2. SITE 5251

Shipboard Scientific Party²

HOLE 5253

Date occupied: 10 June 1980

Date departed: 10 June 1980

Time on hole: 10 hr., 30 min.

Position: 29°04.24'S, 02°59.12'E

Water depth (sea level; corrected m, echo-sounding): 2467

Water depth (rig floor; corrected m, echo-sounding): 2477

Bottom felt (m, drill pipe): 2478.9

Penetration (m): 3.6

Number of cores: 1

Total length of cored section (m): 3.6

Total core recovered (m): 3.6

Core recovery (%): 100

Oldest sediment cored:

Depth sub-bottom (m): 3.6 Nature: Foraminifer-nannofossil ooze Age: Pleistocene Measured velocity (km/s): 1.62

HOLE 525A⁴

Date occupied: 10 June 1980

Date departed: 15 June 1980

Time on hole: 4 days, 22 hr., 15 min.

Position: 29°04.24'S, 02°59.12'E

Water depth (sea level; corrected m, echo-sounding): 2467

Water depth (rig floor; corrected m, echo-sounding): 2477

Bottom felt (m, drill pipe): 2478.9

Penetration (m): 678.1

¹ Moore, T. C., Jr., Rabinowitz, P. D., et al., Init. Repts. DSDP, 74: Washington (U.S. Govt, Printing Office). ² Theodore C. Moore, Jr. (Co-chief Scientist), Graduate School of Oceanography, Uni-

versity of Rhode Island, Kingston, Rhode Island present address: Exxon Production Research Versity of Kinowski Karland, Kingston, Rubert and Present address: ExXon Production Research Co., P.O. Box 2189, Houston, TX 77001; Philip D. Rabinowitz (Co-chief Scientist), La-mont-Doherty Geological Observatory, Palisades, New York (present address: Department of Oceanography, Texas A&M University, College Station, TX 77843); Anne Boersma, La-mont-Doherty Geological Observatory, Palisades, New York (present address: P.O. Box 404, R. R. 1, Stony Point, NY 10980); Peter E. Borella, Deep Sea Drilling Project, Scripps Institu-tion of Doher 1, J. Chilling Project, Scripps Institu-tion of Doher 1, J. Chilling Project, Scripps Institu-tion of Doher 1, J. Chilling Project, Scripps Institution of Oceanography, La Jolla, California; Alan D. Chave, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California (present address: Institute of Geo-physics and Planetary Physics, University of California, San Diego, La Jolla, California); Gérard Duée, Laboratorie Géologie Stratigraphique, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq, France; Dieter Fütterer, Geologisch-Paläontologisches Institut und Museum der Universität Kiel, Kiel, Federal Republic of Germany; Ming Jung Jiang, Department of Oceanography, Texas A&M University, College Station, Texas (present address: Robertson Research [U.S.] Inc., Houston, Tex.); Klaus Kleinert, Geologisches Institut der Universitat Tübingen, Tübingen, Federal Republic of Germany; Andrew Lever, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom (present address: Department of Mineral Resources Engineering, Imperial College of Sciences and Tech-nology, London, U.K.); Hélène Manivit, Laboratoire de Palynologie, BRGM, Orléans, France; Suzanne O'Connell, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (present address: Lamont-Doherty Geological Observatory, Palisades, NY 10961); Stephn H. Richardson, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Nicholas J. Shackleton, Godwin Laboratory, University of Cambridge, Cambridge, United Kingdom. ³ Principal results follow Hole 525B data.

⁴ See Hole 525B for Principal results.

Number of cores: 63

Total length of cored section (m): 555.1

Total core recovered (m): 406.7

Core recovery (%): 73

Oldest sediment cored: Depth sub-bottom (m): 649.6

Nature: Volcanic calcareous claystone Age: Early Maestrichtian Measured velocity (km/s): 2.39-2.55

Basement:

Depth sub-bottom (m): 678.1, top of basement complex 574.6 Nature: Basalt and interlayered sediment Velocity range (km/s): 3.35-4.78

HOLE 525B

Date occupied: 15 June 1980

Date departed: 19 June 1980

Time on hole: 3 days, 8 hrs., 15 min.

Position: 29°04.24'S, 02°59.12'E

Water depth (sea level; corrected m, echo-sounding): 2467

Water depth (rig floor; corrected m, echo-sounding): 2477

Bottom felt (m, drill pipe): 2478.9

Penetration (m): 285.6

Number of cores: 53

Total length of cored section (m): 227.0

Total core recovered (m): 181.7

Core recovery (%): 80

Oldest sediment cored:

Depth sub-bottom (m): 285.6 Nature: Foraminifer-nannofossil ooze Age: Middle Eocene Measured velocity (km/s): 1.68

Principal results:

1. A complete sedimentary section from seafloor to 574 meters sub-bottom was recovered, with all sediments rich to moderately rich in biogenic carbonate. The upper 209 m and the interval between 268 and 286 m sub-bottom, spanning the Oligocene/Eocene contact, was recovered with the HPC.

2. There is a marked hiatus within the carbonate section, so that upper Oligocene sediments directly overlie middle Eocene sediments

3. Accumulation rates reached a distinct maximum in the lower Pliocene and perhaps again in the upper middle Miocene. The accumulation rate of benthic foraminifers also shows a peak in the lower Pliocene. Although recovery was sometimes spotty, the effects of dissolution appear small in most of the recovered Neogene section.

4. The proportion of planktonic foraminifers in the sediments increases markedly in the lower Pliocene.

5. Although a rather complete middle Eocene through Maestrichtian section was recovered, dissolution and calcite overgrowths hamper biostratigraphic interpretation.

6. Paleomagnetic studies yielded a good record for the early Paleocene through Maestrichtian (Anomalies 28-32), and accumulation rate plots based on the age of these anomalies indicate a sharp decrease at the Cretaceous/Tertiary boundary.

7. Paleomagnetic studies of the HPC cores (in Hole 525B) show that the magnetic signal of the Pliocene to mid-Miocene oozes was not measurable even with a cryogenic magnetometer. The early to mid-Miocene oozes have a higher remanence, but samples were magnetically unstable owing to viscous contamination.

8. The recovered basement complex of 103 m has an age of early Maestrichtian (70 m.y.), in agreement with seafloor magnetic anomalies and the magnetic measurements made on the sediments.

9. The basalts are aphyric with a subophitic texture and a rather uniform petrography. The nature of the basement seems to eliminate the possibility of the Walvis Ridge being a continental fragment.

10. Sediments near basement show clear evidence of gravity flows and contain shallow-water fossils. The depth of basement at Anomaly 32 time is estimated to be within a few hundred meters of sea level; this agrees with estimates based on the crustal cooling (backtracking) technique.

BACKGROUND AND OBJECTIVES

Geologic and Oceanographic Setting

The planned Site SAII-1 was drilled at Site 525. It is located near the broad, relatively flat crest of a NNW-SSE-trending block in the Walvis Ridge (Fig. 1) and is the shoalest site of a transect extending down the northwestern flank of this block into the Angola Basin. Reflection records of Vema and Thomas B. Davie (Fig. 1) show the presence of 0.6 s of sediments (approximately 540 m) conformably overlying a relatively flat acoustic basement. Studies of the crustal magnetic anomalies in this region and further predrilling site surveys indicate that the basement age at this site should be approximately 70 m.y. (Anomaly 32 time, late Maestrichtianearly Campanian) (Rabinowitz and Simpson, 1979). Dredge hauls from the latest CNEXO cruises in 1979 (Needham, personal communication, 1979) and results from Site 524 (Leg 73) nearby also suggest a Late Cretaceous age for basement.

Surface circulation in the eastern South Atlantic is dominated by the highly productive eastern boundary current (Benguela Current). The Walvis Ridge transect of sites lies just outside the main flow of this current, beneath the less productive waters of the subtropical gyre.

Bottom water flow into the Angola Basin is topographically controlled. It is bounded to the south by the Walvis Ridge, to the west by the Mid-Atlantic Ridge, to the east by the African continent, and to the north by the Sierra Leone Rise. Deep-water flow into the basin enters near the equator through the Romanche Fracture Zone and passes southward through the Guinea Basin into the Angola Basin. Flow from the Cape Basin into the Angola Basin may also pass through the Walvis Passage near the southwestern end of the Walvis Ridge (36°S, 7°W; Connery and Ewing, 1974). The relatively shallow sills (near 4200 m) of these passages block most of the flow of Antarctic Bottom Water and permit the entry of waters derived from the North Atlantic. These North Atlantic Deep Waters are chemically very "young" (i.e., rich in oxygen and relatively noncorrosive with respect to calcite). As a result, both the calcite compensation depth (CCD) and lysocline are 500 to 1000 m

deeper in the Angola Basin than in the Brazil Basin to the west of the Mid-Atlantic Ridge, and silica preservation is generally poor except in regions of divergence and upwelling.

Scientific Objectives

The scientific objectives of this site are an integral part of the transect as a whole. They focus on three main topics: (1) the history of bottom waters in the eastern South Atlantic (as indicated by changes in benthic faunas and calcite preservation); (2) the development of detailed biostratigraphies and magnetic stratigraphies in the geologic section; and (3) the plate tectonic evolution of the Walvis Ridge (by determining the age and the petrologic and chemical character of basement rocks and the subsidence history of the sediments).

Site 525 is one of the shallowest sites to be drilled on Leg 74 and contains the thickest sedimentary section. Thus it is of particular importance to the stratigraphic studies and to the studies of deep-water history. The Angola Basin has been drilled on DSDP Legs 3, 40, and 73, but these sites were located on relatively young crust in rugged topography or on older crust close to shore where calcite dissolution increases and the CCD shoals markedly. Sections recovered from them indicate marked changes in carbonate preservation and, presumably, in deep-water chemistry and circulation. The Walvis Ridge transect, and Site 525 in particular, provides an opportunity to sample a well-preserved pelagic section in a setting which is both topographically and sedimentologically uncomplicated. This site is located at a depth of about 2500 m and thus is now at the average depth of most spreading centers. The depth versus time backtracking curve (assuming normal crustal cooling and subsidence) provides an estimate of the paleodepth history of this site and indicates that at the time of crustal formation (~70 Ma) the site location was only a few hundred meters below sea level. Thus the sediments at this location provide a history of that part of the water column for which paleoceanographic reconstructions are most difficult: the region between the mixed layer of the near-surface waters and the level equivalent to the usual depths of spreading centers (about 2500 m). Results from Legs 3 and 73 indicate marked shoaling of the CCD in the mid-Miocene and Eocene. This site, together with others in the transect, provide critical data on carbonate preservation and accumulation in shallower water depths during these intervals.

The good carbonate preservation, combined with the use of the hydraulic piston corer (HPC), should provide excellent sections for paleoceanographic, paleoclimatic, and stratigraphic studies.

OPERATIONS

Glomar Challenger departed Cape Town, South Africa on 06 June 1980 at 1512 hr. The ship's track en route to Site 525 (SAII-1) on the Walvis Ridge traversed the Mesozoic sequence of magnetic anomalies and the Cretaceous magnetic quiet zone in the Cape Basin. Continuous seismic profiles, magnetic anomalies, and bathymetry were collected. The track was planned so as

Figure 1. Index and location map for Site 525 and reflection profile record of Vema and T. Davie, showing 0.6 s of sediment overlying flat acoustic basement at Site 525.

not to duplicate other geophysical traverses in the region.

A geophysical site survey was conducted prior to Leg 74 by *Thomas B. Davie* of the University of Cape Town. Other geological/geophysical ships' tracks in the vicinity which were of importance in the site selection included those of *Vema* (L-DGO) and *Atlantis II* (WHOI). A predrilling survey by *Challenger* in the site area was not necessary.

Glomar Challenger approached Site 525 (SAII-1) from the east-southeast on a course of 290° and speed of 7 kn. The beacon was dropped at 0942 hr., 10 June 1980, based on a depth of 2464 m and a sediment thickness of 0.6 s (two-way reflection time) observed on seismic reflection profiles aboard *Challenger* and its correlation to the predrilling site surveys. We continued on this course for 2 n.m. in order to obtain a *Challenger* seismic reflection profile across the site. At 1000 hr. we reversed course to approach the site and commenced pulling the towed geophysical gear. At 1115 hr. we were on Site 525, latitude 29°04.24'S, longitude 02°59.12'E. Figure 2 shows the ship's track for the approach on site. At Site 525, we planned a downhole heat flow experiment, hydraulic piston coring (HPC), rotary coring through the remaining sediment section and into basement, and logging of the hole. We also planned a number of engineering tests relating to the pressure core barrel (PCB) and drill bit motion indicator (DBMI). The latter tests required a drill bit size on the drill string which was not compatible with the HPC. In order to properly evaluate the PCB and do the DBMI tests, we were thus compelled to trip the entire drill string prior to hydraulic piston coring.

Three holes were drilled at Site 525. The depth from the drill floor to the seafloor was the same for each of the holes—2478.9 m.

Hole 525

Only one core was obtained, with 3.6 m penetration beneath the seafloor. The purpose of this hole was to establish the mud line and follow with a downhole heat flow experiment (see Table 1). Following the heat flow experiment, the pipe was lifted to the mud line, offset, and drilling commenced at Hole 525A.

Figure 2. Ship's track for the approach to Site 525.

Hole 525A

We obtained 63 cores from this hole, with a total penetration of 678.1 m below the seafloor (see Table 1). We spot-cored the first 6 cores down to 165.1 m subbottom and continuously cored from 165.1 m (the interval above this was later to be piston-cored continuously) to 678.1 m sub-bottom. A basement rock complex (basalt plus sediment) was first encountered in Core 53, at 574.6 m. We thus cored 447.6 m of sediment (409.5 m continuously from Core 7 at 165.1 m sub-bottom) and 103.5 m of the basement complex with a combined recovery rate of 73%. The recovery rate of the sediments was 74%; the recovery rate of the basement complex was 55%.

After completion of rotary drilling, we attempted to log the hole. The drill bit did not release, and we were thus forced to abort the logging program. The drill string was lifted and prepared for piston coring in Hole 525B.

Numerous PCB and DBMI tests were taken on this station. The results of these tests are given in the operations manager's report.

Hole 525B

We hydraulic-piston-cored 53 cores for a total cored length of 227.0 m. The recovery rate was 80% (see Table 1).

We continuously cored from the mud line at 2478.9 m (Core 1) to 2688.3 m (Core 49), a total of 209.4 m. Ship operational constraints (we had to take a sick man into port) forced us to end the hole early. We thus washed

down 58.6 m to 268 m sub-bottom and cored another 17.6 m (4 cores) with the express purposes of recovering a continuous sequence of sediments on either side of the Oligocene-Eocene hiatus and of evaluating our ability to use the HPC at greater sub-bottom depths. The hiatus was observed only in Hole 525A, and the continuous sequence was successfully cored here.

After completion of Hole 525B, the drill was retrieved and the *Challenger* departed for Walvis Bay to disembark the patient. We deployed a beacon upon departure from Site 525 in order to keep open the option to return to the site for further piston coring. A sonobuoy was deployed over Site 525 en route to Walvis Bay. The geophysical information gained on the ship's track into Walvis Bay should yield important information relating to Site 525.

SEDIMENT LITHOLOGY

Lithologic Classification of Sediments

We used the standard DSDP sediment classification system adopted by the JOIDES panel on Sedimentary Petrology and Physical Properties (see Explanatory Notes in the introduction to this volume). The classification is descriptive and divisions between sediment types somewhat arbitrary. Any modifications in this classification are discussed in the text.

Sediments and Lithostratigraphy

The sediments recovered at Site 525 are of three major types. Unit I, the majority of sediment, is divided into two subunits: Subunit IA, nannofossil and fora-

SITE 525

Table 1. Coring summary, Site 525.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Hole 525 1 10 1836 2478.9–2482.5 0.0–3.6 3.6 3.6 Hole 525A 1 0048 2482.5–2488.5 3.6–9.6 6.0 0.3 3 11 0315 2520.5–2330.0 41.6–51.1 9.5 2.9 4 11 0445 2530.0–2536.0 51.1–57.1 6.0 1.5 5 11 0717 2568.0–2577.5 89.1–98.6 9.5 7.6 6 11 0907 2577.5–2585.0 96.6–106.1 7.5 80.0 7 11 1156 2644.0–2653.5 165.1–174.6 9.5 8.6 10 11 1512 2672.5–2682.0 193.6–203.1 9.5 9.7 11 11 1612 2682.0–2691.5 203.1–121.2 9.5 7.8 12 11 1710 2691.5 203.1 9.5 9.7 13 11 1809 2701.0–2710.5 222.1–231.6 9.5 9.8 14	ed Recovery (%)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Hole 525A 1 10 2342 2478.9-2482.5 0.0-3.6 3.6 3.5 2 11 0048 2482.5-2488.5 3.6-9.6 6.0 0.3 3 11 0315 2520.5-2530.0 41.6-51.1 9.5 2.9 4 11 0445 2530.0-2536.0 51.1-57.1 6.0 1.5 5 11 0717 2568.0-2577.5 89.1-98.6 9.5 7.6 6 11 0907 2577.5-2683.0 165.1-174.6 9.5 8.6 10 11 1512 2672.5-2682.0 193.6-203.1 9.5 9.7 11 11612 2682.0-2691.5 203.1-212.6 9.5 8.6 10 11 1512 2672.5-2682.0 193.6-203.1 9.5 9.7 11 11616 210.0-2710.5 222.1-231.6 9.5 9.8 14 11 1916 2710.5-2720.0 231.6-241.1 9.5 9.7 15 11<	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25
	80
8 11 1105 2653.5-2663.0 174.6-184.1 9.5 9.7 9 11 1411 2663.0-2672.5 184.1-193.6 9.5 8.6 10 11 1512 2672.5-2682.0 193.6-203.1 9.5 9.7 11 11612 2682.0-2691.5 203.1-212.6 9.5 7.1 13 11 1809 2701.0-2710.5 222.1-231.6 9.5 9.7 13 11 1809 2701.0-2710.5 222.1-231.6 9.5 9.8 14 11 1916 212.0-2729.0 231.6-241.1 9.5 9.7 15 11 2017 2720.0-2729.5 241.1-250.6 9.5 9.8 16 11 2100 2739.0 250.6-260.1 9.5 9.7 17 11 2300 2739.0 250.6-279.6 2.0 4.9 19 12 0123 2748.5-2778.0 260.1-267.6 7.5 2.7 12 0422 2777.0-2786.5 298.1-307.6 9.5 7.9 23 12 05	100+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$ \begin{array}{ccccccccccccccccccccccccccccccc$	91
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 + 100 +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 +
38 12 2341 2910.0-2919.5 431.1-440.6 9.5 5.0 39 13 0119 2919.5-2929.0 440.6-450.1 9.5 10.0 40 13 0315 2929.0-2938.5 450.1-459.6 9.5 7.8 41 13 0504 2938.5-2948.0 459.6-469.1 9.5 9.8 42 13 0735 2948.0-2957.5 469.1-478.6 9.5 9.5 43 13 0927 2957.5-2967.0 478.6-488.1 9.5 9.5 44 13 1125 2967.0-2976.5 488.1-497.6 9.5 9.8	38
39 13 0119 2919.5-2929.0 440.6-450.1 9.5 10.0 40 13 0315 2929.0-2938.5 450.1-459.6 9.5 7.8 41 13 0504 2938.5-2948.0 459.6-469.1 9.5 9.8 42 13 0735 2948.0-2957.5 469.1-478.6 9.5 9.5 43 13 0927 2957.5-2967.0 478.6-488.1 9.5 9.5 44 13 1125 2967.0-2976.5 488.1-497.6 9.5 9.8	53
40 13 0515 2229.0-2398.5 450.1-459.6 9.5 7.8 41 13 0504 2938.5-2948.0 450.6-469.1 9.5 9.8 42 13 0735 2948.0-2957.5 469.1-478.6 9.5 9.5 43 13 0927 2957.5-2967.0 478.6-488.1 9.5 9.5 44 13 1125 2967.0-2976.5 488.1-497.6 9.5 9.8	100+
42 13 0735 2948.0-2957.5 469.1-478.6 9.5 9.5 43 13 0927 2957.5-2967.0 478.6-488.1 9.5 9.5 44 13 1125 2967.0-2976.5 488.1-497.6 9.5 9.8	82 100 +
43 13 0927 2957.5-2967.0 478.6-488.1 9.5 9.5 44 13 1125 2967.0-2976.5 488.1-497.6 9.5 9.8	100
44 13 1123 2907.0-2970.3 400.1-497.0 9.3 9.0	100
45 13 1315 2976.5-2986.0 497.6-507.1 9.5 7.5	79
46 13 1534 2986.0-2995.5 507.1-516.6 9.5 8.8	93
47 13 1741 2995.5-3005.0 516.6-526.1 9.5 6.6 48 13 1910 3005.0-3014.5 526.1-535.6 9.5 5.1	69 54
49 13 2045 3014.5-3024.0 535.6-545.1 9.5 4.6	48
50 13 2214 3024.0-3033.5 545.1-554.6 9.5 9.2	97
51 13 2340 3033.5-3043.0 554.6-564.1 9.5 8.3 52 14 0109 3043.0-3052.5 564.1-573.6 9.5 4.3	45
53 14 0237 3052.5-3062.0 573.6-583.1 9.5 4.0	42
54 14 0415 3062.0-3071.5 583.1-592.6 9.5 2.9 55 14 0650 3071.5-3081.0 592.6-602.1 9.5 2.9	31
56 14 0925 3081.0-3090.5 602.1-611.6 9.5 8.1	85
57 14 1145 3090.5-3100.0 611.6-621.1 9.5 8.6	91
59 14 1712 3109.5-3119.0 630.6-640.1 9.5 7.5	79
60 14 2020 3119.0-3128.5 640.1-649.6 9.5 9.5	100
61 14 2308 3128.5-3138.0 649.6-659.1 9.5 2.4 62 15 0325 2128 0.2147 5 659 1.668 6 9.5 2.2	25
63 15 0548 3147.5-3157.0 668.6-678.1 9.5 2.6	23
Totals 555.1 406.7	73
Hole 525B	
1 16 0630 2478.9-2482.4 0.0-3.5 3.5 4.5	100 +
2 10 0740 2482.4-2486.8 3.5-7.9 4.4 4.5 3 16 0833 2486.8-2491 2 7.9-12.3 4.4 4.1	100 +
4 16 0940 2491.2-2495.6 12.3-16.7 4.4 4.1	93
5 16 1120 2495.6-2500.0 16.7-21.1 4.4 3.1	70
7 16 1340 2504.4-2508.8 25.5-29.9 4.4 4.1	93
8 16 1445 2508.8-2513.2 29.9-34.3 4.4 3.7	86
9 16 1540 2513.2-2517.6 34.3-38.7 4.4 4.3 10 16 1646 2517.6-2522 0 38.7 43.1 4.4 4.3	98
11 16 1753 2522.0-2526.4 43.1-47.5 4.4 4.0	98
12 16 1900 2526.4-2530.8 47.5-51.9 4.4 0.8	18
13 10 2031 2530.8-2535.2 51.9-56.3 4.4 4.5 14 16 2136 2535.2-2539.6 56.3-60.7 4.4 4.5	100 +
15 16 2250 2539.6-2544.0 60.7-65.1 4.4 2.8	64
16 17 0100 2544.0-2548.4 65.1-69.5 4.4 4.5 17 17 0215 2548.4 2552 60.5 73.0 4.4 4.5	100 +
18 17 0320 2552.8-2557.2 73.9-78.3 4.4 1.9	43

Table 1. (Continued).

Core No.	Date (June 1980)	Depth from Depth below ate Drill Floor Seafloor Lee ine (m) (m) Co 80) Time Top Bottom Top Bottom (t		Length Cored (m)	Length Recovered (m)	Recovery		
Hole	535B (Co	ntinued						
mone .	1250 (00	minucu	· · · · · ·					
19	17	0430	2557	.2-2561.6	78.3-82.7	4.4	4.2	95
20	17	0535	2561	.6-2566.0	82.7-87.1	4.4	0.3	7
21	17	0632	2566	.0-2570.4	87.1-91.5	4.4	1.0	23
22	17	0744	2570	.4-2573.9	91.5-95.0	3.5	3.6	100 +
23	17	0855	2573	.9-2578.3	95.0-99.4	4.4	4.5	100 +
24	17	1000	2578	.3-2582.7	99.4-103.8	4.4	4.2	95
25	17	1055	2582	.7-2587.1	103.8-108.2	4.4	2.8	64
26	17	1145	2587	1-2591.5	108.2-112.6	4.4	4.5	100 +
27	17	1245	2591	.5-2595.9	112.6-117.0	4.4	4.5	100 +
28	17	1345	2595	9-2600.3	117.0-121.4	4.4	0.4	9
29	17	1446	2600	3-2604.7	121.4-125.8	4.4	3.4	77
30	17	1615	2604	7-2609.1	125.8-130.2	4.4	4.5	100 +
31	17	1654	2609	1-2613.5	130.2-134.6	4.4	4.9	100 +
32	17	1800	2613	5-2617.9	134.6-139.0	4.4	3.9	89
33	17	1917	2617	9-2622.3	139.0-143.4	4.4	4.5	100 +
34	17	2020	2622	3-2626.7	143.4-147.8	4.4	3.3	75
35	17	2120	2626	7-2631.1	147.8-152.2	4.4	2.8	64
36	17	2228	2631	1-2635.5	152.2-156.6	4.4	4.2	95
37	17	2336	2635	5-2639.9	156.6-161.0	4.4	4.0	91
38	18	0415	2639	9-2644.3	161.0-165.4	4.4	4.0	91
39	18	0620	2644	3-2648.7	165.4-169.8	4.4	4.6	100 +
40	18	0725	2648	7-2648.7	169.8-169.8	0.0	0.0	0
41	18	0831	2648	7-2653.1	169.8-174.2	4.4	1.4	32
42	18	0930	2653	1-2657.5	174.2-178.6	4.4	1.7	39
43	18	1017	2657	5-2661.9	178.6-183.0	4.4	3.9	89
44	18	1120	2661	.9-2666.3	183.0-187.4	4.4	0.2	5
45	18	1225	2666	3-2670.7	187.4-191.8	4.4	4.7	100 +
46	18	1324	2670	.7-2675.1	191.8-196.2	4.4	4.5	100 +
47	18	1423	2675	1-2679.5	196.2-200.6	4.4	4.9	100 +
48	18	1530	2679	.5-2683.9	200.6-205.0	4.4	4.5	100 +
49	18	1635	2683	9-2688.3	205.0-209.4	4.4	4.8	100 +
50	18	1840	2746	.9-2751.3	268.0-272.4	4.4	1.3	30
51	18	2010	2751	3-2755.7	272.4-276.8	4.4	2.8	64
52	18	2125	2755	7-2760.1	276.8-281.2	4.4	1.9	43
53	18	2240	2760	.1-2764.5	281.2-285.6	4.4	3.8	86
					Totals	227.0	181.7	80

Note: Heat flow experiment followed establishment of mudline. Heatflow measurements at 2476.5, 2481.0, 2500.0, 2519.0, 2538.0, and 2547.5 m.

minifer nannofossil ooze, and Subunit IB, nannofossil and foraminifer nannofossil ooze and chalk. Unit II consists of cyclic sediments, which are interpreted as being turbidity current and small-scale or low-velocity slump deposits. The sediments are calcareous, with high amounts of noncarbonate material (mostly volcanogenic). Rock names range from conglomerates to claystones to limestones and indurated chalks. (The term indurated is used to designate chalk that is compacted and hardened but has not been lithified.) Unit III consists of basement complex sedimentary rocks. They are calcareous and volcanogenic in composition and include claystones, cherts, and volcanic fragments. Each unit is discussed in conjunction with the lithostratigraphic summary that is presented in Figure 3.

Nannofossil and Foraminifer-Nannofossil Ooze (Subunit IA)

The sediments recovered from the seafloor down to Core 19 in Hole 525A and through Core 51 in Hole 525B are predominantly nannofossil and foraminifernannofossil oozes. They are mostly white (N9) to bluish white (5B9/1) in the upper portions and gradually grade into a very pale orange (10YR8/2) to pinkish gray (5YR8/1) toward the bottom. Preservation of primary and secondary sedimentary structures is poor. The only exceptions are Cores 1 and 2 of 525B, in which wellpreserved halo burrows are found. The rest of the cores

Figure 3. Lithostratigraphic and biostratigraphic summary for Site 525.

are very homogeneous in physical appearance. Calcium carbonate content in this biogenic ooze averages over 95%.

It is interesting to note that a color change is associated with the base of this subunit/biogenic ooze. This color change coincides with the late Oligocene-middle Eocene hiatus (see section on biostratigraphy). The colors are given in the following.

Nannofossil and Foraminifer-Nannofossil Ooze and Chalk (Subunit IB)

Nannofossil ooze and chalk are dominant from Core 19 to approximately Core 40 (Hole 525A). At the upper boundary a pinkish gray (5YR8/1) to very light gray (N8) dominates. The color gradually changes to a predominantly yellowish gray (5Y8/1). Because of the high drilling disturbance, sedimentary structures are not preserved in the ooze layers or in most of the chalks. In Cores 37-39, there is mottling with traces of burrowing. *Planolites, Chondrites, Zoophycos,* and halo burrows are present. The abundance of chalk layers increases toward the bottom. Chert fragments are present in Cores 35 and 36. These deposits probably form as a result of fluids rich in silica that migrate into a pocket or void, with eventual mineral crystallization. CaCO₃ content averages well over 95% down to Core 30. Below, the CaCO₃ content decreases fairly rapidly to approximately 80% at the base of Lithologic Subunit IB.

The base of the ooze/chalk interval is marked by a color change, a dramatic decrease in calcium carbonate content, and a change in sedimentation pattern from entirely pelagic to cyclic in nature.

Again the lithostratigraphy coincides approximately with the biostratigraphy. The Cretaceous/Tertiary boundary is pinpointed at the top of Core 40, Section 2 (Fig. 4). This agrees with the change in sedimentation patterns. A thin, brownish red layer near the top of this section contains Paleocene microfauna. It is crumbly and more friable than the overlying and underlying chalks. Included in the underlying Late Cretaceous chalk is an intraclast containing Paleocene microfauna. It is possible that this thin layer represents a lithologic unconformity in which the dominant mode of sedimentation changed from submarine erosion and current deposition to a more pelagic regime.

Cyclic Sediments (Unit II)

A pattern of cyclic sedimentation on a scale of 10 cm to 1 m begins approximately at Core 39 and continues to basement. A transitional zone of indurated chalks that are light olive gray (5Y6/1) to yellow gray (5Y8/1) is present to Core 42. Interbedded with these transitional

Figure 3. (Continued).

nannofossil chalks are vague, fine-grained silts and included fragments that suggest periodic pulses of minor current activity or distal deposits of slumps or turbidity currents. Biogenic sedimentary structures (*Zoophycos*, halo burrows, *Planolites*) are abundant. The calcium carbonate content in the chalks is less than 80%.

Below this transitional chalk zone (Hole 525A, Cores 42-51) the cyclic sedimentation pattern is more pronounced. Alternating beds of chalk, calcareous siltstone and sandstones, and marly limestones are present and persist throughout the interval. Colors are dominantly greenish gray (5GY6/1) in the coarser-grained layers and light gray (N7) to light olive gray (5Y6/1) in the finer-grained chalk and marly limestones. Calcium carbonate content averages between 40 and 50%. Volcanic rock fragments, palagonite, acidic(?) glass, and quartz are the major noncalcareous components identified in smear slides. X-ray diffraction (XRD) analyses done onboard identify smectites, K-feldspar, and plagioclase as additional acid-insoluble minerals (see XRD section, this chapter). Biogenic mottling is extensive, with beautifully preserved Zoophycos (Fig. 5), Planolites, and Chondrites burrows. Large Inoceramus fragments are interspersed in the cores. Some small Inoceramus shell beds in the 'coarser-grained units and rounded intraclasts indicate that currents and winnowing processes were active at the depositional site.

The first three and one-half sections of Core 52, Hole 525A contain a well-preserved turbidite sequence. It is a fining-upward sequence beginning with cobbly, pebbly conglomerates at the base and grading to conglomerates, sandstones, siltstones, and highly mottled calcareous mudstones at the top. Minor fluctuations in current intensity and/or directions are well documented. Included fragments are rounded, with varied mineralogy. The bottom of the turbidite is marked by a sharp contact with underlying marine marly limestones.

The remainder of Core 52, down to basement (basalt) in Core 53, contains a multicolored limestone, dominantly in shades of gray to grayish red (10R4/2). The

Figure 4. Cretaceous/Tertiary boundary in Sample 525A-40-2, 5-20 cm.

mottled, marly limestone grades into a noncalcareous mudstone that in turn lies immediately above a chert layer. The bottom of the chert is in direct contact with the basement complex.

Basement Complex Sedimentary Rocks (Unit III)

Interbedded between the basement basalts are finegrained, marly limestones, noncalcareous mudstones, cherts, and volcanogenic sediments. They range in thickness from approximately 0.02 to 2.0 m and are multicolored, varying from greenish gray (5G4/1) to black, to grayish red purple (5RP4/2). The calcareous sediments are bioturbated (e.g., *Zoophycos, Planolites*), contain *Inoceramus* shell fragments, and show grading from fine-grained sand to silts. Chert fragments are found in restricted areas within the sediments. The noncalcareous mudstones and claystones appear to be of volcanogenic origin. High amounts of volcanic glass, rock fragments, and palagonite are identified.

These interlayered basalts and sediments probably represent a series of flows with sediments accumulating during nonvolcanic periods. The highly altered and baked appearance of the sediments near some of the basalt/sediment contacts may be due to heat from the basalt itself or to seawater-basement interactions.

INORGANIC GEOCHEMISTRY—INTERSTITIAL WATER STUDIES

The results of the interstitial water studies for Holes 525A and 525B are shown in Figures 6 and 7 and tabulated in Tables 2 and 3.

No correlation exists between lithostratigraphic units or color changes and pore water chemistry.

There is a gradual increase in chlorinity and salinity with depth at Site 525. The values obtained here are similar to those obtained during Leg 40 by Sotelo and Gieskes (1978) in a region farther west, near the African coastline. They suggested that the increases at Sites 361 and 362 were due to the migration of dissolved ions in pore fluids from salt deposits near the coast rather than to diagenetic reactions and ion exchange. If similar increases at Site 525 result from the same processes, then either the dissolved ions have migrated much farther (Site 525 is ~1000 km from the present-day Angolan salt deposits), or salt deposits were once closer to the location of Site 525 on the Walvis Ridge and gave rise to relatively high salinities in the pore waters (the Brazil salt was probably less than 500 km from Site 525 in the Late Cretaceous). Another possibility is that sedimentbasement interactions have increased the total dissolved ion concentration and chloride content in pore waters.

Calcium and magnesium show an approximately oneto-one inverse relationship with increasing depth (i.e., Ca increases and Mg decreases). This relationship has been reported elsewhere (e.g., Manheim and Sayles, 1974) and is typical of areas of biogenic ooze with low sedimentation rates (less than 3 cm/1000 yr.). The inverse relationship suggests that Ca is dissolved from the calcareous organisms and enriched in the pore waters while the Mg is depleted in pore waters as more Mgbearing carbonates are precipitated.

pH and alkalinity are fairly constant, with a very slight increase and decrease at the bottom, respectively. This change, however, may be within the range of analytical error.

X-RAY DIFFRACTION ANALYSIS

XRD analysis was done on 19 samples from Site 525, using a Rigaku Miniflex X-ray diffractometer. Samples were scanned from $50^{\circ}2\theta$ to $3^{\circ}2\theta$ at a speed of $2.4^{\circ}2\theta/$

Figure 5. An example of the extensive biogenic mottling in the sediments. Note the well-preserved *Zoophycos* burrow at 80 cm (Sample 525A-41-4, 72-83 cm).

min., using CuK α radiation generated at 30 kv and 10 mA. Traces were available within 25 min. and supplemented visual core description and smear slide analyses. No semiquantitative analysis was attempted because of the differences in slide preparation and orientation.

The results are summarized in Table 4. Calcite is the most abundant mineral in almost all the major lithologies, and aragonite is found only in the first section of the first core. The presence of halite peaks in the traces is due to the evaporation of the interstitial waters during

Figure 6. Summary of shipboard inorganic geochemistry pore water study, Hole 525A.

slide preparation. In many samples (particularly Cores 9–13 in Hole 525A) a small peak is noted at about 26.5° 2θ . This is interpreted as the illite 003 and/or the quartz 101 peaks; the latter is more likely, since the illite 001 peak is absent.

The samples from Cores 39 to 47 were generally taken from coarser-grained, silty beds within the chalk, and XRD analysis shows the probable importance of volcanogenic detritus in the formation of these layers. K-feldspars, and particularly anorthoclase, are important components in the samples. Montmorillonite was identified by a shift of its basal plane reflection from 13 Å to 17 Å upon glycolation and was probably derived by alteration of volcanic ash. Minor plagioclase is present in Core 46.

BIOSTRATIGRAPHIC SUMMARY

At Site 525 three holes—525, 525A, and 525B—were drilled. Hole 525 contained one core of Pleistocene age.

Hole 525A was rotary-cored discontinuously from the lower Pleistocene to the upper Oligocene, then continuously cored from the upper Oligocene down to basement, of early Maestrichtian age. Hole 525B, using the HPC, continuously cored sediments from early Pleistocene to early Miocene in age and, after washing through most of the lower Miocene, cored across the interval where upper Oligocene overlies middle Eocene sediments.

Nannofossils and planktonic and benthic foraminifers were studied from all cores containing sediments. Biostratigraphic zonation of the Neogene (Fig. 3) is based on the time scales and zonations of Vincent (1977) and Martini (1971); of the Paleogene, on the time scales and zonations of Hardenbol and Berggren (1978) and Martini (1971); and of the Cretaceous, on the time scales and zonations of Thierstein (1976) and Sliter (unpublished).

Results of study of all core catcher samples are shown in the biostratigraphic summary diagram (Fig. 3).

Figure 7. Summary of shipboard inorganic geochemistry pore water study, Hole 525B.

Table 2. Summary of shipboa	d pore water study, Hole 525A.
-----------------------------	--------------------------------

Sample No.	DSDP Sample (interval in cm)	Sub-bottom Depth (m)	pH	Alkalinity (meq/l)	Salinity (‰)	Calcium (mmoles/l)	Magnesium (mmoles/l)	Chlorinity (‰)
	IAPSO		7.70	2 409	35.2	_	_	_
	SSW		8 072	2 310	35.5	10.74	55.10	19.79
1	1-1, 144-146	1.44-1.50	7.485	2.467	36.3	10.32	53.00	19.34
2	3-2, 140-150	44.50-44.60	7.303	2.810	35.2	12.34	51.66	19.75
3	5-4, 140-150	95.00-95.10	7.288	2.381	35.2	14.65	48.88	19.70
4	6-4, 140-150	104.50-104.60	7,269	2.303	35.2	14.98	48.90	19.75
5	8-5, 140-150	182.00-182.10	7.249	2.164	35.2	17.64	46.33	19.65
6	11-5, 135-150	210.45-210.60	7.245	2.071	35.5	18.79	45.84	19.73
7	14-5, 135-150	238,95-239,10	7.196	2.123	36.3	19.75	45.06	19.89
8	19-3, 135-150	273.95-274.10	7.264	2.184	35.5	21.16	44.13	20.09
9	23-5, 135-150	314.95-315.40	7.162	2.213	35.5	22.44	44.58	20.08
10	26-2, 135-150	338.95-339.10	7.170	2.052	35.5	23.20	43.75	19.89
11	32-4, 135-150	389.45-389.60	7.155	1.864	36.8	24.07	43.30	20.01
12	35-6, 135-150	411.45-411.60	7.211	1.624	36.3	24.42	43.13	20.02
13	40-5, 140-150	456.00-456.10	7.217	1.274	36.0	27.01	41.23	20.06
14	45-5, 140-150	505.00-505.10	7.155	0.168	35.8	29.74	37.22	19.99
15	50-5, 140-150	552.50-552.60	7.502	0.274	37.1	33.48	35.86	20.33
16	60-5, 135-150	647.45-647.60	-		37.4	45.17	28.79	20.76

Note: Sample 16 analyzed with first meter of Hole 525B.

Calcareous Nannoplankton

Calcareous nannoplankton were identified at Site 525. Sediments from Holes 525, 525A, and 525B contained abundant nannofossils. The preservation, however, fluctuated from moderate to poor as a consequence of dissolution, fragmentation, and overgrowth. Graphic representations of nannoplankton biostratigraphy and zonal identification of these three holes are given in Figure 3. The zonation scheme applied in this chapter follows that of Martini (1971) for the Tertiary and Quaternary and that of Thierstein (1976) for the Cretaceous.

Hole 525

Only one core was taken from Hole 525. The core catcher sample from 3.6 m contains common *Pseudo-emiliania lacunosa, Gephyrocapsa oceanica* or *G. caribbeanica, Emiliania ovata, Helicosphaera carteri, Cyclo-coccolithus leptoporus*, and small *Gephyrocapsa*, with

rare Ceratolithus rugosus. This assemblage indicates the *P. lacunosa* Zone (NN19) of the early Pleistocene.

Hole 525A

Hole 525A was drilled with conventional rotary coring. Sediments were not continuously cored above 165.1 m. The depth of this hole reaches 678.1 m (Sample 525A-63,CC). Basalt was encountered in Core 53 at a depth of 574.6 m. The oldest sediments above and sandwiched within the basalt are early Maestrichtian (*Tetralithus trifidus* Zone) in age.

A continuous Cretaceous-Tertiary sequence was recovered in Core 40; however, there is a major hiatus from upper Oligocene to middle Eocene in Core 19.

Pleistocene (0-3.6 m)

Quaternary sediments were recognized only in Core 1 of this hole. The core catcher sample, which contains common *Pseudoemiliania lacunosa*, *Gephyrocapsa oceanica* or *G. caribbeanica*, and *Emiliania ovata*, is as-

Table 3. Summary of shipboard pore water study, Hole 525B.

Sample No.	DSDP Sample (interval in cm)	Sub-bottom Depth (m)	pH	Alkalinity (meq/l)	Salinity (‰)	Calcium (mmoles/l)	Magnesium (mmoles/l)	Chlorinity (‰)
	IAPSO		7.719	2.285	35.2	-	-	
17	1-1, 140-150	1.40-1.50	7.436	2.613	35.2	10.47	53.12	19.31
18	3-1, 140-150	9.30-9.40	7.356	2.707	35.2	11.36	52.89	19.46
19	5-2, 133-143	18.03-18.13	7.345	2.641	36.3	11.64	51.56	19.44
20	7-2, 140-150	28.40-28.50	7.272	2.640	35.2	12.16	51.40	19.56
21	9-3, 111-121	38.41-38.51	7.285	2.611	36.3	12.45	50.84	19.46
22	11-2, 140-150	46.00-46.10	7.306	2.230	35.2	12.77	50.76	19.56
23	13-2, 140-150	53.80-53.90	7.272	2.505	35.2	13.23	50.29	19.49
24	15-1, 140-150	62.10-62.20	7.248	2.365	35.8	13.27	49.83	19.49
25	17-1, 140-150	71.00-71.10	7.235	2.229	35.2	13.70	49.71	19.51
26	19-2, 140-150	81.20-81.30	7.352	2.678	35.2	14.36	49.28	19.46
27	22-2, 140-150	94.40-94.50	7.284	2.180	35.2	14.50	48.84	19.56
28	24-2, 140-150	102.20-102.30	7.226	2.174	35.2	15.06	48.59	19.46
29	26-2, 140-150	111.00-111.10	7.354	1.921	35.2	15.29	47.88	19.75
30	29-2, 140-150	124.20-124.30	7.345	1.974	35.2	15.88	47.15	19.61
31	31-2, 140-150	133.00-133.10	7.297	2.000	35.2	16.04	46.95	19.75
32	33-2, 140-150	141.90-142.00	7.315	2.011	35.2	16.66	46.48	19.73
33	35-1, 140-150	149.20-149.30	7.455	2.124	35.2	17.11	46.48	19.77
34	37-2, 140-150	159.90-160.00	7.337	2.231	35.2	17.26	46.44	19.70
35	39-2, 140-150	168.30-168.40	7.267	2.012	35.2	17.51	146.26	19.73
36	42-1, 140-150	174,60-174,70	7.477	1.382 ^a	35.2	17.71	46.11	19.77
37	45-3, 140-150	190.80-190.90	7.224	1.989	35.2	18.05	45.77	19.73
38	47-3, 140-150	200.60-200.70	7.280	2.030	35.2	18.62	45.62	19.71
39	49-3, 140-150	209,40-209,50	7.280	2.093	35.2	19.00	45.53	19.80
40	51-1, 140-150	273.80-273.90	7.237	2.088	35.5	21.36	44.25	20.09
41	53-2, 140-150	284 10-284 20	7.217	2.090	35.5	21.66	44.31	19,99

a Bad induration.

Table 4. X-ray diffraction analysis, Site 525.

Sample (level, interval in cm)	Dominant/Minor Lithology	Minerals Identified
525-1-1, 140	D	Calcite, halite
525A-1-1, 50-52	D	Calcite, aragonite, halite
525A-2-6, 149-150	D	Calcite, illite/quartz
525A-7-5, 15-16	D	Calcite
525A-8-7, 2	D	Calcite, halite
525A-9-4, 25	D	Calcite, halite, illite/quartz
525A-10-1, 30	D	Calcite, halite, illite/quartz
525A-11-1, 50	D	Calcite, halite, illite/quartz
525A-12-1, 50	D	Calcite, halite, illite/quartz
525A-13-4, 50	D	Calcite, halite, illite/quartz
525A-14-4, 61	D	Calcite, illite/quartz
525A-26-3, 69	D	Calcite
525A-29-4, 81-82	D	Calcite, halite, anorthoclase
525A-32-6, 112	D	Calcite
525A-39-4, 56	M	Na-montmorillonite, K-feldspars
525A-43-4, 0-2	M	Calcite, illite/quartz, K-feldspars
525A-46-4, 100	м	K-feldspar (anorthoclase), plagioclase, montmorillonite
525A-47-2, 58-60	M	Anorthoclase
525B-23-1, 147	D	Calcite, halite, illite/quartz

signed to the *P. lacunosa* Zone (NN19). This assemblage suggests the upper part of the lower Pleistocene, because it contains abundant small *Gephyrocapsa* yet without *Helicosphaera sellii* and *Cyclococcolithus macintyrei*.

Pliocene (43.1-51.1 m)

No sample was investigated for Core 2. The lower Pliocene (Discoaster asymmetricus Zone) was found in Sample 525A-3-1, 150 cm only. The determination is based on the presence of Amaurolithus primus, A. delicatus, Discoaster asymmetricus, and rare Ceratolithus rugosus in this sample. Sample 525A-3, CC contains common Amaurolithus primus and A. delicatus. The absence of Discoaster quinqueramus and Ceratolithus rugosus, however, indicates the A. tricorniculatus Zone (NN12). No sample was investigated for Core 4.

Miocene (95.1-? m)

Sample 525A-5,CC, containing Reticulofenestra pseudoumbilica, Sphenolithus abies, Discoaster brouweri, D. surculus, D. pentaradiatus, and Amaurolithus primus, is assigned to the upper Miocene D. quinqueramus Zone (NN11). Amaurolithus delicatus is absent in this sample.

In Core 6, the co-occurrence of *D. calcaris*, *D. neo-hamatus*, *D. surculus*, and *D. pentaradiatus*, together with *D. variabilis*, indicates the upper Miocene (*Discoaster quinqueramus–D. calcaris* zonal interval). *Discoaster quinqueramus*, however, does not occur in this interval.

Core 7, which contains Cyclicargolithus floridanus, D. cf. deflandrei, Coronocyclus nitescens, and Coccolithus pelagicus, is attributed to the D. exilis Zone (NN6). Owing to the strong overgrowth of the discoaster species, the presence of D. exilis and D. kugleri (index fossil for Zone NN7) is difficult to detect in this interval.

Sediments from Cores 8, 9, and from Sample 525A-10-3, 150 cm contain Cyclicargolithus floridanus, D. deflandrei, Coronocyclus nitescens, R. cf. pseudoumbilica, Coccolithus pelagicus, and S. heteromorphus. The assemblage indicates the S. heteromorphus (NN5) to the Helicosphaera ampliaperta (NN4) zonal interval. Owing to differential dissolution or environmental exclusion, H. ampliaperta was not present in this hole. Therefore it is difficult to discriminate between Zones NN5 and NN4. The top of the lower Miocene (i.e., the top of NN4) is therefore roughly put at Sample 525A-9,CC.

Lower Miocene sediments were recovered from the Core 10 core catcher to the Core 15 core catcher. They contain abundant, yet poorly to moderately preserved, nannofossils. In the Core 10 core catcher the co-occurrence of *S. heteromorphus* and *Sphenolithus belemnos* suggests the upper part of the *Sphenolithus belemnos* Zone (NN3). The interval from Sample 525A-11,CC through 525A-15,CC contains no typical index fossils for the lower Miocene. This thick interval can be roughly assigned from NN2 to NN1.

Miocene-Oligocene (260.1 m)

The core catcher of Core 16 contains abundant Cyclicargolithus floridanus, Reticulofenestra spp., Discoaster cf. deflandrei, and very rare Dictyococcites bisectus, without Sphenolithus ciperoensis, an assemblage characteristic of the transition from the Miocene to the Oligocene period.

Oligocene (267.6-278.21 m)

The span from Sample 525A-17,CC to 525A-19-6, 111 cm contains typical Sphenolithus ciperoensis. Sphenolithus ciperoensis is common in Sample 525A-19-6, 111 cm, which suggests that this core is still within the S. ciperoensis Zone (NP25). Very rare S. distentus, S. predistentus (forms with strong overgrowth), and Reticulofenestra umbilica were found in Samples 525A-18,CC and 525A-19-6, 111 cm. They were possibly reworked from lower Oligocene and upper Eocene sediments. A hiatus immediately below this interval supports this supposition.

Eocene (278.9-371.35 m)

A hiatus was observed from Samples 525A-19-6, 111 cm to 525A-19-7, 20 cm. The entire lower Oligocene and upper Eocene are missing at this site. The time gap is roughly 14 m.y.

An upper middle Eocene assemblage was recognized in Samples 525A-19-7, 20 cm and 525A-19, CC. Reticulofenestra umbilica, Sphenolithus radians, S. pseudoradians, Chiasmolithus grandis, Helicosphaera compactus, Discoaster saipanensis, S. furcatolithoides, Bramletteius serraculoides, Triquetrorhabdulus inversus, D. barbadiensis, and Cyclococcolithus formosus were all found in this interval. This assemblage indicates the D. saipanensis (NP17) to D. tani nodifer (NP16) zonal interval. The core catcher of Core 20 contains rare Chiphragmalithus fulgens, without R. umbilica. This indicates the C. fulgens Zone (NP15). Core catchers of Cores 21, 22, and 23 contain D. lodoensis, D. sublodoensis, D. barbadiensis, T. inversus, Zygrhablithus bijugatus (short form), Cyclococcolithus gammation, and Coccolithus eopelagicus, which suggest the D. sublodoensis Zone (NP14) or part of the Chiphragmalithus fulgens Zone (NP15).

The core catcher of core 24 has essentially the same assemblage as in the last three cores. It does not, however, contain *T. inversus* and probably belongs to the *D. lodoensis* Zone (NP13). The middle/lower Eocene boundary at Site 525 is difficult to detect because *D. sublodoensis*, whose first occurrence defines the base of NP14 (i.e., the base of the middle Eocene), extends down and overlaps the ranges of *Marthasterites tribrachiatus*. The middle/lower Eocene boundary at this site is therefore tentatively placed in Core 24, based on the first occurrence of *Triquetrorhabdulus inversus*.

Marthasterites tribrachiatus was first encountered in Sample 525A-25,CC, which indicates the M. tribrachiatus Zone (NP12). Sample 525A-26,CC has essentially the same assemblage as 525A-25,CC, with an abundant and well-diversified flora and many giant specimens.

Calcareous nannofossils from Samples 525A-27,CC, 28,CC, and 29,CC are different from those in the previous two cores. Discoasters decline in number, and large nannofossil specimens disappear. Also, in this interval the preservation of nannofossils deteriorates suddenly. Toweius craticulus and T. eminens first appear in Sample 525A-28,CC, and S. anarrhopus first occurs in 525A-27, CC. The entire interval from Sample 525A-27, CC to 525A-29.CC can be assigned to the D. binodosus (NP11)-M. contortus (NP10) zonal interval of the lower Eocene. Species characteristic of this interval are M. tribrachiatus, D. gemmeus, D. diastypus, D. salisburgensis, Toweius craticulus, T. eminens, Chiasmolithus bidens, C. consuetus, and S. anarrhopus. A special sample, 525A-30-5, 75 cm (a thin layer of brown shale), surprisingly contains moderately to well-preserved nannofossils. The assemblage is composed of M. tribrachiatus (long-armed type), D. binodosus, D. diastypus, D. multiradiatus, and C. consuetus, which indicate basal Eocene (NP10-NP11).

Paleocene (374.1-451.71 m)

Coccoliths and discoasters from the Paleocene sequence in Hole 525A are few to abundant and poorly to moderately preserved. The interval from Sample 525A-30,CC through 525A-34,CC contains common Discoaster multiradiatus, which is an index species of Zone NP9. Other important species found in this interval are Fasciculithus spp., Toweius eminens, T. craticulus, Chiasmolithus bidens, Coccolithus pelagicus, D. lenticularis, D. gemmeus, and Ellipsolithus macellus. The absence of D. multiradiatus and the presence of Heliolithus cf. riedeli place Sample 525A-35,CC in either the D. gemmeus Zone (NP7) or the Heliolithus riedeli Zone (NP8). The co-occurrence of Discoaster gemmeus and H. kleinpelli, on the other hand, assigns 525A-36,CC to the D. gemmeus Zone (NP7). In Sample 525A-37,CC, D. gemmeus is not present. The assemblage is dominated by C. pelagicus, T. eminens, F. spp., Sphenolithus moriformis, and Cyclococcolithus robustus. The rare presence of H. kleinpelli, however, limits this core catcher sample to the H. kleinpelli Zone (NP6).

The poorly preserved calcareous nannofossil assemblage in Sample 525A-38, CC is dominated by *Cocco*lithus pelagicus (= C. cavus), with common *Cruciplaco*lithus tenuis and rare *Markalius astroporus, Princius* cf. bisulcus, Zygodiscus sigmoides, and Chiasmolithus sp. Typical C. danicus was not found in this core. Because of the absence of F. tympaniformis, this core is assigned to either the C. danicus (NP3) or the E. macellus (NP4) zonal interval.

The calcareous nannofossils in Sample 525A-39,CC are rare to few. The assemblage is dominated by *Thoracosphaera* spp. Accompanying rare species are Z. sigmoides, Markalius astroporus, M. panis, and Biantholithus sparsus. Fragments of Braarudosphaera bigelowii are common, but there were no complete specimens of this species. This assemblage is typical of the M. astroporus Zone (NP1). Reworked Cretaceous species in this core catcher sample are relatively rare.

Cretaceous/Tertiary Boundary (451.71 m)

The Cretaceous/Tertiary boundary in Hole 525A was recovered in Section 2 of Core 40. Closely spaced samples from this section were processed and investigated. The relative locations of these samples are shown in Figure 4 (see also Fig. 2 in Manivit, this volume). Samples 525A-40-2, 7 cm (light brown), 525A-40-2, 9 cm (brown), and 525A-40-2, 11 cm (light green) contain common *Thoracosphaera* spp., rare *Markalius astroporus*, *M. panis*, *Zygodiscus sigmoides*, and *Biantholithus sparsus*. Calcareous nannofossils in these slides are few to common with poor to moderate preservation. Reworked Cretaceous species are rare to few. This assemblage is typical for the basal Tertiary *M. astroporus* Zone (NP1).

Samples 525A-40-2, 22 cm (light brown), 525A-40-2, 64 cm, and 525A-40-2, 140 cm, on the other hand, contain an abundant and poorly preserved Cretaceous nannofossil assemblage. Arkhangelskiella cymbiformis, Micula staurophora, Cribrosphaera ehrenbergi, Watznaueria barnesae, Microrhabdulus decoratus, Eiffellithus turriseiffeli, Cylindralithus gallicus, and Lithraphidites quadratus are common, and Micula murus, Thoracosphaera spp., M. astroporus, and Z. sigmoides are rare in these slides. The presence of M. murus indicates that this interval belongs to the M. murus Zone of the uppermost Cretaceous. There appears to be no stratigraphic discontinuity across the Cretaceous-Tertiary in Hole 525A.

Samples 525A-40-2, 11.5 cm (pale green), 525A-40-2, 15 cm (light brown), and 525A-40-2, 17 cm (pale brown), however, contain a curious assemblage. The nannofossil preservation is extremely bad, so that most species are fragmented. Rare M. astroporus and M. panis were found mixed with rare to common Cretaceous forms in this interval. Many calcite particles in these slides look like isolated elements of Braarudosphaera bigelowii; however, very rare complete specimens of B. bigelowii were observed. If these calcite particles are indeed elements of B. bigelowii, the Cretaceous/Tertiary boundary should then be put somewhere between Samples 525A-40-2, 11 cm and 525A-40-2, 22 cm. Tentatively, the Cretaceous/Tertiary contact in this hole is placed between Samples 525A-40-2, 11 cm and 525A-40-2, 11.5 cm, because it corresponds to a minor lithological (color) change.

Maestrichtian (453.0-516.6 m)

Sample 525A-40, CC is assigned to the Micula mura Zone of the uppermost Cretaceous. This is based on the co-occurrence of M. murus, Markalius astroporus, and Lithraphidites quadratus. Sample 525A-41, CC contains rare Nephrolithus frequens, without Micula murus. It probably belongs to the M. mura/L. quadratus zonal interval or to Perch-Nielsen's (1977) Nephrolithus frequens Zone. Sample 525A-42, CC contains L. quadratus, without N. frequens and is attributed to the L. quadratus Zone. The Arkhangelskiella cymbiformis Zone is indicated in Samples 525A-43, CC and 525A-45, CC. The top of this zone is defined by the first occurrence of *L. quadratus* and the base by the last occurrence of *Quadrum trifidum*. In Sample 525A-46, CC, *Broinsonia parca* and *Reinhardtites levis* appear. This sample does not contain *Q. trifidum* and therefore belongs to the lower part of the *Arkhangelskiella cymbiformis* Zone.

Maestrichtian-Campanian (526.1-573.6, 574.5, 623.73-624.9 m)

Samples 525A-47, CC through 525A-52, CC are within the Quadrum trifidum Zone, because Q. trifidum, though not common, occurs consistently. Basalt was encountered in Section 1 of Core 53. The two layers of sediments sandwiched within the basalts encountered in Samples 525A-58, CC and 525A-60, CC still belong to the Q. trifidum Zone. Because the Maestrichtian/Campanian boundary is within the Q. trifidum Zone, it is difficult to judge whether the basal sediments of this site reach the upper Campanian or are still within the lower Maestrichtian.

Hole 525B

Hole 525B was drilled with the HPC. Nannofossils are present in all cores. Preservation of fossil coccoliths is in general moderate. Discoasters, however, show strong overgrowth from 31,CC downward.

Quaternary (0-7.9 m)

Quaternary sediments were recovered in Samples 525B-1, CC and 525B-2, CC. Sample 525B-1, CC is dominated by small *Gephyrocapsa* with some *Helicosphaera carteri*, *Cyclococcolithus leptoporus*, and *Pseudoemiliania lacunosa*. According to Gartner (1977), this assemblage belongs to the small *Gephyrocapsa* acme interval, middle part of the *P. lacunosa* Zone (NN19). Sample 525B-2, CC contains *G. caribbeanica*, *P. lacunosa*, *H.* cf. *sellii*, and *Ceratolithus rugosus*. This assemblage suggests the lower part of the *P. lacunosa* Zone (NN19).

Pliocene (12.3-56.3 m)

The presence of Gephyrocapsa cf. caribbeanica in Sample 525B-3,CC suggests a Pleistocene age. However, since Discoaster brouweri together with common Coccolithus cf. doronicoides and Emiliania ovata cooccur, it is assigned to the D. brouweri Zone (NN18) of the upper Pliocene. Samples 525B-4,CC and 525B-5,CC are within the D. surculus Zone (NN16) of the upper Pliocene, because they contain D. surculus, D. pentaradiatus, D. brouweri, D. asymmetricus, and Pseudoemiliania lacunosa. Reticulofenestra pseudoumbilica is also present in these two cores, but in insignificant numbers.

Samples 525B-6,CC and 525B-7,CC are assigned to the *R. pseudoumbilica* Zone (NN15) of the lower Pliocene, based on an abundance of *R. pseudoumbilica* together with *P.* cf. *lacunosa* but without *Amaurolithus* sp. The co-occurrence of *A. delicatus, Ceratolithus rugosus, D. asymmetricus,* and *Sphenolithus abies* in . Samples 525B-8,CC and 525B-9,CC then indicates the *D. asymmetricus* Zone (NN14). Samples 525B-10,CC and 525B-11,CC probably belong to the *C. rugosus* Zone (NN13), based on the presence of *C. rugosus* together with diverse *Discoaster* species. *Discoaster asymmetricus* declines in number in these two cores. However, very rare *D.* cf. *asymmetricus* do occur. The common appearance of *Amaurolithus* delicatus and *A. primus* without *D. quinqueramus* and *C. rugosus* in Samples 525B-12,CC and 525B-13,CC indicates the *A. tricorniculatus* Zone (NN12) of the lower Pliocene.

Miocene (60.7-209.4 m)

Samples 525B-14,CC through 525B-22,CC contain common Discoaster species, such as D. brouweri, D. surculus, D. pentaradiatus, D. decorus, D. variabilis, and D. intercalaris. Very rare D. berggrenii or D. auinqueramus together with common Amaurolithus delicatus and A. primus in this interval indicate the upper Miocene D. quinqueramus Zone (NN11). The lowest sample that contains Amaurolithus species is 525B-22, CC. Samples 525B-23, CC through 525B-29, CC belong to the lower part of the upper Miocene (NN11-NN10). The first D. neohamatus was encountered in Sample 525B-23,CC; Samples 525B-24,CC through 525B-26,CC contain common D. loeblichii, and Samples 525B-24, CC through 525B-28,CC contain common to abundant Minylitha convallis. The latter species, according to Bukry (1973), occurs in the D. neohamatus Zone and the lower part of his D. quinqueramus Zone (i.e., lower part of upper Miocene).

The middle Miocene was first encountered in Sample 525B-30, CC, which contains D. hamatus and Catinaster calvculus and belongs to the D. hamatus Zone (NN9). The preservation of discoaster species suddenly becomes poor from Sample 525B-31,CC downward, most specimens being overgrown. The age determination of core samples is therefore difficult. Sample 525B-32,CC, which contains D. bellus and C. calyculus, and Core 33, which contains C. calyculus, probably belong to the D. hamatus (NN9) or to the C. coalitus (NN8) zonal interval. Sample 525B-33, CC contains both C. calyculus and C. cf. coalitus and is assigned to the C. coalitus Zone (NN8). Samples 525B-34,CC through 525B-36,CC contain abundant Coccolithus pelagicus and huge Reticulofenestra species with common overgrown D. variabilis or D. exilis and are attributed to Zones NN6 to NN8. Discoaster kugleri is difficult to identify in these core samples. The exact boundaries of the D. kugleri Zone (NN7) are therefore difficult to define.

The abundant occurrence of *Cyclicargolithus floridanus* with rare *Helicosphaera* cf. *euphratis* and without *Sphenolithus heteromorphus* in Samples 525B-37,CC through 525B-41,CC strongly indicates the *D. exilis* Zone (NN6) of the middle Miocene. Except for Sample 525B-44,CC, 525B-42,CC through 525B-47,CC contain common *S. heteromorphus* and belong to the *S. heteromorphus* (NN5)-*H. ampliaperta* (NN4) zonal interval. Sample 525B-44,CC is a mixed assemblage of early Pliocene to late Miocene with middle Miocene. The boundary between Zones NN5 and NN4 (i.e., the boundary between the middle and lower Miocene) is difficult to determine because of the absence of the index species *H*. *ampliaperta* in this hole.

Sample 525B-48,CC contains common S. belemnos without S. heteromorphus and is assigned to the S. belemnos Zone (NN3). In Sample 525B-49,CC, S. belemnos is not present. Its age therefore could be attributed to NN3 or to the D. druggi Zone (NN2), based on the common occurrence of D. deflandrei and D. cf. druggi.

Oligocene-Eocene Hiatus (276.8-281.2 m)

The Oligocene-Eocene hiatus was drilled in this hole and occurred between Samples 525B-51,CC and 525B-52,CC. The calcareous nannofossil assemblages from immediately above and below the contact are of different ages from those in Hole 525A. The top of cores 50 and Sample 525B-51, CC contain Sphenolithus distentus, S. predistentus, S. pseudoradians, S. moriformis, Dictyococcites bisectus, Zygrhablithus bijugatus, and Cyclicargolithus floridanus, which suggest the S. predistentus Zone (NP23) of the upper or middle Oligocene. Samples 525B-50-1, 50 cm, 525B-50-1, 70 cm, and 525B-50,CC, on the contrary, contain a lower Oligocene assemblage, including Reticulofenestra umbilica, Cyclococcolithus formosus, Discoaster cf. tani, Bramletteius serraculoides. Havella situliformis, S. pseudoradians, Dictyococcites bisectus, and Z. bijugatus. Because no Discoaster saipanensis and D. barbadiensis were found in these samples, they are assigned to the Helicosphaera reticulata (NP22)-Ericsonia? subdisticha (NP21) zonal interval of the lower Oligocene. Obviously, these lower Oligocene sediments are reworked into an upper Oligocene horizon.

Sample 525B-51,CC contains R. umbilica, C. formosus, Triquetrorhabdulus inversus, D. saipanensis, D. barbadiensis, Chiasmolithus cf. titus, Z. bijugatus, S. radians, S. furcatolithoides, Chiasmolithus grandis, and Coccolithus pelagicus. The assemblage suggests the D. tani nodifer Zone (NP16) of the middle Eocene. In Sample 525B-53,CC there is a substantial change in the nannoplankton assemblage. Large specimens of Reticulofenestra umbilica disappear, and common Chipragmalithus fulgens and C. cristatus appear. The last core catcher sample of Hole 525B therefore reaches the C. fulgens Zone (NP15) of the middle Eocene.

Foraminifers

Planktonic and benthic foraminifers were recovered in all cores containing sediment at Sité 525. Foraminifers ranged in age from Pleistocene to early Maestrichtian at Hole 525A and from Pleistocene to middle Eocene in Hole 525B. Planktonic foraminifers were moderately to well preserved through the Neogene, moderately to poorly preserved in the Paleogene, and generally poorly preserved in the Maestrichtian.

Planktonic foraminiferal faunas are characteristic of temperate water masses, although incursions of more subtropical species occurred in the Pliocene and middle to late Miocene. Larger numbers of boreal species are present in sediments of early Miocene and late Oligocene age. Paleocene faunas contain elements typical of middle latitudes, but Cretaceous faunas are too poorly preserved to interpret biogeographically.

Benthic foraminiferal faunas are diverse and generally well preserved throughout the Neogene, although the amount of fragmentation is surprising for this age. Paleogene faunas are less diverse, and solution-resistant species often dominate the assemblages. Late Maestrichtian faunas, interpreted as representing slope depths, are often dominated by solution-resistant forms. Early Maestrichtian faunas are included in an *Inoceramus* ooze and intercalated within the basalt at the bottom of Hole 525B. Such microfossil and large invertebrate fossil faunas are typical of the mixing that occurs on the slope.

Neogene

Planktonic Foraminifers

Pleistocene-Pliocene

Pleistocene faunas were found in Samples from Hole 525B, Cores 1 and 2, and from Hole 525A, Core 1. The *Globorotalia crassaformis* group is well represented here, so that the subzones developed by Bolli and Premoli Silva (1975) and used by Pflaumann and Krasheninnikov (1978, 1979) will be applicable here. Preservation is excellent, and faunas include pink-pigmented *Globigerina rubescens*, judged by most workers to be the most solution-sensitive species.

Pliocene faunas were found from Cores 525B-4 to 525B-13 and in Core 525A-3. Again preservation is excellent, and in general the faunas are quite rich, although faunal variations through the Pliocene are suggestive of quite major climatic fluctuation. Zones PL5-6 through PL1a are present in Hole 525B; only Zone PL1c was recognized in Hole 525A.

Upper Miocene (Hole 525A, Cores 4–6; Hole 525B, Cores 14–26)

Owing to the low abundance and sporadic occurrence of upper Miocene index fossils of the *Globorotalia tumida* and *Neogloboquadrina acostaensis* lineages, subdivision of the upper Miocene is very approximate.

The Miocene/Pliocene boundary was tentatively located between Samples 525B-15,CC and 525B-16,CC within Berggren's (1973) Zone Pl1a, on the basis of the presence of left-coiling *G. margaritae*.

Uppermost Miocene Zone N17 (Cores 525B-14-525B-16) is identified on the basis of rare specimens of *N. acostaensis* and *G. cf. plesiotumida. Globorotalia margaritae, G. scitula*, and *G. conoidea* occur commonly, whereas the Miocene/Pliocene boundary index species, *Globoquadrina dehiscens*, is absent throughout the zone. *Orbulina bilobata* and *Globigerinoides mitra* occur frequently in this zone. Globorotalids appear to be concentrated in Sample 525B-16,CC, possibly as a result of increased carbonate dissolution.

The transition from Zones N17 to N16 is located in Hole 525A, Cores 4–6 and in Section 525B-17-2. Neo-

globoquadrina acostaensis is very rare; no G. plesiotumida is present, but various middle Miocene globorotalids increase in abundance. Occasionally in Zone N16 Globigerinoides ruber, G. sacculifer and Globorotalia menardii, in increasing abundance, suggest warmer surface water conditions. In Sample 525B-25, CC, together with the frequent occurrence of these subtropical species, Globigerina nepenthes increases markedly in size, several other species develop bullae, and G. falconensis develops supplementary apertures on the spiral side. The sudden occurrence of Globoquadrina dehiscens accompanied by increased abundances of other globoquadrinids suggests a change in surface water productivity in older samples at this zone.

The transition from Zone N16 to N15 is identified in Hole 525B, Core 26. *Neogloboquadrina acostaensis* is not present; *Globorotalia merotumida* decreases in size and abundance, and *N. continuosa* occurs more frequently.

Middle Miocene (Cores 525B-28-525B-40; 525A-7)

According to Vincent (1977), the boundary between the upper and middle Miocene lies within planktonic foraminiferal Zone N15. In Hole 525B, Zones N15 and N14 are recognized before a hiatus to Zones N11-N10 in Core 37. Since the *Globorotalia fohsi* lineage was not represented, zonal assignation is only tentative. Counts of fragments in the coarse fraction indicate increased dissolution through this interval.

Lower Miocene (Hole 525B, Cores 39-49; Hole 525A, Cores 10-17)

Hole 525B, Cores 39-45, and Hole 525A, Cores 8-10, contain fossils of the uppermost lower Miocene Zone N9, including Sphaeroidinellopsis seminulina, Orbulina suturalis, Turborotalia peripheroronda, Globorotalia miozea at the top, with the addition of Streptochilus sp. and G. praemenardii in the lower core catchers.

Lower Miocene Zones N4-N9 are tentatively identified in Hole 525B, Cores 45-47, on the basis of rare small orbulinids including O. suturalis, O. glomerosa, and Praeorbulina transitoria, as well as T. peripheroronda, Globigerinoides diminutus, and the Globigerina woodi group. No Globigerinatella insueta is present.

Zone N5 (Hole 525A, Cores 11–15; Hole 525B, Cores 48–49) is recognized by the presence of *Catapsydrax unicavus*, *Globigerinoides trilobus*, *T. peripheroronda*, *Globoquadrina dehiscens* and the *Globigerina woodi* group. Several of the New Zealand globigerinids and turborotalids first occur in this zone. No other lower Miocene sediment was found in Hole 525B.

In Hole 525A, an extended Zone N5 occurs in Cores 12 to Sample 525A-15, CC. Index fossils include *Globoquadrina dehiscens*, *G. praedehiscens*, *C. unicavus*, and *C. dissimilis*. *Globoquadrinids and Catapsydrax* spp. occur frequently, whereas the turborotalids and *Globigerina woodi* group are markedly less abundant than in overlying cores. An unidentified spiney globoquadrinid that occurs in this zone was found also at Site 357 on the Rio Grande Rise and may be a useful paleoceanographic indicator.

In Hole 525A high abundance of large globigerinids and globoquadrinids begins in Core 16, which is tentatively called the Oligocene/Miocene transition (Zone N4-P22). G. ciperoensis and Globigerinoides primordius are not present.

Benthic Foraminifers. Benthic foraminifers comprise less than 1% of all Miocene foraminiferal faunas. Nevertheless they are diverse and well represented in every sample. One noteworthy feature of these faunas is the persistence of "old" species—e.g., forms like Globocassidulina subglobosa, Osangularia mexicana, Pullenia bulloides, P. quinqueloba, Oridorsalis umbonifera, Nuttalides umbonifera, which evolved in the early Tertiary.

Most upper Miocene samples are dominated by *Pyr-go* spp. and other miliolids, including *Sigonoillopsis* schlumbergeri and Spirillina. In the topmost sample of Hole 525B, Uvigerina hispida dominates the benthic faunas. This Uvigerina dominance may be equivalent to that recorded by Vincent et al. (1980) in the Indian Ocean at the top of the Miocene. Throughout upper Miocene Zones N17-N16, the miliolids occur in abundance but become rare below the base of Zone N16. It is not certain whether these high Mg calcite miliolids decrease because of ecologic changes or because of dissolution in the sediment.

Globocassidulina subglobosa, Planulina renzi, and U. ex. gr. peregrina dominate at different levels below the miliolid disappearance. Other common species include Stilostomella abyssorum, Bulimina aculeata, Anomalina pompilioides, U. spinulosa, U. auberiana, and Valvulina haeringensis.

There is no apparent change in benthics across the lower to middle Miocene interval (Zones N9–N12), during which the Antarctic Ice Sheet is presumed to have formed (Shackleton and Kennett, 1975).

The lower Miocene Uvigerina peak recognized by Lutze (1978) at Site 369 was not found in our samples, but may be located with further study.

Paleogene

Paleogene sediments were recovered by continuous rotary coring in Core 16 through Section 40-2, 6 cm, in Hole 525A and in Cores 50-53 in Hole 525B.

Hiatuses were encountered in the section from the upper Oligocene to the middle Eocene, from the lower Eocene Zones P7 to P6, and in the basal Paleocene from Zones P1b through P2. In Hole 525B, the Oligocene section is complicated by reworking of lower Oligocene sediments into the upper Oligocene section above the hiatus.

Preservation throughout the Paleogene was extremely variable. Oligocene faunas are generally well preserved despite some fragmentation of both planktonic and benthic foraminifera in the larger size fractions. Sediments are poorly preserved in the middle Eocene but moderately well preserved in the lower Eocene. Paleocene sediments are moderately well preserved down to the Cretaceous/Tertiary contact, where most of the planktonic foraminifers are fragmented and the benthic foraminifers are concentrated.

Oligocene (Hole 525A, Cores 17-18 and 50-51)

Upper Oligocene Zone P22 was recognized in place in Hole 525A by the overlap of *Turborotalia kugleri*, *Globoquadrina praedehiscens*, *Globigerina angulisuturalis*, and various typically Oligocene species that do range into the lower Miocene. The absence of the solution-susceptible *G. ouachitaensis–G. ciperoensis* groups and the abundance of the large species *Globoquadrina venezuelana* and *Globigerina tripartita* indicate dissolution through this interval.

Lower Oligocene sediments in Hole 525B, Core 48, were indicated by the presence of *G. ampliapertura*, *Pseudohastigerina micra*, and *Chiloguembelina cubensis*. The zonation of nannofossils in the upper levels of this core and in the top of Core 49 below demonstrate that this lower Oligocene material was reworked into the upper Oligocene. A few Eocene fossils were also found in the reworked sediments.

Middle-Lower Eocene (Hole 525A, Cores 19-31,CC; Hole 525B, Cores 52-53)

Following a hiatus of nearly 14 m.y., middle Eocene sediments of Zone P14 occur in Hole 525A, Core 19. The presence of *Turborotalia cerroazulensis*, *T. cocoaensis*, and *Globigerinatheka subconglobata*, but the absence of *G. semiinvoluta* and *Orbulinoides beckmani* characterize this interval. The nominate taxon, *Truncarotalites rohri*, could not be found. Globigerinathekids and globigerinids dominate the faunas.

Faunas in all middle Eocene zones below this level are very poorly preserved; only a few dissolution-resistant species, *Morozovella spinulosa, Acarinina densa*, and *Globorotalia senni*, are preserved. The only index species identified, *M. aragonensis*, allowed us to locate Hole 525A, Cores 20 to 24, and Hole 525B, Cores 52 to 53, in the P9 to P10 zonal interval. Zone P7-P8 interval was located in Cores 26-27 of Hole 525A. Benthic foraminifers, frequently found, included *Nuttalides truempyi*, *Bulimina jarvisi*, *Osangularia mexicana*, and *Oridorsalis umbonifera*.

Improved preservation in Hole 525A, Cores 28-31, allowed recognition of the lower part of lower Eocene Zone P6, based on the co-occurrence of *Morozovella* subbotinae, *M. velascoensis*, and *Pseudohastigerina mi*cra. Morozovella marginodentata is particularly common in these faunas, although acarininids and globigerinids dominate the fauna. Benthic foraminifers are rare and small in size.

Paleocene (Samples 525A-29, CC to 525A-40-2, 6 cm)

The Paleocene/Eocene boundary interval is located in Core 32 on the basis of the overlap between *Morozovella subbotinae* and *M. velascoensis* and the apparent absence of *Pseudohastigerina micra*. The disappearance of the benthic *Gavelinella beccariiformis* is the best criterion for recognizing this boundary here.

Faunas of upper Paleocene Zone P5 (Cores 33-36) consist predominantly of globigerinids and small, round-edged acarininids. Morozovellids are represented by *M*.

velascoensis, M. marginodentata, M. acuta, and rare M. aequa. Nuttalides truempyi is the most common of the benthics, which increase in overall abundance lower in this zone.

In Zone P4, located in Core 36, the moderately well preserved faunas include the nominate taxon *Planorotalites pseudomenardii*, which is small and delicate, *M. velascoensis, Chiloguembelina midwayensis*, and *Acarinina* cf. *nitida*. Acarininids and globigerinids dominate the faunas; *Chiloguembelina* spp. are very rare.

The Core 37 core catcher contains fossils from Zone P3b, including *M. pusilla pusilla*, *M. velascoensis*, and *A. primitiva*, but no *M. conicotruncata*. Zone P3a was located in 38-CC by the presence of the nominate taxa. The overlap of *M. uncinata* and *M. angulata* occurs in the basal portion of Zone P3a.

Benthic foraminiferal faunas are dominated by *N*. truempyi and the buliminids, but several fragments of large agglutinants were found. Benthic genera increase in size, but not diversity below this level and through the lower Paleocene.

Cretaceous

Transition Tertiary to Cretaceous (Samples 525A-39, CC to 525A-40-2, 6 cm)

The span from Section 39,CC to 525A-40-2, 6 cm contains mixed faunas from lowermost Paleocene Zones Pla, b, and "Globigerina" eugubina, as well as from the uppermost Maestrichtian. Fossils from P1b (formerly Pla of Berggren, 1972) dominate the faunas in Section 39,CC, but most of the foraminifers are fragmented. The "G." eugubina Zone fauna dominates the sample at 40-2, 6 cm; however, fossils from both P1b and the Cretaceous were also found in this sample. The foraminifers occur in a matrix of clay, quartz, volcanic glass, glauconite, and other unidentified mineral particles. Owing to dissolution of the planktonic foraminifers, benthic species are enriched and particularly abundant. Most common species include Gavalinella beccariiformis, presumed the most solution-resistant; Nuttalides truempyi; Anomalinoides aragonensis; Osangularia mexicana; and large fragments of Chrysalogonium sp.

Evidence from the nannofossils locates the actual Cretaceous/Tertiary boundary around Sample 525A-40-2, 11 cm; no hiatus is inferred despite mixing of the sediments and the presence of allochthonous sediments.

Maestrichtian (Samples 525A-40-2 to 525A-60, CC)

The uppermost Maestrichtian Abathomphalus mayaroensis Zone is located in Section 525A-40-2 through Core 525A-49, on the basis of abundant Globotruncana contusa, Racemiguembelina fructicosa, and A. mayaroensis. These five species are concentrated by dissolution in all samples. Glass and mineral fragments are scattered throughout these samples. Only the most resistant benthic foraminifers occur consistently. Nuttalides truempyi is absent, and lagenids and buliminids occur only sporadically.

The lower Maestrichtian G. tricarinata Zone fauna occurs in Cores 45 to 49 in loose sediment, in Cores 50

to 52 within an *Inoceramus* ooze, and in 53 to 60 as sediment intercalated in basalt. All faunas are very poorly preserved, particularly within the basalt. The few resistant foraminifers include the planktonic *G. tricarinata*, *G. fornicata, Pseudotextularia elegans, Heterohelix globulosa*, and *Gublerina* sp. Radiolarians are found in Samples 45,CC, 46,CC, and 50,CC.

At the top of the lower Maestrichtian section, the benthic faunas are typical of upper slope depths. Faunas include bathyal and shelf benthic species of *Lenticulina*, *Marginulina*, *Palmula*, and *Nodosaria*, fragments of very large benthic species, and large amounts of mollusks and bryozoans at the bottom of the section, at the top of and within the basalts, suggesting that shelf debris was emplaced by gravity flows throughout most of the lower Maestrichtian section.

Summary

Foraminifers and nannofossils occur in all sediment samples of Pleistocene to Maestrichtian age in Hole 525A and of Pleistocene to middle Eocene age in Hole 525B. Only Maestrichtian radiolarians occur in sediments at the bottom of Hole 525A. Investigation primarily of core samples from these holes revealed the following:

1) In general, the nannofossils are only moderately well preserved, but preservation of foraminifers is generally good. In the Neogene sequence, nannofossil preservation is moderate. Counts of foraminiferal fragments indicate little dissolution except at one level in the uppermost Miocene just below the Miocene/Pliocene boundary and in sediments above the apparent hiatus in the middle Miocene. Most dissolution in the Neogene is considered to have occurred within the sediments, since both the planktonic and benthic foraminifers are fragmented and since the benthic forms always comprise less than 1% of coarse-fraction faunas. Paleogene nannofossils are moderately to poorly preserved. Both foraminifers and nannofossils are particularly badly preserved in the middle to lower Eocene, and many species are presumed eliminated by dissolution. Preservation of both groups is poor across the Cretaceous/Tertiary boundary; most planktonic foraminifers are preserved only as fragments, and benthic foraminifers are enriched. Foraminiferal and nannofossil preservation is poor through the Maestrichtian, but particularly so in the sediments intercalated within the basalt in the bottom cores of Hole 525A.

2) Dissolution removal of species or intense overgrowth, particularly of the discoasters, renders nannofossil zonation particularly difficult in the middle Miocene, and lower Miocene floras lack index fossils.

3) Most foraminiferal index species are lacking throughout the Neogene section, presumably because of ecologic exclusion. In the Eocene, index species are presumed lost because of dissolution and recrystallization of the planktonic forms, which are particularly intense in the middle Eocene. Paleocene and Maestrichtian faunas, despite dissolution, are amenable to zonation owing to the wide geographic ranges of Paleocene species and the fact than many Maestrichtian index species are solution-resistant. 4) The composite section from all three holes contained a nearly complete Neogene sequence, the upper Oligocene, middle through lower Eocene; a nearly complete Paleocene, including the Cretaceous/Tertiary boundary; and a possibly complete Maestrichtian. Missing foraminiferal zones include those at the top of the Pleistocene, N10-N12 of the middle Miocene, the lower Oligocene through the upper Eocene, and a small portion (Zones P1c-P2) of the lower Paleocene.

5) Planktonic foraminiferal faunas throughout the sequence are characteristic of temperate water masses; in the Pliocene, subtropical elements occasionally become more abundant. The lack of various globoquadrinids and members of the *Turborotalia acostaensis* lineage in the upper Miocene and Pliocene suggests location in a low productivity region. The relatively large number of boreal Neogene planktonic foraminifers attests to the connection with the Indian Ocean and higher latitude regions throughout the Paleogene and Neogene. Incursion of some forms typical for the Indian Ocean into the South Atlantic underscores this connection and may be useful in identifying times of water mass boundary fluctuations.

6) The discoaster: *Chiasmolithus* ratio of Bukry (1973) is high at Site 525, suggesting warm conditions in the middle to lower Eocene above Core 525A-27 (Zone NP12). In these floras, nannofossils are diverse and many giant specimens occur. Conditions are significantly cooler in underlying Zone NP11, as indicated by the abrupt decline in numbers of discoasters and the large nannofossils. The appearance of the cooler flora is surprising, as the lower Eocene is considered by most authors to be the warmest interval in the Tertiary.

7) Benthic foraminifers comprise less than 1% of the foraminiferal faunas except in sediments above the Cretaceous/Tertiary boundary, where they are concentrated by dissolution. Neogene benthic faunas are diverse and dominated by the miliolids, with subsidiary amounts of Planulina wuellerstorfi and Globocassidulina subglobosa. Benthic foraminifers are surprisingly fragmented in these faunas. Paleogene benthic faunas are less diverse and dominated by G. subglobosa in the Oligocene through Eocene but by Nuttalides truempvi and G. beccariformis in the Paleocene. In Paleocene Zone P3a, there is a decrease in the size of most benthic species, which then remain smaller through the course of the Paleocene. This change is size is interpreted to represent either a deepening of the site or a downslope movement of larger benthic faunas during the temperature maximum of the Paleocene. Maestrichtian benthic faunas are dominated by G. beccariiformis at the top of the section, but by the gyroidinids lower in the Maestrichtian. Such faunas are considered indicative of slope depths. Shallower depths are indicated in the lower levels of the lower Maestrichtian by the abundance of the mollusk Inoceramus; of benthic shelf species of the genera Palmula, Marginulina, Lenticulina, and Nodosaria; and of large amounts of invertebrate fossil debris, including some bryozoans. The lowest samples from Hole 525A, both at the top of and within the basalt, are interpreted to represent slope depths; shelf depth sediments were emplaced by gravity flows throughout the lowermost Maestrichtian.

SEDIMENT ACCUMULATION RATES

One of the objectives of the present leg is to compare the accumulation rate of various sedimentary components at different water depths under what we assume to be similar rates of input. The time scales used are discussed in the Introduction. We have chosen to break Figures 8A and 8B into segments from 0 to 3.0 m.y., 3.0to 4.4 m.y., and 4.4 to 10.5 m.y. Rates in Figure 9 present average accumulation. Figure 9 also indicates the accumulation rate (cm/ 10^3 y.) estimated for each segment.

Figure 8A shows data for Hole 525A (for clarity we have ignored the data in the time range covered by Fig. 8B). A single rate has been estimated for the early Miocene, chosen to cross the line derived in Figure 8 at 13.5 m.y. It is at present not clear whether or not the section is absolutely continuous in the early-mid-Miocene.

There is almost certainly a hiatus in accumulation covering the late Eocene and much of the Oligocene. We have modeled the remainder of the Eocene and much of the Paleocene with a single rate. Magnetic data (this volume) provide estimates for the early Paleocene and for the Late Cretaceous. Again, the rates estimated are shown at the lower part of Figure 8A. Over the time intervals as defined, the estimates probably are good to about $\pm 20\%$. However, two comments should be made. First, the data in Figure 8A cannot be satisfied without invoking accumulation rate changes by a factor of two, vet the general impression is of long-term consistency of sedimentation (aside from the hiatus). The points chosen to define the intervals over which accumulation rate is estimated are chosen because we hope to be able to correlate them accurately with other sites. They are not necessarily good estimates of the times at which sedimentation rate changed.

From the gravimetric data (see physical properties chapter, this volume), we have estimated the average weight of dry sediment per cubic centimeter wet sediment [(wet-bulk density, g/cm^3) × (100 – % wet-water content) \div 100]. This enables us to estimate the accumulation rate, $g/cm^2/10^3$ y. Figure 9A shows the accumulation rate for Hole 525B in cm/10³ y., and Figure 9B shows the data converted by $g/cm^2/10^3$ y. The figures are almost indistinguishable.

We have also made a preliminary estimate of the accumulation rate of foraminifers (taken as that part of the sediment retained by a 63- μ m sieve). The sediment was weighed wet—it was not allowed to dry out at all and then washed on a sieve. The fraction retained was dried and weighed. The accumulation rate of foraminifers is estimated as [(accumulation, cm/10³ y.) × (wetbulk density, g/cm³) × (weight dry foraminifers per gram wet sediment)]. This is shown in the lower part of Figure 9D.

The accumulation rate for $CaCO_3$ is obtained easily from the foregoing data combined with the weight percent $CaCO_3$ and is shown as the total in Figure 9D. By subtraction, the portion of this carbonate not repre-

Figure 8. Age-depth plot for (A) Hole 525A (combined nannofossils and foraminifers) and (B) Hole 525B (Horizontal lines represent ranges in ages determined by nannofossils [solid line] and foraminifers [dashed line]).

Figure 9. Estimates and comparison of accumulation rates in g/cm²/10³ y. to cm/10³ y. for Hole 525B and foraminifers and coccolith accumulation rates.

sented by foraminifers is taken to be coccoliths. Figure 9C shows the ratio of the two carbonate components.

The foraminiferal component varies considerably on a short scale as well as over the broad intervals depicted in Figure 9. The measurement is often used as an index of seafloor dissolution; however, it is not yet clear whether this would be appropriate here or whether the variations are primarily an indication of variations in the production ratio of foraminifers to coccoliths.

IGNEOUS PETROLOGY

Introduction

Basement drilling on Leg 74 was designed to address various questions concerning the nature and origin of the aseismic Walvis Ridge. The classic interpretation of this feature (and its counterpart in the southwestern Atlantic, the Rio Grande Rise) has been that it represents a hot spot track formed during opening of the South Atlantic. The hot spot would be presently located somewhere in the vicinity of the island of Tristan da Cunha. Although alkalic basaltic material had also previously been dredged from the vicinity of the ridge, a volcanic origin for the ridge as a whole could not be assumed. Its origin as a passive margin consisting of continental basement was not beyond the bounds of possibility. An alternative hypothesis holds that the Walvis Ridge consists of a series of segments alternately parallel to the paleoridge axis and transform fault directions. The Leg 74 transect was located on a segment whose direction of elongation suggested formation parallel to the ridge axis.

If basement was found to be volcanic, then the following could be determined:

1) Age—the age of basaltic extrusives (or intrusives) could range between that of adjacent ocean crust and recent time.

2) Environment of extrusion—subaerial or subaqueous, depending on ridge subsidence history.

3) Primary chemistry—tholeiitic or alkalic affinities resembling those of either normal mid-ocean ridge basalts or ocean island or continental rift basalts.

4) Degree of alteration—possible radical extent of basalt alteration.

Procedures

Procedures used in pursuit of these determinations are those established on previous legs:

1) Age of basement, as given by the age of oldest sediments overlying basalt and compared with the age of nearest ocean basin magnetic anomalies.

2) Environment of extrusion by macroscopic examination of basalt morphology.

3) Primary chemistry—shipboard petrographic study, to be followed by shore-based geochemical study of the major and trace element and isotopic character of freshest basalts.

4) Degree of alteration by macro- and microscopic study of the nature and extent of basalt alteration. The revised ICD alteration terminology espoused in the Leg 73 Hole Summaries has been utilized.

Summary

Hole 525A was drilled on the crest of the Walvis Ridge and reached basaltic basement at a sub-bottom depth of 575 meters. Drilling in basalt was terminated at 678 m sub-bottom depth, corresponding to a thickness of 103 m. The sampled portion of the basement complex consists of basalt pillows and flows with minor intercalated sediments at depths of 593, 596, 625, and 647 m. Of 55 m of material recovered (average recovery rate of 53%), 50 m were basalt. The intercalated sediments form the basis for subdivision of the basalt pile into five units. A stratigraphic column indicating this subdivision, together with lithology and details of recovery, is presented in Figure 10.

Unit 1 is approximately 21 m thick and immediately underlies chert at the base of the sediment pile. It consists of a fine- to medium-grained aphyric basalt. It is light green gray in color and moderately to badly altered. The coarser basalts have subophitic textures. The recovery rate of 30-40% and the degree of alteration preclude strict definition of the size and nature of cooling unit(s), but very fine grained upper and lower margins and medium-grained interior(s) indicate flow(s). Unit 1 is separated from Unit 2 by an 80 + -cm-thickclaystone layer of volcaniclastic origin. Unit 2 is perhaps 4 or 5 m thick and identical in appearance to Unit 1. At its base there is another 10 + -cm-thick volcaniclastic claystone layer.

Unit 3 is approximately 22 m thick and consists of highly vesicular fine- to coarse-grained aphyric to sparsely plagioclase and clinopyroxene phyric basalt. The basalt is medium gray, has a subophitic texture, and is slightly to moderately altered with vesicles generally filled by carbonate. Although the upper margin was not

Figure 10. Lithostratigraphic summary of basement complex at Hole 525A.

recovered, the lowest meter of this unit shows a progressive decrease in grain size to an aphanitic base. This might represent a single cooling unit. Unit 3 is immediately underlain by a 1.6-m-thick calcareous mudstone layer bearing shallow-water faunal debris.

Unit 4 is approximately 20 m thick and comprises a distinct pillow basalt sequence. The basalt is medium gray, moderately vesicular and aphyric to sparsely plagioclase and clinopyroxene phyric. Textures are dominantly subophitic. Alteration consists of carbonate filling of vesicles and voids and partial replacement of pillow margins by carbonate and green smectite. A minimum of 25 pillows and/or thin flows are distinguishable. These vary from 10 cm to 4.3 m in preserved thickness within three cores (58–60), with recoveries of 71, 79, and 100%. The details of this subdivision into cooling units are listed in Table 5. The majority of the chilled margins of these cooling units have reasonably fresh glass rinds. Pillow structures are indicated by the location of some of these glassy chilled margins down the sides of oriented pieces. Below a 30-cm-thick basal pillow, the unit rests on a 2.8-m-thick volcaniclastic claystone.

Hole 525A was terminated 28 m into Unit 5, 7 m of which were recovered. The unit consists of probable flows of dark gray moderately vesicular glassy and finegrained basalt, grading into medium- to coarse-grained sparsely plagioclase phyric basalt with subophitic textures and few vesicles. The latter comprises the macroscopically freshest basalt recovered in this hole.

The basalt sequence just described is interpreted as the upper portion of Walvis Ridge basement. The biostratigraphic age of the oldest sediment overlying the basalt pile (see biostratigraphy section), and the intercalated mudstone is lowermost Maestrichtian (approximately 70 m.y. old). This is in excellent agreement with the 70-m.y. age of basement derived by magnetic anomaly correlation with Hole 525, on the edge of Anomaly 32. Based on the occurrence of glassy chilled margins, we consider the environment of basalt extrusion to be definitely subaqueous for Units 4 and 5 and probably subaqueous for Units 1, 2, and 3. No evidence of sedi-

Table 5. Stratigraphic	po-
sition and preser	ved
thickness of pillo	ows
and flows in Unit 4	of
basalt pile (upper m	ar-
gin) in Hole 525A.	

Core/Section	Thickness
(level in cm)	(cm)
58-3, 105	46
58-4, 18	22
58-4, 40	78
58-4, 108	100
58-5, 72	135
59-1, 28	24
59-1, 52	64
59-1, 116	72
59-2, 42	24
59-2, 66	32
59-2, 98	146
59-3, 96	20
59-3, 116	66
59-4, 36	22
59-4, 58	30
59-4, 88	78
59-5, 28	32
59-5, 60	52
59-5, 112	16
59-5, 128	28
59-6, 8	34
59-6, 42	8+
60-1, 0	72
60-1, 72	72
60-1, 144	30
60-2, 30	420
60-5, 24	28

ment baking at upper basalt margins, indicative of sill intrusion, has been detected.

Of prime interest is the question of whether these are tholeiitic or alkali basalts. Distinguishing these two compositional types on the basis of petrography is difficult. The available observational data are entirely consistent with a tholeiitic compositional character for the sequence of recovered basalts. None of the few mineralogical characteristics often associated with alkali basalts (presence of pleochroic titan-augite, alkali feldspar, abundant apatite) were detected. An unequivocal distinction cannot, however, be drawn without shore-based determination of major and trace element chemistry.

Petrography

Basalt petrography is very uniform, with aphyric to sparsely plagioclase and clinopyroxene phyric basalt with subophitic texture predominating. Plagioclase is the most abundant mineral, forming between 50 and 60% of the basalt. It forms laths with average sizes ranging from 0.3×0.02 mm to 0.8×0.15 mm. Its morphology shows the most variation in the pillows and flows of Unit 4. Both plumose and skeletal forms are observed in several of the cooling units. One of the units has phenocrysts $(1.5 \times 0.2 \text{ mm})$ that show excellent polysynthetic twinning. Twin extinction angle measurements, using the Michel-Levy method, suggest an approximate plagioclase composition of labradorite (An_{60}). At the base of Unit 4 a few large xenocrysts (1.5×1) mm) with partially resorbed margins are observed. Plagioclase has undergone minimal alteration.

Clinopyroxene is the second most abundant mineral, forming between 35 and 45% of the rock. It assumes both subhedral and anhedral shapes, varying in average size from 0.02×0.02 mm to 0.2×0.2 mm. It has a slightly greenish tinge, lacks pleochroism, and has a moderate extinction angle (approx. 30°). Pyroxene from a Unit 5 glassy margin is identified as augite. The degree of alteration varies from moderate, affecting the grain boundaries only, to extreme, in which the grain has been completely altered to clay minerals.

The presence of olivine in these basalts is suspected but has yet to be confirmed. Olivine is known to be readily susceptible to alteration. Since clinopyroxene has generally suffered local alteration, original olivine may well have assumed the guise of clay alteration minerals.

Opaques are present as both primary and secondary phases, forming between 2 and 10% of the groundmass. No attempt has been made to distinguish between magnetite, which is probably dominant, and other opaque minerals. Pyrite is probably also present, given its macroscopic abundance in veins and vesicles. The opaques occur as subhedral and anhedral interstitial forms and as needle-like laths dispersed throughout the groundmass. The needle laths are more abundant in the finergrained basalts. Opaques frequently form a rim or partial rim around vesicles.

Glass is present in the groundmass matrix of some of the fine-grained basalts and dominates in glassy chilled margins. In the latter, it has an orange brown, nonpleochroic coloration and has undergone local devitrification. When it occurs interstitially within the groundmass, it is usually altered to clay minerals.

Vesicles form between 0 and 30% of the rock. Their rims are usually altered to pale brown, nonpleochroic clay minerals. Fine-grained zeolites (particularly natrolite) occur adjacent to the clay minerals and are often accompanied by a very fine grained, highly birefringent mineral, interpreted to be sericite. When vesicles are filled, the dominant secondary mineral is calcite.

Conclusions

In Hole 525A on the crest of the Walvis Ridge, a 100-m sequence of basalts consisting of pillows and flows, with minor intercalated volcaniclastic sediments, was recovered from Walvis Ridge basement. Their age is identical to that of basaltic ocean crust in the adjacent ocean basins, and their morphology and petrography are consistent with formation at a mid-ocean ridge.

MAGNETICS

Samples were obtained in Cores 525A-38 to 525A-52, in the interval between 20 and 40 cm. Thirteen pilot samples were given detailed alternating field demagnetization treatment, and a cleaning field of 150-250 Oe was selected. Details may be found in the sedimentary paleomagnetism chapter (Chave, this volume). The polarity interpretation is contained in Figure 3. Six normally polarized intervals are recognized and are consistent with Anomalies 28-32, using the time scale of Ness et al. (1980). Basement age is placed at Anomaly 32 time (~70 Ma), consistent with formation contemporaneously with the surrounding ocean basins.

The paleomagnetic samples from the hydraulic piston cores at Site 525, Hole 525B, were measured with the shipboard spinner magnetometer and later on a cryogenic superconducting rock magnetometer at the Woods Hole Oceanographic Institution. The remanence was too weak to measure on the spinner system. The white nannofossil ooze of Pleistocene to late Miocene age was not measurable even with the SRM, with a remanence intensity near 10^{-9} emu. The middle to early Miocene material below the color change to light tan was measurable but proved to possess an unstable remanence. The instability is believed to be caused by a very strong tendency to acquire viscous remanent magnetization. The pattern established in this hole was repeated at the other hydraulic piston core sites, and no usable information was obtained.

PHYSICAL PROPERTIES

The downhole physical properties are shown in Figure 11; for details, see Table 6. The upper part of the sequence (Subunit Ia), composed of calcareous ooze, is relatively uniform not only in lithology but in physical properties, with the exception of the uppermost 20 to 30 m. In this top section, the gravimetrically determined wet bulk density is less than 1.7 g/cm^3 . The GRAPEdensity data, obtained from cores in Hole 525B, are not reliable in this uppermost part of the section. Together with the relatively low bulk density data, the wet water content and porosity values of this section are distinctly higher than in the sequence below (water content >35%; porosity >55%). As a result, shrinkage reaches its highest value in the upper part of the sequence, with maximum values of 7 to 12.7% of volume. The other properties do not show any distinct difference from the deeper sequence. The bulk sequence of Subunit Ia shows only minor trends. Wet-bulk density is about the same throughout the whole section, with slight scatter. The 2-min. count GRAPE-densities are somewhat higher than the gravimetric data. Wet water content shows a slight trend of decreasing water content with increasing depths, and in the lower third of this subunit water content decreases to about 30%. The same trend can be seen in the porosity data; grain density shows no trend and some scatter. No differences between the gravimetric data obtained from rotary-drilled cores and those obtained from HPC cores were found.

Although the scattering of shrinkage is very high because of sampling disturbance and difficulty in measuring the shrunken samples, there is a slight trend in Subunit Ia to lower shrinkage with increasing depth. Vane shear strength and needle penetration both reveal a wide scatter while showing no clear trend. Shear strength is less than 150 g/cm² (=15 kPa). Needle penetration varies between 4 and 15 mm. The sonic velocity and thermal conductivity of the sediments of Subunit Ia do not show any trend and vary around a mean value of about 1.6 km/s and 1.5 W/m °C (= 3.6 mcal/cm °C s), respectively.

In Subunit Ib, the transition zone between oozes and chalks, the trends which were only slight in Subunit Ia become more obvious, thus showing the beginning of distinct diagenesis. Most of the changes occur in the lower third of Subunit Ib, at a depth of about 400 m sub-bottom. The bulk of the gravimetric density samples from this unit were cylindrical samples as in Subunit Ia, but on a few indurated layers bulk pieces samples were taken. Toward the bottom of Subunit Ib wet-bulk density increases sharply. Water content and porosity show a clear decrease, and grain density seems to increase slightly. Shrinkage shows a further decrease in this subunit, with wide scatter.

Although variation of shear strength is very large, it is obvious that it increases considerably with depth. The highest value measured is about 855 g/cm^2 (= 85.5 kPa), and zones of high shear strength coincide with layers of low carbonate content (about 80% CaCO₃). The mean shear strength of this subunit is about 230 g/cm² (= 23 kPa).

Sonic velocity increases from the top to the bottom of Subunit Ib. Only thermal conductivity does not show distinct change, and its mean value for this subunit is $1.7 \text{ W/m} \circ \text{C} (= 4.07 \text{ mcal/cm} \circ \text{C s}).$

A main characteristic of Unit II (marly chalks with increasing amount of volcanogenic clastics) is a wide variation of all parameters, especially bulk density, porosity, and sonic velocity. This is due to the varying lithology, as expressed in the wide range of carbonate content in this unit. From this section (and from Unit III below) only bulk samples were taken. The gravi-

Figure 11. Summary of downhole physical properties, Site 525.

SITE 525

65

Table 6. Physical properties summary, Site 525.

				Gravim	etric Data									
		2-Min. Count GRAPE Density		Approx.	Salt-Cor	rrected		Vane Shear	Penetrometer (mm)	Sonic Vel	locity	Aco	ustic dance	
Sample (interval, level in cm)	Depth (m approx)	(g/cm ²) to Beddin	Wet-Bulk Density g (g/c	Grain Density m ³)	Wet-Water Content (%)	Porosity (%)	Shrinkage (vol.%)	() = remolded (g/cm ²)	Height 0 cm 1	to Bedd (km/s) (ling (km/s)	to Be (10 ⁵ g/	dding (cm ² s)	Conductivity (W/m °C)
Hole 525														
1-2, 52-64	1.1		1.66	2.50	34.9	56.7	6.1		11.5					
1-3, 9-11	3.1		1.70	2.70	35.7	59.4 59.4	5.7	31 (15) 21 (13)	33.8	1.62		2.75		1.41
Hole 525A					27/02/20		12.7	46 (12)	11.9					
1-1, 128-134	1.3		1.51	2.64	47.6	70.0	7.0	40 (12)	11.7					1.28
1-2, 98-105	2.5		1.64	2.62	38.2	61.2		21 (1)	12.0	1.65				1.48
3-1, 40-41	42.0				34.3									
3-3, 80-81. 4-1, 89-91	45.4 52.0		1.76	2.79	33.9 32.9	58.2	6.3							
5-2, 140 5-5, 128-132	92.0 96.4									1.60				1.42
6-2, 63-64	100.7				34.5				15.5					
6-3, 64-78	102.3		1.74	2.63	32.4	55.2	6.1	11 (11)	13.5					1.60
6-3, 104-105 6-3, 144	102.6								12.0	1.62		2.81		
6-4, 66 6-4, 125-139	103.7		1.75	2.67	32.8	56.0	6.6	28 (19)	9.6 10.2	1.56		2.73		1.67
6-6, 33-35	106.4		1 74	2 69	32.5	57.2	3.7	1	12.4	1.53		2.67		1.40
8-2, 140-141	176.5		1.74	2.07	33.7	5112								
8-4, 132-142	180.5		1.70	2.62	34.8	57.4	8.8	7		1.56		2.64		1.52
8-5, 139-140 9-1, 80-88	182.0 184.9		1.73	2.62	33.5 32.8	55.4	5.2			1.58		2.73		1.48
9-2, 80-82 9-3, 28-30	186.4				33.5 35.0									
9-4, 95-97	189.6				33.2				5.4					
9-6, 89-97	192.5				32.8			2	12.3	1.32				1.49
10-3, 84-86 10-4, 73-74	137.5 138.8				29.5 33.6									
10-5, 74-76 10-5, 138-142	200.3 201.0				32.0					1.57				1.69
10-6, 73-76	201.8		1.68	2.58	34.8	57.3 54.7	7.1			1.63		2.88		1.51
11-3, 147-148	207.6		*	2.07	32.2		2.12					2100		
11-5, 123-128	210.3		1.72	2.59	33.0	55.5	6.4			1.57		2.70		1.46
11-6, 123-124 12-2, 145-146	211.8 215.6				32.0 28.9									
12-3, 140-147	217.0		1.74	2.63	31.7	55.2	8.2			1.58				1.56
12-5, 96-98	219.6		1.83	2.68	28.7	51.2	3.5			1.58				1.66
13-7, 54-56	231.6				29.8			36		1.58				1.63
14-6, 132-144 15-4, 50-54	240.5 246.1				30.8			23		1.56				1.57
15-6, 103-112 16-2, 73	249.7 252.8				30.9				4.1	1.63				2.19
16-2, 114-119	253.3				29.1			66	4.05	1.61				1.79
19-7, 13-30	279.1				32.2			72		1.69				1.62
21-3, 63-68	292.3				32.4			02		1.59				1.73
21-5, 39-40 22-4, 90-100	295.0 303.6				31.4 28.8					1.59				1.66
23-2, 126-128 23-3, 119-121	310.4 311.8				28.4									
23-4, 126-128	313.4				27.7					1.61				1.71
23-5, 142-145	315.0		1.81	2.58	27.9	49.3	4.7			20221				1.1.1.1
24-2, 130-132	319.9		222	12122	29.5	-								1.70
24-4, 81-88 24-5, 86-88	322.4 324.0		1.80	2.52	27.1 29.3	47.7	3.3			1.76		3.17		1.70
24-6, 86-88 24-7, 54-63	325.5 326.6		1.88	2.68	30.6 26.1	48.0	1.6			1.61		3.03		1.70
25-1, 126-136	327.9		1.76	2.50	28.9	49.7	5.7			1.60		2.80		1.79
25-6, 12	334.2		1.70	2.21	25.0	42.7		37		1.63	2.76			1.61
25-7, 20-22	335.8		1.70	2.21	28.1	42.1	3.1	17		1.02	2.70			1.51
26-1, 136-145 26-2, 124-126	337.5 338.8		1.88	2.66	25.9 27.2	47.5	1.1			1.63	3.06			1.70
26-3, 76-78 26-4, 11-13	339.9 340.3	2.13 2.1	8 2.10	2.73	27.4	37.1				1.88	1.83	3.95	3.84	
26-4, 12-14	340.3		1.85	2.56	19.2	46.5	4.2	218		1.56		2.88		1.86
28-2, 52-55	353.6		1.05		27.0	. 4962								
29-2, 76-78	357.4				27.4									
29-3, 76-78 29-4, 21-25	358.9 359.8				26.7					1.62				1.53
29-4, 40-42 30-2, 107-109	360.0 367.2		1.83	2.57	26.7 28.0	47.7	4.0							
30-4, 107-114	370.2		1.84	2.55	27.6	46.0	2.8			1.60		3.18		1.57
31-2, 82-84	376.4		1.04		28.8	10.0				1000				
31-5, 3-18	380.2		1.77	2.43	27.0	46.7	0.7	57		1.58		2.80		1.70
32-5, 60-62	390.2			A 40	27.5	التراجير ا				1.00	1 92	1.44	3.40	
32-6, 110-112	392.2	1.97 1.3	0 1.91	2.67	24.7	46.0				1.00	1.84	3.43	3.48	

Table 6. (Continued).

					Gravim	etric Data											5
		2-M Cou GRA Dens	in. Int IPE sity		Approx.	Salt-Co	rrected		Vane Shear	Penetro (m	ometer m)	Sonic	Velocity	Acc	oustic		
Sample (interval, level in cm)	Sub-bottom Depth (m approx)	(g/cr to Bed	n ²) ⊥ Iding	Wet-Bulk Density (g/	Grain Density cm ³)	Wet-Water Content (%)	Porosity (%)	Shrinkage (vol.%)	Strength () = remolded (g/cm ²)	Fa Hei 0 cr	dl ght n 1	l to B (km/s)	⊥ edding (km/s)	 to Be (10 ⁵ g	⊥ edding /cm ² s)	Thermal Conductivity (W/m °C)	У
Hole 525A (Continued)																	
32-6, 111-113 32-7, 46-60 35-1, 106-118 35-2, 66-69 35-3, 116-118 35-4, 108-110 35-5, 85-87 35-6, 85-87 35-6, 85-87	392.2 393.1 403.7 404.3 406.8 408.2 409.5 411.0 412.1			1.90 1.82 2.05	2.71 2.61 2.69	25.5 27.9 19.0 25.8 27.1 27.0 24.6 29.5 28.4	47.8 49.6 38.1	5.8 5.5	193 (11)	3.8 3.75		1.61 1.73		2.92 3.54		1.60 2.13	
36-4, 18-23 37-1, 24-26 37-1, 30-34 37-1, 49-54 38-3, 88-92	415.7 421.8 421.9 422.1 435.0	1.95 2.02 1.69 2.04	2.14 2.10 2.13 2.12	1.98 2.05 2.07 2.07	2.65 2.72 2.73 2.70	21.3 19.9 19.2 18.6	41.1 39.7 38.7 35.6		855 (169) 197	3.85		1.74 1.93 1.97 1.99 2.10	1.93 1.97 1.96 2.08	3.82 4.04 4.12 4.34	3.83 4.05 4.06 4.30	2.01	
39-4, 62-65 39-5, 32-38 40-2, 79-100 41-3, 61-68	445.7 447.0 452.6 463.2	1.88 2.01 2.03	1.92 2.07 2.10	1.91 2.05 2.04	2.80 2.75 2.70	26.9 20.2 20.6	50.1 40.3 41.0					1.87 1.92 2.05	1.82 1.91 1.36	3.58 3.95 4.18	3.48 4.06 2.77	1.53 1.59 1.35	
$\begin{array}{c} 42-1, \ 23-25\\ 42-2, \ 56-67\\ 42-4, \ 102-106\\ 42-6, \ 14-23\\ 43-1, \ 35-38\\ 43-4, \ 81-90\\ 44-1, \ 46-58\\ 44-3, \ 99-103\\ 44-5, \ 40-51\\ 44-7, \ 99-103\\ 44-5, \ 40-51\\ 44-7, \ 99-103\\ 44-5, \ 40-51\\ 44-7, \ 99-103\\ 44-7, \ 99-103\\ 44-7, \ 99-103\\ 44-7, \ 99-103\\ 45-4, \ 62-74\\ 46-1, \ 137-150\\ 47-2, \ 121-131\\ 48-3, \ 110-115\\ 49-1, \ 131-150\\ 50-1, \ 130-143\\ 50-4, \ 50-64\\ 51-2, \ 115-123\\ 52-1, \ 140-150\\ 53-2, \ 74-82\\ 55-1, \ 118-127\\ 56-1, \ 31-39\\ 56-2, \ 140-150\\ 57-4, \ 49-58\\ 58+1, \ 99-111\\ 59-5, \ 113-123\\ 60-1, \ 105-112\\ 60-2, \ 108-114\\ \end{array}$	469.3 471.2 474.6 476.8 479.0 484.0 492.1 494.6 497.2 498.9 503.3 508.5 519.4 530.2 537.0 546.5 550.2 557.3 565.6 575.9 593.8 602.4 605.0 616.6 622.1 637.8 641.2 642.7	1.73 2.005 1.909 2.005 1.909 1.909 1.929 1.929 1.929 1.929 1.929 1.929 1.929 1.929 1.929 1.931 2.346 1.931 2.346 2.077 2.211 2.000 2.499 2.644 2.477 2.564 2.5777 2.5777 2.5777 2.5777 2.5777 2.57777 2.57777777777	2.08 2.00 2.03 2.06 2.06 2.09 2.04 2.04 1.99 2.12 1.99 2.12 1.99 2.12 1.90 2.01 2.01 2.01 2.01 2.01 2.03 2.07 2.23 2.35 2.68 2.59 2.47 2.24 2.33	2.08 1.99 2.01 2.04 2.04 2.03 2.04 1.99 2.00 1.97 1.93 1.95 2.06 2.07 2.00 1.99 2.03 2.08 2.22 3.08 2.22 3.2.55 2.61 2.55 2.61 2.25	2.74 2.70 2.78 2.77 2.75 2.78 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.77 2.75 2.78 2.73 2.70 2.81 2.73 2.53 2.74 2.68 2.75 2.95 2.95 2.95 2.95 2.95 2.95 2.95 2.9	19.1 22.5 22.1 21.0 5 22.1 21.0 5 21.3 20.7 22.7 22.3 23.9 25.1 23.3 14.4 29.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 1	38.7 43.9 43.5 41.8 41.0 42.3 41.3 41.3 41.3 41.2 43.5 45.9 47.3 44.2 43.5 45.9 47.3 44.7 29.9 53.4 39.1 32.1 4.7 41.3 35.9 30.9 21.3 8.3 15.6 12.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1					1.08 1.77 1.89 1.92 2.02 1.90 1.50 2.07 1.97 2.07 1.97 2.07 1.99 2.07 1.97 2.01 1.62 2.10 1.62 2.11 2.55 3.55 3.55 1.75 4.03 2.72 4.14 4.77 4.26 4.22 3.48	2.03 1.74 1.85 1.89 1.95 1.89 1.95 1.91 1.89 1.91 1.89 1.91 1.89 2.60 1.87 2.00 2.56 2.03 2.39 3.35 1.72 4.08 4.78 4.19 4.51 4.31 4.22	2.25 3.53 3.79 3.91 4.07 3.04 4.13 3.89 4.14 3.87 3.83 3.94 6.63 2.99 4.33 6.22 4.33 6.22 4.33 6.22 4.33 6.22 4.29 5.31 7.96 6.82 10.56 12.44 10.64 10.64 10.64 10.781	4,22 3,47 3,71 3,85 3,98 3,84 3,96 3,76 3,92 3,76 3,63 3,80 4,12 4,98 5,08 4,12 4,98 4,12 4,98 4,12 4,98 10,33 12,0 10,68 11,76 10,77 10,30 7,91	1.57 1.54 1.55 1.64 1.54 1.45 1.46 1.51 1.29 1.02 1.29 1.55 1.38 1.53 1.69 1.73 1.49 1.21 1.21 1.55 1.55 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.53 1.69 1.45 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.69 1.45 1.53 1.69 1.40 1.40 1.55 1.55 1.53 1.69 1.40 1.40 1.40 1.55 1.55 1.53 1.40 1.40 1.40 1.55 1.53 1.50 1.55 1.53 1.53 1.50 1.53 1.53 1.50 1.53 1.53 1.53 1.53 1.40	
61-2, 27-33 62-2, 56-62 63-2, 71-79 Hole 525B	651.4 661.2 670.9	2.19 2.46 2.54	2.31 2.52 2.52	2.44 2.58 2.53	2.90 2.96 2.80	10.2 7.8 7.0	24.3 19.7 17.2					3.58 4.07 4.14	3.66 4.06 4.11	8.72 10.49 10.47	8.92 10.49 10.40	1.43 1.46 1.54	
1-1, 125-127 1-2, 114-130 1-3, 125-128	1.3 2.7 3.5			1.69	2.68	39.8 36.1 36.6	59.6	3.0	31			1.59		3.12		1.37	
2-1, 128-130 2-2, 124-143 2-3, 128-130 3-1, 134-137 3.1 134-137	4.8 6.3 7.8 9.2 9.2			1.69	2,60	33.9 34.9 36.1 33.1 33.2	57.6	5.1	39	5.88	7.63	1.63		3.19		1.57	
3-2, 116-148 3-3, 91-93 3-3, 134-136 4-1, 135-137	10.7 11.8 12.3 13.7	1.95				34.2 32.6 34.6			130	5.55	5.95	1.63		3.17		1.67	
4-2, 23 4-2, 117-138 4-3, 135-138 5-1, 94-96	14.0 15.1 16.4 17.6			1.67	2.61	36.1 32.9 33.6	59.0	6.9	69	5.55	5.2 8.0	1.63		2.72		1.48	
5-2, 42 5-2, 98 5-2, 118-128 6-1, 146-149	18.6 19.2 19.4 22.6	1.90				34.7			34	8.65	8.65	1.66		3.15		1.47	
6-2, 20 6-2, 106 6-2, 139-149 7-2, 60-63	22.9 23.7 24.0 27.6			1.71	2.67	34.8 34.1	58.1	7.5	40	4.1 4.65	5.05	1.29		2.21		1.55	
7-3, 4 7-3, 60-70 8-1, 145-148 8-2, 141-148	28.5 29.1 31.4 32.9	1.85		1.72	2.67	33.4 34.2	57.5	7.6	47 23	7.05 8.85 7.3	9.1 8.85 8.0	1.61 1.62		2.97 2.79		1.42	
9-2, 3 9-2, 41-45 9-2, 81-101 9-2, 125-148	35.8 36.2 36.7 37.2	1.82							30	8.45 7.75	12.0 7.7	1.59		2.89		1.41	
9-3, 107-109 10-2, 89-91 10-3, 102-111 11-1, 136-139	38.4 40.1 42.8 44.5			1.76 1.78	2.57 2.70	33.8 30.3 31.9 33.7	52.1 55.2	4.1 6.1				1.59		2.83		1.44	
11-2, 126-129 11-3, 20-22 11-3, 82-91 12-1, 65-66	45.9 46.3 47.0 48.2	1.84				32.6			13	10.6	9.05	1.58		2.90		1.53	
13-3, 76 13-3, 101-108 13-3, 118-129 14-1, 115-117	55.7 55.9 56.1 57.5			1.73	2.67	35.0 33.5 33.6	56.7	7.0	6	8.25 7.25	9.55 7.85	1.57		2.71		1.70	

Table 6. (Continued).

				Gravim	etric Data								
		2-Min. Count GRAPE Density		Approx.	Salt-Cor	rected		Vane Shear	Penet (r	rometer nm)	Sonic Velocity	Acoustic Impedance	Thomas
Sample (interval, level in cm)	Depth (m approx)	(g/cm²) ↓ ⊥ to Bedding	Density (g/cr	Density n ³)	Content (%)	Porosity (%)	Shrinkage (vol.%)	() = remolded (g/cm^2)	H	eight cm 1	to Bedding (km/s) (km/s)	to Bedding (10 ⁵ g/cm ² s)	Conductivity (W/m °C)
Hole 525B (Continue	d)												
14-3, 13-24	59.5	1.82			12345			45	6.7	10.45	1.60	2.90	1.56
14-3, 73-80 15-2, 20-34	60.1 62.0		1.77	2.67	31.5	54.4	5.7	31	6.4 5.4	6.55 7.45	1.58	2.79	1.56
15-2, 42-44	62.1 67.8				31.4								
16-3, 113-128	69.3 71.6	1.81	1.76	7 67	12.1	55.1	5.0	68	4.85	6.65	1.56	2.82	1.57
17-2, 124	72.2		1.10	2.07	32.1	55.1	2.2	00	6.0	6.75			
17-3, 68-69	75.0	1.89			32.9			132	4.9	5.7	1.60	3.03	1.64
18-1, 128-130 19-2, 95-119	75.2 79.4		1.76	2.72	32.3 32.6	56.2	4.9				1.58	2.78	1.50
19-2, 103-105 21-1, 55-68	79.3 87.7				33.7 33.1			19	7.35	9.45	1.56		1.52
22-2, 84-99	93.9 94 3	1.87			32.6			31	5.7	8.0	1.55	2.90	1.52
23-2, 20-43	96.8		12.24				1.1		7.1	6.55	1.00	2.76	1.66
24-1, 41-45	99.0 99.8	01.020	1.74	2.65	35.7	20.1	0.0	68	4.65	4.05	1.56	2.15	
24-1, 125-136 24-2, 132-135	100.7 102.2	1.87			33.8						1.60	2.98	1.39
25-1, 38-42 25-1, 140-148	104.2		1.72	2.68	34.4	57.8	6.4				1.58	2.71	1.40
25-2, 75-78	106.1		0.56.95	0.000000	33.0	0.000							
26-2, 127-100	111.8	1.07			55.5			144	7.25	10.1	1.0	1.05	1.75
26-3, 104-130 27-1, 127-130	112.4 113.9	1.87			32.1			140			1.03	3.05	1.75
27-2, 127-130 27-3, 66	115.4				30.7				5.3	5.4			
27-3, 120-130 29-1, 105-108	116.8		1.88	2.70	26.7	49.0	1.8				1.66	3.13	1.63
29-2, 114-124	124.1	1.87			34.3						1.61	3.01	1.57
30-2, 63-84	128.0		1.74	2 (7	34.3			41	7.8	7.95	1.60	3.01	1.49
30-2, 137-147	128.7		1.76	2.67	32.2	55.2	4.3				1.00	2.81	1.49
31-2, 137-140 31-3, 30-52	133.1 133.6				33.5				6.7	7.1			1.70
31-3, 128-141 32-1, 135-138	134.5 136.0	1.82			33.1			24	6.1	8.5	1.59	2.90	
32-2, 39-43	136.5		1.76	2.60	32.6	55.0	1.0	11	5.3	6.05	1.62	2.86	1.44
32-3, 71-73	138.2		1.78	2.64	30.7	53.2	3.3	55	0.45	0.4	1.02	2.00	
33-1, 146-148 33-2, 30-33	140.5				32.0				132284				1.24
33-2, 75 33-2, 131-139	141.3 141.9	1.78							6.4	6.4	1.61	2.87	
33-3, 136-139 34-1, 125-128	142.4				31.7								
34-2, 139-149	146.3	1.99	1.74	2.64	32.8	55.6	4.9	31	6.3	6.6	1.60	2.78	1.45
36-2, 66-73	154.4	1.77	1.78	2.72	31.7	55.1	4.2	25	5.8	6.3	1.50		01121
36-2, 131-135	155.0				33.1				5.65	0.55	1.58		1.70
37-2, 22-27 37-2, 81	158.3								6.75	8.8			1.62
37-2, 104-136 37-2, 103-136	159.2	1.79			33.2			15	6.5	7.65	1.58	2.83	
38-2, 128-130 38-2, 139-148	163.8		1.76	2.68	33.1	55.6	2.5		7.4	7.7	2.07	3.63	1.25
39-2, 36	167.3			2100	22.4		1.000		9.9	8.3	92123-1		
39-2, 118-128	168.1	1.77	1.70	2.60	34.4			15	7.9	7.0	1.57	2.78	1.21
42-1, 115-128	175.3		1.70	2.09	32.4	55.7	4,1	3/	0.3	10.1	1.00	2.01	1.40
43-1, 143-146 45-1, 131-134	180.0 188.7				32.3 31.8								
45-2, 145-148 45-3, 28-46	190.4 190.7		1.73	2.57	32.6 32.1	54.2	3.5		4.6	5.4			
45-3, 126-135 46-1, 146-149	191.7	1.82			25.2			50	5.4	6.7	1.60	2.91	1.61
46-2, 146-149	194.8				31.9				60	6.4			
46-3, 99-126	195.9		1.74	2.64	32.8	55.7	2.4	41	4.5	5.55	1.57	2.73	1.63
47-1, 146-149 47-2, 146-149	197.7				31.1 31.6								
47-3, 17 47-3, 99-108	199.4 200.2	1.80						10	8.0 9.7	9.7 11.35	1.60	2.87	
47-3, 132-136 48-1, 146-149	200.5				32.0								1.72
48-2, 146-149	203.6				30.4			50	9.0	7.7			
48-3, 122-133	204.9		1.80	2.71	30.6	53.7	3.5		6.0	7.0	1.59	2.86	1.53
49-2, 123-140	200.8	1.84			1212/12			39	6.5	7.2	1.56	2.86	1.66
49-4, 95-98	209.4 210.5		12.12.1	220200	32.2 32.4								
50-1, 115-118 51-2, 8	269.2 274.0		1,89	2.64	25.3	46.6	7.7		5.45	6.8			
51-2, 77-101 51-2, 77-101	274.7	1.84			29.9			63	10.4	8.6	1.61	2.96	1.87
53-2, 102-105	283.7		1.85	2 67	27.5	40.7	29	630 162	1.0	1.65	1.68	2.95	
53-2, 129-131	284.0		1.05	2.07	29.1	49.7	4.10	102	a.33	5.05	1.00		

metric data do not show any trend in this unit, with the exception of the lower part. Below a sub-bottom depth of about 550 m, water content and porosity tend to decrease, and wet-bulk density increases. Sonic velocity increases considerably throughout Unit II, with a wide scatter. Sound velocity measured vertically is somewhat lower in most cases than in the horizontal direction. Thermal conductivity is somewhat lower than in the unit above, and there may be a slight trend of decreasing conductivity with depth.

Unit III, the basement unit composed of basalts with interbedded sedimentary layers, has different physical properties than the overlying sediment. Scatter is very high in this unit owing to the widely varying alteration of the basalts (see Table 7). Only a single sediment sample was tested. It revealed a water content and porosity that were distinctly higher and a bulk density that was lower than in the sediments of Unit II. Sonic velocity was about the same as in the upper part of Unit II. Grain density and thermal conductivity do not differ significantly from the values found in the basalts.

DOWNHOLE INSTRUMENTS

Heat Flow

A heat flow experiment was run in Hole 525 using the Uyeda heat flow probe. Five measurements were obtained in the top 75 m of sediment by washing down and measuring at 10–20 m intervals. An extremely low gradient near 0.01° C/m was observed, and the scatter in the data is large enough to make a meaningful heat flow value unobtainable.

Careful instrument checks were made after recovery to determine both calibration and timing of the tool. Both proved to be within tolerances. The measured bottom water temperature was 6.25°C, which is quite high for the North Atlantic Deep Water at the site and suggests that the surface water pumped down for washing contaminated the temperature results, in spite of 12min. equilibration times at each measurement. Another potential explanation lies in disturbance of the sediment by washing. The nannofossil oozes in the hole were very difficult to penetrate by washing, and high pressures were used.

Logging

After three attempts, the drill bit failed to release following the rotary coring in Hole 525A. Therefore logging was not attempted at this site.

Table 7. Physical properties summary for the basement complex, Site 525.

	Basalt (mean of 11 samples)	Sediment (Sample 525A-51-1, 118-127 cm)
Wet-bulk density (gravimetric)	2.47 g/cm ³	1.93 g/cm ³
Wet-water content	8.5%	28.2%
Porosity	20.2%	53.0%
Approximate grain density	2.84 g/cm ³	2.95 g/cm ³
Sonic velocity: horizontal	3.91 km/s	1.75 km/s
vertical	4.07 km/s	1.72 km/s
Thermal conductivity	1.47 W/m °C	1.21 W/m °C
	(=3.51 mcal/cm°C·s)	(=2.80 mcal/cm °C s

SUMMARY AND CONCLUSIONS

Site 525 is on crust of Magnetic Anomaly 32 age (early Maestrichtian-late Campanian) and located on a broad flat crest of a NNW-SSE-trending block on the Walvis Ridge. It is the shoalest site of a transect across the Walvis Ridge into the Angola Basin. Three holes were drilled which give a complete section from the seafloor through the sedimentary layers (574 m subbottom) and 103 m into the basement complex.

Hole 525: One core was obtained, with 3.6 m recovery, to establish the mud line. A downhole heat flow experiment, with inconclusive results, followed the coring.

Hole 525A: We obtained 63 rotary cores from this hole, with a total penetration of 678.1 m below seafloor and a recovery of 73%. A basement rock complex was first encountered at 574.6 m sub-bottom and continuously cored for 103.5 m. Several unsuccessful PCB and DBMI tests were run on this hole. Logging was unsuccessful as a result of failure of the drill bit to release.

Hole 525B: We hydraulic-piston-cored 53 cores for a total core length of 231 m and recovery of 79%. The major geological and geophysical results are given in the following paragraphs.

Lithology: Sediment

Three major sedimentary lithologic units are observed. One of these units is within the basaltic basement complex.

Unit I is the largest sedimentary unit (452 m thick). It consists of a very homogeneous nannofossil and foraminifer-nannofossil ooze and/or chalk. The calcium carbonate content is greater than 90% throughout, except for a small drop next to the base of the unit. No primary or secondary structures are observed in this unit. Its division into two subunits is based on the occurrence of chalks.

Subunit IA is entirely white to pinkish white nannofossil and foraminifer-nannofossil ooze, the base of which coincides with a color change and a major biostratigraphic hiatus between upper Oligocene and mid-Eocene at 270 m sub-bottom.

Subunit IB consists of alternating beds of nannofossil and foraminifer-nannofossil oozes and chalks with chalks increasing in abundance with depth. The unit terminates near the well-recovered Cretaceous/Tertiary boundary at 452 m sub-bottom. Chert frågments are observed near the base of the unit.

Unit II sediments extend from the Cretaceous/Tertiary boundary at 452 m sub-bottom to the top of the basement complex at 574 m sub-bottom. The sediments are cyclic in nature and composed of nannofossil marly chalks and limestones and siltstones/sandstones of turbidite and/or slump origin. The thickness of the cyclic units are of the order of 1 to 2 m except for a spectacular turbidite sequence of about 6 m near the base of the unit. Below this turbidite sequence is an approximately 3-m sequence of highly altered, baked, or lithified limestones to noncalcareous sediments with a small amount of chert(?) which overlie basement. The calcium carbonate content is generally less than 50%. High amounts of volcanogenic clastic material are also identified in smear slides. K-feldspar (anorthoclase), smectite, and minor amounts of plagioclase and illite were identified by the X-ray diffraction technique. Well-preserved primary and secondary sedimentary structures are present throughout the unit. In particular, graded and inverse graded bedding, parallel laminations, and beautifully preserved Zoophycus, Planolites, and halo burrows abound. Large Inoceramus sp. mollusk shells are found throughout the unit.

Unit III consists of four sedimentary interbeds within the basaltic basement complex. They are at 593, 596, 625, and 647 m sub-bottom and are 0.2 to 3.0 m thick. They consist of bioturbated marly limestone and volcanogenic sediments (smectite, palagonite, volcanic glass, and igneous rock fragments). Chert fragments are also observed. The carbonate content ranges from 0 to 50%. Fossils recovered from one of these layers are the same age as those observed at the base of Unit II (early Maestrichtian).

Lithology: Basalt

We drilled 103 m of basement complex, with an average recovery of 53%. Five basaltic units are identified. The four intercalated sedimentary layers (Unit III) form the basis for the subdivision of the basalt. The basalts are mainly aphyric, subophitic in texture, and in general vesicular, with carbonate in the vesicles. Calcite veins are abundant throughout most cores. The basalt petrography is very uniform. Plagioclase, the most abundant mineral, forms about 50 to 60% of the groundmass; clinopyroxene forms about 35 to 45%. Olivine is not found. It may be highly altered and present in the form of clay alteration minerals. We will have to await the results of shore-based chemical studies to determine whether these are alkali or tholeiite basalts.

The following are the five basalt units:

Unit 1 is a 21-m-thick, green gray, fine- to mediumgrained, highly altered vesicular aphyric basalt.

Unit 2 is 4.5 m thick and similar to Unit 1.

Unit 3 is a 22-m-thick, medium gray, moderately altered, vesicular, fine- to coarse-grained, aphyric to sparsely plagioclase and clinopyroxene phyric basalt.

Unit 4 is a 20-m-thick, medium gray, moderately vesicular, aphyric to sparsely plagioclase-clinopyroxene phyric basalt. This unit comprises a distinct pillow sequence consisting of a minimum of 25 pillows and/or thin flows with fresh glass rinds on their outer surface.

Unit 5 is a 7-m-thick, dark gray, moderately vesicular glassy and fine-grained basalt grading into medium- to coarse-grained sparsely plagioclase phyric basalt with few vesicles. The unit comprises macroscopically the freshest basalt recovered.

Relationship between Lithology and Seismic Reflection Profile

The seismic stratigraphy is shown in Figure 12. The basal, very smooth, dark reflector (see *Vema* record) is interpreted as acoustic basement and coincides with the top of the basaltic basement complex. The top of the prominent reflector observed about 0.1 s above base-

ment is probably related to the top of Unit II (Cretaceous/Tertiary boundary) and to the change from nannofossil and foraminifer-nannofossil oozes and chalk to the cyclical, patterned, nannofossil marly chalks and siltstone/sandstones. Higher in the section (about 0.3 s above basement), a rather prominent seismic reflector is observed which may relate to the Subunit IA-IB boundary (late Oligocene-mid-Eocene hiatus) and occurrence of nannofossil and foraminifer-nannofossil chalks.

Physical Properties

In sediment Subunit IA there are no very obvious and persistent trends in the physical properties, although the relatively high porosity in the upper 20 to 30 m of Hole 525B may be associated with the high foraminifer:coccolith ratio. The results from hydraulic piston coring and rotary coring are very similar. There are some trends in Subunit IB suggestive of the beginning of diagenesis, in agreement with the observed lithology. In Unit II, the trends of decreasing water content and porosity observed in Subunit IB continue. In general, in Unit II there is a very wide scattering of physical properties caused by the varying lithology and drilling disturbance. The physical properties in the basement complex are obviously much different than the overlying sediments in having much higher bulk density and sonic velocities and much lower water content and porosity.

Paleomagnetics

The Pleistocene to middle Miocene natural remanence is, in general, low (below the shipboard instrument noise level) and hence was analyzed in a shorebased laboratory with a cryogenic magnetometer. The lower to middle Miocene sediments were magnetically unstable and their paleomagnetic stratigraphy consequently unobtainable.

The paleomagnetic stratigraphy is very well defined from 420 m sub-bottom (Core 36, upper Paleocene) to the basement complex at 574 m sub-bottom. Anomalies 28 to 32 are easily recognized. The results are consistent with the Walvis Ridge crust being formed at this site during Magnetic Anomaly 32 time, as inferred from surface ship magnetometer measurements.

Sedimentation and Accumulation Rates

The sedimentation rates vary between about 10 m/m.y. and 20 m/m.y. with the exceptions of a major hiatus between the late Oligocene and middle Eocene and a marked slowdown (to about $0.5 \text{ cm}/10^3 \text{ y.}$) between the middle Paleocene and the Cretaceous/Tertiary boundary. There is a marked increase in sedimentation rates for the time span prior to the Cretaceous/Tertiary boundary (>1.5 cm/10^3 y.) The magnitude of the increase depends on whether the age of basement is early Maestrichtian or late Campanian.

Accumulation rates were calculated $(g/cm^2/10^3 \text{ y.})$ for Plio–Pleistocene to early Miocene. They show a similar trend to the sedimentation rates for this interval. The ratio of the foraminifer carbonate to coccolith carbonate accumulation rates varies considerably. It is not clear whether this represents an index of dissolution, or

Figure 12. Correlaton between seismic records and lithostratigraphy, Site 525.

production, or an evolutionary change in the ratio of foraminifers to coccoliths.

Biostratigraphy and History of the Walvis Ridge

The age of the crust (early Maestrichtian), as determined from the identification of fossils within the sediments above basement as well as from the paleomagnetic measurements, is in agreement with the surface ship magnetic anomaly identifications and thus suggests that the part of the Walvis Ridge under study was formed at a mid-ocean ridge spreading center. Further, the initial extrusion of ocean crust here was probably near sea level and subsequently subsided to its present depth of 3054 m below sea level. Benthic foraminifers and associated fragments of mollusks and bryozoans, together with highly vesicular pillow basalts, suggest that the final outpourings of lava at this site occurred within a few hundred meters water depth.

Sediments rich in volcaniclastic material as well as in biogenic debris covered the basement complex rather quickly, as evidenced by sedimentological indications of gravity flows, by the moderately high average sedimentation rates (>15 m/m.y. compared to an average of about 10 m/m.y. for the remainder of the section), and by the fact that sediments within the basalt and for 54 m overlying the basalt come from the same biostratigraphic zone. The CCD was quite shallow throughout the world ocean during the Late Cretaceous and early Paleogene; however, the rather poor preservation of carbonate microfossils in the lower part of the section appears somewhat anomalous, considering the relatively shallow paleodepth of this site (approx. 1000-1500 m). This lack of good carbonate preservation may be diagenetic or may have resulted from a regional shoaling of the CCD associated with the very shallow Walvis Ridge that existed at that time—a shoaling comparable to that near continental margins and regions of high productivity in the modern ocean. The preservation of the calcareous fossils shows both effects. Recrystallization and calcite overgrowth affect the microfossils of the lower middle Eocene (below Zone P14) and lower Eocene, but preservation improves somewhat in the late Paleocene. Dissolution in the early Paleocene (below Zone P3) again decreases the preservation, but below this interval, in the Maestrichtian, cementation and alteration of biogenic calcites cause the poor preservation of the microfossils. The general sedimentary character of the early Paleogene and Late Cretaceous sediments suggests a marked decrease in the degree of carbonate preservation with age. Although carbonate content commonly exceeds 80 to 90% in this interval and is usually greater than 50%, fragmentation, diagenetic alteration, and calcite overgrowths hinder biostratigraphic interpretation.

Further complicating interpretation in this zone of poor preservation is the presence of an interval of very slow accumulation rate spanning the Cretaceous/Tertiary boundary. Although all the appropriate biostratigraphic zones and magnetic events have been identified at the boundary, sharp color changes and a distinct brown layer near the boundary may indicate that a small portion is missing from the sedimentary record.

There is a possibility of several small hiatuses in the section cored at Site 525 (e.g., the missing foraminiferal Zones Plc to P2 in the lower Paleocene and N10 to N12 in the middle Miocene); however, the most marked change in accumulation at this site is the 14-m.y. hiatus spanning the middle Eocene (P14, NP23-25) and upper Oligocene (P22, NP16-17). Some carbonate dissolution appears to be associated with this hiatus; however, carbonate concentrations remain at 90% or greater on either side of it. This, together with the increase in degree of lithification below the hiatus and reworked older microfossils in the overlying upper Oligocene section, suggests erosional removal of much of the Oligocene section. The part of the section that has been removed includes the intervals in which Braarudosphaera chalks and oozes are commonly found in sediments of the South Atlantic.

Neogene sediment accumulation rates vary between approximately 8 and 20 m/m.y. For a central gyre region which is rather distant from zones of intense upwelling, changes in accumulation rates by a factor of two are highly significant. The upper Oligocene through lower middle Miocene shows low average accumulation rates (8 m/m.y.). These rates increase to 20 m/m.y. in the latter half of the middle Miocene and then decrease again in the upper Miocene to about 13 m/m.y. In the lower Pliocene, the accumulation rate again reaches nearly 20 m/m.y. before decreasing again in the upper Pliocene to Quaternary. These changes in accumulation rate do not appear to show a simple relationship to indices of preservation. Increased fragmentation of foraminiferal tests is noted just prior to the mid-Miocene and early Pliocene peaks in sediment accumulation; however, preservation of the calcareous fossils in the rest of the section appears to be affected mainly by fragmentation and overgrowths occurring within the sediment. Overgrowths on the calcareous nannofossils are prevalent below the upper part of the middle Miocene.

Subtle changes in the color of the carbonate sediments, on the other hand, do appear to bear some relationship to accumulation rates. The lower Pliocene peak in accumulation rate seems to match the zone of bluish gray carbonates within sediment Subunit IA. The lower rates of the upper Miocene are typified by homogeneous, very white carbonates, and the second Neogene peak in accumulation in the middle Miocene is associated with alternating white, very pale orange, and pinkish gray zones of carbonate.

The proportion of foraminifers (by weight) making up the Neogene sediments reaches a minimum in the upper Miocene before climbing to a distinct maximum in the Plio-Pleistocene. It is not clear whether this large increase in the proportion of foraminifers over the last 3 to 5 m.y. indicates an evolutionary change or a change in ecologic response. It does not appear to match changes in other indicators of the degree of preservation of the carbonate debris.

The planktonic assemblages throughout the section are characteristic of temperate water masses. A careful

analysis of the relative importance of the subtropical and boreal assemblages could reveal details of oceanographic fluctuations over the early Paleogene and Neogene.

REFERENCES

- Berggren, W. A., 1972. A Cenozoic time-scale—some implications for regional geology and paleobiogeography. *Lethaia*, 5:195-215. , 1973 (preprint). Biostratigraphy and biochronology of the
- Late Miocene (Messinian and Tortonian) of the Mediterranean. See Berggren Binder. Bolli, H. M., and Premoli Silva, I., 1973. Oligocene to Recent plank-
- Boin, H. M., and Prenon Silva, I., 1973. Ongocene to Recent planktonic foraminifera and stratigraphy of the Leg 15 sites in the Caribbean Sea. In Edgar, N. T., Saunders, J. B., et al., Init. Repts. DSDP, 15: Washington (U.S. Govt. Printing Office), 475-499.
- Bukry, D., 1973. Coccolith Stratigraphy, Eastern equatorial Pacific, Leg 16 Deep Sea Drilling Project. In van Andel, Tj. H., Heath, G. R., et al., Init. Repts. DSDP, 16: Washington (U.S. Govt. Printing Office), 653-711.
- Connery, S. D., and Ewing, M., 1974. Penetration of Antarctic Bottom Waters from the Cape Basin into the Angola Basin. J. Geophys. Res., 79:463-469.
- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Mar. Micropaleont., 2:1-25.
- Hardenbol, J., and Berggren, W. A., 1978. A new Paleogene numerical time scale. Am. Assoc. Petrol. Geol. Stud. Geol., 6:213-234.
- Lutze, G. F., 1978. Neogene benthonic foraminifera from Site 369, Leg 41, Deep Sea Drilling Project. *In* Lancelot, Y., Seibold, E., et al., *Init. Repts. DSDP*, 41: Washington (U.S. Govt. Printing Office), 1033-1048.
- Manheim, F. T., and Sayles, F. L., 1974. Composition and origin of interstitial waters of marine sediments based on deep sea drill cores. *In* Goldberg, A. (Ed.), *The Sea* (Vol. 5): New York (John Wiley and Sons), 527-568.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proc. II Plankt. Conf. Roma: Rome (Edizioni Tecnoscienza), pp. 739-785.

- Ness, G., Levi, S., and Couch, R., 1980. Marine magnetic anomaly time scales for the Cenozoic and Late Cretaceous: a precis, critique, and synthesis. *Rev. Geophys.*, 18:753-770.
- Perch-Nielsen, K., 1977. Albian to Pleistocene calcareous nannofossils from the Western South Atlantic, DSDP Leg 39. In Supko, P. R., Perch-Nielsen, K., et al., Init. Repts. DSDP, 39: Washington (U.S. Govt. Printing Office), 699-824.
- Pflaumann, U., and Krasheninnikov, V. A., 1978. Zonal stratigraphy and planktonic Foraminifera of the Atlantic Ocean off West Africa (Leg 41, Deep Sea Drilling Project). In Lancelot, Y., Seibold, E., et al., Init. Repts. DSDP, 41: Washington (U.S. Govt. Printing Office), 613-657.
- _____, 1979. Quaternary stratigraphy and planktonic foraminifers of the Eastern Atlantic, Deep Sea Drilling Project, Leg 41. In Lancelot, Y., Seibold, E., et al., Init. Repts. DSDP, Suppl. to Vols. 38, 39, 40, and 41: Washington (U.S. Govt. Printing Office), 883-912.
- Rabinowitz, P. D., and Simpson, E. S. W., 1979. Results of IPOD Site Surveys aboard R/V Thomas B. Davie Cruise 388. L-DGO Tech. Rept., Joi, Inc., UCT. Tech. Rept. 1.
- Shackleton, N. J., and Kennett, J., 1975. Late Cenozoic oxygen and carbon isotope changes at DSDP Site 284: Implications for glacial history of the northern hemisphere and the Antarctic. *In* Kennett, J. P., Houtz, R. E., et al., *Init. Repts. DSDP*, 29: Washington (U.S. Govt. Printing Office), 801-809.
- Sotelo, V., and Gieskes, J. M., 1978. Interstitial water studies, Leg 40: Shipboard studies. In Bolli, H. M., Ryan, W. B. F., et al., Init. Repts. DSDP, 40: Washington (U.S. Govt. Printing Office), 549-554.
- Thierstein, H., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediment. *Mar. Micropaleont.*, 1:325-362.
- Vincent, E., 1977. Indian Ocean Neogene planktonic foraminiferal biostratigraphy and its paleooceanographic implications. In Heirtzler, J. R., Bolli, H. M., Davies, T. A., Saunders, J. B., and Sclater, J. G. (Eds.), Indian Ocean Geology and Biostratigraphy: Washington (Am. Geophys. Union), pp. 469-584.
- Vincent, E., Killingley, J. S., and Berger, W. H., 1980. The Magnetic Epoch-6 carbon shift: A change in the ocean's ¹³C/¹²C ratio 6.2 million years ago. *Mar. Micropaleontol.*, 5:185-203.

SITE 525 HOLE CORE 1 CORED INTERVAL	0.0–3.6 m	SITE 525 HOLE A CORE 2 CORED INTERVAL 3.6-9.6 m	
	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
10 10 10 10 10 10 10 10 10 10	N9 Core 1 contains a white (N9) to very light gray (N8) soft namofostil ooza. Oniting disturbance is severe and has left no sedimentary structures. A foraminifer namo- fossil coza occurs from 94–130 cm in Section 1. It is pinkish gray (EVR 8/1) in color. Core-Catcher: foramin-		NANNOFOSSIL OOZE A highly disturbed white (N9) to pinkish gray nanno- fossil ooze is present. This is a pressure oore barrel sample which did not work. The core (30 cm) is taken over a 6 meter interval and is not representative of any specific position within the interval.
100 (10) (10) (10) (10) (10) (10) (10) (Interial reannotossi occe. SMEAR SLIDE SUIMMARY: 15 1.70 2.5 3.51 D D D D Composition: Feldspar TR Carbonats unspecified 2 5 2 2 Foraminifers 3 25 3 3 Calceneous nannofossits 95 70 95 95 Diatoms TR TR	SITE 525 HOLE A CORE 3 CORED INTERVAL 41.6-51.1 m FOSSIL CHARACTER NOILL CHARACTER NOILL SUBJECT OF CORE SUBJECT OF COMPANY SUBJECT OF CORE SUBJECT OF COMPANY SUBJECT OF COMPANY SUBJEC	LITHOLOGIC DESCRIPTION
SITE 525 HOLE A CORE 1 CORED INTERVAL	0.0–3.6 m		FORAMINIFER NANNOFOSSIL OOZE A white (N9) homogeneous foraminifer nanofostil ooze. The sediment is highly disturbed due to frecturing of the core barrel during drilling. SMEAR SLIDE SUMMARY: 1-40 4-103 D D Composition: 25 10
	LITHOLOGIC DESCRIPTION	2 VOID	Calcarnous nannofossilis 60 85 Calcarnous discoasters 5 5
All Control of the second seco	FORAMINIFER NANNOFOSSIL OOZE A highly disturbed to soury pinkish gray (57R 8/1) foraminifer nanofossil ozer is present. This ozer alter- nates to some extent with a nanofossil ozer which is white (N9). No sedimentary or biogenic structures are observed. SMEAR SLIDE SUMMARY: 1-12 1-37 2-19 2-108 3-19 D D D D D Composition: Foraminifers 50 40 60 5 5 Calcareous 5YR 8/1 nanofossilis 45 60 40 95 95 Pteropodi 5 Calcareous 0 dinoffagellates 5 TR SYR 8/1 ORGANIC CARBON AND CARBONATE: 1-61 2-61 3-21 N9 Organic carbon Carbonate 95 96 96	AG AM	

Information on core description sheets, for ALL sites, represents field notes taken aboard ship under time pressure. Some of this information has been refined in accord with postcruise findings, but production schedules prohibit definitive correlation of these sheets with subsequent findings. Thus the reader should be alerted to the occasional ambiguity or discrepancy.

74

SITE 525

ITE	525		HO	LE	Α	C	DRE	4 CORED	INT	ER	VAL	51.1–57.1 m
	PHIC		CH	FOSS	TER							
UNIT UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
early Plincene	NN12/13 (*					1	0.5		000000		•	FORAMINIFER NANNOFGSSIL OOZE A highly disturbed, soupy, homogeneous, white (N9) foraminifers nannofossil ooze was recovered. SMEAR SLIDE SUMMARY: 190 D Composition: Foraminifers 10 Calcareous nannofossils 80 Discoasters 10
TE	525	_	HOL	E	A	co	RE	5 CORED	INT	ER	AL	89.1–98.6 m
ç	APHIC		CHA	RAC	TER							
LIND	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
late Miocene						1	0.5		0 0 0 0		•	NANNOFOSSIL OOZE TO FORAMINIFER MANNOFOSSIL OOZE Anima (HW), foraminifer mannofosii) coze is present, Some small clark gray to black blabs (dots) and indistinct layers are observed. SMEAR SLIDE SUMMARY: 1.100 D D D D D D Composition: Chronosterun specified - - - - Pormainifers 5 10 10 - 5 Calcareous dinoflagellates - - 3 - - ORGANIC CARBON AND CARBONATE: Carbonate 1-61 - <t< td=""></t<>
	v16-17 (F) VN11 (N)					5	and the set of the set of			1	•	

ITE	525	5	HO	LE	A		co	RE 6 CORED	INTER	VAL	98.6106.1 m						
×	HIC		CH	OSS	TER												
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATONS		SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DES	CRIPTIO	N			
							1			•		FORAMII A white (N9), h fer nannofosil ooz patches were observ SMEAR SLIDE SUN	NIFER N omogene e was rec ved and v IMARY: 1-80 D	ANNOI ous, ver xovered. were da 2-80 D	OSSIL ry distu . Small .termina 3-80 D	OOZE rbed, f gray w id to b 4-80 D	oramir isps ar e greas 5-80 D
							2					Composition: Foraminifers Calcareous nannofossils Sponge spicules Discoasters Calcareous dinoflagellates	5 90 5	13 85 TR 2	10 85 - 3 2	10 90 - - 1	15 80 - 3 2
late Miocene											N9	ORGANIC CARBON Organic carbon Carbonate	N AND C. 1-61 - 99	ARBON	IATE:		
							3			•							
							4										
							5										
	N16/17 (F) NN11/10 (N)	AG	AM			- 0	B										

75

SITE 5	25	HOLE	A	co	RE	7 C	ORED	INTER	VAL	165.1-174.6 m						SITE	525	H	DLE	A	CORE	8	CORED	INTERVA	L	174.6-184.1 m					
TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FOSSIC LADIOLAHIANS	SWOLVIG	SECTION	METERS	GRAPI	HIC OGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTION				TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARACTI	ER	SECTION METERS	C LT	RAPHIC THOLOGY	DRILLING DISTURDANCE SEDIMENTARY STRUCTURES SAMMERS			LITHOLOGIC DESCI	IPTION			
middle Miocene Na (F) N	IMM (N)	AM		1 2 3 4 5 CC	0.5			000000000000000000000000000000000000000		5YR 8/1 10YR 8/2 N9 10YR 8/2 5YR 8/1 5YR 8/1 N9 5YR 8/1 N9 5YR 8/1 N9 5YR 8/1 0.6 cm -5YR 8/1 0.6 cm -5YR 8/1 10.5 cm -5YR 8/1 20.38 cm -N9	FORAM Al This core com ish gruy (SYR &/ is only moderate ing. SMEAR SLIDE SI Composition: Mica Carbonate unapee Foraminifers Calcareous nannofossils Diatoms ORGANIC CARB Organic carbon Carbonate	INIFER NANNO ND NANNOFOSS alins a predoming ly disturbed and UMMARY: 1800 2.86 D D TR – ified – ified – 5 10 96 90 TR – 185 90 AND CARBO 185 98	COSSIL OUL LOOZE LIOQZE LIOQXE 3.20 D - - TR 15 85 TR 15 85 TR NNATE:	OZE (N0) to oz. Sect as color t D D D TR - TR T TR T 15 1 86 9 	pink. ion 5 band- 5-11 0 - 7 R 10 00 -	middle Miccene	WNG (M)				2 3 4 5			000000000000000000000000000000000000000		5YR 8/1 5Y 8/1 5YR 8/1 5YR 8/1 5Y 8/1	FORAMINI A predominantly grav (5Y 8/1) soupy foosi (oos is observe are present in Section Composition: Calcaret ananofossite Diatoms ORGANIC CAREON Organic carbon Carbonate	ER NAN IANNOFI INRIHA go I Matties S. L. Matties S. D TR TR TR TR TR TR TR TR TR TR TR TR TR	NOFOS: SSSL0 av (5Y) leformec resultin 1 2.80 3 0 C 2.80 3 1 1 1 2.80 3 1 1 1 2.80 3 1 1 1 1 2.80 3 1 1 1 1 2.80 3 1 1 1 1 2.80 3 1 1 1 1 1 2.80 3 1 1 1 1 1 1 1 1 1 1 1 1 1	SIL 0022 022 8 (k/1) tr. foramining 9 fram b 	E 3 yellowish inter nanno- ioturbation 70 CC D - - 5 20 - 75 - 144 6-35 - 98

NN5 (N)

5Y 8/1

7

SITE 525
SITE 525 HOLE	CORE 9 CORED INTERVAL	184.1–193.6 m	SITE 525 HOLE A CORE 10 CORED INTERVAL	193.6203.1 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORAMINIFEHS RADIOLARIANS RADIOLARIANS RADIOLARIANS DIATOMS	R R R R R R R R R R R R R R R R R R R	LITHOLOGIC DESCRIPTION	TIME FOCK	LITHOLOGIC DESCRIPTION
middle Miccerve 00	00 	PERAMINIFER NANNOFOSSIL OCZ This core contains a soupy to highly disturbled, homo- pareous very pale corarge (100/18 8/21 foraminister namo- found throughout the core. These are interpreted to be burner were than throughout the core. These are interpreted to be pareous very sources (100 memory). INTER SLIDE SUMMARY:	Million Million <t< td=""><td>10YR 8/2 A very paie carage (10YR 8/2) soupy to sliphty deforminiter monotosil coze was recovered. Sections 4–8 contain mottles which are interpreted as biogenic in origin. The mottles are of the halo burow type and are up to 1 cm wide with white (M9) to gravy) for V(1) exteriors. They are aligned horizontally to sub-horizontally. SMEAR SLIDE SUMMARY: 100 0 00 040 440 680 CC O D D D D D 0 O D D D D 0 Composition: TR TR TR - TR Feidoard TR TR TR - TR Carbonate unspecified - ORGANIC CARBON AND CARBONATE: - Foraminifers 10 10 8 15 10 Calcaroous 0 90 00 22 85 90 Diatoms - TR OrGANIC CARBON AND CARBONATE: - Toronotoxile 0 30 490 50 7-50 Organic carbonate - - Carbonate - - Max B4 95 96 94 96 92 92</td></t<>	10YR 8/2 A very paie carage (10YR 8/2) soupy to sliphty deforminiter monotosil coze was recovered. Sections 4–8 contain mottles which are interpreted as biogenic in origin. The mottles are of the halo burow type and are up to 1 cm wide with white (M9) to gravy) for V(1) exteriors. They are aligned horizontally to sub-horizontally. SMEAR SLIDE SUMMARY: 100 0 00 040 440 680 CC O D D D D D 0 O D D D D 0 Composition: TR TR TR - TR Feidoard TR TR TR - TR Carbonate unspecified - ORGANIC CARBON AND CARBONATE: - Foraminifers 10 10 8 15 10 Calcaroous 0 90 00 22 85 90 Diatoms - TR OrGANIC CARBON AND CARBONATE: - Toronotoxile 0 30 490 50 7-50 Organic carbonate - - Carbonate - - Max B4 95 96 94 96 92 92
S) SNN AG AM	<u> </u>			

SITE 525	HOLE A	COR	E	11 CORED	INTERVA	203.1212,6 m		SITE	525	HOL	E A	CO	RE 12 CORED INTE	RVAL	212.6-222.1 m				
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FOSSIL CHARACTER WANNOFOSSILS RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	NANNOFOSSILS	BADIOLARIANS	SECTION	GRAPHIC BILLING LITHOLOGY USUNUESI	STRUCTURES		LITHOLOGIC DESCR	PTION		
early Miccine N6-2 (F) BIO R6-2 (F) BIO R6-2 (F) BIO R6-2 (F) BIO R6-2 (F)	Autor Auto	2 2 3				10YR 8/2 SYR 8/1 N9 5GY 6/1	FORAMINIFER NANNOFOSSIL AND MANNOFOSSIL OOZE A very pair orange (10YR 8/2) pinkih grav (5YR 8/1) to velicinisil grav (5Y 8/1), highly disturbed and soupy foraminifier nanofosal losz war recovered. Some possible biogenic motifics are observed in Section 4.1 months are white (NP) to greening grav (5GY 8/1) in color. SMEAR SLIDE SUMMARY: D 0 0 0 0 0 0 0 Composition: Feldsper - TR TR TR Clay 2 - TR - Clay 1 8 10 5 5 Calareous nanofosalis 80 80 90 90 95 ORGANIC CARBON AND CARBONATE: 1:00 2:100 3:100 4:100 5:100 6:100 Organic carbon - 0 0 0 0 95	early Miccane	810	004	RAC PLAN PLAN PLAN PLAN PLAN PLAN PLAN PLAN	3			5Y 8/1 5YR 8/1 N9	NANN FORAMINI This core contains gray (BYR 8/1) and fara mannofosil oos Section 3, with a w are of the planolites 1 SMEAR SLIDE SUMM Composition; Faldspar Mice Orber day minerals Carbonate unspecified Foraminifers Nannofosilis ORGANIC CARBON / Organic carbon Carbonets	DFOSSIL OC: ER NANNOF 2 vellowish g white (N3) and the range in yps. Very fev ARY: 1.80 3.80 D D T T T T T T T T T T T T T T T T T T	2E AND OSSIL (9/ (57) / 5-80 D 	CCE B/1) to pinkish are present in These burrow te halo burrow CC D TR - - 10 90 410 5-10 96 96
NS (F		5			00000 000000	5Y 8/1			NS (F) NN2 (N) E	G AP		5 cc		•	5Y 8/1				

NS (F) NN2 (N) 7 CC

SITE 52	5 HOLE A	CORE	13 CORED INTERVAL	221.1-231.6 m	SITE	525	но	LE A	CORE	14 CORED	INTERVAL	231.6-241.1 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FOSSIL CHARACTER RANNOFOLARIAN RANNOFOLARIAN RANNOFOLARIAN RANNOFOLARIAN	SECTION	GRAPHIC LITHOLOGY BUTTING CONTINUES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	BADIOLARIANS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
early Micome NS (F). Luce AN		0.5- 1 1.0- 2 3 4 4 5 6 7 CC		SY 81 SY 81	early Miocene	NS (F) NNI (N)	AG AA		3 4 5 6 7 CC		-0	5Y 8/1 5Y 8/1 N9 5Y 8/1 N9 5Y 8/1 N9 5Y 8/1 N9	NANNOFOSSIL OOZE The top half of the core is a soury to highly disturbed, course is a soury to highly disturbed, course is a soury to highly disturbed, course is a soury to highly disturbed and has a motiled characterization of the color is a solution with gay matrix. SMEAR SLIDE SUMMARY: Bo D D

SITE 525 HOLE A	CORE 15 CORED INTERVAL	241.1–250.6 m	SITE 525 HOLE A CORE 16 CORED INTERVAL 241,1-250.6 m
TIME - ROCK UNIT CHARAPHIC ZOTICERAPHIC ZORICERAPHIC CHARAPER FORAMINIFERS MARMOLARIANS	R GRAPHIC UTHOLOO WE LEBS WEITING GRAPHIC GRAPHIC CUTON BUILTING CUTON	LITHOLOGIC DESCRIPTION	VILL VILL
early Milocene 66 (F) MI (N) Ø V		Dimensional cost intersported with chalks conserved. SYR 8/1 Image: String S	1 0.5 BYR B/1 CORANNECER NAMOCOSSIL.OCE A picking wardsall ownersky to highly de formed family and family de formed family de for

	PHIC		CHA	OSS RAC	TER				Π					
TIME - ROCH	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTIC	9N
cene early Miocene						1	0.5		00			A homogeneoi ooze was recovere or biogenic struct pipe was present ti	NANNOFi as, pinkisž d. It is hig tures are hroughout	OSSIL OOZE 6 gray (SYR 8/1) nannofossil hly disturbed. No sedimentary observed. Rust from the drill
-late Oligo	(N) INN					-	100				5YR 8/1	SMEAR SLIDE SU	MMARY: 1-70 D	2-40 D
T	22 (F) P25 (N)					2	-			•		Calcareous nannofossils	95	95
	7.5	AG	AP			cc		<u> </u>	111	4		ORGANIC CARBO	N AND C	ARBONATE:
												Organic carbon	1+10	

SITE	520	1	HOL	.E	A	-	co	RE	18 CORE	DINTE	RVAL	267.6-269.6 m	
×	VPHIC		CHA	OSS	CTER						11		
TIME - ROC	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMIS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SAMPLES		LITHOLOGIC DESCRIPTION
Oligocene							3	0.5		000000000000000000000000000000000000000	•	5YR 8/1	NANNOFOSSIL OOZE A very soucy, pinkish grav (5YR 8/1) nanofos ocze was recovered. The core contained loci of dril pi ruat flakes. No sedimentary or biogenic structures (Ichr fossils) were observed. SMEAR SLIDE SUMMARY: 1-10 1-70 7-19 D D D Camposition: Foraminifers 5 5 10 Calcierous nanofossils 95 95 90
							5	and marking	VOID	.+.			
	P21 (F) VP26 (N)						6	and a state		0000 H.H.H.H.H			
		AC	AP				cc	-		10			

SITE 525 HOLE A CORE 19 CORED INTERVAL	269.6–279.1 m	SITE 525 HOLE A CORE 20 CORED INTERVAL	279.1–288.6 m
	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
	<section-header><section-header><text><text></text></text></section-header></section-header>	Middle Eccene Parts (N) Parts (N) </td <td>IOYR 8/2 NANNOFOSSIL OOZE AND CHALK N8 A multicolored, very light gray (NS), pinkih (SYR 8/1) to yellowid gray (SY 8/1) nanofossil is nanofossil fahk, Beding wich is vague is define is nanofossil fahk, Beding wich is vague is define wery deformatics. Some areas of light white (N light gray mottles are observed. N9 In jo very deformatics. Some areas of light white (N light gray mottles are observed. N8 SMEAR SLIDE SUMMARY: 1-30 2:40 3:106 4:53 4 0 0 0 0 0 0 0 0 Composition: Foraminifers N8 SMEAR SLIDE SUMMARY: 1-30 2:40 3:106 4:53 4 0 0 0 0 0 0 0 0 0 Composition: Foraminifers N8 Calcareous dinolfsgellates SY 8/1 Ongenic carbon AND CARBONATE: 1-40 2:40 3:40 4:90 5:138 6:30 0 rgsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Orgsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Ngsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Ng SY 8/1 Ng N8 Sy 8/1 N8 Sy</td>	IOYR 8/2 NANNOFOSSIL OOZE AND CHALK N8 A multicolored, very light gray (NS), pinkih (SYR 8/1) to yellowid gray (SY 8/1) nanofossil is nanofossil fahk, Beding wich is vague is define is nanofossil fahk, Beding wich is vague is define wery deformatics. Some areas of light white (N light gray mottles are observed. N9 In jo very deformatics. Some areas of light white (N light gray mottles are observed. N8 SMEAR SLIDE SUMMARY: 1-30 2:40 3:106 4:53 4 0 0 0 0 0 0 0 0 Composition: Foraminifers N8 SMEAR SLIDE SUMMARY: 1-30 2:40 3:106 4:53 4 0 0 0 0 0 0 0 0 0 Composition: Foraminifers N8 Calcareous dinolfsgellates SY 8/1 Ongenic carbon AND CARBONATE: 1-40 2:40 3:40 4:90 5:138 6:30 0 rgsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Orgsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Ngsnic carbon 2 N8 Carbonate 98 96 95 52 97 97 SY 8/1 Ng SY 8/1 Ng N8 Sy 8/1 N8 Sy

			Middle Eocene						TIME - ROCK UNIT	SITE
P9-10 (F) ND16 (N)					I NP15 (N)				BIOSTRATIGRAPHIC ZONE	525
AP									FORAMINIFERS	-
AP									CHAI CHAI	HOL
								AP	RADIOLARIANS	E
									R	4
7	6	5	4		3	-	2	1	SECTION	co
-			the second se	stress and	a la colorada en		THEFT A	0.5	METERS	RE
	VOID	······································							GRAPHIC LITHOLOGY	21 CORED I
0		1		1	******	0 0	0 0	0 0	DISTURBANCE SEDIMENTARY STRINTINGE	NTER
ŀ			•						samples	VAL
		10YR 8/2		N9 5YR 8/1	- N8	N8 5YR 8/1		5YR 8/1 N9 5YR 8/1		288.6-298.1 m
					ORGANIC CARBO 1: Organic carbon – Carbonate 95	Composition: Foraminifers Calcareous nannofossils	SMEAR SLIDE SU Composition: Foraminifers Calcarbous nannofossills	A multicolored B/1) to very pale present. Interspers layers. Intercalate are layers of nanno	LITHOLOGIC DE	
					N AND CA 4 2-34 3-3 97 97	5-90 D TR 100 1	MMARY: 1-90 D - 100 1	IANNOFOS very light g orange (10) d are layers d with the fossil chalk o	SCRIPTION	
					RBONATE: 14 4-34 5-3 96 98	6-149 D 	2-90 3-90 D D TR – 00 100	SIL OOZE ray (N8), pi /R 8/2) na i of white (I dominant of variable t	i	
					94 7-34 - 97		4-31 D TR 100	nkish gr nnofossi 19) tena nannofo hickness		-
					d V		4-90 D 5 95	av (5YR Looze is es and/or ssil poze es.		
			8	rly/middle Eocene					TIME - ROCK	SITE
P9-10 (F)									BIOSTRATIGRAPHI	52
AP									FORAMINIFERS	н
AP									HARIOLABIANS	OLE
									STL	1
c		5			3				RECTION	A _ C
			and an other		a freedor			0.5	METERS	ORE
									GRAPHIC LITHOLOGY	22 CORED
3		•	 	:	! !	! !	ļ	1	DISTURBANCE	NTER
									STRUCTURES SAMPLES	IVA

298.1-307.6 m

NB N9

5Y 8/1

N8

N7 N8 N9

N8

LITHOLOGIC DESCRIPTION

SMEAR SLIDE SUMMARY:

Composition: Foraminifers

Calcareous nannofossils

Calcareous dinoflagellates

NANNOFOSSIL OOZE WITH MINOR NANNOFOSSIL CHALK LAYERS A light gray (N8) to vellowish gray (5Y 8/1) moderately disturbed nanofossil locas is present. A few circular burrows with dark (N6) exteriors and white (N9) interiors are observed. They are the halo or planolites types burrows. A chalk layer in Section 6 shows excellent small scale circular burrows and included fragments.

5 - - - -

 ORGANIC CARBON AND CARBONATE:
 1-13
 2-13
 3-13
 4-13
 5-13
 6-13

 Organic carbon
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 —
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #
 #

-

1-70 2-70 3-70 4-70 6-112 D D D D D D

95 95 100 95 100

3 TR 5 -

SITE 525 HOLE	A CORE 23 CORED INTERVAL	307.6–317.1 m	SITE 525 HOLE A CORE 24 CORED INTERVAL	317.1–326.6 m
TIME - ROCK UNIT BIOSTRATIGRAE FORAMINIFERS FORAMINIFERS	RECTON RE	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
early Ecoine APT-10 (F) BPT-10 (F) BPT-114 (N) BPT-114		NM NUMOROSILOZE SYR 8/1 Aritis to include gray highly deformed monofosilo cost in instructional os determined by colo charges. One deliant. Layring is faint and is determined by colo charges. One deliant. Second and is determined by colo charges. One deliant. Second and is determined by colo charges. One deliant. Second and is determined by colo charges. One deliant. Second and is determined by colo charges. One deliant. Second and is determined by colo charges. Second and is determined by color charges. Second and is determined by		NB SYR 8/1 NB SYR 8/1 NB SYR 8/1 NB

¥	PHIC	1	CHA	OSS	TER											
TIME - ROC	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTIC	N		
						1	0.5			•	5YR 8/1 5Y 8/1	A slightly blott nannofossil ooza i top of Section 2. I downward section core handling.	NANOFO urbated pi s present. In each sec , This may	SSIL Of nkish g A chall tion thi y be an	DZE pray to k layer e ooze l artifac	vellowish gray is found at the becomes firmer t of drilling or
						_ =	<u></u>	11			SMEAK SLIDE SU	1-80	2-80	3-69	CC	
						2				•	5Y 8/1	Composition: Feldspar Clay Volcanic glass Pyrite Zeolites Foraminifars Galcareous nannofossils	D TR - 1 1 98	D TR - 1 1 98	D - - 10 - - 90	D 1 - 1 - - -
	3 (F) 1/12 (N)					3	Conform			:	5Y 6/1	ORGANIC CARBO Organic carbon Carbonate	N AND C/ 1-33 - 99	ARBON 2-33 98	ATE: 3-33 - 99	

SITE 525 HOLE A CORE 27 CORED INTERVAL 345.6-351.6 m

	2		F	OSS	IL.	TT			TT	П			
×	Hdt	13	СНА	RAG	TER	_							
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTION
ę.	N	CP	AP			CC	1		11	•	5YR 8/1		
00	12									-		NAM	NOFOSSIL OOZE
ω.	9 -											No core was reco	wered. The Core-Catcher container
early	e z											a pinkish gray to	light olive gray nannofossil ooze
												SMEAR SLIDE SUMN	ARY:
										_			CC
													D
												Composition:	
										- 1		Feldspar	1
										- 1		Carbonate unspecified	TR
												Calcareous	
												nannofossils	97
												ORGANIC CARBON	AND CARBONATE:
													CC
												Organic carbon	T
				1.0								Carbonate	90

85

SITE	525	но	LE A		ORE	28	CORE	DINTE	RVAL	351.6-355.1 m					SIT	E 52	5 н	IOLE	Α	COF	RE	29 CORED IN	TERV	AL	355.1-354.5 m						
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NANNOFOSSILS	FOSSIL ARACTEI SNUTARIANS	R	METERS	L	GRAPHIC ITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION				TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIFERS	HADIOLARIANS	SIL CTER SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCI SEDIMENTARY STRUCTURES	SAMPL.CS		LITHOLOGI	C DESCRI	TION			
aartu Encente	P6 (F) NP10/11 (N)	AG DA			1 0.5 1 1.0 2 2 3 3 4 20	┙┙┙╖╟┙┑┙┱┑┑╸╴╸╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴				N9 5Y 8/1 N9 N9	NANNOFOSS A predominantly white (NB to highly disturbed nannofosi chalk layer is present in Sector SMEAR SLIDE SUMMARY: 1-80 2 Composition: Quartz Feldispar TR - Clay - 1 Palagonite - 1 Zeolites 1 Foraminifers 1 Calcarecous nannofosils 9B 5 ORGANIC CARBON AND CAR Calcarecous carbonete 99 5	IL 002E to light gri l ooze was 1.	ray (N8 s recov 4-10 D - TR TR 1 99	3) soupy errid. A CC D 	Batanoona	Pila (F) MPD/211 (N)	AM 4	CP		1 2 3 4 5 CC				•	N9 5Y 8/1 N9 5Y 8/1 5Y 8/1 5YR 8/1	NA N. This core e 3(1) highly di layers are fou 4. SMEAR SLIDI Composition: Feldgar Calage Ca	NNOF05S ANNOF0S Contains a 1 subtraction 1 s	IL OOZE SIL CHA White (N 80 3-8 5 - 5 1 1 7 7 97 97	WITH : VITH :	SOME TERS Illowish Nannofo D 5-32 D - - TR TR 100 5 5-11 - 97	gray (5Y ssil chalk ins 3 and - - TR 100

TE	525	1.71	HOI	LE	А	C	DRE	30	CORED	INTER	VAL	364.6-374.1 m							
	HIC		CH	OSS	IL						IT								
TINU	BIOSTRATIGRAP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GI	RAPHIC HOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESC	RIPTIC	N			
						1	0.5			0000000		5YR 8/1	A pinkish gi highly disturbe mottles are loc obscure to be cl	NA ray (5 d nan sted t assifie	NNOFO YR 8/1 nofossil hrougho d as bio	SSIL 0) to ye ooze out the genic.	OZE flowish was rec cores bi	gray (overed, it they	5Y 8/1) A few are too
						2	a francisco de la companya			0			Composition: Feldsper Clay Pyrite Zeolites Foraminifers	1-80 D - TR 2 1	TR - TR TR TR	3-80 D TR - TR TR	4-80 D - - TR TR	5-80 D - - TR TR	CC D 10 TR TR
cene						3	the second second second			0 0 0 0 0 0 0		5Y 8/1 5YR 8/1	Cateoreous nannofossils Radiolarians ORGANIC CAF Organic carbon Carbonate	97 BON 2-15 95	100 AND C 3 3-19 - 93	100 ARBON 4-19 - 97	100 - IATE: 5-19 - 97	90 - 6-19 - 98	100 TR
Paleo						4	and confirm			0 0 0									
						5	freeboor			0~0	•								
	, îz					6					•	N9							
	P6 (F)	AM	CP			cc			171										

ITE	525 9		HOL	E OSS	A IL	CC	RE	31 CORED	INTER	VAL 1	374.1-383.6 m		_					
TINU	BIOSTRATIGRAPH	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURDANCE SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCI	RIPTIO	N			
						1	0.5		00000		N9	INTERLA This core c (5YR 8/1) hig of nannotosili are preserved, lowish brown	YERE NAN onsista aly dis chalks At the (10YF	D NAN INOFO of a turbed and oo bottor 8 6/2)	INOFO SSIL CI white sequen ze. No n of Se chert	SSIL O IALK (N9) to ce of al sedimen section 3 fragmen	OZE AM o pinki ternatin ntary st i some p its are	4D sh gra ig laye ructum pale ya presen
												SMEAR SLIDE	SUMN	ARY:				
							1.3	H					1-80	2.80	3-80	4-80	5-10	CC
						2	1111	調査され				Composition: Quartz	D	D	D -	D TR	D -	D
						1		TH	4	•		Clay Volcanic plass	TR	TR	-	TR	-	-
								VOID			VOID	Zeolites Carbonate	TR	2	TR	Ωu.	1	1
								Et	11			unspecified Foraminifers	-	2	2	TR	2	1
								#	17			Calcareous		27.8		11	-5-	- 00
							1		41			nannofossils Other	- 99	98	98	99	92	98 TR
						3	1.1.1					ORGANIC CAR	BON	AND C	ARBON	ATE:		
							12	キャニ・ニー	41			Organic carbon	1.10	2-10	3-10	4-10	5-10	8-10
								÷	11		5YR 8/1	Carbonate	89	93	97	78	97	93
									19		11213							
Paleocene						4			0		м							
						5			00									
						6				•								
						7					N8							

SITE 525 HOLE	A CORE 32 CORED INTERVAL	<u>383,6–</u> 393.1 m	SITE 525 HOLE A CORE 34 CORED INTERVAL	399.1–402.5 m
TIME - ROCK UNIT BIOSTRATIGRAPHI FORAMINEENS MANNOPOSILS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS PARAMICANS RADIOLARILANS RAD	R ST CONTRACTOR	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
Paleocene Thit - Thit - Unit -	LITHOLOGY UNITABLE	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>		N9 No recovery in Sections 1–7. The Core-Catcher contain- ed a pale vellowith brown (10VR 62) chert patch in sharp contact with a while chelk. The dimensions of the chert are 3x1.0x2.5 cm.
(b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)		N9 5Y 6/1		

SITE 525 HOLE A	CORE 35 CORED INTERVAL	402.6-412.1 m	SITE 525 HOLE A CORE 36 CORED INTERVAL 412.1-421.6 m	
	SBUDDESS SUPPORT SU	LITHOLOGIC DESCRIPTION	TIME – BOCK TOTAL CHARACTER CHARANTEERS AMANOFORDAL CHARANTEERS AMANOFORDAL CHARANTEERS AMANOFORDAL CHARANTEERS DIATOMS DIATOMS TENNING	LITHOLOGIC DESCRIPTION
		NB NANNOFOSSIL OOZE INTERBEDDE WITH MANNOFOSSIL CHALK, LIMESTONE, AND CHERT TRANNOFOSSIL CHALK, LIMESTONE, AND CHERT This core contains a white (NB) mannofosil chalk, which is interbedded with very light gray (NB) nannofosil chalk yolicing args (YS 471) to pinkting args (SYB 817). Each units ing observed in Section 1. Section 5. 6. and 7 have been been been been been been been bee	Bitocone Bito Bi	$\begin{tabular}{l l l l l l l l l l l l l l l l l l l $
Patrocene P4 (F) MP6/7 (k) WW		5Y 8/1 Chert 5YR 8/1	SITE 525 HOLE A CORE 37 COREDINTERVAL 421.8-431.1 m FOSSIL UNIT SUBJECT STRUCTURE SUBJECT STRUCTURE SUBJECT	LITHOLOGIC DESCRIPTION FORAMINIFER NANNOFOSSIL CHALK A very light gray (NBI to bluich white nannofosail chaik is present, Flaze type bedding and planolitis type burrows are presenty. The burrows and bedding are horizontal. Some places have included fragments which may have been beds of chaik separated by ooze layers. SMEAR SLIDE SUMMARY: 1.23 1.63 1.104 1.130 CC D D D D D Composition: Foreminifiers 20 20 5 10 20 Calcenscou nannofossis 80 80 95 90 80 ORGANIC CARBON AND CARBONATE: 1.9 2.4 Organic arbon Carbonate 75 85

E 525 HOLE A CORE 38 CON	ED INTERVAL 431.1-440.6 m		SITE	525	HOLE	А	CORE	39 CORED I	TERVAL	440.6-450.1 m	
TINU TINU TINU TINU TINU TINU TINU TINU	AT THE PART OF THE	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE FORAMINIFERS	FOS CHARA	SIL	SECTION	GRAPHIC LITHOLOGY	DISTURANCE SEDIMENTARY STRUCTURES SAMPLES	POLANITY	LITHOLOGIC DESCRIPTION
autooosee 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N8 N	NANNOFOSSIL CHALK This core contains a very light gaay (N8) to light brownins and fazer type bedding is observed. Mottling is strong throughout the core. SMEAR SLIDE SUMMARY: 1.60 2.75 3.28 4.23 D D Composition: Amorphous FeD TR Amorphous FeD TR Carbonate unspecified 5 F Record FeD TR Calcareous namorphous FeD TR Amorphous FeD TR O B O B O B Conspective Morphous FeD TR TR Calcareous namorfossils 95 100 99 ORGANIC CARBON AND CARBONATE: 1.9 2.43 3.9 4.9 Organic carbon - Carbonate 91 78 84		Pic (P)			2			5Y 6/1 5Y 8/1	INDURATED FORAMINIFER NANNOFOSSIL CHALK A multicolored highly bioturbated well preserved pre- dominantly light olive gray (ISY 07) to vellowich gray (ISY 8/1) nannofosail chalk, Ichnofossils are present and are beautifully preserved, Non-calcareceus green to gay class are present in the lower sections (smectter)?, Slump structures are not apparent. Some faint traces of cyclic type sedimentation are present. SMEAR SLIDE SUMMARY: <u>1122 240 3455 5-123 D D D D</u> Composition: nannofossils 90 80 80 80 ORGANIC CARBON AND CARBONATE: <u>1-56 2-48 3-49 4-49 5-61 8-40</u> Organic carbon <u>– – – – – – – – – – – – – – – – – – –</u>
3 			riy Paleocene	Pla-b (F)			4			10YR 6/2	
			8				5			5YR 4/4	
				P1a (mixed with Cretaceous) (F) NP1 (N) 10	P FP		6		n m m m	10YR 6/2	

ITE	525		HOL	E	A	CC	DRE	40	CORED	INTE	RVA	L	450.1-495.6 m		_	_	_	_		_		SITE	525	-	IOL	E	A
	PHIC		CHA	OSS	TER																		PHIC		F	OSS	IL
TIME - ROCI	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GI	RAPHIC HOLOGY	DRILLING DISTURBANCE	STRUCTURES	POLARITY		LITHOLOGIC	DES	CRIPTIC	N					TIME - ROCI UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS
	NP1a (N)					1	0.5			00000000000			5YR 8/1	FORAM This core of pinkish gray (5 inifer nannofo servation is exo and planolites t The Tertiar of Section 2.	INIF N/ conta SYR ssil a slian type y-Cre	ER NAM ANNOFC ins a m B/1) and nam t. Zooph burrows staceous	NOFOS SSIL C light bi ofossil ycus, ha ire all p bounda	SIL CH HALK ed but fown (5 chalk, 1 to burro resent, ry is fo	ALK T predor YR 6/4 lchnofc ws, cho ws, cho	O ninantly) foram- ssil pra- ndrites, the top							
	-					Γ		围	-iz		33		58 6/1	SMEAR SLIDE	SUN	MARY:	5										
							1	11	PZ		34 .	11			2- D	30 2-95 D	3-51 D	4-90 D	5-87 D	D	1 C - 1						
						2		H	++++		33			Composition: Quartz	-	-	-	15	-	10							
							Ę	11	111	11	111 .	11		Carbonate unspecified	2	-	-	-	5	5							
								+++	-1 + + +		525			Foraminifers	10	10	10	5	-	10							
						\vdash		=	1111					nannofossils	90	90	90	80	95	75							
								Ħ	1111					ORGANIC CAR	RBO	AND	ARBON	ATE:	-2112-								
											. 1.1	•	5YR 8/1	Organic carbon		2-11	3-58	4-52	5-48								
						3		+++		1:1	甜		5YR 5/8	Carbonate		57	76	76	68								
olus								Ŧ					5YR 6/4									eous					
taced						H		4	·	9,1	38											retao					
a									1 P 1	41	2.5											ate C					
181							1.5	1	<u></u>	<u> </u>	11											-					
						1		主		11	4	.															
							1.5			51	***																
						L		=	1.1.		32																
											111												N)				
								1	파														mur				
						5		1-			81												Micuh				
	1						1 -	1	1.0-1		222												-				
	IL (N)							臣			hi																
	maya					.6		1	111																		
	42	AP	AP			CC		+ -	12H_1	411	摇 .													1	11	1	

ITE	525	_	HO	E	Α	cc	RE	41 CORED	INT	ER	VAL	-	459.6-469.1 m						
×	DIHIO		CHA	OSS	TER														
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	POLARITY		LITHOLOGIC	DESCI	RIPTIO	IN		
						1	0.5-			北部林田	•		5YR 5/6	INDU AND A highly bid halo burrows) nannofossil chal Coarse-graine the core. The glass, quartz, la Patterns of	RATE FORA oturbat yellow k is pri- id mat coarse- inge fo cyclic	D NAN M-NAN ted (zo rish bri esent, erial oc grained raminifi sedime	INOFOS INOFOS ophycu own (1 ocurs di materi er and entation	SSIL CH SSIL CH s pellet DYR 6/ sseminat al consi basalt r are pro	ALK ALK ed zoophycus, 2) foraminife ed throughout sts of volcanis ock fragments ssent with the
						2							10YR 6/2 5YR 4/4	dark brown la (non-carbonate being lighter in repeating cycle periods when c into a dominant	fracti fracti color s may coarser dy calc	epresen on) an , Boun represe non-ca areous	nting co ad the adaries ent smo environ	barser-gr finer-gr are grac all slum debris ment.	ained materia ained materia lational. Thesi p deposits, i.e was deposited
										111 111				SMEAR SLIDE	SUMN 1-44 D	IARY: 2-55 D	3-84 D	4-104 D	5-110 D
													10/2 0 2	Quartz Volcanic glass Foraminifers Calcareous	10 10 20	5 5	10 1 31	1 1 3	TR 16 5
						3				33	ŀ		10TH 6/2	ORGANIC CAR	BON	85 AND C	59 ARBON	95 (ATE:	85
ceous										11				Organic carbon	1-51	2.38	3-56	4-90	5-48
late Creta						4				2 112 W 112			5YR 4/4	Organic carbon Carbonate	40 8-48 - 65	7-47 69			
	Micute mura (N)					5					•		-						
	(N)					6	-			1			5Y 6/1 25 Y 6/2						
	A. mayaroensis (F M. mura/L. quadra		CP			7		OG		hi			0						

	SITE 525 HOLE A	CORE 42 CORED INTERVAL	469.1–478.6 m	SITE 525 HOLE A CORE 43 CORED INTERV	AL 478.6-488.1 m
NUMBER NUMER NUMER NUMER <th>TIME - ROCK UNT BIOSTRATRAPHIC ZONE PORAMINERIS MANNOPOSSIE RADIOLARIANE RADIOLARIANE</th> <th>SECTION METERS METERS METERS METERS MANUALS MANUES</th> <th>LITHOLOGIC DESCRIPTION</th> <th></th> <th>LITHOLOGIC DESCRIPTION</th>	TIME - ROCK UNT BIOSTRATRAPHIC ZONE PORAMINERIS MANNOPOSSIE RADIOLARIANE RADIOLARIANE	SECTION METERS METERS METERS METERS MANUALS MANUES	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
	late Cretaceous (F) (atte Cretaceous Condition (F) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	0.5 1 10 <	10YR 6/2 LANNOFOSSIL CHALK 10YR 6/2 A light gray (R/) to light of live gray (SY 6/1) namo four induit interm generative structures are numerous. A cyclic sedimentation pattern perints and are interpreted to be very mail totale timp deposits. N7 to 5Y 6/1 SMEAR SLIDE SUMMARY: 1/0 2/0 3/0 4/28 5/80 0	Image: Second	A Y BY 6/1 INTERBEDDED NANNOFOSSIL CHALK AND SANDSTONE A lipt oble rays (YS 47.1) to generist gary (SG Y 67.1) nanofosili chalk is preserv. Coarse-grained sand/sandcross durates and the second second sand sandcross durates and the second second sandcross of the second second chalk. N7 Burrowing is intense with excellent preservation of therbofossili. N7 BGY 67.1 BGY 67.1 D N7 Composition: SGY 67.1 D N7 D SGY 67.1 Diatriz N8 TR N9 Diatriz SGY 67.1 Diatriz N1 Dynts VOID Composition: N3 Diatriz SGY 67.1 Diatriz N0 Diatriz SGY 67.1 Diatr

SITE 525 HOLE A	CORE	44 CORED INTERVAL	488.1–497.6 m	5	SITE	525	HOLE	A	CORE	45 CORED INTERVA	491.6-507.1 m	
	SECTION	GRAPHIC LITHOLOGY GRAPHIC	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FO CHAR STISSOJONNYN	STIL ACTER	SECTION	GRAPHIC LITHOLOGY BIOWTENLING	POLARITY	LITHOLOGIC DESCRIPTION
A. rayarcentis (F) A. cymbloarnis (N)	0.5- 1 1.0- 2 3 - 4 - 5 - 6 7		60Y 6/1 NANNOFOSSIL CHALK A greenia gay (50Y 6/1) indurated, heavily bioturbated nanofosuil chail is and zero. Jone 2011 indurated, heavily bioturbated nanofosuil chail is present. Light olive grave (5Y 6/1) indurated, heavily bioturbated nanofosuil chail is and zero. 6B 6/1 Jone 2011 indurated, heavily bioturbated is present in Sections 6 and 7. Volcancic and zerolitic fragment are identified in smore rildica. 6B 6/1 Jone 2011 induced in smore rildica. 6GY 6/1 SMEAR SLIDE SUMMANY: 146 227 340 4.30 7.4 D Daritz TR 160 103-107 cm). SMEAR SLIDE SUMMANY: 170 Composition: D 180 28 6/1 nanofossilis 09 85 28 80 92 181 29 64/1 Fish remains = TR 181 29 66/1 nanofossilis 09 85 28 80 92 181 29 66/1 Garbon AND CARBONATE: 185 216 314 4.14 529 6-29 Organic carbon = 0 42 31 43 55 44 50Y 6/1 Garbonate 60 42 31 43 55 44 50Y 6/1 SGY 6/1 185 29 6/1 Na 185 20 6/1 Na 185 20 6/1 Na 185 20 6/1 Na		G tricarinata (F) A. nuvirromati (F)	A. Cynthifornek (M)	. 09		2 3 4 5 cc		58 5/4 56 6/1 N7 5G 6/1 5Y 6/1 5Y 6/1 5GY 6/1 5G 6/1 5Y 6/1 N7 5GY 6/1 N7	NANNOFOSSIL CHALK A greenin gray (SG 6/1), to light olive gray (SY 6/1) Indurated, bioturbated mannofosil chaik was recovered. Light gray (N7) to light olive gray (SY 6/1) data in Sections 2, 3, and 5 (chardrise, planolites). Interspersed throughout the core with the chaik are clavey layers and coarser-grained layers which contain high amounts of non-carbonate adiments. The coarser-grained layers and coarser-grained layers and coarser-grained layers and coarser-grained layers and coarser-grained layers. SMEAR SLIDE SUMMARY: 159 222 350 4-12 Composition: 0 0 0 0 Quarts TR 5 1 TR Feldgar TR 5 1 TR Palagonite 10 0 Carposition: Quarts TR 5 1 TR Palagonite 10 TR Carposition: 10 TR Palagonite 10 TR Carbonate 10 TR Carbonate 10 TR Annotosulis Bel 35 80 96 96 ORGANIC CARBON AND CARBONATE: 10 2.9 35 4.10 5.10 510 Organic carbon 12 2.8 36 4.11 51

SITE 525 HOLE A	CORE 46 CORED INTERVAL	507,1–516.6 m	SITE 525 HOLE A CORE 47 CORED INTERVAL	516.6–526.1 m
TIME - ROCK UNIT BIOSTRATICE FORAMMINEER MANNOFOSSILE RADIOL/MIANS PARADAS PARADAS PARADAS	R NO11238 STJARVE SUBJUSTICE SUBJ	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
late CretocioLis Iower Muserrichtion (F,N) G. trijenchense (F) G		10742 SGY 32 INDURATE NANNOFOSSIL CHAIK 567 32 Tradeominantity fine-grained gravith olies (107 42) to gravith olies green (567 32) moderately inducated gravith on the gravith olies (107 42) 107 42 Conservation on the gravith olies (107 42) to gravith olies green (567 32) 107 42 SGY 32 107 42 SGY 3	Inter Cretaceous Inter Maartichtan (F, N) G. tritarinere (F) RO RO RO RO RO RO RO RO RO RO	10Y 4/2 INDURATE DIANNOFOSSIL CHALK 5GY 3/2 This core contains a moderatily bioturbated perdomin- antly grayin lole (10Y 4/2) indurated namofosil datk. The datk is intercalaed with cores realizability in the largent that fine upward. The palagonite also appear throughout the datk is layer. The datk grades into a lime tone at the bottom of the core. 5GY 3/2 SMEAR SLIDE SUMMARY: 159 2/56 3/40 4/50 5/30 Composition: SGY 6/1 100 0 0 0 0 5GY 6/1 Mean Double of the core. 100 0 0 0 0 0 5GY 6/1 Composition: Bears is 15 - 100 10 - 12 12 5GY 6/1 Mean Double of the core. 100 2/0 0/00 35 200 200 200 5GY 6/1 Mean Double of the core. 10/0 2/0 0/00 35 200 200 200 200 200 5GY 6/1 Mean Double of the core. 10/0 2/0 0/0 35 200

d	APHIC		CHA	OSS	IL						П					
UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	POLARITY		LITHOLOGIC DESC	RIPTIO	N	
						1	0.5						HIGHLY INDU A highly bioturb nannofossil chelk we Section 3 contain which are interspers SMEAR SLIDE SUM 1-7	RATED ated indu s recover s some co ed within MARY: 6 2-76	NANNO arated g ed. barse pa h the na 3-76	DFOSSIL CHALK greenish gray (5G 8/1) lagonite rich sediment annofossil chalk.
- BRITY MAGSUTURITIAN						2	1111111					5G 6/1	Composition: Carbonate unspecified 50 (recrystallized) Foraminifers - Calcareous nannofossils 50	50 - 50	50 TR 50	1475-
Cretaceous -						-				1		58 7/1 5G 6/1	Organic carbon – Carbonate 61	05 2-48 - 42	3.7 - 64	4-31 - 63
late (3	- line la			-		5B 7/1 5GY 5/2 5G 6/1				
	carineta (F) Fictus (N)					4						58 7/1 5G 6/1				
	G. tri T. tri		OP			cc	-			;		1.000000				
_	G. tri T. tri		CP			cc	-							_		
TE	PHIC 51	5	CP HOI	LE	A	C	DRE	49 CORED				535.8–545.1 m				
TE	BIOSTRATIGRAPHIC 5. IN ZONE 20 T. III	FORAMINIFERS	NANNOFOSSILS 2 OF	LE SSA SALANA		SECTION 20	WELERS	49 CORED GRAPHIC LITHOLOGY	DIRULING DISTURBANCE Z SEDIMENTARY	STRUCTURES AN SAMPLES	POLARITY	535.6–545.1 m	LITHOLOGIC DES	CRIPTIC	'n	
TE LIND	BIOSTRATIGRAPHIC 55 11	FORAMINIFERS	NANNOFOSSILS R. D	LE FORAI SNUITANIOLANI	A	22 SECTION	ORE SUBJECT	49 CORED GRAPHIC LITHOLOGY		RANDERS AN AND A A	POLARITY	535.6-545.1 m 566.6/1 587/1 567.6/1 587/1 567.7/1	HIGHLY INDU This core contain greenish gray (SG Tannofosai chaik, An <i>Incontrancus</i> 2 Zoophysu, halo b fossils present. Two possible sild	CRIPTIC s a mod B(1) and hell frag urrows i censides	NANNC erately I light and pla fault pla	DFDSSIL CHALK to highly bioturbated biolsh gray (GB 7/1) present in Section 1 prolities are the trace
Chtian H	BIOSTRATIGRAPHIC G. IN ZONE 20NE	FORAMINIFERS	NANNOFOSSILS 2 D	LE FORAI SNUTIANS	A NL CTER SWOLVIA	section 1	ORE SUBLEW	49 CORED GRAPHIC LITHOLOGY 49 CORED GRAPHIC LITHOLOGY 4 4 4 4 4 4 4 4 4 4 4 4		RA SBULTURES	POLARITY	535.6-545.1 m 56 6/1 58 7/1 58 7/1 58 7/1 56 6/1	LITHOLOGIC DES HIGHLY INDU This core contrast greenish gray (GG i nannofossii chalk, An <i>Incortanus</i> s Zoophycus, halo b fossiis present. Two possible siid top of Section 2. P by drilling.	RATED I s a mod 9/1) and hell frag surrows i kowever, MARY:	NANNC erately i light and pla this eff	DFOSSIL CHALK to highly bloturbated blobh gray (58 7/1) proteint in section 1 prolites are the trace area are present at the feet may be produced
rly Maastrichtian	BIOSTRATIGRAPHIC 55. 17 ZONE 77. 101	FORAMINIFERS	NANNOFOSSILS R. D	LE FORA INVENIOR	A BIL CTER SWOLVIG	CCC NON 1	0.5	49 CORED GRAPHIC LITHOLOGY 44 1 4 44 1 4		A STATUTIONING AND AND A STATUTI	POLARITY	535.6-545.1 m 56 5/1 58 5/1 58 7/1 58 7/1 58 7/1 56 6/1 58 7/1 58 7/1	LITHOLOGIC DES HIGHLY INDU This core contain greenish gray (5G nannofosii chalk. An Incorranus z Zoophysa, halo b fossiis present. Two possible sidi chalk. Two possible sidi chalk. SMEAR SLIDE SUM Composition: Volcanic glass	RATED s a mod bill frag urrows 1 censides lowever, 1.72 D	NANNC erately light sed pla fault pi fault pi 2-67 D	DFOSSIL CHALK to highly bioturbated bluich grey (58 7/11 present in Section 1 inclites are the trace anes are present at the lect may be produced 3-62 D
early Maastrichtian	BIOSTRATIGRAPHIC 5. IN ZONE 20NE	FORAMINIFERS	NANNOFOSSILS 3	E FOSSARA	A		ORE SUILIN 0.5	49 CORED GRAPHIC LITHOLOGY 4 1 4 4 4 1 4 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1		R SBAULINNES	POLARITY	535.6-545.1 m 56 6/1 58 5/1 58 7/1 56 6/1 56 6/1 56 4/1 56 4/1 56 6/1	HIGHLY INDU This core contain greenish gray (SG Zoophycus, halo b fossils present. Two possible stild top, of Section 2, F by drilling. SMEAR SLIDE SUM Composition: Volcanic glass Zeolites Carbonate recrystallized	RATED I s a mode 6/1) and heil frag urrows i sourcows i 1.72 D - - 50	NANNCO erately i light ment is end plat this eff D 1 1 40	DFOSSIL CHALK to highly bloturbated blobb gray (58.7/11) present in Section 1 nonlises are the trace anes are present at the fect may be produced 3-62 D - - 50
early Maastrichtian	BIOSTRATICRAPHIC 5. 17 ZONE 20NE	FORAMINIFERS	NANNOFOSSILS 2. D	E FOSSAR AR SNEILE TOIDE	A INL SHOLYIG		0.5	49 CORED GRAPHIC LITHOLOGY 449 CORED 449 CORED 449 CORED 449 CORED 449 CORED 444		P Salarya Sala	POLARITY	535.6-545.1 m	HIGHLY INDU This core contain greenish gray (5G zoophycus, halo b fossile present, Two possible silid top of Section 2. H by drilling. SMEAR SLIDE SUM Composition: Volcanic glass Zeolites Carbonate recrystallized Calereous namofossile	RATED I s a mod 9(1) and hell frag urrows i s mARY: - - 50 50	NANNC erately light fault pi fault pi this eff 1 1 40 55	DFOSSIL CHALK to highly bloturbated blobb gray (58 7/11) present in Section 1 nonlites are the trace- anes are present at the fect may be produced 3.62 D - - 50 50
early Maastrichtian	BIOSTRATIGRAPHIC 55. 17 ZONE 20NE	FORAMINISERS	NANNOFOSSILS 2 0	LE FOSSA SINVIUETOIDE	A INL CTER SHOLYIG		0.5	49 CORED GRAPHIC LITHOLOGY 449 CORED GRAPHIC LITHOLOGY 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			POLARITY	535.6-545.1 m	HIGHLY INDU This core contain greenish gray (BG Tannofosails chalk. An Incorramus 2 Soophysus, halo b fossils present. Two possible silid top of Section 2. H by drilling. SMEAR SLIDE SUM Composition: Volcanic glass Zeolites Carbonate recrystallized Calareous mannofossils Other	RATED I s a mod b(1) and hell frag urrows i sensides MARY: 1-72 D - - - 50 50 -	NANNC I light i light ment is end pla fault pl fault pl fault pl fault pl 1 1 1 40 55 3	DFOSSIL CHALK to highly bloturbated blobb gray (58 7/11) present in Section 1 nonlites are the trace- anes are present at the fect may be produced 3-62 D 50 50
early Maastrichtian	(F) BIOSTRATIGRAPHIC SC 11/201	FORAMINIPERS	NANNOFOSSILS R	LE FOSSARA	A		ORE Sealing 0.5-	49 CORED GRAPHIC LITHOLOGY 4 1 4 49 CORED GRAPHIC LITHOLOGY 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4			POLARITY	535.6-545.1 m	HIGHLY INDU This core contain greenish gray (SG Tannofosails chalk, An Incorranus 2 Soophyou, halo b fossils present. Two possible slid top of Section 2. F by drilling. SMEAR SLIDE SUM Composition: Volcanic glass Zeolites Carbonate recrystallized Caleareous memofossils Other ORGANIC CARBON	RATED I s a mode (4)1) and hell frag urrows i lowever, 1.72 D - - 50 50 50 - - -	NANNOC Anthene in the second s	DFOSSIL CHALK to highly bloturbated blobb gray (58.7/11) present in Section 1 nonlites are the trace anes are present at the fect may be produced 3-62 D - - 50 50 - 50 - 2.7
early Maastrichtian	rineta (F) 8105TRATIGRAPHIC 55 17 20NE 37 101	FORAMINIFERS	WANNOFOSSILS 32 DE	LE FOSSARAA SNEILETOIGE	A		0.5-	49 CORED GRAPHIC LITHOLOGY 4 1 4 49 CORED GRAPHIC LITHOLOGY 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4				535.6-545.1 m	HIGHLY INDU This core contain greenish gray (SG Tannofosails chalk, An Incorranus 2 Soophyou, halo b fossils present. Two possible stild top of Section 2, F by drilling. SMEAR SLIDE SUM Composition: Volcanic glass Zeoltes Carbonate recrystallized Caleureous memofossils Other ORGANIC CARBON Organic carbon	RATED I s a mode (%1) and hell frag urrows i lowever, 1.72 D - 50 50 - 50 - 50 - 50 - 50 - 50 - 50	NAINNC erately I light end pla ment is end pla this eff 2-67 D 1 1 40 55 3 0 40 2-38	DFOSSIL CHALK to highly bloturbated blobb gray (58 7/11) present in Section 1 nonlites are the trace anes are present at the fact may be produced 3-62 D - - 50 50 - 50 - - - - - - - - - - - -

ITE	52b	ŕ	HOL	E OSS	A	1	co	RE	50 CORED	TT	ER			545.1-554.6 m		_	-	-	
UNIT	OSTRATIGRAPH ZONE	RAMINIFERS	CH STISSOLONN	ADIOLARIANS	SWOLA		SECTION	METERS	GRAPHIC LITHOLOGY	RURBANCE	DIMENTARY	MPLES	LARITY		LITHOLOGIC	DESC	RIPTIO	N	
	8	×.	2	æ	0		1	0.5			1 年二年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1 年 1	•	54	59 4/1 5GY 6/1 5G 6/1 58 7/1	HIGHLY I This section (5GY 6/1) his compaction and in smear sildes grains extensive Bioturbation vation, The mo in Sections 4-de Parallel bed grained sedime:	NDUR i conti ghly ir d lithif has re ly. i is inti llusk, i i. s and nt are	ATED I ains a durated ication crystall nocerar laminae present	NANNO predom i nann stages i ized or th exce mus Sp e of b t. This	DFOSSIL CHALK inantly greenish gray ofossil chalk. Due to much of the carbonate has compacted calcite lient trace fossil preser ? is present, especially oth fine- and coarse- along with large shell
							2	eiteerite			出 梁 花 花			5G 6/1 5G 3/2 5B 7/1 5G 6/1	fragment and current activity SMEAR SLIDE	SUMA 1-52 D	ARY: 2-93 D	3-84 D	4.88 D
							1	11			が近日の			58 7/1	Composition: Feldspar Volcanic glass Palagonite Cathonate	TR -	- 5 10		5
							3	and received in			······································				recrystallized Foraminifers Calcareous nannofossils	45 5 30	30 5 50	45 5	45 5
Hate Createrus - sarry							4	cum tranfirme tra			:###++ === === ===	•		5G 6/1 5B 7/1 5G 6/1 10G 6/2 5G 6/1 5B 7/1 5B 7/1 10YR 4/2 alternated	ORGANIC CAP Organic carbon Carbonate	BON	AND C/ 3-48 - 30	ARBON	ATE:
							5							- 5G 6/1 with thin - 5G 2/1 bands 5G 6/1					
	Vinute (F) Va (N)						6	and real rear						5G 4/1 5G 6/1					
	tricar trifid						7	9			22								

SITE 525 HOLE A	CORE 51 CORED INTERVAL	554.6 564.1 m	SITE 525 HOLE A CORE 52 CORED INTERVAL	564.1-573.6 m
TIME - ROCK UNIT CHARAPHIC SONE FORAMINITERS FORAMINITARIS FORAM	SECTION BECTION BELLING CONTINUE CONTIN	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
		56 6/1 INDURATED NANNOFOSSIL CHALK/LIMESTONE 58 5/1 AND CALCAREOUS SANDSTONES AND SILTSTONES 59 7/1 This core is predominantly a greenith gray (56 6/1), 59 7/1 moderstely bioturbated, indurated namofosai clahik and linestone, Calcareous sandstones and siltences alternate with this major lithology. Sour and fill structures and palagonite. Irregular size introduces is are a found interspersed through- 50 6/1 present. The sandones and siltences contain high a mounts of volcanic giss and palagonite. Irregular size intracted to represent male scale siltening or turbility current activity which intermittently deposited coarsection and material into the deposition isite. 50 6/1 Disturbated to represent to the deposition isite. 50 6/1 Disturbated to represent to the deposition isite. 50 6/1 Disturbated to the present size is founding or turbility current activity which intermittently deposited coarsection and material into the deposition isite. 50 6/1 Bioturbation has probably obliterated much of the primary sedimentary structure. 50 8/1 SMEAR SLIDE SUMMARY: 163 1/72 1/85 2/102 2/142	2	TURBIDITE SEQUENCE - SILTSTONE, SANDSTONE, CONGLOMERATE AND LIMESTONE The upper 3 and one-half sections of this core contain a spectacular turbidite sequence, From top to bottom the sequence is: (1) Calcersous mutations and siltstones which are highly bionurbased; (2) Siltones to fine to medium-grained sandstones; (3) Medium- to coarse-grained sandstones to colcarsous pebbly conglomerates; to (4) 7.0 cm sile pebbly conglomerates to cobbity pebble conflormarates. There is a definite major fining upwards sequence, with minor coarsening and fining upwards sequence in Section 3. The contact at the base of the turbidite is sharp. Below the turbidite calcersous sand tones and lime- stones alternate. These internates and sandstones are highly bioturbased
laje Cretacoous – early Maastrichtian		BC V4/1 M D D M M S0 V1/1 Clay - - - 100 S6 S/1 Clay - - - 100 S6 S/1 Clay - - - 100 S6 S/2 & SPB 3/2 Volcanic glass - - 20 - Zarbonate 50 00 - 60 - Zarbonate - - 20 - S8 5/2 & SPB 3/2 Volcanic glass - - 20 - - - - 20 -	t crientinate (F)	and are shades of gray and gray int red (10R 4/2). 5G 4/1 ORGANIC CARBON AND CARBONATE: 4-140 5-13 5-29 5-79 Organic carbon 69 13 55 64 5-128 5-110 VOID Organic carbon Carbonate 67 45 5G 6/1, 5G 4/1, & others N8 to N7 5G 6/1 N5 5G 8/1 N7 10R 4/2 & N7
		-	SITE 525 HOLE A CORE 53 CORED INTERVAL	573.6-583.1 m
G. tricariaus (F 4 4 8 8	6			LITHOLOGIC DESCRIPTION
			B B 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	56 4/1 58 7/1 FINE-GRAINED LIMESTONES TO NON-CALCAREOUS MUDSTONE TO CHERT 5GY 2/1 A dark greenidu gray (56 5/1) grazi(56 4/1)

3 Piece Number Graphic	Representation	Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Attenation	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies	nous
50 			1 2A 2B 2C 4A 2C 4A 4A 4B 4C 4A 4A 4A 4A 4A 4A 4A 4A 4A 4A	1A A 1B A 1C A 1C <td>1A * 1B 1C 1D * 1E * 1F 16 1H * 1J * 1K * 1N * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 2 * 33 * 32 * 54/1</td> <td>1A 4 1B 4 1C 2 3A 4 3B 3C 3D 3E 4A 4 4B 4 4C 0 4F 4 4B 4 4C 0 4F 4 4J 4 4J 4 4J 54/2</td> <td></td> <td></td> <td></td>	1A * 1B 1C 1D * 1E * 1F 16 1H * 1J * 1K * 1N * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 2 * 33 * 32 * 54/1	1A 4 1B 4 1C 2 3A 4 3B 3C 3D 3E 4A 4 4B 4 4C 0 4F 4 4B 4 4C 0 4F 4 4J 4 4J 4 4J 54/2			

74-525A-53 through 55

Core 53, Sections 1-3; Core 54, Sections 1-3; and Core 55, Sections 1-3 (Unit 1)

Dominant Lithology: Aphyric basalt.

Dominant Ethology: Applyic basit. Macrocopic Description: Sparse (0-5%) vesicular, grayish green, fine- to medium-grained aphyric basitt. Moderately to extansively altered with some parts consisting of a powdery clay-like material. Carbonate minerals (predom-inantly calcite) fill some of the vesicles, thin fractures, and small veins. Pyrits and other secondary alteration minerais (zoolites and smectice) occur associated with carbonate. Other vesicles are filled with clays.

Depth: 574.6-593.6 mbsf

Thin Section Descriptions: 53-1, 132-135 cm (Piece 1E):

53-1, 132-135 cm (Piece 1E): Name: Fine-grained, venicular aphyric basalt. Texture: Subophitic. Phenocrysts: None. Groundmas: Regioclase, 50%, 0.3x0.02 mm, laths; clinopyroxene, 45%, 0.08x0.05 mm subhedral; magnetita, 5%, 0.04x0.02 mm, irregular and thin laths. Vexicles: Scattered rounded voids 0.3-1.5 mm in diameter. Alteration: About 5% groundmass altered to clays. Magnetite, zeolite, and clay minerals rim vesicles.

53-3, 81-84 cm (Piece 78):

3-3, 81–84 cm (Piece 7B): Name: Medium-grained, vesicular aphyric basalt. Texture: Subophitic. Pienocrysts: None.

Phenocrysts: None. Groundmas: Phajoclase, 55%, 0.5x0.08 mm, stubby laths; clinopyroxene, 40%, 0.2x0.2 mm, subhedral; magnetite, 5%, 0.88x0.04 mm, subhedral. Vezicles: Rounded, scattered voids (0,1–6.0 mm in diamter). Alteration: Vesicle rims clinopyroxene. Grain boundaries are altered to clay.

12	DHIC	Í	CHA	OSS	TER	T			CONED	Π			002,0 002,111		-			
TINU	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRA LITHO	PHIC	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTIO	N		
						,	0.5					:	5G 3/2 10GY 2/1	VOLI The sediments a terbedded with aph In Section 1 a (5GY 2/1) silt-dar (5RP 4/2) lamina careous and is extr of clay minerals volcanogenic sedim	CANOGEN ind sedime wric basalt dusky gree ystone is at 122 cm emely alte and voics ent.	IIC SED ntary ro a. en (5G present. n occurs red and nic glas	3/2) to A gray to The to contain s, It ap	S Core 55 are in- greenish black rish red purple unit is non-cal- a high amounts opears to be a
						2	Teneration					•	5G 4/1	Sections 2 and basalt of dark gree 6/1) claystone as present indicating in fauna grazed through the mudate SMEAR SLIDE SU	3 contain nish gray (nd siltstor a period in the sec ones. MMARY:	small t 5G 4/1) ne, Zov of time liment.	to gree ophycus in wh Calcite	layers between nish gray (5GY : burrows are nich burrowing veins are shot
							1.5]				240100	1-117 D	1-122 D	1-130 D	3-28 D
						F		17.11						Texture: Send	-	-	-	.
							1.2			128		•		Silt Clay	33 67	60 40	20 80	50 50
						1	1.3			1				Composition: Feldspar		-	2	5
						1	1 3	1943						Mica	3	10	-	TR
					ιı		1.5	1.1.1.2.						Heavy minerals	20	20	3	30
								1						Volcanic atass	15	15	15	15
							-	1111		1				Pyrite	-	15	-	2
								1.1.1						ORGANIC CARBO	N AND C	ARBON	ATE:	
							1.3	1234						Organic carbon	1-101	1-126	1-139	3-26
				ſ		4	and how							Carbonate		5	1	7
						5	a set interest interest											
								133		t								
						6	- Level -			e								
						7	-											
						1	-	1.00	1.1.1									
	1	1.12	1 12	1 8	1 I	ICC.	-1	1	A + + 2	1	1							

	Piece Number Sraphic Apresentation Prientation Shipboard Studies Alteration	Piace Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation	Shipboard Studies Alteration Piece Number	Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation	Shipboard Studies Alteration Piece Number Graphic Representation Orientation	Shipboard Studies Alteration
em 0 	E G E G Z G Z G Z G Z G Z G Z G Z G Z G	L 0 C 0 7 C 1 2 2 2 2 2 2 2 2 2 2 2 2 2		Unit 3 7 Clayroom Unit 2 P					

74-525A-55

Core 55, Sections 2 and 3 (Unit 2)

Dominant Lithology: Aphyric basalt.

Macroscopic Description: Pale grayish green aphyric basalt. Vesicles are larger and more abundant than Unit 1.

Depth: 594.4-595.4 mbsf

Macroscopic Description: Pale gravital green sphyric basit. Vesicles are larger and more abundant than Unit 1. This Section Description: This Section Description: Neme: Aphyric, medium-grained vesicular basalt. Testure: Subophilic, with some parts also showing a spinifex texture. Phonocrysts: Nome. Groundmass: Plagiodalas laths, D.4x0.D4 mm, 60%; clinopyroxene, anhedral, D.2x0.1 mm, 38%; and magnetite fand possibly other opaques), D.4x0.02 mm, laths and subhedral grains, 2%. Vesicles: 7%. Alteration: Around vesicles there are magnetite accumulations. Groundmass and clinopyroxene grain bound-aries replaced by clays minerals. Vesicles are rimmed with opaques and clay minerals and filled with carbon-ate, clay, and sparse zeolites.

cm red	Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies	Alteration Piece Number Graphic Representation	Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies	Alteration Piece Number Graphic Representation Orientation	Shiphoard Studies Alteration	Graphic Graphic Representation Orientation Shipboard Studies	Alteration	70-525A-56 throug Core 56, Sections 1 Dominant Litholog Macroscopic Descri Thin Section Descr 56-1, 128–133 (Name: Media
0 - - - - - - - - - - - - -						1 10 10 10 10 10 10 10 10 10 10 10 10 10		/6			Texture: Sub Prenoccytis: Groundmass: magnetite, around ver Vericles: Soci Alteration: 56:5,94–98 cm Name: Coars Taxture: Sub Prenoccytis: Groundmass sector zor Vesicles: Soci Alteration: F

gh 58

1-8; Core 57, Sections 1-6; and Core 58, Sections 1-2 (Unit 3)

gy: Aphyric basalt.

iption: Medium to light gray. Highly aphyric basalt.

riptions: | cm (Piece 5C); um-grained vesicular, aphyric basait, bophitic—intersertal,

None.

vectors, Plagioclase, 58%, 0.5x0.1 mm, stubby laths; clinopyroxene, 35%, 0.06x0.04 mm, anhedral; , 2%, 0.03x0.03 mm, anhedral; and glass, 5%, with an irregular distribution in the interstices and icles.

attered, oval vesicles (1 and 5 mm in diameter) form about 15% of the rock. Vesicles filled with carbonate minerals and smaller amounts of clays and zeolites. Clinopyroxene Indaries and glass altered to clay. Some magnetite has spinitex-like texture.

n (Piece 1S):

se-grained vesicular basalt. bophitic. : None.

:: None. :: Plagioclase, 55%, 0.8x0.15 mm, taths; clinopyroxene, 43%, 0.2x0.2 mm, subhedral with some oning noted; magnetite, 2%, 0.05x0.05 mm, anhedral, attared arcuate vesicles (1-2 mm in diameter) form about 5% of the rock. Patchy orange brown clay minerals and magnetite arcund the vesicles.

100

SITE 525

Depth: 595.6-623.4 mbsf

	PHIC	ſ	CHA	OSS	IL				TI				
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY	SAMP1, ES	LITHO	LOGIC DESCRIPTION
arly Maastrichtian	6					1	1.0	BASALT		1.		This carecous laminati interbad are also atone with At 1 layer is p ORGAN ONGAN	CALCAREOUS SILTSTONE/MUDSTONE core contains a highly bioturbated pale green cal- mustone to siltstone. Horizontal bedding and fors are present. Some fine grin sandstones are dad with the siltstones and claystones. Burrows hich is graded is in contact with siltstone. 108 cm in Section 2 a concentrated sandy shell present. NIC CARBON AND CARBONATE: 2-88 2-127 3-1 3-101
late Cretaceous - es	G. tricarinata (F T. trifidus (N)	ĮP	CP			3	intro instants			*********************************		Carbona Garbona 10G 6/2	carbon — — — — — Ite 39 44 49 33
							111	BASALT					

cm	Piece Number Graphic Representation Orientation Shipboard Studies Alteration Pieca Number	Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies	Alteration Piece Number Graphic Representation Orientation Shipboard Studies Mineriton	Piece Number Graphic Representation Orientation Shipboard Studies	Autoration Pleas Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	74.525.458 through 60 Core 56, Sections 3—6; Core 59, Sections 1—6; and Core 60, Sections Dominant Lithology: Aphyric, vesicular basalt. Macroscopic Description: Medium gray, fine- to medium-grained, vesi Thin Section Descriptions: 58.4, 10–14 cm (Piece 18):	Depth 625,1-646.8 mbsf 1-5 (Unit 4) icular, aphyric pillow basalts and flows.
о - - - - - - - - - - - - -	1 1 1 1 1 2 10 1 2 10 1 2 20 2 20 2 20 2 20 2 20 2 21 2 22 2 3 4 48 2 60 4 50 5						Unit 4	 Name: Fine-grained, moderately phyric Desait. Tracture: Plumose. Phenocrysts: Plaglociase, 8%, 1.5X:20 mm, tarks; clinopyroxem Groundmas: Plaglociase, 46%, 0.1X0.01 mm, tiny laths; clinop Veiider: None. Alteration: 1% catabonate minerals present in thin vein. 58.4, 74–78 cm (Piece 48): Name: Fine-grained, moderately phyric (plaglociase-clinopyro rexture: Subophrite. Phenocrysts: Plaglociase, 26%, 0.1x0.8 mm, laths and skeletz hedral to anhedral. Groundmass: Plaglociase (23%) and clinopyroxeme (23%). Exte unreliable; magnetise, 45%, 0.1x0.0 mm. Vesicles: Irregulae (0.3–1.5 mm in clameter), carbonate filed, Alteration: Groundmas, veiside, clayrine, and clinopyroxe minerals with minor amounts of magnetite. 59.2, 102–108 cm (Piece 3K): Name: Fine-to medium-grained aphyric basalt. Tracture: Subophrite; Phenocrysts: None. Groundmass: Plaglociase, 55%, 0.5x0.04 mm, laths with loo 0.2x0.2 mm, subhedral. Fine-grained basalt sphares included Vesicles: Rounded to slongate (3 mm in diameter), carbonate filed, Alteration: About 30% providmas is a latered to clay minerals. 60.2, 127–130 cm (Piece 4N): Name: Fine-grained, vesicular aphyric basalt. Texture: Subophrite interstati. Phenocrysts: None. Groundmass: Raglociase, 55%, 0.2x0.02 mm, laths; clinopyrox devicified, Vesicles: Rounded (0.5–2 mm in diameter), carbonate filled,~ Alteration: About 30% eiterstion to day minerals. 60.5, 4–8 cm (Piece 18): Name: Fine-grained aphyric basalt. Trexture: Subophrite. Phenocrysts: None. Groundmass: Raglociase, 65%, 0.3x0.02 mm, laths; clinopyrox devicified, cm ni diameter), carbonate filled,~ Alteration: About 20% in min diameter), carbonate filled, ~ Alteration: About 20% in min diameter, carbonate filled, ~ Alteration: Rounded (0.5–2 mm in diameter), carbonate filled, ~ Alteration: Rounded (0.5–2 mm in diameter), carbonate filled, for Alteration: Rounded (0.5–2 mm in diameter	 <1%, 0.3x0.3 mm, subhedral, rroxene, 35%. cene) basalt. I laths; clinopyroxene, 22%, 0.3x0.3 mm, subnive alteration makes grain size measurements unevenly distributed, ~2% this section. ng grain boundaries about 47% altered to clay in groundmas. all preferred orientation; clinopyroxene, 45%, in groundmas. alled, form ~3% of thin section. cene 20%, 0.04x0.04 mm anhedral; glass, 30%, 25% of thin section. se, <1%, 0.2x0.2 mm, both xenocrysts with revoxene, 40%, 0.02x0.02 mm, anhedral. less than 1% of the rock. ant filling forming about 2% of the thin section

ITE	525		HOL	E	A	co	RE	60 CORED	INTER	۱V	AL	640.1-649.6 m		_	-	
2	UPHIC		СНА	OSS	TER											
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTIO	N	
						1	0.5						CALCA A light bluish gray calcareous claystone bated which are inclin horizontal. Large burrows or with grayish black or debris and small pyrit This sediment may intrusive stills. It agoose	AREOU (58 7/ is prese algae I algae I entars grains have t rs biob	S CLA1 1) to gr int. The proximu ooking are pre are obs been bal	VSTONE enrish black (5GY 2/1 rock is highly biotur stely 30 degrees) to the structures (see below sent, <i>Inoceramus</i> shel erved at 74 cm, eed by basaltic flows o d.
							1111						A small fault (norm Section 5, 74 cm:	ual) is n	eported	in Section 5.
						2	untun						5G 6/1			5GY 2/1
							-	BASALT							-	
							1						SMEAR SLIDE SUMM	5-60	5-133 M	6-117 D
						3	1 m						Texture: Sand Silt	3		-
						L	-						Clay Composition:	97		-
									11	1			Heldspar Mica	TR	-	1
							1						Heavy minerals	3		8
							-						Volcanic glass	4		3
2						4	1						Palagonite	-	-	4
õ													Pyrite	-	50	-
ã				Ε.			-						Zeolites	-	10	-
5										4			Calcareous	-		-
ate							-				1		nannofossils	2	3	5
							1						ORGANIC CARBON	AND C	ARBON	NATE:
							1							5-60	5-66	5-83
							-			۱I	• E	58 7/1	Organic carbon	-	-	-
						5				3	Ī	5G 4/1 5G 6/1	Carbonate	81	36	46
								IW		2	•					
						Γ	1111			22						
	(F)					6	tradient.									
	inate Is (N)			1		\vdash	-			1						
	rifidu						3			~	Ŀ	5GY 2/1				
	0.1	FP	CP			7	1 -			1	Ē	= 5G 4/1				

74-525A-61 through 63

Core 61, Sections 1 and 2: Core 62, Sections 1 and 2; and Core 63, Sections 1 and 2 (Unit 5)

Dominant Lithology: Aphyric to sparsely plagioclase phyric basalt.

Macroscopic Description: Dark gray to black, fine-grained, aphyric to sparsely plagloclase phyric flows and pillow basalts. Glass is present at some pillow margins. Carbonate, pyrite, and black clay material filled vesicles abundant in the upper part of the unit, forming 5-20% of rock.

Depth: 649.6-678.1 mbsf

Thin Section Description:

62-1, 10-12 cm (Piece 1C):

Name: Phyric glassy basalt. Texture: Glassy.

Lexture: classy, Phenocrysts: Plagloclase, 10%, 0.4x0.04 mm, laths; and clinopyroxene, 2%, 0.2x0.2 mm, subhedral. These are microphenocrysts with augite generally intergrown with plagloclase in glomerophyric intergrowths. Groundmass: Glass, 83%, cargeneto-hown day and locally detriviting Vesicles: Round, clay filled vesices (1–5 mm in diameter) form about 20% of the thin section. Alteration: Local derivitifiation of glass.

HIC	FOSSIL		T	, 1		L 0.0-3.0 M			HIC	6	FOSSIL	ER	T		TTT		
BIOSTRATIGRAP	FORAMINIFERS NANNOFOSSILS RADIDLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMBANCE SEDIMBLARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAP	FORAMINIFERS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
NN20 (N) NN21 (N)		2				5YR 7/2 N9	NANNOFOSSIL FORAMINIFER OOZE Cors 1 contains a nannofossil foraminifier ooza. The color is gravih orange nick (BYR 7/2) to pinksh grav (BYR 8/1). Halo burrows are present throughout the core. SMEAR SLIDE SUMMARY: 1-35 240 3-100 CC D D D D Composition: Quartz TR Carbonate unspecified 7 Foraminifers 55 48 60 79 Calcaneous namofossils 40 50 38 20 Calcaneous dinoffossili 40 50 38 20 Calcaneous dinoffossili 40 50 38 20 Calcaneous dinoffossili 85 2 2 - ORGANIC CARBON AND CARBONATE: 1-8 248 3-8 Organic carbon Carbonate 94 96 97		9002				0.5-			NB N9	NANNOFOSSIL FORAMINIFER OOZE Core 2 contains a very light gray to white nannofosal foraminifer coze. The core is very homogeneous with Ittle or no sedimentary or biogenic structures present. SMEAR SLIDE SUIMMARY: <u>D</u> M D D Composition: D M D D Composition: Colcarico glass — TR — — Foraminifers 60 80 80 50 Calcareous nannofosalis 38 20 38 48 Calcareous dinoffageliates 2 — 2 2 ORGANIC CARBON AND CARBONATE: 140 2-40 3-40 Organic carbon — — — — Carbonate 96 96 97
22 (F) IN19 (N)	AGAN	3			The second of an excession of	5YR 7/2			early Pletto N22 (F) N22 (A)	INT AT NA	M		3		-	NØ	

SITE 525 HOLE B	CORE (HPC) 3 CORED INTERN	VAL 7.9–12.3 m	SITE 525 HOLE B CORE (HPC) 4 CORED INTERVAL 12.3-16.7 m
TIME – ROCK UNIT BIOSTRATIORAPHIC SOUR FORMINIFERS MANWOFOSISIE	SELECTION GRAPHIC UTHOLOGY STATUTION GRAPHIC UTHOLOGY STATUTION STATUT	LITHOLOGIC DESCRIPTION	FOSSILE CHARACTER SUPPORT OF A CHARACTER SUPPORT OF A CHARACTER SUPP
late Pilocene early Pletstocene early Pletstocene W2 (F) WHIG19 (N) NN19 (N) NN19 (N)		PORAMINIFERAL NANNOPOSSIL OOZE Core 3 contains a very homogeneous titanium white (he) foraminiferal annofossil ooze. NB SILAR SLIDE SUMMARY: Composition: Nannofossil 0 Ostonia 0 SILAR SLIDE SUMMARY: Composition: Nannofossil 0 Ostonia 0 SILAR SLIDE SUMMARY: Nannofossil 0 SILAR SLIDE SUMMARY: Organic carbon 2 Organic carbon 2 SILAR SLIDE SUMMARY: SILAR SLIDE SUMMARY: Nannofossil 0 SILAR SLIDE SUMMARY: SILAR SULE SUMMARY:	Non-

SITE 525 HOLE B CORE (HPC) 5 CORED INTERVAL 16.7-25.5 m	SITE 525 HOLE B CORE (HPC) 6 CORED INTERVAL 21.1-25.5 m	
		ITHOLOGIC DESCRIPTION
Big Big <td>augusta augusta augusta augusta augusta builde buil</td> <td>NANNOFOSSIL ODZE Tore 6 contains a very light gray (N8) to white (N8) foraminiferal nanofossil ozze in the first section. Sections 2 and 3 contains a white (N8) nanofossil ozze. Sedimentary structures are not observed. IMEAR SLIDE SUMMARY: 1-560 1-800 2-60 CC D <t< td=""></t<></td>	augusta augusta augusta augusta augusta builde buil	NANNOFOSSIL ODZE Tore 6 contains a very light gray (N8) to white (N8) foraminiferal nanofossil ozze in the first section. Sections 2 and 3 contains a white (N8) nanofossil ozze. Sedimentary structures are not observed. IMEAR SLIDE SUMMARY: 1-560 1-800 2-60 CC D <t< td=""></t<>
Suggest and an and a set of the	Image: Non-state of the state of the sta	

	PHIC		CHA	OSS	TER	T			Π								
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES			LITHOLOGIC D	ESCR	IPTION	1	
							0,5		0 0				Core 7 conti (N9) nannofoss bluish white (58 discoasters is not	NA tins a il oo: 3 9/11 ted in	NNOFC homo ze. Lig zones the Co	OSSIL O geneous ht bluis are obs re-Catch	OZE predominantly whit of gray (58 7/1) and erved. The presence o ar.
								F					SMEAR SLIDE	SUMA	ARY:		
						11		L	11			N9		1-80	2-80	3-80	CC
						1	1.1	L-L-L	0					D	D	D	D
								L					Composition:			-	
							1.0 -	L. L. L.	111				Quartz	- .	TO	TH	-
							1.1	L	111				Mica	1	in	5.2	TR
							1.11						Volcanic glass	Ξ.	-	2	TR
							1.15						Palagonite	TR	-	-	- <u>Maria</u>
							1.1						Carbonate				
								1 + + + +			11		unspecified	2	1	1	-
								1					Foraminifers	5	7	4	1
							1 1	1				58 7/1	Calcareous	2.27	1221	1212	- C
	0.01						· ·	+ + + +					nannofossils	92	85	80	75
ŝ								+_+_+			-		Pteropod debra	-		10	25
ĕ							-	+ + + + + 1				N9	Discousters	Ξ.	-	20	20
5									111		1		ORGANIC CAR	BON	AND C	ARBON	ATE:
É						100			131			58 7/1 N9			1.59	2-59	3-59
8	0.0					2					-	58 7/1	Organic carbon		-	-	-
													Carbonate		97	96	96
							1.3	L				2322					
								L	111			N9					
								L_L_L									
								IW			_						
								L. L. L.		6.1	1						
									111								
							1 3		131								
							1										
							1. 3	[+ _ + _ +									
						3	-					58 9/1					
						1	· ·										
							1	F									
					1.0			F_ + _ + ,									
	2						1 .	+ . + . + .		•							
	ES						-	1, 1, 1									
	SE	1.0				CC		L-1-1-		E	1	NO & NT					

×	BIOSTRATIGRAPHIC ZONE		FOSSIL															
UNIT UNIT		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES			LITHOLOGIC	ESCR	IPTION	t :		
							-		000			10YR 8/2	Core 8 conta fossil ooze. A 92%) is observe	NA tins a large d on s	NNOF(very ho abunda mear sli	DSSIL Comogeni ince of des.	OOZE rous wh discoast	ters (N9) nann ters (from 10
early Pliocene	NN15 (N)					1			0 0			58 9/1	SMEAR SLIDE Composition: Quartz	SUMI 1-38 M	MARY: 5 1-80 D	2-80 D	3-40 D TR	CC D
													Feldspar Mica Volcanic glass Palagonite Carbonate unspecified	TR TR TR	1.1.1	TR - - 1	- - TR	TR TR TR -
													Foraminifers Celcareous nannofossils Discoasters	3 5 92	1 86 10	10 88	1 89 10	2 88 10
						2						N9	ORGANIC CAR Organic carbon Carbonate	BON	AND C 1-105 - 96	ARBON 2-20 - 95	IATE: 3-20 - 98	
	PL3 (F) NN14 (N)					3					0	N9						
		AG	AG			cc	-				-	N9 with N7 blotches						

SITE 525 HOLE	B CORE (HPC) 9 CORED INTER	VAL 34.3-38.7 m	SITE 525 HOLE B CORE (HPC) 10 CORED INTERVAL 38.7-43.1 m										
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS MANNOFOSSILS PSS		LITHOLOGIC DESCRIPTION	VOD I - 3WLL VOD - 3WLL VOD - 3WLL VOD - 3WLL VOD - 3WLL VOD - 1000 VOD - 100										
early Pliceane	0000	NANNOFOSSIL OOZE Core 9 contains a white (H9) to bluid white (58 9/1) SB 9/1 Image: 100 monotosil occs with an approximate 5% SB 9/1 Image: 100 monotosil occs with an approximate 5% Composition: Image: 100 monotosil occs with an approximate 5% SB 9/1 Image: 100 monotosil occs with an approximate 5% Composition: Image: 100 monotosil occs with an approximate 5% Composition: Image: 100 monotosil occs Image: 100 monotosil occs Image: 100 monotosil occs Carbonate Image: 100 monotosil occs Carbonate Image: 100 monotosil occs Carbonate Image: 100 monotosil occ Carbonate Image: 100 monotosil occ Carbonate Image: 100 monotosil occ Organic carbon Image: 100 monotosil occ Marbonate Image: 100 monotosil occ Marbonate Image: 100 monotosil occ	Begin in the second s										
		58 9/1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
MA UN14 (F)		5B 9/1	2 ₹ _{AG} AM CC + + + + + + + + + + 58 9/1										
TE	DHIC	25	CHA	OSS	IL TER	T	RE (P		T		TEP	VAL 43.1-47.5 m	
----------------	-------------------------	--------------	--------------	-----------------	-----------	---------	--------	----------------------	----------	---------------------------	---------	-----------------	--
UNIT - RUUN	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
							0.5						NANNOFOSSIL OOZE Core 11 contains a bluid-white (58 9/1) homogeneous nannofossil coze rich in discoasters (approximately 30%).
						1	1,0					5B 9/1	SMEAR SLIDE SUMMARY: Composition: Quartz TR – TR TR Peldapar – TR TR
ane											-	-	Heavy minerals TR - - Volcanic glass TR TR - - Carbonate unspecified - TR - - Foraminifers 5 1 1 1 Calcurous - <td< td=""></td<>
early Plioce						z	1 2				•	58 9/1	Drosaten 30 30 30 20 DRGANIC CARBON AND CARBONATE: 17 2-7 3-7 Organic carbon Carbonate 96 98 97
	0					3	100						
	PL1b-c NN13 (N	AG	AM			c			-			58 9/1	
TE	5	25	HOL	.E	в	col	RE (H	PC) 12 CC	DREC	N IN	TER	VAL 47.5–51.9 m	
UNIT	BIOSTRATIGRAPHI ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS 25	TER	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
early Pliocene	1a (F) NN13 (N)					1	0.5		00			58 9/1	NANNOFOSSIL OOZE Core 12 contains a bluish white (58 9/1) homogeneous nannofosili coza. Section 1, 40–50 cm shows very pale orange (10VR 8/2) patches. SMEAR SLIDE SUMMARY:
	PL	AG	АМ					<u>_</u> E, <u>_</u>	1				r-so D Composition: Volcanic glass 2 Foraminifers TR Calamous R nannofosilis 88 Discoasters 10
	-												ORGANIC CARBON AND CARBONATE: 1-7 Organic carbon – Carbonate 96

SITE	5	25	HOI	.E	в	COR	E (HF	C) 13 COI	REDIN	ITER	VAL	51.9-56.3 m					
~	PHIC		CHA	OSS	TER												
TIME - ROCH UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	MÉTERS	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES			LITHOLOGIC DE	SCRIPTIO	N		
						1	0.5			•		58 9/1	FORAMINI Core 13, Sect 9/11 foraminifer n Section 3 cont nannofosil ooze. SMEAR SLIDE SU Composition; Mica Volcanic glass Volcanic glass Carbonate	FER NANN NANNOF(ons 1 and annofossil ains a homo MMARY: 1-80 D 5	2-80 D TR	SIL OOZE IOZE Is bluish wh 3-80 D 3 -	TO h-white (58 lite (58 9/1)
-									00 00				unspecified Foraminifers Calcareous nannofossils Distoms Discossters ORGANIC CARE(2 15 48 TR 30	- 15 58 2 10 ARBON	TR 87 	
early Pliocene						2			0			58 9/1	Organic carbon Carbonate	1-4 - 96	2-4 - 96	3-4 96	
						3						5B 9/1					
	(L1a (F) (N12 (N)	AG	AM			cc					-						

1001	HIC		F	OSS	IL	T			П					
TIME - ROCK UNIT	BIOSTRATIGRAP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DE	SCRIPTIO	N	
early Pliocene						1	0.5		000	•	Core 14 conta nannofossil coze. In Section 3, present. SMEAR SLIDE SL 58 9/1 Composition: Feldspar Wica Carbonate unspecified Foraminifers Calcureous neoponsiti	NANNOF(ins a bluis) 3062 cm IMMARY: 1-80 D - TR 3 - 2 95	2-80 D TR TR TR TR 2 83	DOZE (58 9/1) homogeneous h-gray (58 5/1) layer is 3-80 D TR TR 5 TR 68
	PL18 (F) NN12 (N)					2				•	Discosters Discosters ORGANIC CARBO Organic carbon Carbonate	90 TR 	53 TR 15 ARBOI 2-4 - 99	500 TR 20 14/TE: 3-4 - 100
late Miocene	F) (N)					3					58 9/1			

×	APHIC		CH	OSS	CTER						
UNIT UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
late Miocene						0		000000		•	58 9/1 NANNOFOSSIL OOZE A bluik white (58 9/1) to light bluikh grav (58 7/1) nannofosil oozs wa recovered. The core is disturbed and shows no sedimentary structures. SMEAR SLIDE SUMMARY: 1-80 2-80 D D Composition: Foramilifers TR 5 Calcareou nannofossil 99 95 ORGANIC CARBON AND CARBONATE: 1-4 2-4 Organic carbon — C Carbonate 97 95
	7 (F) 11 (N)					2					58 9/1

Ċ,

SITE 525 HOLE B	CORE (HPC) 16 CORED INTERV	AL 65.1-69.5 m	SITE 525 HOLE B CORE (HPC) 17 CORED INTERVAL 69.5-73.9 m	
TIME - ROCK UNIT BIOSTIATGRAPHIC BIOSTIATGRAPHIC FORAMINIFERS AAMONFOSSILS MANNOFOS	R GRAPHIC LITHOLOGY UNITING UNITING UNITING UNITING	LITHOLOGIC DESCRIPTION	LITHOLOGIC DESCRIPTION	
late Micene N17 (F) NN11 (Q) WW		N9 Attanium white (NB), very homogeneous namo- can be cover is source to cover an evolution of the cover and the cover a	Normality Normality <t< td=""><td>v to mode in Sector moderatel 60 2 3 8</td></t<>	v to mode in Sector moderatel 60 2 3 8

¥	PHIC		CHA	OSS	TER									
TIME - ROC UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DE	SCRIPTIO	N	
late Miocene	NIG (F) NN11 (N)	AG	AM			1 2 CC	0.5-		00		FORAMII A homogeneo turbet foramide A pale blue (5 95 cm and cor Sediment struc SMEAR SLIDE SU Composition: Volcanic glas Foraminifars Calcareous amonolosila Calcareous dinoflegetlates ORGANIC CARBI Organic carbon Carbonate	VIFER NA Is titanium r nanofos PB 7/2) lay italis 1–3 tures are in UMMARY: 1-70 D TR 15 83 2 DN AND C 1-16 – 93	NNOF(n white iii oaze yer is pr 220 75 5 4ARBON 2-16 - 97	DSSIL COZE (IM9) moderately dis is recovered. esent at Section 1, 94– anic glasskpalagonite recognized.

K C	APHIC	0	CHA	OSS	IL TER		c (HP	0 19 00		TEP	AL /0.3-62./ M		-		
TINU	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DES	CRIPTIO	N		
						1	0.5		00000		N A homogeneous in some layers pa nannofosili ooze i erately disturbed a Sediment struct N9 SMEAR SLIDE SUM	ANNOFO predomir e blue (recovered nd Sectio ares are IMARY: 1-130 D	SSIL Clashtly 5PB 7, 5. Sect indicat 2-6 M	DOZE "titaniu (2) to 1 ion 1 is and 3 s ad by 2-70 D	m" white (Ni ight gray (Ni soupy to mo light disturbe tilght mottlin 3-80 D
						11					Feldspar	-	-	TR	-
							-				Carbonate				
							- 2			•	Foraminifers	5	1	1	5
						H			-11		Calcareous	1125	1000	1227	1242
								1-+-+++++++++++++++++++++++++++++++++++			5PB 7/2 nannofossils Calcareous	95	99	33	93
											dinoflageilates	1	-	-	2
											ORGANIC CARBO	AND C/ 1-11	2-11	ATE: 3-11	
							- 17	1-1-1-	-lil		Organic carbon	-	-	-	
late											N7				
	F) (N)					3					NG				
	N16 (NN11	AG	АМ			cc]							
TE	5	25	но	LE	в	COF	RE (H	PC) 20 CC	DRED I	TE	AL 82.7-87.1 m				
	PHIC		CH	FOSS	TER	T			Π						
UNIT - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	LITHOLOGIC DE	SCRIPTIC	IN		
te Miocene	6 (F) 6		-	-		1				10 11	N9 A homogeneous ooze is recovered.	ANNOF	DSSIL formed	OOZE , white	(N9) nannofo

ORGANIC CARBON AND CARBONATE: 1-27

99

Organic carbon Carbonate

×	PHIC		СНА	OSS	TER						
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		00		FORAMINIFER NANNOFOSSIL OOZE A very homogeneous tianium white (NB) only sligh deformed foraminifer nannofossil ooze is recover Section 1, 145–150 em contains a dark grav (NSI a of nannofossil foraminifer coze probably due to defor tion and oritiling graves. N9 SMEAR SLIDE SUMMARY: 1-147 2-70 3-80 Composition: Foraminifers 60 15 25 Calcereous nanofossil 40 80 70 Fish remains – 1 – Others – 4 5
						T					ORGANIC CARBON AND CARBONATE: 1-28 2-28 3-28 Oranic carbon
late Miocene						2					Carbonate 95 96 97
	V16 (F) VN11 (N)	AG	АМ			3				•	

				05 100./ = 100.1 m
TIME - ROCK UNIT BIOSTRATIGRAP ZONE FORAMINIFERS MANNOFOSSILS MANNOFOSSILS MANTONS	RECTION RECTOR R	LITHOLOGIC DESCRIPTION	TIME - ROCK INIT OCK BIOSTRATION SOURCE ADDIOLATIANS SECTION METERS METE	LITHOLOGIC DESCRIPTION
late Micoente VII (M)		FORAMINIFER NANNOFOSSIL DOZE A homogeneous titanium white (NB) foraminifer nannofosii occis are only way sightly deformed, Core are only way sightly deformed, Sediment structures are not to be recognized. SMEAR SLIDE SUMMARY: 133 1.70 M D Composition: Foraminifer Foraminifer 50 Calareous nanofossis Anno CARBON AND CARBONATE: 1.82 Organic carbon - Carbonate 95 96 Organic carbon - - Carbonate 95 96 94	никования и просессии и просе	NANNOFOSSIL OOZE A bluish white (BB 8/1) to white (N8) horrogene nannofossil coze is recovered. Sector 2, 92-102 cm contains a grayish (2.5YR 4) diffing disturbances and contamination by drilling gre SMEAR SLIDE SUMMARY: 1400 2-100 2-103 D M M SB 9/1 Composition: Duartz 3 TR TR Hidgpar TR TR TR Mica TR Volcanic glass 5 4 3 Carbonate nannofossils 92 66 97 ORGANIC CARBON AND CARBONATE: 128 2-28 Organic carbon - 2 Carbonate 94 95 2.5YR 6/0

	PHIC		CHA	OSS	TER											
DNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHI LITHOLO	DRILLING DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTIO	N	
							0,5					N9 + 5Y 8/1	Core 26 contain homogeneous name Section 1, 0–9 8/1) patches. A h winnowing during	NANNOFO as a white ofossil oc: 0 cm is as igher forar coring.	OSSIL O (N9) to ze. oupy wi m conte	OZE bluish white (58 9/1) th yellowish gray (5% nt is probably due to
						1		<u> </u>	그				SMEAR SLIDE SU	MMARY:	2.00	3.60
		1					-	+	크		-		201003200	D	2-80 D	D
							1.0 -	L+++++	1				Feldspar	TR	\approx	-
							-	+_+_	-11				Mica	TR	TP	
							-	L_L_	<u></u>				Foraminifers	20	TR	5
							-		÷4				Calcereous	00	100	05
							-	1-1-	크니			N9	hannorosans		100	
								4	-1				ORGANIC CARBO	ON AND C	ARBON	ATE:
					11			+++++	-1				Organic carbon		-	-
late Miocene						2							Carbonate	. 24	5	50
	F) (N)					3			EEE EEEEEEEEEEEE			N9 to 58 9/1				

	DHIC		CHA	OSS	TER	12									
UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	NOLA DE	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC (ESCRIPTIO	N	
						1	0.5 -		0.0			Core 27 con formed white (nanofosil cop Medium dan due to contam sectiona, Section 3, 0- patches. SMEAR SLIDE	NANNOFC ains a soupy N9) to very , gray (N4) i nation by dr -30 cm shown SUMMARY:	SSIL C (Section light gr batches illing gr some y	OZE 1, 030 cm) to undi ay (NB) homogeneou and streaks , probable ease, are present in a ellowish gray (5Y 8/1 2 en
						-						Composition: Feldspar Mica Clay Volcanic glass Carbonate	1-80 D TR - - 3	2-80 D - TR	- TR TR TR
a Miocene	N16 (F)					2	2					unspecified Foraminifers Calcarsous nanofossilis ORGANIC CAR Organic carbon Carbonate	92 BON AND C 1-56 - 97	TR 100 ARBON 2-56 96	TR TR 100 IATE: 3-56 96
late						-						- N8			
							3					N9			
	N15 (F) NN19 (N)	AG	AM			c	c								

SITE 525 HOLE B CORE (HPC) 28 CORED INTERVAL 116.9-121.3 m

×	ē	- 12	UH/4	HAL	TEH				11	1 1			
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DE	SCRIPTION
late Miocene	N15 (F) NN10 (N)	AG	AM			1 CC				•	N9	A white (N9) nannofossil ooze v recovered.	VANNOFOSSIL OOZE to bluish white (58 9/1) homogeneou vith patches of medium light gray (N6) i
												SMEAR SLIDE SU	1-20
												Composition	Б
	200			27						- 1		Feldspar	TB
												Clay	15
												Volcanic glata	TR
										- 1		Foraminifers	TR
						1						Calcareous	
												nannofossils	85

SITE	525	HOLE	в	CORE	(HPC	c) 29 COI	RED INTER	VAL 121.3-125.7 m				SITE	5	25 HO	EB	COR	E (HPC) 30 C	ORED IN	TERVAL 1	125.7-130.1 m			
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE FORAMINITEDS	FOSS CHARA	SIL	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURIANCE SEDIMENTARY SEBUCTURES SAMPLES		LITHOLOGIC DESCRI	PTION		TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NAMNOFOSSILS	NADIOLARIANS BIATOMS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRIPTION	
middle Miocene	(N) B(N) V(A)	G AM		2 3 cc				NS	NANI Core 29 contains a w oorar, Section 1, 0–86 c not visible. SMEAR SLIDE SUMMA Composition: Quertz Felspar Mica Citay Volcanic glas Carbonats unspecified Foraminifers Calcaroous annofossits ORGANIC CARBON A Organic carbon Carbonate	40F0SSIL 00 hite (N9) hom is soupy. Se (RY: 1-80 2-80 0 D TR 1 2 1 2 0 TR 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R 7	DZE looganeous nannofossil diment structures are 3200 D T T T T T R T R 2 83 83 83 83 828 96	middle Miocene	NIA (F) NIS (F) NIS (F)	AGAM		2				•		Core 30 cont, homogeneous nan not visible, SMEAR SLIDE S Composition: Quartz Paldspar Mica Clay Volcanic glass Foraminfier Calcareous nannofosilis Distom ORGANIC CARE Organic carbon Carbonate	NANNOFOSS ains a white (innofossi ooze. UMMARY: 1-80 2 D D - T TR T TR T 2 93 9 - T 100 AND CAR 1-95 - 93 9 9 9 9 3 9	IL OOZE IL OOZE IL OOZE Sodimentary tiructures are 80 R R S S S S S S S S S S S S S

	PHIC		CHA	OSS	TER					T							
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOG	A DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTIO	N		
						1	0.5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	N9 NB	Core 31 conta fosil ooza layeed (5YR 8/1) horizon Section 1, 0–1 not visible SMEAR SLIDE SU Composition: Feldipar Mica Clay Volcanic glass Palagonite Foraminifers Calcerous manofossils	VANNOFC ins a while by some 20 cm is a 20 cm is a 20 cm is a 20 cm is a 1-127 D TR TR 10 TR 10 TR 10 TR 2 88	DSSIL O te (N9) light gra oupy. \$ 2-80 D TR TR TR TR TR TR 100	OZE hamog y (N8) adimen 3.80 D TR TR TR 10 - TR 90	errecus nanno- or pinkish gray 4-10 D - - TR 10 TR 90
middle Miocene						2						99	ORGANIC CARBO Organic carbon Carbonate	0N AND C 2-14 - 93	ARBON 3-14 93	4-14 - 96	
						3	and the party party		555,55555577			5YR 8/1 N9					
	114 (F) 8N9 (N)	AG	AM			4			<i>E'E'E' - E E E</i>		• -	5YR 8/1 5YR 8/1 N9					

e	APHIC	-	CHA	RAC	TER											
UNIT - RUC	BIOSTRATIGRU	FORAMINIFERS	NANNOFOSSILS	RADIOLAHIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTION	•		
							0.5					f Core 32 contain nannofotsil ooze, Sediment struct	NANNOFO s a white (ures are no	OSSIL C N9) to It visible	OZE gravish r.	pink (5YR 8/1
							- 17	L_L_L_				SMEAR SLIDE SU	MMARY:	100	1000	
						1		L					1-80	2-80	3-40	
						L.	- 24		1	•	N9	Composition	0	0	U	
				1		1		L. L. L.				Quartz	TR	-	-	
							1.0 -	VOID	1			Feldspar	TR	-	-	
				- 1		1.1		+, -, -,	1			Mica	-	TR	-	
								1-1-1	1			Clay	5	7	15	
	1 1			- 1		1.1		L	1			Volcanic glass	2	2	-	
							- 6	+ + + + + +	4			Foraminiters	18	TH	JH	
								VOID				Calcarbous	07	01	85	
				- 1					111			ingen to logaria	20	100	00	
•	ŝ							1 1 1 1 1	4			ORGANIC CARBO	N AND C	ARBON	ATE:	
Leo	6N			- 1		1.1		1				4224020046000000		1.50	2.19	3-4
ŏ	Z					1.1						Organic carbon		-	-	-
2							- 6	1, 1, 1,				Carbonate		96	96	96
Ť.							-	1, 1, 1,	1							
Ĕ								1.1.1.	1							
~								1 1 1 1	1							
						14	1.2	1	1	•						
							1.2	L . L . L								
									1							
									1							
								L								
	1 1			- 1		1 1	-	1								
							1.1									
	1 1							L,	1							
						-	-		111							
				- 1					1							
									4							
											N9					
						3				•						
						1										
							1.17	L, +, +,								
						1.0		L. L. L.	1		5YR 8/1					
	ES							L. L. L.			10					
	4 9	1.0				1		· · · · · · ·	1	1 E	NB.					

UNITED CONSULTA UNITED Construct UNITED Construct </th <th>Unit the last</th> <th>B CORE (HP</th> <th>PC) 33 CORED INTERVAL 138</th> <th>9–143.3 m</th> <th>SITE 525 HOLE</th> <th>B CORE (HPC) 34 CORE</th>	Unit the last	B CORE (HP	PC) 33 CORED INTERVAL 138	9–143.3 m	SITE 525 HOLE	B CORE (HPC) 34 CORE
Build State Build State Displayed State State Displayed State State Displayed State State Displayed State State	SHA FOSS	SIL			CHAR	SSIL ACTER
BOOM No NAME No NAME No 1 <	11ME - HUNIT UNIT 20NE 20NE FORAMINIFERS NANNOFOSSILS RADIOLAHANS	SECTION		LITHOLOGIC DESCRIPTION	TIME - ROCH UNIT BIOSTRATIGRA ZONE FORAMUNIFERS	SAVE OF THE CASE O
3 + + + + + + + + + + + + + + + + + + +	middle Mlocene	2		NANNOFOSSIL ODZE 8/1 Core 33 contains a multicolored (white – N8, pinkish gray – 5YR 8/1, very paie orange – 10YR 8/2) banded homogeneous nanofosuil oze. 18/2 Section 3, 55–110 cm is a foraminiferal nanofosuil oze. 18/2 Section 3, 55–110 cm is a foraminiferal nanofosuil oze. 8/1 18/2 SMEAR SLIDE SUMMARY: 1-80 18/2 Composition: Fidiapar TR 18/2 Composition: Carbonate 2 18/2 Unspecified 18/2 Composition: Carbonate TR 18/2 Unspecified 12/2 2.6 8/1 Organic carbon 12/2 2.6 8/1 Organic carbon 2.8 9.5 8/2 3.9 8/2 3.9	Mita (F) NN7 (K) WP WD WD	
		3		8/1		

INTERVAL 143.4-147.8 m SEDIMENTARY STRUCTURES SAMPLES LITHOLOGIC DESCRIPTION NANNOFOSSIL OOZE Core 34 contains a multicolored (white – N9, pinkish Pary – 5YR 8(17, very paie orange – 10YR 8/2) banded homogeneous rannofostil ooze. Section 1, 0–60 cm is soupy and contains numerous pieces of drill pipe rust. N9 5YR 8/1 SMEAR SLIDE SUMMARY: 1-80 2-80 3-10 D D D Composition: N9 5YR 8/1 Composition: Quartz - TR -TR - TR - 3 TR TR TR 2 TR 4 N9 Feidspar Clay Volcanic glass E 5YR 8/1 N9 Foraminifers Calcareous nannofossils 10YR 8/2 E 98 100 93 5YR 8/1 ORGANIC CARBON AND CARBONATE: N9 Organic carbon Carbonate 10YR 8/2 N9 5YR 8/1 10YR 8/2 N9

> 5YR 8/1 5YR 8/2

×	APHIC		CHA	OSS	TER								
UNIT UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
ddle Miocene						1	0.5		0000			NB NANNOFOSSIL OOZE Core 35 contains a multicolored (White – N9, pi gray – 5YR 8/1, very pale orange – 10YR 8/2) be homoganeous nanofossil ooze. SMEAR SLIDE SUMMARY: SMEAR SLIDE SUMMARY: SMEAR SLIDE SUMMARY: D Composition: N9 Feldspar TR Clay 4 Volcanic glas TR 10YR 8/2 Foraminifers 2 and N9 Calcareous nanofossils B4	1kish nded
Ē	N14 (F) NN2 (N)	AM	AM			2		<pre> H = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1</pre>				ORGANIC CARBON AND CARBONATE: 1-117 2-5 N9 Organic carbon Carbonate 96 95 5YR 8/1 10YR 8/2 N9 5YR 8/1 N9	

×	DIHO		CHA	OSS	TER											
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES			LITHOLOGIC DE	SCRIPTION	a	
						1	0.5-		0000			10YR 8/2	Core 36 conta orange (10YR 8/2) Section 1, 0–8 patches and contai SMEAR SLIDE SL	NANNOFO ins a band I homogene 35 cm is a ins abundan JMMARY: 1-80	SSIL C ed wh ous na oupy i t drill p 2-80	DOZE ita (N9) and very pal nnofossil ooza. and shows white (NS pipe debris.
							- 1.0 - - -						Composition: Feldspar Haavy minerals Carbonats unspecified Foraminifers	D TR - -	D 10 TR TR	
											-	N9 10YR 8/2	Calcareous nannofossils ORGANIC CARBO Organic carbon	100 ON AND C 1-92	90 ARBO 2-103	NATE: 2 3-10
ddle Miocene						2						N9	Carbonate	93	96	95
mi												10YR 8/2				
											-	N9				
						3					E	N9 10YR 8/2				
	114 (F)					cc	-				Γ					

SITE 525 HOLE	B CORE (HPC) 37 CORED INTERVA	AL 156.6–160.0 m	SITE 525 HOLE B CORE (HPC) 38 CORED INTERVAL 161.0-165.4 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORAMINIERSILS NAMOFOSSILS NAMOFOSSILS	Seatory of the seator	LITHOLOGIC DESCRIPTION	FOSSIL LIND UNIT XODU - BWIT SUBSCIPTION S
middle Miccene MIO-11 (F) MN6 (N) WW DY		10YR 8/2 In Core 37 a homosmous wry pulse orange (10YR 8/2) sequence of foram-nanofosiil ooze to nanofosii ooze sequence of foram-nanofosiil ooze to nanofosii No sediment structures are recognized. SMEAR SLIDE SUMMARY: 190 2-78 3-40 0 0 0 Composition: Composition: 15 5 15 Calcevous nanofosiil 85 95 85 ORGANIC CARBON AND CARBONATE: 0 0 0 0 0 0	Big ANNOFOSSIL DOZE 1

SITE 525 HOLE B CORE (HPC) 39 CORED INTERVAL 165.4-169.8 m	SITE	/E 525 HOLE B CORE (HPC) 41 CORED INTERVAL 169.8-174.2 m
TIME - PIOCK UIUT - PIOCK UIUT - PIOCK CHAUNTERS MANNOFOSILL BALTONS SECTION METERS ME	LITHOLOGIC DESCRIPTION	TIND T
N9 0.5 1 1 1.0 	FORAM-NANNOFOSSIL OOZE A homogeneous, very pelle orange (10'YR 8/2) to white (N8 and 2.5' 8/2), tilghtly disturbed foram-nanofosal core is recovered in Core 39. Ohlek V layers are included at 93–95 and 135–140 cm in Section 2. No sediment structures are to be recognized. SMEAR SLIDE SUMMARY: 1-68 1-122 2-70 2-94 3-70 Composition: D D M D Composition: 2 0 15 5 Calcareous namofosalit 88 90 85 95 ORGANIC CARBON AND CARBONATE: 1-138 2-138 3-139	Eigendame Eigen
Building and a constraint of the second seco	Carbonste 96 95 97 NOTE: Core 40, 168.4-169.8 m: No recovery.	TE 525 HOLE B CORE (HPC) 42 CORED INTERVAL 174.2–177.6 m UNIT FOSSIL UNITARACTER FOSSIL UNITARACTER NO SI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

SITE 525 HOLE B CORE (HPC) 43 COR	ED INTERVAL 178.6-183.0 m	n,	SITE 525 HOLE	B CORE (HPC) 45 CORED INTE	RVAL 187.4-191.8 m	
UH AUXILIARIA CTER CHARACTER NOLLOS UH AUXILIARIA UH AUXIL	SEDUCTURANCE SEDUCTURANCE SEDUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE KOMMOFOSSILE ADDICATINAMS 2020	ACTER NOLL STATE		LITHOLOGIC DESCRIPTION
	10YR 8/2	FORAMINIFER NANNOFOSSIL OOZE Core 43 containe a very pale orange (10YR 8/2) homo- geneous moderstely deformed to soupy foraminifer nanno- fossil ooze, Sediment structures are not visible. SMEAR SLIDE SUMMARY: 1-90 2-80			5YR 8/1	$\label{eq:constraints} \begin{split} & \text{NANNOFOSSIL OOZE} \\ & \text{Core 45 contains a multicolorod (White — N9, pinkish } \\ & \text{gray — 5YR 8/1, very pale orange — 10YR 8/2) banded \\ & \text{nannofossil ooze.} \\ & \text{Sections 1 and 2 are moderately disturbed to soupy.} \\ & \text{Due to homogeneity no sediment structures are visible.} \end{split}$
aggam 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		D D Composition: Volcanic glass TR TR Foraminifers 15 15 Cricareous ORGANIC CARBON AND CARBONATE: 140 2-40 Organic carbon — — Carbonate 94 94	middle Miocene		10YR 8/2 5YR 8/1 5YR 8/1 10YR 8/2 5YR 8/1 N9 10YR 8/2 5YR 8/1 19YR 8/2 5YR 8/1	SMEAR SLIDE SUMMARY: 180 2.80 4.10 D D D Composition: Quartz TR Quarta - TR - Ciay TR TR 20 Palagonite TR TR - Carbonate - TR unspecified TR - TR Poraminifers - 1 1 Calcarecou nannofostik 100 99 79 ORGANIC CARBON AND CARBONATE: 1400 90 96 92
SITE 525 HOLE B CORE (HPC) 44 CO	ED INTERVAL 183.0-187.4	m				
TINUL SIGNACTER SIGN	DISTURANCE DISTURANCE BITACTURANCE BITACTURANCE SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION	(k) (N) SN		10YR 8/2	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	FORAMINIFERAL OOZE Core 44 contains a pinkish gray (5YR 8/1) foram- iniferal ooze mixed with abundant drill pipe debris due to contamination and winnowing by coring.	AG AM			

SITE 525 HOLE B CORE (HPC) 46 CORED INTERVAL 191.8-196.2 m	SITE 525 HOLE B CORE (HPC) 47 CORED INTERVAL 196.2-200.6 m
VOG UNIT VICE CHARACTER UNIT VICE CHARACTER VOG UNIT VICE CHARACTER SUSTINUE VICE VICE VICE VICE VICE VICE VICE VICE	FOSSIL CHARACTER FOSSIL CHARACTER CHARACTER Lithology VIOL SUBJECTION SUBJECTION Lithology VIOL SUBJECTION SUBJECTION Lithology
Bigging Syr8/1 NANNOFOSSIL 002E 1	R 8/2) homo- aed to soupy. He for souph and for source is the for source is
Bergory W Alter Bergory W Alter Bergor	
	4 -1 -1 -1 6 -1 -1 -1 5 A -1 -1 5 A -1 -1 5 2 A -1

SITE 525 HOLE B CORE (HPC) 48 CORED INTERVA	AL 200.6–205.0 m	SITE 525 HOLE B CORE (HPC) 49 CORED INTER	VAL 205.0-209.4 m
	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
	NANNOFOSSIL OOZE Core 48 contains a pinklith gray (SYR 8/1) to very pale orange (10YR 6/2) homogeneous moderately disturbed nannofossil ooze. Sediment structures are not visible. Section 1, 046 contains winnowed foraminifers and abundant drill pipe debris. SMEAR SLIDE SUMMARY: 1-80 2-80 3-80 D D D Composition: Quertz - TR - Feldspar TR TR - Volcanic glass TR - Palagonite - TR TR Carbonate unneeffed 1 TR 1	VOID 0.5- VOID 1 - - - - - - - - - - - - -	NANNOFOSSIL DOZE Core 48 contains an alternating sequence of vellowish gray (SYR 8/1) and very pais orange (10YR 8/2) homo- geneous namofoall ozer. The core is moderately disturbed and no sediment structure is visible. Section 2, 120–125 om contains a soft white (N9) blotch. SMEAR SLIDE SUMMARY: 1-130 280 3-80 4-80 D D D D Composition: SYR 8/1 Ouartz TR TR — TR Feldspar — T TR Palagonite TR TR — TR Palagonite TR TR — TR
$\begin{array}{c} -\frac{1}{2} + \frac{1}{2} $	Foraminifers TR TR 1 Calcareous namotosilis 99 100 98 ORGANIC CARBON AND CARBONATE: 1-56 2-56 3-56 Organic carbon Carbonate 95 92 94		Carbonate unspecified TR TR 1 - Foraminifers 1 2 1 2 Calcarreous nannofossifs 99 98 98 98 ORGANIC CARBON AND CARBONATE: 26 35 45 Organic carbon Carbonate 92 96 95 N9 blotch
	10YR 8/2	eeeoori MA: tree 3 4 4 4 4 4 4 4 4 4	10YR 8/2 5YR 8/1 10YR 8/2
			5YR 8/1
			10YR 8/2

SUN AG AM

VOID

cc

5YR 8/1

10YR 8/2

	2 2	Г	F	OSS	IL.					1		Г
UNIT	BIOSTRATIGRAPH ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DINING	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	
early Oligocene	P18/19 (F)	AP	АР			1	0.5-			5R 8/2	NANNOFOSSIL OOZE Core 50 contains a grayish (5Y 8/2) somewhat mottled grayish orange pink (108 8/2) nannofosail noze. Core is moderately disturbed. SMEAR SLIDE SUMMARY: 180 CC D D Composition: Quartz TR Quartz TR Prilagonite – TR Pyrite – TR Pyrite – TR Pyrite – TR Carbonate unspecified TR TR Corbonate nannofossilis 88 100 ORGANIC CARBON AND CARBONATE: 1-10 Organic carbon – Carbonate 95	
E	525 DIHAY		HOL F	E OSS RAG	B	COF	ie (HP	C) 51 CORED	INTE	RVAL 272.4-276	.8 m	
	m	1 10	45	60		-1-2	10			1		
LIND	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY WITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	
LIND	BIOSTRATIGR	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	L SECTION	METERS		SEDIMENTARY STRUCTURES SAMPLES	5R 8/2	LITHOLOGIC DESCRIPTION NANNOFOSSIL OOZE Core 51 contains a gravith pink (5R 8/2) to gravish orange pink (10R 8/2) homogeneous nannofossil ooze. In Section 2 a pinkih grav (5YR 8/11) is passing down- wards to gravish orange pink (10R 8/2). Core is moderstely disturbed. No sediment structures are visible. SMEAR SLIDE SUMMARY:	
gocene	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	2ECTION	Status 0.5- 1.0-		STRUKTUTAR STUCTURES	5R 8/2 10YR 8/2	LITHOLOGIC DESCRIPTION NANNOFOSSIL OOZE Core 51 contains a grayish pink (5R 8/2) to grayish orange pink (10R 8/2) homogeneous nannofossil ooze. In Section 2 a pinking (5W 8/1) is passing down- wards to grayish orange pink (10R 8/2). Core is moderstely disturbed. No sediment structures are visible. SMEAR SLIDE SUMMARY:	
late Oligocene UNIT	(F) BIOSTRATIGR 20NE 20NE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOWS	1	0.5	GRAPHIC LITHOLOGY 4	STRUCTARY STRUCTARE AMMETS	5R 8/2 10YR 8/2 5YR 8/1	Introduction Description NANNOFCOSSIL COZE Care 51 contains a grayish pink (58 8/3) to grayish Description Carego pink (108 8/2) Description Carego pink (107 8/2) Description Carego pink (108 8/2) Description pink (108 8/2) Descr	

.	PHIC		FOSSIL		RACTER										
UNIT UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTIO	N /	
							0.5		00		N9	NANNO Core 52 contain to pinkish gray (5Y chalk. Core is slightly 30 cm is soupy. No	FOSSIL C s an alterr 'R 8/1) nar to modern sediment	OZE A sating s nnofoss stely dis structur	ND CHALK equence of white (N9 Il ooze and nannofossi sturbed, Section 1, 0- es are visible.
ocene						1				•	N8/N9	SMEAR SLIDE SU	MMARY: 1-80	2-10	cc
middle E							1.0 -					Composition: Feldspar Volcanic glass Carbonate	TR TR	TR TR	TR
						-	-				EVO 84	unspecified Foraminifers Calcareous	TR 1	TR 2	TR 2
	(N)					2	-				5TK 8/1	nannofossils ORGANIC CARBO	99 ON AND C 2-15	98 ARBON	98 ATE:
- 1	9/10 P18					cc		L-1	1'			Organic carbon	-		

×		- 9	CHA	RAG	TER	5		6 E		Ε.						
BIOSTRATIGRI	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DES	CRIPTIO	N		
(F) middle Eocene	(M)					2	0.5		0 0	•	N9 5YR 8/1 5Y 8/1 5YR 8/1 5YR 8/1 N9 5Y 8/1 N6 5Y 8/1 N6	FORAMIN Core 53 contain values grav (54 %) for namofosil so- unidentifiable. Two tion of colors may pattern. The values of foraminifiers than SMEAR SLIDE SUR Composition: Valcanic glass Foraminifiers Calcereous nanofosilis Fish remains ORGANIC CARBO Organic carbon Carbonate	NIFER N.N. s a slight 11 to pinit e. Biogen o chaik lis be indices. Biogen D - 15 - N AND C 1.55 - 91	NNOF: y biots ic seli avers are trive of avers hi is figray 2.76 D - 20 80 - 20 ARBON 2.55 - 94	OSSIL (Irbated y (5YR mentary y (5YR presen a cyclic areas. 2.82 D - 10 90 - 10 90 - 93	2002E predominant 8/1) foramin structures a t. The altern sedimentati pher percenta 2.103 D 1 20 79 TR

10-5	10-6	10-7	10,CC	11-1	11-2	11-3	11-4	11-5	11-6	11,CC	12-1
-0 cm	182	100	THE R	E.	A					5.	
		1.1		·	1		-				1 21
			n.			· · · ·					
	1		Coldina.	*		13					and the
-		- 36			i dan	3	自國				S. M
-25								A PARTY	She !!		1000
-					11-54	and the second	-				
-						2	1				12.7
-						The second	1-				
-					0.7	-	-		-		
-50								31			1 de
-									and the		
_			1 1		1			and			1
1	Sec. 1					-					
					1	100	Frank	1			1.1
	1			- The second		and a		AL AL			1 34
-/5					151		and the second	to			
-	and the				-	三	15	1	in.		
-					1	10 5		1			
-	4					1		E Ital	h a		P
	-				1-2		A	100	1		100
-100						Varia	1.7				16
- 2	1.2			an isan k		X	1	C. A.	1ª		1
-	5.					- 20	1 4				1
-	and the										
-					1				C.C.		Charles .
-125				The second s	12						
					57			-			1 and
					1			and the			11:10
					6		1				1/16-27
					- Cre		and -				
					See.		122				
-150				4							

- 1	3,CC	14-1	14-2	14-3	14-4	14-5	14-6	14-7	15-1	15-2	15-3	15-4
		1	576					Stime .	12.4			
-	1.5	12 (9)	100	No.			+	ES:	in the			
	20	STAL	60	γ					Carl and	L		C SA
			5				State State				$\sim M$	Sec.
	Nº 1		1		Con 23	. The		To Day	18		i i i	1.2
		. 3	1		the man		and the same					and the second second
- 1			0.2		(Parties	the state				S. and		
-25			1	展入局	1500			1000	19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	ALL A	和正	Sec. 1
25			646			121		1ª LIN		San San		
+								(Second			A Star	
. 1			a. A	21			and the second	Sec.	t all a		23	
Γ I			Sec. S		1		E AND	M = f		5		
-			會留		Same and			E EL	I and the second	26.	171	to the
						Level 1						1
F		Fight			T		Street and				人 建	1 - marting
-50			C	120						East 1	Alt !!	2
		100		6 4 1					AT COME	新一時	DOCT	1
F		a deal	160				12	4		6	1-107	
L			1	A COM		1	-			E.S.	127	
				10 10 10 10 10 10 10 10 10 10 10 10 10 1		See 5	1			-	R +	
-			为在武士				and the	1 Mar		1.1		19 and
			14		E-start			2	4 . Ville	100		the second
Γ		11					1.100					
-75		在 1993年	1 and	ないできる	and the second		and the			1 AT		ALL ALL
1		1.1	(Law)		12年			1 1				and and
F					1 4 4	-		1 1				
F				1.1	and and	NET I THE	2					100 mg
		1000		and the second		Sec. 1	T. St			(and	题题	No lat
F			MINE:		a manage			1 1			Line a	al al a
L			Mat		Es			1 1	2-1-1	1 Mars		Rent all
		R: C.			100					X		
-100					and the second	COLUMN?	22			all and	【業】	and a
L		18			1	a av pri	Contraction of the		199	California I]輩	and the second
Γ					The Manual Street		State of the			1-	1	
\mathbf{F}	1 1				E Car		- William		Eran 1	Traiser.		(age)
				1.85.05		R. Sarris				1000		1000
Г				K Est	4.00	1	1945		12 14	1	著	F Strait
-			他们		2 (Carlos and	E LAT		4	the me	一發	1-37-43
			新建			1				1		> Chan
125					CE la		A A A A A A A A A A A A A A A A A A A					
L							No.		L eini		122	
		125-28								W-1.		
F									the fait	5. 14	100%	California T
L			之間				State of the		100	11	15	-
Γ			高州		Para				121-	S	to contract	
F			44.1				1 State		C		1	
L150			17 B	- Sile of					CHI MAN		1. A.S. 1994	

21-1	21-2	21-3	21-4	21-5	21-6	21-7	21,CC	22-1	22-2	22-3	22-4
- o cili				63-72						1.2	
- 1 N		空 一			din 1			and the second	· Er	Nation 1	1200
	1.170-11	100	All the second		1.11.11	2.5			146		
		4	1.1.1		1.246			-	Sec. 33		
128.34		All and a set of	新新期			Sec. Sec.			15		2.3.1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100		100	- Second	1.11		I	n. m	1.00		- Contract
1.1016		of Phase		1.16.2	abs.	1000			SVR	4 PT-	14.5
1000			States -		「同程」	a second		1.00			
-		125			17			AT THE A	1.5.1.1		100-24
10000			10-3		100		1 1				6.200
-25	승규(학생)				1015	Sec. 1	1 1	Same a		C. Martine	1000
		1. C. C.	Million .		Ser E	Contraction of the				and the second	A. Rate
-	0	a des		-	國任憲		1 1	Series and	and and	1 8 7	the second second
	194		States -	ALC: No.	机料理 [Same.	1. 1.	14	1
-	State of the	6.2121.31			10131		1 1	and a	N-mark		TRACE IN
		10			(@#####)	Constant Section		Frank		8-19-11	
-		Self and		LENG		2.5		Pres of the	Sec.		and the second
		1.21	CICLE 1	1.50		and the second		日 。 東京		State State	State of
				10.54	加設計			Jul -	5 . 5		
		A TH	New State						11		
-50	and the	-17-2	1560	The second	ante -		1 1	and the second	EN CAN	6 6	Mar all
-50		1 Oct		j				S. P		F.C. P.C.	1 1-10
			18.33	1922	19 B B B B	1.000			15	Seal 1	F
		121-1	Sslo 1					1 2 20 20	me !!	48 1	
A CONTRACTOR OF		3.00	E .	0				10 x 11	the mail	1000	2200
-		15-24 DE							Mary 1	0	15 - 10
and the second	STORY OF	1 . A. M.	lease f		CALLS-			600	1. 1. 1. 1.	CALCULAR OF	Sec. State
	Kata	1747 A		1000				and the second	1 Vant	Ser S	
		The set			BRIME			the state	The state	State of the	
-	-			North St				2	Star 1	133.4	-
Seat and	12 2 3	1 mile - 1 mile	Contractor					Section in the section of the sectio	Mar all	and and	
-75	Sec. 4	1000	Sec. Sec.					and a			- 10
10	and the second		111						Real Property	The I	and the
		Tes a	Ser.	ALC: N	MARKE			1	12 3	A LE	
- · · ·	2	The set		Sec.	1882			Zi za	118 省	12051	and the second
The Party	1	- A HARRY		14				Long and	1 Aug	C. C.	
	1 - 5	10		and a	建始保守			1 - 4	Ind T	Contraction of the	123
5.00	1 1 m	Contraction of the second	Sector State	1217	新闻 的 (1)			The second	K.		and ;
-	1 Para		17- 2	100	- 計算報					3	
- C. 1		1 -1	24 M. E. T. S.	13.13				Leven St	the second	Contraction of the second	
Est and	The second	32	State of the local distance			1 1		1 T	See 3	and the second second	
	2. 4.8	1		C. Carlos					State -	Frend La	and a
-100	15 4	(CONT)	1	(Break	1.1			THE PART	and the second	200	action and
Provide State	2.31	E 3 36			NH Y			Com Par	And the second second	15 01	
	1 75	Carlos Sta		Para and				P. C.	Course &	Contraction of	
	an seal	Str -	12.04	1				A Martin	12-21	-	Tenting
C Sale	100	ALL S			1.112 201			ALC: NOT	12-11	1	100 8
100		AP.						the state	Sec		
STORES, I	Dec 1	ALC: NO		(Montalina)				100	Contraction of the	The second	
21 25 1	Same	1 The								123.2	Ly - C
CARLOS A	- Section	St. Car	and the second	72	3 80				URA	and of	
	Katan B.	1 miles		100000						-	- 1 - 2
	人所 (1)	1	A CONTRACT		BARK			Real Providence		100 200	
-125	E. F. Krit	1 20 1						1 Acres	500		South F
41223	in the	1	No. of Contraction		1.1			Constant State	Contraction of the	AN TO	and the second
-	1	238			100					Contraction of the second	and the second
Starte .	1 mail	Contraction of	aler 1		100				and a state		Carlo and
	. 3	Distant of	1) Street		No.			100		and the second	
25-1262			and in					1	120-37		THE REAL
	Provent .	Pla ant	- HARRING AND					1000			in the second
	Acres	4							A		
	15 2	and the second	1					此言語	Carl	Sale in St	1000
Constant and	1 3				1					1000	
150	1	and the second	Min San					ALC: NO.	april 6	4	ALL ALL

	32-5	32-6	32-7	32,CC	33	34,CC	35-1	35-2	35-3	35-4	35-5
- - - 		and the second second				e			and the second second	ないけた	
- - 							A. C. M.	And a start	N.	STATE -	
- 	AN 1. 1. 1. S	A LOR			NO RECOVERY				1	1000	
	MACH AL						1 (Section 19	and a second	227	NOTION OF
							Ezan Q			In Cash	

0 cm	35-6	35-7	35,CC	36-1	36-2	36-3	36-4	36,CC	37-1	37-2	37,CC	38-1
				The service of the se	THE SALE STREET STREET	こう、「「「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」」」						

156

	52-5	53-1	53-2	53-3	54-1	54-2	54-3	55-1	55-2	55-3	56-1	56-2
Ľ	1			4	1	2		13.3	in st			
-			-		The	A.	17			38		
-	TANK I	Ì	1		4	1	Å	19	5.4			
-25			X		T	5						4
ŀ				Conger I	T			1				
F					2	1. A		E.	5			
50)	4	and the second		IS I			
-	1				X					1		
ŀ					X	20 m				1	A. Carlo	
Ĺ			Y		Z					Helan .		
-75			and the second s		1 ser			B				
ŀ	210		X		1	334		B				
Ľ			D.		2	ALL A			2		2	- 4
-			1			X		3				
-100		1			P	A					5	
			4		$\overline{\mathbf{A}}$						4	
-			16	100	M	15-5						
-				E	3							
-125					7							
[0											
-					1			1			No.	1.1
-150		-							. 18			

158

-0 cm	58-4	58-5	58-6	59-1	59-2	59-3	59-4	59-5	59-6	60-1	60-2
-	H		ن <u>ــــــــــــــــــــــــــــــــــــ</u>	1000	05		-	1		1- 1/2	
-			-	12:1.	. 3				. TANK	5.	
	Eligiti Teatric		1	1		-2	1001		2.00		
		1		TITAN.	1					•	
-25	7	See	N.	1. 1.000		40	1		1	- 45	
			and the	1	1.1	200	No.	1 -	R.	2 . T.	
- 1		T	E.A	2	4	-	1				
-		5		12.36	1.5		2				
-50		N.		-	1: 1			11	3.4		Ĭ
-		<			1. 4		53			N	No.
-		1						10-1			
-	-	(4.)		2	1 - 2ª	~	-	111		a fair	-
		2V			P		1	de		3	
-75		Ju.		-	E					1	
		AZP		2	6.3	1.1.	1				1
-					- 10	2.9	The 2	1.0		- 97	1
-		12/2				1/2	and the second s	i			
-100		0.1		-	1 gl	12	1. 1. p. 1. 1.	1.1		. 1	
2.1		5		· 10	1.11		-			1	-
-	1	2						1		- ar	
	ALD M	100 M			- 2	100	1	and the second sec			
-	the start	37			-	-	17	100		17 103	
-125	2.5	1 and		19	5	11-	$ \gamma_{i} $	31 22.5		1. 3	
	1				$\overline{2}$			1		S	
100				1		-	K	100		0	1. A.
-		1.		1.00	1			1.5			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
L_150		1.			La					1	

Provide Statements	The second se		007	01-1	012	02 1	02-2	00-1	03-2
AZBE I NATING I		N//							