29. BASALTS FROM THE EAST PACIFIC RISE: AN EXAMPLE OF TYPICAL OCEANIC CRUST DEPLETED IN HYGROMAGMAPHILE ELEMENTS¹

P. Cambon and H. Bougault, Centre National pour l'Exploitation des Océans, Centre Océanologique de Bretagne B.P. 337–29273 Brest Cedex, France

J. L. Joron, Laboratoire P. Sue, Groupe des Sciences de la Terre-Cen Saclay

B.P. no. 2-91190 Gif-Sur-Yvette, France

M. Treuil, Université P. et M. Curie, Laboratoire de Géochimie Comparée et Systématique, 4, place Jussieu, Tour 24/25 E.3, 75230 Paris Cedex 05, France

ABSTRACT

Samples of basalt collected on Leg 65 near 22°N on the East Pacific Rise all display the depleted light rare-earth pattern of "normal" oceanic crust. Consequently the La/Ta ratio is close to 18, as opposed to the value of 9 associated with the flat or enriched patterns found along parts of the Mid-Atlantic Ridge and the Emperor Seamount chain. The Leg 65 samples are chemically similar to those from the CYAMEX area at 21°N and to the Leg 54 samples from 9°N, suggesting homogeneity of the upper mantle under the northern part of the East Pacific Rise over a minimum distance of about 1500 km. The geochemistry of the rocks and their field relationships with respect to depth and distance from the axis of the Rise show no pattern of distribution linked to the degree of fractional crystallization and thus cast doubt on any possible model involving large, long-lived magma chambers at the axis of the Rise.

INTRODUCTION

The East Pacific Rise was drilled for the first time near 9°N during Deep Sea Drilling Project (DSDP) Leg 54. During Leg 65, several holes were drilled immediately south of the Tamayo Fracture Zone at about 22°N, both on the eastern side of the Rise (Sites 482 and 485) and the western side (Site 483). Samples from close to the axis of the Rise were also obtained during the CYA-MEX and RISE submersible expeditions in 1978 and 1979. In this paper, we present trace element data for the Leg 65 basalts—measured either by neutron activation analysis (NAA) or X-ray fluorescence spectrometry (XRF) in order to refine the definition of the basaltic units encountered in each hole. The geochemical properties of the basalts are also compared with data from Leg 54 and the CYAMEX expedition.

RESULTS

The major elements were analyzed on board the *Glomar Challenger* using the XRF unit from the Centre National pour l'Exploitation des Océans. In addition to the elements analyzed on earlier legs (e.g., Bougault, 1977; Melson et al., 1979), Na₂O was analyzed on board for the first time on Leg 65. A new TlAP crystal was used which enhances the light-element counting rates compared to those obtained with an ADP crystal. With the TlAP crystal, the Mg counting time can be cut at the same time that the analytical accuracy is improved, and Na₂O can be determined with an accuracy of $\pm 0.1\%$. Three trace elements (Ni, Zr, and Sr) were also measured on board (as on Legs 45, 46, and 55) to help dis-

criminate between different magmatic units. Of these, Ni has a high crystal/liquid partition coefficient; Zr, which is a hygromagmaphile element, has a low partition coefficient; and Sr, although also a hygromagmaphile element, is more or less sensitive to plagioclase crystallization (or melting).

Table 1 presents the major and trace element data available for the four rocks chosen as standards by the shipboard party. The V, Cr, Co, Zn, Rb, Y, and Nb concentrations were determined on shore using the X-ray fluorescence techniques described by Bougault et al. (1977); Sc, Co, Ni, Cs, La, Eu, Tb, Hf, Ta, Th, and U concentrations were measured using the neutron activation analysis procedures outlined by Treuil et al. (1973). The major element data for the rocks recovered on Leg 65 are presented in Table 2 and the trace element data in Table 3. Tables 4 and 5 present the average trace element concentrations (\bar{x}) and standard deviations (σ) for the homogeneous "chemical types" defined at Sites 482 and 483, respectively. The tables showing trace element data include Ti, Mn, and Fe in order to have values shown in parts per million for all of the elements belonging to the first transition series presented together. The elements are arranged in order of increasing atomic number. The tables give Co and Ni concentrations from both XRF and NAA.

Data on trace elements confirm or refine the classification of the basaltic units identified on ship board. As far as possible, the "chemical types" defined by the shipboard party have been retained. Figures 1 and 2 show the distribution of these types versus depth for Sites 482 and 483. The chemical types defined by trace element studies correlate well with those established at sea, although some differences are noted in the lower parts of Holes 482B and 483B.

¹ Lewis, B. T. R., Robinson, P., et al., *Init. Repts. DSDP*, 65: Washington (U.S. Govt. Printing Office).

Table 1. Major and trace element composition of Leg 65 samples used as standards.^a

Samula	4820-12-1	4930 9 3	4920 28 1	4854 25.1
Components	92-118 cm	2-20 cm	42-59 cm	117-143 cm
Major elements (wt.	9%)			
SiO ₂	49.82	47.52	49.08	48.79
Al ₂ O ₃	14.66	16.24	14.03	14.34
Fe ₂ O ₃	11.20	9.69	12.24	12.80
MnO	0.18	0.16	0.18	0.20
MgO	7.81	9.19	7.65	7.07
CaO	12.16	12.07	11.54	11.13
Na ₂ O	1.94	2.23	2.21	2.48
K ₂ Ō	0.07	0.04	0.10	0.08
TiO ₂	1.28	1.05	1.79	2.14
P2O5	0.15	0.12	0.19	0.21
Loss on ignition				
110°C	0.42	0.30	0.36	0.27
Loss on ignition				
1050°C	0.42	1.38	0.64	0.35
Total	100.11	99.99	100.01	99.86
Trace elements (ppm)			
v	313	227	350	387
Cr	176	306	220	206
Co	43	45	45	44
Ni	55	96	166	59
Rb	<1	<1	<1	<1
Sr	92	135	108	103
Y	36	29	46	56
Zr	74	60	111	132
Nb	1	1	3.5	3.5

^a Values determined by XRF analysis.

Site 482

Below Section 482B-18-2, for example, two different samples (482B-19-1, 96-100 cm and 482B-21-1, 62-64 cm) stand out because of their high concentrations of hygromagmaphile elements. The samples are respectively classified as Chemical Types C and E. Other samples from this interval are classified as Chemical Type D. Among these samples, however, there are differences which lead to some elements having standard deviations which are higher than those reported in Tables 4 and 5. The following subdivision of Chemical Type D is therefore proposed: Sample 482B-18-2, 99-101 cm has an Fe concentration of 82,000 ppm compared with 71,000 ppm for the mean value for D and is thus assigned to subunit D'. Samples 482B-20-3, 24-26 cm and 482B-24-1, 93-95 cm are assigned, in turn, to subunits D", and D"". Although these subdivisions may not be fundamental, they take into account differences (of 30 ppm in Sr content between subunits D" and D", for instance) that are significant from an analytical viewpoint.

It is interesting to note that Sample 482B-21-1, 62-64 cm (Type E) and Sample 482D-10-3, 14-16 cm are geochemically the same except for their Cr contents, but occur at widely separated levels (205 m and 155 m, respectively). The only analyzed sample (Section 482F-4-3) from Hole 482F corresponds to this chemical type.

Site 483

Two chemical types, Types K and L, were defined by the shipboard party for grouping the basalts recovered from the lower part of Hole 483B, below Sample 483B-23-4, 63-71 cm. On the basis of the trace element data, however, all of the analyzed samples seem to be very similar: notable differences from Sections 483B-28-1 through 32-1 and the remaining samples only concern Cr, Ni, and the hygromagmaphile elements. We thus prefer to assign all of the samples to only one chemical type and to subdivide the subunits into K and K'. We include in subunit K Sections 483B-23-4 through 27-3 and Section 483B-32-3, and assign to K' Sections 483B-28-1 through 32-1. The observed differences suggest that subunit K was derived from K' by fractional crystallization or that K' contains more ferromagnesian minerals than subunit K.

Similarly, in Hole 483, Chemical Type F defined on board ship incorporates the sequence from Section 20-1 through Section 23-2. We suggest that this unit should be divided into subunits F (Sections 483-20-1 through 21-2) and F' (Sections 483-22-1 to 23-2). The comments made concerning subunits K and K' in Hole 483B also apply to the subdivisions F and F' in Hole 483. Section 25-1 in Hole 483 (near the 198 m level) belongs to Chemical Type A, which occurs at about the 110-m level in Holes 483 and 483B.

Site 485

Unlike the samples from Sites 482 and 483, the basalts from Hole 485A have not been grouped into chemical units. Except for the obvious difference between the uppermost sample (Section 485A-11-3) and the basalts obtained deeper in the section, the differences between samples are not clear enough to justify classification into different chemical types. The variable Ni concentrations observed could be the result of variations in olivine content.

TRACE ELEMENT GEOCHEMISTRY, FIELD DATA, AND SIZE OF MAGMA CHAMBERS

In a recent discussion on the East Pacific Rise at 22°N (RISE Project Group, 1980), it was noted that there is no correlation between the degree of fractionation of lavas and their age or distance from the Rise axis. From the present study, it is also evident that there is no clear relationship between fractionation and the vertical distribution of chemical units in the crust, at least in the holes drilled on Leg 65. In nearly all of the samples examined, the Ni concentration varies between 50 and 100 ppm. This range of variation can be attributed, in part, to variations in olivine content, but it also requires the removal of olivine by crystallization processes. For similar Ni concentrations, the Cr content varies between 190 ppm and 380 ppm. Once again, variations in the abundance of olivine, spinel, and clinopyroxene phenocrysts cannot entirely explain the observed values, and the removal of varying proportions of ferromagnesian minerals during fractional crystallization must also be invoked.

In addition, it was noted by the shipboard party that the uppermost unit of basalt in Hole 485A, represented by Sample 485A-11-3, 82-83 cm, is close in composition to a primitive liquid. This observation is confirmed by

racie 2. major element composition of cusults, Deg os	Table 2.	Major	element	composition	of	basalts,	Leg 65.	a
---	----------	-------	---------	-------------	----	----------	---------	---

Sample (interval in cm)	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃ b	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	LOIC	Total	Chemical Type
Hole 482B	6				2.0				4				
$\begin{array}{c} 10\text{-}7, \ 14\text{-}16\\ 11\text{-}1, \ 23\text{-}25\\ 12\text{-}2, \ 135\text{-}137\\ 14\text{-}2, \ 121\text{-}124\\ 15\text{-}1, \ 135\text{-}139\\ 15\text{-}3, \ 117\text{-}119\\ 15\text{-}3, \ 117\text{-}119\\ 16\text{-}1, \ 36\text{-}38\\ 17\text{-}2, \ 111\text{-}113\\ 18\text{-}1, \ 18\text{-}20\\ 18\text{-}2, \ 99\text{-}101\\ 19\text{-}1, \ 96\text{-}100\\ 20\text{-}3, \ 24\text{-}26\\ 21\text{-}1, \ 62\text{-}64\\ 21\text{-}3, \ 74\text{-}76\\ 22\text{-}2, \ 34\text{-}36\\ 22\text{-}4, \ 34\text{-}36\\ 24\text{-}1, \ 93\text{-}95\\ \end{array}$	43.44 48.98 49.27 48.86 48.85 49.30 49.44 49.36 49.69 48.91 47.99 48.55 48.22 49.20 49.27 48.61 48.10	$\begin{array}{c} 1.77\\ 1.76\\ 1.74\\ 1.39\\ 1.30\\ 1.26\\ 1.27\\ 1.30\\ 1.54\\ 2.20\\ 1.54\\ 2.20\\ 1.54\\ 1.61\\ 1.56\\ 1.51\\ 1.63\\ \end{array}$	13.96 13.93 14.04 14.42 14.48 14.29 14.44 14.27 14.06 14.10 16.09 15.33 13.84 15.16 15.57 14.87 15.42	13.05 11.39 11.61 11.07 10.99 10.95 10.94 11.35 11.26 11.81 11.56 9.97 11.70 10.65 10.64 10.37 10.22	$\begin{array}{c} 0.23\\ 0.20\\ 0.18\\ 0.18\\ 0.18\\ 0.16\\ 0.16\\ 0.19\\ 0.17\\ 0.19\\ 0.12\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.15\\ \end{array}$	6.68 7.48 7.91 7.80 7.95 7.80 7.73 7.88 7.55 7.14 7.31 7.47 7.15 6.94 6.68 7.20	9.57 11.96 11.64 12.01 11.92 12.16 12.10 12.36 11.94 12.05 7.12 11.38 11.20 12.03 12.04 11.88 10.35	2.58 2.36 2.18 2.19 2.00 2.17 2.08 1.98 2.18 2.03 3.04 2.39 2.43 2.37 2.36 2.24 2.24	$\begin{array}{c} 0.08\\ 0.08\\ 0.05\\ 0.04\\ 0.05\\ 0.02\\ 0.06\\ 0.04\\ 0.06\\ 0.04\\ 0.06\\ 0.03\\ 0.03\\ 0.03\\ 0.06\\ 0.05\\ \end{array}$	$\begin{array}{c} 0.17\\ 0.18\\ 0.13\\ 0.12\\ 0.11\\ 0.12\\ 0.11\\ 0.12\\ 0.11\\ 0.13\\ 0.21\\ 0.14\\ 0.16\\ 0.15\\ 0.14\\ 0.14\\ \end{array}$	7.78 1.61 1.11 1.47 1.73 1.33 1.12 1.04 1.12 1.10 3.77 2.58 1.82 1.40 1.47 2.79 3.62	99,34 99,92 99,94 99,57 99,56 99,51 99,72 99,77 99,45 99,30 99,39 99,39 99,39 99,39 99,31 99,31 99,34	
Hole 482C									18		5		
$\begin{array}{l} 9\text{-1}, 121\text{-1}23\\ 10\text{-2}, 73\text{-7}5\\ 11\text{-1}, 138\text{-1}39\\ 11\text{-1}, 118\text{-1}17\\ 11\text{-2}, 16\text{-1}8\\ 11\text{-2}, 21\text{-2}4\\ 11\text{-3}, 141\text{-1}43\\ 12\text{-1}, 11\text{-1}3\\ 12\text{-2}, 95\text{-9}7\\ 13\text{-1}, 122\text{-2}4\\ 13\text{-1}, 122\text{-1}27\\ 13\text{-3}, 108\text{-1}10\\ 14\text{-1}, 40\text{-4}2\\ 14\text{-4}, 127\text{-1}29\\ 15\text{-1}, 44\text{-4}6\\ 15\text{-2}, 132\text{-1}34\\ 15\text{-3}, 97\text{-9}9\\ 15\text{-4}, 119\text{-1}21\\ \end{array}$	48.71 48.83 48.78 48.76 47.32 49.17 49.22 49.49 48.70 49.23 49.23 49.20 49.23 49.40 49.25 49.41 49.21 49.52 49.61	1.77 1.71 1.73 1.78 1.32 1.19 1.79 1.30 1.30 1.30 1.29 1.30 1.28 1.29 1.29 1.29 1.27 1.27	14.25 14.28 14.34 14.42 13.45 13.74 13.85 14.35 14.41 14.56 14.21 14.56 14.21 14.30 14.27 14.19 14.20 14.14 14.35 14.28	11.58 11.41 11.08 11.36 10.58 11.51 11.66 11.20 11.33 10.47 11.13 11.27 11.06 11.22 11.19 11.03 11.16	0.20 0.19 0.17 0.15 0.13 0.18 0.18 0.18 0.18 0.15 0.17 0.18 0.17 0.18 0.17 0.18 0.17 0.18 0.17	7.57 7.94 7.82 7.68 9.57 10.25 7.75 8.03 7.81 8.26 7.79 7.66 7.67 7.93 7.74 7.81 7.68	11.63 11.45 11.82 11.67 9.21 8.31 11.62 11.88 12.15 11.43 12.05 12.10 12.16 12.14 12.05 12.12 12.05 12.12 12.16	2.06 2.06 2.27 2.17 2.53 2.40 2.22 1.85 1.98 2.05 2.02 2.03 1.97 1.93 2.05 1.95 1.95 2.20	0.08 0.06 0.07 0.08 0.07 0.05 0.03 0.03 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.02 0.05	0.17 0.16 0.17 0.17 0.14 0.12 0.12 0.12 0.11 0.10 0.11 0.12 0.12	1.96 1.81 1.46 1.56 4.66 4.15 1.46 1.04 1.19 2.28 1.33 1.09 1.31 1.10 1.11 1.53 1.18 1.18	99.98 99.90 99.71 99.49 99.20 99.22 99.98 99.33 99.37 99.33 99.37 99.33 99.41 99.49 99.41 99.40 99.68 99.61	A A A A F F A B B B B B B B B B B B B B
Hole 482D									E.				
8-1, 30 8-1, 109-111 9-1, 48-50 9-3, 50-52 10-2, 52-55 10-2, 109-112 10-3, 14-16 10-3, 101-103 11-1, 135-137 12-1, 105-107 12-2, 50-52 12-2, 82-84 12-3, 118-120 13-1, 124-127 13-3, 4-6	46.24 48.93 49.21 48.93 49.31 49.30 49.36 48.49 48.65 48.88 49.09 49.31 49.35 49.02 49.07	1.79 1.75 1.78 1.80 1.76 1.77 1.90 1.41 1.41 1.39 1.29 1.29 1.27 1.34 1.31	14.35 14.04 13.86 13.90 13.84 13.95 13.89 14.80 14.32 14.44 14.15 14.17 14.43 14.73 14.13	10.90 11.51 11.59 11.84 11.60 11.40 11.92 11.05 11.10 11.17 11.24 11.17 11.06 10.51 11.16	0.25 0.19 0.20 0.20 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.16 0.17	6.40 7.57 7.70 7.44 7.64 7.72 7.51 7.29 7.86 7.90 8.09 8.02 7.64 8.24 8.67	10.56 11.84 11.80 11.73 11.78 11.54 11.54 11.33 11.99 11.91 11.84 12.10 12.00 12.18 11.42 11.57	2.08 2.06 2.17 2.39 2.42 2.35 2.65 2.52 2.35 2.24 2.26 2.17 2.24 2.21 2.24 2.41 2.36	$\begin{array}{c} 0.46\\ 0.04\\ 0.03\\ 0.05\\ 0.05\\ 0.07\\ 0.04\\ 0.05\\ 0.04\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.06\end{array}$	0.17 0.16 0.17 0.17 0.17 0.16 0.17 0.13 0.12 0.13 0.11 0.11 0.11 0.12 0.11	$\begin{array}{c} 5.61\\ 1.81\\ 1.46\\ 1.31\\ 1.39\\ 1.88\\ 1.32\\ 2.16\\ 1.73\\ 1.11\\ 1.25\\ 1.11\\ 1.04\\ 1.80\\ 1.60\\ \end{array}$	98.81 99.90 99.97 99.76 100.15 100.27 100.27 100.07 99.32 99.79 99.52 99.78 100.2	A A A A A E F F F B B B B B
Hole 482F									22				
4-3, 131-137	49.05	1.95	13.75	12.28	0.19	7.52	11.31	2.41	0.08	0.19	1.11	99.84	E
Hole 483 13-4, 17-19 14-1, 35-37 14-2, 12-14 15-1, 21-24 15-2, 96-98 15-3, 7-9 16-1, 114-115 16-1, 113-134 16-2, 58-60 16-3, 10-12 17-1, 64-66 17-3, 16-18 18-4, 103-105 18-4, 140-142 19-1, 6-8 20-1, 144-146 21-3, 88-88 21-2, 78-80 21-3, 53-55 22-1, 40-42 22-3, 88-40 22-4, 30-32 23-1, 12-14 23-1, 100-110	49.37 48.25 49.06 49.01 48.62 49.75 49.49 49.23 49.62 49.54 48.28 48.23 49.05 48.26 48.28 48.23 49.04 48.86 48.86 49.04 49.11 48.56 48.78 49.04 48.71 48.32 48.71 48.32 48.71	1.27 1.18 1.20 1.19 1.37 1.31 1.34 1.35 1.25 0.95 0.95 0.95 1.72 1.70 1.88 1.91 1.86 1.87 1.72 1.65 1.69 1.60 1.59	$\begin{array}{c} 15.83\\ 14.48\\ 14.63\\ 14.59\\ 14.58\\ 14.38\\ 14.31\\ 14.29\\ 14.32\\ 14.45\\ 16.12\\ 16.31\\ 16.10\\ 14.89\\ 15.16\\ 14.26\\ 14.70\\ 14.70\\ 14.70\\ 14.70\\ 14.51\\ 14.75\\ 15.13\\ 14.75\\ 15.13\\ 14.75\\ 15.03\\ 14.61\\ \end{array}$	10.85 10.54 10.42 10.49 10.29 10.87 10.86 11.16 11.18 10.60 9.53 9.47 9.46 10.27 10.35 12.31 11.66 12.15 12.20 11.76 11.35 11.48 11.39	$\begin{array}{c} 0.16\\ 0.23\\ 0.16\\ 0.17\\ 0.16\\ 0.17\\ 0.18\\ 0.18\\ 0.18\\ 0.16\\ 0.16\\ 0.16\\ 0.20\\ 0.20\\ 0.20\\ 0.22\\ 0.20\\ 0.22\\ 0.20\\ 0.17\\ 0.18\\ 0.19\\ 0.19\\ 0.19 \end{array}$	7.18 8.23 7.88 8.43 8.73 7.67 7.64 7.75 8.28 9.48 9.13 6.97 7.06 7.04 7.04 7.04 7.04 7.04 7.04 7.04 7.04	12.26 12.23 12.25 12.44 12.50 12.09 12.21 12.03 11.66 12.29 12.63 12.54 11.65 11.55 11.64 11.81 11.91 12.20 11.92 11.92	2.22 2.38 2.55 2.44 2.47 2.66 2.47 2.36 2.57 2.08 1.98 1.98 2.70 2.75 2.53 2.51 2.41 2.41 2.47 2.33 2.53 2.33 2.39 2.29 2.45	0.05 0.07 0.06 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02	$\begin{array}{c} 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.10\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.11\\ 0.10\\ 0.09\\ 0.09\\ 0.09\\ 0.19\\ 0.17\\ 0.18\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.16\\ 0.14\\ \end{array}$	1.04 2.08 1.53 1.04 1.18 1.18 1.18 1.11 1.18 0.97 1.46 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	100.34 99.78 99.85 99.89 99.89 99.89 99.69 99.67 99.92 100.13 100.43 100.58 100.39 99.86 100.08 99.86 100.04 100.14 100.14 100.01 99.32 100.01	A B B B C C C C 一 D D D E E F F F F?? F F F F??
23-2, 32-35 24-2, 58-60 25-1, 3-5	48.71 48.56 48.96	1.64 2.17 1.27	14.80 13.51 15.70	11.49 13.05 10.77	0.19 0.19 0.19	7.09 6.43 6.87	11.86 10.95 12.51	2.38 2.55 2.34	0.07 0.11 0.06	0.17 0.21 0.12	1.32 0.83 0.97	99.72 98.56 99.76	F' H H

Table 2.	(Continued)	
----------	-------------	--

Sample (interval in cm)	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃ b	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	LOIC	Total	Chemical Type
Hole 483													
25-1 67-69	48 48	2.17	14.58	11.81	0.18	7.07	11.01	2.58	0.07	0.22	1.87	100.04	н
26-1, 20-22	49.17	2.14	13.74	12.85	0.18	6.87	10.86	2.50	0.09	0.21	0.97	99.56	H
26-1, 128-130	48.27	2.19	14.39	12.01	0.19	7.02	10.75	2.66	0.11	0.21	1.88	99.68	н
26-3, 3-5	48.97	2.12	13.84	12.98	0.20	6.80	11.06	2.53	0.09	0.22	1.18	99.99	н
Hole 483B													
3-1, 49-50	49.16	1.24	15.55	10.97	0.17	7.23	12.34	2.35	0.05	0.10	0.69	99.85	A
3-1, 124-126	49.15	1.23	14.69	10.22	0.14	7.82	12.11	2.60	0.05	0.11	1.00	99.78	B
4-4, 50-53	49.24	1.21	14.85	9.95	0.17	7.00	11.80	2.04	0.00	0.11	1.52	99.87	c
8-1 46-48	48.08	0.95	15.99	9.47	0.16	9.37	12.15	2.24	0.03	d.08	1.88	100.40	D
9-1, 40-42	47.99	0.97	15.97	9.47	0.15	9.43	12.37	2.12	0.03	0.08	1.25	99.83	D
Bit-1, 1-3	48.50	1.56	14.95	11.32	0.19	7.23	11.99	2.44	0.08	0.15	1.53	99.94	I
12-1, 15-17	48.86	1.55	15.13	11.17	0.19	7.03	12.09	2.41	0.07	0.17	1.53	100.20	I
12-2, 94-96	48.01	1.72	14.17	11.69	0.21	7.38	11.96	2.52	0.04	0.14	1.66	99.50	I
13-1, 3-5	48.70	1.90	14.69	11.72	0.19	7.04	11.68	2.58	0.07	0.19	1.32	100.08	F
13-1, 145-147	48.40	1.83	14.31	12.09	0.19	6.91	11.55	2.38	0.14	0.18	1.18	99.10	F
13-2, 146-148	48.77	1.84	14.48	12.09	0.19	6.09	11.62	2.45	0.10	0.18	1.04	100.27	F
13-3, 133-137	48.94	1.03	13.04	12.17	0.19	7 27	11.03	2.50	0.06	0.19	0.83	99.66	F
17-1, 85-87	48.50	2.16	13.56	12.89	0.20	6.50	11.20	2.59	0.05	0.20	1.53	99.38	Ĥ
17-3, 7-9	48.95	2.09	13.65	12.92	0.21	7.09	11.25	2.63	0.05	0.20	1.18	100.22	H
18-1, 30-32	48.31	2.13	13.38	12.39	0.22	6.88	11.16	2.67	0.08	0.21	1.81	99.19	H
18-3, 45-48	47.37	2.13	14.04	12.53	0.21	6.76	11.50	2.54	0.09	0.21	2.36	99.70	H
19-1, 123-125	49.00	2.19	13.79	12.38	0.19	6.84	11.09	2.68	0.10	0.21	1.32	99.79	н
19-2, 122-124	48.55	2.13	13.73	12.93	0.19	6.80	10.98	2.67	0.08	0.21	1.22	99.49	H
20-2, 137-139	48.06	2.03	13.93	12.35	0.20	7.20	11.55	2.48	0.07	0.20	1.73	99.80	н
21-2, 100-102	49.34	1.66	14.34	11.77	0.20	7.51	12.04	2.29	0.07	0.16	0.69	100.07	1
22-1, 115-117	48.34	1.67	13.90	11.04	0.19	0.80	11.97	2.43	0.06	0.15	2.08	90.20	i
23-1, 95-97	48.24	1.03	14.60	11.53	0.18	7.15	12.01	2.42	0.05	0.14	1 11	00.85	í.
23-4 69-71	40.01	1.03	13.91	12.11	0.19	7 31	11 69	2.56	0.09	0.16	0.90	99.54	ĸ
24-2, 11-14	47.90	1.88	14.62	10.66	0.20	6.92	11.68	2.66	0.10	0.18	3:34	100.14	K
25-3, 10-12	48.64	1.91	14.15	12.25	0.18	6.50	11.62	2.88	0.08	0.17	1.39	99.77	K
26-2, 96-100	47.71	1.87	14.71	11.19	0.17	6.79	11.07	2.88	0.12	0.16	3.06	99.73	K
26-2, 145-147	48.10	1.82	14.73	11.17	0.17	7.36	10.08	2.81	0.11	0.16	2.84	99.35	K
27-3, 85-87	49.30	1.85	13.94	12.42	0.18	7.06	11.47	2.48	0.08	0.16	1.11	100.05	K
28-1, 66-68	49.14	1.71	14.11	11.78	0.18	7.54	11.70	2.43	0.08	0.15	1.25	100.07	K
30-1, 31-34	49.01	1.75	14.46	11.37	0.21	7.45	11.72	2.56	0.07	0.16	1.10	99.80	K
31-2, 86-89	48.42	1.58	14.39	11.51	0.22	7.30	11.84	2.33	0.18	0.15	1.20	99.23	K.
32-3, 62-64	48.95	1.59	15.25	12.14	0.17	7.06	11.68	2.30	0.17	0.14	0.76	99.38	ĸ
Hole 483C													
4-2, 110	49.77	1.32	14.39	11.22	0.17	7.57	12.26	2.53	0.04	0.11	0.90	100.28	
4-5, 103-105	49.68	1.32	14.29	11.24	0.17	7.37	12.12	2.64	0.05	0.11	1.04	100.03	
Hole 484													
7-1, 5-7	47.62	2.06	15.69	11.38	0.19	5.49	11.68	2.73	0.32	0.21	1.93	99.30	÷
Hole 485A													
11-3, 82-83	47.06	1.42	15.42	10.27	0.15	9.62	11.34	2.44	0.02	0.10	1.80	99.64	222
12-1, 62-64	48.74	2.08	13.33	13.23	0.21	6.94	11.41	2.40	0.04	0.19	0.83	99.40	
13-1, 103-105	48.59	1.95	13.58	12.85	0.20	6.90	11.46	2.31	0.05	0.18	1.32	99.39	
17-1, 112-114	48.19	2.17	14.39	12.28	0.17	6.81	10.83	2.51	0.06	0.20	1.73	99.34	550
23-1, 118-120	48.21	2.16	14.25	12.63	0.18	6.86	10.93	2.48	0.08	0.20	1.46	99.44	
24-1, 89-91	48.02	2.10	14.70	12.40	0.18	7.10	11.4/	2.49	0.07	0.18	1.11	99.55	-
20-0, 14-10	40.33	2.10	13 71	12.49	0.19	7.40	10.70	2.30	0.11	0.20	1.40	99.08	TT
29-4 62-64	48.52	2.17	12.98	13.09	0.18	7 53	10.70	2.41	0.07	0.19	1 50	99.94	
30-1, 39-41	48.87	2,20	13.04	13.08	0.20	7.32	11.10	2.25	0.06	0.19	1.32	99.63	
30-3, 103-105	48.62	2.04	14.58	12.35	0.19	6.48	10.92	2.55	0.07	0.20	1.18	99.18	
31-2, 81-83	48.83	1.80	14.10	11.67	0.19	7.68	11.89	2.33	0.12	0.17	1.11	99.89	
35-1, 83-85	49.14	1.72	14.29	11.86	0.17	7.72	11.72	2.38	0.05	0.18	0.65	100.22	
35-6, 10-12	49.14	1.81	13.96	12.21	0.18	7.58	11.51	2.38	0.07	0.19	0.63	100.01	
39-4. 8-10	48.69	1.80	14.77	12.03	0.18	7.33	11.29	2.17	0.19	0.19	0.63	99.90	

a Values shown in wt.%. b Fe₂O₃ as total iron.

 $^{\circ}$ LOI = loss on ignition at 1050°C; heated to 110°C for 1 hr. prior to determination of loss on ignition.

the Cr and Ni concentrations (517 and 220 ppm, respectively), which are similar to the theoretical values for a primitive liquid and to observed concentrations in the most primitive glass samples recovered in the FAMOUS area (Cr: 600 ppm; Ni: 250 ppm; Bougault et al., 1979). Thus the process of fractional crystallization is observed through high partition coefficient elements (such as Cr and Ni), but the observed concentrations of these elements also indicate that some of the liquids have evolved along independent paths in terms of the proportions of olivine and clinopyroxene removed. These observations, together with the absence of a correlation between the degree of fractionation on the one hand and either the distance from the axis or the depth in the crust on the other seems to argue for the existence of several magma chambers rather than a single large magma chamber under the ridge (O'Hara, 1977; Bryan and Thompson, 1979).

It should also be noted that if all of the liquids represented by the basalts in this study had been derived from the same magma chamber, we should observe an inverse correlation between Mg, Ni, and Cr on the one hand

Table 3. Trace element composition of basalts.^a

Fomale	Chaminal								Co	1	Ni					Zr									
(interval in cm)	Type	Sc	Ti	v	Cr	Mn	Fe	XRF	NAA	XRF	NAA	Zn	Rb	Sr	Y	XRF	Nb	Cs	La	Eu	Tb	Hf	Та	Th	U
Hole 482B 10-7, 14-16 11-1, 23-25 12-2, 135-137 14-2, 121-124 15-1, 135-139 15-3, 117-119	A A F B B	40	10,620 10,560 10,440 8,340 7,800 7,560	335 344 345 293 324 307	281 292 293 260 192 184	1781 1549 1394 1394 1394 1239	91,350 79,730 81,270 77,490 76,930 76,650	42 41 41 43 44 41	44	65 74 73 98 58 57	71	75 80 70 71 74 73	<1 <1 <1 <1 <1 <1	107 111 107 91 92 94	44 47 46 37 37 35	103 119 n.d. 84 80 81	2.5 3.0 2.0 1.5 1.0 2.5	0.06	3.08	1.38	0.9	3.11	0.14	0.08	0.04
16-1, 36-38 17-2, 111-113 18-1, 18-20 18-2, 99-101 19-1, 96-100 20-3, 24-26	B B D' C D'	38 41	7,620 7,800 7,800 9,240 13,200 9,240	309 309 314 339 464 371	176 187 178 197 150 199	1239 1471 1316 1471 929 1239	76,580 79,450 78,820 82,670 80,920 69,790	43 43 44 43 47 43	45 47	63 60 64 51 67	55 58	65 73 73 79 79 81	<1 <1 <1 <1 <1 <1	93 94 93 90 119 97	35 36 35 43 50 43	84 79 83 101 151 103	1.3 1.8 1.5 1.0 2.0 1.3	0.01 0.04	1.79 2.14 2.38	1.14 1.06	0.67 0.71	1.98 2.13	0.08 0.09	0.05 0.05	0.06 0.03
21-1, 62-64 21-3, 74-76 22-2, 34-36 22-4, 34-36 24-1, 93-95	D''' D''' D''' D'''	39 42	9,660 9,360 9,060 9,780	305 305 296 385	241 228 263 193	1239 1316 1239 1239 1162	74,550 74,480 72,590 71,540	40 39 38 39 46	42 46	62 61 71 63	62 66	69 74 67 63 80	<1 <1 <1 <1	112 126 125 125 96	50 41 41 40 44	116 116 106 108	1.5 1.5 1.0 2.0	0.01	2.97	1.35	0.83	2.88	0.10	0.06	0.06
Hole 482C	. 5	100					140			22	00						2.0								
9-1, 121-123 10-2, 73-75 11-1, 115-117 11-1, 138-139 11-2, 16-18 11-2, 21-24 11-3, 141-143	A A A F F	39 40	10,620 10,260 10,680 10,380 7,920 7,140 10,740	361 353 365 344 292 261 329	277 288 323 357 361 376 294	1549 1471 1316 1316 1162 1007 1394	81,060 79,870 79,520 77,560 74,060 80,570 8,160	40 42 43 41 38 37 41	43 45	67 72 81 84 79 80 72	72 77	85 73 70 70 40 26 67	<1 <1 <1 <1 <1 <1 <1 <1	110 106 114 111 92 84 113	48 45 48 36 30 48	125 121 127 122 88 75 120	2.5 1.5 3.0 2.5 0.5 1.0 1.5	0.6 0.06	2.9 2.9	1.35 1.42	0.89 0.91	3.1 3.05	0.13 0.14	0.09 0.09	0.04
$\begin{array}{c} 12\text{-1}, 11\text{-13}\\ 12\text{-2}, 95\text{-97}\\ 13\text{-1}, 22\text{-24}\\ 13\text{-1}, 125\text{-127}\\ 13\text{-3}, 108\text{-110}\\ 14\text{-1}, 40\text{-42}\\ 14\text{-4}, 127\text{-129}\\ 15\text{-1}, 44\text{-46}\\ 15\text{-2}, 132\text{-134}\\ 15\text{-3}, 97\text{-99}\\ 15\text{-4}, 119\text{-121}\\ \end{array}$	B B B B B B B B B B B B	39	7,800 7,800 7,800 7,740 7,800 7,680 7,680 7,620 7,620 7,620 7,620 7,620	310 305 325 311 307 287 306 305 292 307 305	182 172 177 175 172 163 195 180 170 174 191	1397 1397 1162 1316 1394 1316 1394 1316 1394 1394 1394	78,400 79,310 73,290 77,910 78,890 77,420 78,540 78,540 78,330 77,210 78,120 77,700	42 41 42 40 43 40 41 40 41 41 40	44	59 58 55 56 57 54 57 58 59 56 60	57	75 69 65 71 70 64 59 68 72 65 65	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	93 94 93 93 93 94 92 92 92 92 92	35 36 35 36 36 36 35 35 35 35 34	81 87 80 76 78 81 75 80 75 74 82	1.0 2.0 2.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0	0.2	1.84	1.03	0.68	2.05	0.09	0.06	0.20
Hole 482D																									
8-1, 30 8-1, 109-111 9-1, 48-50 9-1, 50-52 10-2, 53-55 10-2, 109-112	A A A A	41	10,740 10,500 10,680 10,800 10,560 10,620	340 355 357 357 341 346	306 268 301 293 288 287	1936 1471 2549 1549 1471	76,300 80,570 81,130 82,880 81,200 79,800	38 43 42 43 40	44	60 70 73 71 71 73	71	75 74 83 72 79 76	4.4 <1 <1 <1 <1	104 111 107 109 108	44 46 48 47 46	111 119 120 124 127 122	2.0 2.5 3.0 2.5 2.5	0.11	3.1	1.5	0.86	3.36	0.14	0.1	0.05
10-3, 14-16 10-3, 101-103 11-1, 135-137 12-1, 105-107 12-2, 50-52	E F F B	42 38 36	11,400 8,460 8,340 7,740	360 306 307 303 316	265 279 266 253 198	1471 1394 1394 1394 1394	83,440 77,350 77,700 78,190 78,680	42 43 44 42 43	45 46 44	65 99 86 96 63	66 98 87	80 73 77 74 73	<1 <1 <1 <1 <1	108 91 94 97 93	51 38 37 38 36	110 124 127 122 133 91 91 84 78 79	1.5 1.5 1.5 3.0 3.0	0.05 0.08 0.06	3.3 2.26 2.0	1.31 1.23 1.10	1.07 0.75 0.73	3.52 2.38 2.23	0.15 0.09 0.10	0.12 0.06 0.07	0.23
12-2, 82-84 12-3, 118-120 13-1, 127-129 13-3, 4-6	B B B B	38 40	7,740 7,620 8,040 7,860	317 293 340 314	188 164 188 163	1316 1316 1239 1316	78,190 77,420 73,570 78,120	44 41 43 43	45 45	63 59 64 61	57 57	65 79 70	<1 <1 <1	91 95 99 95	35 36 37	83 80 85	2.5 1.0 2.5	0.03	2.05 1.90	0.98 0.98	0.68 0.68	2.21 2.09	0.08 0.09	0.04 0.05	
Hole 482F																									
4-3, 131-137	E	40	11,700	360	212	1471	85,960	43	44	64	59	80	<1	113	51	135	2.5	0.04	3.2	1.61	1.00	3.4	0.15	0.10	0.07
Hole 483	A		7,620	311	174	1,239	75,950	40		70		73	<1	993	34	74	1	0.14		1.04	0.50	1.94	0.10	0.04	
14-2, 12-14 15-1, 21-24 15-2, 96-98 15-3, 7-9 16-1, 114-115 16-1, 133-134 16-2, 58-60 16-3, 10-12 17-1, 64-66 17-3, 16-18 18-4, 103-105 18-4, 140-142	BBBCCCCC DDDE		7,200 7,140 7,140 8,220 7,860 8,040 8,100 7,500 5,820 5,700 5,700 10,320	275 256 261 298 288 291 304 300 217 208 215 288	373 380 378 241 258 242 238 320 358 333 348 300	1,316 1,239 1,316 1,239 1,316 1,394 1,394 1,394 1,394 1,394 1,239 1,316 1,239 1,219 1,219	72,940 72,940 73,430 72,030 76,090 76,020 78,120 78,260 74,200 66,710 66,290 66,220 71,890	42 43 42 40 44 43 42 45 44 44 44 43 41		73 71 68 57 58 57 57 61 107 106 112 89		62 56 59 73 62 70 74 69 52 51 58 73		114 113 114 97 94 94 94 103 97 134 101 166	31 31 30 36 34 36 33 26 25 25 25 41	75 77 78 79 75 75 80 75 80 72 57 61 60 124	2 1 2 1.5 1.5 1.5 1.5 1.5 0.5 0.0 3	1							
19-1, 6-8 20-1, 39-40 20-1, 144-146 21-1, 86-88 21-2, 78-80 21-3, 53-55 22-1, 40-42 22-2, 84-87 22-3, 38-40 22-4, 30-32 23-1, 12-14 23-1, 108-110 23-2, 32-35	E F F F F G F F F F F F F F F F F F F F	39	10,200 11,280 11,460 11,160 11,220 10,680 10,320 9,990 10,140 9,600 10,200 9,540 9,840	303 354 385 372 370 362 337 340 350 321 335 311 333	296 188 192 198 205 222 274 297 316 283 248 278 258	1,239 1,549 1,549 1,704 1,549 1,704 1,549 1,471 1,316 1,394 1,471 1,471 1,471	72,450 86,170 81,620 85,050 85,540 84,070 82,320 79,660 79,660 79,450 80,360 80,360 80,430	42 43 45 43 43 42 42 44 41 41 41 42	44	88 66 67 67 68 78 82 89 91 77 98 77	82	73 86 90 91 88 85 83 81 86 78 81 68 80		166 101 106 101 100 98 96 102 99 103 99 101	41 49 51 49 50 47 46 45 46 42 45 43 44	128 132 138 131 134 124 123 116 126 105 120 113 118	3 2 3.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	0.05	3.1	1.06	0.81	3.12	0.16	0.14	
24-2, 58-60 25-1, 3-5	H	41 38	13,020 7,620	390 293	162 180	1,471 1,471	91,350 75,390	44 40	46 44	70 64	71 64	90 70	<1 <1	105 89	54 33	155 71	3 1.5	0.04	4.5 1.77	1.38 0.95	1.09 0.60	3.94 2.04	0.23 0.08	0.19 0.06	0.07 0.04
25-1, 67-69 26-1, 20-22 26-1, 128-130 26-3, 3-5	H H H	43	13,020 12,840 13,140 12,720	440 395 430 386	169 163 182 155	1,394 1,394 1,471 1,549	82,670 89,950 84,070 90,860	48 42 46 43	47	77 68 67 63	70	98 88 95 87	<1 <1 <1	114 104 109 104	56 55 56 55	156 158 156 150	4 3.5 3.5	0.04	4.3	1.59	1.15	3.98	0.22	0.19	0.28

627

P. CAMBON, H. BOUGAULT, J. L. JORON, M. TREUIL

Table 3. (Continued).

Samola	Chamical								Co	1	Ni					Zr									
(interval in cm)	Туре	Sc	Ti	v	Cr	Mn	Fe	XRF	NAA	XRF	NAA	Zn	Rb	Sr	Y	XRF	Nb	Cs	La	Eu	ть	Hſ	Та	Th	U
Hole 483B																									
3-1, 49-50	A	36	7,440	290	176	1,316	76,790	40	44	65	62	68	<1	88	33	67	1.5	0.06	1.7	1.09	0.66	1.97	0.08	0.05	0.04
3-1, 124-126	в		7,380	280	370	1,084	71,540	42		71	68	58	<1	116	31	75	2								
4-4, 50-53	в		7,260	270	381	1,316	69,650	43		72		51	<1	114	32	75	2								
7-2, 48-50	C		8,040	281	243	1,471	80,080	42		60		65	<1	105	35	78	2								
8-1, 46-48	D		5,700	207	351	1,239	66,290	44		115		55	<1	93	26	62	1								
9-1, 40-42	D		5,820	199	336	1,162	66,290	42		107		50	<1	98	40	28	0.5								
BIT-1, 1-3	1		9,300	307	209	1,4/1	79,240	43		74		74	<1	110	40	104	3.5								
12-1, 13-17	1	47	9,300	355	213	1,471	81 830	42	46	66	66	81	~1	115	44	113	4	0.02	29	1.3	0.93	2.95	0.15	0.11	
13-1. 3-5	F	45	11,400	379	211	1.471	82.040	45		71	00	88	<1	106	51	135	2.5	0101			0170				
13-1, 145-147	F		10,980	348	209	1.471	84,630	43		75		77	<1	102	48	135	2								
13-2, 146-148	F		11.040	363	214	1,471	84,630	42		67		84	<1	102	50	140	3								
13-3, 135-137	F	41	10,980	354	210	1,471	85,190	41	45	69	72	83	1	105	50	136	3.5	0.06	3.7	1.52	1.05	3.62	0.19	0.16	
14-2, 44-46	F		11,760	390	216	1,549	87,360	45		66		88	<1	102	52	140	4.5								
17-1, 85-87	н		12,960	387	166	1,549	90,230	44		64		87	<1	107	55	156	3.5								
17-3, 7-9	н		12,540	385	176	1,626	90,440	44		65		83	<1	105	54	153	3.5								
18-1, 30-32	н		12,780	412	165	1,704	86,730	43		62		87	<1	107	55	157	4								
18-3, 45-48	н		12,780	425	171	1,626	87,710	46		65		92	<1	108	50	156	4.5								
19-1, 123-125	н		13,140	410	158	1,471	86,660	44		39		91	<1	109	38	101	4								
19-2, 122-124	н		12,780	401	100	1,4/1	90,510	44		60		96	<1	105	51	132	2								
21-2, 137-139	1		0.060	251	249	1,549	87 200	44		63		82	21	108	42	108	2								
22-1 115-117	1		10 020	340	215	1 471	81 480	44		59		76	<1	107	41	107	2								
23-1, 95-97	Ĵ		9,780	334	218	1.394	79.310	43		54		78	<1	108	41	106	2								
23-3, 29-31	J	38	9,780	336	218	1,471	80,780	44	44	69	74	79	<1	109	40	106	2.5	0.04	3.3	0.99	0.80	2.73	0.15	0.11	0.18
23-4, 69-71	K		10,680	361	205	1,549	84,770	45		67		81	<1	109	45	118	2.5								
24-2, 11-14	K		11,280	394	195	1,549	74,620	46		68			<1	119	48	121	2.5								
25-3, 10-12	K		11,460	359	154	1,394	85,740	43		54		85	<1	114	48	130	2.5								
26-2, 96-100	K		11,220	390	197	1,316	78,330	46		66		92	<1	119	47	121	3								
26-2, 145-147	K		10,920	379	198	1,316	78,190	48		68		85	1	115	46	117	3.5								
27-3, 85-87	K		11,100	353	166	1,394	86,940	43		61		84	<1	100	48	120	3 5								
28-1, 00-08	K.	20	10,260	352	255	1,394	82,460	41	47	100	111	08	-1	112	45	118	3.5		37	1 47	0.9	3.05	0.18	0.15	0.34
31-2 86-89	K'	39	9 480	321	358	1 703	80 570	45	47	128	111	74	27	110	41	99	3.5		2.11	1.47	0.7	5.65	0.10	0.12	0121
32-1, 135-137	K'	38	9.540	333	354	1.316	70,000	44	48	123	125	76	<1	121	41	110	2		3.2	1.12	0.75	2.66	0.17	0.19	0.13
32-3, 62-64	ĸ	20	10,920	374	185	1,703	84,980	46		68		93	2.9	106	47	122	2								
Hole 483C																									
4-2, 110		41	7,920	298	179	1,316	78,540	42	48	67	60	65	<1	109	34	89	2	0.05	2.04	1.24	0.7	2.18	0.08	0.05	
4-5, 103-105			7,920	288	169	1,316	78,680	43		70		64	<1	108	34	84	1								
Hole 484A			12 260	220	276		70 ((0			101	102	06	2.2	161	47	140	-	0.08	6.5	1.69	1.0	3 76	0.58	0.45	0.73
/-1, 3-7		40	12,360	320	2/5	1,4/1	79,660	41	44	101	102	80	2.2	101	47	140		0.00	0.5	1.02	1.0	3.70	0.50	0.45	0.75
1010 48574		5.5	12.222	2013	225	120226			52	100	2025	100	2		2.2	632	22	5 E	1000		100	2.22	1000		
11-3, 82-83		36	8,520	244	517	1,162	71,890	47	49	220	230	62	<1	135	35	90	1.5	20	2.5	1.28	0.65	2.37	0.07	0.05	0.05
12-1, 02-04		42	12,480	432	10/	1,020	92,610	40	45	09	62	92	<1	90	57	134	3.0	0.7	3.5	1.02	1.07	3.12	0.12	0.05	
17.1 112-114		41	13.020	408	252	1,349	85 060	44	40	101	05	90		105	55	152	2.0	0.12	2.0	1.55	1.10	4.00	0.12	0.03	
23-1, 118-120		45	12,960	381	212	1.394	88 410	43	40	84		80	~1	109	56	145	3.4	0.14	2.2	1.00	1.1.4	4.00	0.10	0.14	
24-1, 89-91			11.820	385	276	1.394	81,200	42		90		74	<1	105	51	136	3.0								
25-3, 14-16		42	12,600	384	230	1,549	87,430	43	44	91	86	82	<1	155	55	144	2.0	0.30	3.5	1.6	1.18	3.88	0.18	0.13	
29-2, 122-124			13,020	390	267	1,394	89,600	43		91		85	1.9	94	57	142	2.5								
29-4, 62-64		46	13,020	419	294	1,626	91,630	42	45	65	62	88	1.0	94	57	143	2.0	0.17	3.95	1.62	1.16	3.83	0.18	0.11	
30-1, 39-41		11104	13,200	411	335	1,549	91,560	40	20	59		87	<1	97	57	142	2.0	5-019-00	-2-007-9	101060		2.500.12 12.0472	11000000000	1.272.021	
30-3, 103-105		38	12,240	348	266	1,471	86,450	40	42	75	78	74	<1	106	56	151	1.0	0.11	3.60	1.41	1.09	3.81	0.17	0.13	0.03
31-2, 81-83		43	10,800	351	458	1,471	81,690	40	44	102	105	77	2	96	49	119	4.5	0.26	3.2	1.26	0.87	3.22	0.14	0.01	
35-1, 83-85			10,320	337	262	1,316	83,020	41		67			<1	99	45	108	1.7								
39-4, 8-10			10,860	347	253	1,394	85,470 84,210	42		14			<1	100	46	112	1.4								

Note: XRF = X-ray fluorescence; NAA = neutron activation analysis.

^a Values shown in ppm.

and Ti and the hygromagmaphile elements on the other: this is obviously not the case. The absence of such a correlation was interpreted by Rhodes et al. (1979) to result from the mixing of a new primitive liquid with differentiated liquids. Such an explanation is possible, but it cannot apply to large, long-lived magma chambers (Bryan and Thompson, 1979) which are continually fractionating and being refilled by new primitive liquid. Such a process would imply higher and higher concentrations of hygromagmaphile elements: since these elements are trapped in the liquid, long-life magma chambers would be factories for hygromagmaphile element enrichment.

Finally, we note that the spectrum of hygromagmaphile elements observed in the cores recovered during Leg 65 from a portion of the East Pacific Rise where the opening rate is about 6 cm/y. is very similar to the spectrum observed at 22°N in the Atlantic Ocean (opening rate: 2 cm/y.). The idea of the lifetime of a magma chamber as a function of spreading rate is therefore not supported by evidence from trace element geochemistry.

In summary, trace element studies of the basalts recovered on Leg 65 provide the following:

1) Evidence of the removal of olivine, spinel, and(or) clinopyroxene in proportions which varied from unit to unit;

2) No evidence of a clear correlation between the degree of fractionation and either distance from the axis or depth in the crust; and

3) A spectrum of hygromagmaphile elements similar to that observed for the Mid-Atlantic Ridge at 22°N. Qualitatively, these observations support the existence of discrete magma chambers. Until they have been quantified, however, we would not like to say that large

Type

Figure 1. Chemical units vs. depth in Holes 482B, 482C, and 482D.

magma chambers living for a long period of time do not exist. Nevertheless, any model involving large magma chambers will have to account for the apparently incompatible distribution of some of the elements observed in this study and for the field relationships observed between chemical types.

HYGROMAGMAPHILE ELEMENT GEOCHEMISTRY

On the basis of the classification scheme for the hygromagmaphile elements proposed by Bougault et al. (1979) and their chemical properties, the elements in the

Figure 2. Chemical units vs. depth in Holes 483 and 483B.

pairs Nb-Ta, Zr-Hf, and Y-Tb fractionate very little with respect to each other during magma genesis; this property is well known for Y, the position of which coincides with that of Tb in Coryell-Masuda rare-earth element diagrams. The Nb/Ta, Zr/Hf, and Y/Tb ratios in the basalts are close to the ratios observed in "primordial chondritic earth" material (17, 40, and 46, respectively).

From Tables 4 and 5, in which the average trace element compositions of the chemical types at each site are reported, it is readily seen that all of the Zr/Hf ratios lie between 38 and 40, which confirms that the ratio found previously for oceanic tholeiites is independent of mantle heterogeneity. The Y/Tb ratio is close to 50, which is higher than the presently accepted mean value of 46 for chondrites. We note that this ratio is the same as that which can be deduced from the Leg 54 data (Joron et al., 1980). Nonetheless, before any explanation of this apparent difference is attempted, we must examine for possible sources of analytical error.

A single Nb determination by XRF techniques is accurate to about ± 1 ppm: for this reason, it is not possible to calculate a Nb/Ta ratio from a single analysis if the sample has an Nb concentration of between 1 and 4 ppm. The average Nb value for each homogeneous unit is known to about 0.5 ppm, but this precision is still not sufficient for a Nb/Ta calculation. The Nb/Ta ratio can be determined statistically, however, from the average values for each type using the least-squares method as indicated in Figure 3. The Nb/Ta ratio found by this method is 16.4, which is very close to the value of 17 observed in the Atlantic Ocean, indicating that this ratio is also independent of any mantle heterogeneity.

Except for the small discrepancy observed for the Y/Tb ratio (which is probably analytical), the ratios of the pairs of elements which do not fractionate during magma genesis (Nb/Ta, Zr/Hf, and Y/Tb) are the same for the Atlantic and Pacific Oceans and represent the

ratios for a primordial homogeneous Earth of chondritic composition.

Two different La/Ta ratios have been found to date: 9, which corresponds to a rare-earth element distribution which is either flat or reflects light rare-earth element enrichment, and 18, which reflects light rare-earth element depletion. In the Atlantic, a ratio of 9 has been found for the FAMOUS area, for 45°N, and for the Reykjanes Ridge, and a value of 18 has been found on each side of the Mid-Atlantic Ridge at 22°N (Legs 45 and 46) and at 25°N on 110 m.y. old crust (Legs 51, 52, and 53). In the Pacific Ocean, a value of 9 has been found for rocks from the Emperor Seamount chain (Leg 55, Cambon et al., 1980) and 18 was measured on the East Pacific Rise (Leg 54, Joron et al., 1980). The average values of the La/Ta ratio for the chemical types at Sites 482 and 483 are plotted in Figure 4: the value of 20 determined by the least-squares method is close to that associated with the Leg 54 basalts at 9°N and indicates light rare-earth element depletion.

Recently, the classification of those elements whose ions have a rare-gas electron structure has been improved by taking theoretical considerations into account (Bougault, 1980) and by incorporating the results of comparative geochemical studies. The hygromagmaphile character of an element not only depends upon its ion size but also upon its ability to form complexes in the liquid (Ringwood, 1955; Treuil, 1973). The hygromagmaphile character, Φ , of an element is described by the relation,

$$\Phi = [a(\Delta R_{\rm i})^2 + 1] + \phi, \qquad (1)$$

Table 4. Average trace element composition, \bar{x} , of chemical types at Site 482.^a

Che	Chemical							0	Co	1	Ni														
Type S	Sc	Ti	v	Cr	Mn	Fe	XRF	NAA	XRF	NAA	Zn	Rb	Sr	Y	Zr	Nb	Cs	La	Eu	ть	Hf	Ta	Th	U	
A	x	40	10,570	351	295	1,405	80,333	41.3		72.8		75.9	<1	108.6	46.6	122.6	2.4	-	3.0	1.41	0.89	3.16	0.14	0.09	0.04
	a		155	8	24	156	1,925	1.4		5.2		5.1		2.7	1.3	3.0	0.5		0.1	0.07	0.02	0.14	0.01	0.01	
в	\bar{x}	39.2	7,737	309	179	1,335	77,812	42		58.7		68.7	<1	93.1	35.5	79.7	1.8	-	1.94	1.04	0.68	2.09	0.09	0.05	
	0	1.3	113	12	10	73	1.291	1.4		2.6		4.3		1.1	0.8	3.0	0.6		0.15	0.07	0.02	0.09	0.01	0.01	
F	x	38	8,400	301	264	1,394	77,682	43		95		73.7	<1	93.2	37.5	87.5	1.5	-	2.1	1.15	0.74	2.3	0.1	0.07	
	σ		69	6	11		367			6		2.5		2.9	0.6	4.0									

^a Values shown in ppm; *a* represents one standard deviation.

Table 5. Average trace element composition, \bar{x} , of chemical types at Site 483.^a

Chemi	cal							0	Co	1	Ni														
Тур	e	Sc	Ti	v	Cr	Mn	Fe	XRF NAA XRF NAA Zn	Zn	Rb	Sr	Y	Zr	Nb	Cs	La	Eu	Tb	Hſ	Та	Th	U			
A	x	36	7500	300	175	1300	76200	40		67		70	<1	90	33	70	1	-	1.7	1.1	0.66	1.97	0.08	0.05	
в	x	37	7200	268	375	1300	72230	42		71		60	<1	113.5	31	76.3	1.9	-	1.7	1.04	0.6	1.84	0.1	0.4	
	σ		107	9	5		1520			2				2	0.8	1.5	0.5								
C	x		8052	292	244	1400	77715	43.2		58		70	<1	95	35.4	77	1.5								
	σ		130	9	8		1700	1.3		1.3					0.9	2									
D	x		5750	210	345	1250	66300	43		109		53	<1	97	25.4	60	0.5								
	σ		66	7	10					4				3	0.9	2	0.4								
F	x		11250	368	205	1500	84750	43		68.4		87	<1	103	50	136	2.9	-	3.7	1.52	1.05	3.62	0.19	0.16	
	σ		256	15	10			1.4		3				2	1	3	0.8								
F'	\overline{x}		9934	332	279	1450	80000	42		84		80	<1	99	44.4	117	2.3		3.1	1.06	0.81	3.12	0.16	0.14	
	σ		300	12	23			1		8				2	1.5	7	0.5								
н	$\widehat{\mathbf{x}}$		12825	405	166	1500	88135	44		66		90	<1	106	55	155	3.9		4.4	1.5	1.12	3.96	0.22	0.19	
	σ		270	18	8		2860	1.6		5		4		3	1	3.6	0.5								
1	\overline{x}		9885	340	219	1500	80500	44		61		79	<1	108	41	107	2.3	-	3.3	0.99	0.8	2.73	0.15	0.11	
	σ		123	7	4					6				1	1	1	0.5								
K	x		11150	374	186	1400	83000	45		64		87	<1	114	47	123	2.7	-							
	σ		212	16	19			2.5		6		5		5	0.8	5	0.5								

^a Values shown in ppm; *o* represents one standard deviation.

Figure 3. Least-squares determination of Nb/Ta ratio for Sites 482 and 483, using average values for each chemical type.

Figure 4. Least-squares determination of La/Ta ratio for Sites 482 and 483, using average values for each chemical type.

where ΔR_i is the difference between the major and trace element ionic radii, ϕ is the ionic potential of the trace element, and *a* is a parameter which defines the relative importance of the two functions, ΔR_i and ϕ , which are responsible for the hygromagmaphile character of the element. According to this relation, ΔR_i is thus a measure of the inability of an element to enter into a crystal structure and ϕ is a measure of its ability to form complexes in a magma. This theoretical approach, which is in perfect agreement with the results of comparative geochemical studies, leads to the classification of hygromagmaphile elements indicated on the *x* axis of Figure 5. This classification is also in agreement with the classification chosen by Wood (1979). In an extended Coryell-Masuda diagram, which includes both rare-earth elements and nonrare-earth elements, it can be observed not only that Y has to be plotted very close to Tb, but that Hf, Zr, and Ti plot close to Sm and that Ta and Nb plot close to La. It can also be seen that V is the least hygromagmaphile and Th the most hygromagmaphile element. In this diagram, the nonrare-earth elements plot on the same continuous line as the rare-earth elements and with the same precision.

As can be seen in Figure 5, Chemical Types A and B at Site 482 show a typical "light rare-earth" depleted pattern consistent with the La/Ta ratios discussed above. For these patterns, the normalized concentrations of Ta and Nb are lower than the La normalized concentrations by a factor of 2. Sample 482B-19-1, 96-100 cm has the highest absolute concentrations of hygromagmaphile elements; although only XRF data are available, it is evident from the Nb concentration that this sample also shows the characteristic "light rare-earth" depleted pattern. Chemical Types B, D, H, and J at Site 483 are plotted in Figure 6. Types H and J very probably show a negative Eu anomaly. Type D, for which only XRF data are available, also shows a "light rare-earth" depleted character, its Nb value being the lowest in Hole 483. The most primitive basalt encountered in Hole 485 (Sample 483-11-3, 82-83 cm) and another representative sample from the same hole are plotted in Figure 7.

It can be concluded that all of the samples recovered during Leg 65 were derived from typical mantle material depleted in the highly hygromagmaphile elements: their La/Ta ratios are close to 18; the samples are similar in all respects to the basalts collected during the CYAMEX expedition (1981); and they show the same extended Coryell-Masuda patterns as the Leg 54 samples from 9°N.

Figure 5. Extended Coryell-Masuda diagram for Chemical Types A, B, and C at Site 482. (Values shown for A and B represent average concentrations; Type C is represented only by Sample 482-19-1, 96-100 cm, for which only XRF data are available. The ordinate positions for Nb-Ta and La are shown on the left of the figure for Types A and B. The error bar for Nb is shown for Sample 482-19-1, 91-100 cm as a vertical bar.)

Figure 6. Extended Coryell-Masuda diagram for Chemical Types B, D, H, and J at Site 483. (Values shown represent average concentrations.)

Figure 7. Extended Coryell-Masuda diagram for Samples 485-11-3, 82-83 cm and 485-29-2, 122-124 cm.

These results, when compared with those from the Atlantic, suggest that large regions of the mantle are chemically homogeneous.

CONCLUSIONS

From the major and trace element data presented above, it has been possible to draw several important conclusions concerning the origin and evolution of basaltic magmas in the mouth of the Gulf of California.

First, the trace element data have refined and confirmed the shipboard classification of the Leg 65 basalts based on major element data. The vertical correlation between the chemical units observed in the various holes drilled at Sites 482 and 483 is remarkable. When considered with the drilling results from earlier legs, it should be possible to put constraints on possible volumes of homogeneous lavas emitted during single volcanic events. Second, the limited role of fractional crystallization, the range of variation of the hygromagmaphile elements, and the field data at the mouth of the Gulf all appear to be inconsistent with the existence of a large magma chamber under the ridge for any extended period of time.

Finally, the Nb/Ta, Zr/Hf, and Y/Tb ratios measured for the Leg 65 basalts show the commonly encountered values of 17, 40, and 50, respectively, and extended Coryell-Masuda plots of the data show a characteristic light rare-earth depleted pattern and a La/Ta ratio close to 18 (as opposed to the ratio 9 observed in material with a flat to light rare-earth enriched pattern). These results are very similar to the results obtained for samples from the East Pacific Rise at 21°N and 9°N and tend to demonstrate the chemical homogeneity of the mantle in this part of the ocean.

ACKNOWLEDGMENTS

We thank J. Francheteau and D. Needham for discussing this article and improving the manuscript. This is contribution no. 694 of the Centre Océanologique de Bretagne.

REFERENCES

- Bougault, H., 1977. Major elements: Analytical chemistry on board and preliminary results. *In* Aumento, F., Melson, W. G., et al., *Init. Repts. DSDP*, 37: Washington (U.S. Govt. Printing Office), 643-657.
- _____, 1980. Contributions des éléments de transition à la compréhension de la genèse des basaltes océaniques. Analyse des éléments traces dans les roches par spectromètrie de fluorescence X [Thèse]. Université Paris VII.
- Bougault, H., Cambon, P., Corre, O., et al., 1979. Evidence for variability of magmatic processes and upper mantle heterogeneity in the axial region of the Mid-Atlantic Ridge near 22°N and 36°N. *Tectonophysics*, 55:11-34.
- Bougault, H., Cambon, P., and Toulhouat, H., 1977. X-ray spectrometry analysis of trace elements in rocks—Correction for instrumental interferences. X-Ray Spectrom., 6(2):66–72.
- Bougault, H., Joron, J. L., and Treuil, M., 1979. Alteration, fractional crystallization, partial melting, mantle properties from trace elements in basalts recovered in the North Atlantic. *Deep Drilling Results in the Atlantic Ocean: Ocean Crust.* (Geodynamic Project: Scientific Report 48) Maurice Ewing Series 2:352-367.
- Bryan, W. B., and Thompson, G., 1979. Compositional variation in a steady state zoned magma chamber: Mid-Atlantic Ridge at 36° 50'N. *Tectonophysics*, p. 55.
- Cambon, P., Joron, J. L., Bougault, H., et al., 1980. Emperor Seamounts: Trace elements in transitional tholeiites, alkali basalts and Hawaiites: Mantle homogeneity or heterogeneity and magmatic processes. *In* Jackson, E. D., Koizumi, I., et al., *Init. Repts. DSDP*, 55: Washington (U.S. Govt. Printing Office), 585-598.
- CYAMEX Science Team, 1981. First manned submersible dives on the East Pacific Rise at Lat. 21°N (Project Rita): General results. Mar. Geophys. Res., 4:365-379.
- Joron, J. L., Briqueu, L., Bougault, H., et al., 1980. East Pacific Rise, Galapagos Spreading Center and Siqueiros Fracture Zone. Hygromagmaphile elements: A comparison with the North Atlantic. In Rosendahl, B. R., Hekinian, R., et al., Init. Repts. DSDP, 54: Washington (U.S. Govt. Printing Office), 725-736.
- Melson, W. G., Rabinowitz, P. D., Natland, J. H., et al., 1979. Cruise objectives and major results, analytical procedures and explanatory notes. In Melson, W. G., Rabinowitz, P. D., et al., Init. Repts. DSDP, 45: Washington (U.S. Govt. Printing Office), 5-20.
- O'Hara, M. J., 1977. Geochemical evolution during fractional crystallization of a periodically refilled magma chamber. *Nature*, 266: 503-507.
- Rhodes, J. M., Dungan, M. A., Blanchard, D. P., and Long, P. E., 1979. Magma mixing at mid-oceanic ridges: Evidence from basalts drilled near 22°N on the Mid-Atlantic Ridge. *Tectonophysics*, p. 55.

- Ringwood, A. E., 1955. The principles governing trace element behavior during magmatic crystallization. Part II: The role of complex formation. *Geochim. Cosmochim. Acta*, 7:242-254.
- RISE Project Group, 1980. East Pacific Rise: Hot springs and geophysical experiments. *Science*, 207(4438):1421-1433.
- Treuil, M., 1973. Critères pétrologiques, géochimiques et structuraux de la genèse et de la différenciation des magmas basaltiques: Exemple de l'Afar [Thèse]. Université d'Orléans.
- Treuil, M., Jaffrezic, H., Deschamps, N., et al., 1973. Analyse des lauthanides, du hafnium, du scandium, du chrome, du manganèse, du cobalt, du Cuivre et du zinc dans les minéraux et les roches par activation neutronique. J. Radioanal. Chem., 18: 55-68.
- Wood, D. A., 1979. A variably veined suboceanic upper mantle: Genetic significance for mid-ocean ridge basalts from geochemical evidence. *Geology*, 7:499-503.