3. SITE 468: PATTON ESCARPMENT¹

Shipboard Scientific Party²

HOLES 468, 468A, 468B

- Date occupied: 22 October 1978 (468); 23 October 1978 (468A); 24 October 1978 (468B)
- Date departed: 23 October 1978 (468); 24 October 1978 (468A); 26 October 1978 (468B)
- Position: 32°37.03'N, 120°07.07'W (468); 32°37.41'N, 120°06.55'W (468A, 468B)
- Water depth (sea level; corrected m, echo-sounding): 1849 (468); 1737 (468A, 468B)
- Bottom felt (m, drill pipe): 1849 (468); 1752 (468A, 468B)

Penetration (m): 241.0 (468); 35.5 (468A); 415.5 (468B)

Number of cores: 26 (468); 4 (468A); 37 (468B)

- Total length of cored section (m): 241.0 (468); 35.5 (468A); 351.5 (468B)
- Total core recovered (m): 83.74 (468); 27.69 (468A); 104.58 (468B)

Core recovery (%): 35 (468); 78 (468A); 30 (468B)

Oldest sediment cored:

- Depth sub-bottom (m): 241.0 (468); 35.5 (468A); 415.5 (468B) Nature: Claystone (468); foraminifer-nannofossil ooze (468A); dolomitic claystone (468B)
- Chronostratigraphy: Middle Miocene (468, 468B); upper Miocene (468A).

Basement: Not reached

Principal results: Hole 468 on the Patton Escarpment was cored continuously to 241 meters and abandoned because of sloughing of middle Miocene volcanogenic sand and breccia into the hole. Hole 468A was spudded 1.2 km upslope, where the post-Miocene section is thicker and the volcanic sand thin or absent. Because of a parted sand line, the hole was re-spudded as Hole 468B and cored to 415.5 meters. Unit 1 is Quaternary olive gray glauconitic nannofossil-foraminifer ooze; it is 19 cm thick in Hole 468 and about 7 meters thick in Hole 468A. Unit 2 comprises nannofossil-foraminifer ooze, foraminifer-nannofossil ooze, and glauconitic silty sand deposited from the late Miocene to the late Pliocene. This unit extends from 19 cm to 4.1 meters in Hole 468 and from 7 to 35.5 meters in Holes 468A and B. Sediment accumulation rates for Units 1 and 2 are 6.5 m/m.y. in Holes 468A and B. A hiatus separates Units 2 and 3; it spans an interval of 0.4 m.y. to 4 m.y.

occurred between 6 and 10 m.y. ago. Unit 3 extends from 4.1 to 108 meters in Hole 468 and 35.5 to 149.5 meters in Hole 468B. It consists of interbedded nannofossil ooze and diatomaceous nannofossil ooze with terrigenous components (sand, silt, and clay) increasing downsection. The top of Unit 3 is marked by a sharp drop in abundance of foraminifers and glauconite; volcanic ash occurs near the base of the unit. Deposited from 10 to 14.5 m.y. ago, this unit shows a sharp increase in sedimentation rate at 45 meters (13 m.y. ago)-from 4 to 5 m/m.y. downsection to 60 m/m.y. Unit 4 is divided into Sub-unit 4a (108-184 m in Hole 468; 159-235 m in Hole 468B), which contains middle Miocene fossils as old as 16.5 m.y. with sedimentation rates of 60 m/m.y., and Sub-unit 4b, which is unfossiliferous except near the top, where it contains a faunule similar to overlying strata. Sub-unit 4a consists of diatomaceous, calcareous, sandy claystone with less common silty claystone, sandstone, ash, and pumiceous lapilli tuff. The boundary with Sub-unit 4b marks a sharp change in velocity (from 1.6-2.0 km/s to 2.2-5 km/s) and in density (from 1.6-1.8 g/cm³ to 1.7-2.4 g/cm³). Sub-unit 4b is well indurated, dolomitic, silty claystone alternating with andesite and dacite breccia, pumiceous lapilli tuff, and volcanogenic sandstone. Although unfossiliferous, the basal part of Sub-unit 4b is gradational into middle Miocene strata; the inferred underlying subduction complex was not reached. The presence of relatively well-preserved siliceous microfossils in the middle Miocene at Site 468 argues that a diagenetic effect was the reason for their absence in the upper Miocene at this site.

BACKGROUND AND OBJECTIVES

Paleoenvironmental objectives of Site 468 (Fig. 1) on the Patton Escarpment were similar to those at Site 467, i.e., to find clues to the late Cenozoic oceanographicclimatic history of the region by examining the associated oscillations in the biogeographic patterns of planktonic communities. We planned to core continuously some 600 meters of what we anticipated would be middle Miocene to Holocene sediments that unconformably overlie possibly off-scraped trench deposits. We expected that the nature of the sediments we would encounter would be similar to those cored at Site 467. Because of the shallow water depth at Site 468 (about 1850 meters), we expected to find well preserved calcareous and siliceous plankton assemblages. In spite of the shallow depth (2145 m) at Site 467, the upper and middle Miocene sediments at this site contained no siliceous microfossils and scarce or no planktonic foraminifers. Although the presence of opal-CT (cristobalite) in these sediments suggests some loss of biogenic silica owing to postdepositional remobilization, the low amount of planktonic foraminifers may be an indication of low productivity in the region, perhaps associated with the distal portion of the California Current during this time. We anticipated that the more southerly position of Site 468 and its proximity to Site 467 would enable us to compare and test these interpretations.

South of San Miguel Gap, the southeast-trending Patton Escarpment forms a west-facing slope 2.5 to 3.5

Initial Reports of the Deep Sea Drilling Project, Volume 63.

² Robert S. Yeats (Co-Chief Scientist), Department of Geology, Oregon State University, Corvallis, Oregon; Bilal U. Haq (Co-Chief Scientist), Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; John A. Barron, U.S. Geological Survey, Menlo Park, California; David Bukry, U.S. Geological Survey, La Jolla, California; James K. Crouch, U.S. Geological Survey, Menlo Park, California; Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; A. G. Douglas, Department of Geology, The University, Newcastle-upon-Tyne, United Kingdom; Vladimir I. Grechin, Geological Institute of the Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.; Margaret Leinen, Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island, Alan R. Niem, Department of Geology, Oregon State University, Corvallis, Oregon; Surendra Pal, Instituto Geológical, Universidad Nacional Autónoma de Mexico, Mexico 20, D.F.; Kenneth A. Pisciotto, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Tougio Shibata, Department of Earth Sciences, Okayama University, Tsushima, Okayama, Japan; and Reinhard Wolfart, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Federal Republic of Germany.

Figure 1. Site location map for Leg 63.

km high that separates the California Continental Borderland from oceanic crust of the Pacific plate. The escarpment is the western boundary of the broad Patton Ridge, which is thought to be underlain by Mesozoic and lower Cenozoic(?) accretionary-wedge deposits. This acoustic basement unit is overlain by folded and faulted marine strata deposited in the late Oligocene(?) through the late Miocene, together with apparently Miocene volcanic rocks. East of the Patton Ridge are small silled basins with upper Miocene, Pliocene and Quaternary sediments, which overlie older strata with angular unconformity.

At about 32°40' N latitude, the Patton Escarpment is interrupted by an elongate shallow trough that opens westward toward the Pacific (Fig. 2). This trough is underlain by Pliocene and Quaternary deposits, and the position of its axis does not correspond to the location of the thicker section in the underlying Miocene. At Site 468, located on the north side of this trough, we expected to penetrate a thin, postmiddle Miocene sequence, a moderately thick (~450 m) middle Miocenelower Miocene sequence, and the underlying accretionary-wedge complex that is acoustic basement (Fig. 3). Arkosic sandstones possibly deposited during the late Oligocene have been sampled farther north on Patton Ridge (Crouch, 1979a); these may be the oldest deposits above the accretionary-wedge basement. Stacking velocities and sonobuoy velocities are 3.9 to 4.8 km/s in the acoustic basement and 1.78 to 2.0 km/s in the sedimentary section.

The accretionary-wedge basement could provide evidence of the convergent margin between the American and Farallon plates. Elsewhere in the borderland, the blueschist-facies Catalina Schist is not known to be younger than Cretaceous; it is analogous to the Franciscan complex of central and northern California. Plate-tectonics theory, however, indicates that the California Borderland was a converging plate boundary into the early Tertiary, possibly as late as the Oligocene.

Fossil evidence indicates that laumontite-bearing Franciscan along the California coast north of San Francisco is as young as Eocene; laumontite-bearing sandstones on the Patton Ridge are as yet undated. Again, arkosic sandstones deposited during the late Oligocene(?) are possibly the oldest beds to overlie the accretionary-wedge complex. If these were discovered at Site 468 and if the underlying complex could be dated as Tertiary, we could determine when subduction ceased at this site.

The Oligocene(?) sequence is overlain with angular unconformity by lower, middle, and upper Miocene siltstone and claystone containing coccoliths and foraminifers. There may be an angular unconformity between the middle and upper Miocene, but the lower and middle Miocene sequence is apparently conformable.

The upper Miocene and older strata are folded, then overlain unconformably by Pliocene and Quaternary

Figure 2. Bathymetric map of the Patton Ridge showing the location of Site 468. (Line AA' marks the position of a multichannel seismic profile from the S. P. Lee shown in Fig. 3.)

sediments, which slope gently seaward. These sediments should be above the carbonate compensation depth (CCD), permitting good preservation of a calcareous fauna.

Site 468 will be compared with Site 469, located at the foot of the Patton Escarpment to the west. Plate tectonic reconstruction of the transform motion between the Pacific and American plates requires much more strike-slip motion than could have been accommodated in the San Andreas system. Possibly some of this early motion was accommodated on a strike-slip fault at the base of the Patton Escarpment that later became inactive. If so, Site 469 should show evidence of sediment accumulation far south of Site 468, even though the sites are now at the same latitude.

OPERATIONS

After spending just over two days at Long Beach for repairs to the gearbox of the bow thruster, the *Glomar Challenger* left port on 20 October at 2210 hours.³ Half an hour outside the port, the repaired thruster and the positioning systems of the ship were tested. With the profiling gear out, we sailed in the general direction of San Clemente Island. Abeam the island at 0450 hours on 21 October, we headed at 250° (and later at 254°) towards the proposed Site 468 at 9.2 knots. While

steaming toward the site, we encountered rough seas with gale-force winds. The winds subsided in the late afternoon of 21 October. We surveyed the area of the site across a single-channel E. B. Scripps line (Crouch et al., 1978), turned around beyond the site area at 1740 hours, and dropped a 13.5-kHz beacon at 1827 hours at 32°37.03' N and 120°07.07' W. After retrieving the profiling gear beyond the drop point, the ship turned around and positioned over the beacon at 2045 hours using the 3.5-kHz sub-bottom recorder. The next four hours were spent in troubleshooting and repairing problems in the motor control circuits of the number one drawworks. When the drill string was lowered and ready to spud, the positioning beacon failed, and a second (16-kHz) beacon had to be dropped. The ship was finally positioned over the new beacon at 1030 hours on 22 October. After two initial water cores, the hole was spudded at 1214 hours in 1849 meters of water.

The coring operations at Hole 468 were routine. The recovery was relatively high in the first nine cores, but it decreased downcore and, with the exception of Core 18, remained low to total depth (Table 1). Below a depth of 200 meters, torquing and sticking of pipe became progressively more acute, apparently owing to sloughing of sand and volcanic fragments, so that at 1330 hours on 23 October we were forced to stop drilling after Core 26 at 241 meters depth. We decided to re-spud upslope where a better section could be obtained. After plugging Hole 468 with 100 barrels of weighted mud, we moved 1.2 km upslope and, using the old beacon of Hole 468

 $^{^3}$ All times specified in the text are local times in hours; those in seismic-section figures are Zulu times.

Table 1. Coring summary, Site 468.

1201-10-10	Date		Depth from	Depth below	Length	Length	Core
Core	(Oct.,	Time	Drill Floor	Sea Floor	Cored (m)	Recovered	Recovered
	1970)	Time	(11)	(m)	(m)	(11)	(70)
Hole 4	68	1004					
1	22	1236	1859.0-1862.5	0.0-3.5	3.5	2.55	73
2	22	1330	1802.3-18/2.0	3.5-13.0	9.5	5.74	85
3	22	1410	1872.0-1881.3	13.0-22.5	9.5	0.03	05
5	22	1605	1891 0-1900 5	32 0-41 5	9.5	7.40	78
6	22	1700	1900 5-1910 0	41 5-51 0	9.5	9.18	97
7	22	1805	1910 0-1919 5	51.0-60.5	95	9.58	100+
8	22	1923	1919.5-1929.0	60.5-70.0	9.5	3.65	38
9	22	2020	1929.0-1938.5	70.0-79.5	9.5	8.91	94
10	22	2120	1938.5-1948.0	79.5-89.0	9.5	7.20	76
11	22	2215	1948.0-1957.5	89.0-98.5	9.5	2.66	28
12	22	2315	1957.5-1967.0	98.5-108.0	9.5	0.15	2
13	23	0005	1967.0-1976.5	108.0-117.5	9.5	1.20	13
14	23	0115	1976.5-1986.0	117.5-127.0	9.5	0.03	0.3
15	23	0200	1986.0-1995.5	127.0-136.5	9.5	0.12	1
16	23	0250	1995.5-2005.0	136.5-146.0	9.5	0.04	0.4
17	23	0343	2005.0-2014.5	146.0-155.5	9.5	0.22	2
18	23	0444	2014.5-2024.0	155.5-165.0	9.5	7.04	74
19	23	0541	2024.0-2033.5	165.0-174.5	9.5	0.19	2
20	23	0645	2033.5-2043.0	174.5-184.0	9.5	0.20	2
21	23	0745	2043.0-2052.5	184.0-193.5	9.5	1.15	12
22	23	0841	2052.5-2062.0	193.5-203.0	9.5	0.30	3
23	23	0946	2062.0-2071.5	203.0-212.5	9.5	0.47	5
24	23	1054	2071.5-2081.0	212.5-222.0	9.5	0.25	3
25	23	1145	2081.0-2090.5	222.0-231.5	9.5	0.25	3
26	23	1327	2090.5-2100.0	231.5-241.0	9.5	0.06	1
Total					241.0	83.74	35
Hole 4	68A						
1	23	2122	1752.0-1759.0	0.0-7.0	7.0	6.69	96
2	23	2206	1759.0-1768.5	7.0-16.5	9.5	7.17	75
3	23	2248	1768.5-1778.0	16.5-26.0	9.5	6.35	67
4	24	0900	1778.0-1787.5	26.0-35.5	9.5	7.48	80
Total					35.5	27 69	78
Tela	COD				33.5	27.09	10
Hole 4	168B	1551	1769 5 1779 0	16 5 26 0	0.5	6.07	72
2	24	1646	1708.3-1778.0	10.3-20.0	9.5	2.14	23
2	24	1743	17/0.0-1707.0	20.0-35.5	9.5	7.14	25
4	24	1840	1707.0 1806.5	35.5-45.0	9.5	2 74	20
5	24	1030	1806 5-1816 0	54 5-64 0	9.5	Trace	29
6	24	2031	1816 0-1825 5	64 0-73 5	9.5	7 51	79
7	24	2116	1825 5-1835 0	73 5-83 0	9.5	Trace	0
8	24	2226	1835 0-1844 5	83 0-92 5	9.5	5.48	58
9	24	2321	1844.5-1854.0	92 5-102 0	9.5	5.97	63
10	25	0032	1854.0-1863.5	102.0-111.5	9.5	2.62	28
11	25	0145	1873.0-1882.5	121.0-130.5	9.5	0.14	1
12	25	0240	1892.0-1901.5	140.0-149.5	9.5	3.76	40
13	25	0337	1911.0-1920.5	159.0-168.5	9.5	7.18	76
14	25	0435	1930.0-1939.5	178.0-187.5	9.5	6.94	73
15	25	0540	1949.0-1958.5	197.0-206.5	9.5	2.05	22
16	25	0635	1958.5-1968.0	206.5-216.0	9.5	0.80	8
17	25	0740	1968.0-1977.5	216.0-225.5	9.5	6.57	69
18	25	0830	1977.5-1987.0	225.5-235.0	9.5	3.10	33
19	25	0927	1987.0-1996.5	235.0-244.5	9.5	0.26	3
20	25	1045	1996.5-2006.0	244.5-254.0	9.5	0.13	1
21	25	1145	2006.0-2015.5	254.0-263.5	9.5	4.37	46
22	25	1254	2015.5-2025.0	263.5-273.0	9.5	1.00	11
23	25	1402	2025.0-2034.5	273.0-282.5	9.5	0.30	3
24	25	1502	2034.5-2044.0	282.5-292.0	9.5	0.30	3
25	25	1612	2044.0-2053.5	292.0-301.5	9.5	3.42	36
26	25	1740	2053.5-2063.0	301.5-311.0	9.5	1.44	15
27	25	1853	2063.0-2072.5	311.0-320.5	9.5	3.60	38
28	25	2002	2072.5-2082.0	320.5-330.0	9.5	1.72	18
29	25	2127	2082.0-2091.5	330.0-339.5	9.5	0.93	10
30	25	2230	2091.5-2101.0	339.5-349.0	9.5	1.17	12
31	25	2355	2101.0-2110.5	349.0-358.5	9.5	2.21	23
32	26	0130	2110.5-2120.0	358.5-368.0	9.5	1.75	18
33	26	0257	2120.0-2129.5	368.0-377.5	9.5	2.51	26
34	26	0407	2129.5-2139.0	377.5-387.0	9.5	1.18	12
35	26	0530	2139.0-2148.5	387.0-396.5	9.5	2.33	25
36	26	0650	2148.5-2158.0	396.5-406.0	9.5	2.25	24
37	26	0755	2158.0-2167.5	406.0-415.5	9.5	2.60	27
Total					351 5	104 58	20

and the 3.5-kHz recorder, located Hole 468A at 32° 37.41'N and 120°06.55'W in 1752 meters of water. At 2330 hours on 23 October, shortly after spudding (after Core 4), the sand line broke. When the broken line was fished and the sand line restrung, it broke again, requiring a round trip to recover the sand line and Core 4 at 0900 hours on 24 October. Hole 468B was spudded on that same day at 1445 hours in 1752 meters of water. The upper 16.5 meters were washed, and the first core was taken between 1768.5 and 1778.0 meters depth. The upper ten cores were continuously cored to a depth of 111.5 meters. Below this depth through 197.0 meters, cores were taken only at alternate 9.5 meters because of the repeated section already recovered at Hole 468. Below 197.0 meters to total depth (T.D.) at 415.5 meters, coring was continuous. The sloughing problems of Hole 468 were avoided in Hole 468B, possibly due to the addition of mud in the hole. The recovery at Hole 468B was generally good in the upper 18 cores and moderate to poor in Cores 19 through 37. Minor amounts of H₂S were encountered in a few levels in Hole 468B (Cores 3, 4, and 5-12). Hydrocarbon gases were not encountered.

The coring operations stopped at 0800 hours on 26 October. The bit was released, and the hole was readied for Sonic, Caliper, and Temperature Logs. Attempts at logging, however, proved futile because of problems with the logging tools and the computer. When the time allocated for logging was spent, we decided to pull out of the hole. This was accomplished by 2115 hours, and, after a short postsite run over the beacon, we were under way to Site 469 by 2130 hours on 26 October.

LITHOLOGY

Hemipelagic, terrigenous, and volcanogenic sediments and sedimentary rock were recovered at Site 468. Foraminiferal-nannofossil ooze, nannofossil ooze, and diatom-nannofossil ooze dominate the upper part of the section. Dolomitic silty claystone and interbedded volcaniclastic rock are the main constituents of the lower part of the section. On the basis of the composite section of Holes 468, 468A, and 468B, we recognized four lithologic units at Site 468 (Table 2; Figs. 4 and 5).

Unit 1: Foraminiferal Ooze (Hole 468: 0-0.19 m; Hole 468A: 0-7 m)

This unit consists mainly of olive gray glauconitic nannofossil-foraminiferal ooze and silty ooze. Benthic and planktonic foraminifers are the predominant components (up to 50%), with approximately 20% nannofossils (chiefly coccoliths) and 15% subangular quartz and feldspar also present. Fine-grained green to greenish black glauconite composes about 10% to 12% of the sediment. Some grains are pseudomorphs of foraminifer tests. Radiolarians, some pseudomorphed by pyrite, and sponge spicules are also present (<10%). Minor components include grayish olive foraminiferal sandy silt and carbonized wood fragments.

The Unit 1/Unit 2 boundary in Hole 468 is marked by a sharp lithologic change between olive gray glau-

Table 2. Summary of lithologic units, Site 468.

Unit or Sub-unit	Hole	Core	Depth below Sea Floor (m)	Chronostratigraphy	Lithology
1	468	1	0.0-0.19	Quaternary	Glauconitic nannofossil-
	468A	1	0.0-7.0	Quaternary	foraminifer ooze and silty ooze.
2	468	1-2	0.19-4.1	Pliocene	Foraminifer-nannofossil ooze
	468A	2-4	7.0-35.5	Pliocene to upper Miocene	and nannofossil-foraminiferal ooze.
	468B	1-2	16.5-35.5	upper Miocene	
3	468	2-12	4.1-108.0	Pliocene to middle Miocene	Interbedded nannofossil ooze and diatom-nannofossil ooze
	468B	3-12	35.5-149.5	upper Miocene to middle Miocene	with intervals of detrital sand, silt, and clay that become dominant in the lower portion of the unit.
.4a	468	13-20	108.0-184.0	middle Miocene	Diatomaceous and calcareous
	468B	13-18	159.0-235.0		silty to sandy claystone with minor interbeds of volcani- clastic sandstone and rare ash.
4b	468	21-26	184.0-241.0	middle Miocene	Dolomitic silty claystone with
	468B	18-37	235.0-415.5		common interbeds of volcani- clastic sandstone and breccia.

conitic foraminiferal ooze and the underlying, yellowish gray foraminiferal-nannofossil and nannofossil-foraminiferal ooze. In Hole 468A, this boundary has been obscured by drilling disturbance but is generally recognized by a decrease in the abundance of glauconite.

Unit 2: Nannofossil and Foraminiferal Ooze (Hole 468: 0.19-4.1 m; Hole 468A: 7.0-35.5 m; Hole 468B: 16.5-35.5 m)

Soft, interbedded, pale olive foraminiferal-nannofossil ooze and olive brown nannofossil-foraminiferal ooze are the dominant sediment types in Unit 2. Thin intervals of glauconitic silty sand and sandy clay are also present; glauconite makes up as much as 30% of this sediment. Several angular pebbles of greenish black glauconite and grayish black phosphorite(?) also occur in Unit 2.

Unit 3: Nannofossil Ooze and Diatom-Nannofossil Ooze (Hole 468: 4.1-108 m; Hole 468B: 35.5-149.5 m)

This unit is distinguished from Unit 2 by its finer texture, darker color, and fewer intervals of glauconitic foraminiferal silty sand and sandy clay. Interbedded, pale olive nannofossil ooze and olive brown diatomnannofossil ooze make up the bulk of this unit. The sediment is commonly mottled, indicating various degrees of bioturbation. Thin lenses and patches of greenish black, glauconitic sand and sandy silt are scattered throughout Unit 3. Sponge spicules, which reach concentrations of 10% or more, are also an important component of the sediment.

Terrigenous components (clay, silt, and minor sand) increase downsection in Unit 3. In Hole 468, clay minerals (33%) and quartz and feldspar (7-15%) are the dominant constituents of the lower 30 meters.

In Hole 468, two layers of volcanic ash occur in Unit 3 (Cores 9 and 12). The upper ash layer is 4 cm thick, and the lower ash layer is about 25 cm thick. A smear slide of the ash from Core 12 contains 50% quartz and feldspar, 20% pumice, 10% volcanic rock fragments, 5% volcanic glass, and minor (<5%) clay and carbonate. Two sub-angular andesite(?) pebbles were also

Figure 4. Stratigraphic and lithologic summary, Hole 468.

recovered in siliceous nannofossil ooze in Hole 468B (Core 10); their occurrence within the ooze suggests that they are probably rafted erratics.

Unit 4: Claystone and Volcaniclastic Rock (Hole 468: 108-241 m; Hole 468B: 159-415.5 m)

Unit 4 is distinguished from Unit 3 on the basis of a change in induration (from firm to moderately well indurated) and by a conspicuous decrease in diatoms, radiolarians, and nannofossils. Unit 4 is divided into two

parts. Sub-unit 4a is moderately well indurated and contains common to abundant diatoms and coccoliths. In contrast, Sub-unit 4b is well indurated and consists chiefly of dolomitic silty claystone. The boundary between Subunits 4a and 4b corresponds closely to the disappearance of microfossils in the section and to a sharp increase in velocity from about 1.7 km/s to about 3.4 km/s.

In terms of both lithology and induration, Sub-unit 4a (Hole 468: 108-184 m; Hole 468B: 159-235 m) is

Figure 5. Lithologic and biostratigraphic summary, Holes 468A and 468B.

transitional between Unit 3 and Sub-unit 4b. Moderately well-indurated diatomaceous and nannofossil silty to sandy claystone, subordinate interbeds of volcaniclastic sandstone, and vitric ash characterize this unit. The claystone is olive gray to olive black, and the volcaniclastic rocks are gray. Silt- and sand-size grains are predominantly angular to sub-angular quartz (5-40%) and feldspar (3-10%) but also include minor amounts (<3%) of pyroxene, hornblende, and epidote. Volcanic glass and rock fragments (10-20%) and clay minerals 30-60%) are also important constituents. Rare patches of glauconitic foraminiferal silt and sand are also present. Mottling caused by bioturbation is common throughout Sub-unit 4a, and burrows are commonly filled with glauconitic sand.

Sub-unit 4b (Hole 468: 184–214 m; Hole 468B: 235– 415.5 m) consists of well indurated, olive black, dolomitic silty claystone and interbedded volcaniclastic rock. The volcaniclastic rock is breccia composed of vesicular basaltic and andesitic rock fragments and tuffaceous and volcaniclastic sandstone. The dolomitic silty claystone appears to be the dominant lithotype, but poor core recovery, especially in the volcaniclastic sequences, makes determination of the relative abundances of these two lithotypes difficult. The dolomitic silty claystone is both laminated and lenticularly bedded. It commonly contains well preserved burrows, many filled with tuffaceous sandstone. Some slumped beds were also noted.

Thin-section study indicates that interbeds of silty dolomite are also present in the claystone sequences. Dolomite (50-60%) is the major constituent of these interbeds, followed by clay (5-20%), angular quartz (8-15%), and feldspar (5-8%); minor components (<4%) include glauconite, opaque heavy minerals (including pyrite), and some laminae composed of sandsize volcanic rock fragments and brown volcanic glass. Scattered silt-size angular quartz and feldspar occur in a matrix of dolomite and clay along with chalcedony- and opal-CT(cristobalite)-filled molds of diatoms, radiolarians, foraminifers, and sponge spicules.

A wide variety of interbedded basaltic to andesitic volcaniclastic rocks (including breccias, pyroclastics, and tuffaceous to volcaniclastic sandstone) was recovered in Sub-unit 4b. Usually only basaltic to andesitic pebble- to cobble-size rock fragments represent the breccia beds. However, a breccia bed 32 cm thick was recovered in Hole 468B (Core 27) that consisted of pebble-size aphanitic, vesicular basaltic, and andesitic rock fragments in a matrix of quartz, feldspar, and rare pumice fragments. A similar matrix probably supported the volcanic rock fragments in other cores but was washed away during drilling.

The volcanic sandstone is medium- to coarse-grained, compositionally immature, and usually moderately well sorted. Partly altered pumice and subrounded to wellrounded volcanic rock fragments make up 30% to 40% of the rock. Other constituents include quartz, plagioclase feldspar, altered glass shards, glauconite, clay, and carbonate cement.

BIOSTRATIGRAPHY

At Site 468 a relatively thin (3.5-40 m) cover of upper Neogene sediment rich in calcareous microfossils overlies a thicker sequence (about 220 m) of mixed calcareous and siliceous middle Miocene sediment. This, in turn, overlies sediment barren of microfossils.

Calcareous nannofossils provide the best stratigraphic control for the upper Neogene, although planktonic foraminifers and radiolarians are also useful. In the middle Miocene, diatoms and calcareous nannofossils allow consistent biostratigraphic interpretation, whereas radiolarians and planktonic foraminifers are more variable in their abundance. In Figure 6, the plots of abundance of the various microfossil groups in Holes 468, 468A, and 468B reveal these relationships.

Figures 4 and 5 summarize zone assignments of the holes drilled at Site 468. Holes 468A and 468B possess a thicker cover (about 40 m) of upper Neogene sediment than is present in Hole 468 (3.5-13 m). Microfossil correlations suggest that horizons within the middle Miocene are 50 to 60 meters lower in Hole 468B than they are in Hole 468. The peak abundance of radiolarians occurs at 15 to 25 meters (Cores 3 and 4) in Hole 468 and at about 70 meters (Core 6) in Hole 468B. The base of the Denticula hustedtii-D. lauta Zone is at about 45 meters (between Samples 468-5, CC and 468-6, CC) in Hole 468 and at about 104 meters (between Samples 468B-10-1, 56-58 cm and 468B-10,CC) in Hole 468B. Likewise, the first occurrence upsection of planktonic foraminifers is at about 110 meters (Sample 468-13,CC) in Hole 468 and at about 150 meters (Sample 468B-12,CC) in Hole 468B. The first calcareous nannofossil occurs at about 175 meters (Sample 468-19,CC) in Hole 468 and at about 225 meters (Sample 468B-17,CC) in Hole 468B.

Coccoliths

Warm-water coccoliths characterize the short Pliocene and Ouaternary interval at Holes 468, 468A, and 468B. Most of the cores from Site 468 are barren or contain coccoliths from the middle Miocene Discoaster exilis Zone or the Sphenolithus heteromorphus Zone. Upper Miocene taxa occur in only a few cores, suggesting one or more major hiatuses. The upper Miocene to lower Pliocene assemblage at Hole 468A, Core 4, is notable for the presence of a cool-water biofacies with discoasters dominated by Discoaster variabilis Martini and Bramlette and a warm-water biofacies with discoasters dominated by D. brouweri Tan, D. pentaradiatus Tan. and D. surculus Martini and Bramlette. On the basis of Ceratolithus in the Pliocene and more common Discoaster, Discolithina, Helicosphaera, and Sphenolithus in the middle Miocene, Site 468 assemblages appear warmer than those of Site 467. Preservation is generally moderate throughout Site 468; solution is less severe than at Site 467. Overgrowth is minor, occurring only in some middle Miocene coccoliths.

Silicoflagellates

Silicoflagellates are well preserved but sparse at Site 468 and are restricted mainly to the middle Miocene strata. The assemblages associated with the Discoaster exilis Zone are characterized by Distephanus crux (Ehrenberg), D. longispinus (Schulz) s. ampl., and D. speculum speculum (Ehrenberg), with sporadic Corbisema triacantha (Ehrenberg) and Dictyocha pulchella Bukry. In the Sphenolithus heteromorphus Zone, Distephanus crux, Dictyocha fibula Ehrenberg s. ampl., and Distephanus speculum hemisphaericus (Ehrenberg) are typical, with sporadic Cannopilus depressus (Ehrenberg) and Mesocena apiculata curvata Bukry. In Sample 468B-30,CC, the unique appearances of Corbisema flexuosa (Stradner) and Mesocena apiculata apiculata

Figure 6. Plots of relative abundances of planktonic microfossils, Site 468.

(Schultz) suggest probable reworking into the lowermost middle Miocene, because the typical range of these species is upper Eocene to lower Miocene.

Radiolarians

The radiolarian abundance in Quaternary, Pliocene, and upper and middle Miocene sediments is generally rare to few and the preservation poor to moderate, except in Sections 2-1 through 3-1 and Sections 4-5 through 5-1 (Hole 468), and in Sections 3-2 through 9-2 (Hole 468B), which contain common to abundant well preserved radiolarians. Cores 1 and 2, Section 1 (Hole 468A) contain a well preserved Pleistocene radiolarian assemblage. Surface sediment in Hole 468A yields no datable radiolarians; neither do Cores 14 through 16 of Hole 468B, no remains of radiolarians are present (except in Sample 468B-29,CC).

The Quaternary sediments of Hole 468A yielded radiolarian assemblages described from the northeastern Pacific, and Kling's (1973) zonation is applicable. Sections 1 and 2 of Core 1 correlate with the upper Pleistocene Axoprunum angelinum Zone, as indicated by the presence of Lamprocyrtis haysi and the absence of Eucyrtidium matuyamai. The assemblages of Sections 1-3 through 2-1, which contain E. matuyamai and Lamprocyrtis heteroporos, are assigned to the lower Pleistocene E. matuyamai Zone. Single specimens of Amphirhopalum ypsilon and Theocorythium vetulum, which are typical of equatorial regions, are included in the Quaternary assemblages. The upper Pliocene sediments of Samples 468A-2-2, through 468A-2,CC and Samples 468B-1-1 through 468B-1-2, contain Lamprocyrtis heteroporos and only nondiagnostic radiolarians and therefore belong to the L. heteroporos Zone. The upper boundary of the lower Pliocene/uppermost Miocene Stichocorys peregrina Zone is indicated by the extension of S. peregrina. The Pliocene/Miocene boundary is marked by the first appearance of L. heteroporos. Radiolarian occurrences suggest only a thin capping sequence of Quaternary and Pliocene sediments. In Hole 468A, one or several sedimentation gaps or a very condensed sequence can be assumed between Core 1 and Sample 468A-2,CC.

Below the Quaternary-Pliocene beds, radiolarians restricted to the upper Miocene are rarely represented. Section 2-1 of Hole 468 contains few specimens of Ommatartus antepenultimus, which is indicative of lower upper Miocene. Section 4-5 of Hole 468A yielded abundant Stichocorys peregrina and is assigned to the uppermost Miocene. Equivalent layers were found in Sample 468B-2, CC through Section 3-4, which are again characterized by few specimens of S. peregrina and rare occurrences of O. antepenultimus. Only two sections of Hole 468B—Sample 3,CC and Section 4-1—could be placed into the lower upper Miocene O. antepenultimus Zone on the basis of the presence of rare to few specimens of Ommatartus hughesi and O. antepenultimus. It is obvious, then, that a large part of the upper Miocene is not represented by sediments. In Holes 468 and 468B, radiolarian assemblages of the O. antepenultimus Zone are identified, and fossils of the upper upper Miocene Stichocorys peregrina Zone are present in Holes 468A and 468B. Radiolarian assemblages of the O. penultimus Zone could not be recognized in any of the Site 468 holes; radiolarians of the lower S. peregrina Zone are lacking in Hole 468, those of the O. antepenultimus Zone have not been found in Hole 468A. It is probable, therefore, that the upper Miocene sediments constitute a rather thin, condensed (or incomplete) succession.

Only part of the middle Miocene seems to be well represented by a rather thick succession of sediments, because the radiolarian assemblage of the upper middle Miocene Cannartus petterssoni Zone-especially C. petterssoni itself-was not encountered in Holes 468A and B. In Hole 468, C. petterssoni is only present in Section 2-3, and the lower to middle middle Miocene Dorcadospyris alata Zone begins with Section 3-1 and ends possibly with Sample 468-18, CC. In its lower part, the middle Miocene succession is characterized by rare occurrences of Cannartus mammiferus, which is progressively replaced by rare to abundant individuals of Cannartus laticonus in the upper part. Besides mainly rare occurrences of Eucyrtidium inflatum and Lithopera renzae, which are assumed to be diagnostic for middle Miocene, various species of Cyrtocapsella and Stichocorys (except S. peregrina) occur rarely to abundantly. The succession below Core 18 in Hole 468 cannot be assigned securely either to the lower middle nor to the upper lower Miocene by means of radiolarians.

Besides rare, sporadic occurrences of *D. alata*, no radiolarians are present that mark precisely the lower boundary of the middle Miocene. On the other hand, mainly lower Miocene species, such as *Calocycletta, C. virginis*, and *Dorcadospyris simplex*, have been found

rarely to commonly from Cores 17 through 21 (Hole 468). According to the results of diatom research, Sample 468-21,CC still contains middle Miocene species. The lower Miocene radiolarians are probably reworked.

In the region of Sites 467 and 468, the Quaternary radiolarian assemblages mainly consist of cold-water species. Site 468 differs from Site 467, however, in that some warm-water species (*Amphirhopalum ypsilon*, *Theocorythium vetulum*) have joined the North Pacific assemblage.

Diatoms

Abundant to rare middle Miocene diatoms were recovered from Holes 468 and 468B at Site 468. Younger sediments in both holes and in Holes 468A contain only rare diatoms that are reworked from the middle Miocene.

Samples 468-2-2, 130-132 cm through 468-3-1, 19-21 cm are assigned to Subzone b of the *Denticula hustedtii-D. lauta* Zone on the basis of the present of *Denticula praedimorpha* without *Rhizosolenia barboi*. Samples 468-3-5, 10-12 cm through 438-5, CC lack *D. praedimorpha* but contain *D. hustedtii* and are placed in Subzone a of the *D. hustedtii-D. lauta* Zone.

Cores 6 through 21 are assigned to the lower middle Miocene *Denticula lauta* Zone. The first occurrence of *Denticula hyalina* in Sample 468-9-4, 89-91 cm marks the top of Subzone a and the base of Subzone b.

A similar section was recovered in nearby Hole 468B in Cores 4 through 21. Cores 4 and 5 correspond to either Subzone c or Subzone b of the *Denticula hustedtii–D. lauta* Zone, and Samples 468B-6-3, 90–92 cm through 468B-10-1, 56–58 cm are correlated with Subzone a of the *D. hustedtii–D. lauta* Zone. Samples 468B-10,CC through 468B-21,CC are assigned to the lower middle Miocene *Denticula lauta* Zone, with the Subzone a/Subzone b boundary placed between Samples 468B-14-1, 84–86 cm and 468B-14-3, 84–86 cm.

Hole 468 includes a diatomaceous section that is truncated at its top to a greater extent than the section in Hole 468B. Sample 468B-3, CC contains diatoms correlated to middle to upper Miocene Subzone c of the *D. hustedtii-D. lauta* Zone, and Sample 468B-3-4, 130 cm contains upper Miocene diatoms assigned to Subzone d of the *D. hustedtii-D. lauta* Zone. The biostratigraphic interval represented by these samples was not present in Hole 468.

Foraminifers

Planktonic foraminifers are sparse or absent in samples examined from Site 468, except for the few exceptions noted here.

Relatively diverse Quaternary assemblages that include Neogloboquadrina dutertrei, N. pachydeterma (s.s.), Giobigerina bulloides, and Orbulina universa occur in Samples 468-1-1, 3-5 cm and 468A-1,CC. A diverse upper Pliocene assemblage with Neogloboquadrina atlantica, N. humerosa, N. pachyderma (s.s.), Globorotalia inflata, and G. tumida occurs in Sample 468A-2,CC; lower Pliocene assemblages that include *Globorotalia puncticulata* occur in Samples 468B-1,CC and 468B-2,CC.

Samples 468-3,CC and 468-5,CC are assigned to the middle Miocene because of the occurrence of *Globigerina druryi* (3,CC) and *Globorotalia peripheroronda* (5,CC) with *Orbulina universa*.

Benthic foraminifer assemblages are relatively diverse and moderately well preserved in Cores 1 through 13 of Hole 468, Cores 1 through 4 of Hole 468A, and Cores 1 through 12 of Hole 468B. Uvigerina senticosa, Melonis barleeanus, and Pullenia bulloides are consistent members of the benthic assemblages and suggest Site 468 sediments were deposited in mid- to lower bathyal water depths. Taxa displaced from shallower water, however, are evident in most Miocene samples.

SEDIMENT ACCUMULATION RATES

The sediment accumulation rate curves (Fig. 7) for Site 468 were constructed from selected diatom (D), radiolarian (R), foraminifer (F), and coccolith (C) events. The combined curve for Holes 468A and 468B indicates a slow sediment accumulation rate of about 6 m/m.y. from the Quaternary into the late Miocene and a major hiatus during the late Miocene. An accumulation rate of about 20 m/m.y. in the late middle Miocene changes to one of at least 100 m/m.y. in the early middle Miocene and (?)early Miocene. Middle Miocene to (?)early Miocene accumulation rates for Hole 468 appear to be similar to those in Holes 468A and 468B; between Cores 2 and 3, a hiatus appears to be present from the late middle Miocene to the Pliocene.

GEOCHEMICAL MEASUREMENTS

Interstitial Water

Interstitial water was squeezed from samples at Holes 468 and 468B. Salinity, chlorinity, pH, alkalinity, calcium, and magnesium were determined on board ship. The interstitial water profile for Hole 468 is similar to the corresponding portion of the profile at Hole 468B, which is illustrated in Figure 8.

The interstitial water profiles from the upper 200 meters of sediment at Hole 468B are characterized by a slight increase in alkalinity, an increase in calcium concentration, and a corresponding decrease in magnesium concentration. Calcium concentration and magnesium concentration in the pore waters are linearly related. The pore-water constituent profiles in the upper 200 meters at the site are characteristic of those in terrigenous deposits of moderate sedimentation rate. The slight increase in alkalinity at this site is generally associated with sulfate reduction in pore waters (Manheim and Sayles, 1974).

Below 200 meters depth at Hole 468B, the pore-water calcium concentration first decreases to values near those of normal sea water, then increases. The magnesium concentration mirrors the calcium concentration

Figure 7. Sediment accumulation rates, Site 468.

Figure 8. Interstitial water profile, Hole 468B.

by increasing, then decreasing. The depth interval over which the calcium decrease takes place corresponds to the interval of dolomitic silty claystone, and the complex calcium and magnesium concentration curves in the lower portion of the sediment column may be related to dolomitization reactions.

Calcium Carbonate Content

The calcium carbonate content of samples from Site 468 was determined by the carbonate bomb technique. The results of these determinations are included in the core descriptions in this chapter and plotted in Figures 9 and 10.

PHYSICAL PROPERTIES AND DOWNHOLE LOGS

Figures 9 and 10 summarize the physical-property and logging data for the three holes drilled at Site 468. Nannofossil ooze, clay, and silty clay that form the upper part of the section at each hole are characterized by low and relatively constant saturated bulk densities and sonic velocities. In contrast, the underlying sections of interbedded dacitic breccia, calcareous silty claystone, and volcaniclastic sandstone have distinctly higher and extremely variable densities and velocities. The break between these two portions of the sedimentary section is sharp in both cases, occurring at about 180 meters in Hole 468 and about 230 meters in Hole 468B.

Specifically, the upper part of the section in all holes lacks character. A semi-indurated sand occurs at about 108 meters in Hole 468. The impedance contrast between this layer and the enclosing clay and ooze is about 0.2. In contrast, the underlying section of interbedded dacitic breccia, calcareous silty claystone, and volcaniclastic sandstone is characterized by highly variable densities and velocities. The volcanic rocks have the highest and most constant values. Calcareous claystone is more variable, perhaps because of the degree of cementation. Indeed, between about 250 and 300 meters, the carbonate content of the claystone in Hole 468B is greatest, corresponding to some of the highest densities and velocities for these calcareous rocks (Fig. 10). Densities and velocities vary in a similar fashion for the interbedded volcaniclastic sandstone and sandy silt and perhaps also reflect the degree of lithification by cementation or by compaction.

The Caliper and Sonic Amplitude Logs in Hole 468B offer little help. The hole diameter is irregular between about 230 and 280 meters, probably corresponding to the washing out of softer clay interbedded with the volcanic and volcaniclastic rocks. The amplitude of the

Figure 9. Summary of physical properties, Hole 468.

SITE 468

Figure 10. Summary of physical properties and downhole logs, Holes 468A and 468B.

SITE 468

sonic signal increases slightly between 255 and 315 meters, an interval of mostly calcareous claystone.

Physical properties such as porosity and water content derived from measured densities show the expected inverse trends, decreasing with greater depth of burial. The two measurements of shear strength of diatom nannofossil ooze at 50 and 84 meters in Hole 468 are slightly less than values of unconfined shear strength of carbonate ooze at comparable depths of burial (Bouma and Moore, 1975). Because carbonate ooze has the highest shear strengths of marine sediments, these true values probably indicate slight dilution of the carbonate with terrigenous and siliceous debris.

Table 3 gives the average densities and velocities of the upper ooze-clay part of the section and the lower interval of interbedded volcanic and sedimentary rocks for both Hole 468 and Holes 468A and B. Using these values, the impedance contrast between the upper and lower parts of the section (~180 m at Hole 468 and ~ 230 m at Hole 468B) is 0.43. This contrast is 0.58 if we use the average density and velocity values of the shallowest dacitic rocks (2.29 g/cm³ and 4.56 km/s, respectively) instead of the average values for both volcanic and sedimentary rocks. In both cases, the impedance contrasts are high, indicating that the boundary between the upper soft sediments and the harder volcanic and sedimentary rocks in the lower part of the section is a good reflector. Computing acoustic impedance contrasts within the lower part of the section is much more tenuous, because softer rocks or sediments may not be represented in the cores. According to Table 3, the highest contrasts are between dacitic rocks and slightly calcareous claystone (impedance contrasts $\sim 0.2-0.5$). Where these are juxtaposed, such as at about 255 meters and 350 meters in Hole 468B, they may be good reflectors.

The data at Site 468 show a distinct shift in all physical properties where nannofossil ooze, clay, and silty clay give way to underlying harder sedimentary and volcanic rocks. This break occurs about 50 meters deeper in Hole 468B than in Hole 468. The impedance contrast between these two units is about 0.4. Densities, porosities, and velocities appear to vary directly with degree of carbonate cementation in the lower claystone.

CORRELATION OF REFLECTION PROFILE WITH DRILLING RESULTS

The acoustic stratigraphy in the vicinity of Site 468 is shown on the common depth point (CDP) multichannel seismic-reflection profile (Fig. 3) obtained during a presite survey by the U.S. Geological Survey (Crouch et al., 1978). A pronounced upper middle Miocene unconformity that occurs at about 4 meters sub-bottom in Hole 468 and 35 meters sub-bottom in Hole 468B cannot be resolved on the CDP profile. This unconformity can be seen on a nearby U.S. Geological Survey singlechannel record, however, where it separates relatively undeformed strata from underlying folded and faulted strata. The *Challenger* profiles approaching and leaving the site show little of the acoustic stratigraphy because

Table 3. Average values of density and porosity for Holes 468, 468A, and 468B.

		Denth	Densi	ty	Veloci	ty
Hole	Lithology	Interval (m)	Range (g/cm	3) ^{Avg.}	Range (km/s	Avg.
468	Nannofossil ooze, clay, and silty clay	0-180	1.50-1.80	1.63	1.50-2.26	1.77
	Dacitic breccia ^a	180-T.D.	2.10-2.40	2.27	4.10-4.89	4.41
	Calcareous silty claystone	180-T.D.	1.95-2.15	2.08	3.21-3.92	3.86
	Sandstone/silty sand	180-T.D.	1.59-1.85	1.69	1.68-2.26	1.99
468A, B	Nannofossil ooze, clay, and silty clay	0-240	1.50-1.80	1.61	1.55-2.01	1.67
	Dacitic breccia ^a	240-T.D.	2.12-2.24	2.22	2.99-4.65	4.08
	Calcareous silty claystone	240-T.D.	1.70-2.47	2.10	1.73-4.23	2.86
	Sandstone/silty sand	240-T.D.	1.82-2.50	2.06	2.41-4.47	3.25

^a We recovered only fragments of dacite in both holes and have interpreted these as clasts in breccias. Consequently, densities and velocities may not be representative of the lithologic unit.

of the high vertical exaggeration on these records and the steepness of the slope at Site 468.

At Site 468, the CDP profile shows acoustic units in the following succession:

1) an upper unit with weak interval reflectors that become stronger and more persistent near the base of the unit;

2) a pair of strong, very persistent reflectors at about 0.19 and 0.21 s below the sea floor in Hole 468; and

3) below the two strong reflectors, there is a lower unit characterized by an interval of very weak and discontinuous reflectors.

The sequence of acoustistratigraphic units at Site 468, as inferred from seismic profiles, a sonobuoy profile (Crouch et al., 1978), drilling rate, and cored stratigraphic sequence is displayed in Figure 11. The upper acoustic unit correlates with Lithologic Unit 1 through Sub-unit 4, consisting mainly of Quaternary to middle Miocene foraminiferal, nannofossil, and diatomaceous ooze that grades downward into moderately indurated diatom- and nannofossil-bearing silty claystone. The boundary between the upper and lower acoustic units correlates with the pair of strong continuous reflectors at 0.19 and 0.21 s below the sea floor. Beneath and subparallel to these strong reflectors are very weak, discontinuous reflectors that characterize the lower acoustic unit. The lower acoustic unit corresponds to Lithologic Sub-unit 4b, which consists of interbedded dolomitic silty claystone and volcaniclastic rocks of andesitic and dacitic composition. The weak and discontinuous reflectivity of this lower unit is probably the result of the small velocity and density contrasts between the dolomitic and volcaniclastic beds.

CONCLUSIONS

1. An unconformity at Site 468 corresponds to a widespread unconformity recognized in the California Continental Borderland by Crouch (1979b). However, relations at Hole 468 differ from those prevailing in the composite section at Holes 468A and 468B, despite the proximity of these holes (1.2 km apart). The upper mid-

Figure 11. Correlation of lithologic units of Hole 468 with multichannel seismic profile at Site 468.

dle Miocene and upper Miocene section is missing at Hole 468, whereas only part of the upper Miocene is absent at Holes 468A and B.

2. Youngest andesitic volcaniclastic rocks are interbedded with sediments containing a Sphenolithus heteromorphus Zone fauna 15.5 ± 0.8 m.y. of age. Volcaniclastic rocks deposited during the middle and perhaps late early Miocene appear to be derived from a nearby source, probably on or near the Patton Ridge. Some of the volcanic clasts may have been recycled from older strata. The occurrence of Miocene andesitic and dacitic volcanic rocks so close to the continental margin suggests that the volcanics are related to the passage of the East Pacific Rise Crest and were not derived from subducted oceanic crust.

3. The change of facies in the late middle Miocene from volcaniclastic and terrigenous strata upsection to hemipelagic sediments may reflect subsidence of the outer California Continental Borderland after passage of the East Pacific Rise Crest.

4. A relatively well-preserved siliceous microfossil record was recovered only in the middle Miocene portion of the section. The calcareous microfossil record is generally poor throughout the section, and it may not reveal the detailed paleoclimatic data that had been expected.

REFERENCES

- Bouma, A. H., and Moore, J. C., 1975. Physical properties of deepsea sediments from the Philippine Sea and Sea of Japan. *In* Karig, D. E., Ingle, J. C., Jr., et al., *Init. Repts. DSDP*, 31: Washington (U.S. Govt. Printing Office), 535-568.
- Crouch. J. K., 1979a. Neogene tectonic evolution of the California Continental Borderland and western Transverse Ranges. Bull. Geol. Soc. Am. Pt. 1, 90:338-345.
- _____, 1979b. Marine geology and tectonic evolution of the northwestern margin of the California Continental Borderland [Ph.D. thesis]. University of California, San Diego.
- Crouch, J. K., Holmes, M. C., McCulloh, T. H., et al., 1978. Multichannel seismic reflection and sonobuoy refraction data in the outer Southern California borderland. U.S. Geol. Surv. Open-File Rep. 78-706.
- Kling, S. A., 1973. Radiolaria from the eastern North Pacific, Deep Sea Drilling Project, Leg 18. *In* Kulm, L. D., von Huene, R., et al., *Init. Repts. DSDP*, 18: Washington (U.S. Govt. Printing Office), 617-674.
- Manheim, F. T., and Sayles, F. L., 1974. Composition and origin of interstitial waters of marine sediments based on deep sea drill cores. *In* Goldberg, E. D. (Ed.), *The Sea, Marine Chemistry* (Vol. 7): New York, (John Wiley and Sons), 527-568.

SITE 468

SITE 468 HOLE	CORE 3 CORED INTERVAL	13.0-22.5 m	SITE 468 HOLE CORE 4 CORED INTERVAL 22.5-32.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE PORAMINE ENA MANNOCOSSILS MANNOCOSSILS DIATONG	R GRAPHIC GRAPHIC LITUNG BUNGAWAGAWAGAWAGA TREACTION	LITHOLOGIC DESCRIPTION	UILTHOLO UILTHO	IGIC DESCRIPTION
MIDDLE MIOCENE N.11-N.14 (F) Matricule laute-Dentricule funiteritii subtrone "A" (D) Matricule laute-Dentricule funiteritii subtrone "A" (D)		BIATOM MANNOPOSSIL OOZE, dusky velices (57 6/4) and pale olive (10° 6/2) to light olive grav (5° 5/2). Variable colors (fietch standing to post of attenanting tight and dark sadiment top Section 2. Sponge fragments cattered throughout: BY 6/4 and Deformed 10° 6/2 ORGANIC CARBON AND CARBONATE 34/3 Deformed 10° 6/2 34/3 Si Organic Carbon 1 1/7 Si CacO3 67 Sadiment 2 34/3 Deformed 10° 6/2 100 Deformed 10° 6/2 100 Deformed 10° 6/2 100 Glaw 0 100 Out 10 100 Deformed 10° 6/2 100 Glaw 0 1 Out 10 1 Glaw 0 1 Glaw 0 1 Glaw 0 1 Glaw 0 1 </td <td>MIDDLE MICHAELEN LAND LAND LAND LAND LAND LAND LAND LAN</td> <td>INOFOSSIL OOZE, dusky vellow (55Y 6/4) 1007 6/20 with dusk pray (NS) and gray/ish tasks and parches. Interese drilling deformation. E SUMMARY 2-138 3.92 (D) </td>	MIDDLE MICHAELEN LAND LAND LAND LAND LAND LAND LAND LAN	INOFOSSIL OOZE, dusky vellow (55Y 6/4) 1007 6/20 with dusk pray (NS) and gray/ish tasks and parches. Interese drilling deformation. E SUMMARY 2-138 3.92 (D)

SITE 468

2	DHIO	. 5	CHA	OSS	TEF	R										
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DES	CRIPTION	4	
MIDDLE MIOCENE	N.9–N.11 (F) Dorcadopyria alata zone (R) Discoverer exilia (N) MIDDLE MIOCENE (R) Denticula hustediti-Denticula hustediti-Denticula buta subzone "a" (D)	FM	AM	EM	CP		1 2 3 4 5	0.5	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0 0	•	Glauconite-rich patch	DIATOM NANNOF hopsis olive (10Y & with occasional glau increases name base S ORGANIC CARBON % GaCO3 SMEAR SLIDE SUM TEXTURE: Sand Sitt Clay COMPOSITION: Ourtz Feldpar Mica Haavy minerals Carbonate unspec. Foraminifiers Cale, Nanofostils Diatoms Radiolarians Sponge spicules Sillcofflagellates	DSSIL COO 21), indinti- relian 5. 5.24 - 57 100 1. 75 75 - 8 8 75 75 8 75 75 8 75 75 75 75 75 75 75 75 75 75 75 75 75	ZE, gr setty n patch RBON 2-700 (D) - - - - - 2 78 3 2 10 - - - - 2 78 - - - - - - - - - - - - -	avish olive (10/ 4/2) notified throughout es. Clay content IATE 5-120 (D) 5 5 25 70 4 1 1 1 7R 10 1 2 25 70 4 1 1 1 7R 10 1 2 2 5 9 9 1

CORE 5 CORED INTERVAL 32.0-41.5 m

Outgoin The second se		PHIC		CHA	OSS	TER		T		Π	Π	
Image: second	UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METEDe	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES	LITHOLOGIC DESCRIPTION
	MIDDLE MIOCENE	ccoitibus miopelogicus (N)? Dorcadousyris alata zone (R) LOWER MIDDLE MIOCENE (R) N.8–N.11 (F)						0.0.0 1) 1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	····································		+ 000	CLAYEY DIATOMACEOUS OOZE, olive gray (5Y 3/2) changing down-core to light olive gray (5Y 5/2) NANNO POSSIL DIATOMACEOUS OOZE. Solive indistinct color mottling Section 5. Lighter colored seliment nannofosil rich. Intense drilling doformation. 5 Y 5/2 5 0 Organic Carbon 2.78 5 CSCO ₃ 49 SMEAR SLIDE SUMMARY 6 0 TEXTURE: 5 Sint 50 CompOSITION: Mica TR Heavy minerals TR City 20 Glisuconits 1 Pyrite TR Carbonate unppec. 10 Foraminfers 1 Calc. Nanofosils 12 Diatoms 50 Radiolarians 2 Sponge spicules 4

SITE 468 HOLE

	SITE 46	8 F	IOLE		co	RE	7 CORED	INTERV	AL 51.0-)—60.5 m	SITE	468	н	DLE		co	RE	8 CORED II	NTERV	AL	60.5-70.0 m				
NOVO NUMBER NUMBER <td>TIME - ROCK UNIT BIOSTRATIGRAPHIC</td> <td>FORAMINIFERS</td> <td>RADIOLARIANS</td> <td>DIATOMS</td> <td>SECTION</td> <td>METERS</td> <td>GRAPHIC LITHOLOGY</td> <td>DRILLING DISTURBANCE SEDIMENTARY STRUCTURES</td> <td>3/00/FE3</td> <td>LITHOLOGIC DESCRIPTION</td> <td>TIME - ROCK UNIT</td> <td>BIOSTRATIGRAPHIC ZONE</td> <td>FORAMINIFERS</td> <td>FORA SINGLARIANS</td> <td>IL SWOLVIG</td> <td>SECTION</td> <td>METERS</td> <td>GRAPHIC LITHOLOGY</td> <td>DISTURBANCE SEDIMENTARY STRUCTURES</td> <td>SAMPLES</td> <td></td> <td>LITHOLOGIC C</td> <td>DESCRIP</td> <td>TION</td> <td></td>	TIME - ROCK UNIT BIOSTRATIGRAPHIC	FORAMINIFERS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	3/00/FE3	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FORA SINGLARIANS	IL SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC C	DESCRIP	TION	
	MIDDLE MIOCENE MIDDLE MIOCENE (1) Denteuté faite root (n) LOVEE MIDDLE MIOCENE (1) Denteuté faite root (n) LOVEE MIOCENE (1) Denteuté faite root (n) LOVEE MIDDLE MIOCENE (1) DENTEURÉ AUX		AM		1 2 3 4 5 6		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		 Nanne, ooze p 5Y 5/, and 10Y 6 5Y 3/, of y 5Y 5/, 3/2 5Y 5/, 3/2 5Y 5/, grading to 5Y 3/ 5Y 5/, of y 5Y 5/, of y 5Y 5/, of y 	DIATOM-NANNOFOSSIL 002E, light olive gray (5Y 5/2) and pale olive (10Y 6/2) to olive gray (5Y 3/2), darker colors correspond to higher distom and clay content. Several patches of vielowing area (5Y 7/2). NANNOFOSSIL 002E in Section 1. Interne drilling deformation. ORGANIC CARBON AND CARBONATE 230 230 1/2 % Organic Carbon % 1/2 % Organic Carbon % 8/2 Colspan="2">0.00 SMEAR SLIDE SUMMARY 1/3 3-82 4.58 7.7 (M) 00) (D) (D) EXTENSION AND CARBONATE 230 Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2"	MIDDLE MIOCENE	Doreadogrynii adula zone (R) Coccolifitua mioprilogicus (N)) LONEN MIDOLE MIOCLE MICENE (R) Dorrecal Aura variane "S" (D)	FP R	M.	FP	3	0.5		0 0	•	10Y 4/2 Color change 5Y 3/2	NANNOFOSSIL-DI (10Y 4/2) to olive grains of quartz an deformation. SMEAR SLIDE SUI TEXTURE: Sand Silt ComPOSITION: Ourtz Feldspar Mica Olay onite Pyrite Carbonate unspec. Foraminiferi Glauconite Pyrite Carbonate unspec. Foraminiferi Sconge spicules Stillcoffagellatee	ATOMA 97ay (5: d feldap 	CEOUS Y 3/2), ar than 1.666 (D) 2 18 80 7 7 1 12 2 1 1 1 1 2 20 3 3 12 -	OOZE, gravish olive contains more silt-size Core 7. Intense drilling 5 55 40 10 5 1 1 10 3 2 2 - 2 44 42 20 -

SITE 468

SITE 4	68	HOL	SSIL	co	RE 9 CORED	INTE	IVAL	70.0-79.5 m		-		_			46 ♀	8	HO	E	IL		ORE	10 CORED IN	TERV	AL	79,5-
TIME - ROCK UNIT BIOSTRATIGRAPH	ZONE	CHAF STISSOLONNAN	PIADIOLARIANS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC (ESCRI	PTIO	N		TIME - ROCK UNIT	BIOSTRATIGRAPH	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	
	Denticula lauta subzone "b" (D) so	N	0	1	₹			VOID Foraminifera-rich 10Y 4/2	NANNOFOSSIL-DI. (10Y 4/2) with dark rich with spatches of DIATOMACOUS Patches of vitric ash Collapsed core liner SMEAR SLIDE SUM TEXTURE: Sand Silt Clay COMPOSITION: Clay COMPOSITION: Clay COMPOSITION: Clay Clay Composition: Clay Clay Composition: Clay Clay Clay Clay Clay Clay Clay Clay	ATOM/ gravial TY Cl Section IA4 (M) - 40 60 15 2 - 1 133 - 5 TR	ACEOI olive (fera-) LAY S 4,40 6,10 30 70 20 2 2 2 	US OC (10Y and gl ection and 4 2-15 5 4.4 (M) 10 85 5 - - - - - - 98 - -	D2E, grayish olive 3/2] mottles. Clay- aucontite-sity clay. 5, 68–117 cm. 44 cm. 0 cm. 2 5-81 100 - 10 2 1 3 36 - 7 7	MIOCENE	LE MIOCENE (R)	(N) ? Land a subscript and a subscript for a s	AN	E C	<u> </u>		1.0			•	10Y 3/ Patch 4 nannol 0028
WIDDLE MIOCENE	cus (N) 7 LOWER MIDDLE MIDCENE (R)	см		3				Patchas of vitric ash	Carbonate urspec. Foraminfers Cate, Nannofossils Diatomi Radiolarians Sconge spicules Silicoffagellates	10 10 35 1 5 3 TR	3 2 25 30 7 2 1	111111	2 3 TR 15 5 7 1	WIDDLE	LOWER MIDDI	alata zone (R) Coccolithus miopenagicus (4				:	
	Dancadospyris alata zone (R) Coccolithua miopelagi			5				Glauconitic								Dorcadospyris	PR	R	RP	C	5			•	

LITHOLOGIC DESCRIPTION NANNOFOSSIL-DIATOMACEOUS SILTY CLAY, dark grayish olive (10Y 3/2) with scattered glauconitic and toraminifera-rich patches. Patch of grayish olive (10Y 4/2) nanofossii oozs Patchion 3, 12 cm. Scattered sponge fragments throughout. ORGANIC CARBON AND CARBONATE 3-90 % Organic Carbon % CaCO₃ 27 SMEAR SLIDE SUMMARY 1-92 3-92 5-88 (D) (D) (M) 3/2 TEXTURE: - - -20 20 40 80 80 60 Sand Silt Clay COMPOSITION: COMPOSITION: Quartz Feldspar Mica Clay Glauconite Carbonate unspec. Foraminifers Calc, NannoTossils Distore: of fossil Calc. Nannotossit Diatoms Radiolarians Sponge spicules Silicoflagellates

-89.0 m

.

	PHIC		F	RAC	TER						
TIME - ROCI	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE	e (R)		B		B	CC	-	6			SILTY SANDSTONE, dark gray (N3); feldspar and opeque lithic fragments mott abundant detrital grains. Glauconite and detrital grains of spherulitic zeolite(?) common ANDESITE/DACITE clast recovered with sandstone.
	lospyris alata zon										Core-Catcher only. SMEAR SLIDE SUMMARY CC-3 TEXTURE: Sand 80
	Dorcau										Silt 20 Clay – COMPOSITION: Quartz 35 Feldspar 5 Volcanic glas 25
					1 1	1				- 1	Guadonite 5

~	PHIC	1	CHA	RAC	TER					
TIME - ROC	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	8 SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
										Clast of medium gray (N5) porphyritic ANDESITE/DACITE, Core-Catcher only.
	ris alata zone (R)									THIN SECTION DESCRIPTION Phenocrysts: plag. 45 euhedral-subhedral clinopyx. 1% euhedral-subhedral orthopyx. TR euhedral-subhedral
	Dorcadospy									Groundmass: plag, 40% acicular, prisms glas 42% altered mesostasis opaque 3% Vesiclest: 10% Atteration:
										clays TR (in vesicles)

18	PHIC		F	OSS RAC	TER												
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRA	PHIC DLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	availutes	LI	THOLOGIC DE	SCRIPT	ION	
	(Q) .		СМ	RP	FP	c	2		(RIG		Τ	:			anan		
	1							-		TT	T		Yellow	ish gray (5Y 7/	 greenis nanno 	h black (5GY) fossil-rich mot	z/1). tle at
L.	bzon						0.5	7					13 cm.				
5	105 42							3					Core-Ca	atcher only.			
-	lau.						1.0	-					SMEAF		ARY		
	cuta							1					SHIL M	A GEIGE GOMM	CC-6	CC-13	
	(Fand							-							(D)	(M)	
	50							-					TEXTL	JRE:	-		
1	nyo						1 8	1					Sand Cit+		25	10	
	tron	1						-					Clay		65	90	
	R) R							1					COMPO	DSITION:	00	50	
	200					1		-					Quartz		8	-	
	1 N							7					Feldspa	M.	4	-	
	50							-					Heavy r	minerals	1	-	
	MIN							-					Clay		60	10	
	23			1.1	1		1.5	-					Glaucor	nite	10	-	
	50					-	-	-					Carbon	ate unspec.	2	2	
0	ž.				L I		1.1	1					Calc. N	lannofossils	2	70	
	ÊE						1.5	-					Distom	18	1	10	
1	28						1.1	-			1		Sponge	spicules	2	8	
	20							-					Lithic f	agenates	10	2	
	ata ND					13	10	7		11			Lithic I	agenetics.	10		
	N A						1.5	-									
- 1	NEI						1.5	-									
t)	LON O							-									
	Ser				1 1		1 3	-		1 1	10	- 1					

SITE 468

SITE 46	B	HOLE			OR	18	COR	ED IN	TERV	AL	155.5-165.0 m						SI	E	468	HO	LE		C	ORE	1	19 (ORE	INTE	RVAL	. 165.0-174.5 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FORAMINIFERS	CHAR STISSOLONNAN	SSIL AND	an other states	METERS	2011 H	GRAPHIC	DRILLING	SEDIMENTARY SIRUCTURES	SAMPLES		LITHO	LOGIC D	ESCRIPTIC	N		TIME - ROCK	TINU	ZONE	NANNOFOSSILS	FOSS ARAC SNUINITAN	SWOLVIO	SECTION	METERS		GRA LITHO	PHIC LOGY	DRILLING	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
DDLE MIOCENE e (R) Omridande Jaura subscore "3"" (D)	e (R)				2	<u>สรรมชายอย่ายคระคริษณ</u> ์				•	Sandy, ash-rich	DIATOM-N dark gravia and foramin filled with in trUFF Secti sponge frag lithified, & Organic C % CaCO ₃ SMEAR SL TEXTURE: Sand Silt Clay COMPOSIT Ouartz Feldspar	IANNOFC n olive (10) ilfera sand. ion 1. Largements three CARBON CARBON IDE SUM IDE SUM	DSSIL SILT JY 3/2), with the indistinct Thin layse - gest lapilit 1-100 1.83 11 MARY 1-80 2.9 (D) (M - 80 20 20 80 - 5 25 - 10	Y CLAYSTOP th patches of g burrows top: of VOLCAN: of VOLCAN: BONATE 0 2-30 0 (D) 25 35 40 10 5	NE, Section 4 (C LAPILLI cattered becoming		MIDDLE MIDDLE MIDDLE	Denteroutine and the second of	CM	I RP	СМ	2	0.5	""	田:				VOID Sandy	DIATOM-NANNOFOSSIL SILTY CLAY, grayish o (10Y 4/2), becoming sandy near base of core. Core-Catcher only.
MI Calocycletta costata zor	Dorcadospyris alata zor		2	-	3	212121212121212			4	og		Clay Volcanic gla Glauconite Carbonate u Foraminifer Calc. Nanno Diatoms Radiolarian Sponge psic Lithic fragm	iss inspec. 5 ofossils sules ivents	32 - - 10 5 4 5 5 25 30 20 TR 3 - 5 3 - 10	30 5 2 30 5 2 2 2 2		TIME - ROCK	TINU INIT III	ZONE 201	NANNOFOSSILS	RADIOLARIANS IN A MAINTOIDE		2 SECTION 2	WETERS	2	GRAI	HICLOGY	DRILLING DISTURBANCE	SAMPLES SAMPLES	174.5–184.0 m	LITHOLOGIC DESCRIPTION
Sphenolithus heteromorphus (F)		AG	RP CM		5	HAR HAR HARAN				IW								Cutoticities content (B)	Denticule lauta subzone "a" (D)	Dorcactospyra anata cons rul	hr					4		411			DIATOMACEOUS SILTY CLAYSTONE, olive blac (5Y 2/1), graded tilty layers ~5 mm thick near base of core.

SITE 468

×	APHIC		CHA	RAC	TER						
TIME - ROC UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	HADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
OWER OR MIDDLE MIOCENE	allocycletta costata (R) OWER TO MIDDLE MIOCENE (D)		В	RP	RP	1		0 c			Drilling breccia composed of lithic fragments and and size quartz and fieldspar. Lithic fragments are mostly volcanic – up to 8 mm across.

SITE	468		HOL	E.		COR	RE	24	COREL	D IN	TER	RVA	L	212.5-222.0 m	
×	VPHIC		F	RAC	TER										
TIME - ROC UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	 SECTION	METERS	GI	RAPHIC 'HOLOGY	DRILLING	SEDIMENTARY	STRUCTURES SAMPLES			LITHOLOGIC DESCRIPTION
LOWER TO MIDDLE MIOCENE	LOWER TO MIDDLE MIDCENE (D)		В	В	RP	x					1			- VOID	Drilling breecia composed of fragments of olive gray (5Y 3/2) SILTY CLAYSTONE and some SANDSTONE, Pieces 0.5–5 cm across. Core-Catcher only.

CHIC		CHA	OSS	TEF				П				
TIME - ROC UNIT BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES	LITHOLOGIC	DESCRIPTION
		В	B	В	1	0.5 1.0 1.1 1.1 1.1 1.1 1.1	<u>a</u> © 0				Fragments of DOI followed by sever ANDESITE. Core-Catcher only THIN SECTION D Glomeroporphyrit Phenocrystry Plag. 4% citnopyx, 2% orthopyx, 178 glong, 300 cilinopyx, TR gloss 289 opacua 299 vesicles: 159	OMITIC SILTY CLAYSTONE I pieces of vesicular PYROXENE ESCRIPTION (Pyroxene Andesita is tarture euhedral-usbhedral euhedral-usbhedral is primatic euhedral is anhedral

4	PHIC		F	OSS RAC	TER						
TIME - ROC	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			в	В	в	CC	1	000	1		
							0.5				and three pieces of vesicular, aphanitic ANDESITE,
						1	-				Core-Catcher only.
							1.0				THIN SECTION DESCRIPTION (Andesite)
							-				Hyalopilitic texture Groundmass:
											plag. 7% 0.1–0.3 mm laths
											clinopyx. TH plass 82% desitrified
	11						1.12			1	opaque <1%
							-				Vasicles: 10%
							-				Alteration:
						2		1			clays TR

,	PHIC		F	OSS RAC	TER	1							
TIME - ROCI	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							æ	0.5					Two small pieces of aphanitic, vesicular ANDESITE. Core-Catcher only.

SITE	468	- 23	HOL	.E	A	CO	RE	1 CORED	INTER	VAL	0.0-7.0 m			
1	HIC		F	OSS	TER									
TIME - ROCK UNIT	BIOSTRATIGRAP ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	DESCRIPT	ION
	/ zone (N) *					1	0.5		0 0		5Y 5/2 Sandy patch	FORAMINIFERA-N (5Y 5/2) with pale o (10Y 4/2) mottles. S (10Y 4/2) FORAMI slide 1-124) contain fragments scattered deformation.	IANNOFO live gray (cattered p NIFERA S glauconite throughou	SSIL OOZE, light olive gray IOY 6/2) and grayish olive atches of grayish olive ANDY SILT (e.g. smeer Small carbonized wood t core. Intense drilling
	Axo						-	+++++			10Y 4/2	SMEAR SLIDE SUN	MARY	1923
	ia hui						-	+++++++++++++++++++++++++++++++++++++++	1				1-124 (M)	5-36 (D)
	* = Emiliani		AG			2	1111111				Sandy patch	TEXTURE: Sand Silt Clay COMPOSITION: Quartz Faktroor	35 42 23 13	15 10 75 TR
ERNARY	UPPER					-					10 Y 6/2 mothe	Mica Heavy minerals Clay Glauconite Pyrite	1 2 5 6 TR	TR
QUAT	N.22 (F) yarnai zone (R)					3	teri teri				10Y 4/2	Foraminifers Calc, Nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates	47 18 2 7R TR	23 71 TR 1 1 TB
	ruetr						-	++++++			5Y 5/2	Dolomite	TR	-
	Eucyrtidium r		AG				11111				10Y 4/2			
	millania annula zone (N) OWER PLEISTOCENE/					4			*****		5Y 5/2			
	E E		AG			1		++++++		1				
		AN	AG	CG	RM	LCC			11					

~	PHIC		F	OSS RAC	TER									
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRI	PTION
	rouwer! (N)		AG			1	0.5				10Y 6/2	FORAMINIFERA-N (10Y 6/2) with grayi (10Y 5/4) mottles an ORGANIC CARBON % Organic Carbon % CaCO ₃	ANNOI sh olive d streak I AND 0 5-96 1.4 57	FOSSIL OOZE, pale ofive (10Y 4/2) and light ofive ks. Intense dilling deformation. CARBONATE i 10
	Discoaster b		АМ			2	and so the set				10Y 4/2	SMEAR SLIDE SUM TEXTURE: Sand Silt Clay ODMPOSITION: Ouartz Feldspar	MARY 1-8 (D) 50 5 45 1 TR	1.73 (D) 10 18 42 TR TR
UPPER PLIOCENE			AG AM			3				197	10Y 6/2	Mica Heavy minerals Clay Glauconite Pyrite Foraminifers Cale, Nannofossile Diatoms Radiolarians Soonge spicules Siliooftagellates	TR 7 3 - 48 38 TR 2 1 -	TR TR 5 TR 77 73 TR 2 2 2
	improcyrtiit heteroporou zone (R)		АМ			4	the second s			OG				
	N.21 (F) 2a	40	AM AM	P	DAA	5				+				

6	APHIC		CHA	RAC	TER										
TIME - ROC UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	SHI GRAP LITHOU	HIC OGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPL 65		LITHOLOGIC	DESCRIPT	TION	
	Discoaster tamalis (N)		АМ			3					5Y 4/4 and 10Y 6/2	FORAMINIFERA-N (10Y 6/2) to light ol are nannofossil-rich, gray (N3) GLAUCO Sections 3, 4, and 5, glauconite, Glauconi grains, Few berown p glauconite in sandy i sediment probably la dvilling, Large distor possible burrows bar	IANNOFC live brown Ooze mix NITIC SIL Base of co ite occurs hosphatic intervals. (avers distu- ted burrow se Section	OSSIL OC (5Y 5/4) ed (by dr TY SAN ore conta as subrou pellets or Glauconit irbed and ws Section 4.	NZE, pale olive), lighter colors (illing) with dark D, especially ins abundant mided sand-size ocur with ic sandy mixed by n 3 and
PLIOCENE	ane (R)					2			*******			SMEAR SLIDE SUN TEXTURE: Sand Silt Clay COMPOSITION:	MMARY 3-10 (D) 15 10 75	3-30 (D) 15 10 75	3-125 (M) 50 30 20
LOWER	per Stichocorys peregrima zo		АМ			3	++++++++++++++++++++++++++++++++++++++		1	•	10Y 6/2 Large burrows deformed by drilling Sandy, glauconite 5Y 5/4	Charto Charto Feldspar Mica Clay Volcanic glass Glauconite Pyrite Carbonate unspec. Foraminifers	TR TR 3 - TR - 5 20	1 TR TR 5 - 1 65 25	15 5 - 5 7R 35 2 5 10
	N) N.19 (F) up		АМ			4					10Y 6/2	Calc, Nannofossils Diatoms Sponge spicules Lithic fragments Phos. pellet	70 TR 2 - -		15 TR 2 5 1
	Discoatter metricus (n FM	AM	в	в	5					5Y 5/4 Burrows(?) deformed by drilling Sandy with abundant				

_	HH		CHA	RA	CTER									
UNIT - HUCH	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION
UPPER MIOCENE V UPPER MIOCENE TO LOWER PLIOCENE	ver S. perveyrina zone (R) LOWER UPPER MIOCENE (R) N.19 (F) Anaurolithus tricomfeudetus (N) Anaurolithus tricomfeudetus (N)	RV	ам ам	n FF	• FP	-	1 2 3 3 4 4	0.5				Pebble 5Y 5/4 10Y 6/2 5Y 5/4 10Y 8/2 Sharp color change 5Y 5/4 5Y 4/2 5Y 4/2 5Y 2/1	FORAMINIFERA- (10Y 5(4) and light gray (FY 7/2) and p more nanofossii-ri gray (FY 4/2) and o SANDY CLAV. Cor by drilling. Pale gree OOZE Section 4, 14 SMEAR SLIDE SUN TEXTURE: Sand Sit Clay COMPOSITION: Quartz Feldoar Heavy minerals Gluenolis Garbonets unpper. Foraminifers Carbonets unpper. Foraminifers Carbonets unpper. Foraminifers Pales, pellets(7)	VANNOFOSSIL OOZE, light olive olive brown (BY 5/4) to yellowish ale olive 10Y 6/2); lighter colors h, Several rooms of medium olive live black (BY 2/1) GLAUCONITIC tates with oozer horoughly mixed nish yellow (10Y 8/2) NANNOFOSSIL 2010 2010 2010 2010 2010 2010 2010 201

PHIC		F CHA	RAC	TER						
BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
UPPER MIOCENE OR LOWER PLICCENE Unaurolithus primus to A. tricomiculatus (N) to 161 MIOCENE(1) (R)	lower S. peregvine zone (R)	AM			1	1.0				NANNOFOSSIL OOZE, pale olive (10Y 8/2) with grayish olive (10Y 4/2) and patches of greenish black (5GY 3/1) GLAUGONITIC SANDY CLAY, Intense drilling deformation.

INO	BIOSTRATIGRA	IFERS	1 49	_										
	-	FORAMIN	NANNOFOSSI	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC C	DESCRI	PTION
	aster neorectus (N)		АМ			1	0.5	4 + + + + + + + + + +	*****	*		CLAYEY NANNOF to yellowish gray (5' base Section 4 to Se GLAUCONITIC SAI zones scattered thro Section 4 and Sectio between nannofossil Section 5. Intense dr	OSSIL Y 7/2) I ction 5. NDY Cl ughout n 5. Sh rich an illing d	OOZE, light olive gray (5Y 5/2) becoming more diatomaceous Greenish black (5GY 3/1) LAY streaks, patches and but most abundant base arp color changes mark contacts d glauconitic sediments isturbance.
	Disco					П	-					ORGANIC CARBON	AND	CARBONATE
	<u> </u>						1 2	1			5Y 5/2	% Organic Carbon	5	
							- 7					% CaCO3	33	
	-					2	- 8					SMEAR SLIDE SUN	IMARY 1.5	4.130
							1					States State	(D)	(D)
EN												TEXTURE: Sand	4	7
3	1					\square	-					Silt	12	25
z							1					Clay	84	68
PEL	1						1					Quartz	6	3
B							1					Feldspar	1	1
HO	8					3	1 2		1			Mica Heavy minerals	TR	TR
ш	10										5Y 7/2	Clay	5	18
00	-			Ē								Glauconite	1	1
2	2dba			ŝ			- 3					Foraminifers	4	TR
	aura			202			-					Calc. Nannofossils	80	40
	9			is al.			- 3					Diatoms Sponse spicules	5	18
	11pm			Ada			- 4		<u>{ </u>			Silicoflagellates	1	TR
	Aur			- peo		4								
	- unit			Do			-	EN-I-I		1	5Y 5/2			
	0.0						1	M++++						
	- 10	8	CP	-						•				
	vieb0	one									5GY 3/1			
	ter va	12 20						-LI-I			5Y 5/2			
	COM	ultim	AM				1.5	12			Cham color shoe			
2	Dia	nued				6	1	G-G-G			5GY 3/1			
1	+ 0	ante			BM		-	LTT			Sharp color change 5Y 5/2			
ENE	-	RA	AM	FM	AG	cc	-				1200 000-2	t = Discoaster kunte	ei subre	one (N)
IIOC	1		["	1		1						· · · · · · · · · · · · · · · · · · ·		
EN	N)									1				
DDL	sone			1						1				
MI	Pille													
	varia	1												
	atter .	N IN	1											
	linco	1.00	1											

SITE 468 HOLE B CORE 5 CORED INTERVAL 54.5-64.0 m

×	PHIC		FICHA	OSS RAC	TER						
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
D. alara zone MIDDLE MIOCENE	"D" or "c" (R) Cocceditivas misperiagicas (N) Demoisode humadrin-Danticula lauta subscons "D" or "c" (D)	c	CM		AM	1	0.5				Traces of DIATOM-NANNOFOSSIL OOZE in Core-Catcher.

SITE	468	но	LE	в	co	RE	6 CORED	INTE	RVAL	64.0-73.5 m	SITE	468	в	HOI	E	в		ORE	7	CORED	NTE	INAL	73.5-83.0 m	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARACI	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEPTIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	L TER	SECTION	METERS		GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
	Dorcarlospyris alata (R)				1	0.5		F F, F F F, F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		NANNOFOSSIL OOZE, pale olive (10Y 6/2) changing to moderate olive brown (5Y 4/4) DIATOM-NANNOFOSSIL OOZE in Section 3. Interest drilling deformation. ORGANIC CARBON AND CARBONATE 1400 % Organic Carbon - % CaCO ₃ 79 SMEAR SLIDE SUMMARY 1400 3-78 (M) (D) TEXTURE: Sand - Sit 10 38 Clay 0 42 COMPOSITION: Destro TB TB	MIDDLE MIOCENE	Coccentitive misperfageue (N) Doradoppris date (R)	AND DESCRIPTION OF THE PROPERTY AND THE	АМ	CM	AM		0.4						Traces of DIATOM-NANNOFC Core-Catcher.
	(O)				-	-	教芸			Feldspar TR – Mica TR – Chav 8 10														
MIDDLE MIOCENE	alata zone "b" or "c" (R) Denticula lauta subzone				3	3		L. L. L. L. L. L.		Glauconits TR - Foraminifers 2 2 Cale: Nannofostils B1 48 Diatoms 4 38 Radiolarians 1 1 Sponge spicules 3 3 Siticoflageflates 1 TR	TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	SADIOLARIANS	DIL TER SWOLVIG	C NULL SS	METERS		GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	03.0-94.5 m	LITHOLOGIC DESCRIPTI
	Coccolithus miopelagicus (N) Denticula hustedri		MAG	CM	4			רן ד,			MIOCENE	e "b" or "c" (R) Dorcadospyris alata (R)	Danticula lauta subzone "a" (D)					0.1	2.			+	10Y 4/2 grades to 10Y 4/4 10Y 4/4	NANNOFOSSIL-DIATOMACE olive brown (10' 4/2) changing NANNOFOSSIL-OOZE in Secti- ooze in moderate olive brown (1 (10' 6/2), Patches of GLAUCO oocur in Section 3, 82–91 cm, 1 ORGANIC CARBON AND CAT 1-30 % Organic Carbon — % CaCO ₃ 22 SMEAR SLIDE SUMMARY 2-80 (D) TEXTURE: Sand 2 Sit 20 Chu 28
			140	Paul		-1					MIDDLE	D. alata zon	ula hustedhi-	CM			Ī		ALL LICE					COMPOSITION: Quartz TR Feldspar TR Mica TR Heave minerals TR

ION OSSIL OOZE in

	PHIC	-	CHA	OSS RAC	TER									
TIME - ROCH	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION
	 (R) Dorcadospyris alata (R) a subtone "a" (D) 						0.5				+	10Y 4/2 grades to 10Y 4/4	NANNOFOSSIL-DI/ olive brown (10Y 4/ NANNOFOSSIL OD oore in moderate oli (10Y 6/2), Patches o oocur in Section 3, 8 ORGANIC CARBON % Organic Carbon % CaCO ₃ SMEAR SLIDE SUM	ATOMACEOUS ODZE, moderate 2) changing to DIATOM- ZE in Section 1. Nannofosull er BLAUCONITIC SANDY CLAY 2-91 cm, Interes drilling deformation. I AND CARBONATE 1-30 - 22 IMMARY 2-80
MIDDLE MIOCENE	 alata zone "b" or "c" hustedhii-Denticula laut 											101 4/4	TEXTURE: Sand Silt Cay COMPOSITION: Quartz Feldspar	(D) 2 20 78 TR TR
-	tiopelagicus (N) 2 Denticula i		СМ									10Y 6/2	Mica Heavy minerals Clay Carbonate unspec. Foraminitars Calc. Nannofossils Diatoms Radiolarians Sponge spicules	TR TR 11 2 2 67 9 4 5
	Coccolithus m		AM	FM	AM	4	C .					Dark layer, diatom-rich	Silicoflagellates	TR

Optimizer Notice Intermediate Image: State of the sta	Optimized Intervention Interventi Intervention Intervention Intervention Intervention Interv	e	VPHIC		F	OSS	TER				Π					
Image: CM Image: CM <t< th=""><th>Image: state of the s</th><th>UNIT UNIT</th><th>BIOSTRATIGRI</th><th>FORAMINIFERS</th><th>NANNOFOSSILS</th><th>RADIOLARIANS</th><th>DIATOMS</th><th>SECTION</th><th>METERS</th><th>GR APHIC LITHOLOGY</th><th>DRILLING DISTURBANCE SEDIMENTARY STRUCTURES</th><th>SAMPLES</th><th></th><th>LITHOLOGIC D</th><th>ESCRIP</th><th>PTION</th></t<>	Image: state of the s	UNIT UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GR APHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIP	PTION
300 000 000 000 CM 100 100 100 100 100 100 100 100 100 100	age a		yris alata (R)					,	0.5			•	10Y 6/2	DIATOM-NANNOFC to gravish olive (10Y 2 due to drilling diet more diatom-rich, Se SANDY CLAY and c Intense drilling defor	OSSIL O 4/2}, in urbance. attered occasion mation.	OZE, pale olive (10Y 6/2) itense mottling in Section Darker colored sediments streaks of GLAUCONITIC al sponge fragments.
W CM 2 4 4 4 4 4 5 5 10' 8/2 Sint 25 25 25 25 25 25 10' 8/2 Sint 25 25 25 25 25 25 10' 8/2 Sint 25 25 25 25 25 10' 8/2 Sint 25 25 25 25 25 10' 8/2 Sint 25 25 25 25 25 0urstz 2 5 Fiddspar 1 2 5 10' 4/2 OUNOUTON: Ouartz 2 5 7 70 0urstz 10' 4/2 Ouartz 2 3 7 11 10' 4/2 Ouartz 3 3 7 11 10' 4/2 10' 4/2 Catoonate unspec. 5 5 5 5 5 5 5 5 5 5 5 5 5 <td< td=""><td>UN BOO DIM CM 2 1 1 Mottled 107 8/2 Sind 5 5 5 UN BOO DIM 2 1 1 1 Mottled 107 8/2 Sind 5 5 25 UN BOO DIM 2 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 100 4/2 0 0 1 1 1 100 4/2 0 0 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1</td><td></td><td>Dorcatiosp</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SMEAR SLIDE SUM</td><td>1-40 (D)</td><td>2-74 (D)</td></td<>	UN BOO DIM CM 2 1 1 Mottled 107 8/2 Sind 5 5 5 UN BOO DIM 2 1 1 1 Mottled 107 8/2 Sind 5 5 25 UN BOO DIM 2 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 1 UN BOO DIM 1 1 1 1 1 100 4/2 0 0 1 1 1 100 4/2 0 0 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 0 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1 1 1 1 1 100 4/2 1		Dorcatiosp											SMEAR SLIDE SUM	1-40 (D)	2-74 (D)
22 3	Number of the second		8 0		см			2	1.1111				Mottled 10Y 6/2 and 10Y 4/2	Sand Silt Clay COMPOSITION:	5 25 70	5 25 70
and over the set of the set of t	and our case constrained con	MIOCENE	"b" or "c" (ubzone "a" (thin					Quartz Feldspar Mica Heavy minerals	2 1 TR TR	5 2 TR TR
G G G Formiliter 5 3	G S Foramilters 5 G S	MIDDLE	alata zone cula lauta s						1111					Glauconite Pyrite Carbonate unspec,	325	3 2 5
Plant debris TR 2 Lithic fragments TR –	Plant debris TR 2 Lithic fragments TR - Lithic fragments TR -		D. Denti					3					10Y 6/2	Foraminifers Calc. Nannofossils Diatoms Sponge spicules	5 45 20 10	5 49 10 5
			(N) 37						1			w		Plant debris Lithic fragments	TR	2
			0	RM	AM	СМ	СМ	CC	-							

	2		F	OSS	IL	ТĨ			TTT	T			
TIME - ROCK UNIT	BIOSTRATIGRAPH ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPTION
MIDDLE MIOCENE	Sphenovithus heteromorphus ur Ciscolithus migbelingius (N) Dorceddapyris alas (R) D. hustedtil-D. Ianta "a" (D)	. alata zona "tu" or "c" (R) D. lauta "b" ¹ (R)	АМ	FM	FM	1 2 CC	1.0		00000	+*	Andesite clast Andesite clast	DIATOM-NANNOF gravith olive (10° 5 in Section 1. Internet Sin Section 1. Internet & Organic Carbon % Carbon % Carbon Sitt Carbon Carbon Carbon Carbon Carbon Carbon Carbon Sitt Carbon Carbon Sitt Sitt Carbon Sitt Sitt Sitt Sitt Sitt Sitt Sitt Sit	OSSIL OOZE, pale olive to light (4) with two ANDESITE fragments drilling deformation. 2,35

SITE 468	HOLE	в	CORE	11	CORED INTERVAL	121.0-130.5 m	
----------	------	---	------	----	----------------	---------------	--

×	PHIC		CHA	RAC	TER							
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
MIDDLE MIOCENE	Sphenolithus heteromorphos (N) Domendompreis atata (R) , Dentfocula fauta subsome "D" (D)	D. slists zone "b" or "c" (R)	AM	RP	CP	2	0.5					DIATOM-NANNOFOSSIL OOZE, light gravish olive (10Y 5/2). Core-Catcher only.

SITE 468

SITE	468	HO	LE	в	C	RE	14 c	ORED	INTE	RVA	AL.	178.0–187.5 m	SITE	468	ł	OLE	в	CO	RE	16 CORED INT	ERVA	L 20	06.5-216.0 m		
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NAMNOFOSSILS	FOSSI ARAC	L TER SWOLVIG	SECTION	METERS	GRAF	HIC LOGY	DRILLING DISTURBANCE SEDIMENYARY	STRUCTURES SAMPLES	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FARIOLARIANS	SWOLUIG	SECTION	METERS	GRAPHIC LITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES			LITHOLOGIC	DESCRIPTION
	ticule leute subzone "b" (D)				,	0.5				Î		CALCAREOUS SILTY CLAYSTONE, alive gray (5Y 3/2) changing to DIATOMACEOUS SILTY CLAYSTONE, olive black (5Y 2/2) down core. Inditictify burrowd throughout, Abundant open vertical fractures (drilling-induced?) in Sections 1, 3, and 4. ORGANIC CARBON AND CARBONATE 2.38 % Organic Carbon —	MIDDLE MIOCENE	Dorcadospyris alata (R) Dorcadospyris alata (R)		B RP	СР	1	0.5		+	v	OD	DIATOMACEOUS (5Y 3/2). No Core-Catcher, ORGANIC CARBO % Organic Carbon % CaCO ₃	SILTY CLAYSTONE, offwe gray N AND CARBONATE 1-28 6
	Dem	(H)			2						+	% C#CO3 34 SMEAR \$LIDE SUMMARY 150 2125 (D) (D) TEXTURE-	SITE	468		OLE	в	_ c0	RE	17 CORED INT	ERVA	L 2	16.0225.5 m		
IDDLE MIOCENE	vnorphus ************************************	D. alata zone									•	Sand Sit 20 25 Clay 80 75 COMPOSITION: Ouartz 5 15 Feldiquer 2 2 Mica TR -	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FAR STISSICS	SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES			LITHOLOGIC	DESCRIPTION
×	Sphenolithus heter Dorcedospyris alata (R) D. laut	AM FM R FM R FOS		AM	4	and the second se					N	Volcanic glass — 2 Glauconite 3 3 Pyrite 3 - Corbonate unspec. 10 4 Foraminifers 5 - Cate, Nannofessils 10 1 Diatoms 8 20 Radiolarians — 5 Sponge picules 7 5 Plant debris 2 -		Denticula lauta "a" (D)				2	0.5					SILTY CLAYSTOP pumice fragments (and 4. Large pumic layers of ASH, Sect SMEAR SLIDE SU TEXTURE: Sand Sit Clay COMPOSITION: Quartz Feldpar	E, olive black (5Y 2/2), with scattered 3.3–1 cm across) in Section 2, 3, fragment at 82 cm, Section 3. Thin on 4. Open drilling fractures throughour. MMARY 3-70 (D) - 45 55 7 3 7 3 7 3 7 3
SITE	468	но	LE	в	c	RE	15 C	ORED	INTE	RVA	AL.	197.0–206.5 m	ENE	·· (R)										Clay Volcanic glass	55 5
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSI ARAC	LER SWOTONS	SECTION	METERS	GRAF LITHO	HIC LOGY	DRILLING DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	WIDDLE MIOC	D. alata zone "b" or "c				3	and more than 1			Pi fr: Pi fr	umice agments umice agment	Glauconite Pyrite Carbonate unspec, Diatoms Sponge spicules Plant debris	2 3 5 7 8 5
MIDDLE MIOCENE	Sphenolithur herzvonoophur D. aleta zone "b" of "c" (R) Denticula lauta (D)	An Ch	л в)	СМ	1	0.5					•	VOID CALCAREOUS SILTY CLAYSTONE, olive grav (SY 3/2), with sponge fragments scattered throughout. Drilling breccia Section 1, 50–120 cm. SMEAR SLIDE SUMMARY 1-80 10) TEXTURE: Sand - Sit 40 Clay 60 COMPOSITION: Clay 60 COMPOSITION: Clay 60 COMPOSITION: Glay 35 Volcan TR Clay 35 Volcan (glas 1 Glauconite 2 Pyrite 3 Carbonate unspec. 10 Foraminifers 5 Calc. Nanofostils 13 Diatom 15 Sponge spicules 7 Plant debria 2		Darcadospyris alata (R)		BR	AM	4				Pi	umice agments		

	DIHIC		CHA	RAC	TER				111		
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DLATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			в	в	в	cc	-	009	1	••	
						1	0.5				Fragments of dark gray (N3) porphyritic DACITE, medium dark gray (N4) zoolito volcaniclastic SANDSTONE, and gravish olive (10Y 4/2) SILTY CLAYSTONE. Decite and sandstone described below.
							-				THIN SECTION DESCRIPTION (Decite, 8 cm)
							-				Parphyritic texture
	1						1		11	11	Phenocrysts:
		~					1.5				prag. 5% 0.3-2 mm rounded, resorbed Groundmass:
											plag, 30%
	æ					1.					glass 48% devitrified
	3.					12	-				opaques 7%
	o or		ľ				11		11	11	Vesicles: 10% 0.5–3 mm quartz and chalcedony- filled
	5						1				SMEAR SLIDE SUMMARY
	20		L			-	-				CC-5
	ata						1.4				(T, Sandstone)
	13	1	1								TEXTURE:
	0						-				Sand 70
						1.	1 2	1			Sart 20
						3	1 3	1			COMPOSITION:
							_	1			Quartz 25
							-	-			Feldspar 15
	1	1	1	1	11	1	1 2	1	11	11	Clay 10
								-			Volcanic glass B
	1			1	11		-	1		11	Glauconite 2
							1 7	-		1	Zeolite 10
				1			1	1			Carbonate unspec. 5
			1.				-	4		1 1	Lithic fragments 25

	VPHIC		CHA	OSS	IL TER						
TIND	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			в	в	в	cc		AGOR	3	••	
						1	0.5				Fragments of light oflive gray (5Y 5/2) to grayish oflive (10Y 4/2) CALCAREOUS SILTY CLAYSTONE, dark gray (N4) VOLCANICLASTIC SANDSTONE, and dark gray (N3) vesicular DACITE,
							1.0				Core-Catcher only.
											THIN SECTION DESCRIPTION (Dacite, 15 cm)
											Porphyritic texture
							-				Phenocrysts:
							12				Groundmass:
							-				plag, 50%
1		Ľ 1				1.2	12				glass 31% devitrified
						1 *	-				quarts TR
	÷.	L 1									opaques 7%
	*.0 _{**}						1				Vesicles: 7% 0.2–5 mm quartz/chalcedony filled
	ō						1			1.1	Alteration:
	₽.						-				clays TR
	eu o						-				
	8						1.64				SMEAR SLIDE SUMMARY
	- Sec						-				1-10
	à					3	-				TEXTURE:
	10	1	8.1			10	1.00				Sand 20
											Silt 20
							1 1				Clay 10
				i - 1			1.1				COMPOSITION:
						-					Quartz 15
							-				Feldspar 5
							1 1			11	Mica TR
							1 3				Heavy minerals TR
							-				Clay 20
							1 2				Volcanic glass 2
						1	1				Glauconite 1
							1.1				Pyrite 2
						1					Carbonate unspec. 50
											Lithic fragments 5

SITE	468	HO	LE	В	CO	RE	21 C	OREC	D INTI	ERV	AL 254.0-	263.5 m					SITE	468	HOL	E B	c	ORE	23	CORED	INTERVA	273.0-282.5 m		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NANNOFOSSILS	FOSSIL ARACT SNVIHUTOIOU	DIATOMS B	SECTION	METERS	GRAP	HICLOGY	DISTURBANCE	SEDIMENTARY	sawrt es		LITHOLOG	IC DESCRIPTION			TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	RADIOLARIANS BIATOMS	SECTION	METERS	GR. LITH	APHIC OLOGY	DRILLING DISTURDANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCRIPTION
WIDDLE MICENE	1APHIC 89 D. alata zona "b" or "c" (R) Denticula lauta "a" (D)	B B B HO	B I FOSSIL ARACT	FP	1 2 3 CC	0.5		OREC			AL 263.5-	273.0 m	CALCAREOUS with specral lam vesicular DACI Section 11 (no section 12) SMEAR SLIDE TEXTURE: Sand Silt COMPOSITION Quertz Feldspar Mica Heavy minarals Clay Glauconite Pyrite Zeolite carbonate umpl Lithic fragments	SILTY CLAYSTON inated interval. Dar TE in sharp contact : idence of haking): S ghout. SUMMARY 100 20 10 60 30 20 60 : 10 17 8 5 7 R 8 2 7 R 15 38 1 8 2 - - 5 2 - 5 2 - 5 2 -	4E, dark gray (N3), k gray (N3). With claystone in kcattered sponge			D. alters zone "b" or "c" (R)	В	BB	2	0.5-					Fragments of media SANDSTONE, med mediam to dark yron Sorted, composed of teldspar. Claystone SILTY CLAYSTON Sorted, composed of teldspar. Claystone Porphyritic texture Phonocrysti: plag. 455 Groundmaas: plag. 455 Groundmaas: plag. 50% glass. 32% glass.	m dark gray (N4), VOLCANICLASTIC um gray (N5) DACITE and (N5.N3) CALCAREOUS E. Sandtone is moderate well- pumice fragments, quartz, and a indistinctly burrowed. SCRIPTION (Dacite, 4 cm) 0.3-2 mm subhedral devitrified vf Ills vesicles. MMARY CC-26 (M, Sandstone) 95 4 1 30
TIME - ROCI	IOSTRATIGRA ZONE	ORAMINIFERS ANNOFOSSILS	ADIOLARIANS	IAT OMS	SECTION	METERS	GRAF	PHIC LOGY	RILLING	EDIMENTARY	AMPLES		LITHOLOG	SIC DESCRIPTION			SITE	468	HOI	E B		ORE	24	CORED		282.5–292.0 m	(pumice)	30
	/" or "c" (R) BI	ĩ z	ď	0	1	0.5				S	+		CALCAREOUS (N5) to dark gr bedding near be dipping layers 3	SILTY CLAYSTOP ay (N3), burrows co use of core and slum 5-60 cm.	NE, medium gray mmon. Lenticular p(7) folds and steept	ly	TIME - ROCK UNIT	BIOSTRATIGRAF	FORAMINIFERS	RADIOLARIANS	SECTION	METERS	GR. LITH	APHIC OLOGY	DRILLING DISTURDANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCRIPTION
	D. alata zone "t	В	В	6					-1	48			No Core-Catche ORGANIC CAI % Organic Carb % CaCO ₃	rr. RBON AND CARBO 1-25 on - 54	NATE			(ata zone "b" or "c" (R)	В	BB		0.5	6630	0	1. *****		CALCAREOUS SIL gray (N3), burrowe Scattered isopage fr contains fragments DACITE and media CLASTIC SANDST pumice lapilli, suba and other volcanic l Core-Catcher only.	TY CLAYSTONE, medium dark I with faint lenticular bedding, gments throughout. Core also of dark gray (N3), vesicolar m dark gray (N4) VOLCANI- ONE, Sandstone composed of ngular grains of quartz, feldspar, thic fragments.
																		D.4					1				ORGANIC CARBO	N AND CARBONATE

 ORGANIC CARBON AND CARBONATE

 CC-22

 % Organic Carbon

 % CaCO₃

 57

SITE 468 H	OLE B	CORE	28 CORED INTERVAL	320.5-330.0 m	SITE 4	68	HOLE	в	CORE	30 CORED INTERVAL	339.5-340.0 m
TIME – ROCK UNIT BIOSTRATIGHAPHIC FORAMINIFERS	FOSSIL HARACTER SUPIOLARIANS	SECTION	GRAPHIC LITHOLOGY GRAPHICS	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FOI CHAR STISSOLONNAN	ACTER SWOLVIO	SECTION	GRAPHIC UTHOLOGY GRAPHIC	LITHOLOGIC DESCRIPTION
	B 3 B B	1 1.0 CC		CALCAREOUS SILTY CLAYSTONE, dusky yellowish brown (10°R 2/2), indistinctly burrowed throughout with some intervals of lenticular bedding. Rock is essentially carbonate commonly in thombic silt-size grains. Foraminifera molds filled with carbonate and chaladony. ORGANIC CARBON AND CARBONATE 1-91 50 Organic Carbon —			BE	3	1 0. CC		CALCAREOUS SILTY CLAYSTONE, olive gray (5Y 3/2), some intervals have indistinct lenticular bedding, Core broken and fractured by drilling.
				% C#CO3 6 SMEAR SLIDE SUMMARY (D) (D) TEXTURE: (D) Sand 5 5 Silt 25 30 Clay approximate 70 85	TIME - ROCK	ZONE 20NE 60	HOLE CHAR	B SIL ACTER SWOLVIO	SECTION	GRAPHIC LITHOLOGY GRAPHIC	340.0–358.5 m
SITE 468 HC	DLE B FOSSIL IARACTER	CORE	29 CORED INTERVAL	COMPOSITION: Quart 5 10 Feldgar 2 5 Heavy minerals – 1 Clay 50 40 Glueconite 1 – Pyrite 2 2 Carbonate unspec. 30 35 Chalordony – 7 330.0–339,5 m			BE	5 B	0.3 1 1.0 2 CC		

2	PHIC	FOSSIL CHARACTER													
TIME - ROC UNIT BIOSTRATIGR/ ZONE		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DOUTTING CONTTINUE CONTTINUE CONTTINUE			LITHOLOGIC DESCRIPTION				
	Denticula Jaura(?) (D)					1	0.5			VOID	CALCAREOUS SIL (5Y 3/2), indistinct throughout. Core br	TY CLA lenticuli oken an	YSTONE, olive gray ar bedding and burrow d fractured by drilling	s	
			в	в	CM	CC		9			SMEAR SLIDE SUN	ILS	1.30		
												(D)	(D)		
											TEXTURE:	(0)			
											Sand	-	5		
						1					Silt	30	30		
											Clay COMPOSITION:	70	65		
											Quartz	5	5		
	12 1					1					Feldspar	5	3		
											Clay	68	65		
											Volcanic glass	2	1		
											Glauconite	TR	1		
											Pyrite	2	3		
											Zeolite	TR	TR		
											Carbonate unspec.	20	20		
											Diatoms	TR	TR		
											Sponge spicules	TR	3		
											Plant debris	TR	5		
		U 1			1.1						Littile magments	-	17		

SITE 468

CHIC		FOSSIL CHARACTER								
BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY SELIVELINES SECIVERINGS	LITHOLOGIC DESCRIPTION		
					1	0.5	0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X0X		CALCAREOUS SILTY CLAYSTONE, olive black (BY 2/1), burrowed throughout with some lenticular bedding and occasional laminations. Some burrows filled with utflacous and, Scattered pumicle lapilit, 0–90 cm, Section 1, broken by drilling. No Core-Catcher.	

SITE 468

Hole 468

-150

14-3

4

15-2

15,CC

16-1

17-1

17-2

17-3

17-4

15-1

14,CC

14-4

167

17-5

