19. DISTRIBUTION OF CLAY FRACTION MINERALS IN MIOCENE THROUGH PLEISTOCENE TERRIGENOUS DEPOSITS OFF SOUTHERN CALIFORNIA AND BAJA CALIFORNIA, DEEP SEA DRILLING PROJECT LEG 63¹

M. A. Rateev, P. P. Timofeev, and V. I. Grechin, Geological Institute, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

This paper discusses the distribution of clay minerals and identification of their assemblages in relation to sedimentary facies encountered during DSDP Leg 63 drilling off southern California and Baja California. We also consider how these assemblages are determined by source areas and changes in general paleogeographic environments during different periods of sedimentation.

The minerals in the clay fraction (<1 μ m) were studied from cores recovered in the eastern Pacific along Southern California and Baja California. Sites 467 and 468 are located near the western edge of the southern California Continental Borderland. Sites 469, 470, 471, and 472 are located near the foot of the continental slope between 32°37.00'N and 23°00.35'N. Site 473 is on the Rivera plate in the mouth of the Gulf of California, near the northern end of the Middle America trench (Fig. 1).

SOME PECULIARITIES OF ENVIRONMENTS DURING FORMATION OF CLAY DEPOSITS

The composition and structure of Miocene through Quaternary deposits recovered along the eastern marginal Pacific reflect a combination of three main inputs: biogenic (silicate and carbonate) accumulation, terrigenous sedimentation, and accumulation of pyroclastic material. The main types of sediments are represented by nannofossil and diatom oozes, clays, aleuritic clays, carbonate-silicate clays, sandy, aleurolite deposits, and rare volcanogenic sediments.

Proximity to the land and abundance of sandy-clay terrigenous material determined the predominance of terrigenous accumulation. These factors sometimes account for the high rates of sedimentation, particularly for the lower parts of the sequences at a majority of the holes (except Sites 470 and 472). Middle Miocene or upper Miocene deposits at Site 473 are represented by sandy-aleuritic-clay turbidites. Land-derived clay mineral assemblages include relatively stable varieties such as illite, chlorite, minor kaolinite, and mixed-layered montmorillonite-illite (M-I), as well as abundant smectites. The predominance of smectites in the composition of terrigenous clay mineral assemblages is rather typical for Miocene through Quaternary deposits along the California margin. The abundance of smectite is probably related to a broad distribution of volcanogenic and volcanogenic-sedimentary formations that contain predominantly clay-size components.

Changes related to tectonic movements within the source province should affect the composition of assemblages of heavy-fraction minerals and detrital clay minerals. The middle Miocene sediments include only terrigenous, multiple redeposited material with monotonous assemblages of most stable heavy minerals: zircon, garnet, chromic spinel, and ore minerals. Near the end of the middle Miocene and the beginning of the late Miocene, volcanogenic deposits are more common. Pliocene deposits contain considerable proportions of debris weathered from metamorphic rocks exposed in seafloor outcrops in the southern California Continental Borderland. Common heavy minerals in this detritus include glauconite and minerals of the epidote-zoisite group.

Pyroclastic material also served as an important source for formation of authigenic clay minerals in the deposits studied. A considerable admixture of pyroclastic material (predominantly volcanic glass)-probably the products of subareal andesite volcanism-were found in many Miocene through Quaternary deposits. Fine interlayers of vitric ashes and tuffs with andesite-dacite composition were also found. The volcanogenic material is an important component only in middle to upper Miocene (Hole 467) or middle Miocene (Holes 468 and 469) deposits of the southern California Continental Borderland. The upper part of the sedimentary sections (down to the depth of about 200 m) belongs to the zone of unaltered volcanic glass (Grechin et al., this volume). It is characterized by ashes not altered by secondary processes. Below this zone, all volcanic interlayers are diagenetically altered. Clay minerals and zeolites are formed by alteration of volcanic material. Authigenic clay minerals in the tuffs are represented by different structural varieties of smectites or mixed-layered components with a predominance of smectite layers in their structure. The same minerals are also developed in scattered pyroclastics and can be identified by X-ray diffraction analyses. However, the estimation of quantitative ratios between authigenic and terrigenous smectites is rather difficult.

¹ Initial Reports of the Deep Sea Driling Project, Volume 63.

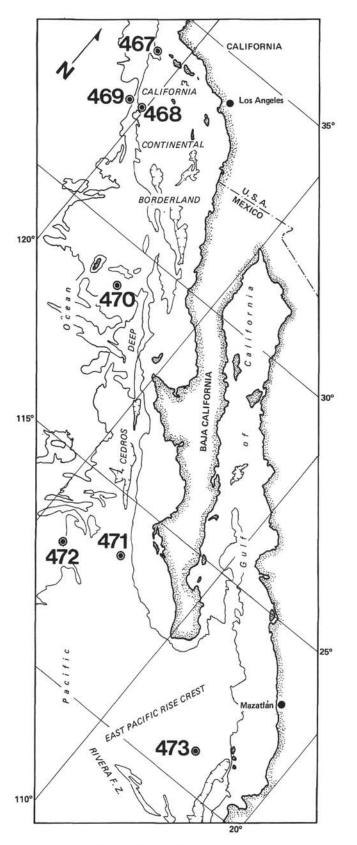


Figure 1. Location map of Leg 63 sites.

X-RAY DIFFRACTION ANALYSES OF CLAY MINERALS

The clay minerals were mainly studied by the standard X-ray diffraction method for the fraction $< 1 \mu m$. The diffractograms were obtained by the diffractometer "DRON-1" (USSR) using CuK_{α} radiation generated at 34 kV and 20 mA. Scanning rates were 2°20/min. All samples were X-rayed in three states: (1) natural or air dry, (2) saturated by glycerine, and (3) heated at 550°C. Besides illite, chlorite, and kaolinite, we described mixed-layered phases and structural varieties of minerals from the smectite group. We identified structural varieties of smectites on the basis of the correlation between intensities of basal peaks d_{001} , d_{002} , d_{003} as well as the degree of resistance of these minerals to a 10% solution of HCL heated at 80°C for one hour. The volcanogenic rocks revealed the following varieties of smectites: dioctahedral Al- and Al, Fe-and Ca-montmorillonites, K, Fe-montmorillonite, and trioctahedral Mg-montmorillonite. Al- and Fe-montmorillonites and more frequently montmorillonite with K in the interlayers in the form of a green glauconitelike mineral (Holes 468 and 468B) were identified in clay mineral products of scattered vitroclastics in the rocks with mixed composition. The latter mineral has d = 13.4 Å to 13.7 Å in an airdry state, d = 16 Å to 17 Å after saturation with glycerine, and d = 9.93 to 10.07 Å after heating at 550°C.

In those cases in which a mineral was identified as montmorillonite without indicating its structural varieties, it is synonomous with the group name smectite. Besides common ones we found iron varieties of illites. So-called "defect" chlorite, with d = 13.1 Å to 13.8 Å after heating at 550°C (or undergoing disintegration at the same temperature [Drits and Sakharov, 1976]), is frequently found among Mg-Fe trioctahedral chlorites with d = 7.08 Å, 4.70 Å, and 3.53 Å. Among mixedlayered minerals we identified two types; an intensively swelling montmorillonite-illite (M-I) close to smectite and an illite-montmorillonite (I-M) close to illite. Identification of mixed-layered minerals was made on the basis of well-known works by Reynolds (1968), Drits and Sakharov (1976), and Gradusov (1976).

An intensively swelling type of mixed-layered mineral (M-I) with disordered alternation of montmorillonitic layers was identified by diffraction maxima of 12.74 Å up to 14.9 Å in an untreated specimen, 18.3 Å in a specimen saturated with glycerine, and 9.92 Å in a specimen heated at 550°C, with distinct asymetry of the peak towards small angles (Fig. 2). The second type of weakly swelling mixed-layered mineral (I-M) with disordered alternation between illite and montmorillonite layers revealed the following diffraction peaks: 10 Å in an untreated specimen, 9.8 Å to 9.89 Å in a specimen saturated with glycerine, and 9.8 Å after heating (Drits and Sakharov, 1976).

DISTRIBUTION OF CLAY MINERALS AND THEIR ASSEMBLAGES IN SEDIMENTARY SEQUENCES OF LEG 63 SITES

The distribution of clay minerals in sedimentary sequences is described from the bottom upward. All as-

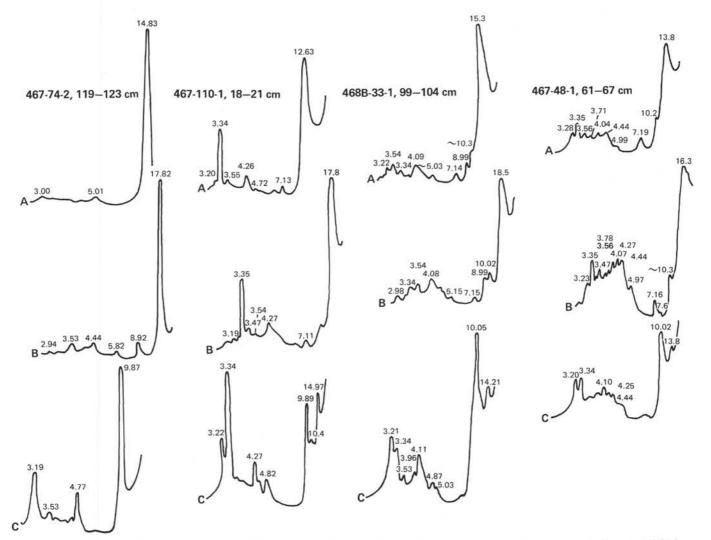


Figure 2. X-ray diffractograms of typical clay minerals—A. air dry; B. saturated with glycerine; and C. after heating at 550°C. (Sample 467-74-2, 119-123 cm is a clay fraction composed of Al-montmorillonite, developed after tuffaceous material; Sample 467-110-1, 18-21 cm is composed of Al,Fe-montmorillonite with an admixture of illite and chlorite; Sample 467-48-1, 61-67 cm is K,Fe-montmorillonite with an admixture of illite and chlorite; Sample 467-48-1, 61-67 cm is K,Fe-montmorillonite with an admixture of illite and chlorite; Sample 467-110-1, 18-21 cm is composed of an admixture of illite and chlorite; Sample 467-88-1, 61-67 cm is K,Fe-montmorillonite with an admixture of illite and chlorite.)

semblages of clay minerals are shown in Figure 3 by corresponding signs.

Southern-California Continental Borderland

Hole 467

The distribution of clay minerals in Hole 467 has the following features (Table 1).

Series 6 (Cores 86-110) is composed of middle to upper Miocene, poorly sorted sandy-silty-clay deposits frequently with carbonate cement (sometimes dolomitic) and minor authigenic barite and gypsum. The clay fraction in this series is represented by common montmorillonite and in single interlayers by unstable Fe-montmorillonite. These minerals are accompanied by a rather persistent admixture of chlorite and illite, more abundant in the lower part of the series.

Series 5 (Cores 74-84) comprises middle to upper Miocene, altered hyalotuffs with basaltic composition and nannofossil claystones. Assemblages of clay minerals from the tuffs are composed of an authigenic complex of minerals frequently without distinct admixture of detrital clay components. It shows a peculiar mixture of Al-octahedral smectites and Mg-trioctahedral smectites, partly chloritized. The authigenic smectites in tuff interlayers are often accompanied by mixed-layered minerals of chlorite-montmorillonite type (Ch-M).

Series 4 (Core 55-73) is made up of upper Miocene, calcareous claystones with single interlayers of silicate and nannofossil claystones. The clay fractions in this series contain montmorillonite, admixture of weakly swelling mixed-layered mineral of an illite-montmorillonite type (I-M), and traces of chlorite and opal C-T.

Series 3 (Cores 40–55) upper Miocene through lower Plicoene, poorly consolidated calcareous claystones, alternating with thinner interlayers of nannofossil and siliceous oozes. The series shows predominance of unstable montmorillonite with admixture of detrital minerals in the clay fraction: illite, chlorite, quartz, and feldspar.

Series 2 (Cores 10-40) is Pliocene nannofossil clay with interlayers of calcareous-clay and siliceous ooze.

California Continental Borderland

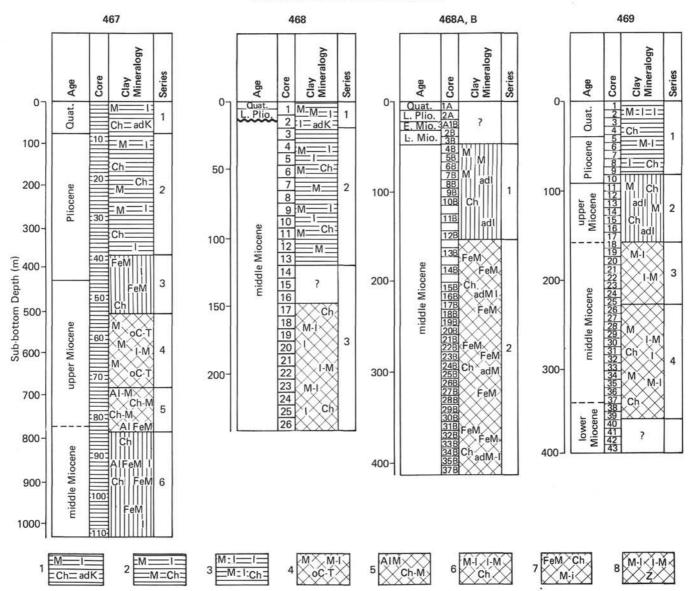


Figure 3. Scheme of distribution of clay mineral assemblages throughout the Leg 63 holes. (In the key to clay mineralogy, 1 = polymineral montmorillonite (M) with illite (I), chlorite (Ch), and a small admixture of kaolinite (ad K); 2 = polymineral montmorillonite with illite and chlorite; 3 = polymineral with mixed-layered mineral (M-I), illite, and chlorite; 4 = montmorillonite, mixed-layered (I-M), with opal C-T (o C-T); 5 = Al-montmorillonite (Al-M) with mixed-layered mineral of a chlorite-montmorillonitic type (Ch-M); 6 = mixed-layered with two types of minerals (M-I) and (I-M); 7 = Fe-montmorillonite (Fe-M) with chlorite and intensely swelling mixed-layered mineral (M-I) and opal C-T; 8 = mixed-layered with two types of minerals (M-I) and (I-M) and zeolite; 9 = montmorillonite with an admixture of chlorite, illite, and mixedlayered mineral (M-I); 10 = montmorillonite with an admixture of illite, chlorite, and mixed-layered weakly swelling mineral (I-M); 11 = montmorillonite with illite, chlorite, two types of mixed-layered minerals (M-I and I-M), and a small admixture of kaolinite; 12 = Femontmorillonite with an admixture of chlorite and illite; 13 = montmorillonite with chlorite and small admixture of illite and zeolite; and 14 = montmorillonite with chlorite and a small admixture of illite.)

The clay fraction of the series is predominantly composed of a polymineralic montmorillonitic assemblage with persistent admixture of detrital illites, chlorites, quartz, and feldspar.

Series 1 (Cores 1-11) is composed of Pleistocene greenish gray clay, and foraminifer-coccolith-spiculardiatomaceous oozes. The clay fraction of Series 1 is composed of montmorillonite with more considerable admixture of detrital illites, chlorite, kaolinite, and quartz than in underlying Series 2.

Hole 468

Clay minerals encountered at Hole 468 were divided into three series (Table 2).

Series 3 (Cores 17-26) is lower or middle Miocene diatom-nannofossil claystones, aleuritic or sandy claystones, and tuffs. The clay fraction of Series 3 is represented by montmorillonite (with potassium in interlayers), weakly swelling mixed-layered illite-montmorillonite (I-M), and admixture of chlorite.

Western Continental Margin of Mexico

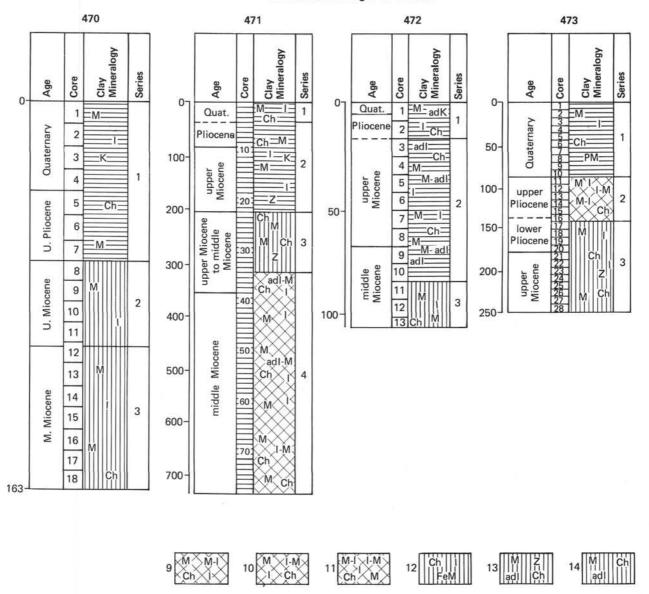


Figure 3. (Continued).

Series 2 (Cores 3-13) comprises middle Miocene nannofossil-diatom oozes with interlayers of sand, siltstone, and clay. The clay fraction (<1 μ m) has a polymineral composition with a predominance of montmorillonite and small admixtures of detrital minerals: illites, chlorite, quartz, and feldspar. More sandy interlayers contain K, Fe-montmorillonite in places.

Series 1 (Cores 1-2) is composed of Pliocene through Pleistocene foraminiferal and nannofossil oozes. The clay fraction is also predominantly composed of montmorillonite, however, the detrital admixture contains illite and chlorite and small amounts of kaolinite, quartz, and feldspar. Some interlayers have traces of K,Femontmorillonite.

Hole 468B

Clay minerals of Hole 468B were divided into two series (Table 2).

Series 2 (Cores 13-37) comprises middle Miocene, calcareous siltstones, claystones with interlayers of andesite-dacitic breccia, pumiceous lithoclastic tuffs, and volcaniclastic sandstones. The clay fraction has a predominance of Fe-montmorillonite with admixture of chlorite and intensely swelling, mixed-layered mineral (M-I).

Series 1 (Cores 4-12) is middle Miocene, alternating nannofossil oozes and diatom-nannofossil oozes with interlayers of detrital sands and aleuritic clayey sedi-

Age	Sample (interval in cm)	Lithologic Type of Sediments	Mineralogical Composition of Clay Fraction (<1 µm)	Assemblages of Clay and Accessory Minerals	
Quater-	2-3, 37-38	Aleuritic clay	Fe-montmorillonite, illite, admixture of chlorite, kaolinite, quartz, and feldspar	Polymineral with Fe-montmorillonite, illite chlorite, and small admixture of kaolinite	
nary	8-5, 45-50	Nannofossil diatomic clays	Fe-montmorillonite, illite, admixture of chlorite, kaolinite, quartz, and feldspar		
	19-5, 110-115	Diatom clays	Montmorillonite, illite, small admixture of kaolinite, quartz, and feldspar		
	30-2, 110-114	Clays	Fe-montmorillonite, illite, chlorite, admixture of quartz and feldspar	Polymineral montmorillonite with admixture of illite, chlorite, traces of kaolinite (with	
liocene	40-1, 16-20	Nannofossil, aleuritic clays	Montmorillonite, illite, small admixture of kaolinite, quartz, and feldspar	Fe-montmorillonite in some interlayers)	
	40-3, 16-20	Nannofossil, aleuritic clays	Montmorillonite, illite, small admixture of kaolinite, quartz, and feldspar		
	48-1, 61-67	Clays	Fe-montmorillonite, illite, chlorite, admixture of quartz and feldspar	Fe-montmorillonite with small admixture	
	52-1, 32-34	Clays	Fe-montmorillonite, illite, chlorite, admixture of guartz and feldspar	of illite and chlorite	
	57-1, 104-108	Calcareous aleuritic claystones	Al, Fe-montmorillonite, small admixture of illite and opal C-T		
	71-1, 35-38	Calcareous claystones	Opal C-T, small admixture of montmo- rillonite and mixed-layered mineral (M-I), traces of chlorite	Minerals of silica with montmorillonite and admixture of mixed-layered minerals (M-I)	
	74-2, 98-100	Intensively altered hvalotuff	Al-montmorillonite (beidellite- montmorillonite)		
	74-2, 119-123	Intensively altered hyalotuff	Al-montmorillonite (beidellite- montmorillonite)		
late diocene	80-2, 16-20	Altered hyalotuff	Mg, Fe-montmorillonite, Al- montmorillonite, small admixture of		
	82-1, 114-118	Altered hyalotuff	chlorite-montmorillonite Mg, Fe-montmorillonite, Al- montmorillonite, small admixture of chlorite-montmorillonite	Authigenic Mg, Fe-montmorillonite at the initial stage of chloritization,	
	82-1, 118-120	Altered hyalotuff	Mg, Fe-montmorillonite, Al- montmorillonite, small admixture of chlorite-montmorillonite	Al-montmorillonite	
	83-3, 83-85	Tuff	Mg, Fe-mixed-layered mineral (M-I), Al-montmorillonite, chlorite- montmorillonite		
	84-1, 31-35	Tuff	Mg, Fe-mixed-layered mineral (M-l), Al-montmorillonite, chlorite- montmorillonite		
	86-3, 146-150	Calcareous nanno- fossil claystones	Montmorillonitic, mixed-layered mineral (M-I), small admixture of chlorite		
middle Miocene	90-1, 32-37	Nannofossil claystones	Montmorillonitic, mixed-layered mineral (M-I), small admixture of chlorite		
	92-1, 67-71	Clay chalk	Quartz, small admixture of montmorillonite and illite	Al and Al, Fe-montmorillonite with	
	96-1, 95-98	Clay, nannofossil claystone	Al, Fe-montmorillonite, admixture of quartz	Fe-montmorillonite in some interlayers (the lower part has a more distinct	
	101-1, 123-127	Calcareous, nanno- fossil claystone	Al, Fe-montmorillonite, admixture of quartz	admixture of detrital minerals: illite, chlorite, and quartz)	
	104-2, 25-28	Calcareous, aleuritic claystone	Fe-montmorillonite, illite, chlorite, and quartz	mile, enome, and quartz)	
	107-1, 1-4	Aleuritic claystone	Montmorillonite, illite, chlorite, and quartz		
	110-1, 18-21	Calcareous, aleuritic claystone	Al, Fe-montmorillonite, small admixture of illite, chlorite, and guartz		

Table 1. Clay minerals and the	eir assemblages in Miocene through	Quaternary sediments from Hole 467.
--------------------------------	------------------------------------	-------------------------------------

ments in the lower part of the sequence. Its clay fraction is predominantly represented by montmorillonite (sometimes including K,Fe-montmorillonite) with admixture of chlorite and illite.

Off the Continental Slope (between 32° and 23°N)

The sediments of this region have interlayers of vitric ashes and scattered volcaniclastics with andesitic and andesitic-dacitic compositions. Postdepositional alteration of this volcaniclastic material leads to formation of dioctahedral, stable, common Al-montmorillonites (with admixture of Mg^{2+} in octahedral positions).

Hole 469

Clay minerals in Hole 469 were divided into four series (Table 2).

Series 4 (Cores 26-38) is lower middle Miocene aleuritic claystones with subordinate interlayers of pumiceous lithoclastic tuffs, volcanic sandstones, porcellanites, nannofossil claystones, chalk, and siliceous limestones. The clay fraction is mainly composed of montmorillonite with admixture of illite, chlorite, and mixed-layered intensely swelling mineral (M-I) in some interlayers.

Series 3 (Cores 18–25) is middle Miocene nannofossil oozes and diatom-nannofossil oozes. The clay fraction is represented by two types of mixed-layered minerals (M-I and I-M) with admixture of zeolite.

Series 2 (Cores 10-17) is upper Miocene clayey nannofossil oozes with interlayers of diatom-nannofossil oozes. The clay fraction is predominantly composed of montmorillonite (partially with potassium in interlayers) with chlorite and small admixture of illite.

Series 1 (Cores 1-9) is composed of Pliocene through Pleistocene foraminifer-nannofossil clays (Cores 5-9) enriched by ash material upsection (Cores 1-4). The clay fraction is composed of a polymineral assemblage with predominance of intensely swelling mixed-layered mineral (M-I) close to smectite with admixture of illite and chlorite.

Table 2. Clay minerals and th	eir assemblages in Miocene throu	igh Pliocene sediments, DSDP Leg 63.
-------------------------------	----------------------------------	--------------------------------------

Age	Sample (interval in cm)	Lithologic Type of Sediments	Mineralogal Composition of Clay Fraction (<1 μm)	Assemblages of Clay Minerals	
	101, 110-112	Foraminifer–nannofossil oozes	Hole 468 Montmorillonite (with potassium in interlayers) illite, chlorite, admixture of feldspars and	Polymineral montmorillonite	
Pliocene	2-1, 25-27	Diatom-nannofossil oozes	quartz Montmorillonite (with potassium in interlayers) illite, chlorite, admixture of feldspars and quartz	with illite and small admixture of kaolinite	
	6-6, 29-34	Nannofossil-diatom	Montmorillonite, admixture of illite and		
	9-5, 70-74	oozes Diatom aleuritic clays	chlorite Montmorillonite, admixture of illite and	Delominacelie mosillonite	
middle Aiocene	10-1, 55-59	Nannofossil-diatom	chlorite Montmorillonite (with potassium in interlayers),	Polymineralic morillonite with admixture of illite	
	11-1, 30-35	aleuritic clays Zeolitic aleuritic sand	traces of chlorite Montmorillonite, traces of illite and admixture	and chlorite	
		Stonie alcunic sund	of zeolite		
	17-1, 70-75	Aleuritic claystone	Montmorillonite (with potassium in interlayers), admixture of weakly swelling mixed-layered mineral (I-M) and chlorite	Montmorillite with admixture of mixed-layered weakly swelling mineral	
	18-1, 72-78	Diatom-nannofossil aleuritic claystone	Montmorillonite (with potassium in interlayers) (I-M) and chlorite	(I-M) and chlorite	
		1000 IS 10	Hole 468B		
	6-1, 70-72 6-6, 29-34	Nannofossil oozes Nannofossil oozes	{ Montmorillonite, montmorillonite (with potassium in interlayers), small admixture of	Montmorillonite with	
	8-4, 35-37	Diatom-nannofossil	Abundant amorphous silica with admixture of	Montmorillonite with chlorite, small admixture	
	11-1, 30-35	oozes Diatom-nannofossil oozes	weakly swelling (defective) chlorite Montmorillonite, traces of illite, zeolite (clinoptilolite)	of illite and zeolite	
	13-2, 62-66	Calcareous, aleuritic	Amorphous silica, small admixture of		
	15-1, 30-36	claystone Calcareous, aleuritic claystone	montmorillonite Abundant amorphous silica, intensely swelling mixed-layered mineral (M-I), traces of illite and		
middle	17-1, 70-75	Aleuritic claystone	chlorite Mixed-layered minerals with variable relation of layers (M-I and I-M), admixture of chlorite		
Miocene	25-2, 29-33	Calcareous, aleuritic	and illite Montmorillonite, admixture of chlorite,		
	26-1, 42-46	claystone Zeolite, volcanic	illite and zeolite Intensely swelling mixed-layered mineral (M-I),		
		sandstone	admixture of chlorite and zeolite (from the group of heulandite)		
	26-1, 72-76	Zeolitic, lapilli tuff	Intensely swelling mixed-layered mineral (M-I), admixture of chlorite and zeolite (from the group of heulandite)	Montmorillonite with chlorite mixed-layered minerai (M-I) and opal C-T	
	33-1, 99-104	Calcareous, aleuritic claystone	Montmorillonite, illite, chlorite, admixture of zeolite and opal C-T	(in the lower part of the sequence)	
	34-1, 60-63	Redeposited pumice,	Intensely swelling, mixed-layered mineral (M-l),	sequences	
	35-1, 107-110	lithic lapilli tuff Calcareous aleuritic	gypsum, calcite Intensively swelling mixed-layered mineral		
	37-2, 19-26	claystone Redeposited pumice, lithic lapilli tuff	(M-I), illite, chlorite, opal C-T Intensively swelling mixed-layered mineral (M-I), traces of weakly swelling (defective)		
		nine upin turi	chlorite, admixture of zeolite (from the heulandite group)		
			Hole 469		
	1-1, 110-114	Clays and nannofossil foraminiferal oozes	Intensely swelling mixed-layered mineral (M-I), close to smectite, admixture of illite, chlorite,	Polymineral with montmo-	
Quater-	2 1 70 74		quartz, and feldspar	rillonite, illite, chlorite, and intensely swelling mixed-	
nary	2-1, 70-74	Clays	Intensely swelling mixed-layered mineral (M-I), close to smectite, admixture of illite, chlorite, quartz, and feldspar	layered mineral (M-I) (in some interlayers)	
	6-3, 102-106	Foraminifer-nannofossil	Montmorillonite (with potassium in interlayers),		
Pliocene	10-1, 42-48	clays Nannofossil, aleuritic clays	illite, chlorite, admixture of quartz and feldspar Montmorillonite (with potassium in interlayers), illite, chlorite, admixture of quartz and feldspar		
middle Miocene	20-1, 128-130	Nannofossil oozes	Two types of mixed-layered minerals (M-I and I-M) with zeolite	Mixed-layered with two types of minerals (M-I) and (I-M) and zeolite	
	25,CC	Calcareous porcellanites	Montmorillonite, illite, chlorite	(a my and becau	
	29,CC 31,CC	Volcaniclastic sandstones Calcareous claystones	Montmorillonite, illite, chlorite admixture of mixed-layered mineral (M-I) Montmorillonite, illite, chlorite, small	Montmorillonite with	
	S.)) <u>7</u> : 1999 - Contractor States, 1999 - Contractor (1999 - Contractor (1999 - Contractor (1999 - Contractor (1999 - Co	Montmorillonite, illite, chlorite, small admixture of opal C-T	admixture of mixed-layered mineral (M-I), illite,	
	34-1, 6-9 35-1, 49-52	Aleuritic claystones Redeposited pumice tuff	Fe-montmorillonite, admixture of ferrum illite, chlorite, and opal C-T Montmorillonite, admixture of mixed-layered	and chlorite	
			mineral (M-I), chlorite and hydromica, traces		

Hole 470

Clay minerals in Hole 470 were divided into three series (Table 3).

Series 3 (Cores 12–15) is middle Miocene diatomaceous, aleuritic clays and nannofossil oozes. The clay fraction is predominantly composed of montmorillonite (with K and Na in interlayers), with admixture of illite, chlorite, feldspar, and quartz.

Series 2 (Cores 8-11) consists of upper Miocene diatomaceous, aleuritic clays. The clay fraction is predominantly composed of montmorillonite with admixture of illite, chlorite, quartz, and feldspar in some interlayers.

Series 1 (Cores 1-7) comprises upper Pliocene through Pleistocene aleuritic and nannofossil clays. The clay fraction is predominantly composed of montmorillonite (with K and Na in interlayers) with small admixture of illite and chlorite and rarely kaolinite, quartz, and feldspar.

Hole 471

Clay minerals in Hole 471 were divided into four series (Table 4).

Series 4 (Cores 35–78) consists of middle Miocene bioturbated claystones with thin interlayers of calcareous sandstones (less abundant in the base) and several interlayers of clayey limestones and altered vitritic tuffs. The clay fraction is composed of montmorillonite (frequently with K in interlayers) with admixture of illite, chlorite, and mixed-layered weakly swelling mineral (I-M), quartz, and feldspar.

Series 3 (Cores 22-34) is upper Miocene porcellanites and porcelaneous, aleuritic claystones with cherts and several interlayers of clayey limestones. The clay fraction is predominantly composed of montmorillonite (partially with K in interlayers) with admixture of illite, chlorite, zeolite, and opal C-T.

Series 2 (Cores 4-22) is composed of upper Miocene through Pliocene diatomaceous aleuritic clays and clayey-diatomaceous oozes. The clay fraction is composed of a polymineral assemblage with montmorillonite, illite, and chlorite, with some admixture of kaolinite, quartz, and feldspar. Series 1 (Cores 1–3) is Pleistocene nannofossil clays. The clay fraction has polymineral composition with montmorillonite, illite, and chlorite.

Hole 472

Clay minerals in Hole 472 were divided into three series (Table 5).

Series 3 (Cores 11-13) is middle Miocene diatomaceous oozes and nannofossil clays. The clay fraction is composed of montmorillonite with small admixture of illite and chlorite.

Series 2 (Cores 3-10) is middle upper Miocene, clayey-diatomaceous oozes and siliceous pelagic clays. The clay fraction has a polymineral composition with montmorillonite, admixture of illite, chlorite, quartz, and feldspar.

Series 1 (Cores 1-2) is Pliocene through Pleistocene, brown pelagic clays with subordinate amount of greenish gray pelagic clays. The clay fraction has a polymineral composition with montmorillonite, illite, admixture of kaolinite, small admixture of chlorite, quartz, and feldspar. Montmorillonite in all series frequently contains K in interlayers.

The Mouth of the Gulf of California

Hole 473

Distribution of Hole 473 clay minerals has the following succession (Table 5).

Series 3 (Cores 17–28) is upper Miocene through lower Pliocene claystones and interbedded aleuritic quartz sandstones. The clay fraction is composed of montmorillonite with small admixture of chlorite, illite, and opal C-T. The montmorillonite frequently contains K in interlayers.

Series 2 (Cores 11–16) contains upper Pliocene, terrigenous clays with a subordinate amount of aleuritic and nannofossil clays. The clay fraction is composed of montmorillonite, illite, and chlorite in places with small admixture of mixed-layered (M-I) and (I-M) minerals or kaolinite.

Series 1 (Cores 1-10) is Pleistocene clays with small admixture of ash material. The clay fraction has a polymineral composition. It is composed of montmoril-

Table 3. Clay minerals and their assemblages in Miocene through Quaternary sediments, Hole 470.

Age	Sample (interval in cm)	Lithological Type of Sediments	Mineralogical Composition of Clay Fractions (<1 µm)	Assemblages of Clay and Accessory Minerals
Quaternary	1-3, 92-96	Aleuritic clay	Montmorillonite (with K and Na in interlayers), considerable admixture of illite and chlorite	Polymineral montmorillonite with admixture of illite,
	2-3, 77-82	Aleuritic clay	Montmorillonite (with K and Na in interlayers), small admixture of illite and chlorite	chlorite, traces of kaolinite, quartz, and feldspar
Pliocene	5-1, 108-113	Nannofossil clays	Montmorillonite (with K and Na in interlayers), considerable admixture of illite, chlorite, quartz, and feldspars	
late Miocene	8-2, 90-91	Diatom aleuritic clays	Montmorillonite (with considerable amount of K in interlayers)	Montmorillonite with small admixture of illite, quartz,
	10-2, 21-25	Diatom aleuritic clays	Montmorillonite finely dispersed, with small admixture of illite, quartz, and feldspars	and feldspar in some interlayers
middle Miocene	12-3, 120-125	Diatom aleuritic clays	Montmorillonite (with K and Na in interlayers), admixture of hydromica, chlorite, quartz, and feldspars	Montmorillonite with admixture of illite, chlorite, feldspar, and quartz
	15-1, 80-85	Diatom nanno- fossil oozes	Montmorillonite (with K and Na in interlayers), small admixture of chlorite, illite, and feldspars	

Age	Sample (interval in cm)	Lithologic Type of Sediments	Mineralogical Composition of Clay Fraction (<1 μm)	Assemblages of Clay and Accessory Minerals
Qua-	1-3, 90-95	Nannofossil, aleuritic clay	Montmorillonite (partially with exchange potassium in interlayers), illite, chlorite (defective) and admixture of feldspar	Polymineral montmorillonite
ternary	3-2, 20-24	Aleuritic clay	Montmorillonite (with potassium in interlayers), illite, chlorite (defective), small admixture of zeolite	with illite and chlorite
Pliocene	7-4, 135-140	Diatom clay	Fe-montmorillonite, illite, chlorite, admixture of kaolinite, quartz, and feldspar	Polymineral montmorillonite
	13-3, 120-125	Clay, diatom ooze	Illite, montmorillonite, small admixture of chlorite	with illite, chlorite, and
late Aiocene	16-3, 60-65	Diatom clay	Montmorillonite (with potassium in interlayers), traces of illite	small admixture of kaolinite in some interlayers
mocene	21-1, 16-20	Clayey limestone	Montmorillonite, admixture of illite, chlorite, quartz, and feldspar	in some internayers
	23-1, 33-36	Clay porcellanite	Montmorillonite, admixture of iron illite, small admixture of chlorite, opal C-T and feldspar	Montmorillonite with chlorite
	26-1, 1-4	Clay porcellanite	Montmorillonite (with potassium in interlayers) illite, chlorite, zeolite, and opal C-T	small admixture of illite, zeolite, and opal C-T;
From middle	32-1, 77-81	Porcellanite claystone	Montmorillonite with admixture of illite, chlorite, and opal C-T	Fe-illite in interlayers
to late Miocene	35-3, 9-12	Aleuritic claystone	Montmorillonite, admixture of illite, chlorite, small admixture of kaolinite, essential amount of quartz	
	36-1, 91-93	Altered vitric tuff	Montmorillonite finely dispersed, traces of chlorite and zeolite	
	39-1, 41-45	Aleuritic claystone	Montmorillonite, admixture of chlorite, illite, quartz, and feldspar	
	41-4, 50-52	Aleuritic claystone	Montmorillonite (with potassium in interlayers), admixture of illite, chlorite, and quartz	
	42-1, 12-15	Altered claystone	Montmorillonite (with potassium in interlayers), admixture of illite, chlorite, and quartz	Montmorillonite with admixture of illite, chlorite
middle	44-3, 40-42	Altered vitric tuff	Al-montmorillonite, finely dispersed	and quartz
middle Miocene	47-2, 54-57	Aleuritic claystone	Montmorillonite, admixture of illite, chlorite, and quartz	and quartz
	52-1, 24-28	Aleuritic claystone	Montmorillonite, admixture of illite and quartz	
	65-1, 6-9	Aleuritic claystone	Montmorillonite, illite, chlorite, admixture of quartz and feldspar	
	71-1, 136-140	Aleuritic sandstone	Montmorillonite, admixture of illite, chlorite, feldspars, and quartz	
	75-3, 112-114	Aleuritic claystone	Montmorillonite, admixture of illite, chlorite, feldspars, and quartz	
	78-2, 29-32	Aleuritic claystone	Montmorillonite, chlorite, small admixture of weakly swelling mixed-layered mineral (I-M), quartz, and feldspar	

Table 4. Clay minerals and their assemblages in Miocene through Pliocene sediments, Hole 471.

lonite with admixture of illite, chlorite, quartz, and feldspar.

CONCLUSION

Middle Miocene through Quaternary sediments encountered in southern California Continental Borderland and the western continental margin of Mexico are principally composed of siliceous and calcareous biogenic material, clay, and admixtures of aleuritic and fine, sandy, terrigenous, or tuffaceous material. Thicknesses of sedimentary sequences vary in the studied region from 150 up to 1000 meters.

The upper parts of sedimentary sections, approximately to the depth of 200 meters (and in Hole 467, up to 500 m), are represented predominantly by unconsolidated or poorly consolidated oozes. The interlayers of volcanic ashes here do not show any features of secondary alteration such as the formation of authigenous clay minerals.

The clay fraction of these deposits is terrigenous and polymineralic. These minerals include a complex association of redeposited detrital minerals from the montmorillonite (smectite) group, and to a lesser extent, illite (with a different degree of degradation), chlorites (Fe-Mg trioctahedral type), and rarely kaolinite. All clay minerals may have been derived from land.

The predominance of the smectitic component is a mineralogical peculiarity of these deposits; illites and

chlorites are found as an admixture. Smectites occur in practically all sequences penetrated by Leg 63 holes, as in Pliocene sediments of the Panama basin (Rateev et al., in press), and can be considered as a background terrigenous component against which the Leg 63 deposits were formed. The presence of such smectitic background may indicate persistent subaerial and submarine volcanic sources.

In lower parts of the sedimentary sequences, below 200 meters on the average (in Hole 467, below 500 m), the tuffaceous material (including both separate tuff interlayers and scattered volcaniclastics) is partially or completely transformed into clay or zeolitic mineral. Smectite here is the main authigenic mineral. However, its structural features vary depending on petrographic composition of the source rocks. For example, the basaltic hyalotuffs are altered to smectites with high Fe and Mg content in association with a small amount of chlorite in the form of a mixed-layered chlorite-montmorillonitic (Ch-M) mineral. Only in one case (Sample 467-74-2, 96-100 cm) was almost monomineralic smectite of the beidellitic type formed (with replacement of Si atoms in tetrahedral layers), possibly after the basaltic tuff.

Pumiceous and vitroclastic tuffs of more acid andesitic and dacitic composition also have altered to montmorillonites or intensely swelling, mixed-layered montmorillonite-illite (M-I) minerals of the type with a small

Age	Sample (interval in cm)	Lithologic Type of Sediments	Mineralogical Composition of Clay Fraction (<1 µm)	Assemblages of Clay and Accessory Minerals	
			Hole 472		
Qua- ternary	1-2, 120-125	Clay	Montmorillonite, illite, admixture of kaolinite chlorite, quartz, and feldspar	Polymineralic montmorillonite with illite, chlorite, and small admixture of kaolinite	
	3-1, 35-39	Clay	Montmorillonite admixture of illite and		
late Miocene	5-2, 90-95	Clay diatom ooze	chlorite Montmorillonite admixture of illite, chlorite, quartz, and feldspar	Polymineralic montmorillonite	
	8-2, 40-45	Clay diatom ooze	Montmorillonite (with potassium in inter- layers), small admixture of illite, chlorite, quartz, and feldspar	with illite and chlorite	
middle Miocene	11-3, 136-140	Diatom, nanno- fossil ooze	Montmorillonite (with potassium in inter- layers), traces of illite and chlorite	Montmorillonite with small admixture of illite and chlorite	
			Hole 473		
	2-2, 10-15	Clay	Montmorillonite (with exchange potassium in interlayers), traces of illite and chlorite, cristobalite, quartz, and feldspar		
Qua- ternary	7-1, 30-34	Clay	Montmorillonite (with potassium in inter- layers), admixture of illite, chlorite, and guartz; traces of feldspar	Polymineralic montmorillonite with illite, chlorite, quartz, and feldspar	
	10-2, 60-64	Clay	Montmorillonite (with potassium in inter- layers), admixture of illite, chlorite, feldspar, and quartz		
	13-3, 90-95	Clay	Montmorillonite (with potassium in inter- layers), admixture of intensely swelling mixed-layered mineral (M-I), illite, chlorite, kaolinite, and zeolite (from heulandite group)	Montmorillonite with illite, chlorite, and two types of	
late	14-2, 70-75	Clay	Montmorillonite (with potassium in inter- layers), admixture of illite, chlorite, and zeolite	mixed-layered minerals (M-I and I-M) and small admixture of kaolinite	
Pliocene	16-3, 40-42	Vitric tuff	Montmorillonite, finely dispersed, small admixture of weakly swelling mineral (I-M) with 15%-20% of swelling layers, zeolite, and feldspar	admixture of kaomine	
early Pliocene	19-2, 40-44	Clay	Montmorillonite, illite, chlorite, zeolite (from heulandite group)		
	21-1, 70-74	Aleuritic claystone	Montmorillonite, illite, chlorite, traces of quartz and feldspar		
	23-3, 20-24	Clay	Montmorillonite (with potassium in inter- layers), illite, chlorite, admixture of opal C-T		
late Miocene	25-1, 11-115	Aleuritic	and feldspar Montmorillonite, illite, chlorite, admixture of	Montmorillonite with	
in occure	26.2.22.26	claystone Vitrie tuff	zeolite Montmonillopita finalu dispersed, small	chlorite, illite, zeolite,	
	26-2, 32-36	Vitric tuff	Montmorillonite finely dispersed, small admixture of illite, chlorite, traces of zeolite	and opal C-T	
	27-1, 120-124	Aleurolite claystone	Montmorillonite, illite, chlorite, small admixture of kaolinite, guartz, and feldspar		

Table 5. Clay minerals and their assemblages in Miocene through Pliocene sediments, DSDP Leg 63.

proportion of mica layers. We relate the small admixture of illite and chlorite in the clay fraction of these rocks with some portion of terrigenous material.

Besides clay material formed at the expense of subaerial pyroclastics, a considerable proportion of alteration products might be derived from submarine volcanic rocks. The clay products resulting from secondary alteration of igneous rocks in the Leg 63 area are described by Grechin et al. (this volume). They show that secondary alterations of abyssal tholeiitic hyalobasalts and dolerites predominantly led to formation of smectites (Fe and Mg-Fe types) and intensely swelling mixed-layered minerals of montmorillonite-illite type (M-I), frequently with a ratio of about 85:15. Sometimes they are mixed with so-called "defective" chlorites and mixed-layered chlorite-montmorillonitic type minerals (Ch-M). All these minerals could enter the clay constituent of the Miocene through Pliocene sedimentary deposits. The absence of illite in the secondary minerals of basalts confirmed our conclusion that this clay mineral is probably land-derived and not authigenic.

In the lower part of the middle to upper Miocene sequences, clays derived from the land or from subaerial and underwater volcanism also occur with a constituent of authigenic smectites, formed *in situ* by diagenetic transformations of ash-tuffaceous material. However, the similarity between a number of clay mineral assemblages, abundant both in the lower and upper parts of the sequences, shows that the proportion of authigenic smectites in the terrigenous deposits as a whole is not considerable.

The minor alteration of the studied terrigenous rocks and small volume of authigenic smectite formation after tuffaceous material here result from relatively shallow burial (maximum up to 1000 m) of sedimentary matter. Burial diagenesis may also account for all variations in diagenetic clay mineral assemblages in a variety of lithofacies encountered during Leg 63 drilling.

These conclusions are in good agreement with the results of Hein et al. (1979) on distribution of clay minerals throughout the sequence of Test Well-OCS CAL 78164, No. 1 in the external part of the continental shelf off Southern California (19 km to the west of Point Conception). In this test well, the authors revealed considerable alterations of clay minerals at a depth of about 8600 feet (2866 m). These alterations affected mixed-layered smectite-illite mineral, which showed a decrease in swelling smectitic layers and corresponding increase in illitic structural packets, below this depth. The K required for illite formation may have

been derived from K-feldspars. Perry and Hower (1970; 1972) show that the decrease of swelling layers down to 30% to 40% takes place under a temperature range of 95° C to 100° C and is accompanied by an increase of order in the mixed-layered phase.

We think that alteration in the zone of relatively deeper burial (Müller, 1967) occurs in already partially consolidated ("ready") rock under the effect of gravitation (i.e., consolidation, partial increase of temperature, recrystallization, solid-state reactions [Kossovskaya, and Shutov, 1963]). In contrast to this, diagenetic alteration in the zone of "shallow burial" takes place in poorly consolidated oozes in concert with abundant interstitial waters (Strachov, 1960).

Above the depth of 2866 meters, Hein et al. (1979) identified a number of intervals by a change in percentage of separate clay minerals, relating them to a change of source areas. Small changes include some increase of kaolinite within the interval of 6100 to 8800 feet (1859– 2682 m) together with an increase of quartz and feldspar, as well as pronounced increase of illite (within the interval of 6700–7400 feet—2042–2255 m). Hein et al. think that the intervals of greater quantitative variations of clay minerals, which have stratigraphic significance, can also reflect the change in physical-geographical environments of source areas. Thus, in their opinion, considerable decrease or increase in the depth of sedimentation can determine the scale of mineralogical alterations.

REFERENCES

- Bramlette, M. N., 1946. Monterey formation of California and the origin of its siliceous rocks. Geol. Surv. Prof. Paper 212.
- Drits, V. A., and Sakharov, B. A., 1976. X-ray structural analysis of mixed-layer minerals. *Tr. Akad. Nauk SSR Inst. Geol.*, 295:101– 253.
- Gradusov, B. P., 1976. Minerals with Mixed-layer Structure in Soils: Moscow (Nauka).
- Hein, J. R., Vanek, E., and Allen, M. A., 1979. X-ray mineralogy and diagenesis. Geologic studies of the Point Conception Deep Stratigraphic Test Well OCS CAL 78164, No. 1. In Cook, H. E. (Ed.), USGS Open File Rep. 79-1218, pp. 79-96.
- Khvorova, I. V., 1968. Deposition of silica in geosynclinal areas of the past time. Sedimentation and Ore Deposits of the Ancient Volcanic Regions, Transactions Geological Institute (Vol. 195): Moscow (Nauka).
- Kossovskaya, A. G., and Schutov, V. A., 1963. Facies regional epigenesis and metagenesis. Izv. Akad. Nauk. SSR Geol., 7:3-18.
- Müller, G., 1967. Diagenesis in sediments. Developments in Sedimentology: Amsterdam (Elsevier Publishing Co.), 8:127-178.
- Perry, E. A., and Hower, J., 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner., 18:165-175.
- _____, 1972. Late-stage dehydration in deeply buried pelagic sediments. Am. Assoc. Pet. Geol. Bull., 56:2013-2021.
- Rateev, M. A., Timofeev, P. P., and Rengarten, N. V., in press. Minerals of the clay fraction in Pliocene-Quaternary sediments of the East Equatorial Pacific, Leg 54 DSDP. In Hekinian, R., Rosendahl, B. R., Init. Repts. DSDP, 54: Washington (U.S. Govt. Printing Office), 307-318.
- Reynolds, R. G., 1968. The effect of particle size on apparent lattice spacing. Acta Crystallogr. 24:319–320.
- Strachov, N. M., 1960. Theory of the Lithogenesis: Moscow (Nauka).