3. SITE 5261

Shipboard Scientific Party²

HOLE 5263

Date occupied: 14 July 1980 Date departed: 14 July 1980 Time on hole: 9 hr., 46 min. Position: 30°07.36'S; 03°08.28'E Water depth (sea level; corrected m, echo-sounding): 1054 Water depth (rig floor; corrected m, echo-sounding): 1064 Bottom felt (m, drill pipe): 1065.5 Penetration (m): 6.3 Number of cores: 2

Total length of cored section (m): 6.3

Total core recovered (m): 3.6

Core recovery (%): 57

Oldest sediment cored: Depth sub-bottom (m): 6.3 Nature: Sandy foraminifer ooze Age: Pleistocene Measured velocity (km/s): 1.54

HOLE 526A

Date occupied: 14 July

Date departed: 16 July

Time on hole: 1 day, 10 hr., 30 min.

Position: 30°07.36'S; 03°08.28'E

Water depth (sea level; corrected m, echo-sounding): 1054

Water depth (rig floor; corrected m, echo-sounding): 1064

Bottom felt (m, drill pipe): 1065.5

Penetration (m): 228.8

¹ Moore, T. C., Jr., Rabinowitz, P. D., et al., Init. Repts. DSDP, 74: Washington (U.S. Govt. Printing Office). ² Theodore C. Moore, Jr. (Co-chief Scientist), Graduate School of Oceanography, Uni-

versity of Rhode Island, Kingston, Rhode Island (present address: Exxon Production Re-search Co., P.O. Box 2189, Houston, TX 77001); Philip D. Rabinowitz (Co-chief Scientist), Lamont-Doherty Geological Observatory, Palisades, New York (present address: Department of Oceanography, Texas A&M University, College Station, TX 77843); Anne Boersma, La-mont-Doherty Geological Observatory, Palisades, New York (present address: P.O. Box 404, R.R. 1, Stony Point, NY 10980); Peter E. Borella, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Alan D. Chave, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California (present address: Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, California); Gérard Duée, Laboratoire Géologie Stratigraphique, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq, France; Dieter Fütterer, Geologisch-Paläontologisches Institut und Museum der Universität Kiel, Kiel, Federal Republic of Germany; Ming Jung Jiang, Depart-ment of Oceanography, Texas A&M University, College Station, Texas (present address: Robertson Research [U.S.] Inc., Houston, Tex.); Klaus Kleinert, Geologisches Institut der Universität Tübingen, Tübingen, Federal Republic of Germany; Andrew Lever, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom (present address: Department of Mineral Resources Engineering, Imperial College of Sciences and Technology, London, U.K.); Hélène Manivit, Laboratoire de Palynologie, BRGM, Orleans, France; Suzanne O'Connell, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (present address: Lamont-Doherty Geological Observatory, Palisades, NY 10964); Stephen H. Richardson, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Nicholas J. Shackleton, Godwin Laboratory, University of Cambridge, Cambridge, United Kingdom. ³ Principal results follow Hole 526C data.

Number of cores: 46 Total length of cored section (m): 200.8 Total core recovered (m): 206.6

Core recovery (%): 100 +

Oldest sediment cored: Depth sub-bottom (m): 228.8 Nature: Rubbly fossiliferous limestone Age: Middle Eocene Measured velocity (km/s): 1.61

HOLE 526B

Date occupied: 16 July 1980 Date departed: 16 July 1980 Time on hole: 5 hr., 45 min. Position: 30°07.36'S; 03°08.28'E Water depth (sea level; corrected m, echo-sounding): 1054 Water depth (rig floor; corrected m, echo-sounding): 1064 Bottom felt (m, drill pipe): 1065.5 Penetration (m): 28.3 Number of cores: 5 Total length of cored section (m): 22.0

Total core recovered (m): 13.5

Core recovery (%): 61

Oldest sediment cored: Depth sub-bottom (m): 28.3 Nature: Sandy foraminifer ooze Age: Pleistocene-early Pliocene Measured velocity (km/s): 1.63

HOLE 526C

Date occupied: 16 July 1980

Date departed: 17 July 1980

Time on hole: 1 day, 10 hr., 18 min.

Position: 30°07.36'S; 03°08.28'E

Water depth (sea level; corrected m, echo-sounding): 1054

Water depth (rig floor; corrected m, echo-sounding): 1064

Bottom felt (m, drill pipe): 1065.5

Penetration (m): 356.0

Number of cores: 21

Total length of cored section (m): 185.0

Total core recovered (m): 70.9

Core recovery (%): 38

Oldest sediment cored: Depth sub-bottom (m): 356.0 Nature: Calcareous sand and sandstone Age: Late Paleocene Measured velocity (km/s): 1.57-4.45

Principal results:

1. A complete sedimentary section from the seafloor to 356 m sub-bottom was cored in a series of four holes; three were hydraulic-piston-cored and the fourth was rotary-drilled. Sediments varied from carbonate-rich oozes, often containing abundant foraminifers, to shallow-water calcareous sands.

2. A break in sediment accumulation of the pelagic section occurs in the lowermost Oligocene. Missing biostratigraphic zones in the mid-Pliocene and the upper part of the middle Miocene may indicate the presence of other small interruptions in accumulation. Within the shallow-water sand sequence found at the base of the section there is another apparent break in sediment accumulation which reaches from the upper Paleocene to the middle Eocene.

3. Carbonate preservation is good throughout the Neogene and upper Oligocene. It is moderate in the lower Oligocene and poor in the Eocene-Paleocene. This section contains the best-preserved and most fully recovered Oligocene through Pleistocene sediments recovered on Leg 74.

4. Common *Braarudosphaera* were found in Zones NP24 and NP23 of the Oligocene.

5. The average accumulation rate at this shallow site tends to be lower than at other, deeper sites in the Walvis Ridge transect. This is due primarily to the winnowing of fine-grained carbonate which is removed from the topographic highs and deposited on the flanks of the ridge. As a result, the sediments at this site tend to be enriched in the coarser-grained components. Reduced dissolution also leads to an increased accumulation rate of the sand-sized foraminifers at this site. 6. Maxima in the accumulation rate of the coarse fraction $(>63 \ \mu m$, dominated by foraminifers) occur in the lower Pliocene and upper part of the mid-Miocene. If it is assumed that dissolution has had little effect on the carbonate accumulation, these peaks in accumulation may represent an increased supply of carbonate to the seafloor.

7. Paleodepth estimates based on the crustal-cooling or "backtracking" technique, together with the age of the oldest fossils recovered, indicate that the site had sunk below sea level by the late Paleocene.

8. Age versus depth estimates using the crustal-cooling curve and estimates of the depth habitat of the benthic fauna show a broadly similar pattern of submergence. A rapid shoaling event is indicated by the benthic fauna of the mid- to lower-Oligocene. This may be associated with a eustatic change in sea level.

BACKGROUND AND OBJECTIVES

Geologic and Oceanographic Setting

Of all the sites in our depth transect, Site 526 is unique in many ways. First, at a depth of 1054 m (Fig. 1), it is by far the shallowest site drilled in the transect and one of the shallowest sites ever drilled by DSDP. As such, it was expected that the sedimentary section would be relatively complete and contain very well preserved calcareous fossils, particularly foraminifers. Winnow-

Figure 1. Index and location map for Site 526 and reflection profile record of Vema and T. Davie.

ing of the deposits by bottom currents appears to have removed much of the finer-grained material; as a result, the overall thickness of the section (0.37 s, approx, 330 m) is somewhat thinner than that at the next deeper site (Site 525).

Another difference between this site and others in the Walvis Ridge transect is that all the other sites lie on what appears to be a single structural block, whereas Site 526 lies near the crest of an adjacent block to the southwest. The crustal age of the crests of these two parts of the Walvis Ridge appears to be the same (approx. Anomaly 32 time, 70 Ma), and it is assumed that the subsidence history of the two blocks is identical. If this is correct, the application of the depth versus time crustal-cooling curve used for all the other sites indicates that Site 526 did not sink below sea level until the late Paleocene (55 Ma). Thus the crestal region of this block may have existed as an island for some 15 m.y.

Acoustic reflection records at this site (Fig. 1) show a very strong sediment surface reflector, which is probably associated with the winnowed character of the deposits, and only one prominent sub-bottom reflector overlying the basement reflector. This intermediate reflector lies at about 0.25 s sub-bottom and may be associated with an erosional hiatus or with the transition from a shallow-water depositional environment to that of the pelagic realm.

Even though Site 526 lies on a separate structural block, it is still within 100 km of the next deeper site (Site 525); thus the pelagic rain of biogenic and detrital material is assumed to be the same at Site 526 as it is at all other sites in the transect. The major oceanographic difference is its water depth.

Not only is it likely that winnowing by bottom currents has had a strong effect on the character of the sediments recovered at Site 526, but the character of the bottom waters at the depth of this site is markedly different. All other sites in the Walvis Ridge transect lie within the Angola Basin. Presently the bottom waters of this basin are dominated by North Atlantic Deep Water (NADW). Site 526, however, lies well within the depth interval covered by Antarctic Intermediate Water. This deep water mass is somewhat warmer, lower in dissolved oxygen and salt content, and higher in nutrients than NADW.

Scientific Objectives

The scientific objectives of this site, as part of the Walvis Ridge transect, focus on three main topics: (1) the history of bottom waters within the eastern South Atlantic, (2) the development of detailed biostratig-raphies and paleomagnetic stratigraphies for this area, and (3) the tectonic evolution of the Walvis Ridge.

Results of previous drilling in the Angola Basin on this and other DSDP legs indicate marked changes in both the erosion of sediments and the corrosiveness of bottom waters with respect to calcite. Site 526 provides a comparison site which is assumed to have equivalent supply rates of biogenic debris but may have had a different history of erosion and dissolution.

Through most of the Tertiary, the benthic faunas at this site have been affected by waters of only intermediate depth. Thus they provide an important contrast to the benthic faunas in the deeper sites. Benthic faunas change rapidly with depth in the upper 1000 m; thus the extremely shallow location of this site affords us the opportunity to use the benthic population to check the consistency of our paleodepth estimates (based on simple crustal-cooling curves) as well as to determine whether or not there have been large differential crustal movements between the two structural blocks we have sampled.

This shallow location also assures good preservation of the carbonate fossils and provides a nearly complete Neogene and upper Paleogene section for biostratigraphic studies.

OPERATIONS

Glomar Challenger departed Site 528 on 13 July 1980 at 1336 hr. Continuous seismics, magnetics, and bathymetry were collected en route to Site 526.

A geophysical site survey on all of the Walvis Ridge sites to be drilled on this leg (Rabinowitz and Simpson, 1979) was conducted prior to Leg 74 by *Thomas B*. *Davie* of the University of Cape Town. Other geological/geophysical ships' tracks in the vicinity which were of importance in the site selection included those of *Vema* (L-DGO) and *Atlantis II* (WHOI). A predrilling survey by *Challenger* in the site area was not necessary.

A beacon had been dropped at this site prior to drilling Site 527 (see Site 527 operations report). We located the beacon without encountering problems and steamed over it before retrieving our towed geophysical equipment. We were at Site 526 at 0320 hr., 14 July 1980.

At Site 526 we planned to piston-core as deep as possible and then to rotary core to and through basement. The basement depth was 0.37 s of two-way seismic reflection time.

Four holes were drilled at this site (Table 1).

Hole 526

Two piston cores were obtained with a total penetration of 6.3 m sub-bottom (57% recovery). We encountered very sandy layers near the surface and bent a core barrel. We suspected that part of the bottom hole assembly was also bent and thus lifted the drill string. No bends were observed. We decided on the next hole at this site to wash with the piston core below the sand layers.

Hole 526A

We washed to 28.0 m and then proceeded to piston core continuously from 28.0 to 228.8 m sub-bottom (recovery rate an outstanding 100%). We were forced to terminate the piston coring when we encountered a hard carbonate rubble.

Hole 526B

After completion of Hole 526A, we lifted the drill string to the mud line, offset very slightly (negligible), and piston-cored between 6.3 and 28.3 m sub-bottom (recovery rate 61%). This was the sandy section missed in Holes 526 and 526A.

Table 1. Coring summary, Site 526.

Core	Date (July	Time	Depth from Drill Floor (m)	Depth below Seafloor (m)	Length Cored	Length Recovered	Recovery
	1900)	Thire	тор волош	TOP BOTTOM	(m)	(m)	(30)
Hole :	526	100228			2.42	2/2	12.00
1 2	14 14	1110 1210	1065.5-1067.4	0.0-1.9	1.9	1.9	100
					6.3	3.6	57
Hole :	526A						
1	15	0000	1093.5-1097.9	28.0-32.4	4.4	4.6	100+
2	15	0040	1097.9-1102.3	32.4-36.8	4.4	4.4	100
4	15	0158	1106.7-1111.1	41.2-45.6	4.4	4.9	100+
5	15	0235	1111.1-1115.5	45.6-50.0	4.4	4.4	100
7	15	0348	1119.9-1124.3	54.4-58.8	4.4	4.0	100+
8	15	0423	1124.3-1128.7	58.8-63.2	4.4	5.1	100 +
10	15	0436	1128.7-1133.1	67.6-72.0	4.4	4.0	91
11	15	0620	1137.5-1141.9	72.0-76.4	4.4	5.0	100 +
12	15	0650	1141.9-1146.3	76.4-80.8	4.4	4.3	98 100 +
14	15	0750	1150.7-1155.1	85.2-89.6	4.4	5.0	100 +
15	15	0824	1155.1-1159.5	89.6-94.0	4.4	4.6	100 + 100 +
17	15	0923	1163.9-1168.3	98.4-102.8	4.4	4.8	100 +
18	15	0953	1168.3-1172.7	102.8-107.2	4.4	4.5	100 +
20	15	11116	1177.1-1181.5	111.6-116.0	4.4	4.9	100 + 100 +
21	15	1148	1181.5-1185.9	116.0-120.4	4.4	5.0	100 +
22	15	1215	1185.9-1190.3	120.4-124.8	4.4	4.8	100 + 100 +
24	15	1318	1194.7-1199.1	129.2-133.6	4.4	4.8	100 +
25	15	1347	1199.1-1203.5	133.6-138.0	4.4	4.8	100 + 100
27	15	1414	1207.9-1212.3	142.4-146.8	4.4	4.5	100+
28	15	1513	1212.3-1216.7	146.8-151.2	4.4	4.6	100 +
30	15	1537	1216.7-1221.1	151.2-155.6	4.4	4.8	100+
31	15	1630	1225.5-1229.9	160.0-164.4	4.4	5.0	100 +
32	15	1702	1229.9-1234.3	164.4-168.8	4.4	3.9	89
34	15	1850	1238.7-1243.1	173.2-177.6	4.4	4.2	95
35	15	1915	1243.1-1247.5	177.6-182.0	4.4	4.2	95
30	15	2020	1251.9-1256.3	182.0-186.4	4.4	4.8	100 + 100 +
38	15	2107	1256.3-1260.7	190.8-195.2	4.4	3.0	68
39 40	15	2135	1260.7-1265.1	195.2-199.6	4.4	4.0	91 100 +
41	15	2250	1269.5-1273.9	204.0-208.4	4.4	4.5	100+
42	15	2340	1273.9-1278.3	208.4-212.8	4.4	2.9	66
44	16	0052	1282.7-1287.1	217.2-221.6	4.4	4.0	91
45	16	0118	1287.1-1291.5	221.6-226.0	4.4	4.5	100+
40	10	0310	1291.3-1294.3	220.0-228.8 Totals	2.8	2.8	100+
Hole :	526B			Totals	200.0	200.0	100+
1	16	0649	1071.8-1076.2	6.3-10.7	4.4	1.6	36
2	16	0737	1076.2-1080.6	10.7-15.1	4.4	0.0	0
3	16	0805	1080.6-1085.0	15.1-19.5	4.4	4.0	91 70
5	16	0915	1089.4-1093.8	23.9-28.3	4.4	4.8	100 +
				Totals	22.0	13.5	61
Hole :	526C						
1	16	1915	1098.5-1108.0	33.0-42.5	9.5	1.0	11
2	16	2005	1108.0-1117.5	42.5-52.0	9.5	9.7	100 +
Wash	10	2115	1122.0-1260.0	52.0-50.5	4.2	2.1	01
4	17	0058	1260.0-1269.5	194.5-204.5	9.5	9.7	100+
6	17	0133	1279.0-1283.5	204.5-213.5	9.5	3.2	71
7	17	0320	1283.5-1288.5	218.0-223.0	5.0	6.6	100 +
8	17	0425	1288.5-1298.0	223.0-232.5	9.5	6.2	65
10	17	0625	1307.5-1317.0	242.0-251.5	9.5	0.0	0
11	17	0705	1317.0-1326.5	251.5-261.0	9.5	trace	0
13	17	0748	1326.0-1345.5	270.5-280.0	9.5	2.2	23
14	17	0942	1345.5-1355.0	280.0-289.5	9.5	2.1	22
15	17	1025	1355.0-1364.5	289.5-299.0	9.5	2.5	26
17	17	1152	1374.0-1383.5	308.5-318.0	9.5	0.1	1
18	17	1255	1383.5-1393.0	318.0-327.4	9.5	0.7	7
20	17	1423	1402.5-1412.5	337.0-346.5	9.5	0.8	8
21	17	1520	1412.5-1422.0	346.5-356.0	9.5	0.2	2
				Totals	185.0	70.9	38

Hole 526C

We rotary-cored a total length of 185.0 m (recovery rate 38%). We repeated two important intervals obtained in the piston core (33.0-56.5 m sub-bottom; 194.5-228 m sub-bottom). We encountered a very thick fossiliferous sandy section from about 242 to 356 m sub-bottom, which created obvious hole problems. We terminated the hole because of the instability created by the thick sand layer.

Pressure core barrel and Drill Bit Motion Indicator tests were run with very encouraging results.

SEDIMENT LITHOLOGY

The sediments cored at Site 526 were recovered from sub-bottom depths between 0 and 356 m and are late Pleistocene to late Paleocene(?) in age (see Fig. 2). Nine lithologies are present: sandy foraminiferal ooze, nannofossil-foraminifer ooze, foraminifer-nannofossil ooze, nannofossil ooze, nannofossil chalk, foraminifernannofossil chalk, limestone, rubbly fossiliferous limestone, and calcareous sands and silts. The CaCO₃ content of these lithologies is high (generally greater than 95%). By considering lithology, color, and intensity of bioturbation (where recognized), five lithologic units are recognized.

Unit I (0-133.6 m)

The uppermost unit consists of predominantly homogeneous white (N9) sand-sized foraminifer ooze, nannofossil-foraminifer ooze, foraminifer-nannofossil ooze, and nannofossil ooze and was recovered in Hole 526, Cores 1 and 2; Hole 526A, Cores 1-24; Hole 526B, Cores 1-5; and Hole 526C, Cores 1-3. In the top 40 m of the unit, very pale orange (10YR6/2), pale yellowish brown (10YR6/2), and very light gray (N8) are apparent; similarly, the base of the unit in Hole 526A, Cores 19-24, shows very pale orange (10YR8/2) hues. In between the color is white (N9). The unit shows no sedimentary features, and bioturbation is evident between 30 and 60 m sub-bottom. In general, the foraminifer content decreases from 90% in Hole 526B, Core 1, to 12% in Hole 526A, Core 24, and this parameter is used to define Subunits Ia, Ib, and Ic (Fig. 2).

Subunit Ia: Sand-sized Foraminifer Ooze (Hole 526, Core 1; 0-1.8 m)

In this subunit, for aminifers constitute 73-90% of the sediment; the rest are nannofossils, echinoid spines, mollusk and pteropod debris, ostracodes, and fish remains. The sediment color is very light gray (N8) and very pale orange (10YR 8/2).

Subunit Ib: Nannofossil-Foraminifer Ooze and Foraminifer-Nannofossil Ooze (Hole 526, Core 2; Hole 526A, Cores 1-22; Hole 526B, Cores 1-5; Hole 526C, Cores 1-3; 1.8-124.8 m)

This is a predominantly white (N9) or bluish white (5B9/1) biogenic ooze with very pale orange (10YR8/2) layers occurring near contacts with Subunits Ia and Ic.

Figure 2. Lithostratigraphic and biostratigraphic summary for Site 526 (see Introduction, this volume, for explanation of symbols used).

It is distinguished from the sediment above by its lower foraminifer content and from that below by its greater foraminifer content. The top of the subunit (Hole 526, Core 2, and Hole 526B, Core 1) contains pteropod, pelecypod, echinoid, gastropod, ostracode, and fish debris and shows some evidence of burrow mottling and *Planolites*(?) burrows. In addition, washing the sediment and sieving the coarse fraction recovered several pyritized burrows up to 2 cm long in Hole 526A, Cores 5, 8, and 12, and a single solitary scleractinian coral in Hole 526A, Core 7.

Subunit Ic: Intercalated Foraminifer-Nannofossil Ooze and Nannofossil Ooze (Hole 526A, Core 23 and 24; 124.8-133.6 m)

This subunit is distinguished from the rest of Unit I by its nannofossil ooze content: approximately 33% of Hole 526A, Core 23, and 66% of Core 24. Also, this subunit is bioturbated, (e.g., halo burrows in Core 24) and is very pale orange (N9 to 10YR 8/2) and white to pinkish gray (N9-5YR 8/1). Subunit Ic is transitional in composition with Subunit Ib and Unit II.

Unit II (133.6-199.6 m)

The recovered sediment is a nannofossil-rich unit in contrast to Units I and III, which are relatively foraminifer-rich. Sediments are nannofossil ooze with minor intercalated foraminifer-nannofossil ooze and nannofossil chalk. The unit has no preserved primary sedimentary structures. Colors are primarily very pale orange (10YR8/2), very pale brown (10YR8/4), pinkish white (7.5YR8/2), pinkish gray (7.5YT6/2 and 5YR8/1), and pink (7.5YR8/4). Color and biogenic sedimentary structures distinguish two subunits.

Subunit IIa: Nannofossil Ooze and Foraminifer-Nannofossil Ooze (Hole 526A, Cores 25-29; 133.6-155.6 m)

Bioturbation in the top 22 m of Unit II is slight to moderate with halo burrows, *Planolites*, and vertical burrows identified within the foraminifer-nannofossil ooze. Large fragments (3-4 cm in diameter) of pelecypod debris are present in Core 29. Subunit IIa is very pale orange (10YR 8/2) with minor pinkish white (7.5YR 8/2) and very pale brown (10YR 8/4) layers.

Subunit IIb: Nannofossil Ooze, Nannofossil Chalk, and Foraminifer-Nannofossil Ooze (Hole 526A, Cores 30-39; 155.6-199.6 m)

In contrast to Subunit IIa, this part of the sedimentary record shows little or no evidence of bioturbation and is predominantly pinkish gray (5YR8/1), pinkish white (7.5YR8/2), and pink (7.5YR8/4). Bioturbation is present mainly as faint mottles, with some possible *Planolites, Zoophycos*, and halo burrows. Pelecypod debris is again observed. An important constituent of Cores 30–36 is the nannofossil *Braarudosphaera*, which is first noticed in trace quantities in Core 30 and increases to 95% of the sediment in the brecciated chalk of Core 35. A temporary increase in the number of foraminifers is noted in the foraminifer-nannofossil chalk recovered in Core 31.

Unit III (199.6-221.6 m)

Foraminifers account for >10% of the sediment in Unit III, which consists of foraminifer-nannofossil ooze with minor nannofossil ooze and foraminifer-nannofossil chalk. As with the other units, no primary sedimentary structures are preserved, and evidence of bioturbation is generally absent. The unit is predominantly pinkish gray (5YR8/1), pinkish white (7.5YR8/2), and pink (5YR8/3).

Subunit IIIa: Foraminifer-Nannofossil Ooze and Foraminifer-nannofossil Chalk (Hole 526A, Cores 40-43; 199.6-217.2 m; Hole 526C, Cores 4-7; 194.5-223.0 m)

This subunit consists of pink (5YR8/3), pinkish white (7.5YR8/2), and pinkish gray (5YR8/1) foraminifernannofossil ooze, which in Hole 526C has been partially lithified to chalk. Faint burrow mottling is present only in Cores 40 and 41 (Hole 526A), and *Braarudosphaera* is again observed in Cores 41 and 42.

Subunit IIIb: Foraminifer-Nannofossil Ooze, Foraminifer-Nannofossil Chalk, and Nannofossil Ooze (Hole 526A, Core 44; 217.2-221.6 m; Hole 526C, Core 8, Sections 1-4; 223.0-229.0 m)

Subunit IIIb is found in two cores and consists of intercalated pink (5YR8/3) and pinkish gray (5YR8/1) nannofossil ooze, foraminifer-nannofossil ooze, and foraminifer-nannofossil chalk. Primary sedimentary structures and evidences of bioturbation are absent.

Unit IV (Hole 526A, Cores 45 and 46; 221.6-228.8 m; Hole 526C, Core 8, Section 5-Core 9; 229.0-242.0[?]m)

Unit IV is composed of a white (N9) rubbly, highly fossiliferous limestone. The "rubble" consists of friable, vuggy oncoliths, crinoid fragments, pelecypod debris, and bryozoans and seems to be a primary textural characteristic rather than an artifact of drilling disturbance. Nannofossils are present in this unit. The unit appears to show several fining-upward sequences from pebbles to medium sand. This repeated graded sequence was cored with the HPC and is interpreted as being real. Because the limestone is rubbly and fragmented and contains both deep- and shallow-water fauna, it is reasonable to suggest that this material is transported, possibly a channel fill or small-scale turbidite (see Summary and Conclusions, this volume). In Hole 526C, Cores 10 and 11, recovery was zero, leaving the location of the base of this unit in question.

Unit V (242.0-356.0 m)

The bottommost unit is composed of very pale orange (10YR8/2), olive yellow (2.5Y6/6), light yellowish brown (2.5Y6/4), very pale brown (10YR7/4), and yellow (10 YR7/6) fossiliferous calcareous sands and sandstone. Particles are angular to subangular. The calcareous grains are recrystallized calcite, benthic foraminifers, bryozoans, echinoid spines, and pelecypod debris, and the noncalcareous fraction (20-40%) is volcanic glass, palagonite, quartz, K-feldspar, and glauconite(?). Grain size is generally coarse to fine sand and in some cases seems to fine upward, but this is probably caused by drilling. Many of the grains have iron-oxide coatings, which give the unit its overall yellow brown appearance.

Subunit Va: Calcareous Sand (Hole 526C, Cores 12-16; 261.0-308.5 m)

The sediment color is very pale orange (10YR 8/2), very pale brown (10YR 8/4), grayish orange (10YR7/4), and dark grayish orange (10YR6/6) with only one core (Core 15) being olive yellow (2.5Y 6/6). The sediments are entirely coarse- to fine-grained calcareous sands.

Subunit Vb: Calcareous Silt, Calcareous Sand, and Calcareous Sandstone (Hole 526C, Cores 17–21; 308.5–356.0 m)

This interval differs from the one above by color and degree of cementation of the sediments. Subunit Vb is generally olive yellow (2.5Y6/6), although pebbles of pinkish gray (5YR8/1), poorly cemented calcareous sandstones are also present. These pebbles are well rounded, but this may have been caused by abrasion during drilling since the material is relatively soft and friable. The material in Cores 18 and 19 is lithified sandstone, and dark green glauconite(?) grains were found in Cores 19 and 20. The high glauconite(?) content ($\sim 7\%$) of the sandstone in Core 19 probably gives it its green gray (2.5Y6/2) color. The last sediments recovered from Site 526 were light vellowish brown (2.5Y6/4) gravel, sand, and sandstone in the core catcher of Core 21. The gravel in this case was shell debris, including two large $(3 \times 4 \text{ cm})$ mollusk fragments.

Concluding Remarks

The units present define two different sedimentary facies. Units I, II, and III appear to be the result of biogenic calcareous sedimentation in a relatively deep-water environment, and the high percentage of sand-sized foraminifers may indicate that winnowing has removed much of the finer-grained biogenic material.

In comparison, Units IV and V seem to indicate relatively shallow-water deposition. The presence of abundant shell debris, oncoliths, and glauconite together with iron-oxide coatings on some of the grains in a sequence of immature calcareous sands and sandstones suggests these sediments were deposited in a well-oxygenated shelf

Table 2. Summary of shipboard pore water study, Site 526.

Sample No.	DSDP Sample (interval in cm)	Sub-bottom Depth (m)	pH	Alkalinity (meq/l)	Salinity (‰)	Calcium (mmoles/l)	Magnesium (mmoles/l)	Chlorinity (‰)
	IAPSO		7.408	2.406	35.2	-	-	
	SSW		7.924	2.251	35.8	10.72	53.13	19.90
71	1-1, 143-150	29.43-29.50	7.258	2.607	35.2	10.88	52.82	19.20
72	6-2, 143-150	52.93-53.00	7.181	2.834	35.2	11.18	51.74	19.17
73	11-2, 140-150	74.90-75.00	7.204	2.566	34.9 (35.2)	11.26	51.84	19.27
74	16-2, 144-150	96.94-97.00	7.095	2.677	34.9 (35.2)	11.40	51.67	19.27
75	21-2, 140-150	118.90-119.00	7.262	2.733	35.2	11.43	51.62	19.34
76	26-2, 140-150	140.90-141.00	7.155	2.635	35.2	11.51	51.90	19.48
77	31-2, 140-150	162.90-163.00	7.245	2.643	35.2	11.49	52.16	19.69
78 ^a	36-2, 140-150	184.90-185.00	7.230	2.489	35.5	11.69	53.33	19.86
79	41-2, 145-150	206.93-207.00	7.234	2.703	35.5	11.66	52.81	19.69
80	45-2, 145-150	224.53-224.60	7.288	2.725	35.5	11.69	53.12	19.66

^a Possible drill water contamination.

Table 3. X-ray diffraction analysis, Site 526.

	Sample level in cm)	Minerals Identified	Remarks
	526A-43, 3 cm	Calcite, quartz	Pinkish carbonate
	526C-2-2, 105 cm	Calcite, unassigned peaks	Purple gray patch
	526C-16, 2 cm	Calcite, K-feldspar, quartz	Bulk sediment
Coarse fraction	526C-16, 2 cm	K-feldspars (orthoclase, anorthoclase,	Selected brown sand
	526C-15, 2 cm	possible microcline)	grain

sea. The calcareous material contains a high amount of recrystallized calcite, in contrast to Units I, II, and III.

INORGANIC GEOCHEMISTRY—INTERSTITIAL WATER STUDIES

The results of the interstitial water studies for Site 526 are summarized in Table 2 and shown graphically in Figure 3.

Salinity, alkalinity, and chlorinity are all fairly constant and are all within the range of normal seawater (see surface seawater, Fig. 3). pH is also constant, but values within the sediment pore waters are slightly lower than surface waters.

The calcium and magnesium curves are also constant, which is not true at the other sites. The vertical gradients indicate that calcium is not being dissolved and that magnesium is not being removed from the pore waters and precipitated as recrystallized carbonate. These trends indicate that this site was always above the lysocline and calcium carbonate compensation depth, at least as far back as the early Eocene.

No correlation exists between interstitial pore waters and lithology.

X-RAY DIFFRACTION ANALYSIS

Because of the highly calcareous nature of the sediments at Site 526, only five samples were analyzed by XRD. The results are shown in Table 3.

In Core 2, Hole 526C, a purple gray patchy sediment was discovered in the white soupy ooze. After concentration of the fine fraction, the X-ray diffractograms showed very strong calcite peaks as well as unassigned peaks at 44.6, 30.9, and $26.5^{\circ}2\theta$. The peak at $30.9^{\circ}2\theta$ could be the calcite 006 peak, but this is usually very weak compared with the other calcite peaks. However, in this case it is the second-strongest peak. Pinkish gray carbonate material from Hole 526A, Core 43, was also analyzed and showed only calcite and minor quartz peaks.

The calcareous sands of Unit V were analyzed. Bulk analysis of the sand from Hole 526C, Core 16, showed the dominance of calcite as well as K-feldspar and quartz. From the coarse fraction of Cores 15 and 16, several brown grains were isolated, crushed, and analyzed. The samples were acid-treated to dissolve any carbonate. The insoluble residue was composed of K-feldspar (orthoclase and anorthoclase and possibly micro-

Figure 3. Trends in pore water chemistry with depth, Hole 526A.

cline as well). The presence of iron oxides or hydroxides was suspected, but unfortunately the HCl also dissolved some of the brown stain on the surface of the grains. These phases commonly form amorphous coatings on mineral grains, and it was not surprising that no hematite or goethite peaks were observed, although a broad "hump" was observed between 10° and 20°2 θ in the "bulk" X-ray diffractogram from Core 16.

BIOSTRATIGRAPHY SUMMARY

Site 526, located at $30^{\circ}07'S$ latitude and $3^{\circ}08'E$ longitude, was drilled at a depth of 1054 m on the western arm of the Walvis Ridge. Four holes were drilled; drilling method and age are summarized as follows:

Hole	Drilling Method	Core	Age
526	HPC	1-2	Pleistocene
526A	HPC	1-46	early Pliocene-middle Eocene
526B	HPC	1-5	Pleistocene-early Pliocene
526C	Rotary Coring	1-20	early Pliocene-late Paleocene

Planktonic foraminifers and nannofossils were recovered from all cores from the Pleistocene to the middle Eocene; in cores below this level only a few nannofossils and large benthic foraminifers are present. Echinoids and ostracodes are found continuously through the section; bryozoans and mollusks, considered redeposited, occur in the Pliocene, Oligocene, and upper Eocene. The shallow-water benthic faunas of the middle Eocene through upper Paleocene, including bryozoans, large foraminifers, some smaller benthic foraminifers, echinoids, ostracodes, and mollusks, including oysters, are considered to be in place.

Biostratigraphy, done primarily on core catcher samples, is summarized in the biostratigraphic summary diagram (Fig. 2).

Calcareous Nannoplankton

Hole 526

Pleistocene (0-6.3 m)

The two cores recovered at this hole are Quaternary in age. Sample 526-1,CC, which contains common *Gephyrocapsa oceanica* and some questionable *Emiliana huxleyi*, belongs to the NN20-NN21 zonal interval. The first core also contains a few reworked species ranging from Miocene to Pliocene. Sample 526-2,CC is attributed to Zone NN19, based on the abundant occurrence of *G. oceanica* with *Pseudoemiliana lacunosa*. The calcareous nannoplankton found in both cores are well preserved.

Hole 526A

Pliocene (28.0-50.0 m)

Hole 526A was washed down to 28.0 m, where the first core was taken. Sample 526A-1-1, 40 cm, is placed within Zone NN15 of the lower Pliocene, based on the presence of *Reticulofenestra pseudoumbilica*, *Discoaster tamalis*, and *Pseudoemiliana lacunosa*. Samples

526A-2,CC through 526A-4,CC are assigned to Zone NN14-NN12 because they contain *Amaurolithus delicatus*, without *Discoaster tamalis* yet with questionable *Ceratolithus acutus*. Sample 526A-5,CC probably belongs to the NN12-NN11 zonal interval. Neither *C. rugosus* nor *D. quinqueramus* are found in this core.

Miocene (54.4-155.6 m)

Very rare Discoaster quinqueramus or D. berggrenii were found in Samples 526A-6,CC through 526A-8,CC, which places this interval within the Zone NN11 of the upper Miocene. Amaurolithus sp. could be traced down to Sample 526A-7-3, 123-125 cm, and very rare D. neohamatus first occurs in Sample 526A-7,CC. Samples 526A-9,CC through 526A-11,CC are attributed to Zone NN10, based on the absence of both D. quinqueramus and D. hamatus. Discoaster neohamatus and Minylitha convallis are quite common in this interval.

Samples 526A-12, CC through 526A-14, CC contain *D. hamatus* and belong to Zone NN9 of the middle Miocene. The base of NN9 could be traced down to Sample 526A-15-2, 30-32 cm, where very rare *D. bellus* occurs with common *C. calyculus* and *C. coalitus*. Then the presence of *Catinaster calyculus* and *C. coalitus* without *D. hamatus*, indicates the presence of Zone NN8 in Core 15, CC.

From Samples 526A-16,CC through 526A-19,CC age determinations are difficult because strong overgrowth has altered discoasters and made identification for *D. kugleri* impossible. Samples 526A-16,CC and 562A-17, CC probably belong to Zone NN7, based on the rare presence of *Cyclolithella nitescens*, without *Catinaster* sp. and *Coccolithus floridanus*. Samples 526A-18,CC and 562A-19,CC, *C. floridanus* occurs abundantly, which indicates Zone NN6 of the middle Miocene.

Sphenolithus heteromorphus, index species for Zones NN5 and NN4, first occurs in Sample 526A-20,CC. Very rare S. belemnos (without S. heteromorphus) are found in Sample 526A-21,CC, which indicates NN3 of the lower Miocene. The entire interval from Samples 526A-22,CC to 526A-29,CC is then dominated by C. floridanus, D. cf. deflandrei, S. moriformis, and C. pelagicus with rare Cyclolithella nitescens and Helicosphaera euphratis, an assemblage typical for NN2 and NN1 of the lower Miocene. Very rare D. bisectus was found in Sample 526A-29,CC, which indicates the transition to the upper Oligocene.

Oligocene (160.0-208.6 m)

The first Oligocene (Zone NP25) is found in Sample 526A-30,CC, which contains *Discoaster bisectus* and *Zygrhablithus bijugatus*. In Core 31,CC the first appearance (downhole) of *Sphenolithus ciperoensis* was encountered. Sample 526A-32,CC is the same as 526A-31,CC and belongs to Zone NP25, whereas Samples 526A-33,CC through 526A-35,CC are considered to belong to Zone NP24 of the upper Oligocene because of the appearance of *S. distentus*. The top of Zone NP23 is difficult to define because of the scarcity of *S. ciperoensis* at its first appearance. It is probably somewhere in Sample 526A-36,CC or 526A-37,CC. Zone NP23 can be traced down to Sample 526A-42-1, 20-21 cm.

The Oligocene interval at this site contains unusual nannofossil assemblages which were not encountered at other sites during this leg. First, *Chiasmolithus altus*, a high-latitude species, commonly occurs at this site and ranges up to the upper part of Zone NP25. Second, abundant *Braarudosphaera* were encountered in Samples 526A-33,CC and 526A-34,CC, which are within Zone NP24. This unusual species sporadically occurs downhole throughout the Oligocene interval.

The nannofossil preservation is in general moderate from the Pliocene through the Oligocene. However, preservation suddenly becomes poor in the Eocene.

Eocene (208.9-228.8 m)

Samples 526A-42-1, 52-53 cm, and 562A-42-1, 75 cm, are assigned to Zone NP20 of the upper Eocene, based on the rare occurrence of Discoaster saipanensis (usually with six arms). Samples 526A-42.CC and 526A-43,CC definitely belong to Zone NP20 because they contain common D. barbadiensis, D. saipanensis, and Sphenolithus pseudoradians. Then, the rare occurrence of Isthmolithus recurvus limits the age of Core 44-CC to not older than Zone NP19; and the rare occurrence of Chiasmolithus oamaruensis in Cores 45-CC and 46-CC limits their age to not older than Zone NP18 of the upper Eocene. However, it is worth mentioning that rare S. pseudoradians were still found in Samples 526A-44, CC through 526A-46,CC. Tentatively, they are considered to be contaminating specimens, because the original sediments are rather soupy.

Hole 526B

Pleistocene (6.3-15.1 m)

The first core was taken at 6.3 m. Sample 526B-1,CC contains abundant small *Gephyrocapsa* with rare *Pseudoemiliana lacunosa*. It therefore belongs to Zone NN19 of the lower Pleistocene, or to the small *Gephyrocapsa* acme interval of Gartner's late Neogene zonation (1977). Sample 526B-2,CC contains rare *Helicopontosphaera sellii* but no discoasters, which indicates the lower part of Zone NN19.

Pliocene (19.5-28.3 m)

The flora in Sample 526B-3, CC is late Pliocene (Zone NN18) in age, as indicated by the last appearance of *Discoaster brouweri*. Samples 526B-4, CC and 526B-5, CC, however, are already within Zone NN15 of the lower Pliocene because both of them contain *Reticulo-fenestra pseudoumbilica* and *D. tamalis*, without *Amaurolithus* species.

Hole 526C

Lower Pliocene-Upper Miocene (33.0-56.5 m)

We attempted to recover the Pliocene-Miocene transition at this hole. The first core, taken at 33.0 m, contains abundant *Reticulofenestra pseudoumbilica* together with *Discoaster tamalis*, without *Amaurolithus* species, and is typical of Zone NN15 of the lower Pliocene. The age assignment of the sediments at the depth of Sample 526C-1,CC of this hole is, however, questionable because, as indicated by Hole 526A, sediments from 42.5 m at this site should belong to Zones NN14 to NN13. The materials recovered in this core catcher are, therefore, not considered reliable. Sample 526C-2, CC contains a transitional assemblage between Zones NN12 and NN11. Both *Ceratolithus acutus* and *D.* cf. *quinqueramus* are present; however, no typical *D. quinqueramus* was found. Sample 526C-3, CC definitely belongs to Zone NN11 of the upper Miocene, based on the presence of typical *D. quinqueramus*.

Oligocene (194.5-213.7 m)

Core 4, drilled at 194.5 m, comes from within Zone NP23. It contains common *Coccolithus floridanus, Discoaster bisectus, Chiasmolithus altus, Sphenolithus predistentus, Zygrhablithus bijugatus, and Coccolithus pelagicus,* together with rare *Helicosphaera compacta.* Sample 526C-5,CC of this hole is, however, assigned to Zone NP22 of the lower Oligocene, based on the presence of *Reticulofenestra umbilica.* Zone NP22 can be traced down to Sample 526C-6-1, 20-21 cm, where it is underlain by upper Eocene.

Eocene (213.8-289.5 m)

Samples 526C-6-1, 30-31 cm, and 526C-6-1, 50-51 cm, are tentatively assigned to Zone NP20 of the upper Eocene because they contain rare *Discoaster saipanensis*. Samples 526C-6,CC through 526C-8,CC are also considered within the same zone because, besides common *D. barbadiensis* and *D. saipanensis*, these core catcher samples contain *Chiasmolithus oamaruensis*, *Isthmolithus recurvus*, and *Sphenolithus pseudoradians*.

Below Core 9 all the sediments recovered are coarse sands. The calcareous nannofossils extracted from the matrix are very rare and very poorly preserved. Some S. moriformis, Coccolithus pelagicus, C. floridanus, D. bisectus, D. barbadiensis, and Reticulofenestra umbilica were found sporadically in Samples 526C-9,CC through 526C-14,CC. This assemblage roughly indicates an upper Eocene age. In Sample 526C-14,CC, very rare D. multiradiatus, an upper Paleocene nannofossil, were found.

The lithology does not change much between Cores 14 and 15; however, the color of sediments changes significantly. This change also corresponds to a sharp floral change. The matrix extracted from Sample 526C-15,CC through 526C-20,CC yields some poorly preserved *Toweius eminens*, *T. craticulus*, *C. pelagicus*, and *C. cf. robustus*, which are typical of the upper Paleocene. Samples 526C-15,CC and 526C-17,CC belong to NP9 of the upper Paleocene, based on the presence of *D. multiradiatus*. Sample 526C-19,CC contains very rare *D. gemmeus*, a species not older than Zone NP7. Therefore it is possible that all the coarse sands recovered from Cores 15 through 20 belong to the upper Paleocene.

Foraminifers

Foraminifers were recovered from the top of the section in the upper Pleistocene to the basal sands of the middle Eocene age in Core 45 of Hole 526A. The section was a particularly complex one owing to contamination by Pleistocene sands throughout the section, contamination of some of the samples through the middle Miocene with upper Miocene materials, and influx of shallower-water sediments in parts of the Oligocene and Eocene.

Planktonic foraminifers were used to zone the section from the Pleistocene to the middle Eocene; large benthic foraminifers, not studied here, may be utilizable for dating some of the basal shallow-water sands.

Preservation of planktonic foraminifers is good from the Pleistocene through the upper Miocene, where even the smaller, solution-susceptible species were found. Some dissolution of coarse fractions is, however, apparent in the Miocene and occasionally in the Oligocene. Eocene foraminifers are recrystallized and strongly dissolved in some samples. Foraminifers in the shallow-water sands below the upper Eocene are abraded and recrystallized; in the lowest cores, most of the foraminifers are in pieces or recrystallized.

Pleistocene-Pliocene

Four holes were drilled at Site 526; three with HPC, followed by 526C with rotary coring. Pleistocene-Pliocene sediments were recovered in Core 526-1-Sample 526-2,CC; Samples 526A-1,CC-526A-4,CC; and Samples 526B-1-526B-5,CC.

Hole 526A

Hole 526A was started after washing down (25-30 m) to about the depth of the reflector seen on the seismic records. The top 30 cm or so of some cores contain reddish foraminiferal sand with abundant *Globorotalia truncatulinoides;* this part of the cores is probably material washed downhole. Zones PL3, 2 and 1 were recognized; typical faunas include *G. inflata, Globigerina nepenthes, Globorotalia conomiozea*, and also some *G. margaritae*.

Hole 526B

In Hole 526B, Cores 1 and 2 are Pleistocene in age and contain common *Globorotalia truncatulinoides*. Pliocene Zones PL5-6 were recognized but not separable. Zone PL3 was also present. Species were primarily characteristic of temperate waters. Sample 526B-5,CC also contains rare *G. multicamerata*, a tropical species which appears only sporadically in Leg 74 sites.

Hole 526C

In the rotary-cored Hole 526C, we washed through the Pleistocene and upper Pliocene before taking the first core. Zone PL5-6 mixed with Pleistocene was recognized. Preservation in this hole was particularly good.

Upper Miocene

Upper Miocene sediments were recovered in the interval from Section 526A-5-Sample 526A-11,CC.

Well-preserved sediments of upper Miocene Zones N17 and N16 contain enough specimens of *Neoglobo-quadrina acostaensis* to permit zonation. Ecologic events through this time period match those at Site 525. These

include the disappearance of *Globoquadrina dehiscens* near the base of Zone N16, the presence of many individuals with wide apertures near the top of Zone N16, and the increased abundances of *Globigerinita* spp. near the base of Zone N17. Turborotalids are slightly more abundant in these samples than at Site 525.

Middle Miocene-Upper Lower Miocene

These sediments were recovered in the interval from Samples 526A-11,CC to 526A-19-1, 50 cm, and from Samples 526A-19-3, 50 cm to 526A-21-1, 128 cm.

Zonation throughout this interval was difficult because of the lack of index species for the tropical zones and the absence of magnetic data to correlate temperate faunal datums. Most datums have been related to the standard zonation by reference to the nannofossil zonation. Accordingly, Zones N13, N12–N13, and N10–11 were identified. Typical faunas contained *I. siakensis, Globorotalia miozea, Globigerina nepenthes, Sphaeroidinella seminulina*, and *Globorotalia miotumida*.

Benthic foraminifers throughout the Miocene are very similar and show little variation from sample to sample; however, they are relatively scarce. A typical fauna includes *Globocassidulina*, *subglobosa*, *Siphonodosaria abyssorum*, *Gyroidina girardana*, *Neogloboquadrina umbonatus*, *Angulogerina* cf. *angulosa*, *Cassidulina crassa*, *Uvigerina auberiana*, *U. spinulosa*, various nodosarids, cibicidids, bolivinids, lenticulinids, and pleurostomellids. The fauna suggests deposition at lower slope depths.

Lower Miocene

Lower Miocene sediments were found in the interval from Core 526A-21 to Sample 526A-30, CC.

Faunas contain few zonal markers and are correlated to the standard zonation by reference to the nannofossil zones. *Catapsydrax* spp. is more abundant than at Site 525. Zones N9, N7, and N6-4 were all recognized. Many of the typical New Zealand planktonic foraminiferal species found in these faunas include *Turborotalia pseudocontinuosa*, *Globigerinoides inusitatus*, *T. semivera*, and the *Globigerina woodi* group. Both turborotalids and neogloboquadrinids are more abundant at this site than at the others of this leg.

Benthic species resemble those above and in the upper Oligocene; their more characteristic feature is their lack of variation from sample to sample. Echinoids and ostracodes are present throughout the section in relatively small abundances.

Upper Oligocene

Upper Oligocene sediments were found in the interval from Core 526A-30 to Sample 526A-39,CC.

A good upper Oligocene sequence was recovered, including Zones P22, P21, and P20. Fossils are generally better preserved than at all the other sites. *Globigerina angulisuturalis*, susceptible to solution, is common in these fauna. However, some dissolution is observed in the globigerinids and globoquadrinids. *Catapsydrax* spp. is also less common than at the other sites, a fact that may indicate that some dissolution has taken place.

Among the benthic foraminifers are common specimens of the genus Uvigerina, including U. rippensis, U. semivestita, U. auberiana, U. spinulosa, and several intermediate forms. Accompanying benthic forms are Globocassidulina subglobosa, Cassidulina crassa, Gyroidina girardana, and larger numbers of Cibicides spp. and Lenticulina. The species of Uvigerina, used to estimate the depth of deposition (Fig. 4), indicate that the fossils of Zone P22 were deposited at depths similar to those of the lower Miocene-e.g., on the slope. In Zone P21, the faunas indicate depths closer to 600-800 m. Faunas of Zone P20 are similar except that toward the very base of this zone erosion of shallow-water materials is intensified and includes some Pleistocene sands and possibly upper Eocene benthic foraminifers. The in situ uvigerinids in Core 38 (P19-P18) suggest water depths closer to the 500-m range.

Lower Oligocene

Lower Oligocene sediments were found in the intervals from Core 526A-40 to Sample 526A-41,CC and in Sample 526-5,CC.

The upper portion of the P18-P19 zonal interval was recovered at 526A, and the lower part, but not the bottom, was retrieved at Hole 526C. Faunas include *Chilo*guembelina cubensis, Globigerina gortanii, T. nana, Catapsydrax martini, and G. pseudovenezuelana inter alia. Preservation is only moderate in Hole 526A but good in the sample from 526C. Benthic faunas contain larger proportions of shallow-water material, much of which may be redeposited. The uvigerinids suggest deposition on the upper slope, as does the large amount of inmixed shallower-water material. The basal Oligocene was not recovered at this site.

Upper Eocene

Upper Eocene sediment were found in the intervals from Core 526A-42 to Sample 526A-44,CC and from Core 526C-6 to Sample 526A-7,CC.

Zone P16 contains abundant recrystallized Globigerinatheka index and G. subconglobatus and Turborotalia cocoaensis, T. frontosa, and T. centralis, which give it its age designation. Planktonic foraminifers are very dissolved; nevertheless, Hantkenina alabamensis and Cribrohantkenina inflata, not found at the other sites, are preserved here. Benthic foraminifers and coarse benthic invertebrate debris with bryozoans, echinoids, ostracodes, large echinoid spines and pieces, and mollusk fragments are common. The in situ uvigerinids, however, suggest deposition near 200–500 m of water. Species include Uvigerina auberiana and U. semivestita forma camagueyana.

The presence of G. semiinvoluta in faunas including Turborotalia pomeroli, T. frontosa, and T. cerroazulen-

Figure 4. Depositional depth estimates based on species of Uvigerina, Site 526.

sis indicates Zone P15. Foraminifers are moderately well preserved and constitute a *Globigerina* ooze with some shelf debris. The proportion of shelf-depth material is, however, less than in the overlying zone. The uvigerinids present suggest deposition at depths close to 500 m (see Fig. 4).

Middle Eocene

Middle Eocene sediments were found in Sample 526A-45-1, 28 cm.

Most of the sediments below Core 44 contain large pieces of invertebrates, amorphous carbonate, glauconite, quartz, and some large benthic foraminifers such as *Heterostegina* and *Asterocyclina*. The transition between these sediments and those containing planktonic foraminifers in abundance occurs rapidly in Core 45.

Summary

The combined sections from 526, 526A, 526B, and 526C contain a relatively complete record from the Pleistocene to the late Paleocene. Results of core catcher studies including the following:

1) Preservation of all fossil groups at this site is markedly better than at the deeper sites of this leg. Both foraminifers and nannofossils are well to moderately well preserved throughout the Neogene and into the upper Oligocene with one exception: nannofossils are very dissolved in the parts of the middle Miocene that correspond to the hiatuses or intensified dissolution at other sites on this leg. Preservation is only moderate through the remainder of the Oligocene and poor in the upper and middle Eocene; below this level all planktonic foraminifers are recrystallized to very fine-grained carbonate, benthic foraminifers are strongly dissolved and/or abraded, and nannofossil faunas are much reduced in diversity and poorly preserved.

2) Based on the identified foraminiferal zones, four intervals may be missing from the section: the top of the early Pliocene, Zone P14, and earliest Oligocene Zones NP22-21. It is difficult to establish continuity in the shallow-water sands underlying the middle Eocene, but it appears that there is a major hiatus from the middle Eocene to the late Paleocene.

3) The temperate-water nannofossil assemblages resemble those of the other sites of this leg except in the upper Oligocene, where a high-latitude species, *C. altus*, occurs in abundance. The species continues sporadically through the lower Oligocene, but in lesser abundances. Below the occurrence of this species, *Braarudosphaera*rich samples are found and attributed to Zone NP24 of the upper Oligocene.

4) The temperate planktonic foraminiferal faunas of the Neogene resemble those at other sites of this leg, except that species of *Neogloboquadrina* are much less abundant in the upper and middle Miocene, and *Catapsydrax* spp. more abundant in the lower Miocene. These differences cannot be ascribed to dissolution alone.

5) Benthic foraminiferal faunas throughout the Neogene and upper Oligocene are low in diversity and do not vary markedly from sample to sample, suggesting high stability of this bathymetric zone (800-1000 m). Faunas do not resemble those at Site 525 or appear intermediate between those at Site 525 and those expected on the upper slope. Rather, there is a unique assemblage that may be specific to mid-oceanic sites underlying intermediate waters.

6) Estimates of the depositional depth of the site, made according to the presence of specific species of the benthic foraminiferal genus Uvigerina, suggest that the site lay in the 600 m to greater than 800 m range through the Neogene and into the upper Oligocene, when depositional depths were probably closer to 600-800 m. By the middle Oligocene, a shallowing can be inferred both from the uvigerinids and the extreme amount of inmixed shallow-water debris. Such episodes of intense erosion in shallower-water sites have been related to regressions, and our results suggest that this occurred near the base of Zone P20 at Site 526. During the lower Oligocene, depositional depths were close to 600 m, but shallowed to depths closer to the shelf/slope intercept above the lower Oligocene hiatus. In the underlying upper Eocene, deposition from 200-500 m water depth is indicated at the top of the sequence, with slightly greater depths in the top of Zone P15 and lower ones in the upper Eocene. An extreme shallowing is indicated between the upper and middle Eocene, with the middle Eocene probably deposited at shelf depths.

SEDIMENT ACCUMULATION RATES

Figure 5 is an age-depth plot for Site 526, constructed as for the other Leg 74 sites. The time scale is discussed in the Introduction (this volume). Between the lower Oligocene and the top of the section, there is no indication of a significant break in sediment accumulation. There may be a small hiatus at the Eocene/Oligocene boundary, as Zone NP21 was not recognized in either Hole 526A or 526C, but even here the evenness of the age-depth plot suggests that the hiatus must be shorter than at other sites.

In general, accumulation rates appear to be lower than at other Leg 74 sites; the lower Pliocene, in particular, shows only about 1.2 cm/ 10^3 y., whereas at other sites this interval showed accumulation at over 2 cm/ 10^3 y.

Figure 6 shows accumulation rates broken up into components, using the same methods discussed for Site 525. It is immediately clear from this figure that the reason for the low accumulation at this site, particularly in the Neogene, is the remarkably reduced accumulation of fine-grained (coccolith) carbonate. This is the result of winnowing, as was predicted for this crestal site. What is more surprising, however, is that the foraminiferal accumulation rate is so high. At Site 525, in a water depth of 2479 m, foraminiferal preservation was very good in the Pleistocene and Pliocene, yet a comparison of foraminifer accumulation rates between Sites 525 and 526 in this interval shows that 526 accumulated foraminifers almost twice as fast, implying that about half the foraminiferal rain at 525 was removed by dissolution.

Even this comparison does not adequately portray this situation, because smear slides of the fine (<63 μ m)

Figure 5. Age-depth plot for Site 526. Horizontal lines represent ranges in ages determined by nannofossils (solid line) and foraminifers (dashed line).

fraction at Site 526 shows that it comprises up to 40% foraminifers (60% coccoliths), whereas at deeper sites this fraction is 80 to 90% coccoliths. Two factors are operative: first, winnowing has removed coccoliths, preferentially enriching the fine fraction in foraminifers that are in the larger end of this fraction. Second, it is the very small foraminifers that dissolve most readily, so that the accumulation rate for very small foraminifers (in the <63 μ m fraction) is probably higher at Site 526. Further study of the fine fraction will be needed to assess the relative importance of these two factors.

Of particular interest is the remarkably high foraminiferal accumulation in the interval from 13 to 10 Ma. Even at Site 527, our deepest site, there was some carbonate accumulation in this interval, and the fact that it is associated with high accumulation at Site 526 shows that it is the result of greatly enhanced productivity in the region.

Although the age-depth plot is rather regular through the Oligocene, this interval was broken into segments for Figure 6 because the foraminiferal content varied. It will be seen that between 32 and 38 Ma foraminiferal accumulation was about $0.05 \text{ g/cm}^2/10^3\text{y}$. only (about one tenth of the Pliocene-Pleistocene rate). On the one hand, this is interesting (in contrast with the mid-Miocene interval discussed in the foregoing) because it explains the very low or negligible foraminiferal accumulation in this interval at the deeper sites. On the other hand, it emphasizes the value of drilling the shallow Site 526; without it, a continuous sequence of planktonic foraminifers in reasonably good preservation would not have been available for faunal and isotope studies.

It is obvious from Figure 5 that the accumulation rates for shallow-water carbonate in the deepest part of the section are only the crudest approximations. On the other hand, it is a tribute to the pervasiveness of nannofossils, and the persistence of nannofossil biostratigraphers, that we can make any approximations at all.

MAGNETICS

As in Hole 525B, the remanence in the piston-cored sediments at Site 526 proved to be magnetically unstable. No polarity information is available for it.

PHYSICAL PROPERTIES

The cylinder technique was used for gravimetric measurements in Holes 526, 526A, 526B, and down to Core 8 of Hole 526C. Below that, the bulk piece method was used. Owing to the high sand content in sediments recovered at this site, only a few vane shear tests were performed, and the needle penetrometer was not used (see Fig. 7 and Table 4 for details).

The upper three lithologic units (ooze and transition ooze/chalk) have fairly uniform physical properties. The gravimetric data show a slight trend to increasing diagenesis with increasing depth, which can be seen as a slight increase of wet-bulk density and a decrease of water content and porosity. Superimposed on these trends, there is a zone between 60 and 120 m sub-bottom which shows low values of bulk density (and thermal

Figure 6. Accumulation rates broken up into component parts, Site 526.

conductivity) and high values of water content and porosity. It cannot be clearly distinguished whether these variations are due to drilling disturbance or whether they represent changes in sedimentary features. The GRAPE densities throughout Units I to III are generally about 0.1 g/cm³ higher than the gravimetric density values.

Because of low recovery and high disturbance, only a few data could obtained from Units IV and V. Unit IV, consisting of chalks and limestone layers, is characterized by a sharp increase of bulk density with a corresponding decrease of water content and porosity. The limestone recovered in Core 9 of Hole 526C had a bulk density of 2.46 g/cm³, water content of 6.24%, and porosity of 15%. In Unit V, there seems to be a slight trend of increasing bulk density and decreasing water content and porosity with depth, but owing to the low recovery it cannot be seen clearly. Bulk density lies between 2.0 and 2.1 g/cm³, water content is about 20%, and porosity is about 40%. Shear strength was measured on only a few cores of Hole 526A (Units I-III). The data reveal a strength of less than 50 g/cm², indicating that the sediment has hardly any cohesion.

The shrinkage of the sediments of Units I through III varies between 0 and 10% of volume, without an ob-

vious trend in the upper two units. In Unit III and the uppermost part of Unit IV, shrinkage clearly decreases. Sonic velocity is constant in the upper three units with only small variation. The limestone in Unit III (Hole 526C, Core 9) revealed a relatively high sonic velocity of about 4.5 km/s. In Unit V, sonic velocity varies between 2.2 and 2.7 km/s, and there seems to be a slight increase with depth. Though thermal conductivity varies widely, it shows a trend of increasing conductivity with depth. In Units IV and V, no further measurements were possible because the samples were too small.

SUMMARY AND CONCLUSIONS

Site 526 (SAII-7) is on crust of Anomalies 31-32 age (about mid-Maestrichtian) and located on what appears to be a NNE-SSW-trending block of the Walvis Ridge just to the south of Site 525 (SAII-1) and the Walvis Ridge "transect" (SAII-1-6). It is by far the shoalest site drilled on this cruise. The four holes give a complete section from the seafloor through the sedimentary layers to 356 m sub-bottom. The basement complex was not encountered.

Hole 256. We obtained 2 piston cores with a total penetration of 6.3 m sub-bottom and 57% recovery.

Figure 7. Summary of downhole physical properties, Site 526.

Table 4. Physical properties summary, Site 526.

		2-Min. Count		Gravim	etric Data						
		GRAPE			Salt-Cor	rected		Vene Chan	Sonic	Acoustic	
Sample (interval in cm)	Sub-bottom Depth (m approx.)	(g/cm ³) ↓ ⊥ To Bedding	Wet-Bulk Density (g/cm ³ a	Grain Density approx.)	Wet-Water Content (%)	Porosity (%)	Shrinkage (vol.%)	Strength () = remolded (g/cm^3)	to Bedding (km/s) (km/s)	to Bedding (10 ⁵ g/cm ² s)	Thermal Conductivity (W/m °C)
Hole 526			1. Sector				Caracter of their	24492-0102-02		1000 000 000 000	
1-1, 144-147	1.4				47.0						
2-1, 141-143	3.4		1.69	2.64	35.7	58.8	4.0		1.63	2.75	1.32
Hole 526A											
1,CC, 14-22	32.4		1.72	2.69	34.4	57.6	5.2		1.61	2.77	1.18
2-2, 2-4	33.9				34.9						
2-2, 137-140 3-3, 12-20	35.3 39.9	1.76	1.72	2.68	34.3	57.7	4.0		1.55	2.72 2.76 1.55	
3-3, 34-36	40.1	1 99			35.5						
4-1, 124-139	42.6	1.00			34.1				1.60	3.02	22 - 522
5-2, 20-28	47.3		1.72	2.69	34.8	58.3	5.7		1.63	2.81	1.12
6-2, 15-17	51.7				33.4					(14.19-14)	
6-2, 36-48 6-2, 85-87	52.0 52.4	1.87			35.3				1.62	3.04	1.42
7-2, 129-132	57.2		1.72	2.70	34.8	58.5	5.4		1.58	2.72	
8-3, 116-126 9-3, 94-96	63.0 67.1	1.84	1.70	2.67	35.5	58.9	4.9		1.62	2.75	1.37
9-3, 138-141	67.6		1.66	2.64	37.6	60.7	5.2		1.60	2.65	
10-2, 105-107	70.2	1.85			35.7						
11-1, 117-119	73.2				41.5	(2.2			1.61	2.99	1.49
12-1, 136-139	74.7		1.51	2.34	42.5	62.7	5.8		1.58	2.39	
12-2, 136-150	79.3	1.72			20.0				1.59	2.73	1.23
13-2, 140-149 13,CC, 15	83.8				39.9				1.66		
14-1, 147-150	86.7		1.67	2 65	44.1	60.0	75		1 59	2.66	1.23
15-1, 125-128	90.9		1.07	2.05	36.8	00.0				2100	1100
15-2, 125-135 16-1, 84-92	92.4 94.9	1.83	1.63	2.60	38.3	61.1	8.3	51 26	1.59	2.91	
16-1, 126-130	95.3		1105	2.00	5015	01.1	0.0		1.60	2.60	1.04
16-2, 84-87 17-2, 5-12	96.4 100.0		1.60	2.58	39.2 40.2	62.8	9.6		1.59	2.54	
17-3, 5-8	101.5				39.0	0.000			1.62	2.04	1.24
18-2, 11-18	104.5	1.81			38.5				1.62	2.94	1.24
18-4, 5-7	107.0				38.3						
19-2, 142-145 19,CC, 31-34	110.1				37.4						
20-1, 5-7	111.7		1.70	2 67	32.4	50.0	7.1	26	1.64	2 70	1.20
21-1, 135-138	117.4		1.70	2.07	40.4	39.0	7.1	25	1.04	2.19	1.30
21-2, 135-138	118.9	1 84	1.73	2.68	33.8	57.1	6.3	49	1.63	3.00	
22-1, 135-138	121.8	1.04			35.5			40	1.05	5.00	
22-2, 135-138	123.3	1.85			32.1			21	1.61	2.98	1.60
23-1, 145-148	126.3	1100			31.1		100.000			2	
23-2, 137-150 23-3, 147-150	127.8		1.78	2.79	32.8 33.1	57.0	4.8	7	1.61	2.86	1.69
24-1, 139-142	130.6				34.5						
24-2, 141-142 24-3, 106-142	132.1 133.4	1.93			32.6				1.58	3.06	1.49
25-1, 139-142	135.0				32.5						
25-2, 139-142	136.5		1.73	2.73	33.8	58.8	5.2	30	1.60	2.77	1.28
26-2, 138-141	139.4	1.84			34.7				1.61	2.96	1.66
27-2, 106-109	142.5	1.04			32.5				1.01	2.90	1.00
27-3, 97-109	146.5		1.75	2.72	33.4	57.1	3.1	15	1.59	2.79	1.53
28-1, 135-138	148.2				35.7			5.2			
28-2, 134-147 28-3, 124-127	149.7	1.86			34.4			18	1.59	2.96	1.66
29-1, 130-149	152.6		1.76	2.70	32.9	56.3	9.7	24	1.60	2.82	1.53
29-3, 146-149 30-1, 125-127	155.6				32.3 34.2						
30-2, 128-139	158.4	1.85						15	1.57	2.90	1.38
31-3, 114-132	161.4		1.75	2.66	32.5	55.3	5.0		1.61	2.81	1.66
32-1, 135-138 32-2, 131-138	165.8 167.2	1.89			32.5				1.62	3.06	1.51

Table 4. (Continued.)

		2-Min. Count		Gravim	etric Data						
		GRAPE	-		Salt-Cor	rected			Sonic	Acoustic	
Sample (interval in cm)	Sub-bottom Depth (m approx.)	Density (g/cm ³) ⊥ To Bedding	Wet-Bulk Density (g/cm ³	Grain Density approx.)	Wet-Water Content (%)	Porosity (%)	Shrinkage (vol.%)	Vane Shear Strength () = remolded (g/cm ³)	Velocity ⊥⊥ to Bedding (km/s) (km/s)	Impedance ⊥ to Bedding (10 ⁵ g/cm ² s)	Thermal Conductivity (W/m °C)
Hole 526A (Con	t.)										
33-1, 146-149	170.3				31.9						
33-2, 138-149	171.7		1.76	2.64	31.4	54.1	7.3	41	1.60	2.81	
34-1, 138-141	174.6	1.90									
34-2, 126-130	176.0								1.61		1.66
34-3, 101-104	177.2				27.2						2
35-1, 88-90	178.5				29.3						
35-3, 80-89	181.5	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1.75	2.63	31.9	54.6	6.7	3	1.55	2.71	
36-2, 11-19	183.7	1.89							1.56	2.94	1.55
36-2, 75-77	184.2				29.8						
37-2, 114-116	189.0				32.6				1.00	2.02	
37-3, 28-34	189.7		1.79	2.68	30.4	53.2	5.7	33	1.58	2.83	
39-2, 137-139	198.1	1.00			30.8				1 60	2.0	1.55
40-2, 114-126	202.3	1.90							1.38	3.0	1.55
40-2, 137-139	202.5				31.1						
41-2, 10-12	205.0		1 00	2 70	27.0	40.1	2.2	0	1.60	3.02	
41-2, 94-100	200.5		1.00	2.70	20.0	49.1	3.2	,	1.00	5.02	
43-2, 02-03	214.9	1 80			20.0				1.61	3.04	1.62
44-2 130-136	220.0	1.09	1.76	2 67	32.1	55 1	2.1	42	1.61	2.83	1.02
44-2, 145-147	220.2		1.70	2.07	32.3	55.4	2.1	72	1.01	2.05	
Hole 526B	1999										
1-1, 124-126	7.7		1.66	2.68	37.7	61.3	6.8				
4-2, 93-103	21.9		1.67	2.75	38.3	62.4	0.1		1.61	2.68	
5-1, 138-140	25.3				41.0						
5-2, 139-142	26.8				37.4						
5-3, 135-148	28.3	1.83							1.63	2.98	1.47
Hole 526C											
2-3, 135-138	46.9				36.7						
2-4, 135-138	48.4				33.8						
2-5, 135-138	49.9				34.1						
2-6, 122-138	51.3		1.75	2.72	33.4	57.0	9.1		1.66	2.90	1.51
3-1, 147-150	53.5				36.3						
3-2, 140-150	55.0	1.84							1.67	3.08	
4-2, 7-28	196.1		1.79	2.71	32.6	54.7	8.0		1.58	2.82	1.50
4-2, 7-28	196.1				31.3						
5-6, 16-18	211.7				32.3						
7-2, 40-48	219.9	1.88							1.57	2.96	1.24
8-4, 46-48	228.0			2000	32.7						
8-5, 27-44	229.3		2.00	2.72	21.5	42.4	3.4				
8-5, 27-44	229.3				21.7						
9-1, 36-41	232.9	2.44 2.46	2.46	2.71	6.2	15.0			4.53 4.42	11.15 10.88	
17,00, 18-20	309.0	1.96	2.00	2.68	20.4	41.2			2.68	5.30	
18-1, 31-33	318.3	2.04	2.00	2.72	21.6	42.2			2.19	4.38	
20,CC, 14-16	338.6	2.05 2.04	2.09	2.74	20.8	41.1			2.37 2.23 2.74 2.59	4.95 4.00 5.55 5.25	

Hole 526A. We obtained 46 piston cores with a total penetration of 200.8 m and a recovery rate of 100 + %. Hole 526B. We obtained 5 piston cores with a total

penetration of 22.0 m and 61% recovery.

Hole 526C. Twenty-one rotary drilled cores were recovered with a total penetration of 185 m and recovery rate of 38%.

The major geological results are given in the following paragraphs.

Lithology: Sediments

Five major lithologic units are observed.

Unit I extends from the mud line to 133.6 m sub-bottom (early Miocene) and consists predominantly of very homogeneous white foraminifer ooze, nannofossil-foraminifer ooze, foraminifer-nannofossil ooze, and nannofossil ooze. Carbonate content is generally greater than 95%. Sedimentary structures are not observed in this unit. Bioturbation is present only between 30 to 60 m sub-bottom. In general, the foraminifer content decreases from about 94% at the top to 12% at the bottom of the unit. This parameter divides the unit into three subunits (see sediment lithology, this chapter).

Unit II extends from 133.6 to 199.6 m sub-bottom (early Oligocene) and consists predominantly of very pale orange and brown, pinkish white and gray, and pink nannofossil ooze with minor intercalated fora-minifer-nannofossil oozes and chalks. It is relatively nannofossil-rich, whereas I and III are foraminifer-rich. Carbonate content is about 95%. Bioturbation is slight to moderate in the upper 22 m, with identifiable *Planolites*, halo, and vertical burrows. Little bioturbation is present below this interval in the unit.

Unit III extends from 199.6 m to 221.6 m sub-bottom (late Eocene) and consists predominantly of a homogeneous pinkish gray and white foraminifer-nannofossil ooze with minor nannofossil ooze and foraminifernannofossil chalk. Carbonate content is 95%. Sedimentary structures and bioturbation are generally absent.

Unit IV extends from 221.6 m to about 242(?) m subbottom (late Eocene) and consists of a white, rubbly, highly fossiliferous limestone. The rubble consists of friable, vuggy oncoliths, crinoid fragments, pelecypod debris, and bryozoans.

Unit V extends from about 242(?) m to 356 m subbottom (the depth at which drilling terminated owing to hole instability) and consists of yellow to pale brown fossiliferous calcareous sands and sandstones. Benthic foraminifers, bryozoans, echinoid spines, and pelecypod debris are recognized.

In summary, two different sedimentary facies are observed. Units I to III result from a deep-water sedimentary environment. The high percentage of sand-sized foraminifers suggests that winnowing has removed much of the finer material. The presence of abundant shell debris, oncoliths, and the like suggest shallow-water deposition of the two lowermost units.

Seismic Stratigraphy

The seismic stratigraphy is shown in Figure 8. The basal, very smooth dark reflector is interpreted as the basement complex—similar to that at Sites 525, 527, and 528. We did not reach this reflector at this site. The top of the reflector at about 0.12 s above basement is interpreted as representing the top of the fossiliferous lime-stone layer (near the Oligocene/Eocene boundary). The opaque layer between the limestone and basement reflectors is a manifestation of the fossiliferous sands. No convincing correlation of stratigraphy with the upper stratified seismic reflectors is observed at the present time. There was no logging at this site.

Accumulation Rates

Until the late Eocene, this site accumulated shallowwater sands and limestones; thus comparisons between it and other, deeper sections on the transect of sites are meaningful only back to 38 Ma. The overall pattern of change in accumulation rates for the latter two-thirds of the Tertiary is very similar to that identified at the deeper sites of the transect. The accumulation rate maxima in the lower Pliocene and upper part of the middle Miocene are clearly present at Site 526. If it is assumed that the carbonate section at Site 526 has suffered minimal dissolution, these maxima in accumulation would represent maxima in the supply of carbonate to the seafloor.

Although the preservation of calcareous microfossils at Site 526 exceeds that at any other site of the transect, the average accumulation is somewhat lower than at some of the deeper sites. For example, the lower Pliocene maximum in accumulation rate is approximately $1.3 \text{ g/cm}^2/10^3\text{y}$, whereas at Site 527, the same interval has an average accumulation rate more than twice this value. The difference lies not in preservation but in the winnowing of the fine-grained carbonate from the shoaler areas of the Walvis Ridge and the deposition of this chaff on the flanks of the Ridge. Thus only the accumulation rate of the coarse-grained carbonate, which remains in place, gives an indication of the amount of dissolution taking place. For example, during the same lower Pliocene interval, the coarse-grained carbonate (>63 μ m) at Site 526 accumulated at a rate five times greater than that at Site 527, near the bottom of Walvis Ridge. The result of this combination of strong winnowing and low dissolution is a nearly complete and wellpreserved section that is relatively coarse grained and has moderate to low average accumulation rates.

Biostratigraphy and History of the Walvis Ridge

A continuous section was drilled from the seafloor to 356 m sub-bottom near the crest of a block of the Walvis Ridge. This block appears to be structurally separate from the one to the north on which the rest of the Leg 74 sites are located. However, the age of the crust, as determined by crustal magnetic anomalies, appears to be the same as that of the neighboring part of the ridge. The depth versus time subsidence curve based on crustal cooling indicates that this site was above sea level until the late Paleocene (about 55 Ma) and has gradually sunk to its present depth of 1054 m. Paleontologic evidence generally supports this estimate of the time of submergence; however, the very sandy deposits recovered in the deepest cores contain few fossils that could provide a very precise age.

The rate of submergence can be estimated both by the crustal-cooling or "backtracking" technique and by estimates of the depth habitat of the benthic fauna. In shallow waters, these depth habitats are more finely divided; thus a rather detailed comparison can be made between the two methods of estimating paleodepths (see biostratigraphy, this volume). The results of such a comparison show generally good agreement in the overall deepening trend; however, the faunal evidence suggests shoaler depths than the backtracking technique in the oldest part of the section. Given the assumptions inherent in the two techniques, the discrepancies may not be significant. In the Oligocene part of the section, agreement between the two techniques is good; however, the benthic faunas indicate a temporary shoaling at about 32 m.v. that may reflect a brief eustatic fall in sea level.

The section overlying the shallow-water sands from the middle Eocene to the Pleistocene is relatively complete and well preserved. Based on biostratigraphic zones not found in the section, we believe that a few short hiatuses may exist in the lowermost Oligocene, the upper middle Miocene, and the mid-Pliocene. However, accumulation rate plots show no significant breaks in sedimentation above the lower Oligocene.

The average accumulation rate at this site is generally lower than at deeper sites. This difference results from the removal of fine-grained material by winnowing. The remaining sediments tend to be rich in the sand fraction, particularly in the Neogene. If it is assumed that little or no carbonate has been dissolved in this section, then the accumulation rate of the coarse-grained carbonate debris indicates maxima in the carbonate rain during the early Pliocene and the late part of the middle Miocene.

Figure 8. Correlation between seismic records and lithostratigraphy, Site 526.

Both foraminifers and calcareous nannofossils are well preserved throughout the Neogene and into the upper Oligocene, but deeper in the section alteration of the carbonate results in preservation ranging from moderate in the Oligocene to poor in the Eocene.

Like other sites in the Walvis Ridge transect, the planktonic fauna and flora indicate temperate conditions; however, there are differences in the relative abundances of certain species that cannot be attributed to differences in preservation. Although the benthic foraminiferal fauna does not vary greatly through the upper Oligocene and Neogene, its composition is quite different from that at deeper sites on the Walvis Ridge and from what is expected on the upper continental slope. Thus it is probably representative of the open ocean benthic fauna found in intermediate waters.

REFERENCES

- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Mar. Micropaleont., 2:1-25.
- Rabinowitz, P. D., and Simpson, E. S. W., 1979. Results of IPOD site surveys aboard R/V Thomas B. Davie: Walvis Ridge Survey. L-DGO Tech. Rept., JOI Inc.

E BZ6 HULE	CORE (HPC) I CORED INTERV	/AL 0.0-1.9 m	SITE 526 HOLE	CORE (HPC) 2 CORED INTERVA	AL 1.9-0.3 m
BIOSTRATIGRAPHIC BIOSTRATIGRAPHIC FORAMINIFERS NANNOFOSSILS RADIOLARIANS DIATOMS	RECTON RECTON RECTON RELEAS BETRANKAGE RELEAS RELEASED RE	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIOE 2016 RAMINIFIE FORAMINIFI	SECTION RETERS MICLING BUILTING SEDMERVICE SEDMERVICE SEDMERVICE SEDMERVICE	LITHOLOGIC DESCRIPTION
R) QQW		SAND-SIZE FORAMINIFER OOZE N8 This core contains a sand-size foraminifer cote, The color is a very light gray (N8) to very pale orange (10YR 8/2). This is the multire core which is soupy. Exhinoderm fragments, pteropoids, and trail mollak were identified in addition to foraminifers and nanofossils. The upper part of Section 1 containd a white zone which apparend to be more consolidated and contains a higher amount of nanofossils foraminifers and contains a higher amount of nanofossils for annofossil for a cote). 10YR 8/3 10YR 8/	early Pleistocene late Pleistocene Nu22 (F) Nu19 (N) Nu19 (N) Nu19 (N) S		NANNOFOSSIL-FORAMINIFER OOZE This core contains a homogeneous highly fluidized nanofossil-foraminifer coze. The dominant colors are very light gray (NB) and very pais horwn (10VR 7/4). The coze in the bottom of Section 1 (120–150 cm) and the Core-Catcher is more coherent, contains more nanofossil ragments are present in the coarser fraction (pelecycode, gatropode, pteropode, scaphopode and schinoderm fragments. N9 D D D D D Texture: SMEAR SLIDE SUMMARY: SMEAR SLIDE SUMMARY: N9 D Texture: SMEAR SLIDE SUMMARY: Support 1 - 15 d0 Sint 10 - 20 1. Clay 50 - 15 50 Composition: Quartz - TR Palagonite TR 3 1 2 Echinoids 1 2 1 2 Molluka 1 - 3 Guarceous nanofossits 51 50 80 60 Fish remains - 2 2 3 Dindingeliatas 1 ORGANIC CARBON AND CARBONATE: 12 Organic carbon -

SITE 526 HOLE	A CORE (HPC) 1 CORED INTERV	AL 28.0-32.4 m	SITE 526 HOLE	A CORE (HPC) 2 CORED INTER	IVAL 32.4–36.8 m
TIME - ROCK JUNT BIOSTRATIGRAPHIC FORAMINITERS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS MANDOLARIANS PSSO	ILL TEER NOLL SECTIONAL SECTI	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATICERAPHIC SOURTRATICERAPHIC FORMINIER MANNOFOSILIS MANNOFOSILIS MANNOFOSILIS MANNOFOSILIS MANNOFOSILIS	RECTION A SECTION A METERS ADDIOHLIT	LITHOLOGIC DESCRIPTION
early Pliocene P12 (F) B B B B B B		NOTABA2 10YR 8/2 SANDY NANNOFOSSIL FORAMINIFER OZE The core contains a very pale orange (10YR 8/2) to inter throughout the section are gray to black mottles and throughout the section are gray to black mottles and and 140 cm (Section 2). N The core contains a very pale orange (10YR 8/2) to inter throughout the section are gray to black mottles and and 140 cm (Section 2). N The core contains a very pale orange (10YR 8/2) to pale yoods, echinoderm tragments, and large forange identified. N The core core core very for pale yoods, echinoderm tragments, and large forange identified. N The core core core very for pale yoods, echinoderm tragments, and large forange identified. N The core core core very for pale yoods. N The core core core very for pale yoods. N The core core very for pale yoods. N The core core core very for pale yoods. N The core core very for pale yoods. N The core core core very for pale yoods. N The core core core very for pale yoods. N The core core core core very for pale yoods. N The core core core core core core very for pale yoods. N The core core core core core core core cor	early Plicene BD BD W		N9 SANDY NANNOFOSSIL FORMUNIFER OOZE This core contains a white (N9) sandy nannofossil foraminifer ooze. Faint mortles, suggestive of biologic gray bands or lamination occur which are horizontal to burrows. The sand fraction of the samples are composed mostly of carminifer. SMEAR SLIDE SUMMARY: 100 240 0 0 101 100 100 200 102 100 100 100 200 102 100 100 100 200 100 2100 300 100 2100 3-00 100 2100 3-00 100 2100 3-00 100 2100 3-00 100 210 3-00 100 200 100 200 1

SITE 526 HOLE	A CORE (HPC) 3 CORED INTER	VAL 36.8-41.2 m	SITE 526 HOLE A CORE (HPC) 4 CORED INTERV	AL 41.2-45.6 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE RAMINIFENS NAMMORGISLIS RADIOLARIANS	TER TER BUTCHOR RECTON RECTONNESS COLONY COLORADA COLONY COLON	LITHOLOGIC DESCRIPTION	ACTION AC	LITHOLOGIC DESCRIPTION
PLT (F) PLT (F) DD DD DD DD DD DD DD DD DD DD DD DD DD		<text><text><text><text><text></text></text></text></text></text>		SANDY NANNOFOSSIL FORAMINIFER ODZE A white (N9) sandy nannofossil foraminifer ooze was recovered. Gray to velowing gav (SY 871) mottles are used throughout the gatropoold, ethiodermi, and large foraminifer. MEAR SLIDE SUMMARY: 100 Composition: 100 Composition: 100 Composition: 100 Composition: 100 Carbon AND CARBON AND CARBONATE: 100 Composition: 100 Carbonate 100 Carbonate

TIME - ROCK
BIOSTRATIGRAPHIC
FOSSIL CHARACTER SILICHARACTER
SECTION
GRAPHIC LITHOLOGY
LITHOLOGIC DESCRIPTION
TIME - ROCK
BIOSTRATIGRAPHIC
NANNOFOSSILS
FOSSIL FORACTE SNUILE SWOLDIGE
R
SECTION
GRAPHIC LITHOLOGY
DRILLING DISTURBANCE SEDIMENTARY STRUCTURES
RVAL
50.0—54,4 m
LITHOLOGIC DESCRIPTION

APHIC			CHA	OSS RAC	TER		Τ		Π	Π				×	APHIC		CHA	OSSII RACT	ER						
BIOSTRATIGR	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	REFFICM	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DESCRIPTION		TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	
late Miocene							0.5				N9 N7 N9 N7	SANDY NANNOFOSSIL F1 This core contain a homoger fosail foraminifier coze. The coarse fraction (more tha tary coral (icferenzinian), plus gas elly) pelecypods and echinederm Dark bands of light gray (ND tions 2 and 3. In armes sildes the as the white areas. Some mottling due to biologi lites(?) and vertical burrows are o SMEAR SLIDE SUMMARY: Composition: Volcanic glass T1 Foraminifers 64 Cataeneous dinoffagellates T1 ORGANIC CARBON AND CAR Drganic carbon Carbonate 100	DRAMINIFER OOZE reous white (N19) nanno- In 52 µm) contains a soli- tropods (pteropods especi-) color are found in Sec- e dark layers are the same certivity is present. Plano- barved. 42 3-80 D 50 7 50 50 8 - 50 2 - 50 37 2-27 3-43 5 - 50 100	late Miccerre						2			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		N9

N9

TIME - R	BIOSTRATIG	FORAMINIFER	NANNOFOSSIL	RADIOLARIAN	DIATOMS	SECTIO	METER	GRAPHIC LITHOLOGY DRUDING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5 -				NANNOFOSSIL FORAMINIFER OOZE to FORAMINIFER NANNOFOSSIL OOZE A homogeneous white (N9) nanofosil toraminifer to foraminifer nanofosil ooze is present. A pyritided burrow is present at 70 cm, Section 2. No adimensity structure were observed. The oozers fraction contains sand size foraminifers, It appears that Cores 1-7 contain larger and more diversified invertebrates. The environment where cur- rents winnowed sediments or transported large fosilis to the deposition site, it is also possible that contamination from the surface is an explanation for the large amounts of invertebrates in Cores 1-7.
						H					SMEAK SLIDE SUMMART: 2:30 4:30 D D Composition:
			0							•	Foraminifers 50 40 Calcareous nannofossits 50 60
											ORGANIC CARBON AND CARBONATE: 1-20 2-20 3-20
ocene						2	10 24 900 MINUT 0				Organic carbon — — — Carbonate 96 99 99
late Mic						3					
	117 (F) M11 (M)	(N) 11N				4		Void		•	

SITE 526 HOLE A CORE (HPC) 9 CORED INTERVA	L 63.2–67.6 m	SITE 526 HOLE A CORE (HPC) 10 CORED INTERVAL 67.6-72.0 m
	LITHOLOGIC DESCRIPTION	POSSIL CHARACTER UND UND UND UND UND UND UND UND UND UND
autootive 1 1 1 1 1 1 1 1 1 1	HANNOFOSSIL-FORAMINIFER ODZE A white (NB) homogeneous moderate deformed namos iossil-formiter ozas is present. No adiimentary structures are present. The coarse fraction contain only sand size foraminifers. SMEAR SLIDE SUMMARY: 20 21 20 21 22 23 24 23 24 23 24 23 24 23 24 23 24 23 24 25 26 26 27 28 28 29 20 20 21 22 23 24 23 24 25 26 26 27 28 28 29 29 20 21	No No No No No No No No No No

 \mathbf{x}

SITE 526 HOLE	A CORE (HPC) 11 CORED INTERV	AL 72.0-76.4 m	SITE 526 HOLE A CORE (HPC) 12 CORED INTERVAL	76,4—80.8 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS MANNOFOSSILE RADIOLARIANS	ER SUPPORT SUP	LITHOLOGIC DESCRIPTION	FOSSIL FOSSIL CHARACTER NOLL SUNTANANCE SUNT	LITHOLOGIC DESCRIPTION
Inter Miccine Inter Miccine Inter Miccine Inter Miccine Inter Miccine Inter Miccine Inter	2 3 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6	NP Data Subject Solutions and the (MB) homegeneous names is present. NP This core contains a white (MB) homegeneous names is present. NP The core contains a contains of the	middle Milocene Late Milocene March March March 1 1 1	NANNOFOSSIL-FORAMINIFER ODSE This core consists of a white (NB) homogeneous namore preserved. Preserved. Director of the core of fraction contains mostly foramy one solitary on site and some solitary on some solitary on site and some solitary on site and some solitary on solitary on some solitary on some solitary on some solitary on solit

186

middle Miocene 0	UNIT UNIT BIOSTRATIGRAPHIC ZONE
	FORAMINIFERS
	DIATOMS
2	SECTION
	METERS
	GRAPHIC LITHOLOGY
	DISTURBANCE SEDIMENTARY STRUCTURES
N9	04444
FORAMINIFE A white (N9), homo foraminifer-nanofosil No sedimentary struc- BMEAR SLIDE SUMMA Composition: Foraminifers Calcareous nanofosils ORGANIC CARBON AN Organic carbon Carbonate	LITHOLOGIC DESCRIP
R NANNOFOSSIL ODZE bgeneous soupy to highly disturbe ooze is preserved. XRY: 2.280 D 50 50 50 00 CARBONATE: 1.130 2.130 3.130 - 96 98 97	PTION
niddle Miocene	TIME - ROCK UNIT
	BIOSTRATIGRAPHIC ZONE FORAMINIEE IN
	FOS CHARA SUBJOINT SUBJOINT
	ACTER SWOLVIO
2	SECTION
	METERS
	GRAPHIC LITHOLOGY DMITHUG
•	SEDIMENTARY SEDIMENTARY SAMPLES
N9	
FORAMINIFER-NANNOFC This core contains a homogeneous fer-nannofosil coze. No sedimentary structures are pres The course fraction contains foram SMEAR SLIDE SUMMARY: Composition: Foraminifers 50 Coloreous nanofosils 50 ORGANIC CARBON AND CARBON. 130 Organic carbon — Carbonate 96	LITHOLOGIC DESCRIPTION
SSIL OOZE white (N9) f vrved, inifers. ATE: 2-30 3-30 97 99	

•

SITE 526 HOLE A	CORE (HPC) 15 CORED INTER	VAL 89.6-94.0 m	SITE 526 HOLE A	CORE (HPC) 16 CORED INT	ERVAL 94.0-98.4 m
TIME - ROCK JUNT BIOSTAATUTAPHIC BIOSTAATUTAPHIC ZONE ANANNOFOSSILS INANNOFOSSILS INANNOFOSSILS INANNOFOSSILS	ATTANAS Sanorawa Aranona Aranona Sanorawa Aranonona Aranonona Aranonona Aranona Aranona Aranonona Aranona Aranona Aranonona Aranonona Aranonon	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE ROCANINVERS AAMONOLARIANS MANWOLARIANS	ER OLDER	LITHOLOGIC DESCRIPTION
middle Miocene Wr2-13 Fi Ww DY We Stat		PORAMINIFER-NANNOPOSSILODZE A monotonous, homogeneous white 1001 foraminifer. No No	middle Miocene MV7 (6) WW		SANDY NANNOFOSSIL-FORAMINIFER ODZE A white (N9) homogeneous nannofosil-foraminifer onze is present. The coarse fraction is biogenic and is composed of a framinifer. Bection 2 (100 cm) and Section 3 (55–60 and 132–134 cm) ontrain signify indurated oox. SMEAR SLIDE SUMMARY: 190 Composition: Foraminifers 80 Celearoous nannofossili 40 ORGANIC CARBON AND CARBONATE: 112 212 312 412 Organic carbon 112 212 312 412 Carbonate 98 98 98 97

CK RAPHIC	FOSSIL								2	F	05511								
TIME - RI UNIT BIOSTRATIG ZONE FORAMINIFER	RADIOLARIAN	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	N	TIME - ROCK UNIT	BIOSTRATIGRAPH ZONE	NANNOFOSSILS	RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY BUILTHOLOGY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTIO	N	
middle Miocene vo (k)		2 2 3 CC				NANNOFOSSILF A white (N9) homoger turbed nannofossil-foramin No sedimetary structur dated ooze. The metrics co process. The coarse fraction is cor SMEAR SLIDE SUMMARY Composition: Foraminifers Calcareous nannofossils ORGANIC CARBON AND I Organic carbon Carbonate	CORAMINIFER OOZE require moderate to highly dis- fer ooze was recovered. sere present. contain a slightly more consoli- re is fluidized by the drilling moosed of foraminifers. : 3-80 D 60 40 CAREONATE: 1-75 2-75 3-75 97 96 98	middle Miccene	N10-11 (F) NN6 (N) NN6 (N)	IM AM		2 3 600				N9 N9 to 10YR 8/2	NANNOFOSSILFC This core contains a wh (10YR 8/2) nanofossil-for is homogeneous, with no ele The coarse fraction contain SMEAR SLIDE SUMMARY: Composition: Ouartz Volcanio glass Echinold Dinoflagellates Ottracods Foraminifers Calcareous nanofossils ORGANIC CARBON AND C Organic carbon Carbonate	RAMINIFER te (N9) to w mminifer ooze mminifer ooze mentary structures D D - TR - TR - TR - TR - 30 20 67 79 ARBONATE: 1-25 2-25 98 97	OOZE my pale orange The sediment tures preserved. 3800 D - - TR TR 15 85 3-25 - 98

SITE 526 HOLE A	CORE (HPC) 19 CORED INTER	IVAL 107.2-111.6 m	SITE 526 HOLE A CORE (HPC) 20 CORED INTERVA	AL 111.6-116.0 m
TIME - ROCK CHARACTGRAPHIC BIOSTRATIGRAPHIC ZONE FORAMINIFERE MANNOFOSSILE RADIOLARIANS RADIOLARIANS RADIOLARIANS	GRAPHIC GRAPHI	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
middle Micenne Morris W		NANNOFOSSIL-FORAMINIFER ODZE The core lise ompletely mixed. 10YR 8/2 10YR		<section-header><text><text><section-header> Norma And a comparison of a homogeneous, highly disturbed, bits (HO) to very pairs organized, highly disturbed, highly disturbed, highly disturbed, bits (HO) to very pairs organized, highly disturbed, highly disturbed,</section-header></text></text></section-header>

190

SIT	E	526 H	OLE A	cc	DRE (I	HPC) 21	CORED IN	ERVAL	116.0–120.4 m	SITE	52	6 HC	LE .	A (CORE	(HP	C) 22 COI	RED IN	TER	VAL 120.4-124.8	m			
TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIFERS	FORACTE HARDIOLARIANS PIATOMS	R	SECTION	GRAPHIC	SEINLEING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARACT SAVEINVIOIDE	ER	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUMENTARY	SAMPLES		LITHOLOGIC DESCRIPT	ON		
	autoroux Ataas		M		2 3 4 2C			•	SANDY NANNOFOSSIL-FORMINIFER OOZE A white (NB) to very cale orange (10YR 8/2) sandy to to transmitter oote vars recovered. Borne area within the sections are more consolidated. To be area within the sections are more consolidated. To be area within the sections are more consolidated. SMEAR SLIDE SUMMARY: 1 10 0 0 0 0 1 0 0 0 Composition: 1 1 1 1 0 0 0 0 Composition: 1 1 1 1 Portion and the unspecified - - TR - Consolitation: - - TR - <td< td=""><td>early Miocene</td><td>NG (F) MV2 (N) MV2 (N)</td><td>AG A</td><td></td><td></td><td>1 2 3 CCC</td><td></td><td></td><td></td><td></td><td>10YR 8/2- N9 N9 N9- 10YR 8/2 N9 10YR 8/2 + N9 10YR 8/2 + N9</td><td>FORAMINIFER A white (NB) to very disturbed foraminifier-aan The third section is pe- sedimentary structures to SMEAR SLIDE SUMMAR Composition: Quartz Feidapar Volcanic glass Carbonate unspecified Foraminifers Calcarcous namofosuls Radiolarians Dinoflagellates Echinolis ORGANIC CARBON ANI Organic carbon Carbonate</td><td>NANNOF pale orar pale orar participation perved an be recognit D TR 1 TR 1 TR 1 TR 1 TR 1 TR 1 TR 0 CARBOD 1.132 1.90 1.90 1.132 1.90 1.132</td><td>OSSIL 0 ge (10Y) rs is pres- ed. 3-100 D TR TR TR TR 15 85 - - - - - - - - - - - - - - - -</td><td>02E (R 8/2) highly ant. some biogenic 3-132 - 98</td></td<>	early Miocene	NG (F) MV2 (N) MV2 (N)	AG A			1 2 3 CCC					10YR 8/2- N9 N9 N9- 10YR 8/2 N9 10YR 8/2 + N9 10YR 8/2 + N9	FORAMINIFER A white (NB) to very disturbed foraminifier-aan The third section is pe- sedimentary structures to SMEAR SLIDE SUMMAR Composition: Quartz Feidapar Volcanic glass Carbonate unspecified Foraminifers Calcarcous namofosuls Radiolarians Dinoflagellates Echinolis ORGANIC CARBON ANI Organic carbon Carbonate	NANNOF pale orar pale orar participation perved an be recognit D TR 1 TR 1 TR 1 TR 1 TR 1 TR 1 TR 0 CARBOD 1.132 1.90 1.90 1.132 1.90 1.132	OSSIL 0 ge (10Y) rs is pres- ed. 3-100 D TR TR TR TR 15 85 - - - - - - - - - - - - - - - -	02E (R 8/2) highly ant. some biogenic 3-132 - 98

SITE 526 HOLE A CORE (HPC) 23 CORED INTER	VAL 124.8-129.2 m	SITE 526 HOLE A CORE (HPC) 24 CORED INTER	VAL 129.2-133.6 m
	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
	FORAMINIFER-NANNOFOSSIL OOZE This core contains a highly to slightly disturbed white N0 to (N9) to very pale orange (10YR 8/2) foraminifer-manno- 10YR 8/2 Some biogenic sedimentary structures are recognized in Sections 2 and 3. In Sections 3 and 5 the colors alternate fairly regularly at about 5 cm Internals.		N9 to NANNOFOSSIL AND FORAMINIFER SYR 8/1 A homogeneous white (M9) to Minkih gray (5YR 8/1) foraminifer nanofosili ooze is present. Mottling due to bioturbation is present throughout the corres. In Section 2 colors are faint but they do alternate. SMEAR SLIDE SUMMARY: 180 380
	- SMEAR SLIDE SUMMARY: 1.80 2.80 3.80 D D D Composition: Heavy minerais – TR – Volcanic glass TR TR TR N9 Palagonita – TR – Foraminifars 15 20 5 Calcareous nanofosils 85 60 95 Fish temains – – TR Dinoftagallates – TR – Echinoids TR TR TR		10YR 8/2 D D Composition: D D Heavy minerals TR TR Volcanic glass TR TR Palagonite TR – Poraminifies 5 20 Catewoou nanonofossils 95 80 Dinofilagelistes – TR Ostracods – TR Ordschild CARBON AND CARBONATE: 1.14 2.14 3.14
/Minconne // Minconne // // // // // // // // // // // // //	10YR 8/2 ORGANIC CARBON AND CARBONATE: - Drganic carbon - 1-27 2-27 3-27 - Organic carbon	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	Organic carbon — — — Carbonate 100 98 97
	N9 10YR 8/2		N9 to SVR 8/1
	N9		

SITE 526 HOLE	A CORE (HPC) 25 CORED INTER	RVAL 133.6–138.0 m	SITE 526 HOLE A CORE (HPC) 26 CORED INT	ERVAL 138.0-142.4 m
TIME ROCK UNIT BIOSTRATIGRAPHIC ZONE RAMMINERS ILSPEAR	RECTION RECTION METERS	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
Nas (F) Nas (F) Nast (N) WW		NANNOFOSSIL COZE A slightly to moderately bioturbated very pale orange (10YR 8/2 10YR 8/2 10YR 8/2 10YR 8/2 10YR 8/2 10YR 8/2 10YR 8/2	антоном Mittee 4 4 4 4 4 4 4 4 4 4 4 4 4	NP Anonyo to idjetity disturbed white (NB) to very pale or preser. NP The consolidated acce layers occur in the Consolidated ac

SITE 526 HOLE A	CORE (HPC) 27 CORED INTERV	VAL 142.4-146.8 m	SITE 526 HOLE A CORE (HPC) 28 CORED INTERVAL 146.8-151.2 m
TIME - ROCK UNIT BIOSTRAPHIC ZONE FORAMINIFERS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS	REAL CLICON SECTION METERS ADDI-HUT ADI	LITHOLOGIC DESCRIPTION	VICULATION CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER STANDARD
		NANNOFOSSIL OOZE AND FORAMINIFER NANNOFOSSIL OOZE This core consists of a white (N9) to pinkish gray (5YR 8/1) manofossil ooze. Biogenic sedimentary structures are present in Sections 2 and 3. SMEAR SLIDE SUMMARY: 1 - 140 2-80 CC D D D Composition: Heavy minerals — TR — Voicenic glass TR — TR Palagonite — TR — TR Palagonite — TR — TR Palagonite — TR — TR Forsiminfers 10 5 15 Calcareous nanofossils 50 95 85	Image: State of the state
early Milocine		Fish remains TR TR – Dinoflagellates TR – – ORGANIC CARBON AND CARBONATE: 142 2-42 3-42 Organic carbon Garbon – – Carbonate 97 98 99 N9 to SYR 8/1	Bergony 2
		NB	4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 3 4 4 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 1 1 4 4 4 4
(N) I NN (E)		5YR 8/1	

SITE 526 HOLE A CORE (HPC) 31 CORED INTE	RVAL 160.0-164.4 m	SITE 526 HOLE A CORE (HPC) 32 CORED INTERVAL	164.4–168.8 m								
TIME - II OCK III III OCK III OCIE VILLIO III OCIE VILLIO IIII OCIE VILLIO III OCIE VILLIO IIII OCIE VILLIO III OCIE VILLIO IIII OCIE VILLIO IIIII OCIE VILLIO IIII OCIE VILLIO IIII OC	LITHOLOGIC DESCRIPTION	TIME - GOCK UNIT CONF CHARACE FORAMINETERS MANNOFORSILLS SECTION METERS	LITHOLOGIC DESCRIPTION								
Passision Image: Signal state <	SYR 8/1 FIGAMUNIFER NANNOFCOSIL AND MANOFCOSIL OCZ: This core contains a humogeneous pinklish gray (5/R Sections 2 and 3 ser slight) build/unbated with zoophycus and planolites identified. A shell fragment is present at a in Section 2. MEAR SLIDE SUMMARY Meany minerais 1 R R R R R Composition: Heavy minerais 1 R R R R R Composition: 1 Section 2 and 1 R R R R Composition: 1 Section 2 R R 1 Section	осособію эне ()) ()) ()) ()) ()) ()) ()) ()	NANNOFOSSIL OOZE WITH SOME CHALK LAYERS This core contains a pirk (7,5YR 8/4) homogeneous nannofossil coze with minor chalk layers. The chalk layers (approximately 5 cm thick) are floor in Sections 2 and 3. Pelecypod shells are elso present. SMEAR SLIDE SUMMARY: <u>D</u> 0 D D Composition: <u>D</u> 0 D D D D Composition: <u>D</u> 0 D D D D D D D D D D D D D D D D D D D								
SITE 526 HOLE A CORE (HPC) 33 CORED INTERVAL 168.8	-173.2 m	SITE	526	HOLE	A	CORE	(HPC) 3	4 CORED	INTER	VAL 173.2-177.	6
---	-----------------------------------	---	----------	------------------------------	-------------	---------------------------------	--	---	--------------------------------------	------------------------	---
	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	NANNOFOSSILS RADIOLARIANS	STL SWOLVIG	SECTION	SHI GR. LITH	APHIC DRILLING DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
Image: state of the state o	<section-header></section-header>	late Oligocene P21 (F)	AP24 (N)	AM		0 1 1 2 2 3 3	$\left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \begin{array}{c} \left \end{array}\right \right \\ \left \left \begin{array}{c} \left \end{array}\right \right \\ \left \left \left \right \right \\ \left \left \left \right \right \\ \left \left \right \right \\ \left \left \left \right \right \\ \left \left \left \right \right \\ \left \left \right \right \\ \left \left \left \left \right \right \\ \left \left \left \left \right \right \\ \left \left \left \left \left \right \right \\ \left $	F.F.F.F.F.F.F.F.F.F.F.F.F.F	•	7.5YR 5/2 7.5YR 8/2	A homogeneous pinkish white (7.5YR 5/2) nanofors ooze with patchy chaik areas is preserved. No sedimentary structures are preserved. Saction 2 contains abundant Braznudorphare. SMEAR SLIDE SUMMARY: 120 2.70 2.80 2.90 CC Composition: 120 2.70 2.80 2.90 CC Composition: 1 - - - - Personanofossiti 7 - - - - Composition: - - - - - - Personanofossiti 0 1 - </td

HIC		FO	SSIL	ER	T			Π	Π								HIC	Τ	FO	SSIL	T			TT	T	
UNIT UNIT BIOSTRATIGRAP ZONE	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	SWD CO	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DES	CRIPTIO	N			TIME - ROCK	BIOSTRATIGRAP	FORAMINIFERS	NANNOFOSSILS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	DAMITLES	
					1	0.5-				5YR 8/1	NANN(This core consi 8/1) nannofosail o Section 2, high contains a white A chalk bed oc a brecolated chalk chalk.)FOSSIL (its of a ho ize. ity disturb to pinkis curs from occurs. 1	DOZE A progene and due th gray 77-90 This chai	ND CH to a br ooze f cm, Fn k is a B	ALK kish gray (5YR oken core liner rom 0–77 cm. m 90–150 cm Iraarudosphaera						1	0.5		 	7.5	YR 8/2
Oligocene					-	1.0 -	┨┨┨┨┓┓┓ ┺┺┺┺┺┺┺┺┺┺┺┺ ┺┺┺┺┺┺┺┺┺┺┺			5YR 8/1 to N9	SMEAR SLIDE SL Composition: Quartz Feldspar Mica Heavy minerals Clay Volcanic glass Palagonite Poraminifers	MMARY: 1-80 D - - TR - TR - 5	2-80 D TR TR TR TR TR TR 	2-105 M - - - - TR 1	3-70 D 							1.0				
late					2	-		00000	•	7.5YR 8/4	namofossils Dinoflagellates Braarudosphaera ORGANIC CARB Organic carbon Carbonate	92 TR 3 DN AND 0 1-9 96	100 2-9 95	4 95 NATE: 3-9 95	98 TR -	late Olioncene					2					
					3			7A7		5YR 8/1												1 1 1 1				

P20 (F) NP23/24 (N) W

-

+--+

cc

cc

P21a (F) NP24 (N) WV LITHOLOGIC DESCRIPTION

SMEAR SLIDE SUMMARY: 1-80 3-80 D D

Composition: Quartz Palagonite Foraminifers

Calcareous nannofossils Dinoflagellates Discoasters Braarudosphaera

NANNOFOSSIL OOZE This core contains a homogeneous pinkish white (7.5YR 8/2) nannofossi ooze. No sedimentary structures are preserved.

> TR TR TR TR 1 2

92 95 TR TR 5 2 2 1

ORGANIC CARBON AND CARBONATE: 1-43 2-43 3-43 Organic carbon - - -Carbonate: 95 96 93

H			CHA	RAC	TER							
UNIT BIOSTRATIGRA ZONF	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
late Oligocane	23 (N)					2 3	0.5			Þ	-	NANNOFCOSIL DOZE This core contains a homogeneous pink (7.5YR 8/2 to grayish oringe pink (5YR 7/2) annofossil locat. Sections 2 and 3 show alternating soft to firm ood layer which repeate serve S-7 cm. SMEAR SLIDE SUMMARY: 1800 280 3800 D D Composition: Feldopar TR Palagonits TR Palagonits TR Palagonits TR Palagonits TR Palagonits TR Palagonits TR Promotistis 100 99 88 First remains TR ORGANIC CARBON AND CARBONATE: 1-83 263 3-843 Organic carbon - 1-83 263 3-843 Organic carbon - 97 92 95

×	PHIC		CHA	OSS	IL		Τ		Π	Π	
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
late Oligocene	8–19 (F) 23 (N)					1	0.5				NANNOFOSSIL OOZE A soupy to highly disturbed pink (7.5YR 8/4) name fossil ooze was recovered. 2.5YR 8/4 SMEAR SLIDE SUMMARY: 2.120 D Composition: Heavy minerals TR Palagonits TR Foraminifers 5 Ciclarowout nannofossils Discoasters TR

SITE 526 HOLE A CORE (HPC) 39 CORED I	RVAL 195.2-199.6 m	SITE 526 HOLE A CORE (HPC) 40 CORED INTERV	/AL 199.6-204.0 m
	LITHOLOGIC DESCRIPTION	POSSIL CHARACTER INNU LINU UNICHARACTER SUPPORT SUPPOR	LITHOLOGIC DESCRIPTION
Process Provide a second seco	NANNOFOSSIL OOZE This core consists of a pinkibit white (7.5YR 8/2) nannofossil ooze, Faint mottles occur in Sections 2 and 3. These are biogenic in origin. 7.5YR 8/2 SMEAR SLIDE SUMMARY: 180 2.80 0 0 Composition: Heavy minerals TR TR Foraminifers 10 1 Calcareous nannofossil 00 99 Diroffsgellates TR TR 160 2.60 3:80 Organic carbon 2 of 0 59 SYR 8/1 NB to SYR 8/1	Processes and and a series of the series of	7.5YR 8/2 This core contains a homogeneous pinklish white. 7.5YR 8/2 This core contains a homogeneous pinklish white. No addimentary structures are positively identified, but Section 1 contains faint mottles which may be biogenic in origin. No addimentary structures are positively identified, but Section 1 contains faint mottles which may be biogenic in origin. SMEAR SLIDE SUMMARY: 180 280 Organic glass 1 1 Organic glass 1 1 ORGANIC CARBON AND CARBONATE: 1:100 2:100 Organic carbon 6 96 95

SITE 526

Bit Statute	
Personal and the second	UNIT
	early Oligocene

~	PHIC		CHA	OSS	TER										
TIME - ROCI	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRI	PTION	6	
	(N) EZAN					1	0.5		00000	:	7.5YR 8/2 pinkish white	FORAMINIT This core contains fer nanofosili ozas, ish white (7.5YR 8/2) Braurodosharra 3 population, No sedimentary str A Braurudosphaero tion 1.	ER NA a soupy The col jp? are uctures	ANNOF y to hig lor is pi e preser are pre- is prese	DSSIL OOZE hly disturbed foramin nk (5YR B/4) to pin ht in the nannofos served. Int at 50-55 cm Se
late Eocene	P17 (F) NP20 (N)	CP	AP			2			0 0		5YR 8/4 pink	SMEAR SLIDE SUM Composition: Foraminifers Calorsous nannofossits ^a Brearudospheers	140 D 15 85	1-50 D 10 90 ^a	2-60 D 10 90

SITE 526 HOLE A	CORE (HPC) 43 CORED INTE	RVAL 212.8-217.2 m	SITE 526 HOLE A CORE (HPC) 44 CORED INTERVAL 217.2-221.6 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORAMINUFERS MANNOFOSSILS MANNOFOSSI	RECTION RETERS ADDREED REAL REPORT RELEAS REAL REPORT RELEAS REAL REPORT	LITHOLOGIC DESCRIPTION	TOUSIL TOUSIL CHARACTER VOUL U U U U U U U U U U U U U
Iste Eccene Not (f) Moto (k) B B		BYR 8/3 pink FORAMINIFER NANNOFOSSIL OOZE This core contains a homogeneous pink (5YR 8/3) moderately disturbed foraminifer nanofosal core. No sedimentary structures are visible. SMEAR SLIDE SUMMARY: 100 2-110 360 Composition: 100 2-110 360 Ordenic gils 2 - 1 Palagonita 1 - - Foraminifers 15 10 10 Calcareous nannofosalis 72 90 88 Fish remains 10 15 - ORGANIC CARBON AND CARBONATE: 12 22 32 Organic carbon 12 22 32 Organic carbon 92 96 95	Image: state of the state

SITE 526

SITE

	0.0	-	HO	LE	в	COR	E (HF	C) 5 CO	RED II	VTE	RVA	L 23,9-28,3 m				
	PHIC	8	CHA	OSS	TER											
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES			LITHOLOGIC DESCRIPTION	N		
early Pliocene	(F)					2	0.5					N9 5Y 6/1	NANNOFOSSILF This core contains a wi feasil foraminifer coze. A couple of light gray in 3 at 129 and 139 cm. Some light olive gray in Section 3. They are interpre The coarse fraction is cor SMEAR SLIDE SUMMARY Composition: Foraminifers Calcereous nannofossils Calcereous	ORAMII inite (N9 mination notties 2.80 D 2 48 50 D 1 1 48 50 D 1 1 48 50 D 1 1 1 2.80 D 2 95	NIFER) homo a are pr (5Y 6/1 ing biog f foram 4ATE: 246 - - 96	OOZE geneous nanno esent in Section) are found ir genic. 3446 — 98

~	PHIC		CHA	OSS	TER	T			TIT			
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURS SAMPLES		LITHOLOGIC DESCRIPT	TION
Pliocene and Pleistocene mixed	N22 [F] NN15 (N)	AG	AG			1	0.5		0000	NB	SAND-SIZE NANNOFO A homogeneoux, very foraminifer occews reco bas contaminated the core. Some white (NB) shell coarse fragment fracture is the exception of a few echil SMEAR SLIDE SUMMARY Texture: Sand Silt Cary Composition: Heavy minerals Carbonate unspecified Foraminifers	SSIL FORAMINIFER OOZE light grey (NB) nenrofosil- werd. Rus from the drill pipe fragments are observed. The virtuality all foraminifers with noid spines.
											Calcareous nannofossils Ostracods Preconosis	40 10 TR

TE	526	_	HOL	E.	С	C	ORE	2 CORED IN	TER	AL.	42.5-52.0 m	1		_	
	VPHIC		CHA	OSS	TER										
UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTI	DN		
						1	0.5		0000	•	58 9/1	FORAMINIFER N This core contains a ve 9/1) to white (NB) foarminit The bottom of Section 1 a foraminiter namofosail do The occe and chaik have a high amount of and-tise overwhelming majority of th	ANNOF(ry deforn er nanno ' and the alk. a gritty f particle e coarse	DSSIL med bl fossil o r Core-f feeling rs. Fors fraction	DOZE uish white (58 oze. Catcher contain which indicates minifier are the n.
						2	0.000		*****			SMEAR SLIDE SUMMARY Composition: Volcanic glass	1-100 D	2-80 D TR	5-50 D TR
												Carbonate unspecified Foraminifers	1 20 67	- 15 79	20
						H						Dinoflagellates	1	1	TR
						3	and form Poor				N9 to 58 9/1	Echinoids		TR	TR
st Miocene/early Pliocene	(N) 2 I NN					4	seed seed as		*******						
later						5	and a real		*****	•	N9 to 58 9/1 to 5Y 8/1				
						-									
ate Miocene	417 with G. margaritae (F) IN11 (N)					6	-			-	N9 to N8 58 9/1				
Ĩ	Î							1++++	i						
1	1.	AG	AM			7	-				N9				

	PHIC		CHA	RAC	TER									
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY SIRUCTURES	IPTION				
						,	0.5		0000	•	FORAMINI This core contains fer namofosill oper gray and bluint gray a No primary or se present.	ER NANNOF I white (N9) Some faint tes are recogn condary sedio	OSSIL homoge traces ized. nentary	OOZE neous foramini- of a yellowish structures are
							1	+++++			SMEAH SLIDE SUMM	AHT: 1-80	3-45	CC
							-	+-+-+-				D	D	D
						1.1		+++++		- 1	Composition:			
							- 2	+-+-+-	311		Quartz	TR	-	0.5
2						1.1	1.25	++++	7811		Heavy minerals	TR		2
ŝ						2			# EI - I		Palanonite	1.6	TR	TR
2						1		· +- +	4811	1.1	Foraminifere	10	10	15
									411		Calcareous nannofossi	88	89	83
							- 5	+++++	411 1	L 1	Dinoflagellates	12	1	1
1							-	+-+-+-			Ostracods	2	TR	(**)
						H	-	学生学			Pteropods	TR	1	-
	(N)					3	1	VOID						
	2 -	1.1	1.00			1.		to and the second second		1.1				

SITE 526

SITE 526	HOLE C	CORE	4 CORED INTERVAL	194.5-204.0 m		SITE 52	6	HOLE	С	CORE	5 CORED INTE	RVAL	204.0-213.5 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FOSSIL CHARACTER NANNOFORMIRS RADIOLARIAS PIATOMS DIATOMS	SECTION	GRAPHIC LITHOLOGY GRAPHIC		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE FORAMINIFERS	RADIOLARIANS	SWOLVIG	SECTION	GRAPHIC LITHOLOGY DISTRUCTING	STRUCTURES		LITHOLOGIC DESCRIPTION
late/eerly Oligocene NP23 (N)	AM	3 3 4 5 6 7		5YR 8/1	DRAMINIFER NANNOFOSSIL OOZE This core consists of a soury to highly disturbed nicking gray (SP &1) homogenous forsaminifer nannofossility). Jano Barrier Structures are preserved. SMEAR SLIDE SUMMARY: 100 D D	early Oligocene P16 (F)	NP 22 (N)	AM		2 3 4 5 6 7		•	5YR 8/1	DRAMINIFER NANNOFOSSIL OO2E This core contains a pinkink grav (SYR 8/1) foraminifer innofossil otak. Several consolidated ooze or chalky zones approximately 5 om thick are found in the lower 3 section. They are the state in this are found in the lower 3 section. No wedimentary thructures are preserved. SMEAR SLIDE SUMMARY: 100 0 0 0 0 0 0 110 1 1 1 1 1 1 1 Composition: 111 1 1 1 1 1 1 1 Or an

×	PHIC		CHA	RAC	TER				П					
UNIT - HOU	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION	ON	
late Eocene	P16/17 (F) NP20 (N)					1	1.0		00000		5Y 8/1	FORAMINIFER N/ This core consists of a pin eous foraminifer anonfosisi Chalky patches are obi They comprise about 10% of No sedimentary structures SMEAR SLIDE SUMMARY: Composition: Heavy minerais Volcanic glass Poraminifers Calcareous nanonfossilis Calcareous dinoflagellates	ANNOFI kish gre ooze, sarved the corre 1-80 D - 1 1 20 73 1	OSSIL OOZE y (SYR 8/1) homogen- throughout the core. arred. 2-80 D TR - - 15 73 2

NUE	526	-	IOL	.E	¢	£	CO	RE	7 CORED	INTER	VAL	218.0-223.0 m	
	PHIC		F	OSS	IL	2					Π		
TIME - ROCH	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
							1	0.5		0000000		5YR 8/1	FORAMINIFER NANNOFOSSIL OOZE AND CHALK This core contains a pinktish gray (5YR 8/1) alternating series of foraminifer nanofossil coze and chalk. Chalk in the upper 3 sections is approximately 10%. This changes to 50% in Sections 4 and 5. No sedimentary structures are preserved. Calcium dinoflagellates are extremely abundant in the core.
							2	A CONTRACTOR OF		000			SMEAR SLIDE SUMMARY: 1-80 3-80 D D Composition: Heavy minorals – 1 Volcanic glas 1 1 Palagonite – TR Foraminifers 20 15 Calcium giforalenters 10 20
late Eocene							3	ered receivers					ORGANIC CARBON AND CARBONATE: 1-2 1-75 2-2 3-2 4-2 5-2 Organic carbon Carbonete 95 98 94 96 95 95
							4			00			
	17 (F) 0 (N)						5	and some laws		0			

UN- SUBJ UN- UN- UN- UN- UN- UN- UN- UN- UN- UN-	SITE 526	5	HOI	E	C	CC	DRE	8 CORED INTE	RVA	223.0–232.5 m	SIT	TE 52	26	ł	IOL
Optimized Instruction Instructi	PHIC		CHA	OSS	TER				Т			UING		15	F
BUILD INTERT NANNOFOSSIL OOZE/CHALK AND DATA DO CORRENT SPECIFIC FORSIL PERIOD FORMULA INTERT ANNOFOSSIL OOZE/CHALK AND DATA DO CORRENT SPECIFIC FORMULATION INTERT ANNOFOSSIL OOZE/CHALK INTERT ANNOFOSSIL OO	TIME - ROCH UNIT BIOSTRATIGRA	ZONE FORAMINIFERS	NANNOFOSSILS	NADICLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY UTHOLOGY UTHOLOGY	STRUCTURES	LITHOLOGIC DESCRIPTION	TIME - ROCI	UNIT	ZONE	FORAMINIFERS	NANNOFOSSILS
Z AP • 7.5 YR 8/4 Contact • Contact	late Eocene					3	0.5			SYR B/I FORAMINIFER NANNOFOSSIL DOZE/CHALK AND SAND TO COBBLE SIZED FOSSILIFEROUS LIMESTONE AND CHALK RUBBLE The first the sections of this core contain a foraminife nannofosil oots. Section 4 contains a foraminife nannofosil oots. Section 6 mines and the number of Section 5 mines and the contact of the cou- and chalk with a white sand to cobble limestone and chal nubble. Large mollusk shells, oncolles, and other foss debris are present. The sodiment is course and not proba- tions into Section 6 where af 40 cm an abruit conta- occurs. Below the contact is a course sand to pebbly pin foraminifer nannofosil oose. The Core-Catcher marks another contact at which the robust respective. 140 3/25 5/70 6/55 0/000000000000000000000000000000000	TIME - BOOK	UNUT 111 111 111 1111 1111 1111 1111 111	ZONE ZONE (N)	FORAMINIFERS	NANNOFOSSILLA H2 NANNOFOSSILLA H2 NANNOF
		NP20	AP				-			Contact					

	PHIC		CH/	OSS	TER				TT	Π	EUELU ETRIUTI				_
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURDANCE SEDIMENTARY STRUCTURIS	SAMPLES		LITHOLOGIC D	ESCRIP	TION	
	late Eocene (N)		RP			1	0.5		нининини		NO	FOSS This core conti white but pinkin, All pieces are hi most 4 pieces are to a yellowith area is ish areas are presen- The last piece are rounded to subt The dominant fi as algal fragments. ORGANIC CARBO Organic carbon Carbonate	ILIFER ains 27 yellowisi ghly fos iner-grai present t, contain rounded, ossil frag N AND 1-2 - 100	OUS LIMESTONE pieces of limestone. They are h, and gravish areas are present. allferous and vurgy. The upper- ined and pink. From 47–53 cm. in two pieces at 64–87 cm grav- s brown day intraclasts which gments are tentatively identified CARBONATE: 1.76 100	
				2								NOTE: Core 10, 24 No recovery.	2.0251	1,5 m (1307,5-1317.0 mbsf):	

SITE 526 HOLE C CORE 11 CORED INTERVAL 251.5-261.0 m

	PHIC		CHA	OSS	TER				П		
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
						1					LIMESTONE Trace recovered — three limestone fragments (2.5, 1.2, and 2 cm long) were recovered. The pieces are highly fosilillerous and angular.

SITE	526	HOL	E C	C	ORE	15 CORED INTERVAL	289.5-299.0 m		SITE	526	но	LE	С	COR	RE	16 CORED INT	ERVAL	299.0-308.5 m		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NANNOFOSSILS	BIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY GRAPHIC		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSII ARACI SNUILUTOIDE	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DBILITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIP	TION
late Paleocene	(N) 64N	Ŗ₽		2	2		2.5Y 6/8 aliw yellow	CALCAREOUS SAND This concontains a olive validow calcuracous and. The carbonte fraction constains mody recrystallized calculate grains and poorly preserved bryozoe to benchid. understains and poorly preserved bryozoe to benchid. understains and poorly preserved bryozoe to benchid. understains. understains. and K-feldsport. MEAR SLIDE SUMMARY: SMEAR SLIDE SUMMARY: Meary minerais Da Da Carbone fractions of fragments in 000 Sing 0 Carbone fragments 0 Da 0 Meary minerais 5 Ordenin cock fragments 10 Diagonite 5 Ordenin cock fragments 10 Diagonite 5 Protection cock fragments 10 Bryozoems 10 Protection cock fragments 10 Bryozoems 10 Protection cock fragments 10 Bryozoems 10 Bryozoems 10 Bryozoems 10 Bryozoems 10						2	1.0.5			10YR 7/4 to 10YR 6/6	CLACAI This section contains of (10YR 7/4) and dark yeld very coarse stand, The unds are composi- black grains. The calcareo- benthic foram, bryzozo, a ments. The non-calcareou quartz, K-feldspar (XRD) and possibly some glaucor iron oxide coating. The non-calcareous grains while the calcareous grains SMEAR SLIDE SUMMARY Texture: Sand Sitt Clay Camposition: Quartz Hary minerals Volcanic glass Glauconite Carbonats unspecified Foraminifers Echinoids Bryzozons ^a Float Organic carbon Carbonate	REOUS SAND predominantly grayish orange with orange 1007R 8/81 line to ad of white, pink, brown, and us fraction (60%) contains some and unidentificd carbonate frag- s fraction (40%) contains frag- volcanic fragments, palagonite, nite. Many of the grains have a ains are subingular to angular are subangular to subrounded. // D 100

SITE 526 HOLE C CORE 17 CORED INTERVAL 308.5-318.0 m

~	PHIC	4	F	OSS	TER							
TIME - ROCI UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	01110		LITHOLOGIC DESCRIPTION
late Paleocene	(N) 6dN		RP			cc		Loosens	STE		2.5YR 6/6 5YR 8/1	CALCAREOUS SAND AND CALCAREOUS SANDSTONE This core (10 cm recovered) contains a oilive vellow siit to coarse sand, Two cobbies of pinkish gay (SYR 8/1) cemented cal- careous sandstone were also present,

SITE

SITE 526 (HOLE 526A)

1-1	1-2	1-3	1,CC	2-1	2-2	2-3	2,CC	3-1	3-2	3-3	3,CC
	•										No.
		1		AND N							
				- ANA					RAP .		
				-Carlo	*				W. AV		
				State of the second							
- 75								a star	- The second		
								1 ACC			
								No.			
					A A A			K	R		
-					and the second			r	R. L.		
				Made No.				and the second second			

SITE 526 (HOLE 526A)

	4-2	4-3	4,CC	5-1	5-2	5-3	5,CC	6-1	6-2	6-3	6,CC
2422		12 mile	122.598		Pinter Dat		1000	18 A. 1		and the second	
-			14-12				1	1	1.1.1	7	
-		The second		logist.		The second	43773	1 de			
all marked								1 3 2 3			
	1		1000	1	2		1		Provide State	1.00	Contract of
-	17-1		Sec.			(The second	400	100	10000	-	i cad
			是重				ASIE				
-25	1				1	and the		1			
-		1 State	11	·				1 des	and the second		Sec. 2
100	11		1.		2912	and the second second		1 - DA			
	3-6	1		14			1 1	1			1 1
-	5.5		10			1200					
		- Chan		10					1 and		
	100	49-		12	-			126	The second	1-24	
-50	6			1784	inter in	- Carl		110			
		La tree 4		37 83	Ten St	and the second		1 2	S SIT		
	14 6			N A	-	14 74		E	C. S.	The set	
-	Mag a			PO(1)		and the		Part Co	ALL I		
	1 1	and the	1 1	7425	ALL THE REAL				To and the		
44	ante la		1 1	12	1	1 F Tak	1 1	Sec.		- 100 -	
-		CI31	1 1	1 and 1		Sec. 3		1990		- 1	
-75	No. 1			E.	12 5769	THE CO		Constant of		Ser 12	
10	A C			Self and		STEP 1			R.C.		
	120				2			and the second	1. The	There	
	The second			State of Long	and the second			March-	1	- 1	
				6.13		Sales -			24	- the for	
-	124			6	- States			a Mar		E gal	
	81	13.20		27-1		a free to					
The second		And a state	1 1		The state	12/19/1		A. mill	121	Contraction of	
-100		and the second	1 1		Emp			1.00	and the second		
1 mar		a saint			1	2.000			States		
1 2	1	Res State			1				1000		
-	A STATE					A STATE				12 Martin	
and the second se				the second				R.C.	STATE OF	Sec. 18	
Contraction of the	1			a son i	1 and	the second		Tak	-		
-	the street			A. MA		A CAR			12 Martin		
105		1.3			for the second	Mar Sel		Sand and	64		
125	1			E. C.	Constanting			T.		A STREET	
-				A DE LAND	and and	and the second		S. Carlos	-	R- and	
5 march		and the same				Enter In		Con 1			
1		A series of				THE R.		and the state			
-	S. Contra	No. Carl								Read and	
and in	1 Aller	A DECEMBER OF						2 3			
	CON STATE			de la		S-ALL		CT PY			
-150	and send that the					and the second		atter 1			

		1.			
			23,CC		A A A A A A A A A A A A A A A A A A A

SITE 526 (HOLE 526A)

0	28-2	28-3	28,CC	29-1	29-2	29-3	29,CC	30-1	30-2	30-3	31-1	31-2
- - - - - - 25 -			DEAL DAY	Ren -	「「「「「「「」」			No contraction			「「「「「「「「「」」」	
ŀ		E.V.		The state		-	6- 20-			r	1	
-50		24. 11		N.C.	N Stor						4	1000
-					1				12 - 57		31	AL CONT
ŀ		a start									18	
ŀ								MA				
ŀ											1	
-75		Constant -			1. 17 1. 18 17 1. 1. 1					r t	1	11
F						-		FIL				
ŀ				Sec. 1	No. Con							
F	The second	1			C. COMP.	1		and a				
ŀ										Conner		
-100	and a				4					and the second	Call	
F						1			100	14		
F								The second		and the second s		
[1	A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.		
L125		1			and the			A CONTRACTOR	12			
- 120		-						1 TEC		30,CC		No. of Street, or other
L	- Cau							1 1				
L				ĥ								71
L						173		Nº J				
L_150	a de la contra de la Contra de la contra d				1			here!	Contraction of the second			

0 cm 4	1-3	41,CC	42-1	42-2	42,CC	43-1	43-2	43-3	43-4	43,CC	44-1	44-2
		1.44 m			and the second	· .		1 2 2 2	124	1.		10 13 14 -
-						•		- Starting				
-25										37.25		1000
					R							
t												
-50				建設								
-												
-				「「「「」」								
-75						1	P.W	a				
							1					Party
-											1	the second se
	三日							-				A L
-												E A
-							-	-			1	
- 125											6	
-								¥ .				
						-	1	1			A.A.	
											199	

SITE 526 (HOLE 526C)

-0 cm	4-2	4-3	4-4	4-5	4-6	4-7	4,CC	5-1	5-2	5-3	5-4
-		ar	1	RES 4			1	i.			
_					1			1.5	;		
-		1	26							300	
_			343				37				
-25		The A	the second	LEA.					5		4
				SI							
2.45										L.	
1			ER								
			15					and the			
-50	2	and a	69								and the second sec
1256	1	E.S		1							
- Fait		1		5				S.S.			North Contraction
N/S	1.5 A		150	200							
-	1 de la	Sec.	6	îk.							1
-75			En la	A.							
- 44	AND A		6.1	A.					法 强		
-	1	1	Constant		the second						
- The	19		A T								
- all	12.5	and the second	Carry	- (an - 1	2 4		
-100		1	6	Ne							
- 3.			P.P.	1							
- 10-		No.							F.S.I		
-	3.0		(the state	52	18			1			
- 1		一次	1	3.6				1.10			
-125			6.	1 ac							
		200									
	17		12 12	A							
		18									And and
	1							16 法		NA.	
1.25	1 3	14 A.		- 0)					國際		
-150				010							

SITE 526 (HOLE 526C)

