3. SITE 505: SEDIMENTS AND OCEAN CRUST IN AN AREA OF LOW HEAT FLOW SOUTH OF THE COSTA RICA RIFT¹

Shipboard Scientific Party²

HOLE 505

Date occupied: 29 September 1979, 1200Z

Date departed: 1 October 1979, 2400Z

Time on hole: 60 hours

Position: 01°54.8'N; 83°47.4'W

Water depth (sea level; corrected m, echo-sounding): 3537

Water depth (rig floor; corrected m, echo-sounding): 3547

Bottom felt (m, drill pipe): 3548.5

Penetration (m): 242.0

Number of cores: 26

Total length of cored section (m): 223

Total core recovered (m): 187.05

Core recovery (%): 72

Oldest sediment cored: Depth sub-bottom (m): 232 Nature: Gray green siliceous nannofossil ooze Age: 3.9 m.y. Measured velocity (km/s): 1.51

Basement:

Depth sub-bottom (m): 232 Nature: Highly fractured basalts Velocity range (km/s): 5.80-5.95

Principal results: See discussion following site data for Hole 505B.

HOLE 505A

Date occupied: 2 October 1979, 0255Z

Date departed: 2 October 1979, 2400Z

Time on hole: 21 hours

Position: 01°55.1'N; 83°47.4'W

Water depth (sea level; corrected m, echo-sounding): 3525

Water depth (rig floor; corrected m, echo-sounding): 3535 Bottom felt (m, drill pipe): 3535 Penetration (m): 208.5 Number of cores: 2 Total length of cored section (m): 12 Total core recovered (m): 0.75 Core recovery (%): 6 Basement:

Depth sub-bottom (m): 196.5 Nature: Fractured basalts

Principal results: See discussion following site data for Hole 505B.

HOLE 505B

Date occupied: 3 October 1979, 0000Z

Date departed: 7 October 1979, 1200Z

Time on hole: 108 hours

Position: 01°55.2'N; 83°47.3'W

Water depth (sea level; corrected m, echo-sounding): 3507

Water depth (rig floor; corrected m, echo-sounding): 3517

Penetration (m): 178.0

Number of cores: 6

Total length of cored section (m): 42

Total core recovered (m): 6.85

Core recovery (%): 16.3

Basement:

Depth sub-bottom (m): 136 Nature: Highly fractured basalts Velocity range (km/s): 5.85-5.95

¹ Cann, J. R., Langseth, M. G., Honnorez, J., Von Herzen, R. P., White, S. M., et al., *Init. Repts. DSDP*, 69: Washington (U.S. Govt. Printing Office).
² J. R. Cann (Co-Chief Scientist), Department of Geology, University of Newcastle

² J. R. Cann (Co-Chief Scientist), Department of Geology, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom; Marcus Langseth (Co-Chief Scientist), Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York; A. C. Adamson, Department of Geology, University of Newcastle upon Tyne, United Kingdom; Roger N. Anderson, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York; Helmut Beiersdorf, Bundesanstalt für Geowissen-schaften und Rohstoffe, Hannover, Federal Republic of Germany; Toshio Furuta, Ocean Research Institute, University of Tokyo, Nakano, Tokyo, Japan; Michael J. Mottl, Department of Chemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; James H. Natland, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Vladislav L. Nekhoroshkov, Institute of Geophysics, Peromayskaya 91, Sverd-Iovsk, U.S.S.R.; Yves Noack, Laboratoire de Minéralogie et Petrographie, Université Louis Pasteur, Strasbourg Cedex, France (present address: Laboratorie de Pétrologie de la Surface, Université, Potiters Cedex, France); Nickolai N. Pertsev, Institute of Geology of Ore Deposits, Petrology, Mineralogy, and Geochemistry, U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.; Constance Sancetta, Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York; and Roy H. Wilkens, Department of Geological Sciences, University of Washington, Seattle, Washington (present address: Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts)

Principal results: Holes 505, 505A, 505B-Site 505 is in an area of the Costa Rica Rift where seafloor heat flow measurements indicate anomalously low conductive heat flow, a condition that implies low basement temperatures. Three holes were drilled at Site 505 in the floor of a broad east-west-trending trough. The water depth was 3535 meters, about 60 meters deeper than at the older Site 504. The 232-meter sedimentary section at Hole 505 was continuously cored by rotary drilling. It was made up entirely of a grayish green to olive grayish green siliceous nannofossil ooze that represented a complete section from the early Pliocene (~3.9 Ma) to the present. Diatom markers indicated a sedimentation rate of about 60 m/ m.y. Only three distinct ash layers were found, at 3.9, 16.6, and 26.4 meters. The 20 meters of sediment above basement were distinctly chalky and compact, but the remainder of the section showed little evidence of compaction or diagenesis. Temperatures measured at four points between 86 and 210 meters indicated a uniform gradient of 2°C per 100 meters and basement temperatures of approximately 9°C. Interstitial water from squeezed samples and four in situ samples showed evidence for strongly reducing conditions at sub-bottom depths up to 100 meters. Reducing conditions were further evidenced by a very strong smell of hydrogen sulfide in all cores. The pore water chemistry profiles, low

temperatures, lack of density gradients, and lack of diagenetic effects in the upper 210 meters of sediment were in sharp contrast to the characteristics of Site 504.

Basement rocks were drilled for 9.5 meters in Hole 505, 12 meters in Hole 505A, and 42 meters in Hole 505B. Drilling conditions were difficult, and the percentage of recovery was low. The rocks were fractured, relatively fresh basalts. Alteration rinds frequently bordered cracks. Minerals found in cracks included phillipsite, pyrite, smectite, and calcite. The basalts at Site 505 were little fractionated, with an average value of Mg/(Mg + Fe) of 0.64. The Hole 505 basalts have large phenocrysts of plagioclase, olivine, and clinopyroxene and smaller crystals of chrome-spinel. The basalts in Holes 505A and 505B were nearly identical to these except that they were more sparsely phyric and lacked phenocrysts of clinopyroxene.

Three suites of logs were successfully run in Hole 505B in the lower part of the sedimentary section and the entire basement section. The logs showed considerable density variation at the scale of meters. The variation probably corresponded to interbedded pillow lava flows, zones of rubbly basalt, and sedimentary interlayers. The downhole magnetometer showed the drilled section of basalt to be uniformly reversely magnetized. Measurements made on core samples confirmed this result and indicated a low inclination angle relative to the present field, high intensities of magnetization, and low susceptibilities.

OPERATIONS

Site 505 (Site Survey Target CR-2) is located in the floor of a broad east-west-trending graben (see Fig. 1) centered at $1^{\circ}55'$ N. The southern wall of the graben is made up of steplike normal faults with vertical displacements of 100 to 200 meters. The site survey observations showed that this feature is characterized by anomalously low heat flow—about 10% of the theoretically anticipated value. The floor of the graben is about 1.5 meters wide and is at depths from 3510 to 3530 meters near Site 505. A postdrilling survey made with the *Gloria's* sidescan sonar shows the trough to be continuous and linear for at least 30 km (Searle, this volume). Because the trough could be identified easily, the beacon was dropped during the first pass over it (at 1224 hr., 29 Sept. 1979).

Three single-bit holes were drilled in a north-south line at Site 505.

Hole 505

Hole 505 was located several hundred meters north of the deepest fault scarp on the south wall of the graben. We began running pipe into Hole 505 during the afternoon of 29 September. The bottom hole assembly (BHA) contained the Lynes packer subassembly and a torque jar, a device for applying sudden shocks to the BHA if it jammed in the basement. We intended to run experiments using the packer as soon as we could drill a sufficiently deep hole in a suitable basement formation. Hole 505 was spudded into seafloor sediments at 0200 hr. on 30 September at a water depth of 3537 meters.

Continuous rotary coring was begun at the mudline (Table 1). Coring was interrupted at 86, 143, 181, and 210 meters sub-bottom to make observations with the downhole temperature probe and to take *in situ* pore water samples. All four measurement runs were successful. Two intervals in the sediment, at 86 to 95.5 meters and 143 to 152.5 meters sub-bottom, were not cored because the drill bit sank through the soft mud while the downhole temperature measurements were being made. In the sedimentary section cored, recovery was about 75%.

Basement was reached at 232 meters sub-bottom. Drilling in the basement was difficult. Torque was high and variable, and the core bit jammed frequently. Torque was very high even when the bit was not on the bottom, suggesting that hole conditions were poor. The high torque may have been due in part to the unintentional inflation of the rubber packer assembly. During the drilling there was continuous difficulty with the Bowen rotary power unit as well. After penetrating the basement for 9 meters and recovering only a few fragments of basalt, we decided to move to another place to try to find better basement conditions. Operations at Hole 505 finished at about midnight, 1 October 1979.

Hole 505A

The bit was raised above the mudline, and the vessel was moved 500 meters north. This brought us over the southern flank of a small sediment-covered ridge in the floor of the trough. Hole 505A was spudded at 0255 hr. on 2 October in a water depth of 3525 meters. We washed through the sedimentary section, which was entirely unconsolidated ooze, to basement, which was at 196.5 meters sub-bottom (Table 1), about 36 meters higher than the basement at Hole 505.

Torque was very high when we tried to start the basement hole. The first core consisted of a few small pieces of basalt. The rotary power unit continued to break down for extended periods. The drill pipe stuck while we were taking the second core, but we managed to free it by using the torque jar. As a result of these difficulties, we decided to pull up the drill string and inspect the packer assembly and the bit. In total, 12 meters of basement were cored, of which 0.75 meter was recovered (Table 1). When we brought the drill string up to the surface we realized that the inflatable packer element had been completely torn off. The bit was still in good condition. Operations at Hole 505A ended at about midnight on 2 October.

Hole 505B

In hopes of finding more easily drilled basement, we moved the *Glomar Challenger* 250 meters north, to the top of a small ridge in the center of the graben. This time the packer was not included in the BHA. Pipe was run in, and Hole 505B was spudded at 1237 hr. on 3 October in 3507 meters of water. Again the bit was washed through the sedimentary layer, and basement was encountered at 136 meters sub-bottom (Table 1), 48.5 meters higher than at Hole 505A and 128 meters higher than at Hole 505.

Basement was drilled and cored to 42 meters below the base of the sediments. Drilling conditions were difficult again. The problems we encountered in drilling basement at Site 505 stemmed from the highly fractured and fresh nature of the basement rocks. Fragments of the walls of the hole readily broke free and jammed the BHA. After 42 meters of basement had been penetrated, conditions in the hole became very difficult, and we

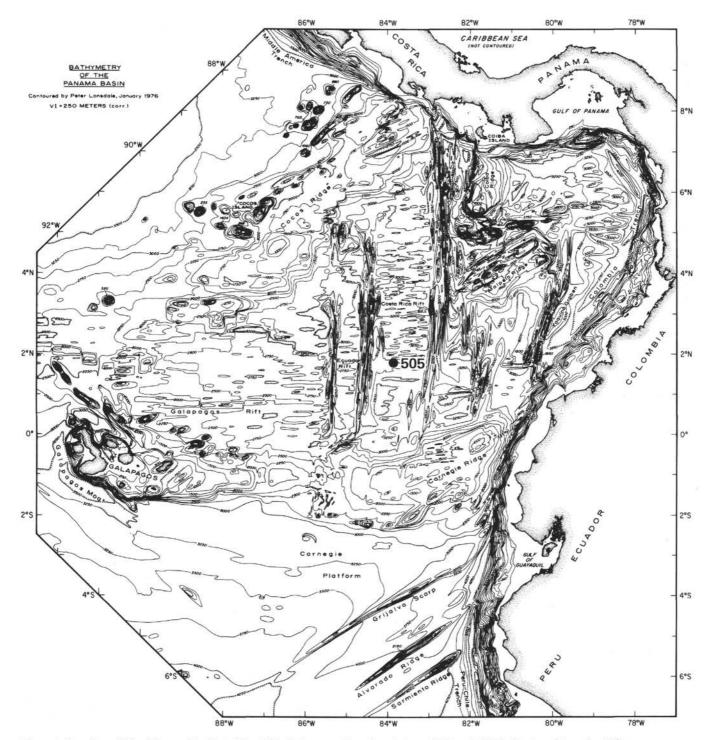


Figure 1. Location of Site 505 near the Costa Rica Rift. Bathymetry from Lonsdale and Klitgord (1978). Contour interval = 250 m.

decided to stop drilling. The hole was flushed with 50 barrels of weighted mud, and the bit was released in preparation for logging.

Three suites of logging tools were run into the hole. The first measured compensated gamma density, caliper, natural gamma rays, and temperature; the second, neutron porosity, guard resistivity, and natural gamma rays. The third took downhole water samples and measured temperature. While the tools were being lowered through the hole, the bottom hole assembly was lowered so that its end was 1 meter below the sediment/basalt contact. For the logging run itself, which was made while the logging tools were being hoisted up the hole, the pipe was raised 28 meters (one stand).

The first two suites of tools were run very successfully. The third, however, may not have reached the bottom of the hole. The temperature record suggests that the

Table 1. Coring summary, Site 505.

Core Hole 5 1 2 3 4 5 6 7 8 9	(1979) 05 30 Sept. 30 30 30 30 30 30	Time 0300 0430 0555	(m) 3548.5-3549.0	(m)	(m)	(m)	(%)
1 2 3 4 5 6 7 8 9	30 Sept. 30 30 30 30 30	0430	3548.5-3549.0				
23456789	30 30 30 30	0430	3548.5-3549.0				
3 4 5 6 7 8 9	30 30 30			0-0.5	0.5	0.17	34
4 5 6 7 8 9	30 30	0555	3549.0-3558.5	0.5-10.0	9.5	8.90	94
5 6 7 8 9	30		3558.5-3568.0	10.0-19.5	9.5	7.50	79
6 7 8 9		0725	3568.0-3577.5	19.5-29.0	9.5	10.23	108
7 8 9	30	0900	3577.5-3587.0	29.0-38.5	9.5	9.52	100
8 9		1025	3581.0-3596.5	38.5-48.0	9.5	10.83	114
9	30	1200	3596.5-3606.0	48.0-57.5	9.5	9.05	95
	30	1325	3606.0-3615.5	57.5-67.0	9.5	1.31	14
	30	1435	3615.5-3625.0	67.0-76.5	9.5	5.03	53
10	30	1553	3625.0-3634.5	76.5-86.0	9.5	7.03	74
-	30	1740	3634.5-3644.0	86.0-95.5	Wash-	-heat flow, p	ore water
11	30	1852	3644.0-3653.5	95.5-105.0	9.5	8.83	93
12	30	1956	3653.5-3663.0	105.0-114.5	9.5	6.47	68
13	30	2112	3663.0-3672.5	114.5-124.0	9.5	9.46	100
14	30	2225	3672.5-3682.0	124.0-133.5	9.5	8.28	87
15	30	2339	3682.0-3691.5	133.5-143.0	9.5	8,64	89
_	1 Oct.	0115	3691.5-3701.0	143.0-152.5		-heat flow, p	ore water
16	1	0250	3701.0-3710.5	152.5-162.0	9.5	0.02	2
17	1	0415	3710.5-3720.0	162.0-171.5	9.5	10.99	115
18	1	0542	3720.0-3729.5	171.5-181.0	9.5	8.20	86
_	i	0720	3729.5	181.0		-heat flow, p	
19	i	0950	3729-3739.0	181.0-190.5	9.5	11.10	117
20	1	1030	3739.0-3748.5	190.5-200.0	9.5	11.00	116
21	î	1155	3748.5-3758.0	200.0-209.5	9.5	11.49	120
_	1	1340	3758.0	209.5		-heat flow, p	
22	1	1450	3758.0-3767.5	209.5-219.0	9.5	9.58	101
23	î	1620	3767.5-3777.0	219.0-228.5	9.5	9.53	100
24	î	1735	3777.0-3782.0	228.5-233.5	5.0	3.55	71
25	i	1947	3782.0-3786.5	233.5-238.0	4.5	0.09	2
26	1	2355	3786.5-3790.5	238.0-242.0	4.0	0.34	9
20			576615 577615	Totals	223	187.14	83.9
Hole 5	05A						
-	2 Oct.		Washed to base	ment at 196.5 n	n sub-bott	om	
1	2	0950	3731.5-3738.5	196.5-203.5	7.0	0.30	4
2	2	1500	3738.5-3743.5	203.5-208.5	5.0	0.45	9
-	2	2350	3743.5	208.5	Ba	ag of basalt p	ieces
Hole 5	05B						
-	3 Oct.		Washed to base		sub-bottor		
1	3	1520	3653.0-3658.0	136.0-141.0	5.0	0.15	3
2	3	2220	3658.0-3667.5	141.0-150.5	9.5	2.62	28
3	4	0820	3667.5-3676.5	150.5-159.5	9.0	1.65	18
4	4	1120	3676.5-3681.0	159.5-164.0	4.5	0.10	2
5	4	1515	3681.0-3686.0	164.0-169.0	5.0	0.73	14
6	4	2140	3686.0-3695.0	169.0-178.0	9.0	1.60	17
				Totals	42.0	6.85	16

tool may have lodged in the hole at a depth of about 3661 meters. If so, the 100-ml sample of water that was drawn into the water sampler was taken at that level.

Between the running of the first and second suites of logs two other downhole experiments were attempted. The Soviet downhole magnetometer was run successfully into the hole four times and produced a record of the changes in magnetic susceptibility and the three components of the magnetic field with depth. A borehole televiewer run was tried, but the instrument lost signal near the bottom of the hole. A second run was tried, but at a depth of about 2000 meters the protective sleeve around the transducer imploded, flooding the transducer end of the tool. No further attempts were made to run the televiewer into Hole 505B.

After the logging was completed the BHA was run to the bottom of the hole for the last time and an Eastman Survey was run to determine the inclination of the hole. It indicated that the hole was 2.2° from vertical. Subsequently the pipe was pulled out of the hole. Operations at Site 505 ended about noon on 7 October 1979.

SEDIMENT LITHOLOGY AND STRATIGRAPHY

Summary

The sedimentary column in Hole 505 consists of three lithologic units (Fig. 2): Unit I (0–14.5 m), a late Pleistocene calcareous marl; Unit II (14.5–133.5 m), a late Pliocene to late Pleistocene variably clay-bearing nannofossil siliceous ooze; and Unit III (133.5–232 m), an early to late Pliocene siliceous nannofossil ooze.

Calcareous and siliceous microfossils and clays with montmorillonite as the dominant clay mineral are the major constituents of the sedimentary section. Rhyolitic volcanic glass and pyrite are minor but significant components of nearly all cores. Green hues dominate the sediment colors. A strong smell of hydrogen sulfide in all cores suggests anaerobic bacterial activity. Gas bubbles occurred at depths between 100.35 and 100.50 meters, very likely as a result of the formation of hydrogen sulfide or methane. Coring disturbance, which resulted in diapiric and flow structures in the cores, has destroyed sedimentary structures to a considerable degree. However, judging from the structures that can be seen and comparison to Site 504, the sediments at Site 505 are bioturbated throughout. Only ash layers have sharp boundaries. In the remaining sediments, relict bedding is apparent only in changes in color, carbonate content, and grain-size distribution.

Description of the Lithologic Units

Unit I (Cores 1-3, 0-14.5 m below the seafloor)

Unit I consists of calcareous marl. The prevailing colors are very dark grayish brown for the top 1.7 meters and dark olive gray, grayish olive green, and dusky yellow green for the section below. The grain-size distribution shows that the sediments are composed of 7% sandsized (>63 µm), 39% silt-sized, and 54% clay-sized material (visual estimates). The CaCO3 content measured by carbonate bomb averages 26% and results mainly from calcareous nannofossils; foraminifers are rare and poorly preserved. The siliceous part of the silt-sized and sand fractions consists mainly of radiolarians and diatoms. Silicoflagellates, sponge spicules, and volcanic glass are minor constituents. There is a fairly large proportion (20-30%) of chitin fragments in the upper part of the unit, among them identifiable fragments of copepod species. At a depth of 3.9 meters the percentage of colorless volcanic glass increases to 15%. The glass probably represents an ash layer disseminated by bioturbation or drilling. The volcanic glass content of the remaining part of the unit is between 2 and 3% and is therefore higher than in the underlying units.

Unit II (Cores 3-14, 14.5-133.5 below the seafloor)

Unit II is a variably clay-bearing nannofossil siliceous ooze. The prevailing colors are dusky yellow green, grayish yellow green, grayish green, and dusky olive gray. From 14.5 to 72 meters the average CaCO₃ content is 34%, from 72 to 119 meters it is 25%, and from 119 to 133 meters it is 46%. The clay-sized fraction for

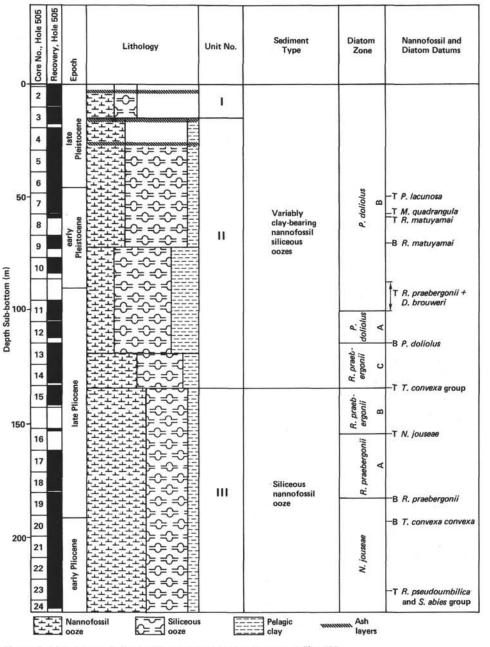


Figure 2. Lithology and diatom biostratigraphy of sediments at Site 505.

the same intervals averages 10, 20, and 13%. The size of the silt fraction follows the same trend as the clay-sized fraction. The sand-sized fraction for the three intervals varies between 1 and 5%. The components of the different grain-size fractions are essentially the same as in Unit I. There are two volcanic ash layers, one between 16.45 and 16.75 meters and one at 26.40 meters (see also Unit I). However, dispersed volcanic glass exceeds trace amounts (to values between 1 and 2%) only in the upper 15 meters of the unit. *Zoophycos* "spreiten" burrows are common in the upper part of the unit.

Unit III (Cores 15-24, 133.0-232 m below the seafloor)

Unit III consists mainly of siliceous nannofossil ooze. The prevailing colors are grayish yellow green to dusky yellow green from 133 to 209 meters and grayish yellow green to pale yellowish green and very pale green from 209 to 232 meters. In the lower part of the interval there is a considerable increase in induration.

The clay-sized fraction decreases continuously with depth, falling from 20% at the top to 5% at the base of the unit (average: 8%). The sand-sized fraction remains below 8% without significant variation. The carbonate content ranges between 42 and 73% (average: 53%) and generally increases with depth. Pyrite decreases with depth. Grayish blue green (5BG 5/2), dusky blue (5PB 3/2), grayish purple (5P 4/2), and grayish blue (5PB 5/2) tints and streaks are characteristic of Unit III. Before drilling disturbance, these streaks were burrow halos, a few of which were found in spite of the high

degree of deformation due to the drilling process. At 228.50 meters, 20 to 30% of the coarse fraction consists of fragments of black to brownish glass. Such glass occurs in only trace amounts in the upper part of the sediment column.

BIOSTRATIGRAPHY

The Pliocene/Pleistocene boundary (defined by the last occurrence of *Rhizosolenia praebergonii* and of *Discoaster brouweri*) apparently falls within the washed interval between Cores 10 and 11 (86–96 m).

The lowest diatom event at Site 505 is the first occurrence of *Thalassiosira convexa convexa* in Sample 505-19,CC (190 m), which is here used for the informal division of the early and late Pliocene. The lowest nannofossil event is the extinction of *Reticulofenestra pseudoumbilica* and of the *Sphenolithus abies* group, which occurs in the upper part of Core 23 (at 221 m). The base of the sediment section must be early Pliocene (>4.3 Ma). Sedimentation rates therefore averaged about 60 m/m.y.

Figure 2 shows the diatom biostratigraphic zonation and datum levels. A few calcareous nannofossil datums are also given. In some intervals the marker species (especially discoasters and ceratoliths) are rare; the true datum levels for these species cannot be determined.

PHYSICAL PROPERTIES OF SEDIMENT

Physical property determinations at Site 505 consist of compressional wave seismic velocity measurements (made with the Hamilton frame velocimeter), needle probe measurements of thermal conductivity, and determinations (through gravimetric analysis) of wet bulk density, grain density, water content, and porosity. Measurements were carried out in the least disturbed intervals of the core sections; in cases where complete sections appeared to be disturbed, measurements were generally not carried out. Wilkens and Langseth (this volume) give a complete data presentation in their comparison of Sites 504 and 505. This comparison is of particular interest because the sites are in relatively close proximity (80 km apart) and should have similar sedimentation regimes. Comparison of the physical properties of the two holes also provides an opportunity to compare similar measurements made on sedimentary sections that have been recovered by the hydraulic piston corer (Site 504) and by the standard rotary coring method (Site 505). Of course, another factor that must be taken into consideration in a comparison of the physical properties of the sediments at the two sites is the drastic difference in the heat flow regimes.

Seismic Velocity

The compressional wave seismic velocities measured at Site 505 are essentially uniform, ranging from 1.49 to 1.53 km/s. Scatter in the data is greatest in the upper 50 meters of the section and is probably related to the greater degree of drilling disturbance in the highly unconsolidated sediments. The mean velocity of 1.51 km/s for the entire section agrees well with the mean velocity of the upper unit in the Site 504 sediments.

Gravimetric Data

As at Site 504, gravimetric parameters display several large-scale variations down the hole. The correlation between the two sites is excellent and is discussed in detail in Wilkens and Langseth (this volume). In general, wet bulk density tends to increase with depth, varying from values between 1.21 and 1.25 g/cm³ near the top to values approaching 1.5 g/cm³ at the bottom. Grain density also increases; porosity and water content decrease.

Thermal Conductivity

As at Site 504, thermal conductivity varies mainly with porosity and so exhibits local variations at different levels in the core. In general, conductivity increases with depth; the average value is 0.77 W/m K for the upper section of the core and 1.05 W/m K for the 20meter-thick layer at the bottom. As at Site 504, sediments with values of conductivity greater than 1.00 W/m K generally have lower-than-usual values of resistivity for any given level of water content, suggesting that the thermal conductivity of the solid skeleton of the sediment is different from that of the more unconsolidated sediments.

PORE WATER CHEMISTRY

The pore water chemistry for the upper 100 meters of the sediment is dominated by the bacterial reduction of sulfate, which has produced an eightfold increase in alkalinity. The increase in alkalinity is accompanied by a reduction in Ca²⁺ to one-third the seawater value due to calcite precipitation. These trends are reversed below 100 meters, probably because of reactions with the basement. Both alkalinity and Ca²⁺ approach seawater values near the basement. The level of Mg²⁺ is very slightly higher in the upper 15 meters of sediment and decreases slightly and gradually from there to basement. An attempt to sample formation water from the basement with the Gearhart-Owen wireline sampler produced a mixture of surface seawater used as drilling fluid and sediment (with interstitial water) that had fallen down the hole. Further details and interstitial water analyses are to be found in chapters by Mottl and others in this volume.

BASEMENT LITHOSTRATIGRAPHY

Hole 505

The basement at Hole 505 was penetrated for about 9 meters, but of this only 0.5 meter was recovered. The rock is petrographically uniform, consisting of a highly plagioclase-olivine phyric basalt containing chrome-spinel and rare emerald green clinopyroxene phenocrysts. The phenocrysts appear rounded and resorbed and are possibly xenocrysts. The groundmass is microlitic and variolitic. Vesicles (which constitute up to 2% of the rock) are empty or partly filled around the border with smectite. In general the basalt is extremely fresh, with olivine altered to clays only along cracks. The recovered rocks would seem to suggest that the basement here is a

sequence of fresh pillows and flows or brecciated flows. No cooling margins were recovered. The basalts were too similar to require lithologic subdivision.

Hole 505A

At Hole 505A basement was penetrated for 12 meters, but only about 0.75 meter of basalt was recovered. There were no chilled margins in the core. The basement appears to be a single basalt flow of sparsely plagioclaseolivine phyric basalt with rare accessory chrome-spinel. Hole 505A basalts differ from those of Hole 505 in having fewer phenocrysts and no phyric clinopyroxene.

Hole 505B

Basement was penetrated at Hole 505B for 42 meters, and 6.85 meters were recovered. The recovered rocks represent a pillow and flow sequence and are petrographically rather uniform. They are sparsely to moderately plagioclase-olivine phyric basalts with accessory chrome-spinel. The chrome-spinel is scattered in the groundmass, present in chilled glass margins, and occasionally included in phenocrysts of plagioclase and olivine. The groundmass varies from microlitic to variolitic or glassy at the chilled margins. The central parts of the unit are holocrystalline and have an ophitic groundmass of plagioclase, clinopyroxene, olivine, and titanomagnetite.

The basalts from this hole appear almost identical to those recovered from Hole 505A, both petrologically and geochemically.

BASEMENT IGNEOUS PETROGRAPHY

The basement recovered from the three holes at Site 505 can be divided into two petrographic groups on the basis of phenocryst concentration and mineral composition. The groups are designated Types C and M, the letters being mnemonic devices to indicate the basalt's important petrographic features. Type C is sparsely plagioclase-olivine phyric basalt with accessory chrome-spinel. Type M is strongly plagioclase-olivine-clinopyroxene phyric basalt with accessory chrome-spinel. Emerald green clinopyroxene occurs in Type M as isolated phenocrysts.

Basalts of Type C are confined to Holes 505A and 505B; basalts of Type M, to Hole 505. Accordingly, the Type C basalts will be dealt with under a single heading, Type M basalts under another.

Holes 505A and 505B

Basalts from Holes 505A and 505B appear as a series of fine- to medium-grained sparsely phyric rocks. Basalts defined as Type C for Site 505 can be considered identical to the basalts defined as Type C for Site 504, except that phenocrysts are more abundant at Site 505. The phenocrysts are plagioclase and olivine; clinopyroxene is present only in the groundmass.

The plagioclase phenocrysts, which constitute 4 to 5% of the rock, occur as single crystals and as glomerocrysts. In size the glomerocrysts are comparable to the single crystals (maximum diameter: 2.5–3.0 mm; average: 1.5–2.0 mm), but they are composed of an aggregate of sev-

eral smaller grains. The grains can be either euhedral or subhedral, and they occasionally enclose granular olivine grains. Most of the macroscopic plagioclase is in the form of single phenocrysts.

Individual plagioclase grains show a greater range in size (0.5-3.2 mm) than the glomerocrysts (1.5-3.0 mm). They also have a more variable texture. Most of the phenocrysts are euhedral or subhedral, but there are occasional resorbed anhedral forms. In the center of a few of the larger phenocrysts there is a zone of small glass inclusions, many of which contain a gas bubble. Very rarely the phenocrysts have dendritic margins, with each dendrite acting as a nucleus for spherulite crystal growth. This nucleation is less pronounced in pillow margins because of the greater degree of undercooling, which suppresses dendrite formation.

Both the glomerocrysts and the phenocrysts are of the same composition, varying between An_{80} and An_{92} (average: An_{88}). Pronounced zoning is common, the crystals becoming more sodic toward their rims, where values are between An_{60} and An_{89} .

Olivine phenocrysts (Fo₈₇₋₈₉) form 2 to 3% of the basalt. They occur as euhedral and subhedral grains of variable size (maximum: 0.8–1.0 mm; average: 0.2–0.4 mm). The groundmass crystals occasionally form glomerocrysts of phenocryst size. There are a few cases in which anhedral olivine grains are enclosed within plagioclase phenocrysts. The olivine in these basalts is usually fresh, and alteration down cracks is minor or absent. It is rare to find olivines that are completely replaced by clays.

The groundmass textures in these basalts are similar to those in the Type M basalts, containing acicular skeletal plagioclase in a dendritic spherulitic matrix (50– 75%) that is dusted with opaques. The groundmass is microlitic in a mesostasis of spherulitic crystals in glass. The proportion of microlites to mesostasis is variable but appears to be dependent on the grain size of the basalt. Microlites may make up 45% of the coarser interiors of pillows and flows and 15% of the marginal areas. They vary correspondingly in size (length: 0.05–1.5 mm), but their morphology is constant (almost always dendritic and skeletal). There is no flow orientation. Most of the microlites are plagioclase (An_{55–79}); olivine microlites occur but are rare.

The mesostasis, which forms the remainder of the rock (50-55%), is composed of spherulitic crystals in glass. In the fine-grained rocks individual crystals cannot be distinguished from the brown volcanic glass and opaques, but in the coarser-grained rocks and where the glass has been altered to light-colored clays, the crystals (0.02 mm in size) can be seen to be composed of pale brown clinopyroxene and plagioclase. Spherulite fans often show bow-tie and radial structures, and plagio-clase microlites commonly act as nuclei.

The minerals pyrite, titanomagnetite, and chromespinel form $\sim 2\%$ of the rock. Pyrite occurs as euhedral or skeletal grains and as drawn-out aggregates forming minor veining, all in close proximity to vesicles (secondary?). Trace quantities of submicroscopic pyrite are disseminated in the mesostasis (primary?). Titanomagnetite is euhedral, subhedral, and skeletal; it is highly disseminated and generally submicroscopic. In pillow margins the grains are sometimes preferentially concentrated around the periphery of spherulites. Isolated euhedral chrome-spinel crystals (traces only, in Hole 505A) are skeletal, vermicular, or (more commonly) homogeneous. Chrome-spinel grains can occur within olivine and plagioclase phenocrysts but are not common.

Hole 505

Basalts from Hole 505 belong to a single petrographic group (Type M) and are strongly plagioclase-olivine phyric, with some clinopyroxene phenocrysts and accessory chrome-spinel. The phenocrysts vary widely in morphology and compose up to 30% of the basalt. In total, 20% of the crystals may be plagioclase and 5% may be olivine; the clinopyroxene crystals are occasional.

Plagioclase occurs as phenocrysts and glomerocrysts of variable size (maximum length and diameter: 2.5 mm; average: 1.5-2.0 mm). Its composition is An_{75-92} . Pronounced zoning toward more sodic rims is common. Anhedral glass inclusions occur in the cores of several crystals. Less common are ophitic plagioclase megacrysts that contain inclusions of anhedral olivines and chrome-spinel. Partially resorbed feldspar phenocrysts are sometimes evident.

Olivine (Fo₈₇₋₈₉) is present as euhedral or subhedral phenocrysts, some of which are skeletal, and as glomerocrysts. The phenocrysts are 1.0 to 2.5 mm in size. The glomerocrysts are often ophitic or subophitic, the grains containing inclusions of plagioclase. Blue and green smectites partially replace the larger olivine phenocrysts and all of the groundmass olivine.

There are a few clinopyroxene phenocrysts; they are generally anhedral and twinned (1.0-4.0 mm long). Their rounded and corroded appearance suggests a degree of resorption. In hand specimen they appear as bright emerald green crystals.

Chrome-spinel, pyrite, and titanomagnetite form $\sim 2\%$ of the basalt. The chrome-spinel occurs as large euhedral grains, both vermicular and skeletal. The grains often appear within phenocrysts of plagioclase and olivine. Pyrite is limited to veining and is consequently secondary. Submicroscopic euhedral grains of titanomagnetite are disseminated in the mesostasis.

BASEMENT CHEMISTRY

The difference between the petrography of the basalts in Hole 505, on the one hand, and Holes 505A and 505B, on the other, is reflected in the chemistry of these basalts. Shipboard X-ray fluorescence (XRF) measurements (Etoubleau et al., this volume) indicate that samples from Holes 505A and 505B have higher contents of TiO_2 , Fe_2O_3 , Na_2O , and Zr and lower contents of Al_2O_3 , MgO, CaO, Ni, and Sr than basalts from Hole 505 (Table 2).

Basalts from Holes 505A and 505B are mafic, but not enough so to have originated as direct melts from the mantle. Their Mg/(Mg + Fe) ratios (0.641 and 0.647) and Ni contents (151 and 161 ppm) are low compared with the Mg/(Mg + Fe) ratio of 0.70 and Ni content of

Table 2. Average chemical composition of Site 505 basalt.

	Hole 505a	Hole 505A ^a	Hole 505Bb
	3034	505A.	202Bo
Major elements (v	vt.%)		
SiO ₂	48.24	49.03	49.67
TiO ₂	0.74	0.95	0.96
Al2O3	17.45	16.05	16.08
Fe ₂ O ₃	8.70	9.71	9.48
MnO	0.14	0.15	0.15
MgO	9.37	8.67	8.70
CaO	13.32	12.70	12.68
Na ₂ O	1.76	2.16	2.12
K ₂ Ō	0.07	0.04	0.05
P2O5	0.09	0.08	0.08
H ₂ O	0.73	0.68	0.75
CO ₂	0.13	0.08	0.10
Total	100.24	100.30	100.82
Frace elements (p)	pm)		
Ni	188	151	161
Sr	85	77	77
Zr	45	54	56
Mg/Mg + Fe	0.696	0.641	0.647

0.410

0.419

0.418

^a Two analyses apiece used for averages.

b Eight analyses used for average.

Ca/Ca + Al

250 ppm for basalt presumed to derive directly from mantle. The TiO_2 and Zr contents (0.95% and 55 ppm) are lower than in typical mid-ocean-ridge basalts. The mafic character of the basalt derives from the phenocryst phases.

The basalts from Site 505 are less evolved than is common in fast-spreading ridges. (The degree of evolution is usually greater in fast- than in slow-spreading ridges.) Other samples of relatively unevolved lavas from fast-spreading ridges are known, however.

BASEMENT ALTERATION

Oxidized zones along cracks are the only visible sign of alteration. Four color zones typically occur as one proceeds from cracks to the interior of the basalt: dark gray, yellow, red, and light gray. The oxidation boundaries are sharp—vesicles are filled with a blue green clay in the light gray basalt and with orange or red clay in the red and yellow zones.

In thin section, plagioclase and clinopyroxene are fresh; olivine is partially altered to yellow smectite around rims and along cracks that cut across fresh cores. Vesicles are filled with yellow brown clay minerals in the light gray zone, yellow and red clay minerals in the red zone, and green smectites in the dark gray zone.

Carbonates and phillipsite are present in small amounts in the basalts of all three holes.

The chemical composition of the light gray basalt and basalt that is more altered is given in Table 3. The altered zone has a higher content of total iron and K_2O and a lower content of MgO than the light gray basalt (see Noack, this volume). The Sr content of the altered basalt is also higher, probably as a result of the replace-

Table 3. Chemical composition of adjacent lessand more-altered basalt in Hole 505B (shipboard XRF data; Etoubleau et al., this volume).

	Light Gray Basalt, Sample 505B-2-3	Altered Basalt, Sample 505B-2-3
	(51–52 cm)	(78-87 cm)
Major elem	ients (wt.%)	
SiO ₂	49.62	49.70
TiO ₂	0.96	0.96
Al2O3	16.05	16.24
Fe ₂ O ₃	9.36	9.64
MnO	0.14	0.18
MgO	8.89	7.72
CaO	12.63	12.89
Na ₂ O	2.17	2.46
K2Õ	0.03	0.16
P205	0.08	0.09
H ₂ O	0.97	1.03
cõ ₂	0.14	0.18
Trace eleme	ents (ppm)	
Ni	160	154
Sr	74	109
Zr	53	56

ment of olivine or saponitic clays by Fe- and K-rich clay minerals.

The low temperature measured at the site (Langseth et al., this volume) and the short time since the eruption of the lavas on the seafloor (3.9 Ma) have not permitted great development of alteration. Potassic layer/lattice silicates are absent entirely.

BASEMENT STRUCTURE

The low recovery of the basement basalts at Site 505 precludes a detailed analysis of basement structure. However, certain inferences can usually be drawn about basement structure from the glass rinds, fractures, and alteration rinds in the basalt.

Glassy and spherulitic pieces are present in every core. The lack of recovery of consecutive oriented pieces longer than 20 cm indicates that flows or pillows more than 1 meter thick were not cored.

The number of fractures in oriented rock pieces is too small to infer much about the direction and abundance of fractures *in situ*.

Overall, the basement section is probably a composite of small pillows or flat pillowlike lobes and sheet flows. The occurrence of vertical fractures and vertical alteration rinds implies a predominantly horizontal array of cooling units with vertical and nearly vertical joints. The material is very similar in these respects to basalts recovered from the Eastern Pacific during Legs 34 and 54, where the drilling was as difficult as at Site 505.

BASEMENT PHYSICAL PROPERTIES

Measurements of the physical properties of the basalt at Site 505 were few because of poor recovery. Velocity minicores with a mean porosity of 6.4% and a wet bulk density of 2.86 g/cm^3 yielded a mean seismic velocity of 5.89 km/s. Measurements of thermal conductivity had a mean of 1.74 W/m K. Complete data for Site 505 are presented in Wilkens and Karato (this volume), along with data for Site 504. The high density values indicate an extremely fresh mineralogy for these basalts, which explains the relatively high seismic velocities.

BASEMENT PALEOMAGNETISM

The results of magnetic measurements and alternating field (AF) demagnetization with respect to sampling position in Hole 505B are listed in Table 4 and shown in Figure 3. The intensity, susceptibility, and median demagnetizing field (MDF) of the basalts in this hole are reasonably representative of the values obtained by DSDP for other oceanic basalts. The results of the magnetic measurements are as follows:

1) The average intensity of natural remanent magnetization (NRM) is approximately 1×10^{-2} emu/cc.

2) The mean inclination of the NRM of the basalts is low compared with the average inclination of the present dipole field.

3) The inclinations of the basalts before and after AF demagnetization differ by less than 4°.

The results of microscopic observation are listed in Table 5. Throughout the hole the magnetic minerals are relatively small. Both subhedral and euhedral skeletal shapes occur. Very small amounts of sulfide minerals were found in 11 samples.

EXPERIMENTS AND LOGGING

Despite the poor penetration at Site 505, experiments were attempted in the hole for comparison with the measurements at Sites 501 and 504. *In situ* temperature and water samples were obtained, the downhole magnetometer was deployed, and a set of logs was run.

Measurements of *in situ* temperature were made in the sediment in Hole 505 at depths of 86, 143, 181, and 210 meters. All four of these measurements were successful, although while the shallowest measurement was being made the drill bit and probe sank in the sediment for nearly 10 meters, and the probe may have been heated somewhat by friction. Short, apparently frictional disturbances affected the other measurements but did not prevent an accurate reading of *in situ* water temperature. The temperatures were all low; the thermal gradient was only 2°C per 100 meters, which extrapolates

Table 4. Paleomagnetic data, Hole 505B.

Sample (core-section, interval)	Sub-bottom Depth (m)	MDF ^a (Oe)	K ^b (cgs units)	Inclination before, after Demagnetization (°)	Intensity (×10 ⁻⁶ emu/cc)	Qn ^c
2-1, 115-117	142.1	170	403	-10.5, -12.3	6,691	47
2-2, 81-83	143.3	500	176	14.9, 14.7	10,993	215
3-1, 114-116	151.6	280	228	-10.5, -12.2	14,161	177
3-2, 86-88	152.8	180	301	-10.7, -13.0	8,765	83
4-1, 10-12	159.6	220	557	1.7, 1.5	15,805	81
5-1, 31-33	164.3	150	723	-7.1, -10.0	12,001	47
6-1, 109-111	170.1	130	740	0.2, -3.5	8,400	32
6-2, 6-8	170.6	360	380	-9.0, -10.0	10,680	80

Median demagnetizing field.

^b Magnetic susceptibility.

^c Königsberger ratio.

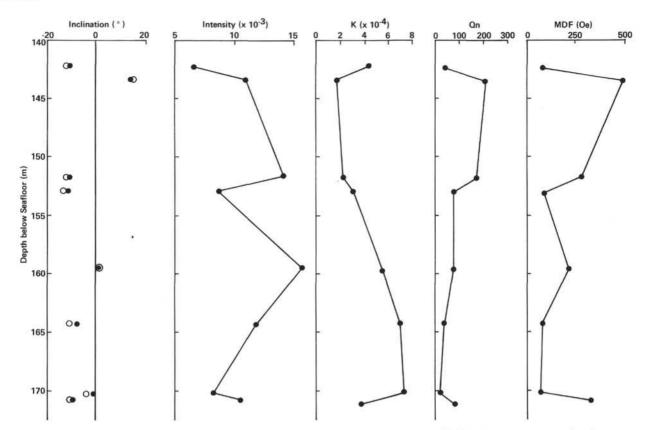


Figure 3. Paleomagnetic properties of Hole 505B basalts. Open circles, initial measurement; filled circles, measurement after demagnetization.

Table 5. Petrographic summary of opaque mineralogy of basalts, Hole 505B.

Sample (core-section,	Titano	magnetite	
interval)	Shape	Grain Size	Remarks
2-1, 108-111	Subhedral	<5 µm	
2-1, 98-101	Subhedral	Max. 30 µm	-
	Skeletal	10~15 µm	
3-1, 76-79	Subhedral	$< 5 \mu m$	
3-2, 99-101	Subhedral	Max. 20 µm	—
	Skeletal	<10 µm	
5-1, 43-45	Subhedral	Max. 50 µm	—
		10-20 µm	
6-1, 112-114	Skeletal	20-30 µm	Ilmenite

Note: Rock in all samples was olivine-plagioclase basalt. Sulfide was rare.

to only 8.95° C at basement. Calculated heat flow was low (18-45 mW m⁻²).

In situ water samples were obtained with each temperature measurement. Sixteen additional pore water samples were obtained by squeezing sediments recovered by coring from Hole 505, and one rather muddy sample was brought up in the Gearhart-Owen water sampling tool as part of one of the logging runs in Hole 505B. Chemical analyses of these samples are presented and discussed by Mottl et al. (this volume).

The downhole magnetometer was deployed during the logging of Hole 505B. Magnetic susceptibility and the three components of the magnetic field were measured in the lower 25 meters of sediment and the 42 meters of basement successfully penetrated. The horizontal components of the magnetic field were not measured well over most of the section, because, except for the upper 10 meters of basement, the hole was too close to vertical for the gimballed orientation device to settle in a constant direction. Based on the vertical component alone, however, the basalts are reversely magnetized. Magnetic susceptibility measurements in the sediments gave low and variable results, whereas in the basalts values ranged between 400 and 800×10^{-6} cgs unit. Below the sediment/basalt contact the vertical component of the field increased abruptly to a value approximately 3000 gammas greater than the value for the sediments. Ponomarev and Nekhoroshkov (this volume) discuss these results in greater detail.

Three sets of logs were run in Hole 505B: (1) compensated gamma density, caliper, natural gamma, and temperature logs; (2) neutron porosity, resistivity, and natural gamma logs; and (3) the temperature log, which was run at the same time as the water sampler. In addition, an inclinometer survey was run; it showed the hole to deviate from the vertical by 2.2° at the bottom of the hole. The interval logged ranged from 15 meters above the top of the basalt to 35.5 meters into basement. Below that

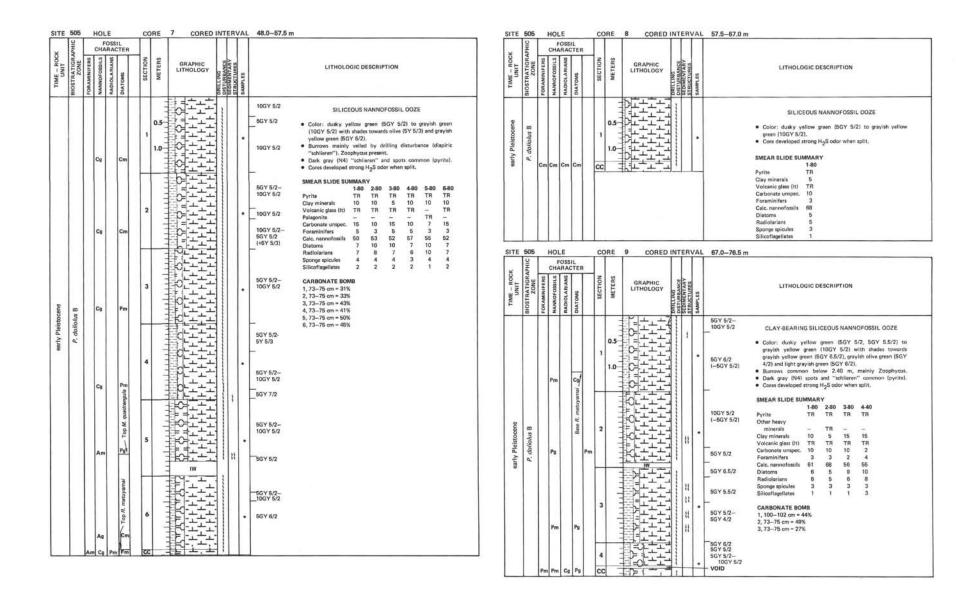
peak was observed immediately above the basalt contact, reaching 50 API units. The logs are discussed further in the chapter by Cann and Von Herzen (this volume).

REFERENCE

Lonsdale, P., and Klitgord, K. (1978). Structure and tectonic history of the eastern Panama Basin. Geol. Soc. Amer. Bull., 89:981–999.

	APHIC			OSS	TER					
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
late Pleistocene	doliolus B	Pm	Pg	Cg	Cm	1	-	5	11.	2.5Y 3/2 MARLY CALCAREOUS SILICEOUS OOZE Basic color: very dark gravish brown (2.5Y 3/2).
Pleis	doli									
8	a'	1.0		E		- 1				SMEAR SLIDE SUMMARY
-12						1				1-9
					11					Pyrite 1
	1 1			L						Other heavy
										minerals TR
					11	1				Clay minerals 60
										Volcanic glass (It) 3
										Volcanic glass (dk) TR
						1			11	Carbonate unspec. 3
										Foreminifers 2
										Calc. nannofossils 10
				1						Diatoms 10
										Radiolariana 10
										Sponge spicules TR
					11					Silicoflagellates 1 Mica TR
-		1								Mica TR

	HIC		F	OSS	IL		Τ		П	Τ									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	an te ne	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLO	OGIC DE	SCRIP	TION				
						,	0.	i i i i i i i i i i i i i i i i i i i			5Y 3/2 2.5Y 3/2 5Y 4/2	MARLY SILICEO MARLY CALCAF MARLY SILICEO Color: Marl – dark ol (5GY 3/2), incl 3/2); olive gray green (5GY 5/2) Ooze – grayith sions of olive (5 Burrows only r ("schlieren"), Grayith black (h	REOUS S US NAN ive gray usions ((5Y 4/2) patches olive gr iy 4/3) alict du	(5Y 3 (5Y 3 of very), olive and "seen and olive to in	OUS O SSIL O dark ((10Y 5) chlierer GY 3/2 ive gre ntanse	DZE (3.) DZE (4.) gravish gravish i (3) and (". 2-4/2), en (5Y drilling	alive orown (fusky y minor i disturt	m), 5 m) green 2.5Y ellow inclu- iches. sance	
						2		4			5Y 3/2	of burrows). Cores develop str Ash(?) layer at 3	rong H2 ,66 m,	Sodor					
					11	1	1					SMEAR SLIDE SU		2.120		3-105	4-104	5-60	6-110
			e s								5GY 5/2, 5GY 3/2,	Feldspar Pyrite Other heavy	TR	TR	TR TR	3	TR	TR	ŤR
						12		\$ <u>+</u> \$ <u>+</u> \$			10Y 5/2	minerals Clay minerals Volcanic glass (It) Carbonate unspec. Foraminiters Calc. nannofossils Diatoms	55 6 2 10 10 8	50 2 1 8 20	TR 45 15 2 5 10	60 2 1 2 10 8	TR 35 2 15 20	30 2 2 5 30 15	TR 50 2 4 20 10
ate Pleistocene	doliolus B										5GY 3/2	Radiolarians Sponge spicules Silicoftagellates Mica	7 TR 2 -	7 2 -	10 1 2 TR	10 2 2	10 2 1 TR	10 3 3	8 4 2 -
late Plei	P. dol					4					5Y 4/3 5GY 3/2	CARBONATE BO 2, 73-75 cm = 389 3, 73-75 cm = 169 4, 86-88 cm = 279	6						
						5					5GY 4/2 								
											5GY 3/2								


SITE 505	HOLE		co	RE	3 CORED	INTER	VAL	_ 10.019.5 m	SIT	E 50	5 1	OLE		C	ORE	4 CORED IN	TER	RVAL 19.5–29.0 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	CHAR	SSIL ACTER SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC		FOS SHAR SHEER IDIGE	CTER	SECTION	METERS	GRAPHIC LITHOLOGY	SEDIMENTARY SEDIMENTARY STRUCTURES	STATUS
late Pleistocene P. doliolus B	Pm Cm (1	0.5	$ \begin{array}{c} H^{-1} H^{-1$	25 255		MARLY SILICEOUS NANNOFOSSIL OOZE 10.0–4.30 m), CLAY-BEARING SILICEOUS NANNOFOSSIL OOZE 14.50-7.40 m) WITH AN INTERCALATED VOLCANIC ASH LAYER BETWEEN (8.45–6.75 m) 5GY 4/2 • Color: Docs - dusky yellow green to gravith olive green (5GY 5/2–3/2);greenish grav (5GY 8/1), Ash layer - dusky yellow green (5GY 5/2). • Silice Survey willow dreen to gravith olive green (5GY 5/2–3/2);greenish grave (5GY 8/1), Ash layer - dusky yellow green (5GY 5/2). • Gravith black (K2) travels of pyrite frequent (pyritization of burrow, particularly between 3.0–3.30 m, • Ash layer consists of ~ 80% volcanic glass (colories, rhyo- titic). • Cores developed throng H_S dodr when split. • Cores developed throng H_S dodr when split. • Schlaren " rafe to burrow disturbed by drilling. SMEAR SLIDE SUMMARY BGY 5/2–3/2 • Feidinger T R - TR - Pyrite 5 1 1 TR Clay minerals 30 25 25 20 Volcanic glass (11) 2 - 5 - Carbonate unspec 1 Foraminities 10 5 30 5 Cale, nanofossiis 30 40 225 33 Oltatom 7 10 6 B Rediolarisms 10 10 4 7 Spoong exploses 4 4 3 3 2 Silicoflagellates 2 2 1 1 SGY 4/2–5/2 • Feidinger T R TR TR TR Dobr heavy minerals - 2 Clay minerals - 2 Silicoflagellates - 2 Clay minerals - 2 Clay minerals - 2 Silicoflagellates - 2 Clay minerals - 2 Clay minerals - 2 Silicoflagellates - 2 Clay minerals - 2 Silicoflagellates - 2 Clay minerals - 2 Silicoflagellates - 2 Clay minerals - 2 Silicoflagellates Silicoflagellates Silicoflagellat	La te Pleistocene					1	0.5			SQY 5/2 Forminifers 5 TR 30 10 10 SGY 5/2 Discontant dimentifers 5 TR 30 10 10 SY 5/2 Distorms 5 5 3 6 5 SV 5/2 Radiolarism 5 5 3 6 5 (+100 Y5/2) Sponge spliculet 3 3 2 3 3 Silicoftagellates 2 2 1 1 1 * Clay minerals 15 10 25 15 Volcanic glass (th) TR 2 TR TR 2 Caloronate unspect, 8 10 10 10 10 Fordination s 5 5 5 5 Volcanic glass (th) TR 15 10 25 10 Distorms 5 5 5 5 5 5 SQY 5/2 Cale.nanofoxisus 64 44 45 50 10 10 Foregraphicular 3 3 3 3

m Cm Ag Fm

ITE			HOI CH/	os	SIL	ER	Τ	1	RE		Π			29.0-38.5 m	SITE 505 HOLE	R	T	ORE	1
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	PLATONET			SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY	SAMPLES				SECTION	METERS	
late Pleistocene	P. dolialus B							1 2 3 4	0.5				•	5GY 5/2- 10GY 5/2 =5G 8/1 5GY 3/2-5/2 =6GY 5/2- 10Y 4/2 =10Y 4/2 =5GY 5/2 =10GY 5/2 =10GY 5/2 (+5GY 4/1, N3) =5GY 5/2 =10GY 5/2 (+5G 5/2) =10GY 5/2	NOTE: 9.52 m were recovered in this core, 0.0–0.02 m hare represents the portion above the 9.5 m liner. SILICEOUS NANNOFOSSIL OOZE • Color: dusky vellow green (5GY 5/2) to grayish green (10GY 5/2) with shades towards grayish olive green (5GY 4/1), grayish lolive (10V 4/2), dark greenish gray (5GY 4/1), grayish olive (10V 4/2), dark greenish gray (5GY 4/1), grayish green (56 3/2). Burrows sometimes slightly pressrved, including zoophycos. Light greenismes lightly pressrved, including zoophycos. Using a strong Hyz dodr when split. SMEAR SLIDE SUMMARY 1-80 1-100 2-75 3-80 Pyrite TR TR Carbonie unspec. 15 15 15 10 Foraminifers 5 5 3 5 Calc, nannofossils 50 400 568 47 Diatome 8 6 10 10 Ratiolarians 7 5 7 10 Sponge splicules 2 1 1 2 4-80 5-80 6-80 CC Pyrite TR Carbonate unspec. 15 10 10 7 Foraminifers 5 5 5 5 5 5 Calc, nannofossils 61 50 46 64 Diatoms 5 4 10 5 Ratiolarians 5 4 10 5 Ratiol		3	1.0	
								5						5GY 5/2- 10GY 5/2 	1, 73–75 cm = 39% 2, 73–75 cm = 24% 3, 73–75 cm = 37% 4, 73–75 cm = 41% 5, 73–75 cm = 41% 6, 73–75 cm = 19%		5		
								6				*****	•	5GY 5/2 5GY 3/2			6		
		Cr	Ar	n C	9	Fp		7				1		5GY 5/2- 10GY 5/2					

	PHIC		CHA	OSS	IL TER												
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	_	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	IGIC D	SCRIP	TION	
							1	0.5			•	5GY 5/2- 10GY 5/2	 here represents the p SILICE Color: dusky yr (10GY 5/2) with olive (5Y 5/2- Burrows at few p Zoophytus. 	EOUS N ellow g h shade 5/3), g parts of	above t IANNO reen (t s towa grayish the co	he 9.5 r FOSSIL iGY 6/ rds gray yellow ra slight	t core, 0.0–1.33 m ininar, OOZE 2) to grayish green (15G 5/2), green (5GY 7/2), ty preserved, mainly s common (pyritiza-
							2	ann an the		******	1.0	5GY 5/2	Cores developed SMEAR SLIDE SUI Pyrite Clay minerals Volcanic glass (it) Carbonate unspec.		-	3-90 TR 5 TR 10	4-80 TR 10 TR 15
							3	1 11 1 1 1 1 1				5GY 5/2 10GY 5/2	Carboniss unspec. Foraminifers Calc, nanofossils Diatoms Radiolarians Sponge spicules Silicoflagellates	15 3 61 3 3 2 5-80	2 64 7 3 2 6-80	3 68 7 7 3 1 7-80	10 49 5 5 4 2
	<i>u</i> s B							they are			4	5GY 6.5/2, 5Y 5/2 5GY 5/2 (+5Y 5/3, 5GY 7/2)	Pyrite Clay minerals Volcanic glass (It) Carbonate unspec. Foraminifers Calc. nannofossils Diatoms	5-80 TR 10 TR 8 5 48 10	540 TR 8 TR 10 53 8	TR 5 70 5	
	P. doliatus						4	111111		8 3	•	5GY 5/2 10GY 5/2	Radiolarians Sponge spicules Silicoflagellates CARBONATE BOI 1, 53–55 cm = 25 2, 73–75 cm = 349	6	8 5 3	5 3 2	
							5	Totalan	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	* *		5GY 5/2- 10GY 5/2 5GY 5/2	3, 73-75 cm = 249 4, 73-75 cm = 389 5, 73-75 cm = 509 6, 73-75 cm = 329 7, 73-75 cm = 229	5 5 5			
								111				5GY 5/2 10GY 5/2 5GY 3/2-5/2					
							6	the first		111	•	10GY 5/2 5GY 5/2- 10GY 5/2					
							7	11111111111	QQQ QQ	**		5GY 5/2 5GY 5/2- 10GY 5/5					
		Crr	Am	Cg	Pp		8 CC										

SITE 505

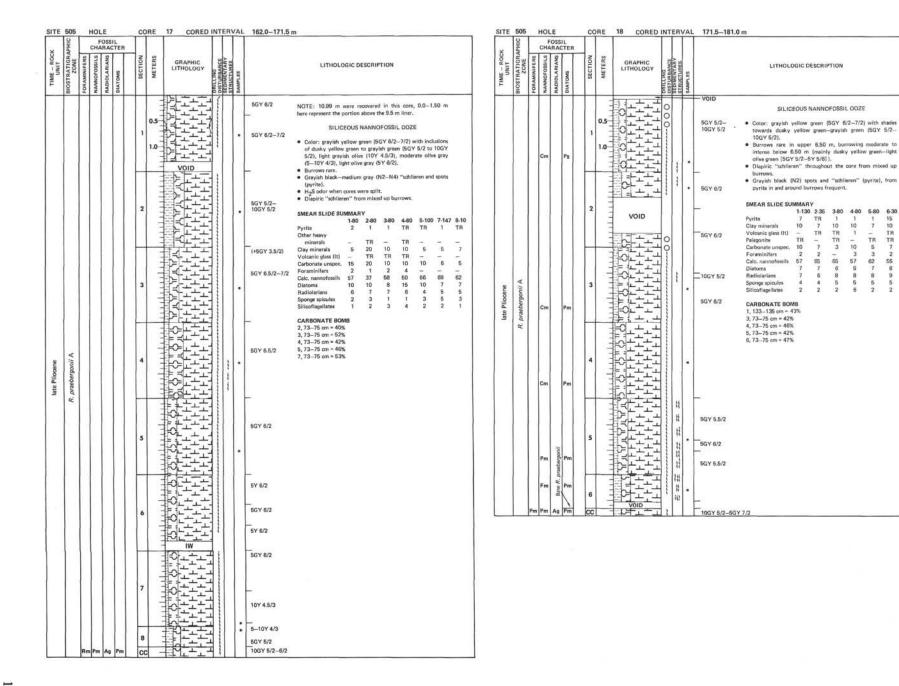
	DIHC			OSS	TER														
UNIT	BIOSTRATIGRAPHIC ZONE	PORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLO	GIC DE	SCRIP	TION			
early Pleistocane	P. doliołus B		Cg Cg	RA	Pm.	3	0.5			22	• • •	5GY 5.5/2 5GY 4/2 5GY 4/2 5GY 5/2-4/2 5GY 5/2-4/2 5GY 5/2-5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2 5GY 5/2-5Y 3/2	CLAY-BEARIN CLAY-BEARIN Color: dusky y yellow grans, 152 Burrow rate, 22 Burrow rate, 22 Burrow rate, 22 Burrow rate, 22 Burrow rate, 22 Carlow grant Carlow and the second second Carlo minerals Diatomic Catonate unspoc. Feraminifers Catonate unspoc. Feraminifers Diatomic Catonate unspoc. Feraminifers Diatomic Billiofingellates Mice CARBONATE BOI 1, 13–75 cm = 329 5, 73–75 cm = 341	reliow ; 3Y 6/2- moderno ophycu and gri cores we r to min g disturt 11-120 TR 220 TR 3 2 220 TR 3 2 2 52 8 7 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	green -7/2}, ste oliv s presen syish b re split xed up bance).	(5GY 5 shades t e green nt. elack (N t.	/2-4/2 owards (5¥ 3/2 2) spot) to gr grayish). s and " vyrite st	ayish olive schli- reaks
						5	111		-		•	-5GY 5/2							

11			- FI	OSS	IL.											
4 4		C	CHA	RAC	TER											
UNIT UNIT BIOSTRATIGRAPI	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	DGIC D	ESCRIP	TION	
			Ed Top D. brouweri ad	•	a Top R. preebergonii	1	0.5	<u><u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> </u>		• •	5Y 4/2 5Y 4/2-3/2 5Y 5/2- 5GY 5/2 5GY 5/2 5Y 4/2 5Y 4/2- 5Y 4/2 5Y 4/2-4/3 5GY 5/2 5Y 4/2-4/3 5GY 5/2 5Y 4/2-4/3	 Color: dusky oli green (5GY 4/2 tions to dark oli Burrows rare (mi Ges toubbles betv H₂S odor when of 	ve gray ive gray sinly di veen 5.: cores we uent, n MMAR 1-7 TR 55 TR 2 2	(5GY 4 ayish oli (5Y 3/ sturbed 1 35–5,50 ere split. ofor to m	/2-5Y ve gree 2) and by drill m. ixed u TR 30 2 5 5 5 30 6 5 5 2	p burrows and pyrite
e Pliocer	P. dollolus A		Fm		Pg	4	the second se			•	5GY 5/2 5Y 4/2-4/3 5Y 4/2- 5GY 4/2 5GY 5/2 5GY 5/2 5GY 4/2	Other heavy minerals Clay minerals Clay minerals Volcanic glass (It) Carbonate unspec- Foraminifers Calc. namofossilis Diatoms Radiolarians Sponge spicules Silicoflagellates CARBONATE BOO 1, 100–102 cm = 2 2, 73–75 cm = 123	31% 6	15 1 5 2 50 10 8 5 2	TR 10 TR 3 58 8 7 5 1	50 TR 10 20 6 3 2
			Fm		Pg Pm	5	de la companya			•	5GY 3/2 5GY 3/2 5GY 3/2	3, 73–75 cm = 12 4, 73–75 cm = 13 5, 73–75 cm = 10 6, 73–75 cm = 19	16 16			
			Pm	Ag	Pg			아는								

2	PHIC	13		OSS	TER													
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	IGIC D	ESCRIPT	TION			
						1	0.5				5GY 3/2-5/2	CLAY-BEARIN Color: dusky y 5/2-3/2) to du 5Y 4/2; 5Y 5; yetilow green (5C H_2S dor when • "Schlieren" refe SMEAR SLIDE SU	eliow ; sky oli (2), olih 3Y 6/2) cores w r to mix	preen to ve green ve (5Y - are split. are split. aed up be	gravit n to ol 4/3}, i	th olive live gray nclusion	green (5GY	(5GY 4/2-
						2					5GY 4/2	Pyrite Other heavy minerals Clay minerals	1-70 TR TR 15	2-135 1 	3-66 2 TR 30	3-110 1 - 25	4-115 1 - 15	5-10 TR 30
											5Y 4/2	Volcanic glass (It) Carbonate unspec. Foraminifers Calc. nannofossils	1 6 3 52	TR 10 5 57	TR 10 2 34	TR 10 3 35	5 2 55	TR 7 3 38
late Pliocene	daliokus A					F					5GY 5/2- 5Y 5/2	Diatoms Radiolarians Sponge spicules Silicoflagellates	10 8 3 2	2 5 4 1	7 10 4 1	10 8 5 3	8 6 2	6 5 10 1
late PI	P. doli					3				•	5Y 3/2 	CARBONATE BOM 2, 3739 cm = 139 3, 7375 cm = 239 4, 7375 cm = 199	6					
						-	-				5Y 5/2 5Y 4/2 5Y 5/2		2					
					us	4					5Y 4/2							
					Base P. dollolus					•	5GY 6/2							
		Fm	Pm	Cg	69 Ba	5	-	[b코			5Y 4/3							

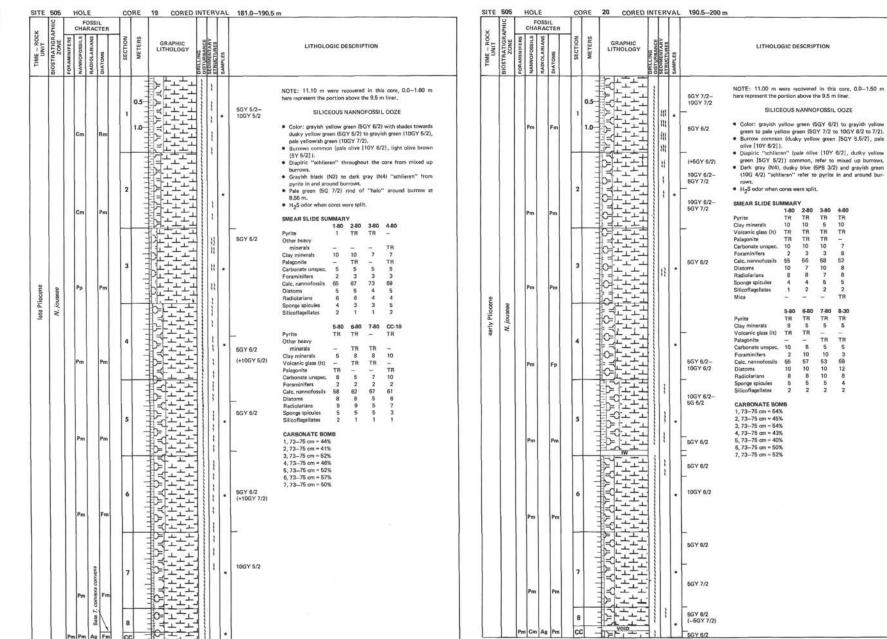
	505 DHIC		HOL F CHA	OSSI	TER	T	RE	13 CORED	Π		114.5-124.					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	DGIC DE	SCRIP	TION	
			Fm		Cy	1	0.5	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	*****		5Y 3/2 5GY 4/2- 5Y 4/2 5Y 5/2-	 Color: dark oliv 4/2-5Y 4/21 t 	e gray o dusky llow gre olive (5 lized by	(5¥ 3/2 y olive en (5G ¥ 4/3) 1 drilling.) to du green Y 3/2- hades.	DFOSSIL OOZE Isky olive gray (5GY (5Y 5/2–5GY 5/2) -4/2), grayish green
								VOID	1		5GY 5/2	SMEAR SLIDE SU	MMAR 1-80 1	2-140 TR	3-90 TR	4-90 TR
						2			00		5Y 4/2	Other heavy minerals Clay minerals Volcanic glass (It)	- 25 TR	TR 10 1	TR 25	TR 15 TR
			Fm		Pg	L	_			•	5Y 5/2 5GY 5/2	Carbonate unspec. Foraminifers Calc, nannofossils	7 3 44	6 3 60	15 1 39	10 1 55
						3	- Upon	라 카 다	00		5GY 3/2	Diatoms Radiolarians Sponge spicules Silicoflagellates Mica	8 7 2 3	8 1 3 TR	8 7 2 2 TR	8 7 3 1
ate Pliocene	praebergonii C		Pm		Pg		- uf u		*****	•	5GY 5/2 5GY 4/2	Mica Pyrite Clay minerals Volcanic glass (It)	- 4-130 TR 10 TR		5-140 TR 10 TR	- 6-130 TR 15 1
late Pli	R. praeb					4	the later.				5GY 3/2	Carbonate unspec. Foraminifers Calc, nannofossila Diatoms Radiolarians Sponge spciules	7 3 60 10 5 3	15 50 10 8 2	10 1 60 8 5 3	5 1 52 15 6 5
			Cm		Cm					•	5GY 5/2 10GY 5/2	Silicofiagellatas CARBONATE BON 1, 73–75 cm = 149		-	2	1
							1 cont				5GY 3/2	3, 73-75 cm = 159 4, 73-75 cm = 139 5, 73-75 cm = 539 8, 73-75 cm = 469	6			
			Pm		Fm	5	1000			•	5Y 4/3- 5GY 5/2					
						-				•	5GY 5/2					
			Pm		Pm	6	and see 1				5GY 4/2 					
		Rm	Pm	Ag	Cg	cc					01 10					

SITE 505



-	HIC	Γ		OSS	TER	T	GONED	TT	T								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLO	IGIC DE	SCRIP	TION			
			Pm		Fm	1	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	0000		5Y 5/2 5GY 5/2 5GY 5/2	CLAY-BEARIN Color: dusky o yellow green (5 "Schileren" and black (N2) and pyrite in or arou H ₂ S odor when "Schileren" from mixed up burrow	live gre iGY 5/3 spots gray (I nd burro cores we m diepi	en (5Y 2) to y of aliv N4) fre ows. re split ric dril	5/2 grayish ve tints quent. ling di	5GY 5/ green a as we The lat	2) to (10GY II as g ter ref	dusky 5/2). rayish ers to
			Pm		Fm	2				(+5Y 5/2— 5GY 5/2)	SMEAR SLIDE SUI Pyrite Other heavy minerals Clay minerals Volcanic glass (it) Carbonate unspec. Foraminifers	MMARY 1-130 1 TR 10 TR 5 3	2-100 TR TR 10 TR 5 1	3-90 TR TR 15 TR 5 1	4-120 TR - 10 TR 10 -	5-80 TR 10 - 10 1	6-70 TR 15 15 4
ate Pliocene	praebergonii C		Pm		Fm	3				5GY 5/2 (+5Y 5/2 5GY 5/2)	Calc. nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates CARBONATE BON 2, 73–75 cm = 44% 3, 73–75 cm = 39% 5, 73–75 cm = 48%		60 10 7 3 4	56 10 8 3 2	54 15 8 1 2	60 10 5 2 2	51 7 5 2 1
4	R,		Pm		Pm.	4	4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			5GY 5/2 10GY 5/2							
			Fm		F drozo	5				5GY 5/2 10GY 5/2							
		Pm	Cm	Cg	Top T. convexa	6 CC				5GY 5/2 10GY 5/2							

CORE 14 CORED INTERVAL 124.0-133.5 m


APHIC		(F	RA	TER													
UNIT BIOSTRATIGRAPHIC	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	DGIC DE	SCRIP	TION	(
						2	0.5		·······		5GY 7/2 50Y 6/7 	CLAY-BEARIN Color: gravith vellow green (5 (10GY 5/2), gra erate olive brown Burrows recogni phycus, "Schleren" of aspearance), Gravith black to referring to privi Gravith black to referring to privi Gravith black to referring to privi Gravith black to SMEAR SLIDE SU Pyrita Other heavy minerals Clay minerals	yellow (GY 5/2 yish oliv interm o gray ", te in or a 5P 4/2) 1 cores we MMARY 1-140 TR - 5 TR	green () with e green (4), uite fre ixed se schlieres pround I burrow rre split. 2-120 TR - 15 -	(5GY inclusi (5GY quenth dimen " and burrow rind at 3-90 1 - 10 TR	7/2-6 ons of 3/2-4.1 y, amor t comm spots v 2.90 m 4.80 TR TR 10 TR	(2) to gravish 5/2) and ng them non (d rery con h. 5-80 TR TR 20 TR 20 TR	dusky green i mod- i Zoo- iapiric nmon, 6-80 2 - 25 TR
late mocene praebergonii B						3				•	5GY 5.5/2 5Y 4/4 5GY 5/2 6GY 5/2 10GY 5/2	Carbonate unspec. Foraminifers Calc. nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates Mica	15 2 61 5 4 2	10 4 50 10 6 3 2	10 4 54 8 6 3 4	78655221	15 5 45 5 2 2 TR	15 7 37 6 4 7 2
R. praeb						4	nobratina				5GY 5/2 	CARBONATE BON 2, 123-125 cm = 5 3, 73-75 cm = 449 4, 73-75 cm = 469 5, 73-75 cm = 488 6, 26-28 cm = 329	4%					
						5	and and and	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0		•	5GY 6/2 							
		Fm F	'n	Ag	Pa	6 CC	a transforme			•	10GY 5/2- 5GY 5/2 5GY 7/2 5GY 7/2 5GY 3/2-5/2							

SILE	-	-	nui	LE.			URE	16 CORED	INTE	RVAL	152.5-162.0 m
×	APHIC		CHA	OSS	TER	_					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
late Pliocene	praebergonii B	Pm	Cm	Cg	Pm aeasnoi	C		-			Only 2 cm were recovered, none in liner.
late	R. pr				Top N.						

TR

TR TR

SITE 505

TR 5 TR 10

TR TR

TR

TR

TR

TR TR TR

TR TR -

В

TR

- 6

	PHIC		CH	OSS	TE	R			Π								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLO	DGIC D	ESCRIF	TION	
							1			1	•	10GY 6/2-6.5/2 (+10Y 6/2)	 represent the portion SILIC Color: gravish lowish green (green (10GY 5.6 Burrows mainly eran" (pale olive) 	vellow 10GY 5/2). (10Y l	e the 9. NANNC green (6/2-7/ bed by 5/2], lig	50 m lin DFOSSI (5GY 6 2), sha drillin pht olive	L OOZE (27/2) to pale yel des towards gravist g leeding to "schli (5Y 5/2)).
							2				•	5GY 7/2 (-10GY 7/2)	 Grayish blue gr from burrow hal 	een (58 los. schlieren	3G 5/2) n" and Y	"schilie spots r	ren" seem to derive efer to pyrite in and
													Pyrite Clay minerals Volcanic glass (It) Palagonite	1-80 TR 10 TR TR	2-80 TR 5	3-80 TR 10 TR TR	4-80 TR 10
							3					10GY 5.5/2-6/2 (+10Y 6/2) 5GY 6.5/2	Carbonate unspec. Foraminifers Calc. nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates	8 4 59 6 7 4 2	10 3 63 6 5 2	10 2 54 10 8 4 2	10 3 49 10 10 5 3
early Pliocene	N. jouseae						4				•	JUST GUITE.	Clay minerals Carbonate unspec. Foraminifers Calc. nannofossils Diatoms Radiolarians Sponge spicules	5-80 10 10 3 57 8 6 4	6-80 5 7 3 64 8 6 5	7-80 5 6 2 87 8 6 4	8-70 7 10 5 51 10 10 5
							_					_5GY 5.5/2 5GY 6/2	Silicoflagellates CARBONATE BO 1, 73-75 cm = 56 2, 73-75 cm = 57	5 5	2	2	2
							5				•	5GY 6.5/2 (+10Y 6/2) 5GY 6/2	3, 73-75 cm = 55 4, 73-75 cm = 52 5, 73-75 cm = 54 6, 73-75 cm = 59 7, 73-75 cm = 59 8, 63-65 cm = 64	6 6 6			
							-			;		5GY 6.5/2 5GY 6/2					
							6	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			•	5GY 6.5/2- 10GY 7/2					
							7					5GY 6/2 5GY 6.5/2 5GY 6.2 5GY 6.2 5GY 6.2 5GY 6.2					
		Pm	Cm	Ag	Cn		8	111111111				5GY 7/2- 10GY 7/2					

	PHIC		CHA	OSS	IL TER														
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPH	IC DGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLO	IGIC D	ESCRIP	TION				
			Pm		Fm	1				•	5GY 7/2	NOTE: 9.58 m w epresent the portio SILICI FIRM Color: gravish y 772 to 10GY 7 and "schileren" blue graen (58G Blue tints seem Burrows suffere bances.	ellow g (2) to towar 5G 6/1 7/2) an	i the 9.5 IANNO DING II reen to very pl ds ligh), yelk d pale I resent	5 m line FOSSIL NTO CH pale yree t greer owish golue (5P destroy	r. LOOZE (ALK) ellowish n (10G sish gra gray (5' B 5/2), red bur	green 8/2), s γ (5G γ 7/2), row "h	(5GY hades 8/1), pale alos".	
						1		뉴		•		SMEAR SLIDE SU	MMAR 1-80	Y 2-80	3-80	4-80	5-80	6-80	7-35
			Pm		Fm							Pyrite Clay minerals Volcanic glass (It) Palagonite	- 5	5	5 TR	- 5 TR TR	TR 7 -	- 5 TR TR	5
early Pliocene	jouseae		Pm		Fm	3				•		Carbonate unspec, Foraminifers Calc. nannofossils Diatoms Radiolarians Sponge spicules Silicoflagellates Mica	5 2 70 6 5 1	8 4 65 6 4 2	8 10 61 5 4 1 TR	5 3 75 4 4 3 1	10 5 62 6 5 4 1	15 10 52 7 3 1 TR	15 10 57 5 4 3 1
early	N.		Pm		Pm	4						CARBONATE BOM 1, 73–75 cm = 72% 2, 73–75 cm = 72% 3, 73–75 cm = 74% 4, 73–75 cm = 68% 5, 73–75 cm = 58% 6, 73–75 cm = 58%							
			Cm		Pm	5					5GY 7/2- 10GY 7/2 (+5G 6/1, 58G 7/2, 5PB 5/2)								
			Pm		Pm	6					(+5P8 5/2)								
						-	1	그			5GY 7/2 5GY 7/2								
			Pm			7	카고는	<u>[+]</u>	1		5G 8/1 - VOID								

SITE 505

ITE			HOL	OSS	TER	T	DRE	23 CORED I			L 219.0-228.5 m
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			Cm		Pm	1	1.0		******		NOTE: 9.53 m were recovered in this core, 0.0–0.03 m here represent the portion above the 9.5 m liner. 5GY 7/2 (-106 8/2) (+6PB 5/2) Color: grayish yellow green to very pale green (5GY 7/2 to 10G 8/2); shades to pale yellowish green (10GY 7/2). Light olive gray (5Y 6/2) blotches (seem to represent burrow relicts). Medium dark gray (N4) and pale blue (5PB 5/2) shades and "schlieren" seem to represent pyrite rinds, streaks, spots, and burrow "halos" respectively, destroyed by drilling.
			Pm		Pm	2	11111		*****	•	(+5Y 0/2) SMEAR SLIDE SUMMARY 180 2.80 3.80 4.80 5.80 6.80 7.33 Pyrite – – – TR TR TR Other heavy minerels – – TR TR TR – –
early Pliocene	N. jouseae		Pm		Pm	3					Citay minerals 5 5 5 5 8 6 7 Volcanic [jask (t)] - TR TR<
ca			Pm		Pm	4			~ ~ ~		1, 73-75 cm = 62% 2, 73-75 cm = 63% 3, 73-75 cm = 65% 4, 73-75 cm = 61% 5, 73-75 cm = 61%
			Cm		Fm	5	the set of sec.				+ 58G 7/2, SP8 5/2 and 5GY 7/2
			Pm		Pm	6			******		
			Cm		Pm	7					5GY 7/2- 10GY 7/2

~	VPHIC		сна	OSS RAC	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURDANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
iocene	early Pliocene N. Jouseae		Pm		Fm	1	0.5				SILICEOUS NANNOFOSSIL OOZE FIRM Color: gravish yellow green to pale yellowish green (5G 7/2-10GY 7/2). Gravish green (5G 5/2) patches and light olive grav (5Y 6/2) biotek (seem to represent burrow relicit). Modium dark grav (N4) strasks seem to represent prylite rinds, streaks, spots, and burrow "halos" destroyed by drilling. Baselt at 3.45 m.
early Pliocene	N. Jou		Cm		Fm	2					SMEAR SLIDE SUMMARY 1-70 2-90 3-20 Pyrits TR TR - Other heavy minerals - TR TR City minerals 5 6 5 Voicanic glass (it) TR TR TR Carbonate unspec. 25 30 40.
		Pm	Cm	Cg	Fm	3 CC	1 1 1 1 1 1			•	Foraminifers 1 2 2 Calc. nannofossils 57 55 45 Diatoms 4 1 3 Radiolariani 4 3 2 Sponga spicales 3 2 2 Silicoflagellates 1 1 1
											CARBONATE BOMB 1, 73-75 cm = 66% 2, 73-75 cm = 68%

SITE 505

cm	Piece Number Graphic Representation	Orientation	Shipboard Studies Alteration	Piece Number Graphic	Representation	Shipboard Studies Alteration	Piece Number	Graphic Representation	Orientation	Shipboard Studies	Miterauon	Piece Number	Graphic Representation	Orientation	Shipboard Studies	Alteration	Piece Number	Graphic Representation	Orientation	Shipboard Studies Alteration	Piece Number	Graphic Representation	Orientation	Shipboard Studies Alteration	Piece Number	Graphic	Orientation	Shipboard Studies	Alteration
	92	•	R	93		Π]	ſ]	ſ			[1				Π				Γ]]]]
-	<u>ey</u>	ľ		94	?) ?																					2			
-				96 96	1	×																							
-				97		M	R																						
50-																													
-																													
-																													
-																													
_																											1		1.
-																													-
-																													-
_																													-
-																													-
_																													
150 CORE/SECT		25/1			26	/1		L	1	L	L	L	_		l				J				1	L	1			l	

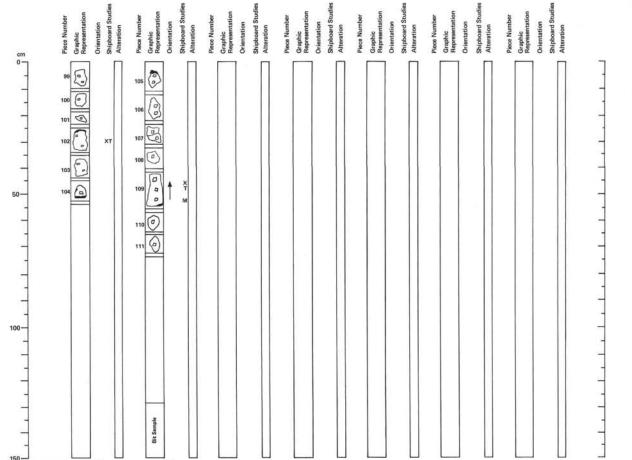
HOLE 505, CORE 25 3772-3776.5 m (233.5-238.0 mbsf)

PLAGIOCLASE-OLIVINE-CLINOPYROXENE PHYRIC BASALT

The basalt has about 25% phenocrysts up to 5 mm in length, mostly plagioclase, but with about 1% olivine and lesser clinopyroxene. The piece has a faint reddish oxidative alteration rind. Olivine is largely altered to clays. Plagioclase phenocrysts include some that are skeletal. Secondary mineralt include waxy pale blue green clays in sparse vesicles and possibly partly replacing plagioclase. Some vesicles also are filled with calcite. There are also reddish Fe-oxyhydroxides(?) and/or clays after olivine. Plagioclase phenocrysts in the alteration rind are stained rad

Thin Section Description

Sample 25-1, 28-30 cm, Piece 92: Pillow or flow interior. The section has abundant plagioclase phenocrysts of diverse morphologies – some skeletal, some rounded (resorbed), others with ophitically intergrown olivine and Cr-spinel. These are about 20% of the rock. In addition, acicular plagioclase microlites (10%) are in the groundmass. Other phenocrysts are granular to skeletal olivine, and rounded (rescreed) twinned clinopyroxene. The groundmass, besides plagioclase, is mainly spherulitic, with dendritic clinopyroxene, skeletal olivine, and dust-like titanomagnetite. Smectites partially replace olivine and line vasicles.


3776.6-3780.5 m (238.0-242.0 mbsf) HOLE 505, CORE 26

PLAGIOCLASE OLIVINE CLINOPYROXENE PHYRIC BASALT PLAGIOCLASE OUTWIE CLINOPTIOXENE PHYTHIC BASALT The basists have about 26% phenocrysts averaging 2–3 mm in length (plagioclase 20%, clinopyroxene 4%, olivine 1%). Many of the plagio clases have glass inclusions. None of the placet have glass. Place 33 has accessory pyrite. Place 07 has a radidth oxidation rind. Secondary minerals in all pieces include pale blue/green smectites replacing olivine, and smectites and calcite filling cracks, vesicles, and cavities.

Thin Section Description Sample 26-1, 33-36 cm, Piece 96: Pillow Interior. The section has about 20% plagioclase phenocrysts, 2% olivine phenocrysts, and scattered clinopyroxene phenocrysts. There are no ophitic glomero-crysts as in sample 25-1, piece 92. Olivines are granular, skeletal, and cryss is in sample 20-1, piece 32, christia are granular, skeletal, sho rounded. Clinopyroxens are rounded. Plagioclases are keletal, tabu-ier, and rounded. The groundmass has about 10% acicular and skeletal plagioclase microlites, 1% granular olivines, and a dark brown spherulitic matrix, dotted with titanomagnetite. Cr-spinel is accessory. Smectites partially replace olivine, line vesicles, and fill cracks. They are yellow-red in color in the cracks, and clear in the olivines.

BULK ANALYSIS:

BULK ANAL	1212:		
Core-Section	25-1	26-1	
Interval (cm)	26-28	33-36	
SiO2	48.45	48.03	
TIO2	0.71	0.76	
Al203	17.44	17.46	
Fe ₂ O ₃	8,15	8.25	
MnO	0.13	0.14	
MgO	9.67	9.07	
CaO	13,22	13.43	
Na ₂ O	1.64	1.88	
K20	0.07	0.07	
P2OF	0.08	0.10	
Total	99.57	99.21	
LOI	0.78	0.94	
Mg/Mg+Fe	0.701	0.685	
Ca/Ca+A!	0.408	0.412	
Ni	202	173	
Sr	81	89	
Zr	42	47	

HOLE 505A, CORE 1 3721.5-3728.5 m (196.5-203.5 mbsf)

PLAGIOCLASE-OLIVINE SPARSELY PHYRIC BASALT

The basalts have about 5% plagioclase phenocrysts (1-5 mm) and less than 1% olivine phenocrysts (1-2 mm). Pieces 102 and 104 have glass. Vesicles are less than 1% and 1 mm, and are filled with light green smectite in all but glass. In glass, vesicles are filled with white clays, some with Fe-oxyhydroxide(?) staining. Piece 99 has surfaces partially coated with green and gray-brown clays. One surface has pyrite with a slightly oxidized burnished cast.

Thin Section Description

Sample 1-1, 30-32 cm, Piece 102: Pillow interior. The sample has scattered euhedral to skeletal plagioclase phenocrysts, rare altered olivine phenocrysts, and a groundmass consisting of acicular skeletal plagioclase crystals enclosed in a dendritic to plumose-spherulitic matrix of clinopyroxene and interstitial titanomagnetite. There is accessory Cr-spinel. Smectites partially replace olivine, line rare, small vesicles, and fill some interstitial spaces.

HOLE 505A, CORE 2 3728.5-3733.5 m (203.5-208.5 mbtf)

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

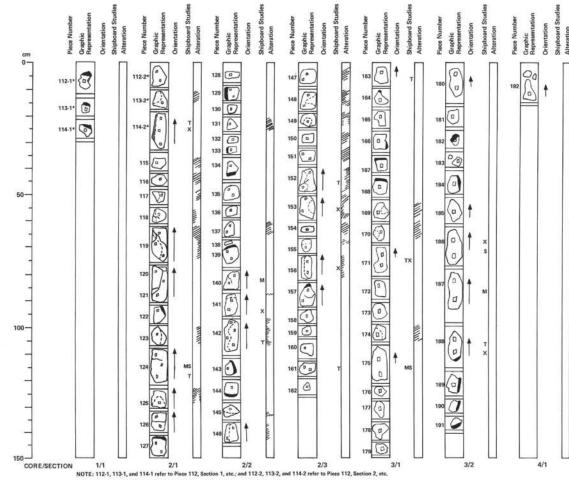
The basalts have about 5% plagioclase phenocrysts up to 5 mm, and 1-2% olivine phenocrysts. Vesicles are small (up to 1 mm) and rare (less than 1%). The groundmass of most pieces is microlitic. Piece 105 has a glass rind, and 107 a reddish alteration rind. Cracks are rare. Groundmass olivine is replaced by smectite, and vesicles are lined with light green smectite and calcite.

Thin Section Description

Sample 2-1, 51-55 cm, Piece 109: Pillow or flow interior. The texture is intersertal to subophitic. There are scattered euhedral and skeletal plagioclase phenocrysts, isolated olivine phenocrysts, now largely replaced by smectite, and a groundmass of acicular skeletal plagioclase in a largely dendritic-clinopyroxene, titanomagnetite matrix. Vesicles are filled with yellow-brown smectite. The section has a reddish oxidative alteration zone at one end in which patches of yellowred material (smectite? Fe-hydroxides?) replace glass(?) and/or crystal-line material between clinopyroxene dendrites.

Bit sample

Zr


About 25-30 pieces of basalt up to 1 cm diameter mostly smaller, some with glass, are in a bag at the bottom of Core 2, Section 1. These were picked out of the bit when it was brought on deck, and most likely represent pieces from the bottom of the hole.

BULK ANALYSIS: Core-Section 1-1 Interval (cm) 28-30 2.1 51-55 49.13 0.95 SiO₂ TiO₂ Al₂O₃ Fe₂O₃ MnO MgO CaO Na₂O K₂O P₂O₅ Total LOI 48,93 0.95 16.16 15.94 9,74 9.69 0.15 0.16 8.53 **B.82** 12.79 2.00 12.60 2.32 0.05 0.02 0.09 0.08 99.62 99.52 0.23 0.95 Mg/Mg+Fe 0.634 0.643 0.418 0.418 Ca/Ca+Al 154 80 51 148 74 57 Ni Sr

1/1

CORE/SECTION

2/1

HOLE 505B, CORE 1

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC PILLOW BASALT The core consists of three pieces of basalt, each with a glass ind. Plagloclase bydencrysts (5%) are up to 5 mm i length; some have groundmass inclusions. Olivine phenocrysts (2%) are up to 3 mm. Vesicles (leas than 1%) are up to 1.5 mm. They are either not tilled, or partly filled with yellow wretch. Rave cracks are filled in part with yellow smectites and with small (0,1–0.3 mm) black spots of Mnevolder.

3643-3648 m (136.0-141.0 mbsf)

HOLE 505B, CORE 2 3648-3657.5 m (141.0-150.5 mbsf)

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

The basalts contain 5–9% plaglodase phenocrysts (1–6 mm), more abundant in Section 2, and about 1% olivine phenocrysts (1 mm), less abundant in Section 2. Several pieces have glass along the aides, tops or bottoms, and other pieces have a variolitic surface appearance, indicating that the sequence is one of pillows or thin flows. Several pieces have dusky vellow-orange oxidative alteration rinds in which olivine is almost completely replaced by smectites. Clays also line cracks and fill vesicles. Mnovides are fracture uniface orating levery minor) on some pieces (e.g. pieces 137 and 153, which also has philliunite).

Thin Section Descriptions

Sample 2-1, 29-33 cm, Place 114: Flow interior. The section contains nearly 40% each plagioclase and clinopyroxene, the former including phenocrysts and acicular groundmass crystals, the latter acclusively as a dendrific groundmass phase. Olivine phenocrysts are less than 15, as is is titanomagnetite which forms tiny crystals in the groundmass. Cr-spinel is accessory. Smecities replace glass(?) and olivine, and fill veisides (1%, less than 1 mm). Calcite occurs: in some cracks. The section has a yellow oxidative alteration zone where the clays are abundant.

Sample 2-1, 108–111 cm, Piece 124: Pillow interior. The section contains trattered subscript and skeletal plagioclase phenocrysts, somtimes clumped together, in a splenulitic groundmas, with acicular and equant skeletal plagioclase, skeletal olivine, and plumose spherulitas between which are tiny titanomagnetite crystals. Each edge of the section has a yellow stain, in which yellow brown smecties fill vesicies and regulace olivine. Pale polden clays occur in the gray interior zone, and are associated with pyrite.

Sample 2-2, 98-101 cm, Piece 142: Flow interior. Texture is microphyrite to subophitic, with tabular to skeletal plagioclase enclosed by andraft to dendritic ciliopyroxane, with interstitial class, pyrite, and titanomagnetite. There are some subedral plagioclase and olivine phenocysts.

Sample 2-3, 40-42 cm, Piece 152: Pillow interior. The sample is similar to 2-1, piece 124 in having about 20% primarily actionar plagiclase crystals set in a matrix of plumose spheroutiles. There are a few parcent plagiolicase and rarer cilvine phenocrysts, the former having underdari, stubular, and skeletal morphologies. This anomagnetic and Crspinal are accessory. Calcite and smectles replace cilvine, and structures (il) vesicles. Sample 2.3, 103-106 cm, Piecs 161: The section is mostly plumolas spherulites with 10-12% acicular plagioclase and scattered exherted plagioclase and olivine phenocrysts. Titanomagnetitie dutts spaces between spherulite fibers. Round primary pyrite can also be seen. Selected olivine is intergrown with acicular plagioclase. The sample is quite fresh, with only a small amount of clays in the rare, small (less than 0.5 mm) valcelar plagioclase.

HOLE 505B, CORE 3 3657.5-3666.5 m (150.5-159.5 mbsf)

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

The basafts contain about 5% plagloclase elivine phenocrysts up to 5 mm in length, some skeletal, and 1% olivine phenocrysts up to 1 mm. The rocks are microlitic in flow interiors, and variolitic to glassy at selvages. Vesicles 11% are up to 1 mm in diameter and linad or filled with light blue grams marchits. Some pleces have yellow grav oxidation zones up to 1.5 cm wide. Pieces 184–186, and 177 have thin Mn-oxide crusts, and piece 170 has a yellow crust with Mn-oxides and phillipsite. This Section Descriptions

Sample 3-1, 5-8 cm, Piece 163: Pillow Interior. The sample has several percent plagicolase phenocrysts and lesser olivine phenocrysts in a matrix with exicular plagicolases, skielasi olivine, and plumose spherulites. Spherulite forms suggest the sample was about 5 cm into a pillow. In the groundmass, titatamomegnetis is concentrated at the ends of plumose spheruliter. There are accessory subedral and skeletal chrome spinels. Yellow-orange alteration streaks run along the cores of the spherulites. Sample 3-1, 76-79 cm, Piece 171: Pillow interior. Similar to 3-1, 5-8 cm, piece 163 except slightly coarse grained. The groundmass has about 70% plumose spherulities. The remainder is intergrow acicular to skeletal plagioclase and olivine. This sample, too, has yellow oxidized zones. Pyrite occurs in clay patches in the darker gray zones, not in the yellow zones. Chromite is accessory.

Sample 3.2, 99–100 cm, Piece 188: Piliow interior. The section consists of scattered plaglocides enhanced to keelar phenocrysts and glomerocrysts, lesser granular ollwine phenocrysts, and a groundmass with adcular skeletal plaglocides in crossing and radial arrangement, endosing a dendrite-gharnulitor matrix duated with itianomagnetita. Calitize and smecities fill vasides. Smectites also replace olivine and glast(2). They are associated with pryte where and gold in color, but not in oxidized portions of the section where they are yellow-red in color.

Sample 3-2, 133–137 cm, Fiese 191: Pillow rim. The section cross a pillow rim from its glassy dogs to about 5 cm into the interior. Successive zones of groundmass spherulitis development can be seen. They are dark brown and spherical in the glass, and successively lighter brown and more plumous going into the pillow. Flagicalizer crystalized in the groundmass as acloalar needles and small eubedra with striking derdritic projections from twin insmilles and crystal corrent. Praglocalar megacysts are eubedrait, and many are skeletal. The interior of the pillow is more oxidized than its rim, hence smeetites filling rare fless than 150 small (less than 1 mm) vesicles are deep orange. Near the rim, vesicles are filled with paligoclass and eubedrai loivine, some with fuid industion. C-trajinel and orytits are accessory magmatic minerala.

HOLE 505B, CORE 4 3666.5-3671 m (159.5-164.0 mbst)

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

The basalt has about 3% plagioclase phenocrysts (1-3 mm) and less than 1% olivine phenocrysts (up to 1 mm). The groundmass is microlific. Vasicles up to 1 mm diameter are filled with light green or brown clay minerals. Crack surfaces are covered with light green and brown smectites.

BULK ANALYSIS

Donald Least						
Core-Section	2.1	2.2	2.3	2.3	3-1	3-2
Interval (cm)	19-23	87-90	51-52	78-83	76-79	102 - 105
SiO ₂	49.58	49.63	49.70	49.62	49.52	49.67
TiO ₂	0.98	0.96	0.96	0.96	0.95	0.95
Al ₂ O ₃	15.94	16.23	16.24	16.05	16.21	15.94
Fe ₂ O ₃	9.59	9.34	9.64	9.36	9.54	9.51
MnO	0.15	0.14	0.18	0.14	0.15	0.14
MgO	8.92	8.40	7.72	8.89	8.71	8.70
CaO	12.69	12.89	12.89	12.63	12.56	12.57
Na ₂ O	2.08	1,98	2.46	2.17	2.19	2.11
K20	0.05	0.06	0.16	0.03	0.11	0.04
P205	0.08	0.08	0.09	0.08	0.08	0.08
Total	100.07	99.73	100.05	99.95	100.04	99.73
LOI	1.04	1.20	1.71	1.17	0.33	0.96
Mg/Mg+Fe	0.648	0,640	0.613	0.653	0.644	0.644
Ca/Ca+AI	0.420	0.419	0.419	0.417	0.413	0.418
Ni	153	167	154	160	157	168
Sr	75	81	109	74	78	77
Zr	56	56	56	53	57	56

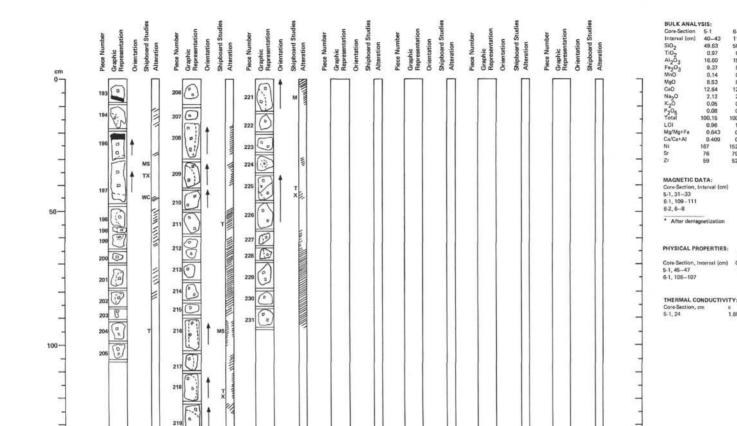
MAGNETIC DATA:

Core-Section, Interval (cm)	MDF	Susceptibility	INCL.	Intensity
2-1, 115-117	170	403	-12.3*	6,691
2-2, 81-83	500	176	15.7*	10,993
3-1, 114-116	280	228	-12.2*	14.161
3-2,86-88	180	301	-13.0"	8,765
4-1, 10-12	220	557	1.5"	15.305

* After demagnetization PHYSICAL PROPERTIES:

	Water			
Core-Section, Interval (cm)	Content	Porosity	Wet-Bulk	V (L)
2-1, 120-122	2.42	6.67	2.83	5.845
3-1, 108-109	2.45	6.83	2.86	5.870
3-2,76-77	1,59	4.48	2.89	5.937
4-1, 10-12				6.289

THERMAL CONDUCTIVITY:


.....

2.1.

2.2.

3.1.1

Section, cm	K		
126	1.70		
140	1.81		
74	1.77		

CORE/SECTION

150

HOLE 505B. CORE 5

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

5/1

6 22 0

3671-3676 m (164.0-169.0 mbsf)

6/1

The pieces contain 2-5% plagioclase phenocrysts up to 2 mm, and 1-3% olivine (up to 1 mm). Two pieces have fresh glassy rims. Oxidized zones are well developed on several pieces edjacent to cracks. Vesicles (less than 1% and 1 mm diameter) are filled with blue green clays in the gray basalts, and with red clays in the oxidized zones. Olivine is fresh in the gray baselts, and altered to red clays in oxidized 20085

Thin Section Description

Sample 5-1, 14-17 cm, Piece 194: Pillow Interior. The sample consists predominantly of radial acicular plagloclases and intergrown skeletal olivine enclosing a dendritic-spherulitic matrix of intergrown clinopyroxene, titanomagnetite and glass. There are scattered subedral plagioclase phenocrysts, oftimes skeletal. The section has a yellow oxidized zone on one side in which smectites replace glass and olivine, and fill vesicles. The non-oxidized zone also has pale golden smectites with associated pyrite. Cr-spinel is an accessory magmatic mineral. Sample 5-1, 43-45 cm, Piece 197: Pillow interior. The sample is a

fairly coarsely crystalline basalt with nearly 40% each of acicular plagioclase and anhedral to dendritic clinopyroxene. The usual scattered plagioclase and olivine phenocrysts also occur. There is less than 20% interstitial matrix material. Titanomagnetite occurs in this and some crystals are skeletal, Cr-spinel is accessory. The edges of the section are oxidized, and have yellow-brown smectites replacing olivines and filling vesicles. The center of the section has fresh olivine and patches of pale

golden smectite with associated pyrite.

6/2

Sample 5-1, 93-95 cm, Piece 204: Pillow interior. The section has 1-2% plagioclase olomerocrysts and phenocrysts (some skelatal) in a groundmass mostly of acicular skeletal radiating plagioclase centered on granular olivine, or intergrown with skeletal olivine, in a spherulitic dendritic matrix. The dendrites are clinopyroxene. Titanomognetite grows between the dendrites. Some clinopyroxene is anhedral and fairly coarse (0.3-1 mm). Minor smectites fill vesicles. Cr-spinel is accessory. There are some segregation vesicles.

HOLE 505B, CORE 6 3676-3685 m (169.0-178.0 mbsf)

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALTS

The core consists of pieces of apparently massive flow basalt without glass rims or obvious changes in grain size. The pieces have up to 5% plagioclase phenocrysts, some skeletal, and 1% olivine phenocrysts, often replaced by clays. Many pieces have zones of oxidative reddish alteration paralleling cracks or fracture surfaces. The groundmass is generally microlitic. Rare cracks have green smectite and/or calcite fillings. Pieces 211, and 222-224 are highly porous, possibly leached. Piece 214 has phillipsite in cavities together with yellow clays and Mn-oxides(?). Mn-oxide spots occur on fracture surfaces on pieces 222 and 229,

Thin Section Descriptions

Sample 6-1, 51-56 cm, Piece 211: Flow interior. The section consists of scattered euhedral plagioclase phenocrysts and granular olivine phenocrysts, set in an intersertal to soherulitic groundmass. Acicular

plagioclase (about 30%) is arrayed in spoke-like or criss-crossed patterns, sometimes centered on olivine crystals, in between which are plumose spherulites consisting mainly of clinopyroxene, glass[?] and, between apherulites, dust-like titanomagnetite. Cr-spinel is accessory. Smectites fill cracks and vesicles.

Sample 6-1, 112--114 cm, Piece 218: Flow interior. The sample has ophitic texture, with about 50% plagioclase, 20-40% clinopyroxene, 5-10% mesostasis, and 1-5% each of olivine, titanomagnetite and vesicles. Plagioclase crystals can be greater than 3 mm. Cr-spinel is accessory. Smectites replace olivine and fill vesicles. The sample has a vellow oxidized zone, where the clavs are orange. It also has a gray zone where clays are pale gold and associated with pyrite.

Sample 6-2, 38-40 cm, Piece 225: Flow interior. Finer grained than the samples just described, with 20-40% each of acicular planioclase. dendritic clinopyroxene, and spherulitic metostasis. Olivine (1%) occurs as phenocrysts and as skeletal intergrowths with acicular groundmass plagioclase. There are scattered euhedral plagioclase phenocrysts up to 3 mm in length. Skeletal titanomagnetite is fairly abundant, Cr-spinel is accessory. The sample has a dark gray zone and a yellow oxidized zone, both containing smectites. Pale gold smectites occur in the gray zone associated with pyrite. Orange clays occur in the oxidized zone, replacing olivine and filling vesicles.

6.1

50,04

0.07

15,90

9,44

0.15

12.85

2,17

0.09

1.01

0.636

0 424

MDE

150

130

360

Water

Content

2.72 7.55

1.96

1.69

152

79

52

100.00

8.2

49.64

0.07

15,79

9.72

0.15

12.61

2,11

0.08

100.28

0.57

0.651

0.421

Susceptibility

723

740

380

Porosity Wet-Bulk

5.57

.

2.84

2.90

INCL

-10.0*

- 35"

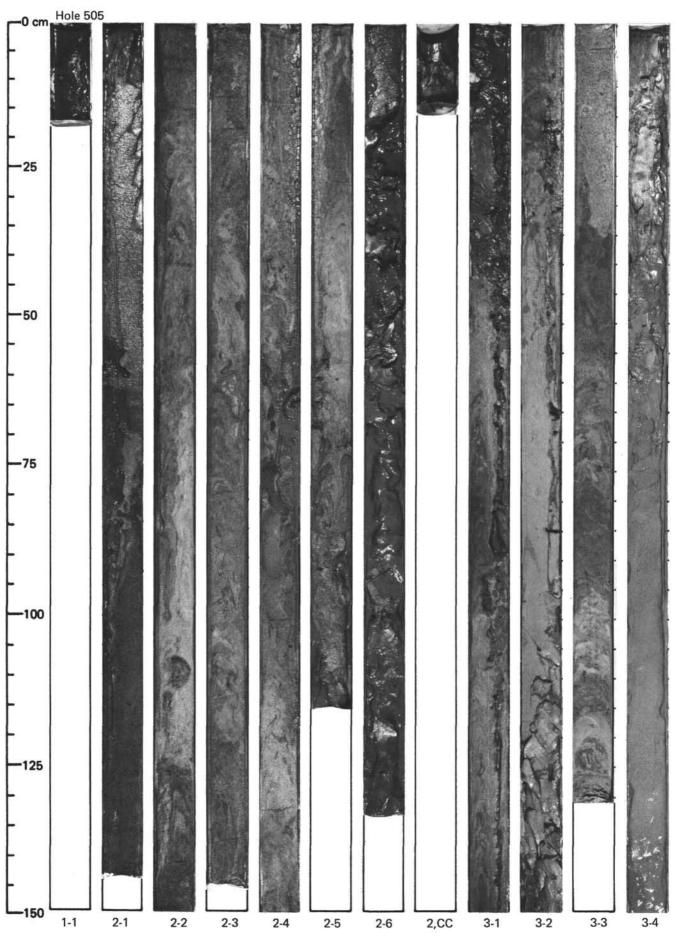
-10.0*

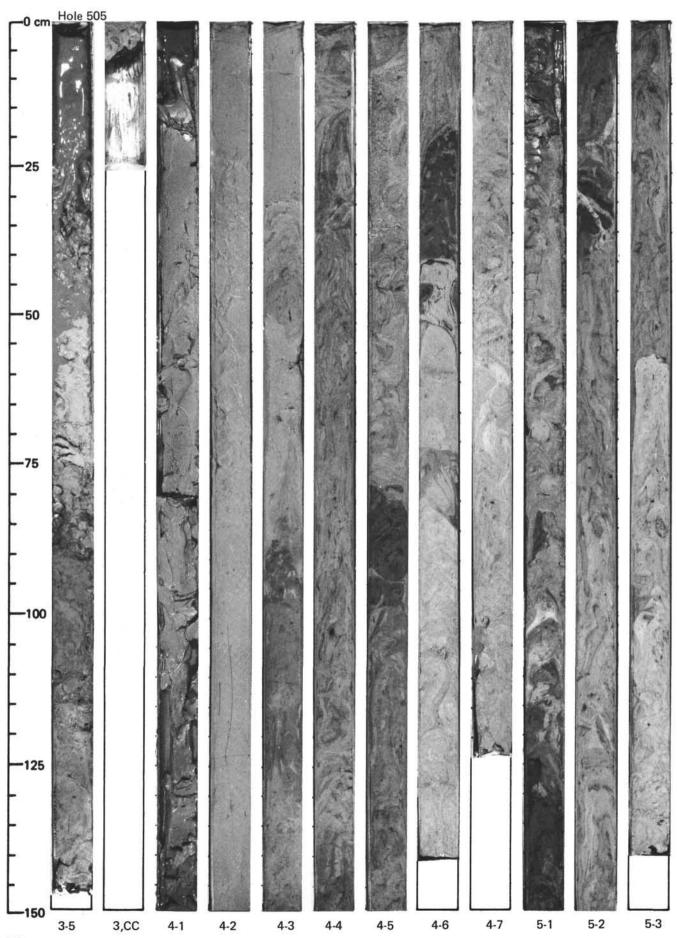
Intensity

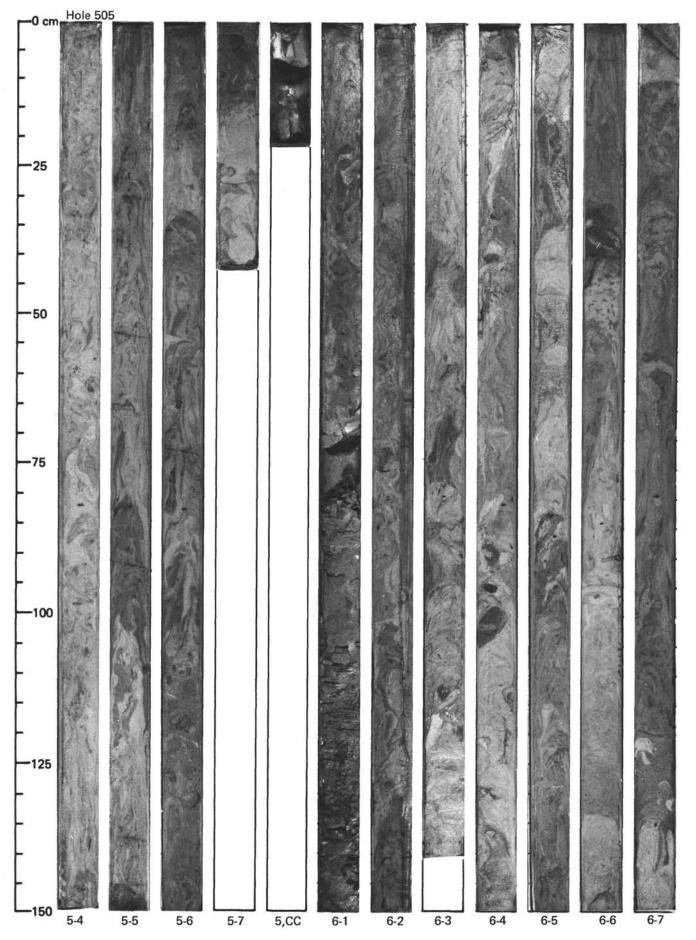
12.001

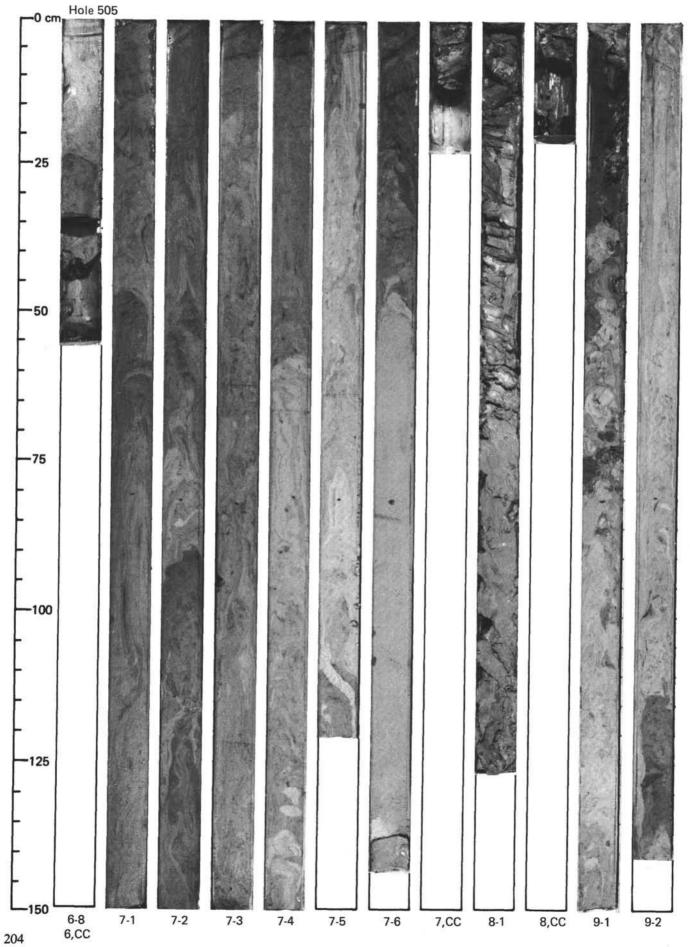
10 680

V (L) 5,914

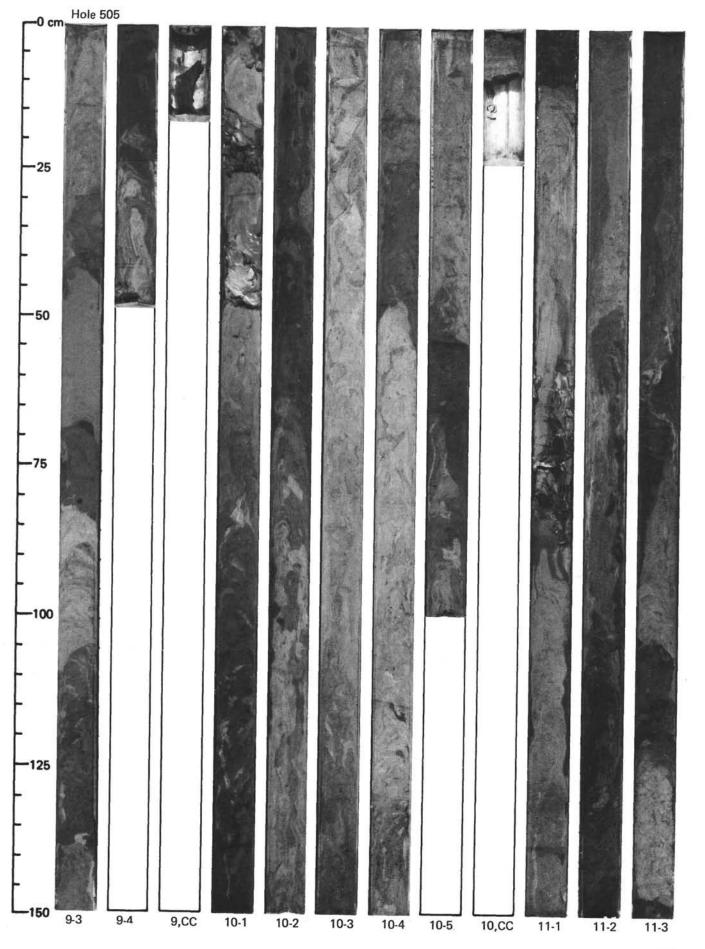

5,684

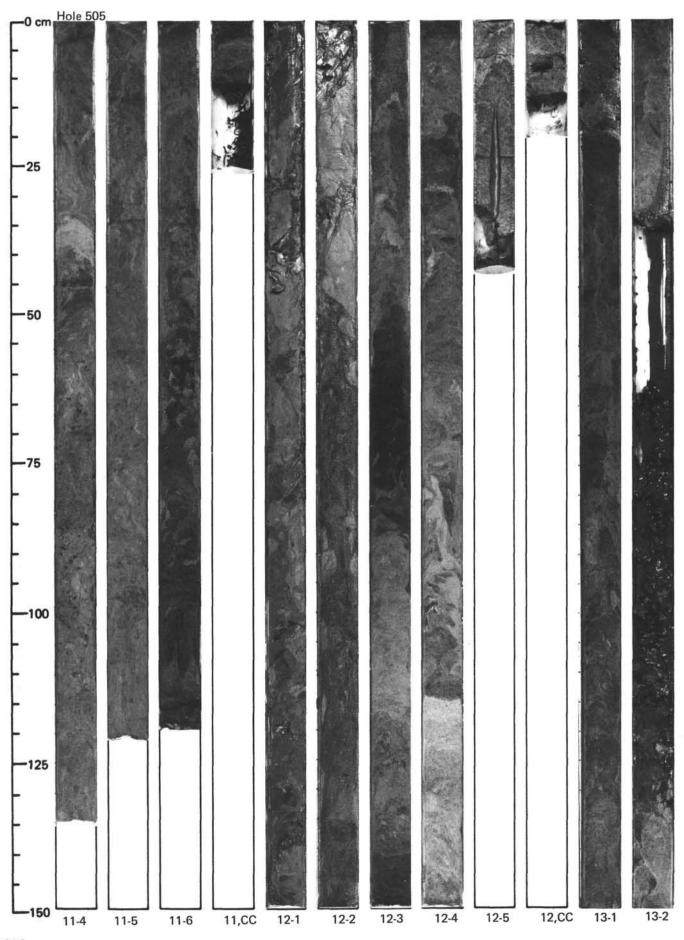

8.400

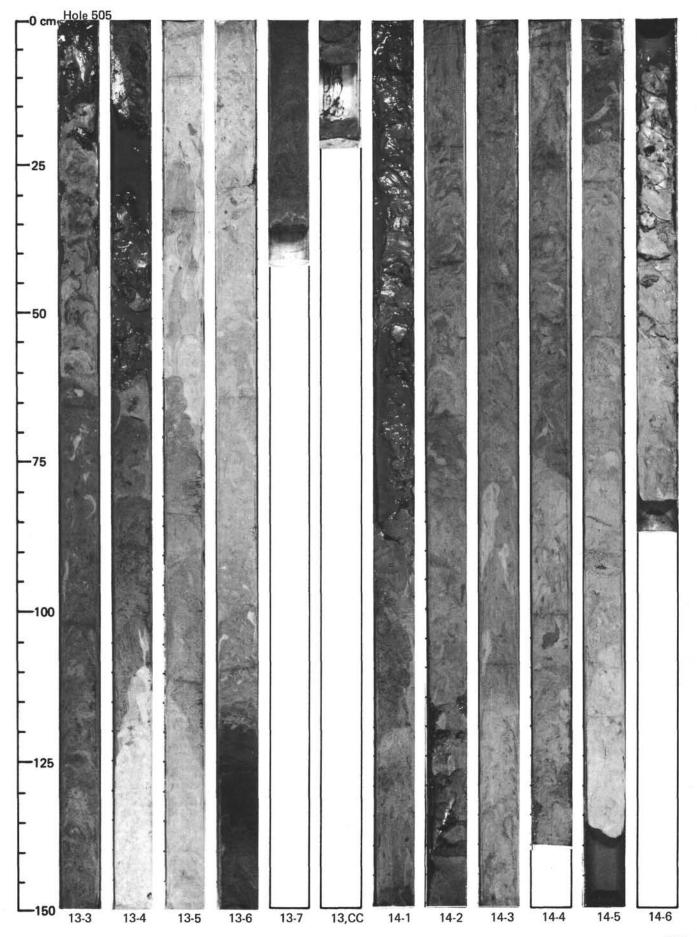

165

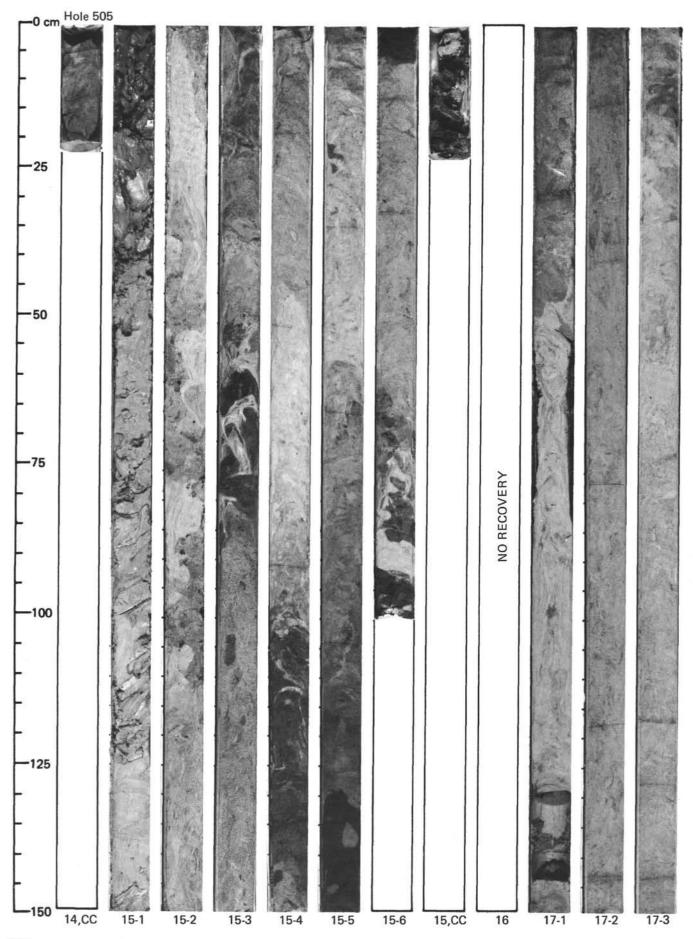

75 58

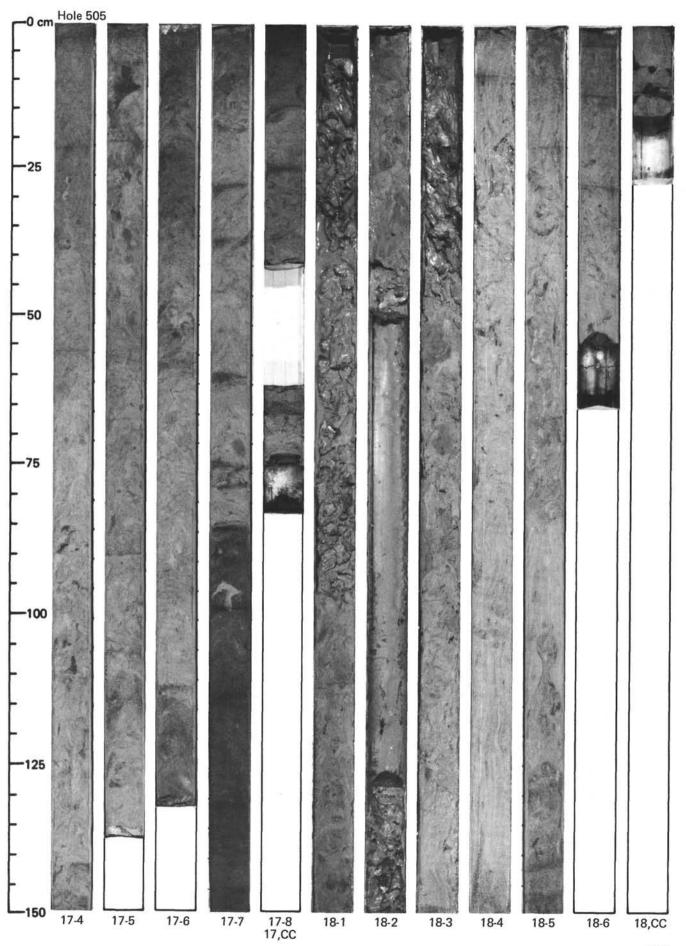
114-116 20-23










•

