), gray (NB) and dark gray (N4) in color, and limestone, white (NB), and pale green (5GY B/1) in color. SMEAR SLIDE SUMMARY %. 1-103 Carbonste unspec. B5 Foraminifers 10 Namofostalis 5 Silice and Iron Content: CC-26 SIO ₂ = 53% Fe = 0.32% Carbon-Carbonste: CC-26 % Carbonste 28.3% % Organic Carbon 0.1%

SITE 463 HOLE CORE 51 CORED INTERVAL 442.5 to 452.0 m FOSSIL TIME - ROCK UNIT NS NS METERS GRAPHIC LITHOLOGY RBANCE LITHOLOGIC DESCRIPTION PORAMIN NANNOFC RADIOLA cc AAAAAAA CP CHERT Five pieces of gray to light gray (N5--N7) chert. (o P. buxtor settfel/ (N) Upper Albian 18 2.

	VPHIC	1		OSS RAC	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Upper Albian	R. ticinensis – P. buxtorfi (F) E. turriseiffeli (N)	RM	CP			cc			0		•	CHERT-PORCELLANITE-LIMESTONE Porcellanite fragments are dominant, white (N8) with small mottles of chert, gray (N3). Chert fragments are light gray (N7). White (SY & I/) limestone fragments are foraminifer-nannofossil limestone. SMEAR SLIDE SUMMARY % CC Carbonate untpec. 80 Foraminifers 15 Nanofossils 5

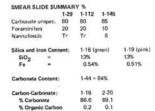
SITE 463 HOLE CORE 54 CORED INTERVAL 471.0 to 480.5m

TE 463	\$	HOL	E		CO	RE	54 C	ORED	INTER	VAL	4/1.0 to 480.5m			
UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	ADIOLARIANS US		SECTION	METERS	GRAPI LITHOL	OGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	APLES		LITHOLOGIC DESC	RIPTIO	N:
Middle Albian breggiensis - T. hejouensis (F) BIC ferreolensis - T. hejouensis (F) BIC	RP	SN CP	RA	01	cc			13	DHIC DIST SS SEDI			AND CHERT Six pieces of limest greenish gray (5GY	one, wh 7/1) bi , white MMAR	
breggi												Carbonate unspec. Foraminifers Nannofossila	60 25 15	CC-12 55 30 15

% Organic Carbon

3.5

Log



-

cc

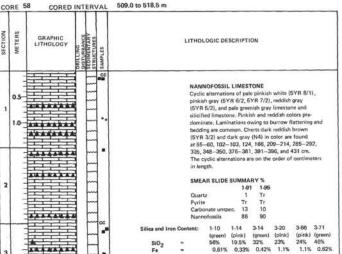
LIMESTONE Cyclic alternations of pale pinkish white (SYR 8/1), pinkish gay (SYR 8/2 and SYR 7/2), reddish gray (SYR 5/2) and pale greenish gray (SGY 8/1) limestone. Lamination soving to Durrow flattening and original bedding are common. Cherti, dark reddish brown (SYR 3/2) and reddish gray (SYR 5/2) are present at 7, 62–69, 78, 100–103, and 126–130 cm. The cyclic alternations are on the scale of cantimeters in length. SMEAR SLIDE SUMMARY %

LITHOLOGIC DESCRIPTION

2-10 = 70%

80.0 81.6

0.1 0.3


1-10 3-10

Carbonate Content:

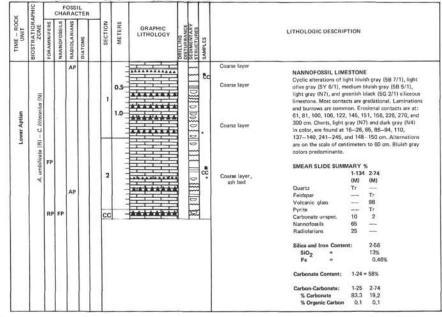
Carbon-Carbonate:

% Carbonate

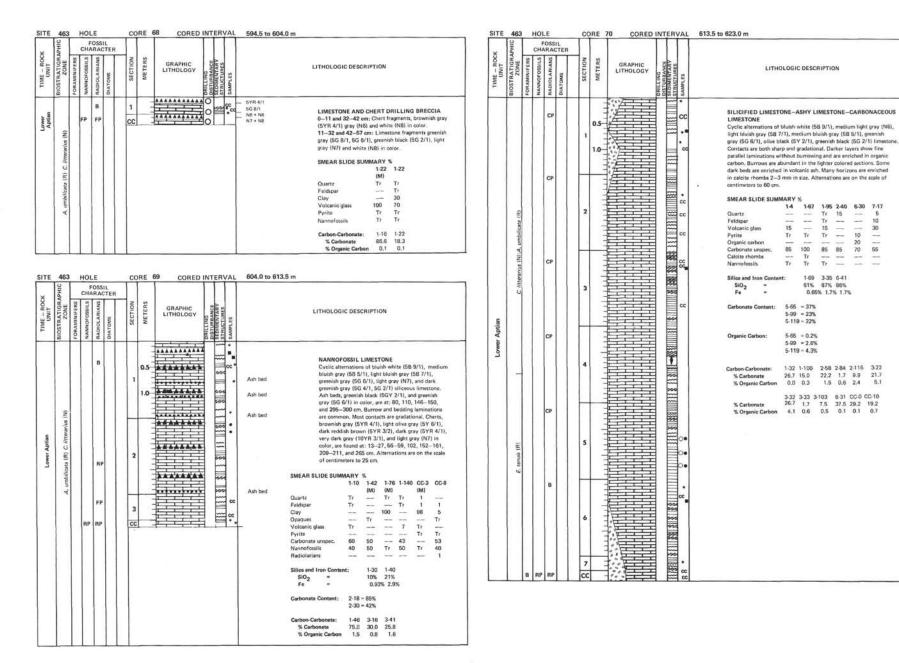
% Organic Carbon

	APHIC			OSS	IL						
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Lower Albian	argunus (N)			B		1	0.5			CC	NANNOFOSSIL LIMESTONE Cyclic alternations of pale pinkith white (5YR 8/1), pinkish gray (5YR 6/2, 5YR 7/2), reddiin gray (5YR 5/2), pale gereinish gray (5GY 8/1), and gereinish gray (5GY 7/1, 5GY 6/1) alticeous and silicified nannofossil limestone. Greenish gray predominate in the first sections. Sections 2 and 3 show an increase in the pinkish and nedfish hurs and Sections 4 and Core- Catcher are dominated by reddinh hurs. Laminations owing to burrow flattening and bedding are common. Cherts, dark gray (140, dark reddin horsom (5YR 3/3), gray (5Y 6/1), pinkish gray (7.5YR 6/2), brown (7.5YR 5/2) and gerenish gray (55, 522–300, 310–315, 400–406, 450–453, and 500–502 cm. Graded bed occur at 80–85, 86–94, 109–120, 120–131, 210– 216, 250–260, 270–260, 324–329, 382–386.
Upper Aptian	A. untilificata (P) P.	в	RP	B B		3 4 CC		0.6.			415-421, and 425-434 cm. SMEAR SLIDE SUMMARY % Volconic glass Tr — Calicits rhombs Tr — Carbonate unspec. 70 85 Nannofossit 30 15 15 Silica and Iron Content %: 1-1 1-7 1-126 1-114 3-106 3-122 Silica and Iron Content %: 1-1 1-7 1-126 1-114 3-106 3-122 Fe 30% 36% 46% 41% 24% 23% 0.37% 0.48% 24% 23% 0.37% 0.48% 0.51% 0.49 Carbonate Content :: 1-10 = 80% 2-16 = 56%
	. the aggregate										Carbon-Carbonate: 1.18 3-139 86.6 72.5 0.1 0.1

×	VPHIC			OSS	IL									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION	
Upper Aptian – Lower Albian	breggiensti – G. ferreolensis – T. bejaouwensis (F) A. umbilicata (R) P. engutus (N)			B B AM B B B RP		1	-				20	Coarse layer Coarse layer	Heavy mineraiz	te (5YR 8/1), 5% gray (5YR grayniah pray esil limestone. 7/3) nannofossil ted as coarser moniv shows and badding. sil-foraminifer predominate e found at: dish gray 2), dark reddish at 60–65 cm, 584 cm. 125 2 7 1 3 3 3 1 5 6 (1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 5 1 1 1 5 1 1 5 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1
	. bre		œ				-				11	Coarse layer	% Organic Carbon 0.1 0.1	0,1


	APHIC			RAC												
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHO	LOGIC DESCRIPT	ION		
Upper Aptian – Lower Albian	T, breggiersis – G. ferreolansis – T. bejaouaensis (F) A, unbilicata (R) P, angutus (N)		R#/	B		2_ CC		0.5				Coarse layer LIME Coarse layer Cycei priku S720, Coarse layer prav Coarse layer cycles forum layer Calcite rhombs ation found struct this o Silica Sile Sile Sile Sile Sile Sile Sile Sile	on-Carbonate:	le pin SYR 1 (5GY) nan n (10 hich a imest i bow brow brow dic al to s to 2 1-2 29	kish white (//2), reddish 8/1), and di nofossil limi YR 7/3) nar re indicated one common rows and bec- rows and bec- rows and bec- rows and bec- rows and bec- rows olors pri- rn (5YR 3/3) ternations ar	5YR 8/1), gray (5YR ark greenish estone, Also nofossil i as "coarse" nly shows lami dding. The em without edominant in 0; chert is re on the

SITE 463 HOLE	CORE 62 CORED INTERVAL	537.5 to 547.0 m	SITE 463 HOLE CORE 63 CORED INTERVAL 547.0 to 556.5	m
TIME – ROCK UNIT BIOSTRATIGRAPHIC FORAMMERIES MANNOFOSSILS MANNOFOSSILS BADIOLA RIVANS BADIOLA RIVANS BADIOLA RIVANS BADIOLA RIVANS	BRITTING CLICOL	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
Upper Aptian – Lower Altian 7. Dengenetic – G. Kernolemis – T. Johjousenis (F) A. umbilicate (R) P. angurus (N) 8 8 3 2 7 9 7		LIMESTONE Cyclic alternations of pinkish white (SYR 8/2), pinkish grav, (SYR 7/2, SYR 6/2), reddish grav, (SYR 7/2, SYR 4/2), pale graenish grav, (SGY 8/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 5/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 5/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 5/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 5/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 5/1), greenish grav, (SGY 7/1, SGY 8/1, SG 6/1, SG 6/1), are every gradsformal and borrowds. Laminations are common as a result of flattered: burrows and bedding. Cherls, yrer, (NSL 6/2-22 cm. The first section is dominated by pinkish colors, the sate of cantimeters to about 15 cm. Ath bed SMEAR SLIDE SUMMARY % 1-03 1-06 1-137 2-24 2-32 2-70 2-122 2-132 SMEAR SLIDE SUMMARY % 1-03 1-06 1-137 2-24 2-32 2-70 2-122 2-132 Meanting 1-03 1-09 1-06 1-137 2-24 2-32 2-70 2-122 2-132 Meanting 1-03 1-09 1-06 1-137 2-24 2-32 2-70 2-122 1-33 SMEAR SLIDE SUMMARY % 1-03 1-06 1-137 2-42 2-32 2-70 2-122 1-33 Castronic glass	B B B C C C C C C C C C C C C C	LIMESTONE Cyclic alternations of pate pinkish white (5YR 8/1), pinkish grav (5YR 6/2, 5YR 7/2), reddish grav (5YR 6/2), pieke presnih grav (5GY 8/1), and greenish grav (5GY 7/1, 5GY 6/1) aliceous limestone. Most contacts are gradiational. Lumination and burrows are common. One coarser layer (sandy) erriched in forsminifers in at 325–75 cm and 80–83 cm. Alternations are on the scale of centimeters to 20 cm. Pinkish colors predominates in this care. SMEAR SLIDE SUMMARY % 25 2:30 2:45 Hematite 17 2:50 2:45 Hematite 17 2:50 40 Rodinates in this care. SMEAR SLIDE SUMMARY % 26 2:30 2:45 Hematite 17 2:50 40 Rodinates in this care. SMEAR SLIDE SUMMARY % 27 2:50 2:45 Hematite 17 2:50 40 Rodinates in this care. SIBLes and from Content: 2:2 2:5 CC:10 CC:16 (pink) (green) (pink) (green) SIO2 2:29% 0.34% 1.3% 0.41% Carbonate content: 1:47 - 79% 1:52 - 62% Carbonates 1:128 2:2 2:128 CC:10 % Carbonate 83.3 55.8 75.8 50.8 % Organic Carbon 0.1 0.1 0.0 0.1


	4iC	Γ	HO	OSS	IL.	T	Г	64 COREC	INTER						
ž	APP	-	CHA	RAC	TER	-									
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIP	TION		
Albian	P, angustus (N)		см	АР		1	0.			• 60	Coarse layer	NANNOFOSSIL AND NANNOFOSSIL LIME Cyclic alternations of p brown (7.5YR 4/2), an SGY 7/1) siliceous lim gradational. Laminatio throughout, but most chert is found at 31, 2 layers, anriched in radi foraminifers, light gree in color, are at: 83–71	STONE ale red (d light g stone, N ns and by obvious in 74, 335, olarians a nish gray	2.5YR 6/2) reenish gray lost contact urrows are on the pale n and 400 cm and recrysta (5Y 7/1, 5	(5Y 7/1, ts are common ed units, n. Coarse Illized 5GY 7/1)
tian – Lower Albian	ate (R)			AP		2				:	Coarse layer	320, 328–331, and 35: on the scale of centime predominate in this cou 375 cm.	2-355 cr ters to 2 e. One b	m. Alternat 5 cm, Redd	ions are lish colors
Upper Aptian	(F) umbilicata									:		SMEAR SLIDE SUMM	ARY %	1-68	
pper	A. un							T INT			12	Feldspar	Tr	0.00	
2	uee									-	Coarse layer	Volcanic glass Opaques	Tr	1	
	bejaou		CM			Г	Г			00	Coarse layer	Carbonate unspec.	20	15	
	1.00		CIM	AP				A		0	Coarse layer	Foraminifers Nannofossils	80	15	
	1					3					Coarse layer		22	100	
	ferreolensis											Silica and Iron Content	: 2-91 (pin)	2-96 () (green)	
		в	RP			cc				_		SiO ₂ = Fe =	11% 1.9	14% % 0.44%	23% 24% 0.59% 1.69
	ensia – G.											Carbonate Content:	2-34 = 8 2-52 = 6	15%	
	vegg											Carbon-Carbonate:		3-9 3-29	
	T. breggiensia											Carbon-Carbonate: % Carbonate % Organic Carbon		3-9 3-26 60.0 51.7 0.1 0.1	
SITE	۲: 463		ног	OSS	IL		DRE	65 CORED	INTER	/AL	566.0 to 575.5 m	% Carbonate	63.3	60.0 51.7	
TIME - ROCK UNIT	2	FORAMINIFERS	Ŧ	OSS	IL TER SWOLVIG	SECTION	ORE		DRILLING DISTURBANCE T SEOMENTARY T STRUNGTURE	SAMPLES Y	566.0 to 575.5 m	% Carbonate	63.3 0.1	60.0 51.7	
TIME - ROCK UNIT	۲: 463		CH/	OSS	TER						566.0 to 575.5 m	% Carbonate % Organic Carbon	63.3 0.1	60.0 51.7	
TIME - ROCK UNIT	(N) BIOSTRATIGRAPHIC P. T. ZONE 20		CH/	RADIOLARIANS	TER		METERS	GRAPHIC LITHOLOGY		SAMPLES	566.0 to 575.5 m	% Carbonate % Organic Carbon	63.3 0.1 TION STONE	60.0 51.7 0.1 0.1	8/21,
TIME - ROCK UNIT	(N) BIOSTRATIGRAPHIC P. T. ZONE 20		CH/	RADIOLARIANS	TER			GRAPHIC LITHOLOGY	O DRILLING O DISTURBANCE SEDMENTARY SEDMENTARY STRUCTURES	SAMPLES	566.0 to 575.5 m	% Carbonate % Organic Carbon	63.3 0.1 TION STONE STONE 5YR 6/2 ale green	60.0 51.7 0.1 0.1 hite (5YR 2), reddish ish gray (5	8/2), gray GY
- Lower Albian TIME - ROCK	anguatus (N) BIOSTRATIGRAPHIC 5.		CH/	RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O DRILLING O DISTURBANCE SEDMENTARY SEDMENTARY STRUCTURES	SAMPLES	566.0 to 575.5 m	% Cerbonate % Organic Carbon LITHOLOGIC DESCRIP NANNOFOSSIL LIME Cyclici alternationo 1g pinkidin gay. (5YR A2), 5YR A2), 5YR A2, 5YR	63.3 0.1 TION STONE inkish w 5YR 6/0 de green f 7/1, 50	60.0 51.7 0.1 0.1 hits (5YR i 2), reddish- ish gray (5 57 6/1, 56	8/2), gray GY ¥5/1,
- Lower Albian TIME - ROCK	(N) BIOSTRATIGRAPHIC P. T. ZONE 20		CH/	RADIOLARIANS	TER	SECTION	METERS	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	SAMPLES	566.0 to 575.5 m	% Cerbonate % Organic Carbon LITHOLOGIC DESCRIP NANNOFOSSIL LIME Cyclic alternations of p pinkkin gay. (SYR 4/2), p 19/10, genital gay. (SYR 5 G 4/1), and greenibl and burrows are comm	63.3 0.1 TION STONE inkish w 5YR 6// ale green / 7/1, 50 black (58 on, Cont	60.0 51.7 0.1 0.1 hite (5YR 2), reddish ish gray (5 3Y 6/1, 5G (6 4/1). La acts are usi	8/2), gray GV GV F/1, minations ally grada-
- Lower Albian TIME - ROCK	anguatus (N) BIOSTRATIGRAPHIC 5.	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	SAMPLES	566.0 to 575.5 m	% Carbonate % Organic Carbon LITHOLOGIC DESCRIP Delicit atternations of p pinkidin gay. (5YR 7/2, (5YR 6/2, 5YR 4/2), p 9/1), genetic 19/19 7/2, (5YR 6/2, 5YR 4/2), p 5/1, genetic 19/19, p 10/10, genetic 19/10, p 10/10, c 10/10,	63.3 0.1 TION STONE inkish w 5YR 6// ale green 7 /1, 5C black (5B on, Cont B), greeni ray (5YF	60,0 51,7 0,1 0,1 hite (5YR 1 2), reddish ish gray (5 5Y 6/1, 5G (5 4/1), La acts are usi sh gray (5C 3 7/1), and	8/2), gray GY Y 5/1, minations ally grada- iy 7/1), grayish
TIME - ROCK UNIT	P. anguatus (N) BIOSTRATIGRAPHIC B	FORAMINIFERS	NANNOFOSSILS 24	RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	8 samples	566.0 to 575.5 m	% Carbonate % Organic Carbon LITHOLOGIC DESCRIP Cyclic alternations of p pinkidin gray (SYR 77/2 (5YR 5/2, 5YR 4/2), p 8/11, geninb gray (SY 8/3), geninb gray (SY 8/3), geninb gray (SY 8/3), geninb gray (SY 8/3), gift p brown (IOYR 5/2), as	63.3 0.1 TION STONE binkish w 5YR 6// sole presec- ban, Conti 3, green ray (SYF) ray (SYF)	60,0 51,7 0,1 0,1 hite (5YR 1 2), reddish- iish gray (5 G 4/1), La acts an uits sh gray (5 C 7/1), and m, 43–50	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	15 P. anguatus (N) BIOSTRATIGRAPHIC B	FORAMINIFERS	NANNOFOSSILS	B RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	SAMPLES	566.0 to 575.5 m	% Carbonate % Organic Carbon LITHOLOGIC DESCRIP Delicit atternations of p pinkidin gay. (5YR 7/2, (5YR 6/2, 5YR 4/2), p 9/1), genetic 19/19 7/2, (5YR 6/2, 5YR 4/2), p 5/1, genetic 19/19, p 10/10, genetic 19/10, p 10/10, c 10/10,	63.3 0.1 TION STONE Inkish w 5YR 6/7 Y 7/1, 5C lack (5B obs., greeni ray (5Y) at 0-5 - 40–155	60,0 51,7 0,1 0,1 hits (5YR i 2), reddish- ish gray (55 37 6/1, 5G G 4/1), La acts are us sh gray (56 81 7/1), ad-50 cm, Alterm	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	15 P. anguatus (N) BIOSTRATIGRAPHIC B	FORAMINIFERS	NANNOFOSSILS 24	B RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	8 samples	566.0 to 575.5 m	% Carbonate % Organic Carbon % Organic Carbon UITHOLOGIC DESCRIP UITH	63.3 0.1 TION STONE INITION STONE STR 6/ ale green 771, 55 STR 6/ ale green 771, 55 STR 6/ ale green 771, 55 STR 6/ ale green 10, 57 R 6/ ale green 10, 55 R 6/ ale green 10, 57 R 6/ ale green 10, 57 R 6/ ale green 10, 57 R 6/ ale green 10, 57 R 6/ ale green 10, 55 R 6/ ale green 10, 57 R 6/ ale green 10,	60,0 51,7 0,1 0,1 hits (5YR i 2), reddish- ish gray (55 37 6/1, 5G G 4/1), La acts are us sh gray (56 81 7/1), ad-50 cm, Alterm	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	owenuis (F) P. angustus (N) BIOSTRATIGRAPHIC P. 7. ZONE 2016	FORAMINIFERS	NANNOFOSSILS 24	B RADIOLARIANS	TER	SECTION	O.	GRAPHIC LITHOLOGY	O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	8 samples	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Opelic alternations of pinktin gav (5YR 7/2, (5YR 6/2, 5YR 4/2), B/1), genita gave for al., Cherts, gav (Marcologic) SG 4/1), and generinh tional., Cherts, gav (Marcologic) proven (10YR 6/2), are proven (10YR 6/2), are some (10YR 6/2), are some and the scale of cent SMEAR SLIDE SUMM	63.3 0.1 TION STONE Einkläh w Fyr 6// Jack (BB on, Cont J., greeni J., greeni Mack (BB on, Cont J., greeni Minter S 46–155 A 46 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46–155 A 46 A 46 A 46 A 46 A 46 A 46 A 46 A	bits (5YR i 2), reddish ish gray (5 37/1), and cm, 43–50 cm, 43–50 cm, 43–50 cm, 42–50 cm,	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
- Lower Albian TIME - ROCK	owenuis (F) P. angustus (N) BIOSTRATIGRAPHIC P. 7. ZONE 2016	FORAMINIFERS	NANNOFOSSILS 24	B RADIOLARIANS	TER	- SECTION	O.		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	8 samples	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Dinkidin gay, 1657 S72, 574 A/2), p Jinkidin gay, 1657 S74 A/2), p Jinkidin gay, 1637 S74 J/1, g Jinkidin g Jinkidin gay, 1637 S74 J/1, g Jinkidin	63.3 0.1 TION STONE Inkiba W 5YR 60, 10-5, 10-5, 46–155 imeters t ARY % 1-20	bits (5YR 10,10,10,10,10,10,10,10,10,10,10,10,10,1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	1. Deleowervisit (F) P. angustus (N) BIOSTRATIGRAPHIC P. 1. Vicets (R) P. angustus (N) ZONE	FORAMINIFERS	NANNOFOSSILS 24	B RADIOLARIANS	TER	- SECTION	O.		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	8 samples	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Dinkidin gay, 1657 S72, 574 A/2), p Jinkidin gay, 1657 S74 A/2), p Jinkidin gay, 1637 S74 J/1, g Jinkidin g Jinkiding Jinkidin g Jinkidin g Jinkiding g Jinkiding	63.3 0.1 TION STONE ininkish w 5YR 6(7) ale green 771, 55 aleak (BB green ininkish w 5YR 6(7) ale green ininkish w 10–5 - 46–155 ininkish w 10–5 - 148–155 ininkish w 11–5 - 148–155 ininkish w 11–5 - 148–155 ininkish w 11–5 - 148–155 ininkish w 11–5 - 148–155 ininkish w 11–15 ininkish w 11–15 inininkish w 11–15 ininkish w 11–15 inininkish w 11–15 ininkish w 11–15 inin	60.0 51.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	1. Deleowervisit (F) P. angustus (N) BIOSTRATIGRAPHIC P. 1. Vicets (R) P. angustus (N) ZONE	FORAMINIFERS	NANNOFOSSILS H	B RADIOLARIANS B	TER	- SECTION	O.		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	• • · · · · · · · · · · · · · · · · · ·	566.0 to 575.5 m	% Carbonate % Organic Carbon % Organic Carbon LITHOLOGIC DESCRIP Ovelice alternations of p pinktish gay (5YR 7/2, (5YR 6/2, 5YR 4/2), 1 8/11, genich gay (5YR 7/2, (5YR 6/2, 5YR 4/2), 1 8/11, genich gay (5) 5G 4/1), and greenich and burrows are comm tional, Cherts, gay (IN 200, 1), light gay (5) are on the scale of cent SMEAR SLIDE SUMM Heavy minerals Volcanic glass	63.3 0.1 TION STONE inkish w 5YR 60, 12 de green 771, 56 de green 771, 57	60.0 51.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayia grayia cm, 80 cm,
Upper Aptian - Lower Albian TIME - ROCK	1. Deleowervisit (F) P. angustus (N) BIOSTRATIGRAPHIC P. 1. Vicets (R) P. angustus (N) ZONE	FORAMINIFERS	NANNOFOSSILS H	B RADIOLARIANS	TER	2 SECTION	O.		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	S SAMPLES	566.0 to 575.5 m	% Carbonate % Organic Carbon % Organic Carbon LITHOLOGIC DESCRIP Opelie alternations of pinkich grav (SYR 5/2), (SYR 6/2, SYR 4/2), p (SYR 6/2, SYR 4/2), (SYR 6/2, SY	63.3 0.1 TION STONE inkish w 5YR 60, 12 de green 771, 56 de green 771, 57	60.0 51.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	3. ferreolensis – T. belaousensis [F] P. angustus (N) BIOSTRATIGRAPHIC A. umbilicats (R) ZONE 20NE	FORAMINIFERS	NANNOFOSSILS H	B RADIOLARIANS B	TER	- SECTION	O.		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	• • · · · · · · · · · · · · · · · · · ·	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Dinkidin gray, IGV Jones Status Jones S	63.3 0.1 TION STONE with the second secon	800 51. 0.1 0;1 0.1 0;1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	Controlerasia – T. Beiloousenais IF) P. anguraue (N) ZONE SONE Control Contro Con	FORAMINIFERS	NANNOFOSSILS H	B RADIOLARIANS B	TER	2 SECTION	0.3		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	• • · · · · · · · · · · · · · · · · · ·	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Dividing arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. (SYB 72, SYR 6/2, SYR 4/2), p Jinkiding arg. SYR 6/2,	63.3 0.1 TION STONE inkish w 5YR 6/0 inkish w 5YR 6/0 inkish w 646–155 imeters 46–155 imeters 46–155 1.2 46–155 1.2 48–1555 1.2 48–1555 1.2 48–1555 1.2 48–1555 1.2 48–1555 1.2 48–1555 1.2 48–1555	60,0 51,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayish en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	Controlerasia – T. Beiloousenais IF) P. anguraue (N) ZONE SONE Control Contro Con	FORAMINIFERS	E S S S S S S S S S S S S S S S S S S S	B B	TER	section	0.3		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	• • · · · · · · · · · · · · · · · · · ·	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Dinkidin gray, IGV Jones Status Jones S	63.3 0.1 TION STONE thinkish w 5YR 6(7) web green web green 77/1, 56 de green 46-155 1, green 1, green	60,0 51,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayiah en, 80 cm, 80 cm
Upper Aptian - Lower Albian TIME - ROCK	3. ferreolensis – T. belaousensis [F] P. angustus (N) BIOSTRATIGRAPHIC A. umbilicats (R) ZONE 20NE	FORAMINIFERS	E S S S S S S S S S S S S S S S S S S S	B B	TER	section	0.3		O O DISTURBANCE O DISTURBANCE SECONTRATY SECONTRAES	• • · · · · · · · · · · · · · · · · · ·	566.0 to 575.5 m	S. Carbonate S. Organic Carbon S. Organic Carbon LITHOLOGIC DESCRIP LITHOLOGIC DESCRIP Description Carbonate (STR 72) (STR 52, STR 72), D STR 12, STR 72), STR 72, STR 72	63.3 0.1 TION STONE instant w by R 6/ ele green by R 6/ ele green	60,0 51,1 0,1 0,1 21, coddish 314 gray (5,4,1 31, coddish 314 gray (5,4,1 31, coddish 314 gray (5,4,1 31, coddish 314 gray (5,4,1 31, coddish 314 gray (5,4,1) 314 gray (5,4,1)	8/2), gray gray Y 5/1, minations ailly grada- iy 7/11, grayiah en, 80 cm, 80 cm

	10	<u> </u>	-	10021		-	-	T	-	T	-			_	_	
	HHA			OSS	TER											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRI	PTION		
				AP							CC					
				["				ALL ALLA	2		•	Coarse layer	RADIOLARIAN NAM Cyclic alternations of			
							0.5		3	0		Coarse layer	light gray (5Y 7/1), gr			
						1			3				5Y 7/1), and dark gre			
						1.1						100 C	ilmestone. Contacts a enriched in radiolaria			
			1				1.0-		3		•	Coarse layer	bottom contacts. Che			
								*******	8				and gray (N6, N5), an	e at : 0-	10, 36-	40, 128-132,
	3											Coarse layer	194-196, 245, 265-			
	2		RP	1					1				375-391 cm. Alterna centimeters to 45 cm.			
	umbilicata (R) C. litterarius (N)		RP	AP			1	1111					greens.	care, er, er, er, er, er, er, er, er, er,		
E	litto						-		5	~~		12111111111111	1111:02/11/02/11/12	o ne se	2	
Lower Aptian	G					1	1		1	0		Coarse layer	SMEAR SLIDE SUM	1-28	1-108	1 140
-	(H)					2	+	******	0					(M)	1-100	(M)
M	2					1.1	-		3				Quartz		Tr	
2	Silic						1.3	******	5				Opaques		2	
	Inter								Ξ.				Volcanic glass		Tr	
	Α.								1n	h	cc		Carbonate unspec.	30	15	20
	1.27			AP			1.1		I۲	han	CC		Nannofossils	40	83	75
							1	******	8	0		Coarse layer	Radiolarians	30		15
						3	-	*******	4				Carbonate Content:	3.64	77%	
							13				•		Carnonina containt.	3.79		
			RP			cc			1		•					
		102	RP			CC	-	AAAAAAA	1		-		Carbon-Carbonate:	1-10	3-10	
													% Carbonate	100.0	70.8	
													% Organic Carbon	0.1	0.1	

SITE 463 HOLE CORE 67 CORED INTERVAL 585.0 to 594.5 m

97

SITE 463

SITE 463 HOLE	CORE 71 CORED INTERVAL	623.0 to 632.5 m	SITE 46	3 1	IOLE		CORE 72	2 CORED INTERVAL	632.5 to 642.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORMINIFERS NANNOFOSSILS PSSSILS PSSSILS PSSSILS	ER NOIL23S SECTION REAL CONTINUES CO	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	FERS	RADIOLARIANS	SWO	SECTION	SI ANY		LITHOLOGIC DESCRIPTION
Lower Aptian E. remuls (R) C. litreevice (N) d. d. d		Solution of the second	Lower Aptian Commit (10. C Generation (10.	and processing the first	FP FC(/ P FP FP FP		0.5-ининининининининининининининининининин		Calcite filled veins	SILICIFIED LIMESTONE Cyclic alternations of light gray (5Y 71, N71, light greenisk gray (5QY 71, 5CY 817), light (by gray (5Y 8/1), and light build preve (1586 8/1) limetons. Relatively structurelises with some burrowing and whitely discontinuous laminae and strakts. Contacts are light structurelises with some burrowing and moderate burlow (5Y 8, 14) in borow (5Y 8, 24), white (N81, dark greenish gray (5GY 41) and moderate burlow (5Y 8, 24) and 526 cm. Alternations are on the scale of entimiterent to 50 cm. SMEAR SLIDE SUMMARY % 2-15 2-40, 427 4-27 4-40 Martine (158, 240 and 526 cm. Alternations are on the scale of entimiterent to 50 cm. SMEAR SLIDE SUMMARY % 2-15 2-40, 427 4-27 4-40 Martine (158, 250 - 250, 500 - 100) Calcite thromis

SITE		Γ	HOI CH/	FOSS	IL TER		RE	73 CORED		ERV		6
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	
				CP RP		1	0.5				сс СС	5
				RP		2						
s	(N) \$1						1			200		

cc

1 .cc

....

5Y 6/1

-

	LITHOLOGIC	DESCRIP	TION			
	LIMESTON	E				
	Dominantly	greenish g	ray (50	Y 7/1, 5	GY 6/1)	
	limestone wi					
	gray (5GY 8					
	greenish gra					
	stone, Bound					
	continuous l Turbidites a					
5GY 7/1	These are pa					
and	color and an					
5GY 6/1	clasts of carl					
	The contact					
		22022-230			2254.6	
	SMEAR SLI	DE SUM	ARY	%		
			1-37	1-100	10000	3-97 3-107
	Feldspar		Tr	-	Tr	11.00 ·
	Volcanic gla	55		Tr	Tr	
	Zeolite	12020	100	Tr 100	Tr 85	95 100
	Carbonate u Calcite rhon		Tr	Tr	15	5
	Nannofossil		Tr		Tr	
	Pyrite					Tr Tr
	Silica and Ir	on Conter		1-36	1-49	1-59
	SiO ₂	=		36%	65%	71%
5Y 6/3	Fe			1.9%	0.57%	0.62%
	Carbonate C	Content:	4.75	- 8%		
			4-90	= 30%		
	Carbon Carl	bonate:	1-36	1-49	1.69	3-98
	Carbon-Car			39.2	29.2	87.5
	% Carbon-Carbon	nate	44.2	39.%	2.8.2	87.5
5GY 7/1	% Carbo	nate ic Carbon	44.2	0,1	0.0	0.6

	VPHIC			OSS	TER										
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		ESCRIPTIO	N		
Lower Aptian	terruls (R) C. Atterarius (N)			FM		1	0.5			cc*	coarse layer and olive (5Y mottles are co laminae. Coar and 72-73 cn (5Y 2/1) and	3 7/1), dark gray (5GY 4/1) siliceo mmon, as w le sandy lay b. Cherts, di dark greenis	gree 7/1), us fin elf an ers a ark gr h gra	mish gri greenis mestone s wavy re at: 1 ray (N3 ay (5G	ay (5G 4/1), h gray (5G 6/1), c. Burrowing and discontinuour 9, 35, 50, 65, 1), ofive black
			RP	FM		2 CC					boarse layer SMEAR SLID Quartz Feldspar Heavy minera Volcanic gibso Pyrite Carbonate um Carbonate um Carbonate um Carbonate and fron Sifica an	1 s T 	7 5 5 0 0		1-149

	APHIC			OSS RAC	TER								
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	CECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHO	LOGIC DESCRIPTION	
	cenuis (R) C.litterarius (N)		DD	AM						3 =8	and Light N8 with dark	ESTONE t gray green (5Y 7/1) to dark greenish gray (5G Y gray (N4) chert at 48—5 t is at 103 cm.	(4/1) laminae. One layer o
Aptian	uis (R) C.lit		IN	a.		C	ut		4.1	1		and Iron Content: 02	1-52 4% 0.37%
Lower	E, ten										%	on-Carbonate: 1-51 Carbonate 89.1 Organic Carbon 0.1	20.0

Lower Aptian

(R) 2 /

E. renuir (

00

R DP

RP

FP CP

ME - ROCK UNIT TRATIGRAF ZONE ZONE	FOSSIL HARACTER SNVIDA TOIOVA	SECTION METERS	DRILLING DISTURBANCE SEDIMENTARY STEUCTURES SAMPLES	LITHOLOGIC DE	SCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	BIADIOLARIANS		GRAPHIC GRAPHIC LITHOLOG	A DRILLING DISTURBAN SEDIMENTA STRUCTURE SAMPLES		LITHOLOGIC DESCRI	PTION		
and a	8 tP 8	1 11 CC		and fragments of sil 5Y 7/1 Iamine, dark g black (6S 2/1) sections gray/sh 78-80 and 100 gray (NS), and	ine to light gravy (SY 81-5Y 7/11) cified limetone, thowing whitey cents grav (SG 4/1) and greenish ne zoice. Darker, well-laminated black (SGV 211) in color are at -105 cm. Chers. light grav (N2), dikk grav (N3) in color, are found at 90-95, 104-106, 111-120, 126- 70 cm. SUMMARY % 1-25 1-123 0M) 	Lower Aptien	E. terruis(F) C. litteranius (N)	FP RP	AP CP	1			NB *	LIMESTONE – RADI Dominantity white (A with burrows and gr grade bed of liments (10YR 7/1) in color, furmatione, grav (BY drafk gray (N4) in col found at 36–40,71, cm, A madium bluib clay is at 117–119 or SMEAR SLIDE SUM Ousriz Fieldspar Clay Glauconite Pyrite Volcanic glass Carbonate unspec. Radiolarians Nannofossils Stille and fron Conta Sille and fron Conta Sille and fron Conta Fieldspare Carbon-Carbonate: % Carbonate % Organic Carbon	IB) to lig w (N6) w (N6	ht gray wavy law im and fi 22 cm. ht gray (a sandy i 9394, B 5/1) c %	(N7) limeton inations. A inar), light gran Radiolarian (10YR 7/1), at Radiolarian ad 103–110 alcareous ashy 1-118

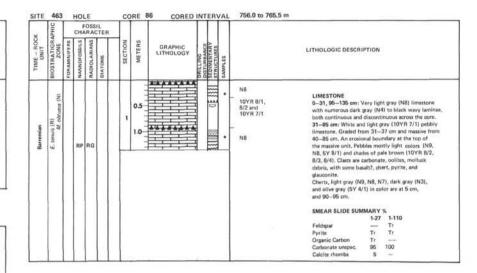
	APHIC		CHA	RAC	TER									
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRI	PTION	
Lower Aptian	E. tenuis (R) C. Nitterarius (N)			AP		1	0.5				5Y 7/1 and 5Y 8/1	LIMESTONE AND C White (SY 8/1) and li with dark greenish op (5GY 2/1) wavy lami light gray (N3) in co, 1 48–56, 90–85, 95, 1 Silice and Iron Conte SiO ₂ = Fe =	ght gray iy (5G 4 nae and nish blac or, are a 25—130	I/1) and greenish black thin beds. Cherts, ck (5YR 2/1), and t 1013, 1719,
												Carbon-Carbonata: % Carbonate % Organic Carbon	1-80 85.8 0.1	

~	APHIC			OSS RAC	TER									
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DHILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIP	TION
Barremian	E. tenuis (R) M. obtusus (N)		F/ P-M	В		1	0.5				cc	Nő	taminations of gray (N 55-60 cm is more ma The interval from 6-1 graded beds, gray (10) 4/1) at the base and w Clasts are from 1 cm t gray (N4) and dark gr	 limestone with wavy (b). One interval from sive – without laminations, 8 cm shows three small ('R &/1) to dark gray (10YR hite (10YR &/2) at the top, o finer sizes, Cherts, dark wish brown (10YR 4/2) in 19-22 cm, 35-39 cm,
													Carbon-Carbonate: % Carbonate % Organic Carbon	1-7 90.0 0.1

SITE 463 HOLE CORE 80 CORED INTERVAL 70	18.0 to 710.5 m	SITE 463 HOLE CORE 82 CORED INTERVAL 718.0 to 727.5 m
FOSSIL FOSSIL UIII ARARACTER SUIT SOURCE SUIT SOURCE S	LITHOLOGIC DESCRIPTION	POSSIL UNIT
(N) producto	CLASTIC LIMESTONE Possible talus breccia, dominantly light gray (N7), with gray (N8) laminations and white (10YR 8/1) pobleus to 10 cm in size. The unit is massive, 5–75 cm. A speckled limestone, very pale brown (10YR 8/3) and dark gray (Nati is at 4–6 cm. SMEAR SLIDE SUMMARY % 1-70 1-70 001 Pyrite Tr Calcible rhombs -Tr Carbonate unspec. 100 100	Image: Strain of the strain
SITE 463 HOLE CORE 81 CORED INTERVAL 710	0.5 to 718.0 m	Catcite rhombs 5 15 10 Silice and Iron Content: 1.48 302 - 71% Fe - 0.99% - - 0.99% Carbon-Cerbonate 1.48 1.115 -
Barramian Baramian Barrami		SITE 463 HOLE CORE 83 CORED INTERVAL 727.5 to 737.0m
	8/1 SMEAR SLIDE SUMMARY % 140 1-113 Pyrite Tr Calcist shombs Carbonate angegates 25 Carbonate unspect. 75 Sillog - 11% Fe Carbonate: 2-18 % Organic Carbon 0.1	Limestones

Silica and Iron Content: SIO₂ = Fe =

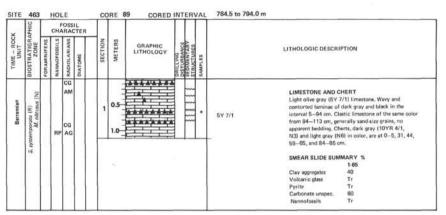
 Carbon-Carbonate:
 2-89
 2-93

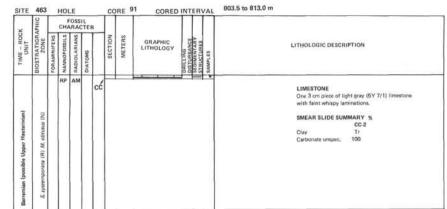

 % Carbonate
 74.1
 68.3

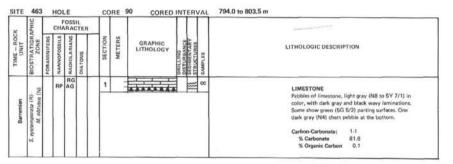
 % Organic Carbon
 0.1
 0.1

2-89 2-93 16% 27% 0.38% 0.49%

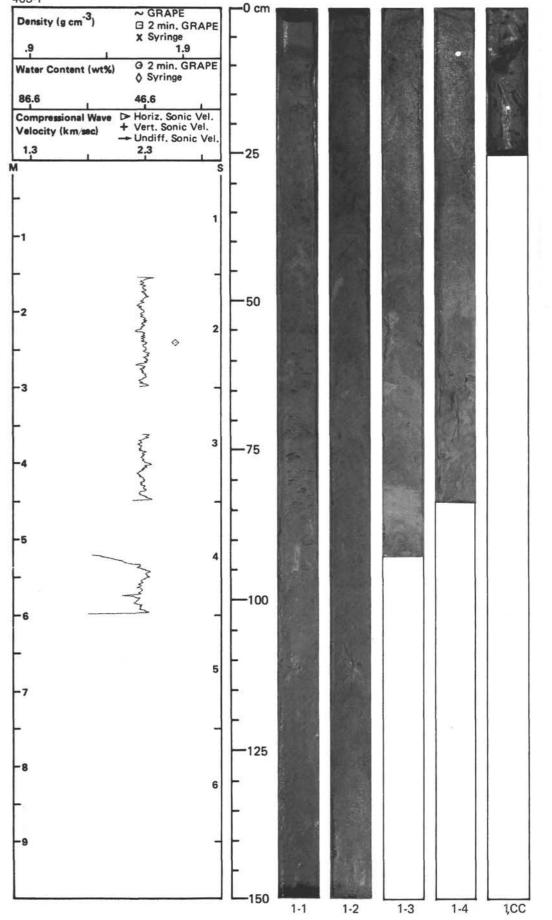
×	APHIC			RAC	TER									
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	THE OWNER		LITHOLOGIC DESCRI	PTION
Barremian	E. teorie (R) M.obrusus (N)			RM		1	0.5					NB 5Y 7/1 85 7/1 NB 5Y 7/1	in color, with pebble white (N8) limestone of clasts, but some he elongated clasts. Whit	limestone, light gray (5Y 7/1) and granule size clasts of . No apparent size gradation orizontal orientation of te "pelagic" limestone (N8) sinations is at 0–11, 111–113

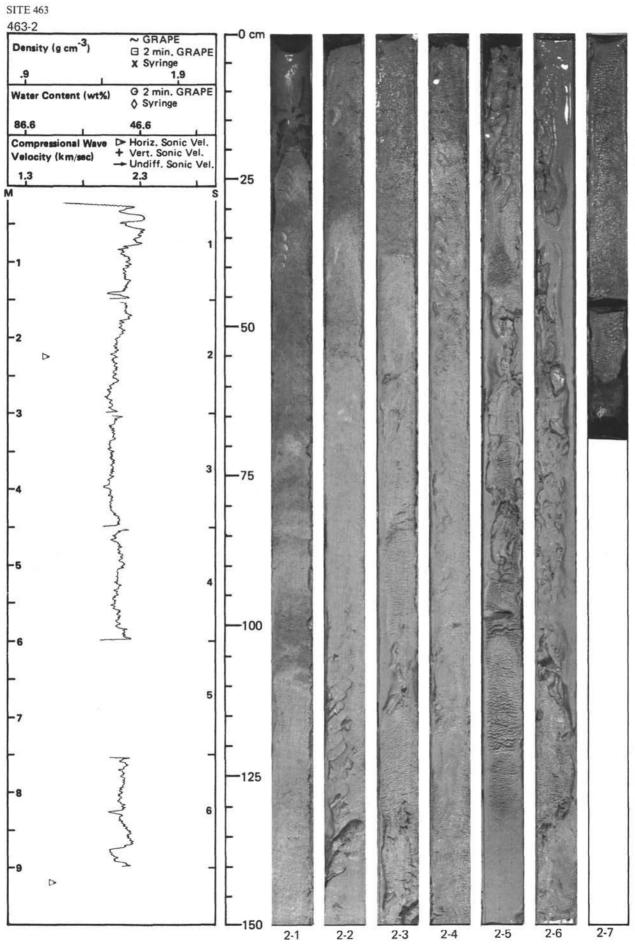

State NS CLASTIC LIMESTONE 0.5 50 6/1-4/1 CLASTIC LIMESTONE 0.5 50 6/1-4/1 CLASTIC LIMESTONE 0.5 50 6/1-4/1 CLASTIC LIMESTONE 0.5 50 7/1 CLASTIC LIMESTONE 1.0	×	PHIC	c		DSSI	TER				Π	Τ				
Program Program <t< th=""><th>12</th><th>BIOSTRATIGRAPHIC ZONE</th><th>FORAMINIFERS</th><th>NANNOFOSSILS</th><th>RADIOLARIANS</th><th>DIATOMS</th><th>SECTION</th><th>METERS</th><th>LITHOLOGY</th><th>DISTURBANCE SEDIMENTARY STRUCTURES</th><th>SAMPLES</th><th></th><th>LITHOLOGIC DESCRIP</th><th>TION</th><th></th></t<>	12	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIP	TION	
Carbonate 33.3 85.8	Barremian	tenuis (R) M.	F	P	FM		2	1		-	-00	SG 6/1-4/1 5Y 7/1 5Y 7/1 5Y 7/1 10YR 7/1 5Y 7/1 8Y 7/1	Dominantly light of by Imestone of rounded 1 granule aize grains grain 135—154 cm - mainly limastone, ungraided fr with wavy and contorn latminated "pelaige" lin and 150—153 cm. Ligh and 150—153 cm. Ligh SMEAR SLIDE SUMA Quartz Feldspar Heavy minerals Clay Volcanic glass Prite Carbonate unspec. Namofosiis Silice and Iron Content SiQ2 = Fe = F	gray (5 to subre led from cooliter oon 185 ed lamin 4-181., ay (5G mestone ti gray 98, 181 Tr Tr Tr Tr Tr 2 98 Tr Tr Tr Tr tr tr tr tr tr tr	unded sand and n 20-141 and . Clastic pebbly 284 cm. Interva- nee, without and 284-293 cm 6/1) horizontally and 284-293 cm 6/1) horizontally are at 15-20 (N7) and dark 2-30 N7 Tr Tr Tr 5 1 3 91 91 1.75 11% 0.33%

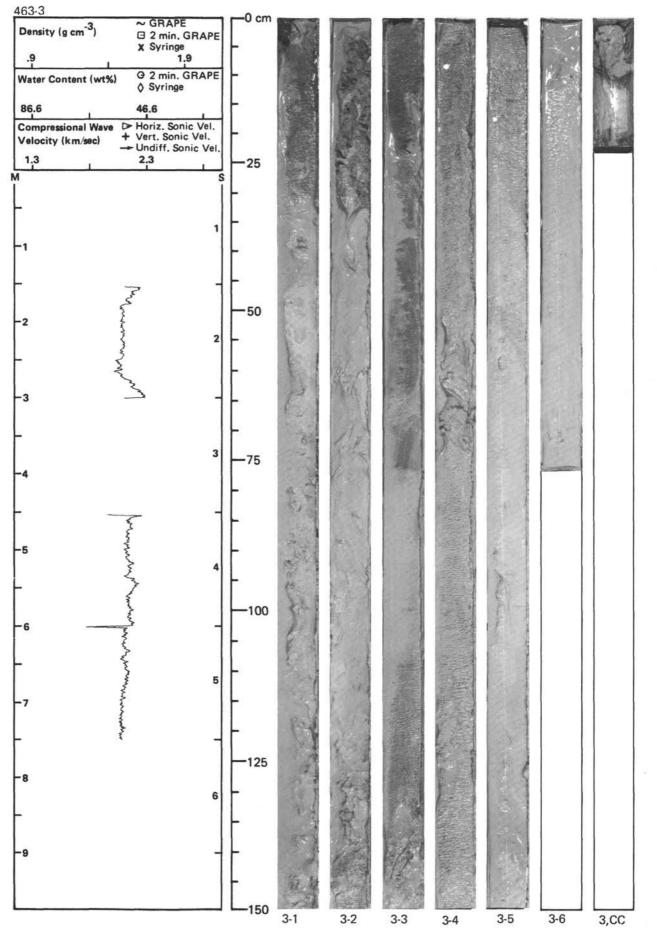


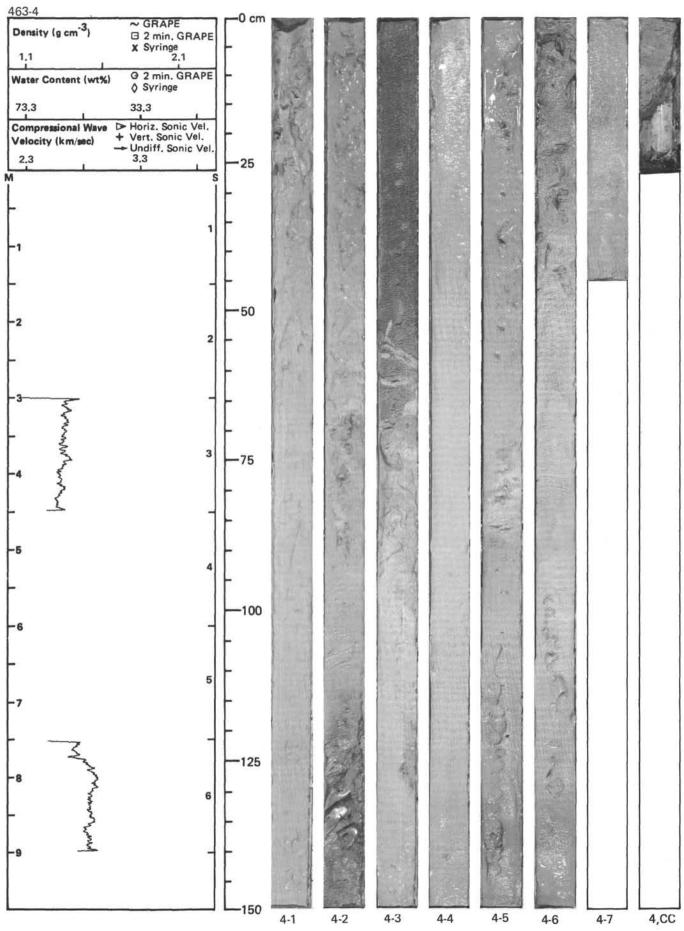

SITE 463 HOLE CORE 87 CORED INTERVAL 765.5 to 775.0 m FOSSIL ROCK METERS GRAPHIC TURBANCE LITHOLOGIC DESCRIPTION TIME - IN EC. NB LIMESTONE Very light gray (N8) limestone with numerous dark gray to black wavy laminations, both 0.5 ę, continuous and discontinuous across the core. Barrem M. c Chart, light gray (N9) to dark gray (N4) in color, is at 75-79 cm.

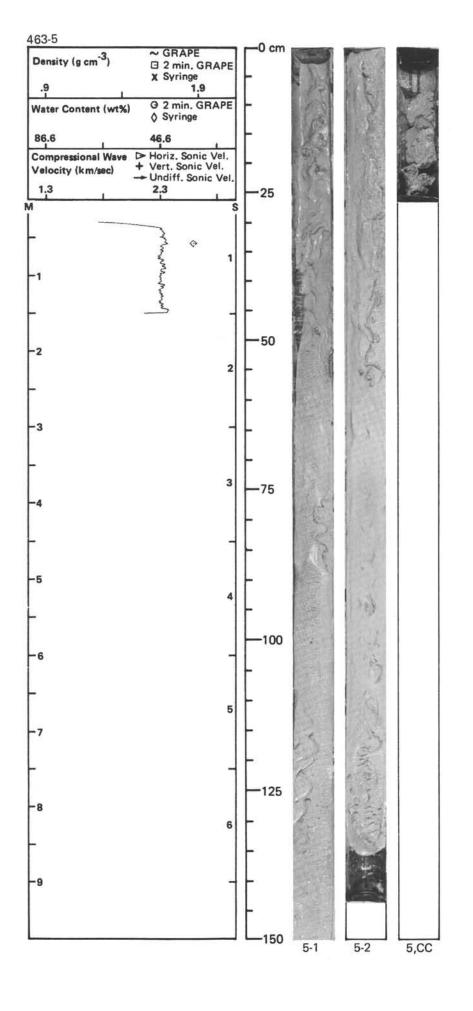
SITE 463 HOLE CORE 88 CORED INTERVAL 775.0 to 784.5 m FOSSIL ROCK METERS STURBANCE BIMENTARY GRAPHIC LITHOLOGIC DESCRIPTION TIME -HAD FM FG (Z -N8 LIMESTONE RP FR 0-35 cm: Very light gray (N8) limestone with Barremian 10YR 8/1, 8/2, 10YR 7/1 0.5 M. obt numerous dark gray to black wavy laminae, both continuous and discontinuous across the core. 35-67 cm: White (10YR 8/1, 10YR 8/2) and ŝ light gray (10YR 7/1) pebbly limestone. The interval from 55–59 cm is graded, the rest is massive. Clasts are mostly white to gray in color and are carbonates, oolites, and mollusk debris. Gray and dark gray (N5, N4) chert is at 3-6 cm. Carbon-Carbonate: 1-34 % Carbonate 79,1 % Organic Carbon 0.1

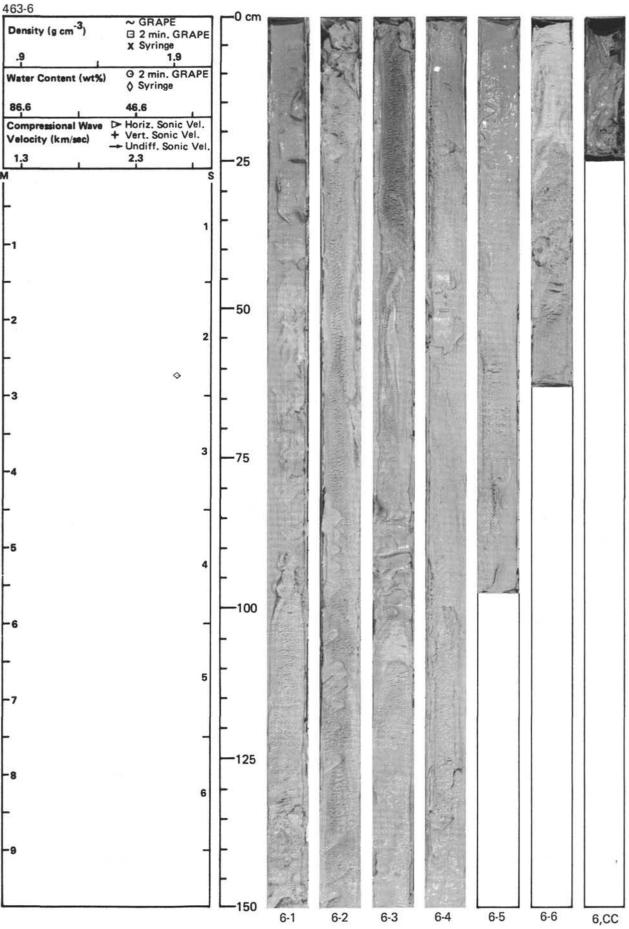


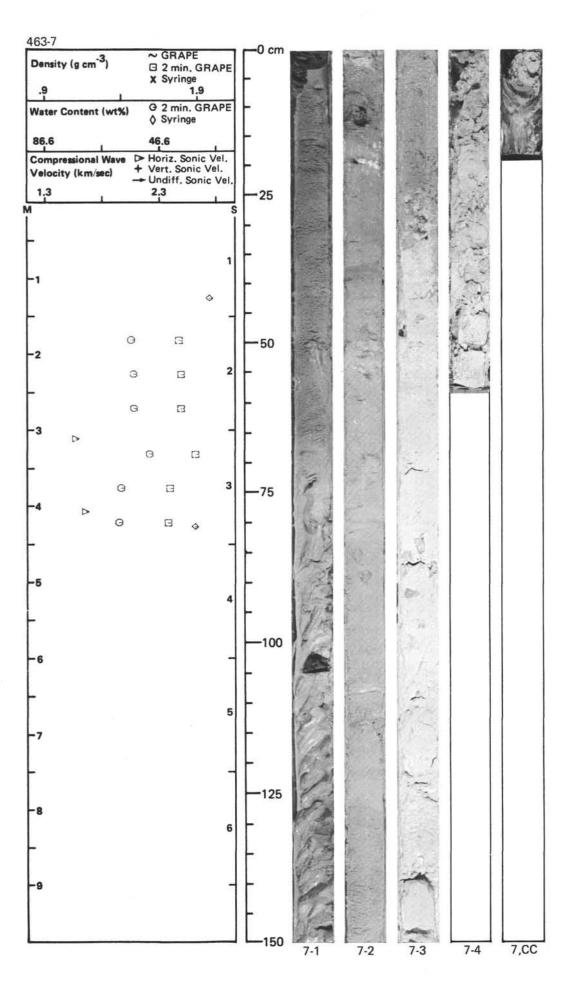


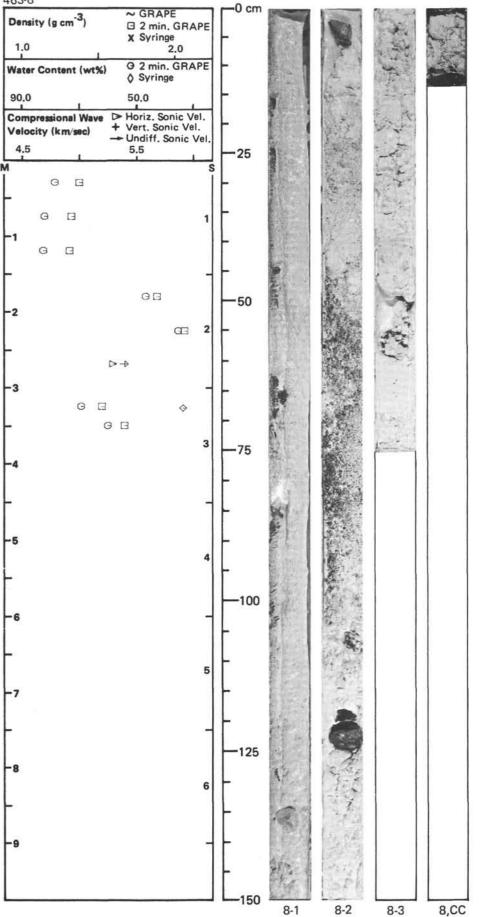


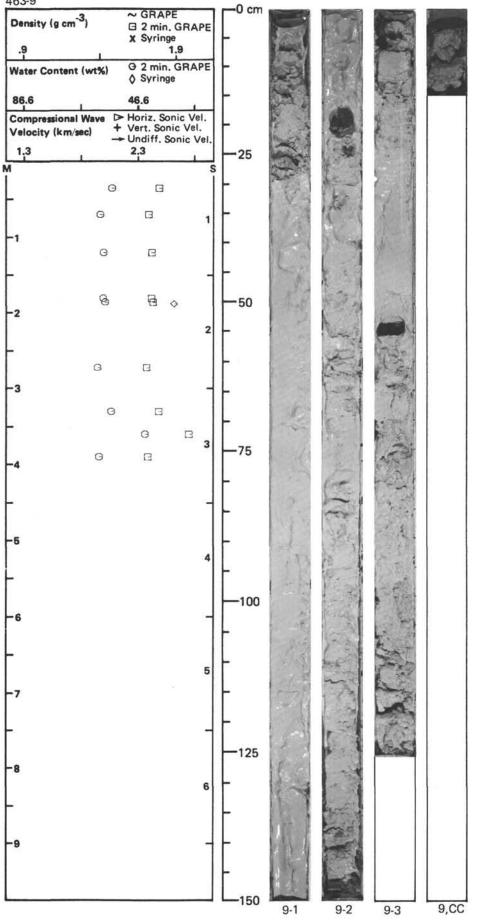

PHIC		FOSSIL							
BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURIS SAMPLES	LITHOLOGIC DESCRIPTION
Barremian (possible Upper Hautsrivian) S. systemporata (R) M. obtuaus (N)		RP	AG		1				LIMESTONE AND CHERT White (10YR 8/1) limestone with some wavy laminations (3 pieces). Cherts, light gray (NB, N7, 10YR 7/1) and white (5YR 8/1) are at the top and bottom of the section,

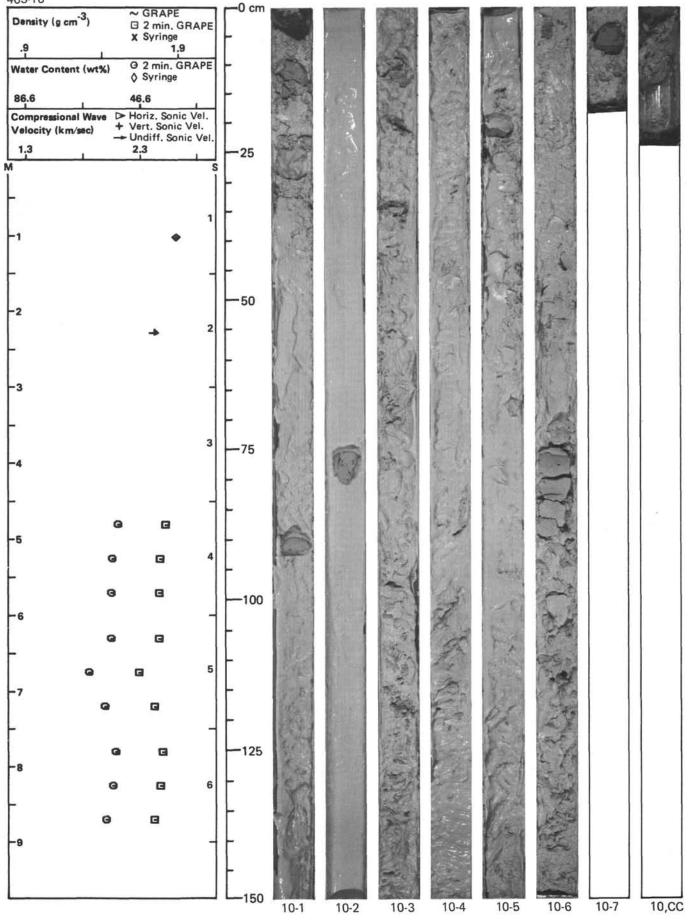


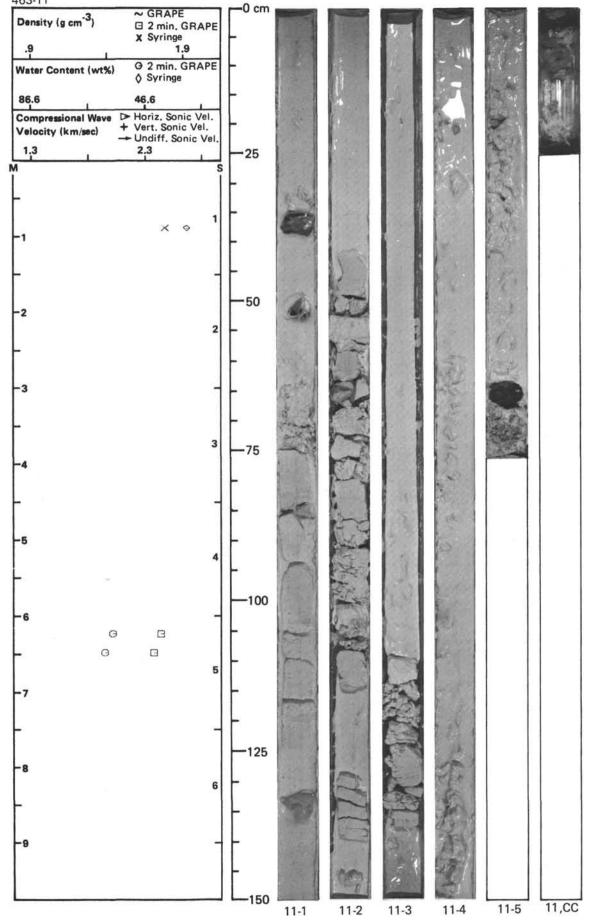


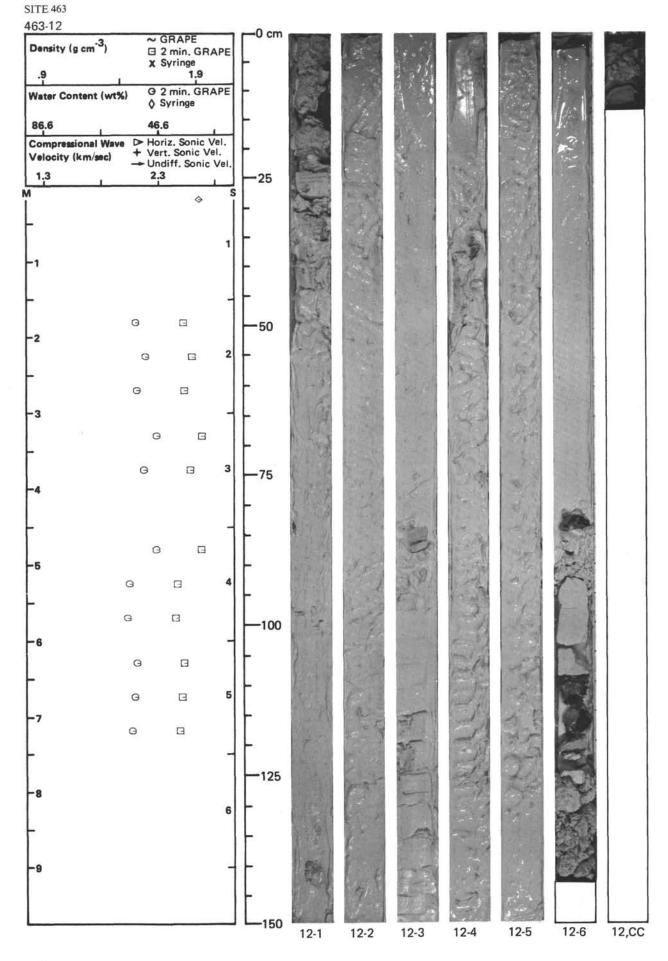


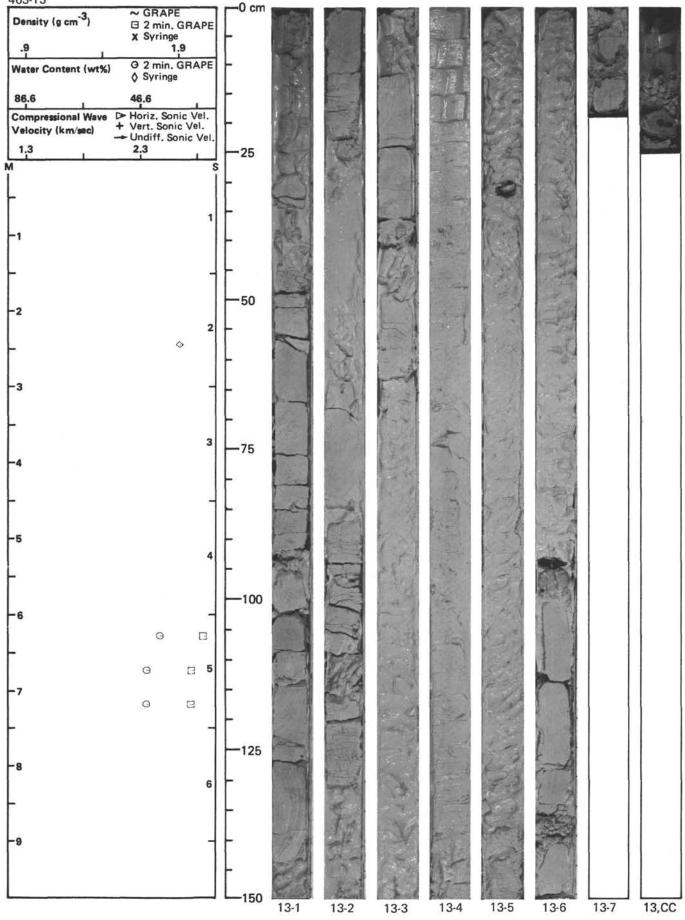




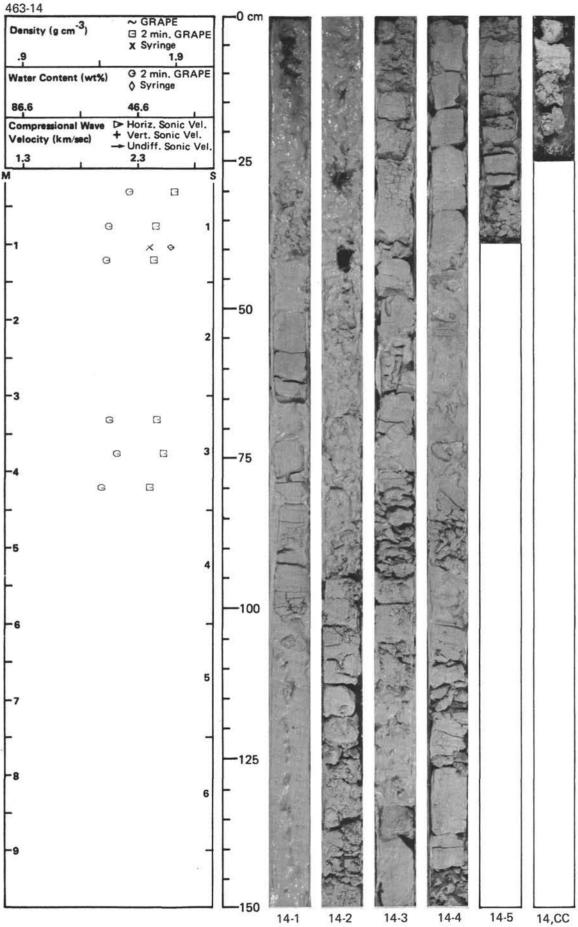


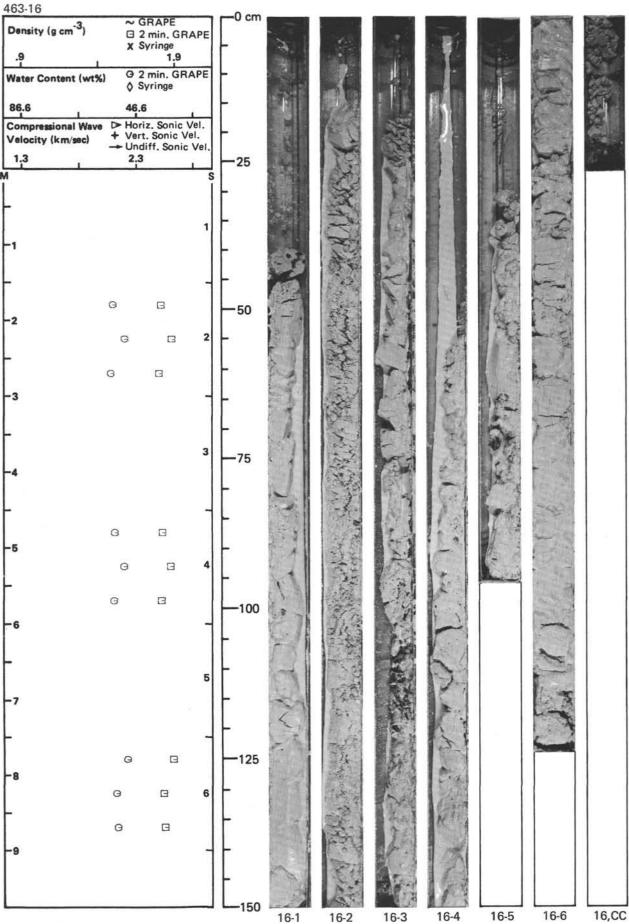


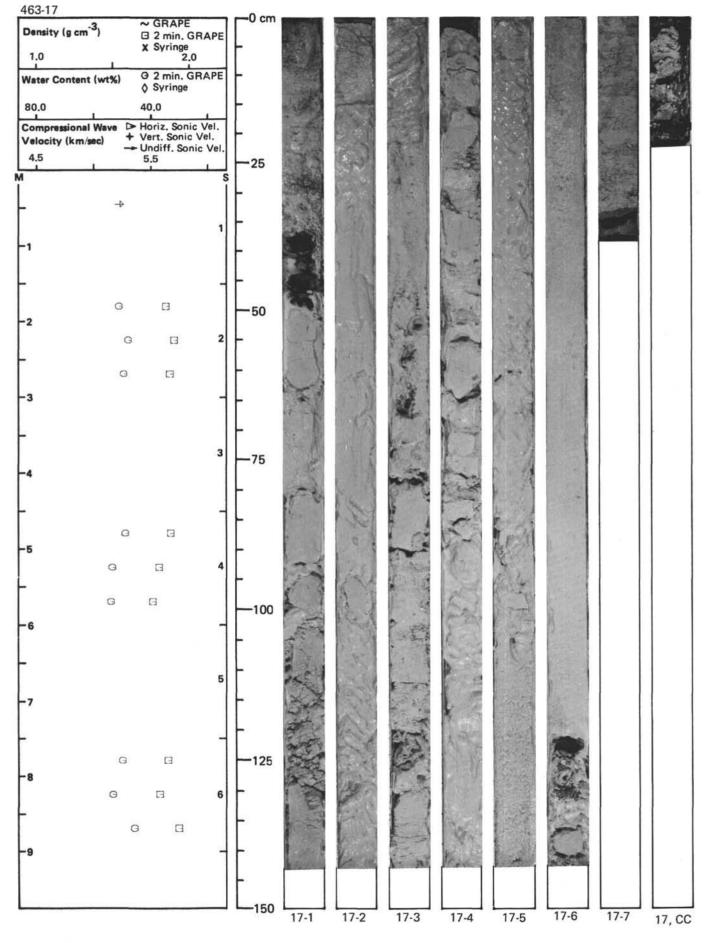


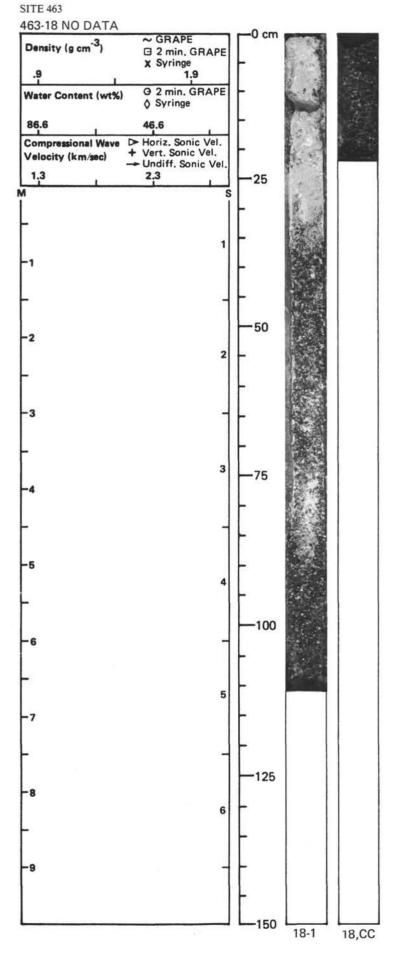


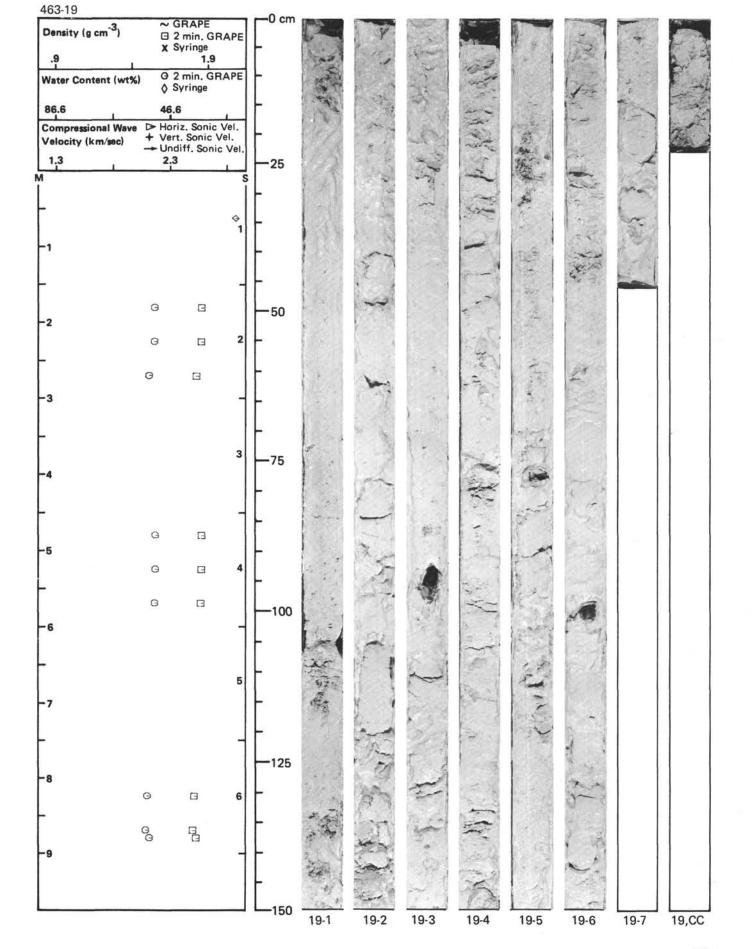
463-11

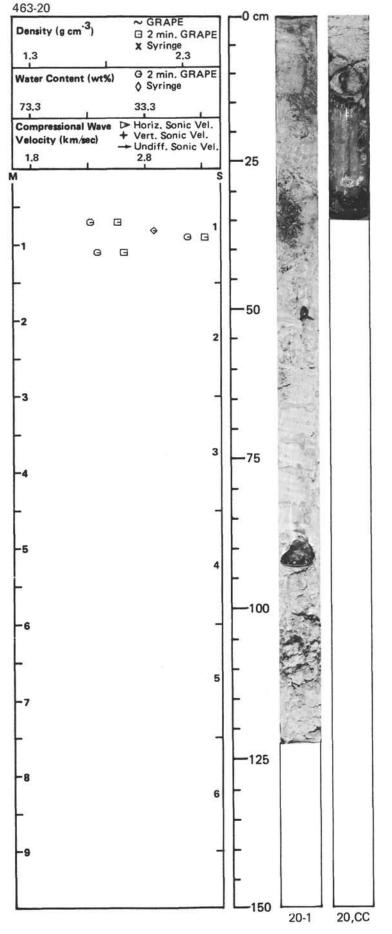


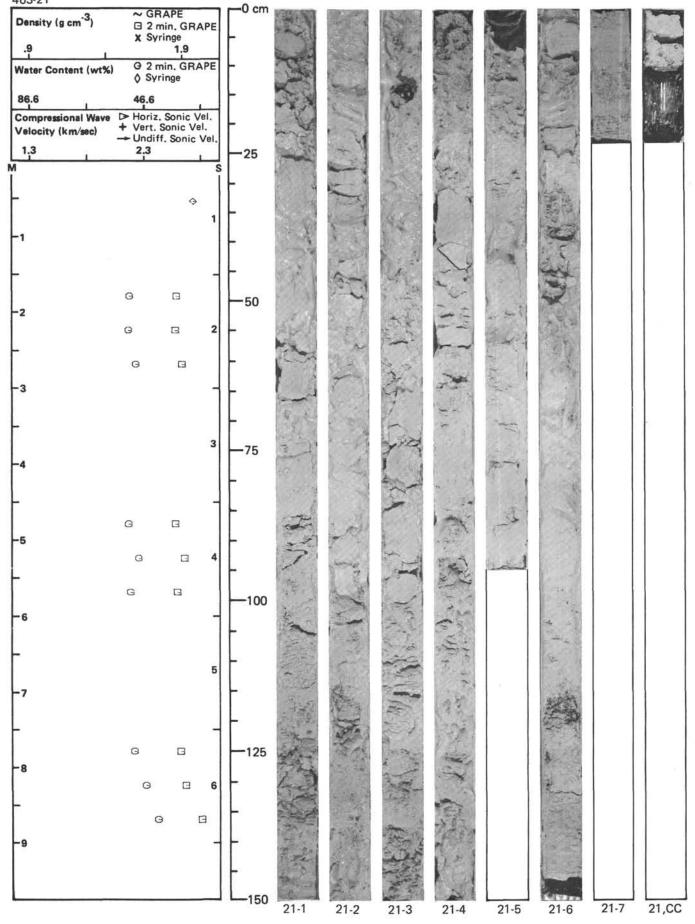

-0 cm

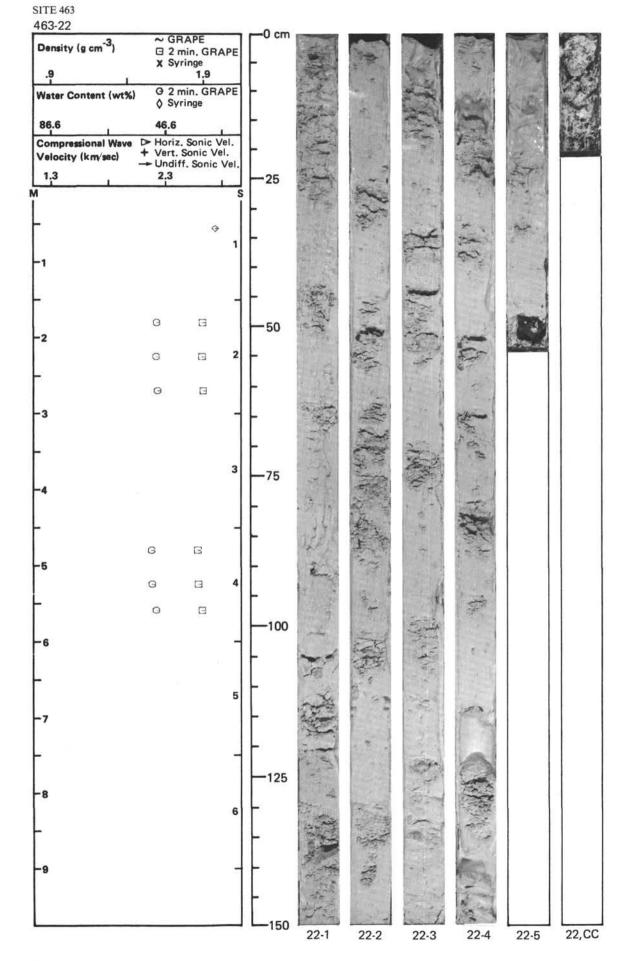

463-13

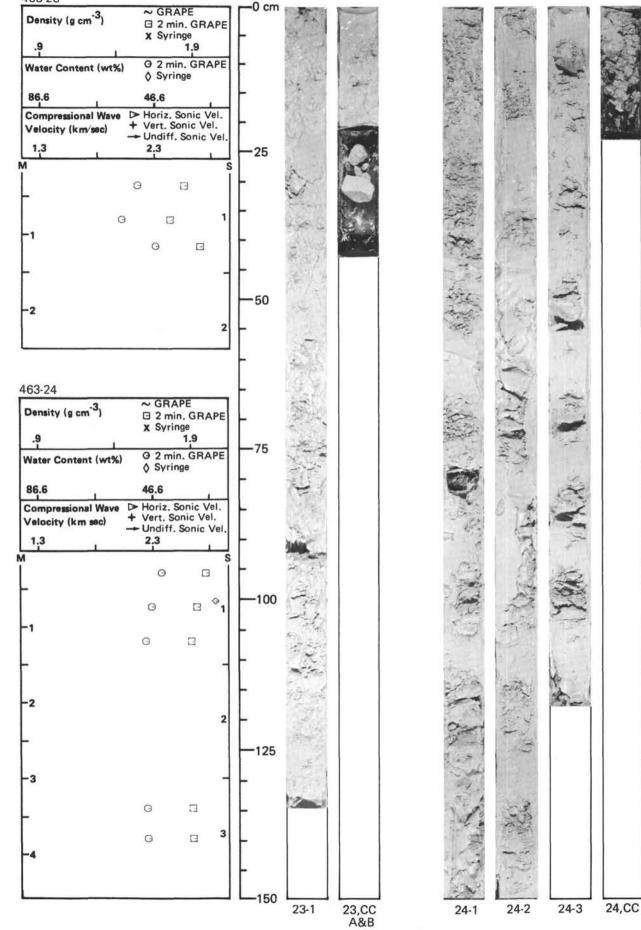


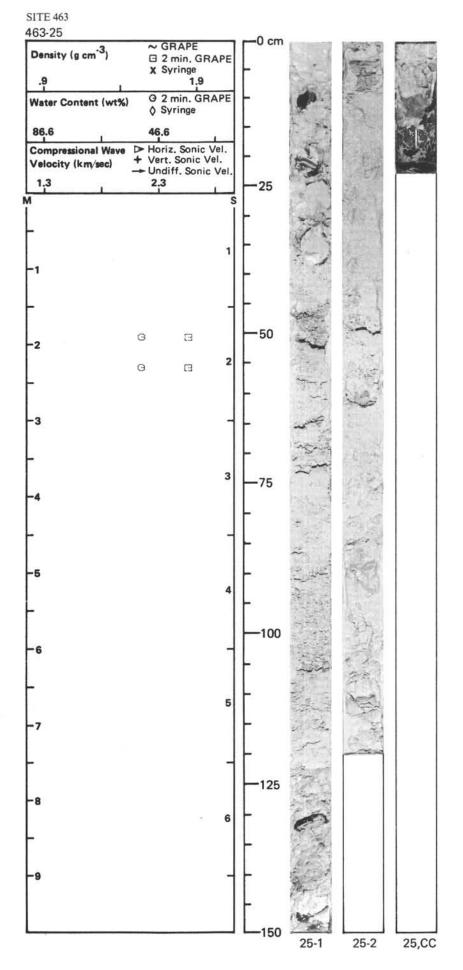


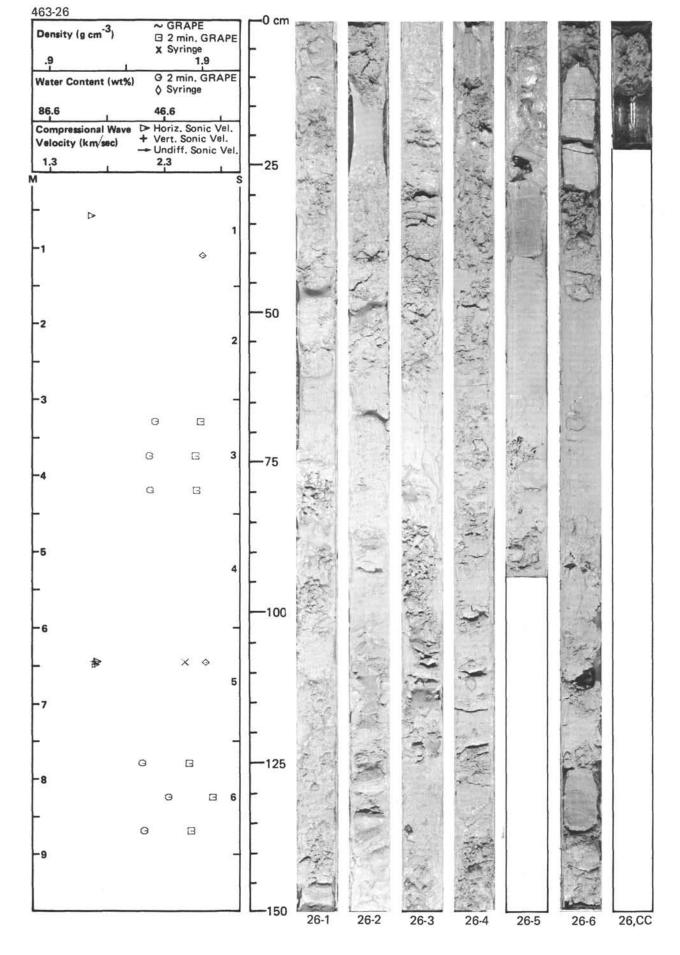


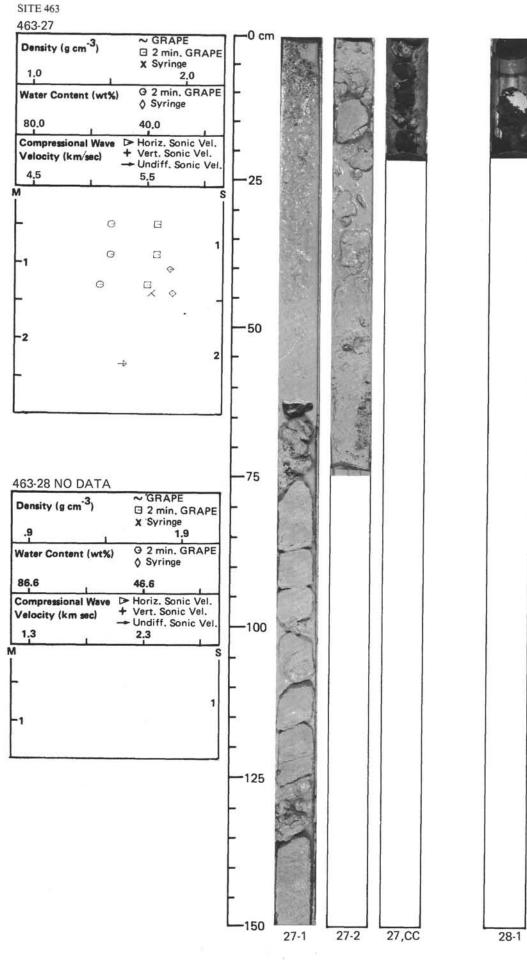


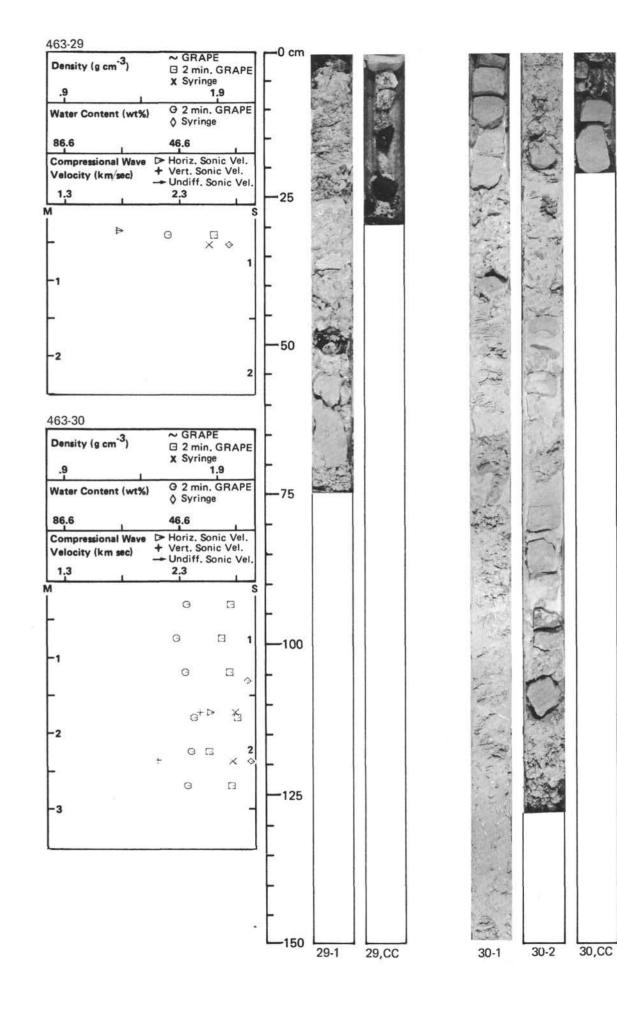


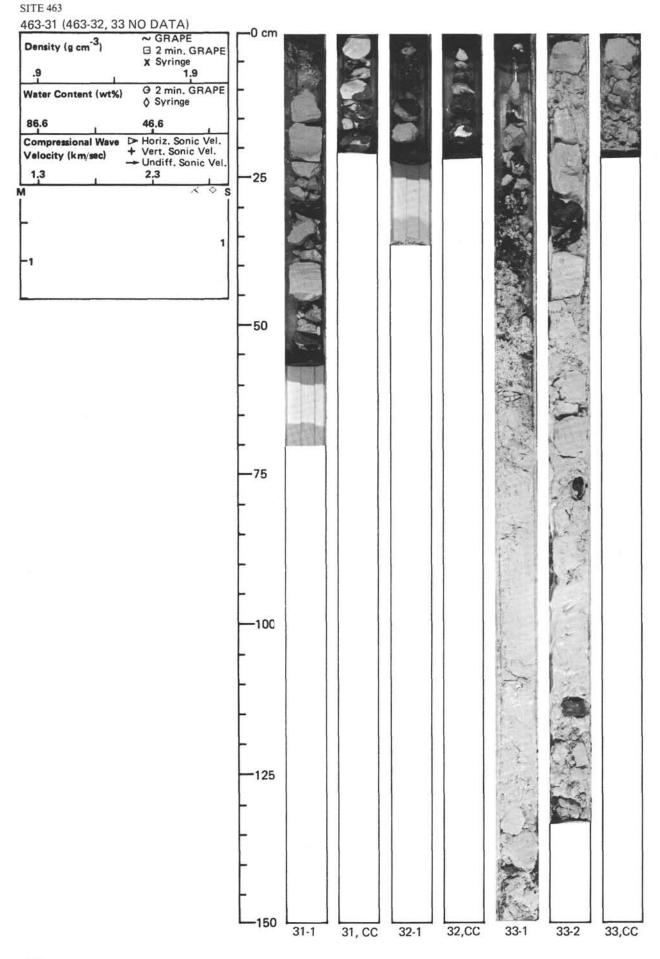


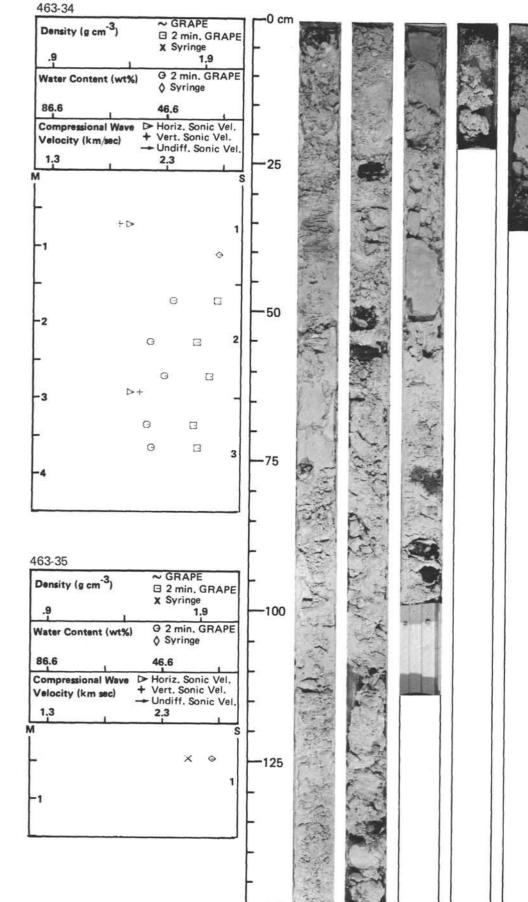




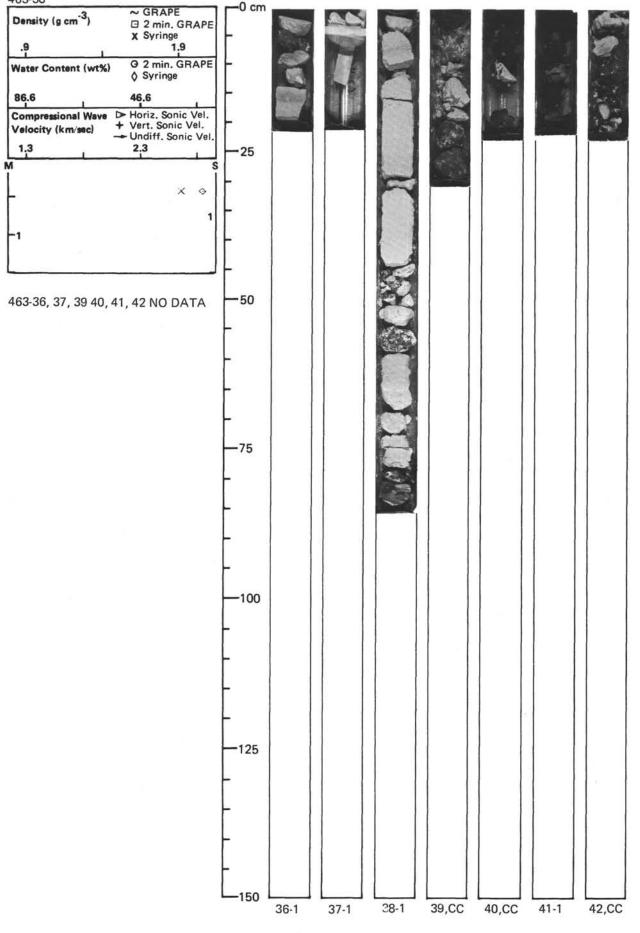




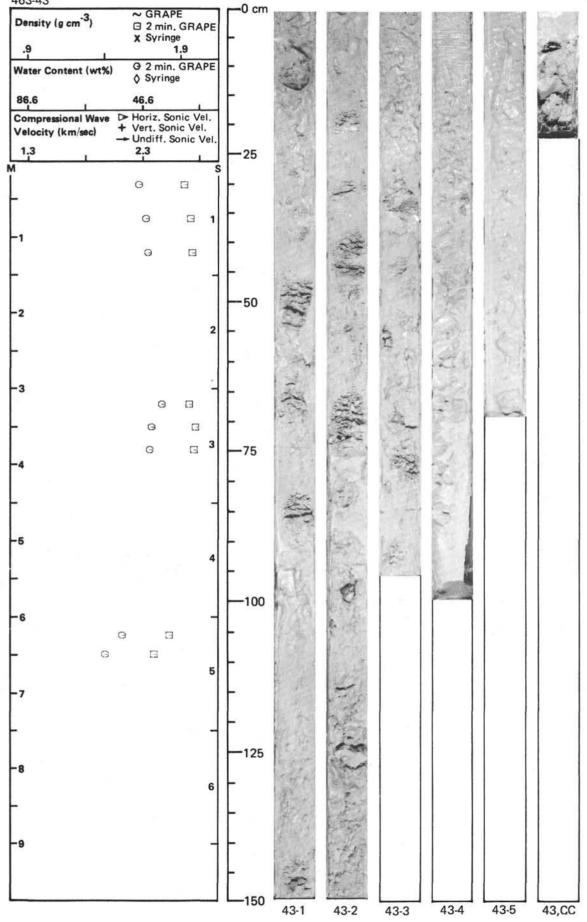




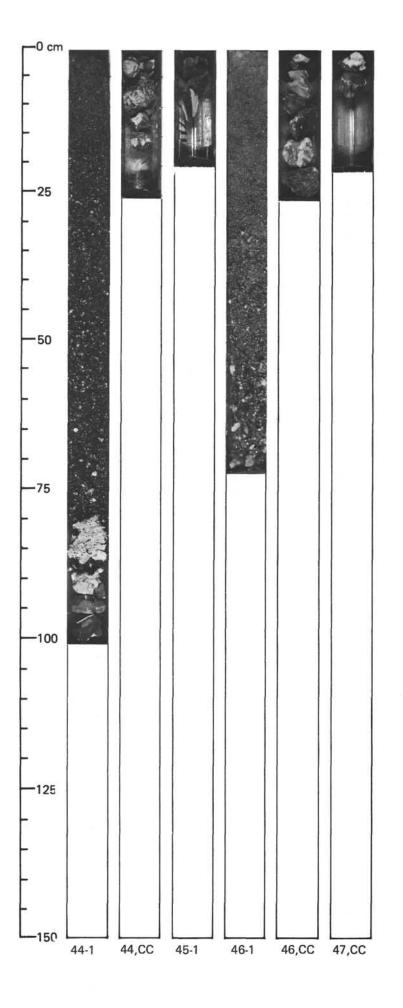
34-1

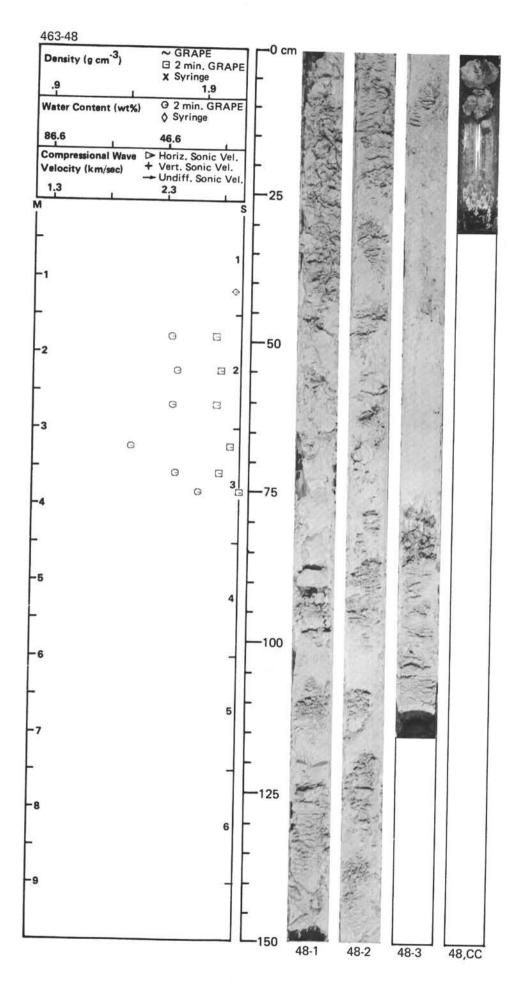

34-2

34-3

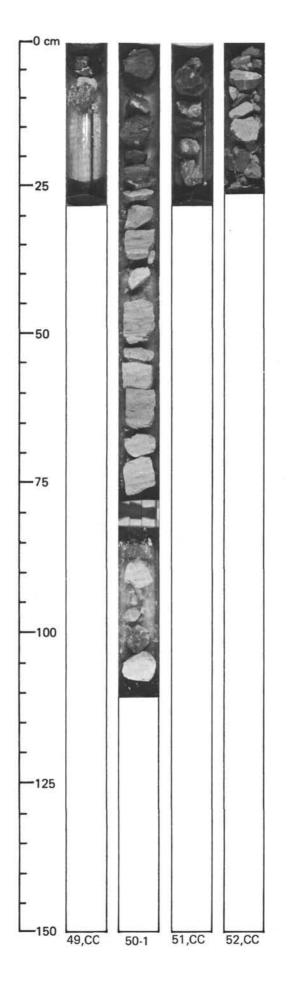

34,CC

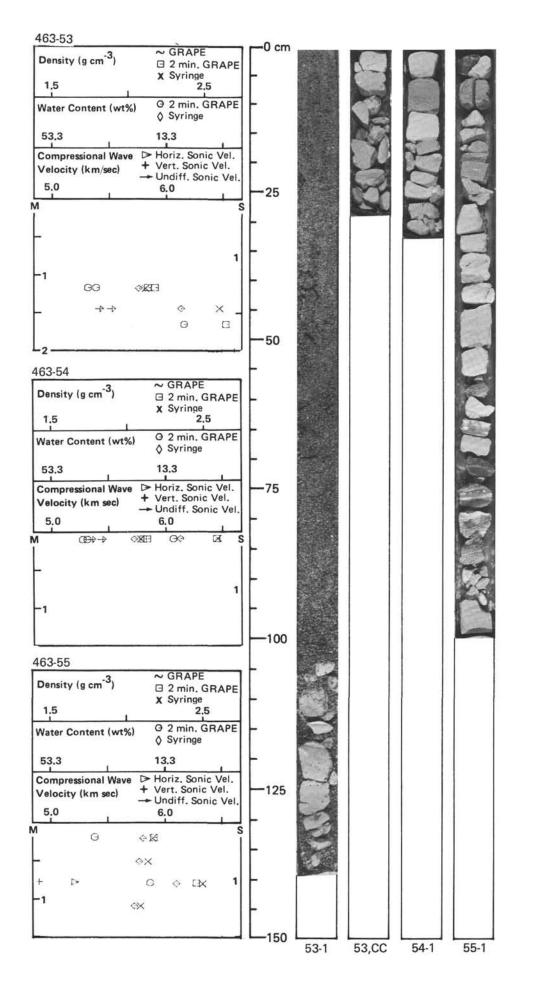
35-1

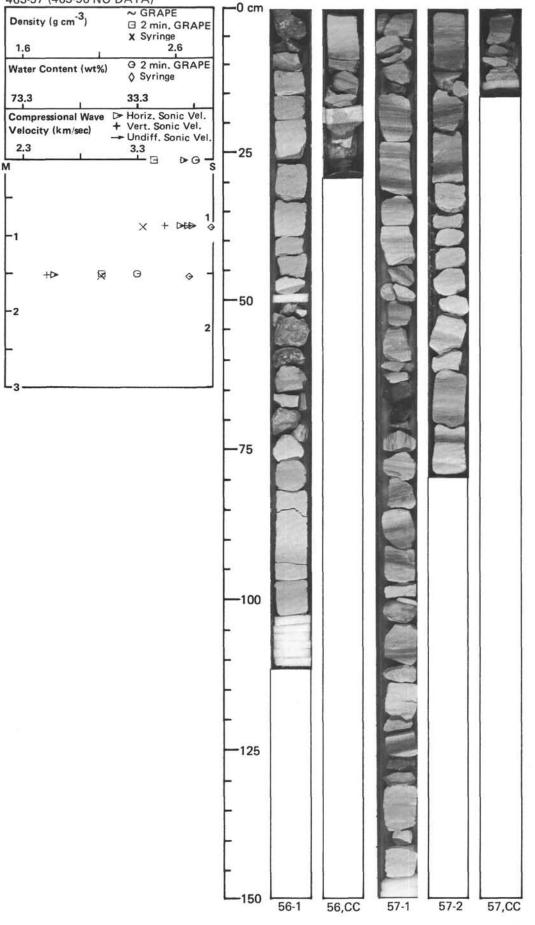

463-38

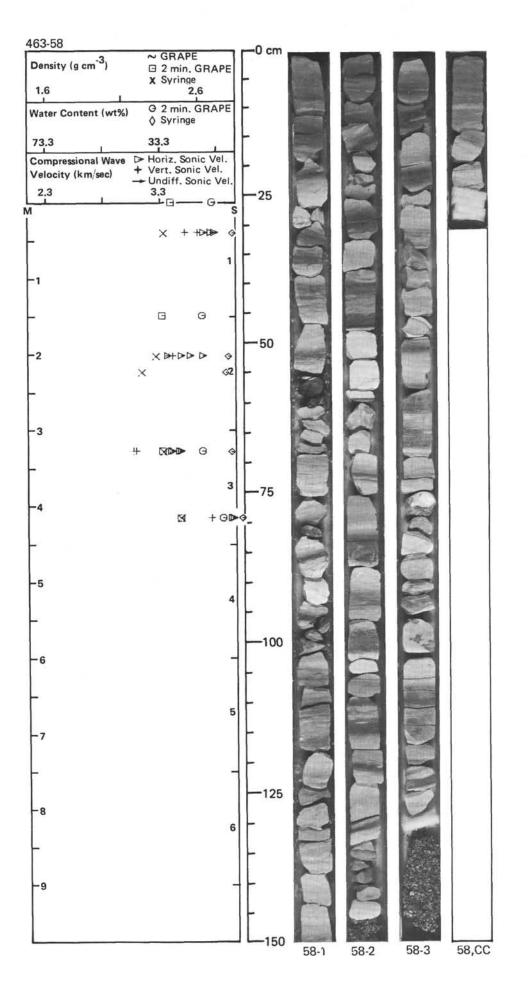


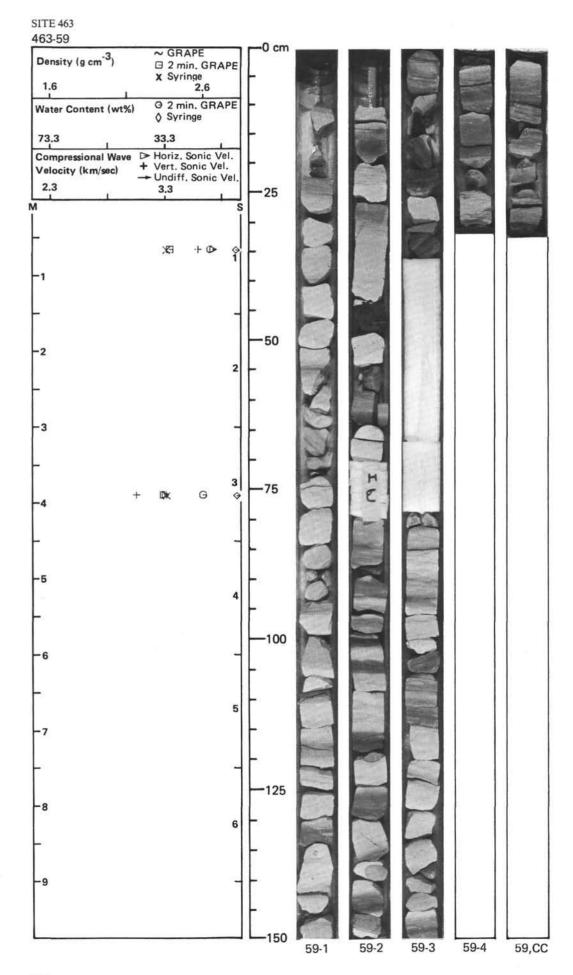
463-43

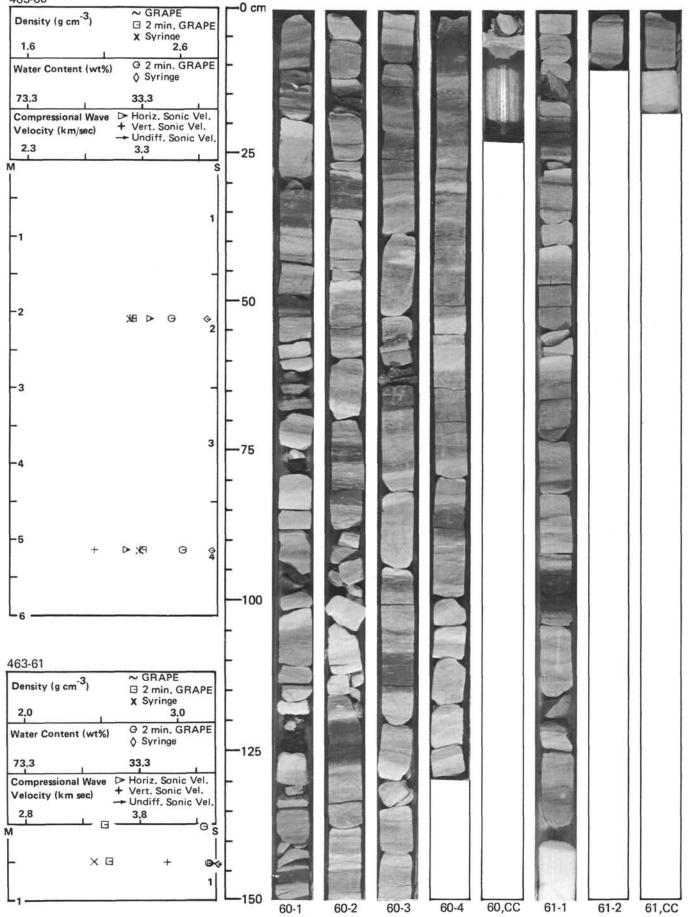



463-44, 45, 46, 47 NO DATA

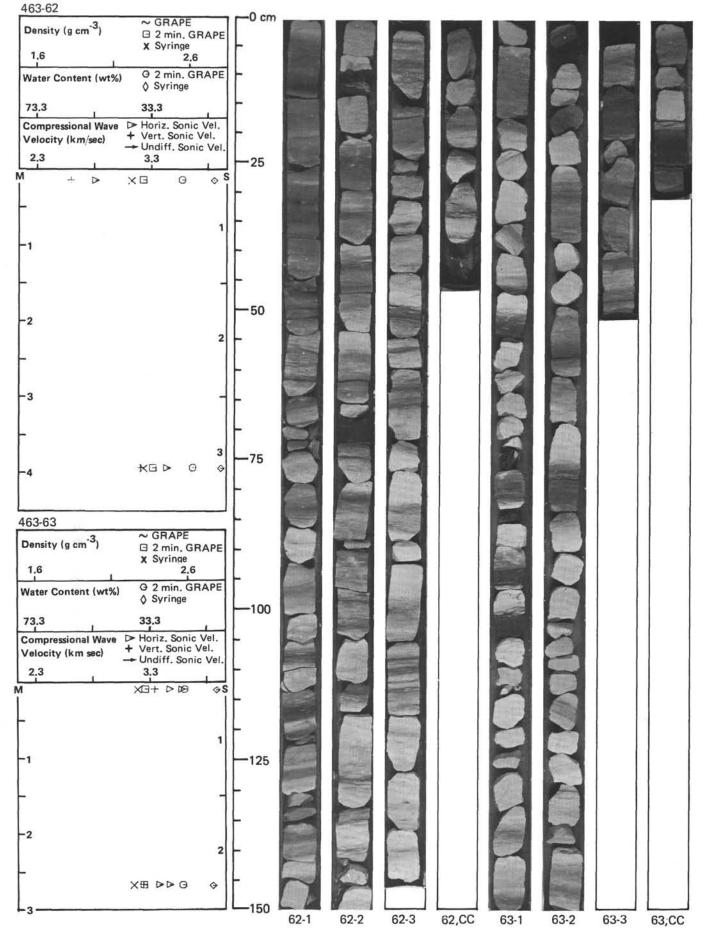


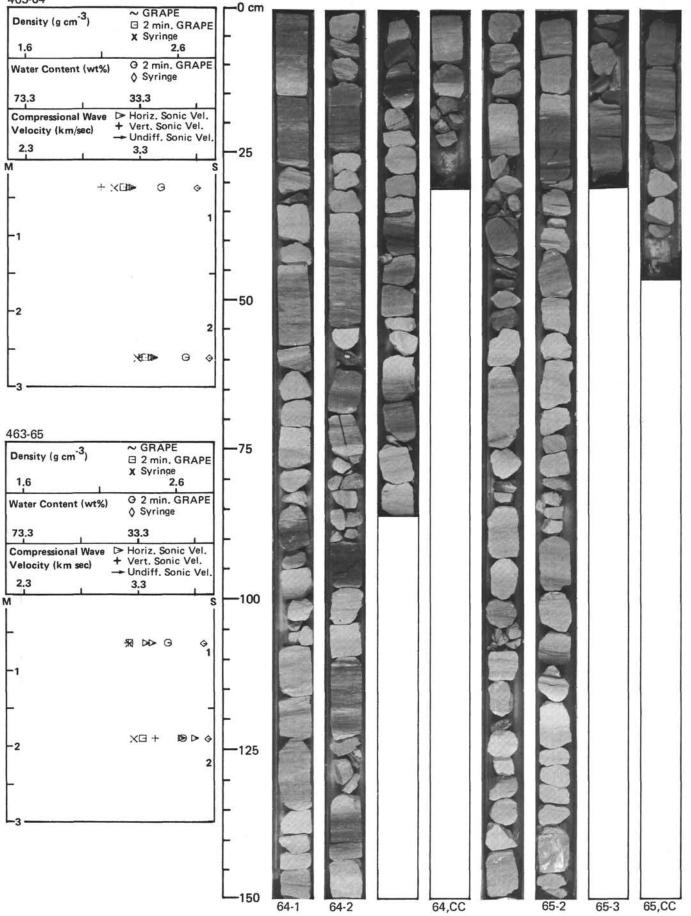

463-49, 50, 51, 52 NO DATA

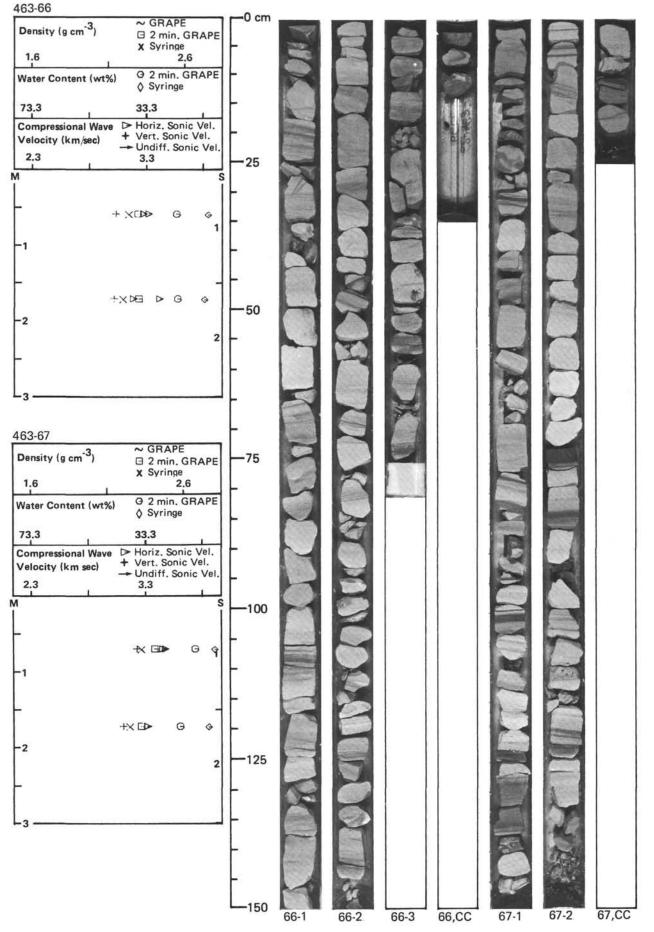


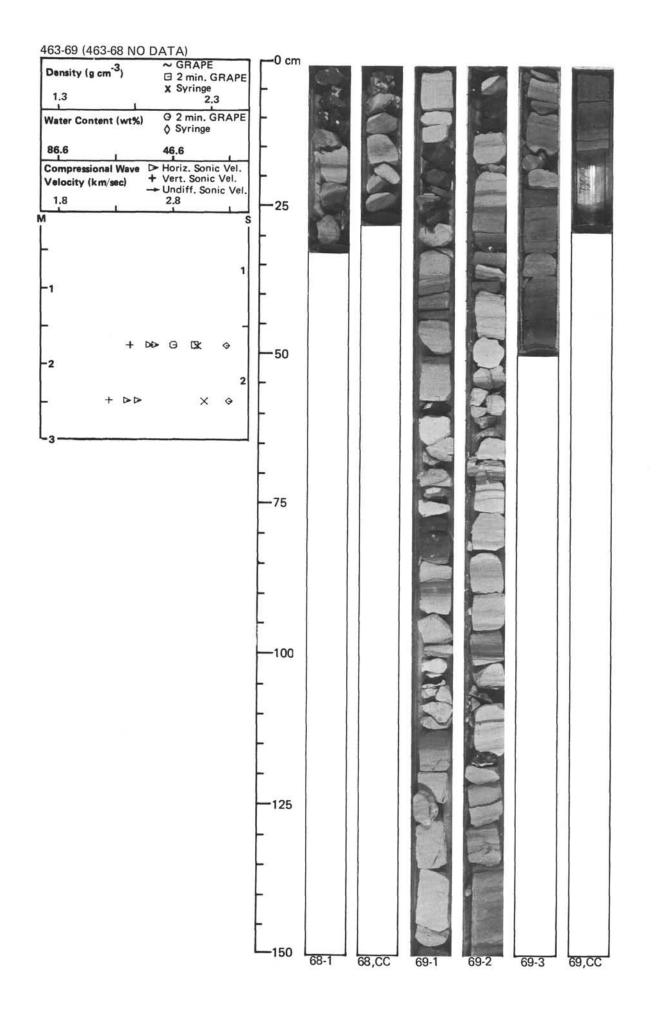


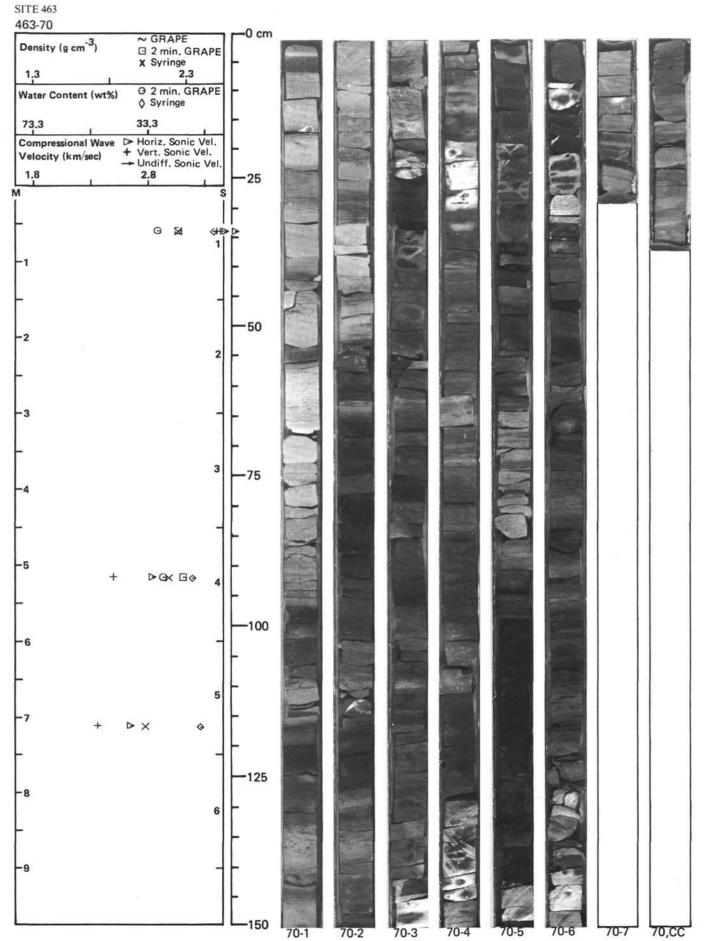
SITE 463 463-57 (463-56 NO DATA)











1,3

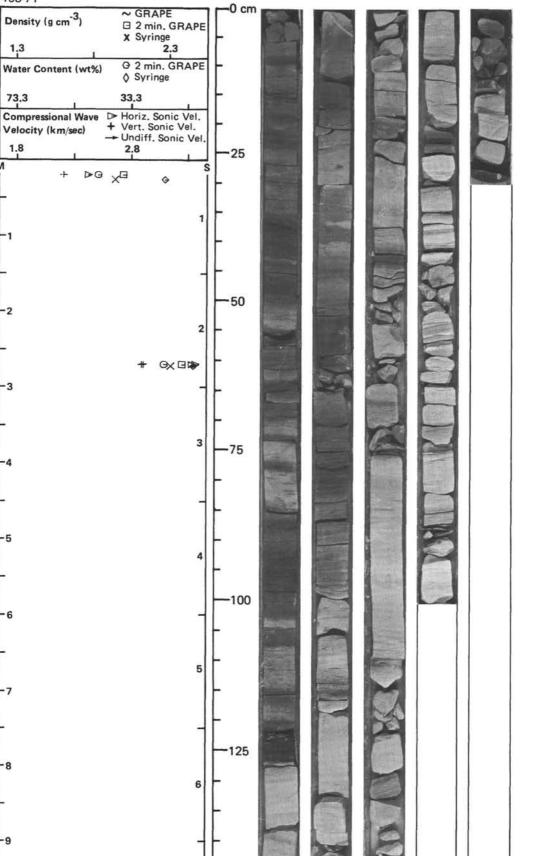
1.8

M

-2

-3

•4


-5

-6

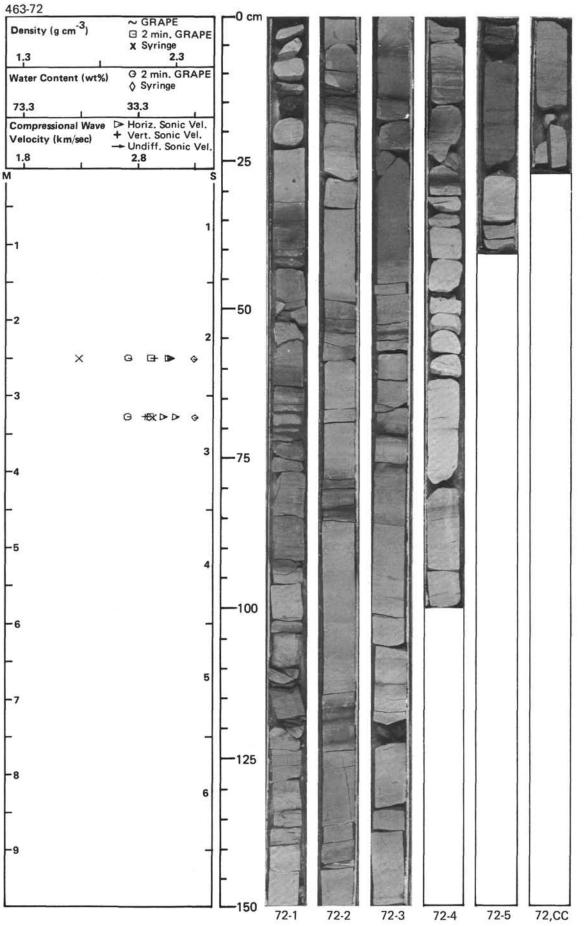
-7

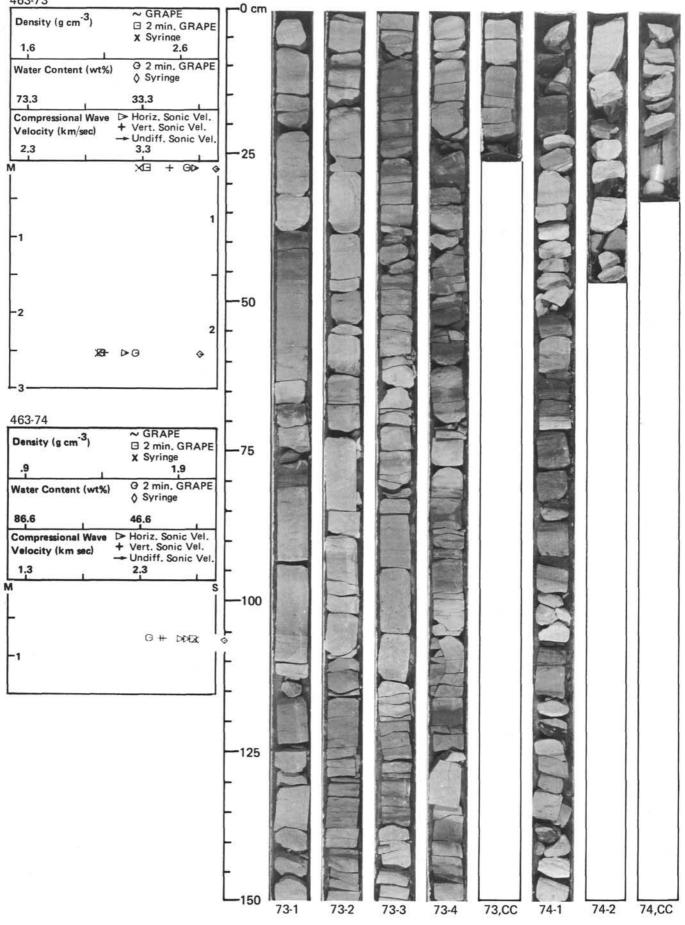
8

-9

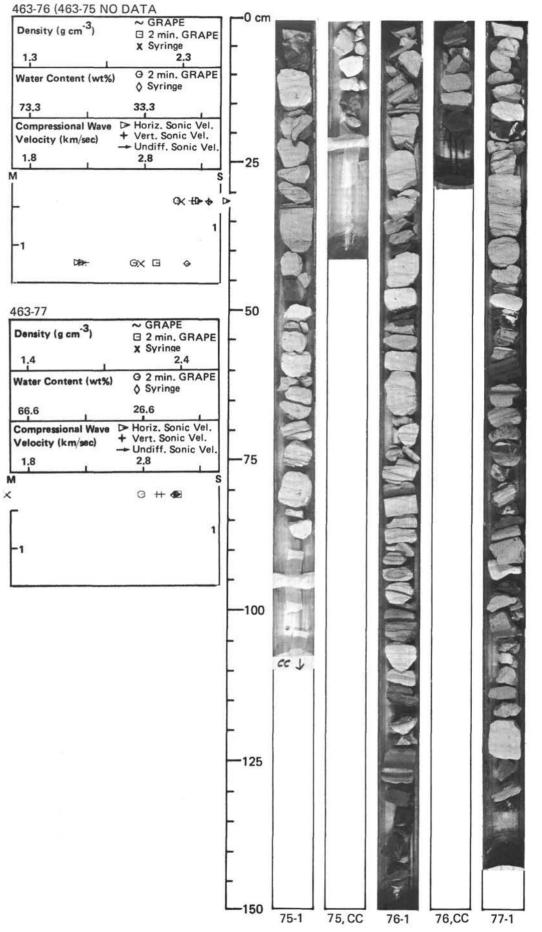
150

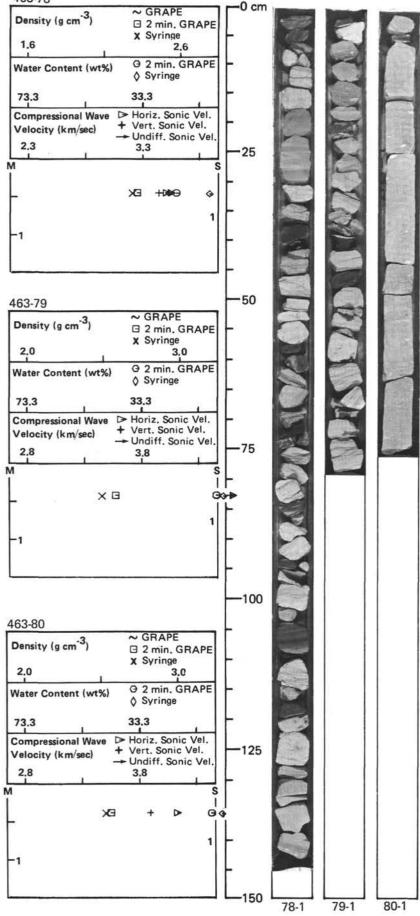
71-1

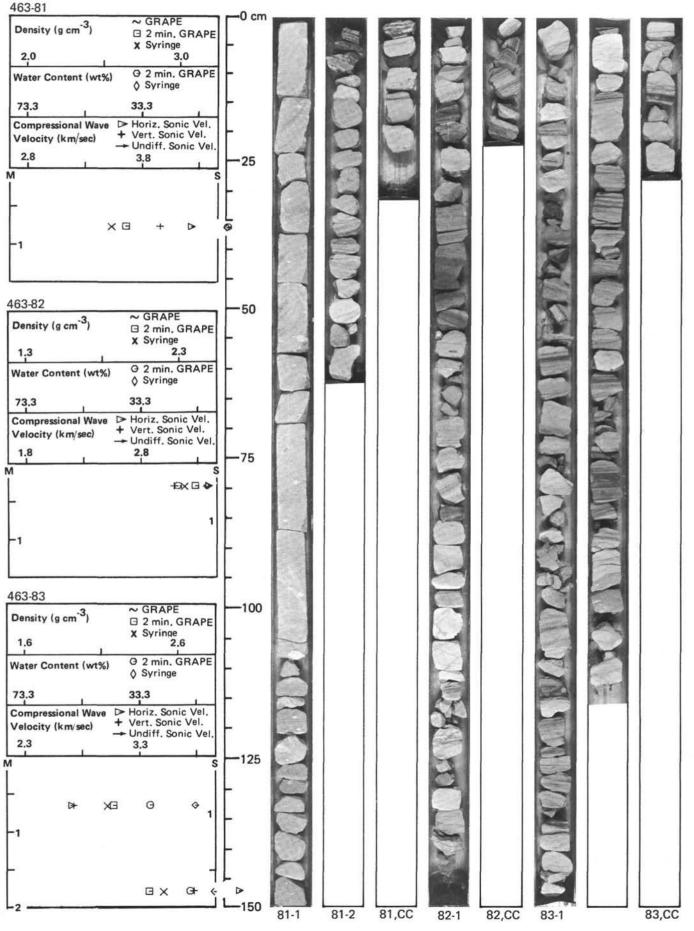

71-2

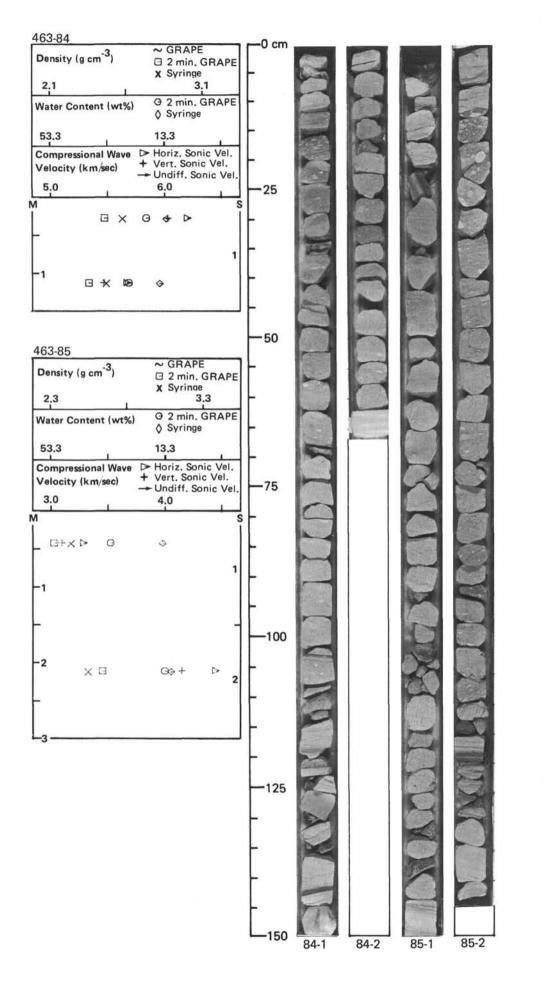

71-3

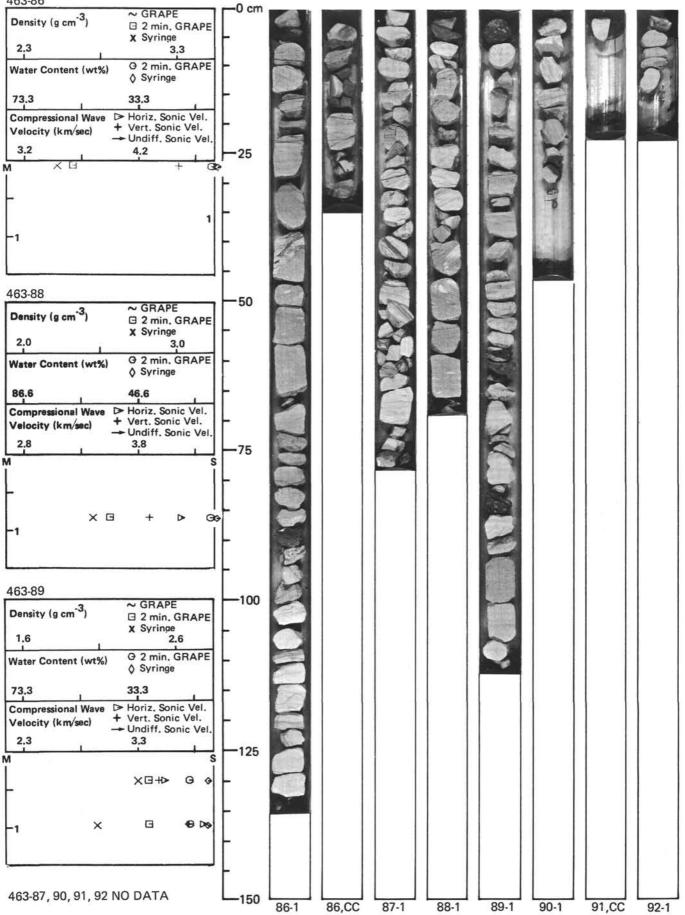
71-4


71,CC









100.01

463-86

