Shipboard Scientific Party²

HOLE 529

Date occupied: 18 July 1980

Date departed: 20 July 1980

Time on hole: 2 days, 14 hr.

Position: 28°55.83'S; 02°46.08'E

Water depth (sea level; corrected m, echo-sounding): 3035

Water depth (rig floor; corrected m, echo-sounding): 3045

Bottom felt (m, drill pipe): 3043

Penetration (m): 417

Number of cores: 44

Total length of cored section (m): 417

Total core recovered (m): 309.7

Core recovery (%): 74

Oldest sediment cored:

Depth sub-bottom (m): 417 Nature: Nannofossil chalk Age: Late Maestrichtian Measured velocity (km/s): 2.5

Principal results:

1. A complete sedimentary section from seafloor to 417 subbottom was cored in a single rotary-drilled hole. Sediments were carbonate oozes and chalks, with cherts present in the lower Eocene and Paleocene and volcanic material particularly common in the basal (Paleocene-Maestrichtian) unit.

2. Erosional hiatuses and slump deposits are common at this site. Slumps of Pliocene material were found in the Pleistocene; slumps were also identified within the middle Miocene and upper Paleocene. Erosional hiatuses were found within the middle Pliocene, from the lower Pliocene to the middle Miocene, within the middle Miocene and middle Oligocene, from the upper Eocene into the middle Eocene, from the lower part of the middle Eocene into the lower Eocene, and within the lower Paleocene. This site, located near a topographic saddle in the ridge, experienced an active lateral movement of sediment through most of its history. Some of these erosional hiatuses (e.g., those of the Paleocene and lower mid-Miocene) may be correlatable with similar events at other sites in the transect.

3. The Oligocene section is perhaps the most continuous and best-preserved interval at this site and is comparable to that recovered at Site 526. However, the relatively high concentrations of *Braarudosphaera* found in the mid-Oligocene at Site 526 were not identified at Site 529. Relative to other sites, the Oligocene-Eocene and Oligocene-Miocene transitions are extended and well recovered at Site 529.

5. Because of the pervasive slumping and erosion at this site, average accumulation rates are difficult to determine and hard to evaluate in terms of long-term changes in pelagic supply and dissolution on the seafloor.

6. Preservation of the calcareous microfossils was moderate through the Neogene and Oligocene. Nannofossils remain moderately to well preserved throughout the section; however, foraminifers are recrystallized and cemented in and below the lower Eocene.

7. As at all but the shallowest site on the Walvis Ridge, the Cretaceous/Tertiary boundary was recovered at Site 529.

BACKGROUND AND OBJECTIVES

Geologic and Oceanographic Setting

Site 529 (planned as SAII-2) lies at an intermediate depth between Sites 525 and 528 in a transect of sites extending down the western slope of a NNW-SSE-trending block in the Walvis Ridge (Fig. 1). Reflection records of the *Vema* and *Thomas B. Davie* (Fig. 1) show the presence of 0.54 s of sediment (approx. 490 m) conformably overlying basement. Studies of the crustal magnetic anomalies and the results of Sites 525 and 528 indicate that the basement age should be mid- to early Maestrichtian (approx. 69 Ma). Results thus far also indicate that the Walvis Ridge has followed a normal depth versus time cooling curve; therefore the depth of this site has probably increased from less than 1000 m at the time of crustal formation to its present depth of 3050 m.

Acoustic reflectors within the sediment column cannot be directly traced to either Site 525 or Site 528; however, their general character can be compared to these nearby sites. Such comparisons suggest that parts of the Upper Cretaceous-lower Tertiary interval and the mid-Tertiary interval may be somewhat expanded. The location of Site 529 is near a topographic saddle at the head of northward- and southward-sloping submarine valleys (Fig. 1). The section revealed in many of the surrounding acoustic records shows evidence of erosion and redeposition, though special care was taken to avoid erosional features and to locate the site in an area of conformable reflectors. Two parts of the section which are of prime interest in completing the Walvis Ridge tran-

Moore, T. C., Jr., Rabinowitz, P. D., et al., *Init. Repts. DSDP*, 74: Washington (U.S. Govt, Printing Office).
 ² Theodore C. Moore, Jr. (Co-chief Scientist), Graduate School of Oceanography. Uni-

versity of Rhode Island, Kingston, Rhode Island (present address: Exxon Production Research Co., P.O. Box 2189, Houston, TX 77001); Philip D. Rabinowitz (Co-chief Scientist), Lamont-Doherty Geological Observatory, Palisades, New York (present address: Department of Oceanography, Texas A&M University, College Station, TX 77843); Anne Boersma, Lamont-Doherty Geological Observatory, Palisades, New York (present address: P.O. Box 404, R.R. 1, Stony Point, NY 10980); Peter E. Borella, Deep Sea Drilling Project. Scripps Institution of Oceanography, La Jolla, California; Alan D. Chave, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California (present address: Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, California); Gérard Duée, Laboratoire Géologie Stratigraphique, Université des Sciences et Techniques de Lille, Villeneuve d'Ascq, France; Dieter Fütterer, Geologisch-Paläontologisches Institut und Museum der Universität Kiel, Kiel, Federal Republic of Germany; Ming Jung Jiang, Department of Oceanography, Texas A&M University, College Station, Texas (present address: Robertson Research [U.S.] Inc., Houston, Tex.); Klaus Kleinert, Geologisches Institut der Universität Tübingen, Tübingen, Federal Republic of Germany; Andrew Lever, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom (present address: Department of Mineral Resources Engineering, Imperial College of Sciences and Technology, London, U.K.); Hélène Manivit, Laboratoire de Palynologie, BRGM, Orléans, France; Suzanne O'Connell, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts; (present address: Lamont-Doherty Geological Observatory, Palisades, NY 10964); Stephin H. Richardson, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; and Nicholas J. Shackleton, Godwin Laboratory, University of Cambridge, Cambridge, United Kingdom.

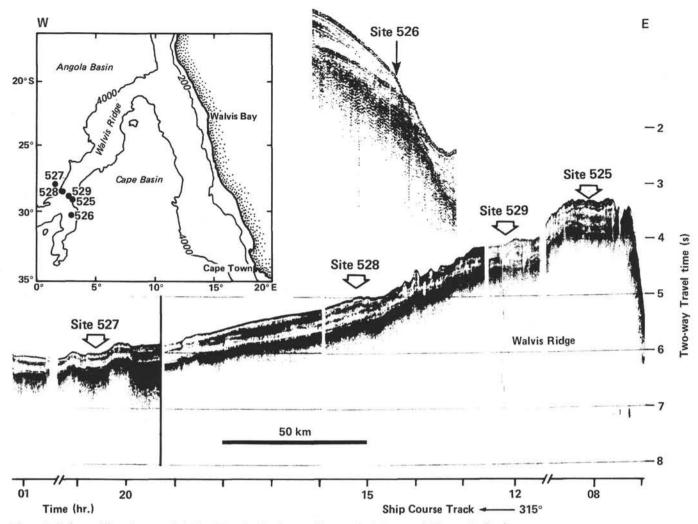


Figure 1. Index and location map for Site 529 and reflection profile record of Vema and Thomas B. Davie.

sect of sites are the recovery of the upper Miocene, and of the Oligocene-upper Eocene. The upper Miocene is poorly recovered or missing in all but the shallowest sites (525 and 526); nearly complete Oligocene sections are found only at Sites 526 (well preserved) and 528 (very poorly preserved).

The oceanographic setting of this site is identical to that of the neighboring sites. Thus it is assumed that the pelagic rain of biogenic and detrital material is the same at all sites of the transect. The major oceanographic difference between these sites is in water depth. At 3035 m, Site 529 is approximately 600 m deeper than Site 525 and 800 m shoaler than Site 528. All of these sites presently lie within the depth interval covered by North Atlantic Deep Water. This water mass dominates the Angola Basin in modern times, and the relatively low dissolved CO₂ content (high alkalinity) of these waters assures good preservation of the recently deposited biogenic carbonates. Results of previous drilling on this and other legs of DSDP indicate, however, that both erosion and carbonate dissolution have strongly affected to Tertiary sections recovered in this basin.

Scientific Objectives

The scientific objectives of this site, as part of the Walvis Ridge transect, focus on three main topics: (1) the history of bottom waters within the eastern South Atlantic, (2) the development of detailed biostratigraphies and paleomagnetic stratigraphies for this area; and (3) the tectonic evolution of the Walvis Ridge.

Site 529 is an intermediate-depth site on the Walvis Ridge transect and provides important additional control in our studies of the history of vertical gradients in this ocean basin. Available drilling time did not allow us to sample the section completely and core into basement; however, we cored as much of the total section as time permitted.

OPERATIONS

Glomar Challenger departed Site 526 on 17 July 1980 at 2218 hr. Continuous seismics, bathymetry, and magnetics were collected en route to Site 529.

A geophysical site survey was conducted prior to Leg 74 by *Thomas B. Davie* of the University of Cape Town on all of the Walvis Ridge sites to be drilled on this leg (Rabinowitz and Simpson, 1979). Other geological/geophysical ships' tracks in the vicinity which were of importance in the site selection included those of *Vema* (L-DGO) and *Atlantis II* (WHOI). A predrilling survey by *Challenger* in the site area was not necessary.

Before dropping a beacon, we passed over the site for about 2.5 mi. We then reversed course, passed over the site, and dropped the beacon at 0700 hr., 18 July 1980 at a water depth of 3039 m and sediment thickness of 0.52 s (two-way reflection time). After the beacon drop, we reversed course and commenced Site 529 at 0830 hr., 18 July 1980.

We drilled 44 rotary cores to give a continuous section from the seafloor to 417.0 m sub-bottom (Table 1). The recovery rate was 74%. The drilling was stopped when time constraints made us depart for Walvis Bay (2248 hr., 20 July 1980). A sonobuoy was deployed on departure, and continuous underway geophysical profiles were collected en route to Walvis Bay.

SEDIMENT LITHOLOGY

The sediments recovered from Hole 529 are divided into three major lithologic units. From top to bottom these are (I) foraminifer-nannofossil and nannofossil

Table 1. Coring summary, Hole 529.

Core No.	Date (July 1980)	Time	Depth from Drill Floor (m) Top Bottom	Depth below Seafloor (m) Top Bottom	Length Cored (m)	Length Recovered (m)	Recovery (%)
1	18	1424	3043.0-3051.5	0.0-8.5	8.5	8.5	100
2	18	1523	3051.5-3061.0	8.5-18.0	9.5	9.6	100 +
3	18	1638	3061.0-3070.5	18.0-27.5	9.5	6.2	65
4	18	1745	3070.5-3080.0	27.5-37.0	9.5	9.8	100 +
5	18	1845	3080.0-3089.5	37.0-46.5	9.5	0.9	9
6	18	1949	3089.5-3099.0	46.5-56.0	9.5	9.7	100 +
7	18	2052	3099.0-3108.5	56.0-65.5	9.5	9.0	95
8	18	2154	3108.5-3118.0	65.5-75.0	9.5	9.7	100 +
9	18	2256	3118.0-3127.5	75.0-84.5	9.5	9.5	100
10	19	0006	3127.5-3137.0	84.5-94.0	9.5	5.2	5
11	19	0116	3137.0-3146.5	94.0-103.5	9.5	9.3	98
12	19	0220	3146.5-3156.0	103.5-113.0	9.5	8.5	89
13	19	0317	3156.0-3165.5	113.0-122.5	9.5	9.4	99
14	19	0413	3165.5-3175.0	122.5-132.0	9.5	9.0	95
15	19	0510	3175.0-3184.5	132.0-141.5	9.5	9.5	100
16	19	0620	3184.5-3194.0	141.5-151.0	9.5	9.9	100 +
17	19	0723	3194.0-3203.5	151.0-160.5	9.5	9.7	100 +
18	19	0820	3203.5-3213.0	160.5-170.0	9.5	8.4	88
19	19	0919	3213.0-3222.5	170.0-179.5	9.5	9.6	100 +
20	19	1016	3222.5-3232.0	179.5-189.0	9.5	9.5	100 +
21	19	1114	3232.0-3241.5	189.0-198.5	9.5	8.7	92
22	19	1212	3241.5-3251.0	198.5-208.0	9.5	9.4	99
23	19	1315	3251.0-3260.5	208.0-217.5	9.5	9.5	100
24	19	1418	3260.5-3270.0	217.5-227.0	9.5	8.1	85
25	19	1517	3270.0-3279.5	227.0-236.5	9.5	0.0	0
26	19	1620	3279.5-3289.0	236.5-246.0	9.5	9.2	97
20	19	1730	3289.0-3298.5	246.0-255.5	9.5	9.2	100 +
28		1838			9.5	8.2	86
	19	1838	3298.5-3308.0	255.5-265.0	9.5	3.8	40
29	19	2035	3308.0-3317.5	265.0-274.5			40
30	19 19	2035	3317.5-3327.0	274.5-284.0	9.5	0.0	36
31			3327.0-3336.5	284.0-293.5			30
32 33	19 20	2300	3336.5-3346.0	293.5-303.0	9.5 9.5	6.7 5.5	58
34	20	0130	3346.0-3355.5	303.0-312.5	9.5	5.2	55
34		0130	3355.5-3365.0	312.5-322.0		3.8	40
35	20	0243	3365.0-3374.5	322.0-331.5	9.5		86
30	20	0353	3374.5-3384.0	331.5-341.0	9.5	8.2	36
	20		3384.0-3393.5	341.0-350.5	9.5		
38	20	0624	3393.5-3403.0	350.5-360.0	9.5	2.9	31
39	20	0750	3403.0-3412.5	360.0-369.5	9.5	3.5	37
40	20	0935	3412.5-3422.0	369.5-379.0	9.5	4.1	43
41	20	1128	3422.0-3431.5	379.0-388.5	9.5	10.0	100+
42	20	1324	3431.5-3441.0	388.5-398.0	9.5	8.3	87
43	20	1515	3441.0-3450.5	398.0-407.5	9.5	7.1	75
44	20	1730	3450.5-3460.0	407.5-417.0	9.5	0.1	1
Totals					417.0	309.7	74

ooze; (II) nannofossil and foraminifer-nannofossil ooze and chalks; and (III) foraminifer-nannofossil and nannofossil chalks. Figure 2 is a lithostratigraphic summary which includes all the criteria used for differentiating units, special lithologies and structures existing within each of the major units.

Unit I: Foraminifer-Nannofossil and Nannofossil Ooze

Unit I extends from the mud line to a depth of 160 m (Cores 1-17) and ranges in age from late Pleistocene to late early Oligocene. The homogeneous ooze is predominantly white (N9) to yellowish gray (5YR8/1) with poor preservation of biogenic sedimentary structures. Where preserved, the burrows are vague and scattered. Halo burrows (Fig. 3) are the most common ichnogenera present. Primary sedimentary structures (e.g., horizontal or inclined laminations or contorted bedding) are rare. However, paleontologic evidence indicates that minor slump deposits are present in Cores 1 and 8. Color changes accompany these slumped intervals. Based on lithology. Core 14 (122.5-132 m sub-bottom) also contains a minor slump deposit. Here primary sedimentary structures are preserved. Highly contorted and mottled beds occur between horizontal multicolored laminations.

Calcium carbonate content averages about 95% within Unit I.

Unit II: Nannofossil and Foraminifer-Nannofossil Ooze and Chalk

Unit II extends from 160 to 284 m (Cores 18-30) and is late early Oligocene to late Paleocene in age. The oozes and chalks are pinkish gray (5YR8/1) to very pale orange (10YR8/2) and alternate throughout the interval. Contacts between the ooze and chalk are gradational in the upper part. The frequency of sharp contacts and the percentage of chalk increase with depth.

Primary sedimentary structures and biogenic structures are better preserved than in Unit I. For example, Core 18 contains a beautifully preserved normal microfault, as well as horizontal and inclined laminations. These features are suggestive of a minor slump. Cores 21, 22, 24, and 27 also show horizontal or inclined laminations and wavy bedding preserved in the chalks. Halo burrows predominate, but horizontal and vertical burrows are also present. The increased preservation of primary and secondary sedimentary structures is directly proportional to the increase in chalk.

Beginning in Core 26 (236.5 m sub-bottom) and extending across the Lithologic Unit II/Unit III boundary to Core 37 (341-350.5 m sub-bottom) are a series of chert beds and fragments (Fig. 2). The cherts are a dusky brown. Analyses by X-ray diffraction techniques show the cherts to be composed of microcrystalline quartz and cristobalite. The cherts are considered to be secondary (diagenetic) in origin and may be derived from siliceous microfossils, which are very rare at this and other sites drilled during Leg 74. In most cases, drilling through the cherts disturbed the adjacent sediments, creating artificial oozes. The original sediment

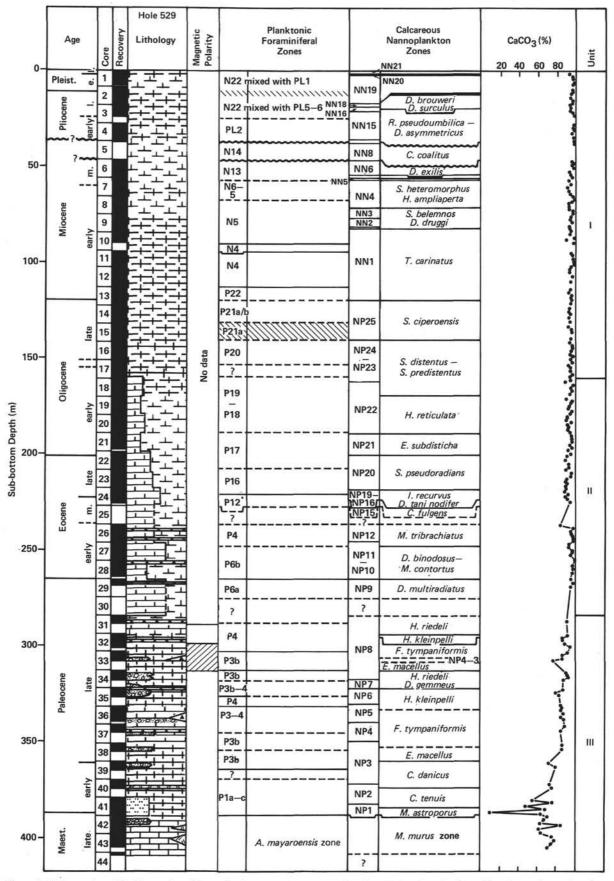
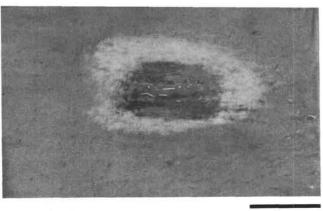



Figure 2. Lithostratigraphic, biostratigraphic, and paleomagnetic summary for Site 529 (see Introduction, this volume, for explanation of symbols used).

1cm

Figure 3. Sample 529-8-5, 130-135 cm. A well-preserved halo burrow in foraminifer-nannofossil ooze.

type was probably chalk. The end of Unit II or the beginning of Unit III may coincide with the first occurrence of chert (Core 26). The middle Eocene hiatus is located in this interval.

Calcium carbonate content in Unit II averages about 90%.

Unit III: Foraminifer-Nannofossil and Nannofossil Chalks

The top of Unit III is arbitrarily placed at Core 31 (284.0 m sub-bottom) and continues to the bottom of the hole, which ends at 417.0 m. The very light gray (N8) chalks are late Paleocene to late Maestrichtian in age. Preservation of primary and secondary sedimentary structures is excellent. For example, Cores 32 and 33 show parallel horizontal and inclined laminations, a normal microfault, current ripples and flaser bedding (Fig. 4), and breccias with rotated intraclasts which have annealed to the surrounding matrix (Fig. 5). These structures indicate that slumping and currents were present and active in the area. Paleontological results independently confirm the presence of a large slump or disturbed areas within Cores 32 and 33. (See biostratigraphy, this chapter.) Other minor slumps or displaced sediments were identified in Cores 34-39. Superb examples of convolute and contorted beds that have been faulted (Fig. 6) and of drag folds (Fig. 7) are present in Core 42. This slump is just below the Cretaceous/Tertiary boundary, which is at 130 cm in Core 41, Section 6 (384.5 m subbottom).

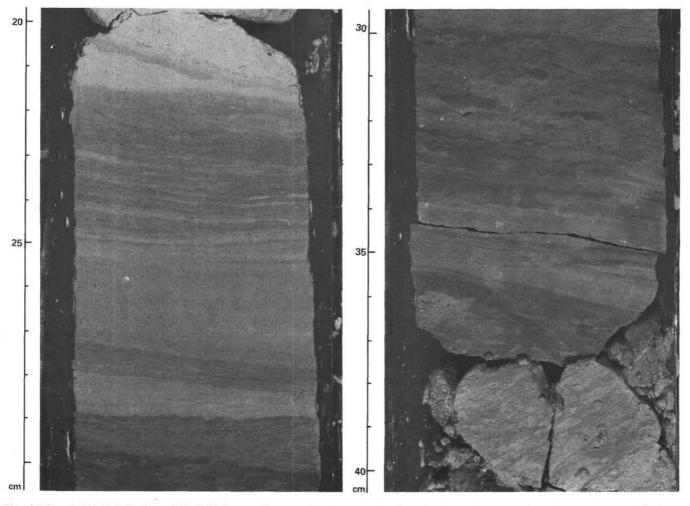


Figure 4. Sample 529-33-3, 20-40 cm. This chalk shows well-preserved horizontal and inclined-parallel laminations, current ripple marks, and flaser bedding.

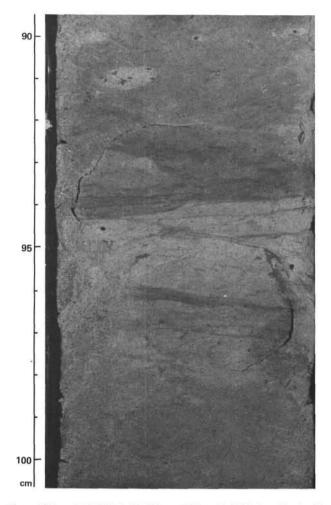


Figure 5. Sample 529-33-3, 90-100 cm. This rock slab is brecciated with rotated intraclasts which have annealed to the surrounding matrix.

Trace fossils are beautifully preserved. *Planolites, Chondrites, Zoophycos,* and composite burrows are abundant as are other large vertical and horizontal burrows (Fig. 8). The intensity of bioturbation is extreme and leaves little doubt that all of the sediment has been reworked at least once (Fig. 8).

In addition to the previously discussed chert layers that extend down to Core 37, volcaniclastic sediments are first observed in Core 35, Section 1, 25 cm (Fig. 8) and become a dominant lithology alternating with the chalks in Core 41. There are two types of volcaniclastic sediments. The first and predominant type is dark yellowish brown and contains approximately 20 to 30% nannofossils. These sediments have been reworked by benthic organisms (Fig. 8) and were probably transported to the depositional site by currents. They alternate with chalk layers, which suggests a periodic introduction of volcanic sediments into a dominantly pelagic sedimentary environment. Smear slide analyses show high percentages of volcanic glass, rock fragments, and fresh quartz. The second type of volcaniclastic sediment is a dusky blue (5PB3/2) volcanic ash. The ashes contain reworked (but fresh) volcanic glass and quartz, which are the dominant minerals. In several instances the ash layers are at the base of the yellowish brown

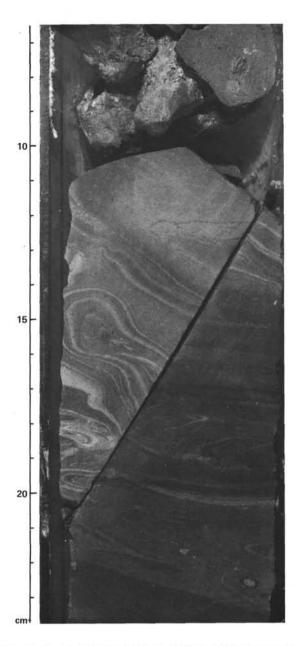


Figure 6. Sample 529-42-1, 7-24 cm. This rock slab is composed of contorted and convoluted beds which have been faulted.

volcaniclastic sediments. It is possible that initial ash deposition was followed by current reworking or slumping, creating volcaniclast-rich sediments. Alternatively, the blue to brown color change may be a geochemically or biologically induced continuum. From Cores 41-44, volcaniclastic sediments are less abundant. The Cretaceous/Tertiary boundary is located in Core 41.

Calcium carbonate content varies from 10-90% in Unit III. The low values occur in the volcaniclastic sediment layers.

INORGANIC GEOCHEMISTRY—INTERSTITIAL WATER STUDIES

The results of the interstitial pore waters for Site 529 are summarized in Table 2 and graphically represented in Figure 9).

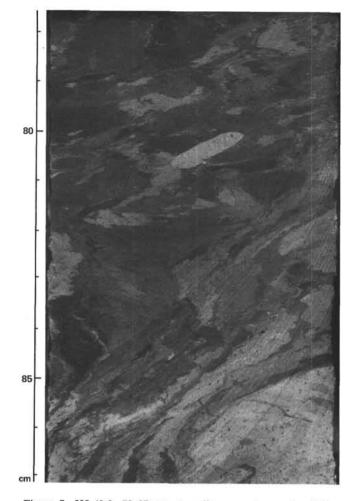


Figure 7. 529-42-2, 78-87 cm. A well-preserved example of drag folding is present within this rock slab.

No correlation exists between lithostratigraphy and pore water chemistry.

The results at this site are very similar to the pore water studies at Sites 525, 527, and 528. pH is constant and is below surface seawater standards. Salinity and chlorinity are constant and are approximately the same as surface seawater. Alkalinity shows a decrease toward the bottom of the hole. This is probably due to the increasing amounts of Mg combining with HCO_3^- and CO_3^- and forming magnesium carbonates as precipitates.

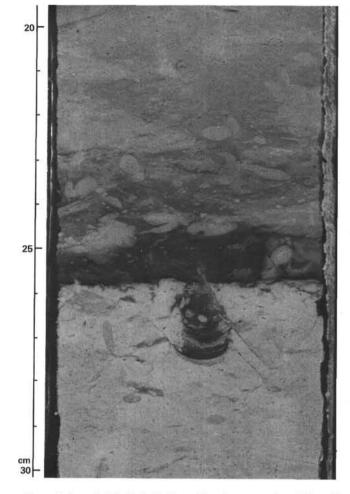


Figure 8. Sample 529-35-1, 20-30 cm. Excellent examples of biogenic sedimentary structures are present, indicating the intensity of bioturbation. The dark layer is volcanogenic sediment, probably an ash, part of which has been reworked into the underlying fora-minifer-nannofossil chalk by burrowing organisms.

Within the sediment pore waters, magnesium and calcium curves show the same trends as at Sites 525, 527, and 528. Calcium is being dissolved and magnesium is being extracted from seawater and is enriched in the sediments.

BIOSTRATIGRAPHIC SUMMARY

At Site 529, 44 cores retrieved by rotary coring contained a section from Pleistocene to upper Maestrich-

Table	2.	Summary	of	shipboard	pore wa	ater	study,	Hole 529.	
-------	----	---------	----	-----------	---------	------	--------	-----------	--

Sample No.	DSDP Sample (interval in cm)	Sub-bottom Depth (m)	pН	Alkalinity (meq/l)	Salinity (‰)	Calcium (mmoles/l)	Magnesium (mmoles/l)	Chlorinity (‰)	
IAPSO	4.		7.446	2.288	35.2	-	-	_	
SSW			7.898	2.224	35.5	10.76	55.29	19.88	
82	1-4, 144-150	5.96-6.00	7.098	2.596	35.2	10.56	53.09	19.34	
83	6-4, 140-150	52.40-52.50	7.170	2.298	35.2	12.40	50.92	19.81	
84	11-5, 140-150	101.40-101.50	7.103	2.270	35.2	16.71	46.46	19.58	
85	16-5, 140-150	148.90-149.00	7.090	1.885	35.2	19.76	43.81	19.72	
86	21-5, 140-150	196.40-196.50	6.888	1.930	35.5	22.50	41.06	19.75	
87	26-4, 140-150	242.40-242.50	6.931	1.852	35.5	25.87	37.97	19.94	
88	31-2, 140-150-	286.90-287.00	6.985	1.909	35.5 (35.2)	28.11	35.33	19.79	
89	36-4, 139-150	337.39-337.50	6.923	0.226	35.5 (35.8)	31.80	29.67	19.91	
90	42-4, 140-150	394.40-394.50	_	_	35.2	40.58ª	19.19 ^a	19.69	

a 0.1 ml sample used in analysis.

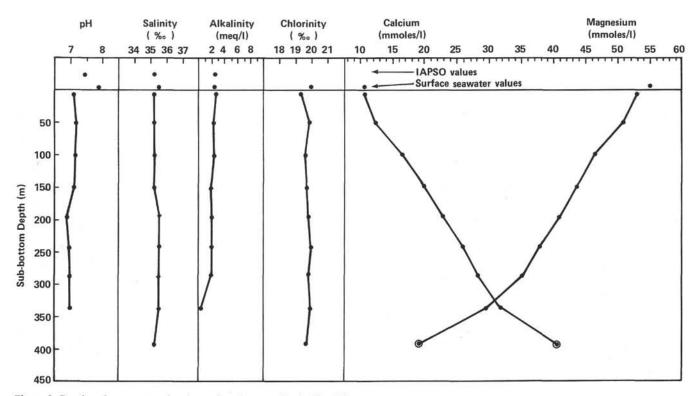


Figure 9. Results of pore water chemistry plotted versus depth, Site 529.

tian. Planktonic foraminifers, nannofossils, benthic foraminifers, echinoids, and ostracodes were present in all samples. Radiolarians were found in only one sample, in the Oligocene.

The biostratigraphy of this long carbonate sequence is shown in the biostratigraphic summary diagram (Fig. 2).

Calcareous Nannoplankton

Though Site 529 is located between Sites 525 and 528, the sedimentary sequence younger than Paleocene by no means shows a transition between the two. A hiatus occurs between Sample 529-4, CC and Core 529-5, where the lower Pliocene is underlain by the middle Miocene. Three apparent slump deposits were observed at this site: one in the lower Pleistocene (NN19), one in the lower part of middle Miocene or upper part of lower Miocene (NN5-4), and one in the upper Paleocene (NP8). Another slumping may have occurred in the lowermost Miocene (NN1). The uppermost Cretaceous Micula murus Zone is overlain by the lowermost Tertiary Markalius astroporus Zone. The thickness of Zone NP1 at this site is about 3.5 m.

Pleistocene (0-12.1 m)

Closely spaced samples were taken and studied from Cores 1 and 2. Their nannofossil assemblages are as follows:

Section 529-1-1, top	NN21
Sample 529-1-1, 150 cm	NN20
Sample 529-1-2, 73 cm	NN19 mixed with Pliocene nannofossils
Sample 529-1-2, 80 cm	NN15

 Sample 529-1-2, 150 cm
 NN15

 Sample 529-1,CC
 NN14

 Sample 529-2-2, 150 cm
 lower Pliocene

 Sample 2-3, 60 cm
 NN19

Obviously Samples 529-1-2, 73 cm through 529-2-2, 150 cm contain slumped materials, and this slumping occurred in the lower Pleistocene (Zone NN19).

Pliocene (18.0-37.0 m)

Sample 529-2, CC contains a few Discoaster brouweri with rare D. pentaradiatus and belongs to Zone NN17 of the upper Pliocene. Samples 529-3-2, 40-42 cm and 529-3-3, 40-42 cm are assigned to Zone NN16 because of the presence of D. surculus. The last appearance of Reticulofenestra pseudoumbilica was encountered in Sample 529-3, CC, which places it in Zone NN15 of the lower Pliocene. In Sample 529-4-CC, both D. asymmetricus and Amaurolithus delicatus were found, which indicates the presence of Zone NN14.

Miocene (37.0-46.5 m)

The recovery in Core 5 is poor (<1 m). The top of this core contains *Catinaster calyculus* and *C. coalitus*, with very rare *Discoaster bellus*, and probably belongs to the lower part of Zone NN9 or to the Zone NN8 of the middle Miocene. Sample 529-5,CC on the other hand, contains rare *C. calyculus* and *C. coalitus*, without *D. bellus*, and is assigned to Zone NN8.

The nannoplankton assemblages change significantly between Sample 529-5, CC and the top of Core 6. The top of Section 529-6-1 through Sample 529-6-6, 100 cm contains abundant *Cyclicargolithus floridanus*, without *Sphenolithus heteromorphus*, which indicates Zone NN6 of the middle Miocene. Therefore a questionable hiatus is suggested.

The last appearance of *S. heteromorphus* was traced as far as Sample 529-6-6, 150 cm, where the NN5/NN6 boundary is marked. Sample 529-6, CC remains in Zone NN5. Then, in subsequent cores, the nannofossil assemblages change very fast. Closely spaced samples were studied in this interval. The results are as follows:

Sample 529-7-5, 35 cm	NN5-NN4
Sample 529-7-5, 100 cm	NN5-NN4
Sample 529-7-5, 114 cm	
Section 529-7-6, top	NN3 (foram sands)
Sample 529-7-6, 40 cm	lower Miocene
Sample 529-7-6, 148 cm	lower Miocene
Sample 529-7,CC	lower Miocene
Sample 529-8-2, 63 cm	NN5-NN4 (there is a sharp color change here)
Sample 529-8-3, 60 cm	NN5-NN4
Sample 529-8-4, 90 cm	NN3
Sample 529-8,CC	lower Miocene (NN3-NN2)

Therefore it is suggested that the lower Miocene sediments between Sample 529-7-5, 114 cm (top of foraminifer sands) and 529-8-2, 63 cm (where there is a sharp color change) are slumped materials. The slumping occurs during the NN5-NN4 zonal interval.

Sample 529-9,CC is roughly assigned to the lower Miocene. Samples 529-10,CC through 529-13-4, 30-31 cm contain *Dictyococcites bisectus* and *Zygrhablithus bijugatus* without *S. ciperoensis* and belong to the Miocene-Oligocene transition. Because the occurrences of *D. bisectus* and *Z. bijugatus* are discontinuous in this long interval, a slumping or redeposition from the Miocene-Oligocene transition to the NN1 zone is suggested.

Oligocene (119.3-199.8 m)

Samples 529-13-5, 30-31 cm through 529-15-5, 40-41 cm belong in the upper Oligocene (Zone NP25), based on the presence of *S. ciperoensis*. The last appearance of *S. distentus* was encountered in Sample 529-15-6, 40-41 cm, which marks the top of Zone NP24. Samples 529-15,CC through 529-17,CC could be assigned to the NP24/NP23 zonal interval because of the absence of *Reticulofenestra umbilica*. Differentiation between Zones NP24 and NP23 is impossible, however, because of the scarcity of *S. ciperoensis* at its first occurrence.

Rare R. umbilica was first encountered in Sample 529-18,CC, which places it in Zone NP22 of the lower Oligocene. Sample 529-19,CC belongs in the same zone. Then, the last appearance of Cycloccolithus formosus occurs in Sample 529-20,CC, which limits it to Zone NP21. Zone NP21 can be traced down to Sample 529-22-1, 128 cm, where a sharp color change occurs in the sediments.

Eocene (199.8-265.0 m)

Common Discoaster barbadiensis and D. saipanensis first occur in Sample 529-22-1, 130 cm, where the top of the Eocene (i.e., top of NP20) is placed. That floras from Samples 529-22, CC and 529-23, CC belong to the same zone is indicated by the presence of Sphenolithus pseudoradians. In Core 24, the nannoplankton assemblages change very fast. Closely spaced samples were studied. The results are as follows:

Sample 529-24-3, 125 cm	NP17 (18?)	D. saipanensis, Bramlet-
Sample 529-24-3, 145 cm		teius serraculoides,
		H. situliformis, and
		Chiasmolithus
		grandis
Sample 529-24-4, 40 cm	NP16	Triquetrorhabdulus in-
		versus, Coccolithus
		solitus, and B. serra-
		culoides
Sample 529-24-5, 40 cm	NP15	C. gigas and Reticulo-
		fenestra umbilica
Sample 529-24,CC cm	NP15	as above with S. fur-
2		catolithoides

It seems that no hiatus occurs during the upper Eocene at this site. However, the sedimentation rate was so low that the entire interval from Zones NP16 to NP19 is present in only a few meters.

There was no recovery in Core 25. Core 26 belongs to Zone NP12 of the lower Eocene, based on the co-occurrence of *Marthasterites tribrachiatus* and *D. lodoensis*. It is uncertain whether or not a hiatus occurs in Core 25.

Zone NP12 can be traced down to Sample 529-27-1, 80 cm. Samples 529-27-1, 150 cm through 529-28,CC contain *M. tribrachiatus*, without *D. lodoensis*, and are attributed to the NP11 to NP10 zonal interval.

Paleocene (265.0-387.8 m)

The entirety of Sample 529-29, CC is attributed to the Paleocene (Zone NP9) because of the common presence of *Discoaster multiradiatus* and the absence of *D. diastypus* and *Marthasterites tribrachiatus*. There is no recovery in Core 30. Core 31 belongs to Zone NP8, based on the common presence of *D. gemmeus* and rare *Heliolithus riedelii*. Cores 32 and 33 contain slumped sediments. These materials range from Zone NP4 (NP3?) to NP6. Detailed records are as follows:

Sample 529-31,CC	NP8	Sample 529-32,CC	NP5
Section 529-32-1, top	NP6	Sample 529-33-1, 145	NP5
Sample 529-32-1, 150	NP6	Sample 529-33-2, 150	NP5
Sample 529-32-2, 10	NP6	Sample 529-33-3, 28	NP4
Sample 529-32-2, 28	NP5	Sample 529-33-3, 150	NP3
Sample 529-32-2, 50	NP5	Sample 529-33-4, 18	NP3
Sample 529-32-2, 150	NP5	Sample 529-33,CC	NP4
Sample 529-32-3, 150	NP5	Section 529-34-1, top	NP8

The top of Core 34 is attributed to Zone NP8, based on the same criteria as the foregoing. It is obvious that the slumping occurred during deposition of sediments of Zone NP8. Sample 529-34, CC, *D. mohleri* is common; however, because no *H. riedelii* was found, its position cannot be below Zone NP7.

Common H. kleinpellii, without D. mohleri, are present throughout Core 35, which indicates Zone NP6. In Samples 529-36,CC and 529-37,CC, H. kleinpellii is absent. The presence of Fasciculithus tympaniformis then limits these two cores to Zone NP5.

Samples 529-38,CC and 529-39,CC are assigned to Zone NP3 of the lower Paleocene, based on the common occurrence of *Coccolithus cavus*, *Cruciplacolithus tenuis*, and *Cyclococcolithus* cf. *robustus*, with rare *Zygrhablithus sigmoides*, *Markalius astroporus*, and *Chiasmolithus* sp. Many small coccoliths probably attributable to *Biscutum* cf. *dimorphosum* are also present in this interval. Zone NP3 can be traced down to Sample 529-40-2, 105 cm. In Sample 529-40,CC, *Chiasmolithus* sp. is absent, but the common presence of *Cruciplaco-lithus tenuis* then placed this core in Zone NP2.

Cretaceous/Tertiary Boundary (387.8 m)

The Cretaceous/Tertiary boundary is located in Sample 529-41-6, 130 cm, where a fracture separates sediments of two different colors: light brown in the upper part and light blue in the lower part. Many slides were processed from this core near the boundary. The results are as follows:

Sample 529-41-1, 42	NP2	Sample 529-41-4, 47	NP1
Sample 529-41-2, 85	NP2	Sample 529-41-5, 80	NP1
Sample 529-41-3, 80	NP2	Sample 529-41-6, 127 (light brown)	NP1
Sample 529-41-3, 129	NP2	Sample 529-41-6, 130 (light blue)	Cretaceous

The thickness of Zone NP1 is about 3.3 m, or a little more, at this site, which is comparable to that at other sites.

Upper Maestrichtian (387.8-417.0 m)

Samples 529-41,CC, 529-42,CC, 529-43,CC, and 529-44-1, 11-12 cm (the lowest sample) contain abundant nannofossils of the upper Cretaceous. The presence of *Micula murus* and *Lithraphidites quadratus*, however, limits them to the uppermost Cretaceous *M. murus* Zone.

Preservation

The preservation of calcareous nannofossils recovered at this site is, in general, moderate. The discoasters found in the middle Miocene through upper Paleocene show strong overgrowth. Nannofossil assemblages with fairly good preservation are found only in an interval ranging from Zones NP8 to NP3.

Foraminifers

Planktonic and benthic foraminifers were retrieved from all core catchers from the Pleistocene to upper Maestrichtian. Benthic foraminifers are relatively scarce in almost all samples. Preservation of planktonic species varied from moderate through the Neogene and Oligocene to upper Eocene and was poor in the lowermost Eocene, Paleocene, and Maestrichtian. Results of biostratigraphic subdivision of the section are as follows.

Pleistocene-Pliocene

The top of Core 529-1 (10 cm) contains an extremely well preserved assemblage which is probably of Holocene age. Many specimens of *Globigerinoides ruber* retain spines, and large *Globigerinita rubescens* (pink) are frequent. The presence of *Pulleniatina obliquiloculata* and *Globorotalia menardii* indicates relatively warm conditions. Sample 529-1-3, 10 cm, contains a Pliocene (P15/6) fauna, and Samples 529-1-4, 61 cm and 529-1,CC contain a mixture of Pleistocene with early Pliocene (P11) material. Sample 529-2,CC may be of Zone P1-5/6 age, with downhole contamination from the Pleistocene, or may be mixed as is part of Core 1.

E calle?

Samples 529-3, CC and 529-4, CC both contain a fauna typical of Zone P12, with G. margaritae (rare in Core 3, common in 4), Sphaeroidinellopsis seminulina, Globoquadrina altispira, Globorotalia puncticulata, and G. conomiozea, but without Globigerina nepenthes.

It is at any rate clear that the lower half of Core 1 represents some sort of slump with extensive mixing of older and more recent material. If a single episode was involved, it would appear that it occurred less than 400,000 y. ago, since there is no more than 3 m of sediment above it. At this locality, the slumping may have cut down to sediment of over 3 m.y. age, if the slump overlies Zone P12 material. Nearby it must have cut even deeper, since Zone P11 material is incorporated in the slump.

The lower part of the Pliocene (P11) is missing at Site 529, as is the upper Miocene.

Middle Miocene (Core 529-5-Sample 529-6, CC)

Two zones were determined, Zone N14 (Core 5) and Zone N9 (Core 6), by the presence of *Globigerina nepenthes* in the former and *Catapsydrax dissimilis*, together with other middle Miocene species, in the latter. Recrystallization is evident in these samples, as is significant dissolution. The rare benthic foraminifers, including *Stilostomella subspinosa* and *Globocassidulina subglobosa*, are accompanied by echinoids and ostracodes.

Early Miocene (Core 529-7-Sample 529-12, CC)

Lower Miocene Zones N5 through N4 were recognized at this site. Several typical New Zealand species including *Globigerina woodi*, *Turborotalia semivera*, and *T. pseudocontinuosa* are present together with *Globoquadrina dehiscens* and *G. praedehiscens*. Preservation is moderate; very rare benthic foraminifers are accompanied by echinoids and fish teeth. The presence of *T. kugleri* in Core 10 indicates Zone N4.

In Cores 11 and 12 preservation is markedly improved, and benthic foraminifers, including Oridorsalis umbonatus, Bolivina-striata, Stilostomella subspinosa, Nuttalides umbonifera, and several pleurostomellids, are more common than in overlying cores.

Paleogene

Within the Paleogene sequence there is a marked change in the preservation of the foraminifers; from the upper Eocene-Paleocene, the preservation worsens rapidly and Paleocene foraminifers are recrystallized, cemented, and barely recognizable. Species just above the Cretaceous/Tertiary boundary were completely destroyed by diagenesis.

Upper Oligocene (Samples 529-13, CC-529-16, CC)

Oligocene faunas are particularly diverse and well preserved; solution-susceptible species are preserved almost as well as at Site 526. Zone P22 (Sample 529-13, CC) was recognized by the joint occurrence of *Globigerina angulisuturalis* and very rare and small *Turborotalia kugleri*. Typical New Zealand species, including *G. euaperta*, *G. brazieri*, and *G. labiacrassata*, are present. Benthic foraminifers are rare and similar to those of the lower Miocene.

The transition from Zone P21b to Zone P21a was recognized in Cores 14 and 15 by the presence of *T. opima* and *G. angulisuturalis*. Some dissolution/recrys-tallization is evident in this interval and *G. angulisuturalis* is less common than in overlying cores.

Lower Oligocene (Core 529-17-Sample 529-21, CC)

The co-occurrence of *Chiloguembelina cubensis* and *Pseudohastigerina micra* in Cores 17–19 suggests the presence of Zones P18–19, however, there are several slumps within these cores. Dissolution is much increased through this interval, and many foraminifers are recrystallizing.

The transition zone to the Eocene, Zone P17, was recognized in Cores 20 and 21; such a long transition is similar to that found at Site 363 at the eastern end of the Walvis Ridge, and the faunas, also similar, include *Turborotalia centralis*, *Globigerina pseudoampliapertura*, and typical lower Oligocene species. Benthic foraminifers are rare and small in size; *Bulimina jarvisi* is one of the most conspicuous forms.

Upper Eocene

The transition from the Oligocene to the Eocene is considered continuous; upper Eocene species such as *Turborotalia cerroazulensis, Hantkenina alabamensis*, and *T. cunialensis* are first found in Core 21. Eocene faunas are somewhat dissolved, globigerinathekids have coarse overgrowth, and some reworked middle Eocene material is present. Benthic foraminifers, ostracodes, and echinoids are present but rare.

Middle-Lower Eocene (Core 529-24-Sample 529-29,CC)

Following a hiatus, middle Eocene faunas of Zone P12 were identified by the presence of *Truncorotalites* topilensis, Acarinina densa, Morozovella spinulosa, and Globigerapsis subconglobata, but Orbulinoides beckmanni was not located. The large number of acarininids and morozovellids suggests warm surface waters.

Following a second hiatus, lower Eocene Zone P7 was identified in Core 27 by the presence of *M. aragonensis*, *M. formosa*, and *M. marginodentata*. Faunas are diverse, but recrystallization and dissolution are prevalent and preservation deteriorates markedly below this level.

Zone P6, identified by the presence of *M. acuta, M. subbotinae*, and, slightly higher, *Pseudohastigerina micra*, occurs in Core 30.

Upper Paleocene (Core 529-30-Sample 529-38, CC)

Upper Paleocene sediments are difficult to zone because of a slump deposit (inferred from sedimentologic and nannofossil evidence). Foraminiferal faunas in Cores 31 and 32 belong to Zone P4. Cores 32 through 34 have faunas ranging from Zone P4 through P3b and are very poorly preserved. The middle part of Zone P3, including *Morozovella conicotruncata, M. angulata, M. pusilla* laevigata, and M. pusilla pusilla (rarely), is found in Core 39.

Lower Paleocene (Core 529-40-Section 529-41-6)

Below Core 3 there is a hiatus including Zones P3a, P2, and P1d. The lower portions of Zone P1 are found in Cores 529-39 to Section 529-41-6, but preservation is very poor and most foraminifers completely recrystallized and cemented.

The basal Paleocene, identified on the basis of nannofossils, cannot be studied using foraminifers, for they are totally recrystallized or, in the basal sample 529-41-6, 128 cm, completely dissolved or recrystallized to amorphous carbonate.

Cretaceous

Three core catchers (from Cores 41-43) were processed for foraminifers, but few specimens were retrieved from this very hard sediment. Although recrystallized and dissolved, they served to indicate the presence of the uppermost Maestrichtian *Abathomphalus mayaroensis* Zone.

Summary

Examination of samples of all cores and of closely spaced samples through zones of inferred slumping produced the following results at Site 529:

1) A long calcareous section ranging in age from Pleistocene to late Maestrichtian was recovered; foraminifers and nannofossils are present in all core catchers; benthic foraminifers, ostracodes, and echinoid remains are present but scarce in most samples. At Sites 525, slightly shallower, and Site 528, slightly deeper than this site, benthic faunas are much more diverse and occur in much greater abundance.

2) The site was apparently a locus of active sediment movement, both into and out of the area. Large slumps were identified, including lower and upper Pliocene into upper Pleistocene, middle Miocene into higher middle Miocene, and upper Paleocene into higher upper Paleocene. Erosional hiatuses, some perhaps caused by slumping of sediments out of this area, were identified in the middle Pliocene, lower Pliocene to middle Miocene, within the middle Miocene, within the middle Oligocene, from the upper Eocene to the middle Eocene, from the lower middle Eocene to the upper lower Eocene, in the upper lower Paleocene, and possibly at the base of the Paleocene.

3) The Paleocene hiatus at Site 529 closely resembles that at Site 528, suggesting that a similar type of sediment erosion, active at these depths, eroded similar amounts of the sedimentary sequence.

 Relative to other sites, the Oligocene-Eocene and the Oligocene-Miocene transitions are extended at this site.

5) Very thin middle Eocene nannofossil zones suggest erosional removal of material from the area at this time, possibly as gravity flows.

6) Preservation of foraminifers is generally moderate through the Neogene and Oligocene and becomes poor

in the lower Eocene and Paleocene, until in the basal Paleocene foraminifers are totally recrystallized and badly cemented. By contrast, nannofossil preservation remains moderate throughout the same sequence and is actually good during the upper to mid-Paleocene, where the foraminifers are barely recognizable. In the Upper Cretaceous, nannofossils are still moderately well preserved, whereas few foraminifers could even be extracted from the semilithified sediment.

7) As at other sites, the floras and faunas are typical of temperate water masses throughout the section. The Oligocene *Braarudosphaera*-rich intervals found at Site 526 were not located at Site 529.

8) Comparison of the sections at Site 529 with those of the others drilled on this leg demonstrates the vast differences in stratigraphic sections retrievable from a very small region of the ocean bottom; and this heterogeneity cannot be directly and solely related to the differrent depth of the sites.

SEDIMENT ACCUMULATION RATES

Figure 10 shows the age-depth plot for Site 529 (for data, see Table 3) using the time scale discussed in the Introduction (this volume). The section contains at least three major hiatuses covering the late Miocene, the early-to-middle Miocene, and part of the early Eocene. Continuity is further interrupted by at least three slumps of sufficient magnitude to become evident from the biostratigraphy (in the Plio-Pleistocene, the early Miocene, and the Paleocene). In addition, in the Paleocene, where varying sediment color permits their recognition by sedimentologists, some five other slumps representing about 21 m of sediment were identified within 56 m of section. There are also small slumps in other parts of the section.

One solution to the problem of estimating accumulation rates (Fig. 11) in the face of these complications is to subdivide the section so as to isolate sections with slumps from those without. At present this is impossible for Site 529 for two reasons: first, the biostratigraphic resolution, based mainly on core catchers, makes the estimates grossly inaccurate over short sections; and, second, the estimates of foraminiferal content are not sufficiently closely spaced. Instead we have taken the opposite approach and treated the slumping as random noise; slumps sometimes remove material and sometimes import material of a different age, but on balance they do not grossly distort the age-depth plot. The upper part of the 529 section illustrates this point: although the upper two cores contain early Pliocene material mixed with Pleistocene, they have (fortuitously) accumulated at about the expected rate.

Accumulation rates for foraminifers, for fine (<63 μ m) carbonate presumed to be dominated by coccoliths, and for noncarbonate (Fig. 11) have been estimated using the methods described in the sediment accumulation section of the Site 525 report. It was not possible to separate foraminifers from the lithified material below Core 32. Over some intervals (especially from 3 to 3.4

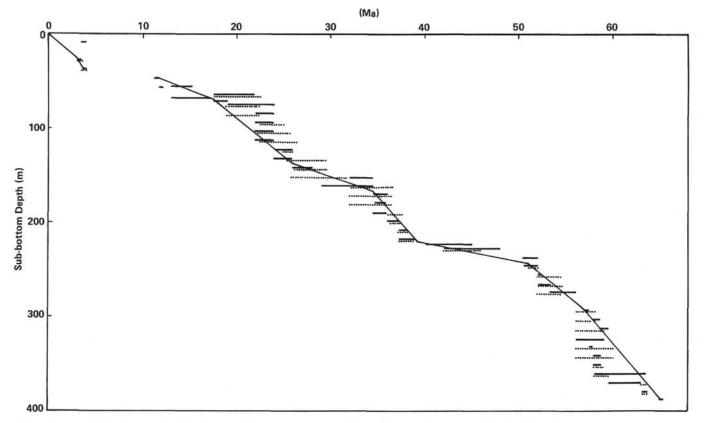


Figure 10. Age-depth plot, Site 529. Horizontal lines represent ranges in ages determined by nannofossils (solid line) and foraminifers (dashed line).

Table 3. Foraminifer and nannofossil data used to generate age-depth plot for Hole 529 (Fig. 10).

Core/Section (interval, level in cm)	Depth below Seafloor	Nannofossil Zone	Foraminifer Zone	Nannofossil Age (m.y.)	Foraminife Age (m.y.)
1,CC	8.5	NN14	mixed N22 + Pl 1	3.5-4	
2,CC	18.0	NN17	?PL5/6 + N22	2-2.3	
3,CC	27.5	NN15	Pl 2	3.0-3.5	3.3-3.7
4,CC	37.0	NN14	PI 2	3.5-4	3.3-3.7
5.CC	46.5	NN8	N14	11.6-11.9	11.2-11.9
6.CC	56.0	NN5	N9	13.0-15.3	11.9-12.2
7.CC	65.5	NN3/2	N5/6	17.5-22	17.5-22.5
8.CC	75.0	NN2/1	N5	19-24	19-22.5
9,CC	84.5	NN1	N5	22-24	19-22.5
10.CC	94.0	NN1	N4	22-24	22.5-25
11.CC	103.5	NN1	N4/P22	22-24	22.5-26
12,CC	113.0	NNI	N4/P22	22-24	22.5-26
13-3	122.5	NP25	P22	24-26	25-26
14-6	132.0	NP25	P21/22	24-26	25-30
15,CC	141.5	NP24	P21	26-29	26-30
16,CC	151.0	NP23	P20	29-34.5	26-32
17.CC	160.5	NP23	P18/19	29-34.5	32-36.5
18.CC	170.0	NP22	P18/19	34.5-36	32-36.5
19.CC	179.5	NP22	P18/19	34.5-36	32-36.5
20	189.0	NP22	P17	36.5-36	36.5-37.5
21,CC	198.5	NP21	P16	36-37.2	36.5-37.5
22,CC	208.0	NP20	P16	37.2-38	37.5-38.5
23,CC	217.5	NP19/20	P16	37.2-39.2	37.5-38.5
24,CC	227.0	NP15/16	P10 P12	42-48	42.0-45.7
26 top	236.5	NP12	F12	50.5-52	42.0-45.7
26,CC	246.0	NP12	P7	50.5-52	51.0-52.0
27.CC	255.5	NPII	P7	52-52.6	52-54.5
28,CC	265.0	NP10/11	P7	52-53.3	52-54.5
29,CC	274.5	NP9	P6	53.3-56	52-54.5
30	no core	TAL 2	FO	53.3-30	32-34.3
31,CC	293.5	NP7	P4	56.7-57.4	56.0-58.0
32,CC	303	NP5	P4	57.8-58.6	56.0-58.0
33,CC	312.5	NP4	P3b/4	58.6-59.5	56.0-58.0
36,CC	322	NP7	P3b/4	56.7-57.6	56.0-59.0
35,CC	331.5	NP6	P3/4	57.6-57.8	56.0-59.0
36,CC	341	NP5	P3/4	57.8-58.6	56.0-60.0
37,CC	350.5	NP5	P3b	57.8-58.6	58.0-59.0
38,CC	360	NP3/4	P3a/b	58.6-63	~ 59.0
39,CC	369.5	NP3	Pla/c	59.5-63	63-63.4
40,CC	379.0	NP2			
40,CC 41,CC	388.5	5.171.575	Pla/c	63-63.5	63-63.4
		M. murus	A. mayaroensis	65-	65-67
8-2, 63	67.63	NN4/5		10.10	
8-3, 60	69.10	NN4/5		13-17.5	
8-4, 90	70.90	NN3		17.5-19	
3	20	NN16/17		2.3	
3	25	NN15/16		3.0	

Ma) the estimates are particularly uncertain, but nevertheless the data are more encouraging than the preamble would suggest (Table 4).

It is particularly encouraging that we have a consistent accumulation of foraminifers through the Oligocene, in contrast to Site 528, which although not a great deal deeper showed almost negligible foraminiferal accumulation through the Oligocene.

MAGNETICS

Paleomagnetic samples were obtained in the early Paleocene-Cretaceous section in Cores 32-43. Owing to the limited time available before termination of the leg, these samples were measured later on the cryogenic SRM at the Woods Hole Oceanographic Institution. Because of low and disturbed recovery, this is the poorest quality section obtained on Leg 74. The polarity interpretation appears in the lithostratigraphic summary (Fig. 2) and details are in the sedimentary paleomagnetism chapter (Chave, this volume).

PHYSICAL PROPERTIES

The cylinder technique for determination of bulk density and porosity was used down to Core 29. Below that, in the chalks at the bottom of Lithologic Unit II and in Unit III, the bulk piece method was applied. Shrinkage and vane shear strength were measured and penetration tests performed on plastic sediments down to Core 29. The sediments recovered in cores below were too firm to allow further measurements of these properties. The data obtained are listed in Table 5 and shown as graphs versus depth in Figure 12. Lithologic Unit I is very homogeneous in its physical properties and only shrinkage shows a slight change.

Shear strength is very low because of the low cohesion of the carbonate sediments. Shrinkage decreases from about 6 to 7% of volume at the top of Unit I to about 4% at the bottom. There seems to be a slight decrease of thermal conductivity with depth in Unit I, but the scatter of the data indicates that this trend may not be significant.

Unit II, the transitional unit between ooze and chalk, reveals the effect of increasing diagenesis. Bulk density increases whereas water content and porosity decrease from top to bottom in Unit II. Grain density has no trend, with average values of about 2.7 g/cm3. Shrinkage decreases in this unit from about 4% of volume at the top to zero at about 270 m below seafloor (Sample 529-29-3, 59-70 cm). It can be assumed that there is no, or only very little, shrinkage in the firm chalks that occur below that depth. Shear strength increases throughout Unit II, showing the increase of diagenesis and cementation with the transition of soft ooze to firm chalk. Its highest values reaches 600 g/cm² (=60 kPa). Sonic velocity remains constant throughout the bulk sequence of Unit II, averaging about 1.6 km/s. Only in the lower part of the unit, below 260 m sub-bottom, is there an increase that leads to the distinctly higher values of Unit III below. Thermal conductivity seems to increase slightly with depth in Unit II.

In Unit III, the trends of Unit II continue and intensify. Bulk density increases considerably, and water content and porosity decrease. The data for the top and bottom of Unit III are as follows:

	Тор	Bottom
Bulk Density	1.95	2.2
Water Content (%)	23-24	13-15
Porosity (%)	43-45	29-33
Grain Density (g/cm ³)	2.7	2.75
Grain Density (g/cm ³)		

Sonic velocity increases from about 2.0 km/s at the top to about 2.5 km/s at the bottom, with a constant gradient. Thermal conductivity shows a slight increase with depth, the highest values being about 1.9 to 2.0 W/m°C (approx. = 4.6-4.8 mcal/cm°C s) measured on samples from the bottom of this unit.

SUMMARY AND CONCLUSIONS

Site 529 is on crust of magnetic Anomaly 31-32 age (about mid-Maestrichtian) and is located near the upper part of the western slope of a NNW-SSE-trending block on the Walvis Ridge. This site is part of a transect across the Walvis Ridge into the Angola Basin. One hole was rotary-drilled (44 cores) which gives a complete section

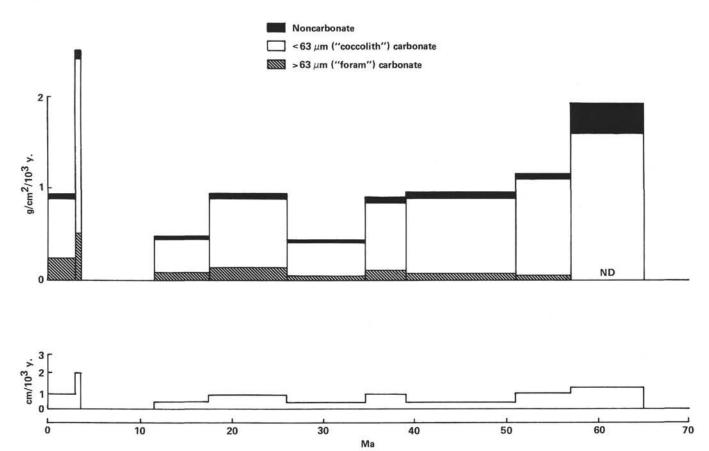


Figure 11. Accumulation rates (cm/10³ y.), lower graph, and accumulation rates (g/cm²/10³ y.) for the noncarbonate fraction, coccoliths (<63 μ m), and foraminifers (>63 μ m), Site 529.

Time Interval (m.y.)	Accumulation (cm/10 ³ y.) av.	Bulk Density	Grain Density (g/wet cc)	Total Accumulation	CaCO ₃	Accumulation	Foram		Accumulat (g/cm ² /10 ³	
		(av.)	av.	$(g/cm^2/10^3 y.)$	(av. %)	CaCO ₃	(av. %)	Foram	Non-CaCO	
0-3	0.8	1.76	1.17	0.94	95.1	0.89	16.1	0.23	0.66	0.046
3-3.5	~2	1.82	1.26	2.5	96.5	2.4	13.6	~0.5	~1.9	0.09
3.5-11.5	~0.1	1.76	1.20	0.1	not rece	overed (hiatus)				
11.5-17.9	0.41	1.73	1.15	0.47	94.5	0.44	11.9	0.084	0.36	0.026
17.5-26	0.76	1.80	1.24	0.96	93.9	0.88	9.1	0.12	0.76	0.057
26-36.5	0.36	1.80	1.25	0.43	93.9	0.40	7.3	0.04	0.36	0.026
36.5-39	0.78	1.72	1.15	0.90	93.0	0.86	7.3	0.10	0.76	0.06
39-51	0.36	1.78	1.23	0.96	92.0	0.88	~11	0.07	0.81	0.08
51-57	0.83	1.89	1.38	1.15	96.2	1.1	3.3	0.05	1.05	0.04
57-65	1.2	2.03	1.61	1.93	81.3	1.6	N.D.	N.D.	N.D.	0.36

Table 4. Data used to generate accumulation rates, Hole 529 (Fig. 11).

from the seafloor through the sedimentary layers to a sub-bottom depth of 417.0 m. The basement complex was not encountered. The recovery rate was 74%.

Lithology

Three major sedimentary lithologic units are observed.

Unit I extends from the mud line to a depth of 160 m sub-bottom (late early Oligocene) and consists predominantly of white to yellowish gray homogeneous foraminifer-nannofossil and nannofossil ooze. Primary sedimentary structures are not observed, and bioturbation is very slight. Carbonate content is about 95%. Color changes are associated with minor slump deposits recognized by paleontological evidence.

Unit II extends from 160 to 284 m sub-bottom (late Paleocene) and consists of pinkish gray to very pale orange nannofossil and foraminifer-nannofossil oozes and chalks. The chalk-to-ooze ratio increases with depth. Bioturbation (halo, horizontal, and vertical burrows) as well as primary sedimentary structures are better preserved than in Unit I. Carbonate content is 90%. Diagenetic chert beds and fragments are observed in the bottom part of the unit.

Unit III extends from 284.0 m and continues to the bottom of the hole at 417.0 m sub-bottom (late Maes-

Table 5. Physical properties summary for Site 529.

		2-Min. Count GRAPE		Gravim	salt-Co	rrected				rometer	Sonic		Acou		
Core/Section	Sub-bottom Depth	Density (g/cm ³)	Wet-Bulk Density	Grain Density	Wet-Water Content	Porosity	Shrinkage	Vane Shear Strength () = Remolded	F	nm) Fall cight	To Beddi	ng	Imper To Be	⊥ dding	Thermal Conductivity
(interval in cm)	(m approx.)	To Bedding	(g/cm ³ a	approx.)	(%)	(%)	(Vol.%)	(g/cm ³)	0 0	zm 1	(km/s) (k	.m/s)	(10 ⁵ g/	cm ² s)	(W/m°C)
1-1, 144-147 1-3, 144-147	1.5				42.6 31.4										
1-4, 127-138 1-6, 72-74	5.8 8.2		1.79	2.67	30.8 26.7	53.6	6.8				1.61		2.89		1.56
2-1, 110-113	9.6				30.5										
2-3, 110-113 2-5, 93-113	12.6		1.72	2.65	36.4 34.0	57.1	6.6	66			1.68		2.88		1.52
2-7, 56-59 3-1, 137-140	18.0				32.6										
3-4, 132-140	23.9	1.86			36.8						1.64		3.05		1.67
4-1, 140-142 4-3, 140-142	28.9 31.9				31.6										
4-5, 140-142	34.9		1.03	2.00	30.9		63	07			1.62		2.95		1.49
4-7, 47-61 5,CC, 11-18	37.0 37.9		1.82	2.69 2.68	29.3 32.1	52.0 55.2	6.3 4.6	87 56	4.6	5.2 6.2	1.62		2.95		1.09
6-1, 84-87 6-3, 84-89	47.4 50.4	1.83			33.6			19	8.9	10.5	1.57		2.88		1.32
6-5, 84-87	53.4				33.8										
6-7, 62-65 7-2, 40-57	56.0 58.0		1.69	2.66	31.5 34.4	58.9	5.8	67	10.7	10.6	1.55		2.63		1.04
7-4, 2-4 7-5, 141-144	60.5 63.4				34.0 40.9										
7-6, 131-144	64.9				23.8			41	5.2	5.9	1.65				1.77
8-1, 122-124 8-2, 109-120	66.7 68.1		1.76	2.70	30.4 32.8	56.2	4.2	94	4.1	6.9	1.60		2.82		1.54
8-7, 50-52 9-3, 17-19	75.0 78.2				34.2										
9-4, 91-104	80.5	1.82			33.4			21	9.6	11.0	1.55		2.82		1.19
9-6, 16-18 10-2, 40-42	82.7 86.4				31.2 27.1										
10-2, 109-120	87.1		1.82	2.72	29.7	52.8	4.8	28	6.3	7.4	1.59		2.89		1.34
10-4, 40-42 11-2, 111-113	89.4 96.6				29.0 30.2										
11-6, 50-52 12-1, 119-121	102.0 104.7				30.2 34.4										
12-4, 65-73	108.6		1.73	2.65	33.4	56.4	3.5	62	5.1	6.1	1.68		2.90		1.14
12-4, 120-121 13-2, 60-62	109.2 115.1				32.7 32.8										
13-4, 98-109 13-5, 60-62	118.5 119.6	1.99						103	5.5	6.5	1.62		3.24		1.37
14-2, 60-62	124.6				32.9 31.2										
14-4, 60-71 14-5, 60-62	127.7 129.1		1.84	2.70	29.0 28.9	52.2	6.3	23	8.7	10.9	1.61		2.97		1.32
15-6, 116-118	140.7		1.80		33.1								3.03		1.47
15-6, 136-143 16-5, 123-132	140.9 148.8	1.82	1.78	2.76	32.5	56.4	3.5	21	8.3	9.4	1.58		2.82		1.13
17-4, 57-60 17-6, 43-51	156.1 158.9		1.83	2.71	31.6 29.0	51.9	2.3				1.58		2.90		1.52
18-2, 33-36	162.3		1.05	4.73	27.6	51.9	4.3	17220	1212	12121					
18-4, 118-131 18-6, 5-8	166.2 168.1	2.11			34.3			62	7.1	6.9	1.61		3.41		1.52
19-2, 116-119 19-4, 122-139	172.6 175.9		1.70	2.60	33.5	60.3	14				1.56		2.66		1.18
19-6, 116-119	178.7		1.70	2.69	35.8 32.1	59.3	3.4				1,50		2.00		1.10
20-3, 132-135 20-5, 125-136	184.3 186.8		1.74	2.69	32.9 33.7	57.0	4.4	80	5.7	6.0	1.56		.2.71		1.31
20-7, 36-39	188.9 191.4				30.6		10000				3.30.m.)				
21-2, 85-88 21-4, 89-92	194.4				33.0 30.9										
21-6, 95-108 22-2, 117-129	197.5 201.3	1.91	1.75	2.65	32.2	55.1	1.9	110	2.8	3.4	1.59		3.03 2.85		1.30
22-4, 146-149	204.5				31.8			(1750)			1111		15003		
22-6, 110-113 23-1, 140-149	207.1 209.5		1.80	2.63	33.8 29.2	51.3	4.9				1.59		2.86		1.76
23-4, 140-143 23-7, 5-20	273.9 277.1				31.4 30.9			437	1.8	4.3	1.66				1.72
24-2, 146-149	220.5				31.4								2.00		
24-4, 12-20 24-5, 2-5	222.2 223.5	1.84			32.4			457	2.5	2.7	1.62		2.98		1.44
26-2, 146-148 26-4, 138-140	239.5 242.4				27.3 28.3										
26-6, 135-148	245.4		1.91	2.72	25.6	47.7	4.3	104	5.6	4.8	1.57		3.00		1.64
27-2, 119-122 27-4, 119-130	248.7 251.7		1.88	2.68	28.1 26.4	48.4	4.0	223	3.2	3.6	1.57		2.96		1.57
27-6, 119-122 28-3, 146-149	254.7 260.0				27.1 29.3										
28-5, 146-149	263.0				27.2			201					2.04		1.01
28-6, 39-50 29-1, 25-29	263.4 265.3	1.91 1.94 2.01	1.93	2.74	25.1	47.1		294	3.3	3.1	1.59 1.67 1	.65	3.04 3.22	3.18	1.91
29-1, 145-148 29-3, 59-70	266.5 268.6		1.88	2.71	27.2 26.6	48.8	0.0	606	3.1	2.4	1.63		3.06		1.73
32-1, 87-99	294.4	2.03 2.05	1.97	2.72	23.0	44.2	0.0	000	21.3	4.7	1.95 1	.94	3.85	3.82	1.61
33-1, 70-80 34-1, 122-134	303.7 313.8	1.99 2.00 2.02 2.03	1.94 1.98	2.69 2.71	23.7 22.6	45.0 43.5						.90	3.79 4.07	3.68 3.91	1.55
35-1, 83-99 36-3, 80-92	322.9 335.4	2.06 2.12 2.02 2.10	2.05	2.72 2.72	19.5 19.8	39.2 39.6					2.11 2	.03	4.33 4.24	4.16 4.12	1.64
37-1, 47-57	341.5	2.07 2.03	2.05	2.68	22.4	43.0						.02	4.17	3.99	1.67
37-1, 130-132 38-1, 53-61	342.5 351.1	2.06 2.10	2.01 2.04	2.72 2.71	21.5 20.0	42.1 39.8					2.26 2	.19	4.61	4.47	1.70
38-1, 118-120	351.7 361.9		2.01	2.70	20.9	41.1						.05		4.14	1.65
39-2, 30-42 39-2, 135-137	362.9		2.02 2.05	2.71 2.72	20.5 19.5	40.5 39.0									
40-1, 21-33 40-1, 81-83	369.8 370.3	2.17 2.16	2.14 2.06	2.73 2.73	16.4 19.5	34.2 40.3					2.38 2	.27	5.09	4.86	1.77
41-1, 133-144	380.4	2.16 2.20	2.15	2.72	16.1	33.7					2.11 2	.02	4.53	4.34	1.73
41-3, 87-89 41-5, 93-95	382.9 385.9		2.09 1.88	2.78 2.82	19.1 28.4	39.1 52.2									
41,CC, 7-9 42-1, 99-100	388.5 389.5		2.15 2.20	2.76 2.72	16.7 14.4	35.0 30.9									
42-4, 54-63 42-7, 22-24	393.6	2.21 2.26	2.23	2.74	13.7	29.8					2.61 2	.51	5.82	5.60	2.06
94-1. LL-LA	397.7		2.21	2.75	14.4	31.1 29.4					2.40	.32	6 66	5.20	1.89
43-1, 141-151 43-3, 41-43	399.5 401.4	2.24 2.26	2.24 2.23	2.75	13.4	30.2					2.48 2		5.56	5.20	1.03

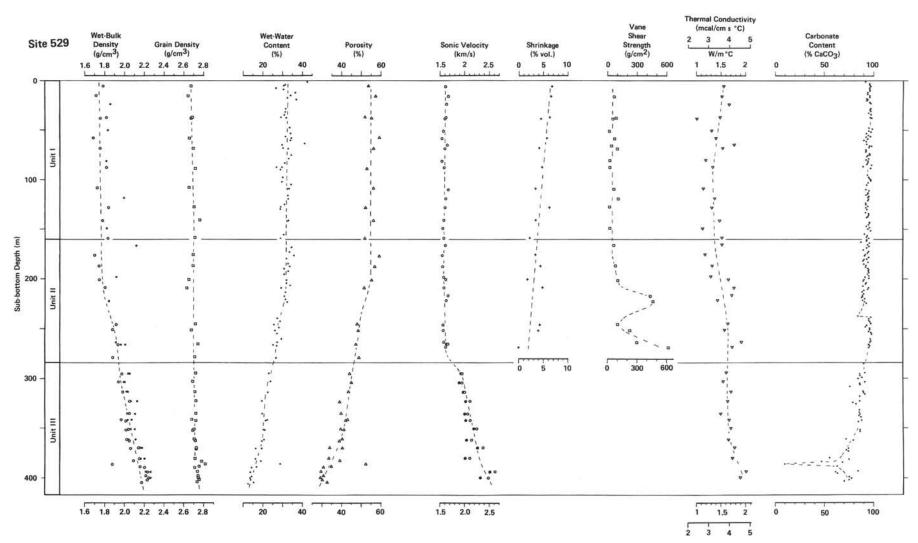


Figure 12. Physical properties plotted versus depth, Site 529.

trichtian) and consists predominantly of very light gray foraminifer-nannofossil and nannofossil chalks. Chert layers are observed in the upper part of the unit. Volcaniclastic sediments alternate with the chalk near the bottom of the unit. Bioturbation is intense, with abundant *Planolites, Chondrites, Zoophycus*, and composite burrows, suggesting that much of the sediment has been reworked. In addition, the preservation of sedimentary structures is excellent. The parallel horizontal and inclined laminations, normal microfaults, current ripples, and flaser bedding indicate the activity of slumping and currents. Carbonate content varies from 10-90% in Unit III.

Seismic Stratigraphy

The seismic stratigraphy is given in Figure 13. The basal stratified reflector probably corresponds to the basement complex (basalt and sediment) as shown and sampled at Sites 525, 528, and 527. We did not drill the basement complex at this site. The reflector at about 0.8 s (two-way travel time) above the basement complex coincides closely with the Cretaceous/Tertiary boundary as in other sites along the transect. At about 0.37 s above the basement complex, the top of a series of stratified reflectors is observed. This top reflector is situated near the top of Unit II (late Oligocene), where the nannofossil chalks are first observed.

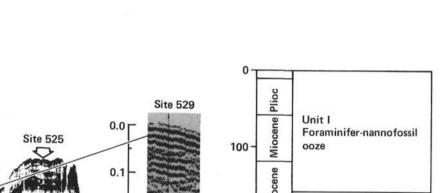
Accumulation Rate

It is difficult to estimate accumulation rates in the section recovered at Site 529 because of the common slumps and erosional hiatuses. Our analysis of the data considers these features as "noise" on the long-term trend of sediment accumulation. Treated thus, the average accumulation rates $(1-2 \text{ g/cm}^2/10^3 \text{ y})$ are within the range of rates at other sites of Leg 74. However, the pattern of change in accumulation rates with time show little similarity to these other sites. Only the lower Pliocene maximum in accumulation and the upper Miocene hiatus appear similar to other records in the area.

Biostratigraphy and History of the Walvis Ridge

Site 529 is located near a topographic saddle in the Walvis Ridge. The sediments are dominated by erosional hiatuses, sedimentary structures indicating currents, and repeated stratigraphic sequences suggesting the occurrence of slumped material. These features are preserved in one form or another from the base of the section (upper Maestrichtian) to within the Pleistocene. The largest single hiatus spans the entire upper Miocene. Other smaller hiatuses are indicated by missing biostratigraphic zones in the Pliocene, middle Miocene, middle Oligocene, upper to middle Eocene, middle to lower Eocene, and Paleocene. Some of the hiatuses encountered at Site 529 (e.g., the upper Miocene and Paleocene) may be correlatable with similar events at other sites in the Walvis Ridge transect.

The preservation of the calcareous microfossils is generally moderate throughout the recovered Neogene and Oligocene section. Although they continue to be moderately well preserved down into the Upper Cretaceous, the foraminifers become poorly preserved in the lower Eocene and are totally recrystallized and badly cemented near the base of the section. The few benthic foraminifers that could be extracted from the basal part of the section were not sufficient to give an estimate of the paleodepth; however, estimates based on the crustal cooling curve indicate a paleodepth of approximately 800 m for this site in the Late Cretaceous.


The Cretaceous/Tertiary boundary is well recovered at this site as it is in at other Leg 74 sites except for 526. As at other sites of this transect, the basal sedimentary unit contains common volcanogenic material which extends into the Paleocene. The average accumulation, particularly the noncarbonate fraction, is high during this interval and gradually drops through the Paleogene. The Oligocene is a well-recovered part of the section, particularly the boundary intervals with the Eocene and Miocene, which appear to be more complete and expanded than at other sites.

Paleomagnetic Results

The lower Paleocene to Cretaceous magnetic reversal sequence was obtained. Owing to poor recovery, this site yielded the least complete results. No basement age can be inferred, as the hole was terminated prior to reaching basalt.

REFERENCES

Rabinowitz, P. D., and Simpson, E. S. W., 1979. Results of IPOD site surveys aboard R/V Thomas B. Davie: Walvis Ridge Survey. L-DGO Tech. Rept., JOI Inc.

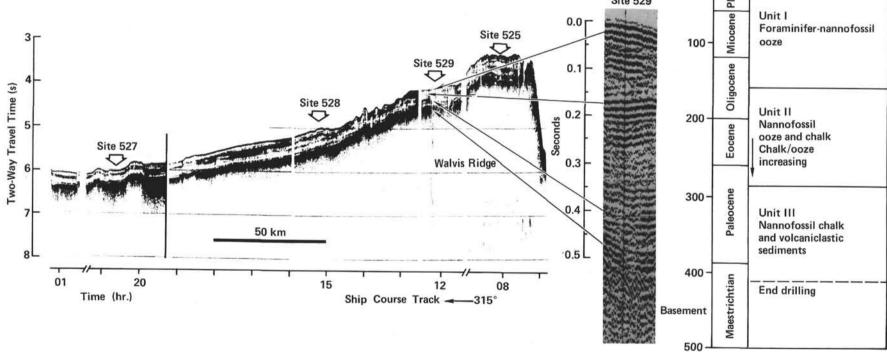


Figure 13. Correlation between seismic profiles and lithostratigraphy, Site 529.

SITE 529 HOLE	CORE 1 CORED INT	RVAL 0.0-8.5 m		SITE 529	н	OLE	С	ORE 2 CORED IN	TERVAL	8.5-18.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE RONAMINIFERS MANWOFOSGILS	ACTER NO US CAPPHIC LITHOLOGY Store State Store State Store States State States States Statestate Stat	STUDETURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	2	HARNOFOSSILS HABIOLARIANS BIADIOLARIANS DIATOMS	Z	SU GRAPHIC LITHOLOGY W	DISTURDANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
Mixed Placere and Pleistocere Mixed Placere and Pleistocere Mixed Placere and Pleistocere Mixed Placere Mixed Placere Mixed		5Y 7/2 N9 + 10YR 8/6 5YR 8/1 • N9 + 10YR 8/6 10YR 8/6 10YR 8/6 10YR 8/2 N9 + 5YR 8/1 • N9 + 10YR 8/6 10YR 8/2 N9 + 5YR 8/1 • N9 + 10YR 8/6 10YR 8	<section-header></section-header>	late Pliocene early Pleistocene early Pleistocene NAVIS (N. 1922) NAVIS (N. 19						N9 N9, 10YR 8/6 5YR 8/1, 5YR 7/2 5YR 8/1 N9 2.5Y 7/2	FORAMINIFER NANNOFOSUL OOZE This core contains a multicolored but dominently solutions. Some halo burrows are observed but primary solmers traverse contrained and traverse contrandom contraned and traverse contrained and traverse contrained an

SITE 529	HOLE	CORE	3 CORED INT	FERVAL	18.0-27.5 m		SI	TE 5	29	HOLE		C	ORE	4 CORED	INTERVAL	27.5–37.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FOSSIL CHARACTER STISSO-JONNAN B 40010101810 STONAN STONAN CHARACTER	SECTION METERS	GRAPHIC LITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	and and	UNIT	BIOSTRATIGRAPHIC ZONE	CHAP	SSIL ACTER	SECTION		GRAPHIC LITHOLOGY	DIFILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
early Pilocene late Pilocene late Pilocene Nut 6 (N) Nut 6 (N)	AQAM	2			10YR 8/2 N9 10YR 8/2 N9 N8 10YR 8/2	FORAMINIFER NANNOFOSSIL OOZE This core contains a soury to highly disturbed we pale errange (10YR 8/2) to white (N9) homogeneou foraminifer nannofosall coze. No primary or secondar adimentary tructures are presented. SMEAR SLIDE SUMMARY: 2:00 4:100 D D Composition: Querto: TR - Certonites unspecified TR 1 Promotion: 85 87 Dinoflagellates 1 1 ORGANIC CARBON AND CARBONATE: 1:35 2:35 3:35 4:35 Organic carbon - Carbonate 94 9:3 9:6 97	Υ.	earty Pilocene	12(F) NHI 5(N) NHI 5 (N)	5 AM		1 2 3 4 5 6 7 7 000				N9	DRAMINIFER NANNOFOSSIL AND NANOFOSSIL OCZE This core contains a white W3h homogeneous foram- initer nanofosil to nanofosil oza. No sedimentary structures are present. However, Section 7 at the bottom for an ery pake orange (10YR 8/2) faminae. In the bottom 10 cm they are slightly distorted. SMEAR SLIDE SUMMARY: 1400 260 380 4.600 7.40 0 0 0 0 0 0 0 Open colspan="2">Composition: 0 at the colspan="2">The TR 1800 260 380 4.60 7.40 0 0 0 0 0 0 Composition: 0 at they minerals TR Palagonite TR - TR TR 15 10 3 15 5 Calcarous nanofosilis 85 89 82 83 95 Ortracods TR - TR TR - TR ORGANIC CARBON AND CARBONATE: 1-11 2-11 3-11 4-11 5-11 7-11 Organic carbon 1 - 1 - TR TR - TR ORGANIC CARBON AND CARBONATE: 1-11 2-11 3-11 4-11 5-11 7-11 Organic carbon 2 - 1 95 97 97 97

SITE	52 2			oss			DRE	I	INTER	ΠT							
×	APHIC		CHA	RAG	TER	_											
TIME - ROCK UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION					
middle Miocene	N14 (F) NN8 (N)	АМ	АМ			1	0.5			•	5GY 8/1		bed homo				
Pp	1111											SMEAR SLIDE SU	MMARY:				
E													1-33	CC			
													D	D			
										- 1		Composition:					
												Volcanic glass	TR	TR			
												Pyrite Carbonate	TR	TR			
		1.1										unspecified	1	TR			
												Foraminifers	7	TR 2			
												Calcareous		•			
												nannofossils	93	98			
												ORGANIC CARBO	N AND C	ARBONATE:			
													1-10				
												Organic carbon	1.0				
												Carbonate	98				

×	DHIC		СН	FOS	SIL CTER					Γ				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES.		LITHOLOGIC DESCRIPTION
							Ĩ	0.5		00			5Y 8/1	NANNOFOSSIL OOZE This core contains a homogeneous yellowish gray (8 8/1) nanofossil ooze. Some halo burrows are preserv which are pinkish gray (5YR 8/1) to light gray N No primary sedimentary structures are present. SMEAR SLIDE SUMMARY: 1.80 2.80 3.80 5.80 7.40
	N9 (F)						2							D D
							3	multinum						1-65 2-65 3-65 8-65 5-65 8-68 7-65 Organic carbon — — — — — — — Carbonute 95 98 95 95 92 94 98
middle Miocene	•						4	and and the			1			
E							5	the second se			\$			
	(N) 9NN						6	and so the second second		000				
	N9 (F) NN5 (N)	A	AN	4		cc	7	New.					:	

	ER		XDO HAVE US SIL		
TIME - ROCK UNIT ZONE ZONE RADIOLARIANE RADIOLARIANE RADIOLARIANE	RECTION SECTION METERS MATCHING MILLING ACTION MILLING ACTION ACT	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT UNIT UNIT UNIT BIOSTRATIGRAPHIC 2018 BIOSTRATIGRAPHIC 2018 MANNOFOSILIS MANNOFO	SECTION BEAC	LITHOLOGIC DESCRIPTION
NMS F) NMS F) NMS R) front in place) NMS R) NMS R)		NANNOFOSSIL OOZE 5Y 8/1 This core contains a predominantity vellowith gray (5Y 8/1) 5Y 8/1 B/10 rannofosili core is present. Place-tologic evidence suggets that this study interval marks the top of a sumped star that extends to 60 cm in Section 2 of Core 8 (color change). 5Y 8/1 SMEAR SLIDE SUMMARY: 100 YR 8/2 D D M D D 10YR 8/2 Composition: D M D	WW MAC IN MAC (M) MAC		5Y 8/1 The core consists of a predominantly pale yet gray (SY 8/1) rannofosil oces. The core appears turbed with slight burburbation, Histo burbows are presented with slight burburbation, Histo burbows are presented to be a slump based on paleontological evidence. 2.5Y 7/2 SMEAR SLIDE SUMMARY: 1400 2-800 3-800 4-800 M M M M M 10YR 6/4 Composition: Fieldspar 140 2-80 3-80 4-800 M M M M 10YR 6/4 Composition: Fieldspar 17R 10YR 6/4 Composition: Fieldspar 17R 10YR 6/4 Composition: Fieldspar 17R 10YR 6/4 Composition: Fieldspar 17R - TR TR Palegonite 7R 5Y 8/1 Calcareeus nanofositi S7 100 96 95 Dinoffigillates 95 95 5Y 8/1 Calcareeus nanofositi 97 100 96 95 95 95 96 97

SITE 529 HOLE	CORE 9 CORED INTERVAL	75.084.5 m	SITE 529 HOLE CORE 10 CORED INTERVAL	84,5–94,0 m
TIME - ROCK UNIT BIOSTFATIGRAPHIC FORAMINIFERS NANNOFOSSILS IADIOLATIANS IADIOLATIANS	SECTION METERS METERS METERS METERS SAMPLES SAMPLES SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
		FORAMINIFER NANNOFOSSIL OOZE This core contains a homogeneous slightly bioturbated very pale orange (10YR 8/2) foraminifer nanoofossil core. Biogenic sedimentary structures are found in Sections 4 though the Core-Corecher. Halo burrows are the most dominant ichnogeners present. SMEAR SLIDE SUMMARY: 1800 D D D Composition: 180 2.60 3.80 4.80 Composition: D D D D Composition: TR TR TR TR Palagenite TR TR TR TR Calcereous dimentositis 80 9.4 75 Calcereous dimentositis TR T - - ORGANIC CARBON AND CARBONATE: 12 22 32 42 52 72 Organic carbon - - - - - - - 12 22 32 42 52 42 72 - - - - - - - - - - - - - -	L L L L L L L L L L L L L L L L L L L	5YR 8/1 FORAMINIFER NANNOFOSSIL OOZE This core consists of a binkish gray (5YR 8/1) to pinkish white (7.5YR 8/2) foraminifer nanofossil ooze, Biotu- bation is localized with halo burrows being recognized, Faint horizontal laminations are present in Section 3. SMEAR SLIDE SUMMARY: 180 2.480 3.80 D D D Composition: Feldgar TR – 1 Heavy minerals TR TR TR Volcanic glass TR – 2 Palagonite – 1 Carbonate 2 – 5 Foraminifers 15 10 25 Calcareous dinoffsgellates TR 1 1 7.5YR 8/2 ORGANIC CARBON AND CARBONATE: Carbonate 98 89 97
NS (F) Barly Miccene MS (F) NN2 (N) MICCENE MS (F) NN2 (N)				

SITE 529 HOLE	C	ORE	11 CORED	INTERVAL	94.0–103.5 m		SITE	529			CORE	12 CORED INTER	VAL	103.5-113.0 m	
TIME - ROCK UNIT BIOSTRATHICAPHIC FORMINIFERS NANNOFOSSILS NANNOFOSSILS NANNOFOSSILS NANNOFOSSILS	DIATOMS UNIT OF A	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDMENTARY SEDMENTARY SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	2 2	BIATOMS BIATOMS	SECTION	GRAPHIC LITHOLOGY LITHOLOGY	SAMPLES		LITHOLOGIC DESCRIPTION
eurly Miccerie Mi (t) Wati (t)	1 2 3 4 5 6 6	5			BYR 8/2 FORAMINIFER NANNOFOSSI LOZE Abmogineous pinkith white (SYR 8/2) pinkith (SYR 8/1) to vellowich gray (SY 8/1) foraminifer an isome lighter pinkich gray to white mottles are pri- but they are highly contorted. They may have been row. Some lighter pinkich gray to white mottles are pri- but they are highly contorted. They may have been row. Some lighter pinkich gray to white mottles are pri- but they are highly contorted. They may have been row. Strength Some lighter pinkich gray to white mottles are pri- but they are highly contorted. They may have been row. Strength Some lighter pinkich gray to white mottles are pri- but they are highly contorted. They may have been row. Strength Some lighter pinkich gray to they are highly contorted. Strength Some lighter pinkich gray to they are highly contorted. Strength Some lighter pinkich gray to they are highly contorted. Strength Some lighter pinkich gray to they are highly contorted. Strength Some lighter pinkich gray to they are highly contorted. Strength Operation: Unspecified a - 1 - 1 (Some anotassis) 1 - 1 1 (Some anotassis) Strength Operation: Unspecified a - 1 - 1 (Some anotassis) 1 - 1 1 (Some anotassis) 1 - 1 1 (Some anotassis) Strength Strength Strength Strength Strength Strength Strength </td <td>0- nt 17- 18- 18-</td> <td>Oligocene</td> <td>(N) (N) (N) (N)</td> <td>MAM</td> <td></td> <td>2 3 4 5 6 7 CC</td> <td></td> <td>•</td> <td>5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1</td> <td>FORAMINIFER NANNOFOSSIL OOZE The core contains a yellowith gray (5Y 8/1) grading to and alternating with a pinkish gray (5Y 8/1) foraminifer nannofossil occe. Section 4 contains a high bioturbated zone. The bur- row are pinkish gray with subget that the pinkish gray tayes that alternate with the yellowish gray zones are completely bioturbated. Mo other sedimentary structures are found. SMEAR SLIDE SUMMARY: 180 280 450 0 D D Composition: Heavy minerais TR – – Foraminifers 40 19 30 Calcareous anonofossils 58 80 70 Calcareous dinoflagellates 1 1 3 ORGANIC CARBON AND CARBONATE: 1.130 6-130 Organic carbon – 3 4-130 6-130 Organic carbon – 3 93 92 95 94</td>	0- nt 17- 18- 18-	Oligocene	(N) (N) (N) (N)	MAM		2 3 4 5 6 7 CC		•	5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1 5Y 8/1	FORAMINIFER NANNOFOSSIL OOZE The core contains a yellowith gray (5Y 8/1) grading to and alternating with a pinkish gray (5Y 8/1) foraminifer nannofossil occe. Section 4 contains a high bioturbated zone. The bur- row are pinkish gray with subget that the pinkish gray tayes that alternate with the yellowish gray zones are completely bioturbated. Mo other sedimentary structures are found. SMEAR SLIDE SUMMARY: 180 280 450 0 D D Composition: Heavy minerais TR – – Foraminifers 40 19 30 Calcareous anonofossils 58 80 70 Calcareous dinoflagellates 1 1 3 ORGANIC CARBON AND CARBONATE: 1.130 6-130 Organic carbon – 3 4-130 6-130 Organic carbon – 3 93 92 95 94

SITE 529 HOLE CORE 13 CORED INTERVAL	113.0–122.5 m	SITE 529 HOLE CORE 14 CORED INTERVAL	122.5–132.0 m
	LITHOLOGIC DESCRIPTION	TIME - ROCK INIT CHARACHIC BIOSTRATICA CHARANIFIERS AMMUNICARS SECTION METERS AMMUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS MANUNICARS SECTION METERS SECTION SECTI	LITHOLOGIC DESCRIPTION
Test Colligacona Last Colligacona Last Colligacona Last Colligacona P32 (F) Pa3 (F) Mol (F) Mol (F) Mol (F) P33 (F) P33 (F) Mol (F) Mol (F) Mol (F) P33 (F) P33 (F) Mol (F) Mol (F) Mol (F) P33 (F) P33 (F) Mol (F) Mol (F) Mol (F) P33 (F) P33 (F) P33 (F) Mol (F) Mol (F) P33 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F) P34 (F)	5Y31 FORAMINIFER NANNOFOSSIL OOZE 5Y31 A veliowish grav (5Y 6/1) slightly bioturbated foramini- ter cannofossil iooze was recoverd. Wall Schwich are probably biogenic in origin are stat- tered throughout structures are present. TOTAL SCH Schwich are probably biogenic in origin are stat- tered throughout structures are present. MEAR SLIDE SUMMARY: 1 1	Image: state of the state	SY B/1 The CRAINIFER NANNOFOSSIL COLD. SY B/1 The face contains a pinking par (SYR B/1) formation and comparison an

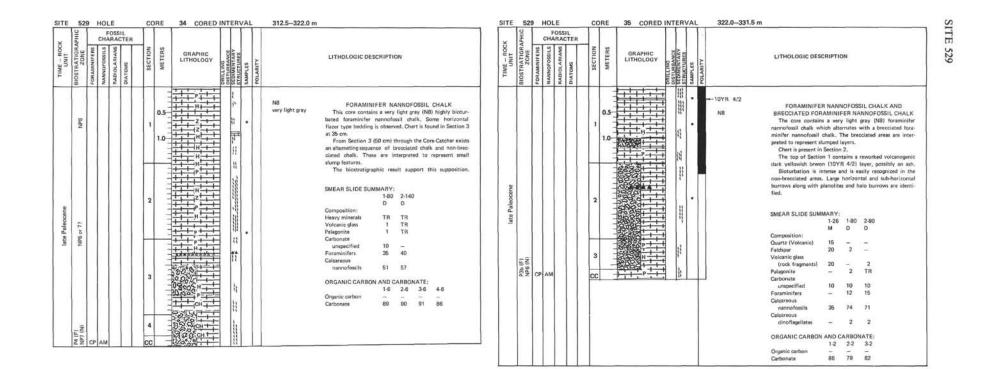
P FOSSIL	CORE 15 CORED INTERVAL	132.0-141.5 m	1		2	HOLE	SSIL	TT	1	G CORED IN	TTT	141.5-151.0 m	
UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS MANVOFOSSILS MANVOFOSSILS RADIOLATIANS DIATOMS			LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPH	CHAR P 9	PIATOMS PIATOMS	SECTION	METERS	GRAPHIC THOLOGY	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
Ista (F) Ista Oligocone NP24/53 (N) NP22 (N) P21b Z X Y		SYR 8/1 Mn-module	PORAMINIFER NANNOFOSSIL OOZE A mostel dominantly pinkith gray (BYR 8/1) foramini- far nanofosil ocar was recovered. The motions is biogenic in origin with halo burrows identified. Minor alternation of color occurs in Section 5 where the sediment alternates from social to more consolidated ooze, Burrows are preserved in the more consolidated area, SMEAR SLIDE SUMMARY: 2-100 3-800 5-50 Composition: D D D O D Occurso 17 - 1 Pologonits 75 65 58 Colorarous dinoffagellates TR - 1 ORGANIC CARBON AND CARBONATE: 1-40 2-40 3-40 4-40 5-40 6-40 Organic carbon Carbonate 92 95 65 94 93 -	late Oligooene	200 (F) P21a NP232A (N) NP232A (N)			1				5YR 8/1	FORAMINIFER NANNOFOSSIL OOZE A homogeneous, pinkink gray (SYR 8/1) foram nanofossil loce was recovered. The lower sections a turbated with halo burrows identified. SMEAR SLIDE SUMMARY: 1120 380 5-80 D D D Composition: Heavy minerals TR – TR Clay TR – TR Volcanic glass 1 – TR Foraminifers 15 10 75 Calcereous dinefragellates 1 – 1 ORGANIC CARBON AND CARBONATE: 1-104 240 340 440 5-40 0 Carbonate 96 96 95 93 96 5

SITE 529 HOLE	CORE 17 CORED INTERVAL	151.0–160.5 m	SITE 529 HOLE CORE 18 CORED INTERVAL	160.5–170.0 m
TIME - ROCK UNIT BIOSTRATIOR ZONE FORAMINIFIRE MANNOFOSSILS RADIOLARIANS ANDIOLARIANS	R SI JANYS SUBJECT STANSS	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
		FORAMINIFER NANNOFOSSIL OOZE WITH MINOR CHALKY ZONES 5YR 8/11 This core consists of a highly disturbed to soupy pinkish gray (5YR 8/1) foraminifer nannofossil coze. Halo burrows are identified toward the bottom of the core. Chalky zones are present in Sections 5 and 6. Iron from the drill pipe has contaminated the first four sections.		5Y 7/2 FORAMINIFER NANNOFOSSIL OOZE AND CHALK This core contains a grayish orange pink (10R 8/2) foraminifer nanofossil ooze and pale vellowish brown (10/R 8/2) foraminifer nanofossil chalk with minor ooze. Inclined and paralle bedding along with microlautic sould possibly indicate a slump feature from Section 1 through Section 5 (approximately 10 cm), Perliminary smear slide inspection of pink and brown layers indicate that the latter
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SMEAR SLIDE SUMMARY: 5-80 6-80 D D Composition: Volcanic glass TR Foraminifers 30 15 Calcareout nannofossils 70 82 Calcareous		is richer in calcareous dinoflagellates and discoasters than the former. - SMEAR SLIDE SUMMARY: 10YR 6/2 140 2-30 4-45 4-80 D D D D Composition: Clay TR Volcanic glass TR TR TR TR Foraminifers 15 10 10 25 Calceroous
	3 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 +++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 ++++++0 +++++++0 +++++++0 +++++++0 ++++++++	dinoffsgellates TR 3 ORGANIC CARBON AND CARBONATE: 3-18 4-18 5-18 6-18 7-18 Organic carbon Carbonate 91 94 93 95 93		ORGANIZOSTIS 85 85 85 74 10R 8/2 Calcareout dinoffagellates TR 5 25 1 10R 8/2 ORGANIC CARBON AND CARBONATE: 118 2-18 3-18 4-18 5-18 6-18 10YR 6/2 0rganic carbon -
Oligocene P20 (F)	4 4 4 4 4 4 4 4 4 4 4 4 4 4		Oilgo	10R 8/2 10YR 6/2
early (- 5YR 8/1
P10-18 (F) P10-18 (F) W				

SITE 529 HOLE	CORE 19 CORED INTERVAL	710.0–179.5 m	SITE 529 HOLE	CORE 20 CORED INTERVAL	179.5–189.0 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORAMINITERS NANNOFOSISILS NANNOFOSISILS ARADIOLARIANS	TER Back Constant Con	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTADTIGRAPHIC BIOSTADTIGRAPHIC FORAMINFERE RAMOLOSSILS POLICIALANS		LITHOLOGIC DESCRIPTION
		NANNOFOSSIL DOZE WITH MINOR CHALK This core contains a homogeneous, slightly deformed very pale orange (10YR 8/2) namofossil obak, alternate irregularly with the ocar. Section 8 contains some fine-grained laminations and way bedding. Sight bioturbation exists but individual ichnogeners identification cannot be made. SMEAR SLIDE SUMMARY: 180 5-80 D D Composition: Palagonite TR TR Foraminifers 5 3 Calcereous nanofosils 05 97 Others TR – Dinoflagellates – TR ORGANIC CARBON AND CARBONATE: 130 2-30 3-30 4-30 5-30 5-30 7-30 Organic carbon – 3 3-0 4-30 5-30 7-30 Organic carbon – 3 3-0 4-30 5-30 7-30 Organic carbon – 3 3-0 4-30 5-30 7-30 Statements 90 95 94 92 91 95 93	(1) 61-814	1 1	NANNOFOSSIL OOZE AND CHALK A homogeneous grayith orange pirk (108 8/2) chaik was recovered. The first two sections are ooze and are highly disturbed. Chaik and ooze alternate somewhat regularly, approxi- mately 20–30 cm. The chaiks also show that biologic organisms were active and grazing in the area. The chaiks in Section 5 show good preservation of ichnogenera, expecially planolites. SMEAR SLIDE SUMMARY: 1-80 2-80 3-80 D D D Composition: Quartz - TR TR Heavy minerals TR - TR Palagonite TR - TR Palagonite TR - TR Foraminifies 3 TR 8 Calcareous nanoefossils 97 100 91 DinoflageIfates - TR 1 ORGANIC CARBON AND CARBONATE: 1-35 2-35 3-35 4-35 5-35 6-35 7-35 Organic achon
early Oligocene		10R 8/2	early Oligocene		5R 8/2
ø	5	- 5R 8/2		5 	10R 8/2
					5YR 7/2 N9
		10R 8/2		6 	5YR 8/2
P18/19.(F) NP22 (NI WW			P17 (F) WV WV WV		5YR 7/2 5R 8/2

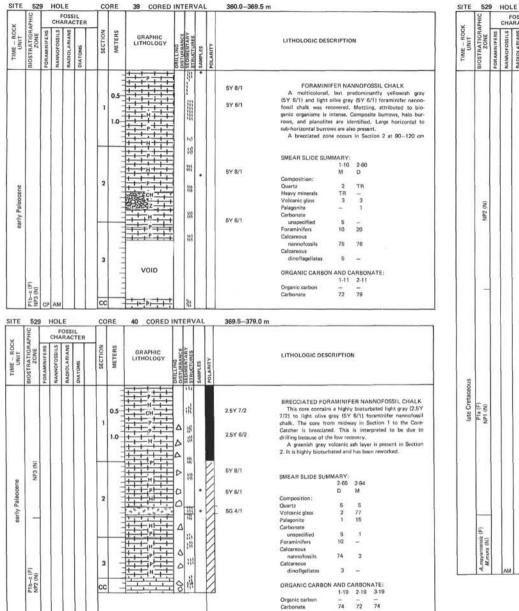
SITE 529 HOLE	CORE 21 CORED INTERVAL	189.0–198.5 m	SITE 529 HOLE	CORE 22 CORED INTERVAL	198.5–208.0 m
TIME - ROCK BIOSTRATICEAND SOME FORAMINITERS FORAMINITARI	SECTION BETTON BENEFIC CONTINUE CONTINU	LITHOLOGIC DESCRIPTION	TIME - ROCK INIT BIOSTRATICE BIOSTRATICE BIOSTRATICE FORAMINERS MANUOFOSSILLE MARNOFOSSILLE ADOLLATIANS PLATONS	SECTION SECTION CONTRACTOR	LITHOLOGIC DESCRIPTION
Jate Eccente Tite U U BIOSTA BIOSTA ROSTA POLO ROSTA MANOR MANOR MANOR		<section-header><text><text><text><text><text><text> ST 8/2</text></text></text></text></text></text></section-header>	late Eocene Oligocane Uigocane	3 3 3 4 <td><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></td>	<text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text>
MA MA MA		V0ID N9 + 5YR 8/1 N9	(N) 024 (1) 94 AM AM	6 	5Y 8/3 5Y 8/2

SITE 529 HOLE	CORE 23 CORED INTERVAL	208.0-217.5 m	SITE 529 HOLE CORE 24 CORED INTERV	AL 217.5-227.0 m
TIME - ROCK INUT 2016 RATIOR 2016 FOR MININE ENS MANNOF COSTIL	METERS RECTION METERS MEDIULING ADDILIN	LITHOLOGIC DESCRIPTION	TIME - ROCK BIOSTRATCHER BIOSTRATCHER AMMORPORENTIERS AMMORPOR	LITHOLOGIC DESCRIPTION
late Eccene Ne19/20 (N) NP20 (N) NP20 (N)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1.5YR 8/2 This core contains a multicolored sequence of namo focal chalks and ooze. Contacts between the chalk and coze contacts between the contact bet

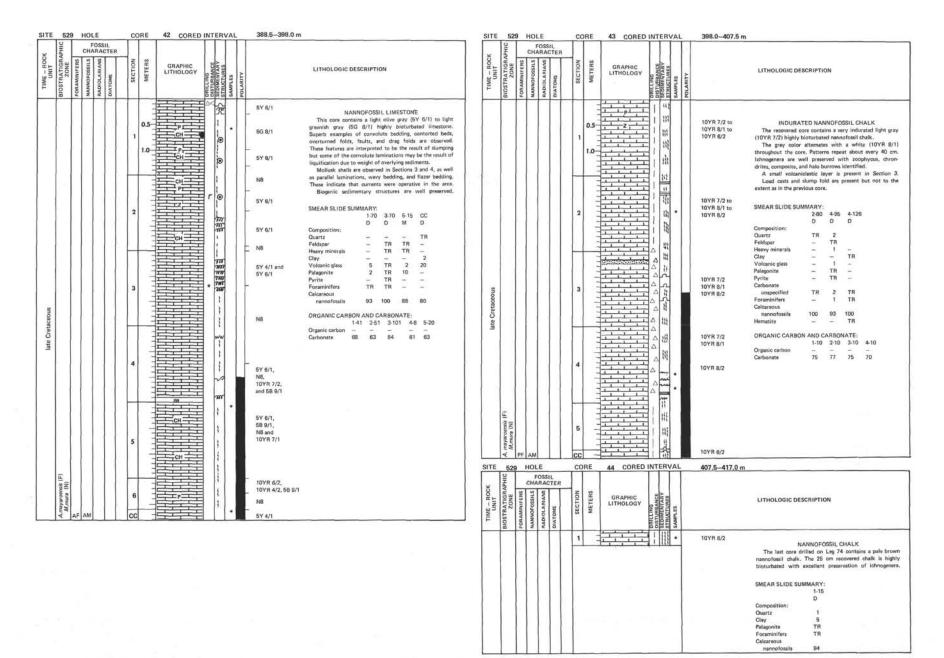

SITE 529 HOLE CORE 26 CORED INTERVAL	236.5-246.0 m	SITE 529 HOLE CORE 27 CORED INTERVAL	246.0–255.5 m
POSSIL CHARACTER NUCLOS SUBJECT CHARACTER SUBJECT CHARACTER SUBJECT SUBJECT SU	LITHOLOGIC DESCRIPTION	ADDRESS IN TRANSPORT OF TRANSPO	LITHOLOGIC DESCRIPTION
Party Econe adv Econe Party adv Econe	<text><text><text><text><text></text></text></text></text></text>		BY B/1 to SY7/2 ANNOFOSSIL CHALK AND CO2E BY 7/2 Trutticolocred iscurred of vellowish gray (SY B/1) to faile vellow (SY B/8) namofosili chaiks and oose. BY 7/2 Trutticolocred iscurred of vellowish gray (SY B/1) to faile vellow (SY B/8) namofosili chaiks and oose. BY 8/3 Trutticolocred iscurred of vellowish gray (SY B/1) to faile vellow (SY B/8) namofosili chaiks and oose. BY 8/3 The module is present in Section 7. It is composed of citricolatic and microcrystalline quarts. BY 8/3 Ormposition 1.70 BY 8/3 The nodule is present in Section 7. It is composed of citricolatic and microcrystalline quarts. BY 8/3 Ormposition 1.70 BY 8/3 Composition 1.71 1.71 BY 8/3 Calcarous 1.71 1.71 1.71 BY 8/3 Calcarous 1.72 3.72 1.72 BY 8/3 Calcarous 1.72 3.72 1.75 1.71 1.71 BY 8/3 Calcarous 1.72 3.92 9.95 9.95

SITE 529 HOLE	CORE 28 CORED INTERVAL	255.5–365.0 m	SITE 5	T	FOS	STL	CORE	29 CORED I	TERVAL	265.0-274.5 n	1
TIME – ROCK UNIT ZONE FORAMINIFERS MANNOFOSSILS RADIOLATIANS	SECTION METERS MILLING	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPH	_	CHARA 2 S	CTER	SECTION	GRAPHIC LITHOLOGY	315TURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
6. I	2 	DYR 8/2 TOYR 8/	late Paleocene Pea (F) 13 to Paleocene				2 3 cc			10R 8/2 10YR 6/2 10R 8/2 5YR 8/1 7.5YR 8/2 10R 8/2	NANNOFCOSSIL CHALK AND DOZE WITH A CHERT LAYER MITH A CHERT LAYER This core contains an alternating sequence of predominantly grayith orange pink (10R 8/2) nannofossil chalk and loaze. A chert layer is present in Section 1 at 30–34 cm, Chalk fragments in Section 2 show fine parallel lamination, No biogenic sedimentary structures were noticed. SMEAR SLIDE SUMMARY: 160 3.60 D D Composition: 0 3.60 D D Quartz TR - Nolagenities TR Poraminifier 2 TR - Palagonitie - TR Concostilities 1 TR 0 3.16 - - - ORGANIC CARBON AND CARBONATE: 1-16 2.16 3.16 0 -<
ty Eo		Organic carbon — — — Carbonate 97 97 96					-			074 5 004 0 -	· · · · · · · · · · · · · · · · · · ·
early	1 1		TIME - ROCK II UNIT BIOSTRATIGRAPHIC	Τ	FOS CHARA	SIL	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	274.5–284.0 n	LITHOLOGIC DESCRIPTION
(b) 11/01-00 (b) 11/01-00 (b) 40 (c)		NB N8, 10YR 6/2		(N) 6dN			1		 	5YR 8/1	FORAMINIFER NANNOFOSSIL CHALK, NANNOFOSSIL OOZE/CHALK AND CHERT The top 63 cm of Section 1 contains a foraminifer renordosaii chalk. It is bracciated with soupy coze sur- rounding it. Planoities and other unidentifiable trace fossil are found in the bracciated chalk. The remainder of the recovered core is a nannofossil ooze with a chert layer occurring at 120 cm of Section 2 sandwiched between Nannofossil chalk. In the chalk zoo- phycus and planoities are recognized. The color is dominantly a pinkish gray (5YR 8/1). SMEAR SLIDE SUMMARY: 1-40 3-15 CC
			la PGa (F)	(N) 8dN	P AP		2 3 CC		00	10YR 5/4 5YR 8/1	1-40 3-15 CC D D D Volcanic glass - TR TR Patagonite - TR - Carbonate unspecified 2 Foraminifers 15 2 TR Calcaroous 81 96 100 Dinolingeritates 2 TR -

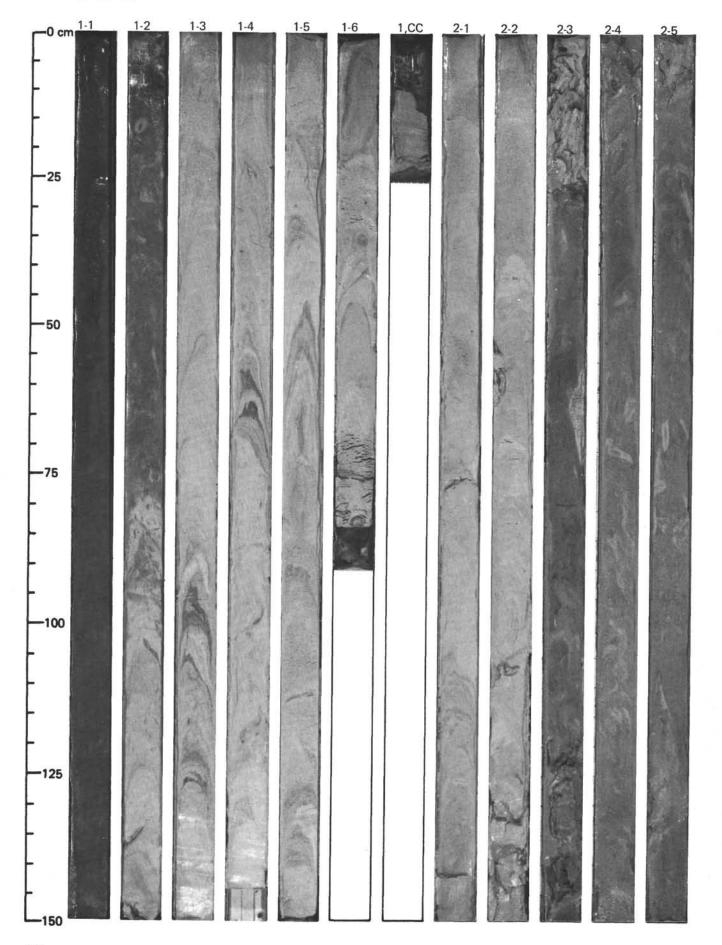
SITE 529

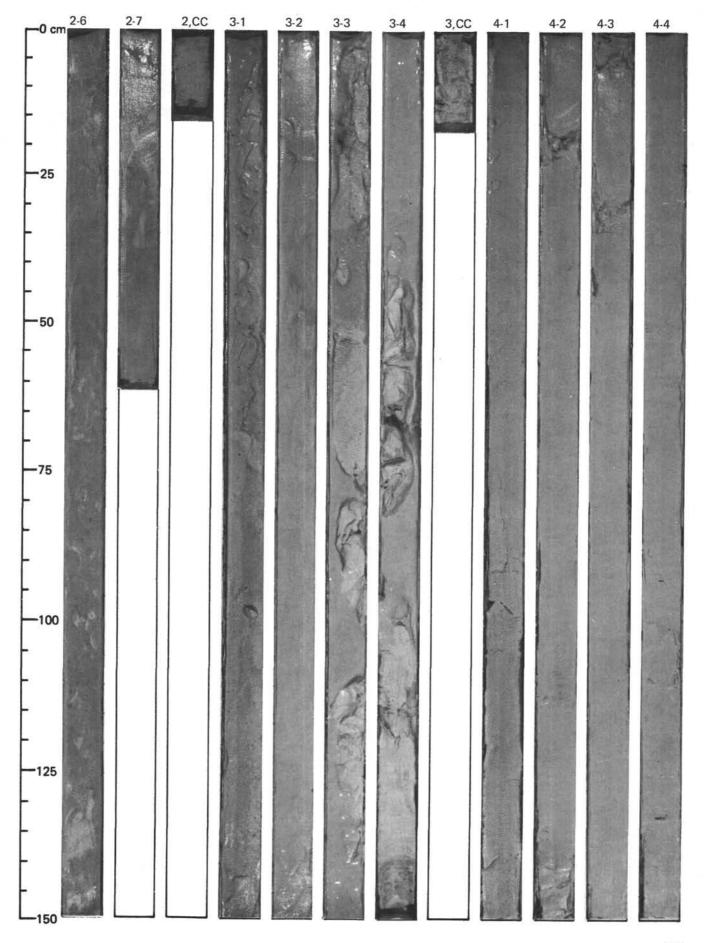

ORGANIC CARBON AND CARBONATE: 1-30 Organic carbon -Carbonate 90

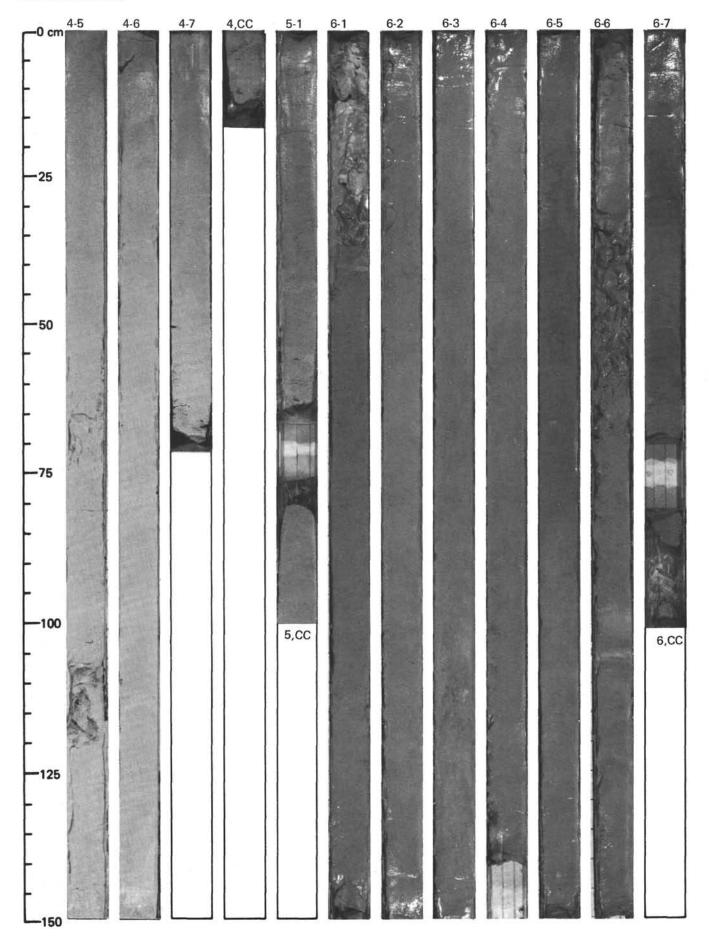
SITE 529 HO	LE	CORE	32 CORED IN	TERVAL	293.5-303.0	m	SITE	529	HO	LE	CORE	33 CORED	INTERVA	L,	303.0-312.5 m	
ME - ROCK UNIT TRATIGRAPH ZONE WINIFERS	FOSSIL ARACTER SWUTANDIQUE	SECTION METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES POLARITY		LITHOLOGIC DESCRIPTION	ŏ,	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARADIOI ARIANS DIATOMS	SECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURSS SAMPLES	POLARITY		LITHOLOGIC DESCRIPTION
late Paleoonne MPG (R) Sediments aturped		2 2 3 4 5 			5YR 8/2 10YR 5/4 7.5YR 8/2	FORAMINIFER NANNOFOSSIL CHALKThis core contains a moderate to highly bioturbated for white for annofosal chalk. The dominant color is prink identified.Parallel horizontal and sub-horizontal lamination are present in Section 3 and Section 1) and fractures focur in Sections 3 and Section 1 and Core-Catcher span="2">Colspan="2"Colspan="2" <td>late Paleocene</td> <td></td> <td>:P AM</td> <td></td> <td>22</td> <td></td> <td></td> <td></td> <td>N8 5YR 8/1 5Y 8/1</td> <td>EORAMINIFER NANNOFOSSIL CHALK This core contains a prodominantly very light gray (NB) foraminifer nannofosul Hahk. Starting at the bottom of Section 2 and continuing through Section 4 a serie of sedimentary structures sug- gets a slump or turbidity current deposit. Beautifully linelined and parallel larinisations, current ripple, and flazer bedding is present. Underneath this a high contract birrecia accurs. The breccia incluss rotated fragments which have annealed into the surrounding sedi- ment. The bottom of Section 3 contain inclined and boni- zontal layers which also appear rotated. The breccia contain inclined and parallel larinisations, current inture https://doi.org/10.1000/1000 SMEAR SLIDE SUMMARY: 1:800 3.065 D D Composition 2 D Compositions SMEAR SLIDE SUMMARY: 1:80 3.065 D D Compositions 2 D Compositions 2 D Compositions 2 D Compositions 2 D Compositions 2 D Compositions 2 T ORGANIC CARBON AND CARBONATE: 14 2/7 3/7 4/7 Organic carbon Carbonate 91 86 86 78</br></br></br></td>	late Paleocene		:P AM		22				N8 5YR 8/1 5Y 8/1	EORAMINIFER NANNOFOSSIL CHALK This core contains a prodominantly very light gray (NB) foraminifer nannofosul Hahk. Starting at the bottom of Section 2 and continuing through Section 4 a serie of sedimentary structures sug- gets a slump or turbidity current deposit. Beautifully linelined and parallel larinisations, current

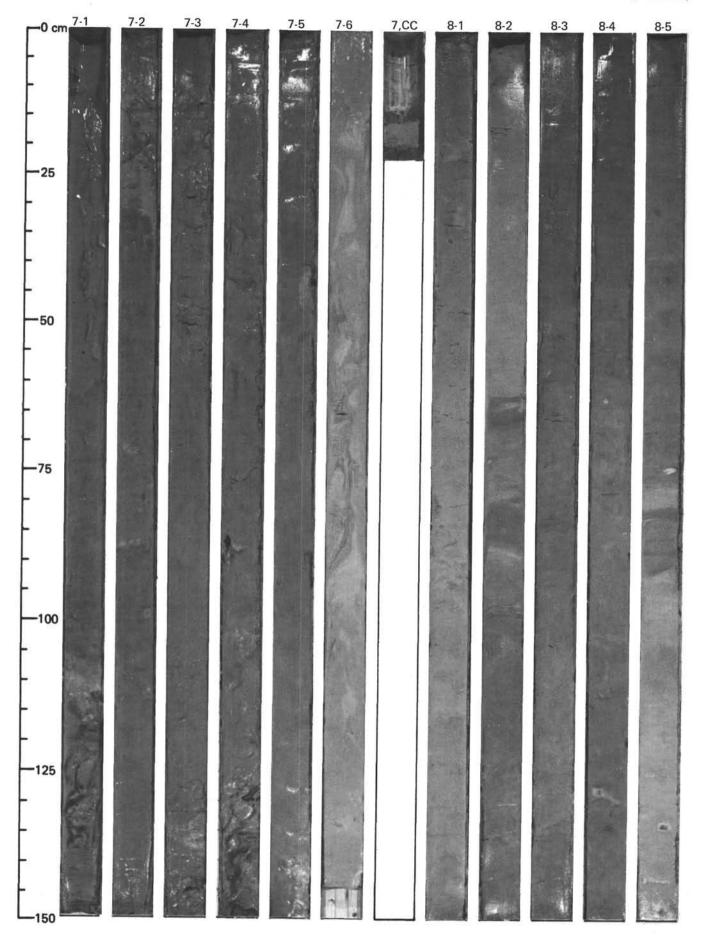


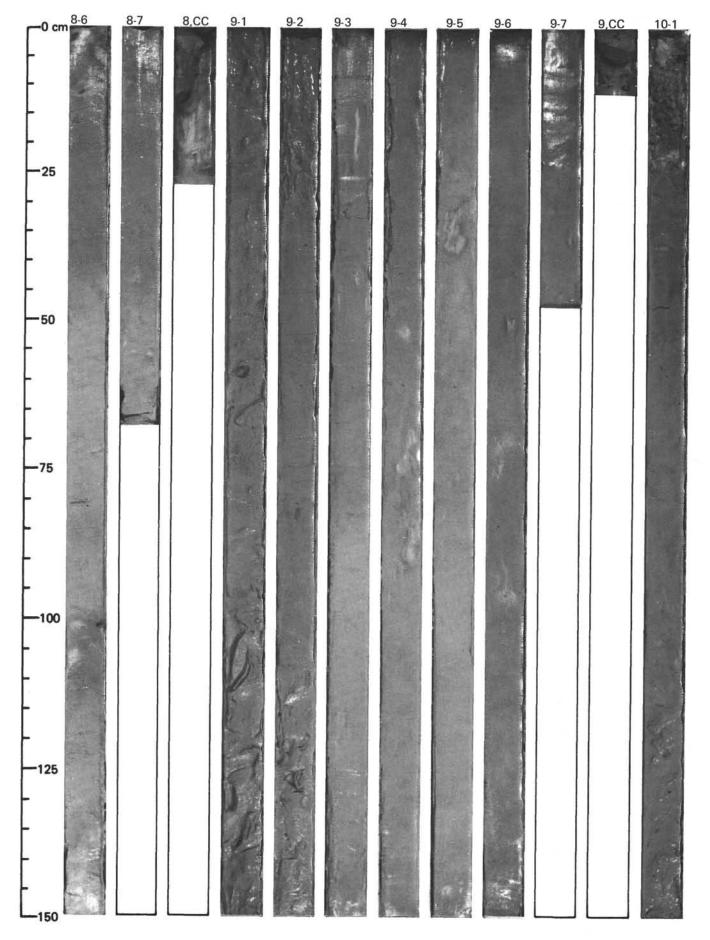
SITE 529 HOLE CORE 36 CORED INTERVAL	331.5-341.0 m	SITE 529 HOLE CORE 37 CORED INTERVAL 341.0-350.5 n	
TIME - ROCK INIT CHARTCR CHARNER REPARATION CHARTCR SECTION MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILL SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS SECTION METERS MANNOFOSSILLS SECTION METERS MANNOFOSSILLS SECTION METERS SECTION	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
	NB to SYR 5/1 This core contains a very light gray (NB) highly bio- turbated nanofosis (Hak, Biogenic sedimentary struc- tures are well preserved. Most are horizontal to sub-hori- contal. A brecolated zone occurs in Sections 5 and 6. Also present in Section 5 is a chert nodule. The brecolated zone may be a slump. SMEAR SLIDE SUMMARY: 140 340 5-13 D D M Composition: Quartz - TR 15 Feldspar - TR - Volatic glass 1 1 1 Palagonite TR 2 - Carbonate unspecified 10 8 5 Foraminifors 8 5 15 Calcareous namofosilis 77 87 64 Calcareous dinoflagellates 4 DRGANIC CARBON AND CARBONATE: 1-70 2-70 3-70 4-70 5-59	SITE 529 HOLE CORE 38 CORED INTERVAL 360.0-360.0 m	NANNOFOSSIL CHALK A very ligh gray (N8) nannofosil dhik was necov- ered. Biogenic mottling is intans. Halo burrows and planolites are abundant along with other horizontal and vertical burrows. A chert layer is present in Section 1. It is burrows. Recrytallization and lithfloation processes have just about destroyed any foraminifers that ware once present. SMEAR SLIDE SUMMARY: 1900 2-800 D D Composition: Heavy minerals TR 1 Volenic glass 1 7 Carbonate unspecified 30 20 Foraminifers 5 5 Calcanous dinofflagellates – 2 ORGANIC CARBON AND CARBONATE: 141 2-41 Organic carbon – 1 Carbonate 88 84
	Organic carbon — — — — — — — — — — — — — — — — — — —		LITHOLOGIC DESCRIPTION
(1) SSW (1) SSW (1) SSW (1) SSW (1) SSW	Chert nodule	a log b log	FORAMINIFER NANNOFOSSIL CHALK A very light gray (NB) highly bioturbated foraminifer nannofostil chalk is present. Biogenic sedimentary structures are abundant and well preserved. Foraminifer and calcareous dinoflagellates are well pre- aerved in smear slides. SMEAR SLIDE SUMMARY: 160 2-80 D D Composition: Heary minerals 2 2 Volcanic glass 1 1 Palagonite 1 1 Carbonate unspecified – 1 Foraminifers 20 15 Calcareous 15 Calcareous 15 Calcareous 15 5

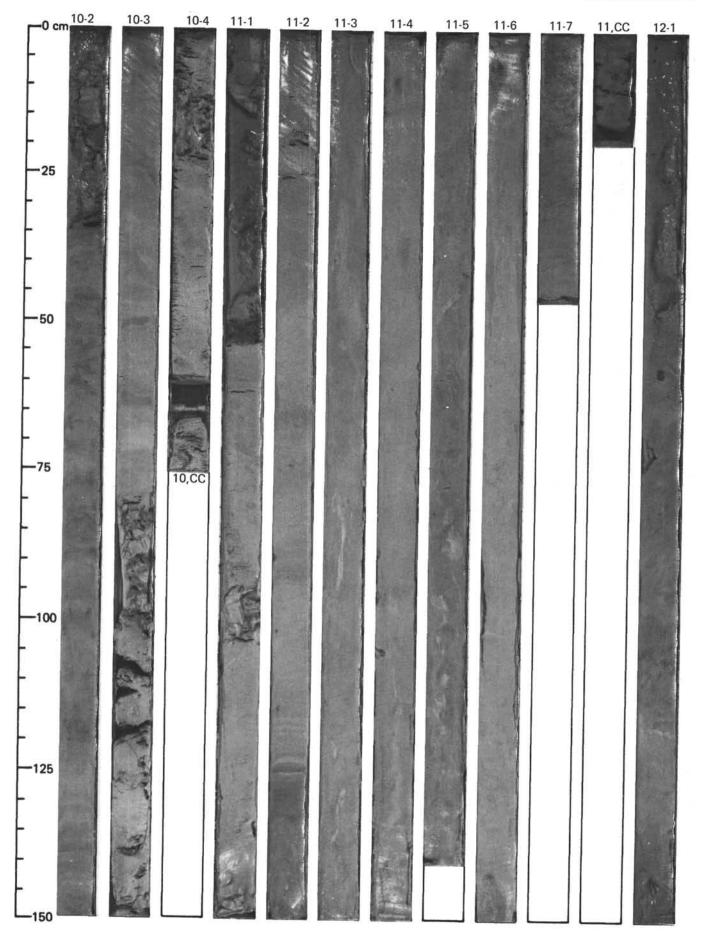

ORGANIC CARBON AND CARBONATE: 1.50 2-50 Organic carbon – – Carbonate 86 86

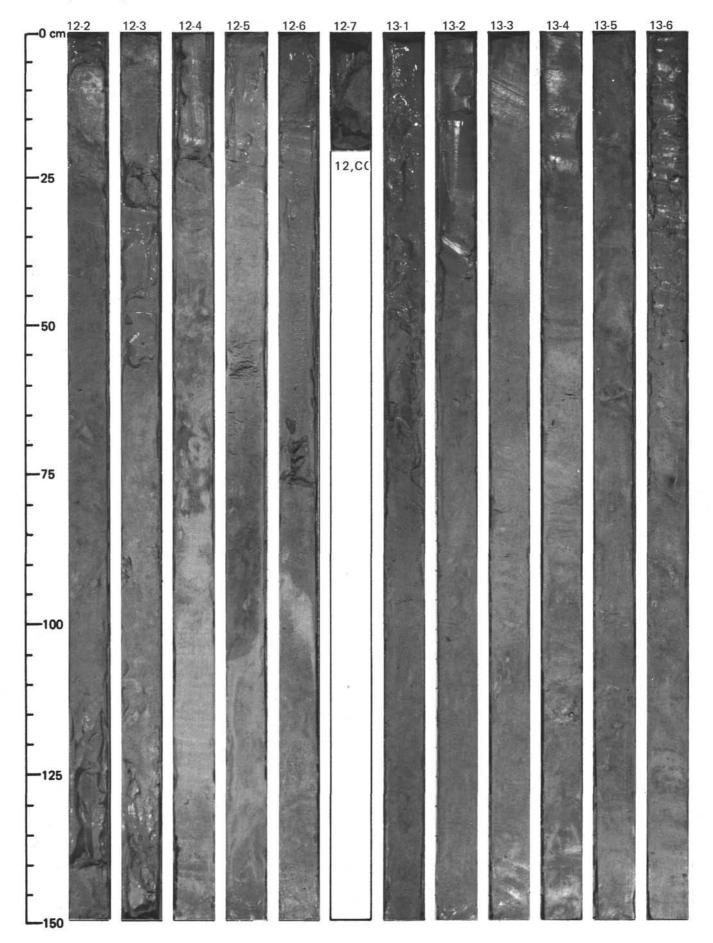


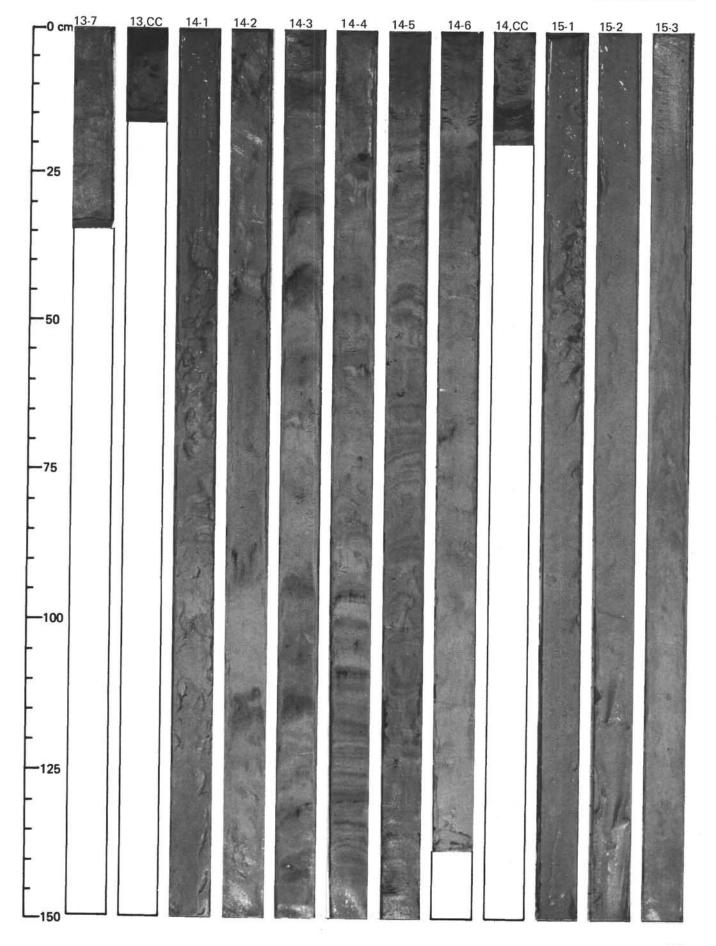

	U	-		E OSS	ii .	11	RE	41 CORED	TT		TT	379.0-385.5 m							_
	IHd		CH/	RAC	TER														
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	-	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY LITHOLOGY			POLARITY		LITHOLOGIC DES	CRIPTIC	N				
						1	0.5		APA PARAPAD			5Y 6/1 - N8 5Y 6/1 - N8	FORAMINIFE VOLCANICL This core contain olive gray (5Y 8/1) nannofossil ooze, a nannofossil volcanicl 9/2) volcanic ash.	ASTIC / ns an all to very dark y lastic silt	ASH AN ternatin V light Vellowis tstone (4D SIL ig sequ gray (h brow ind a d	rston ence d N8) fo vn (10 fusky t	VE pramini IYR 6 plue (5	fer (2) PB
	NP2 (N)					2	COLUMN TO DATE		OP DOPAPADAD	•		5Y 6/1 + N8 + 10YR 4/2	Biogenic sedimen organisms that prod much of the sedimen The entire core i ing. The volcaniclas extent and in many ever, the volcaniclas site either by current The Tertiary-Co- tion 6 at approximat	luced th its, s breccia tic layer instance tic layers s or slun etaceous	ese stri ited, m is are t is have i have t npling. bound	ost like arecciat ash at een tra	have ed to the ba	e to de a grea ase. Ho red to t	ill- ter tw-
						3	the set of set		-0			5Y 6/1, N8 and 10YR 4/2	SMEAR SLIDE SUM Texture: Sand Silt Clay	MARY: 1-80 D - -	2-80 D -	3-40 M 10 70 20	4-10 M 	7-41 D 	3
						4	Contraction in the		DENOVADO	•		5Y 6/1, 10YR 4/2, 10YR 6/2	Composition: Quartz Feldspor Heavy minerals Volcanic glass Palagonite Pyrite Foraminifers Calcareous	3 TR TR 1 TR 15	- - TR - TR	30 5 40 2 	15 TR 50 TR TR -	- - - TR -	
snoa									0				nannofossils Dolomite DRGANIC CARBON 1-9 Organic carbon – Carbonate 55			23 	-	100 - 6-103 - 63	7-6 - 70
Interections	P1a (F) NP1 (N)					5		СН	2			10YR 7/2, 10YR 4/2, 10YR 6/2							
						6			20 0000000										
	A.mayaroensis (F) M.mura (N)					7	-	- + сн+ - + z+ - + z+ - + сн+	DADDAD										

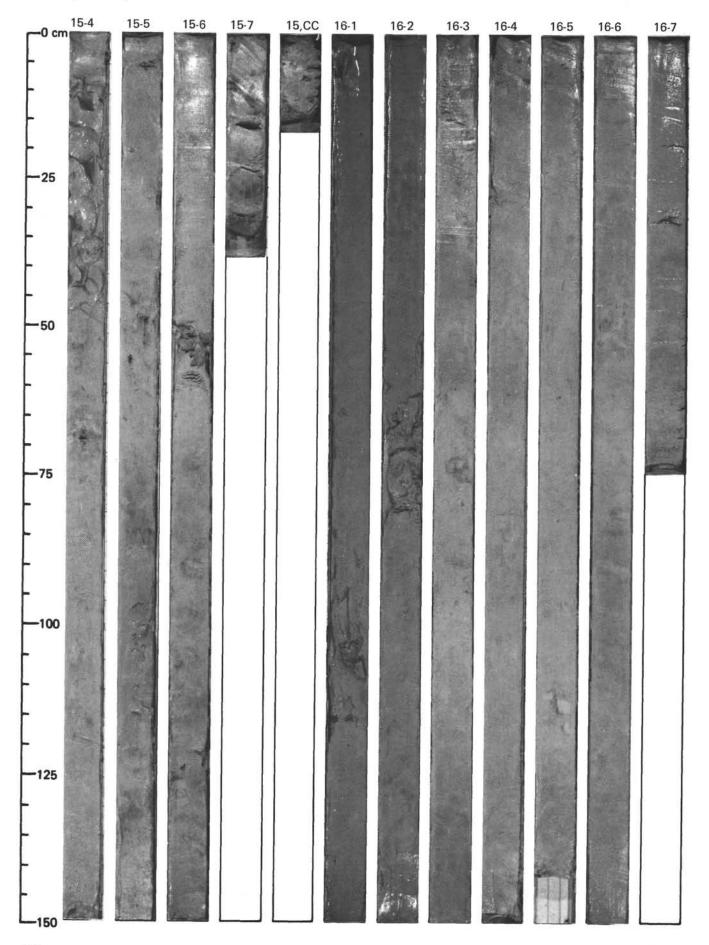


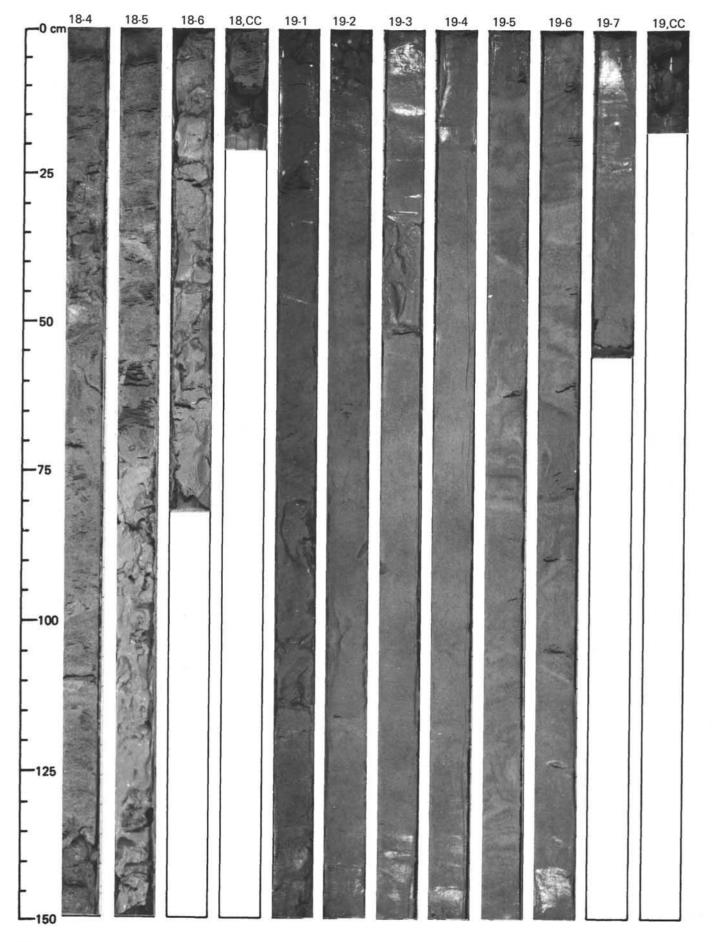

SITE 529

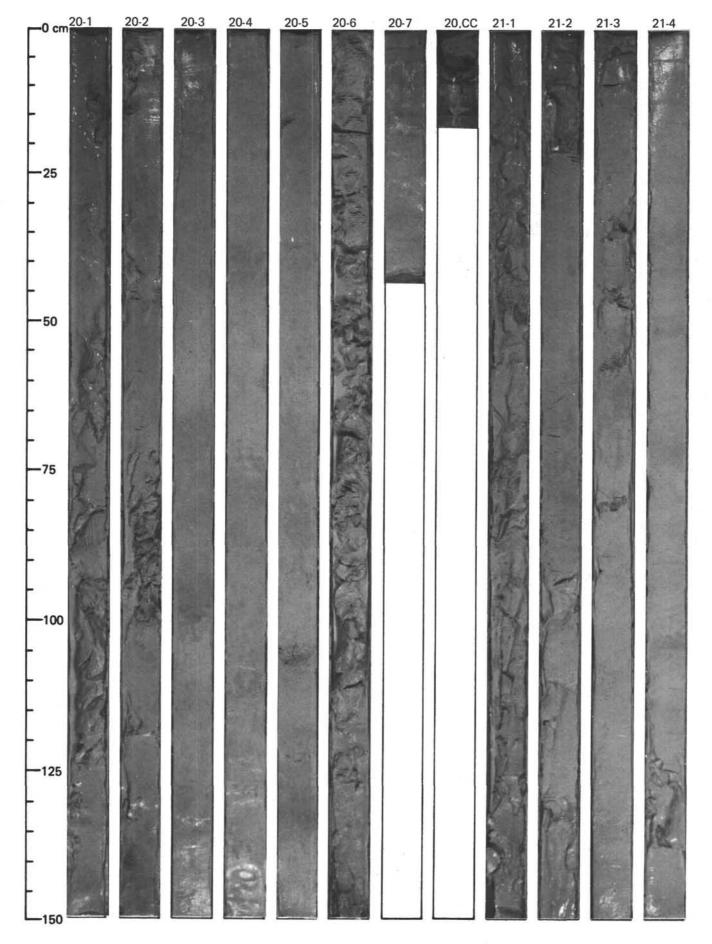


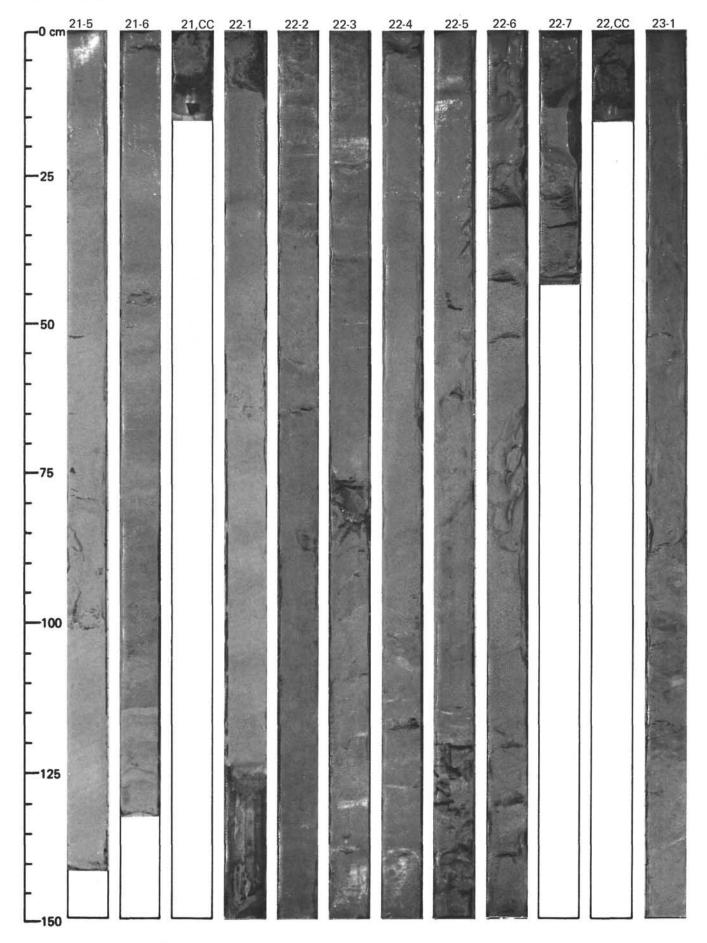


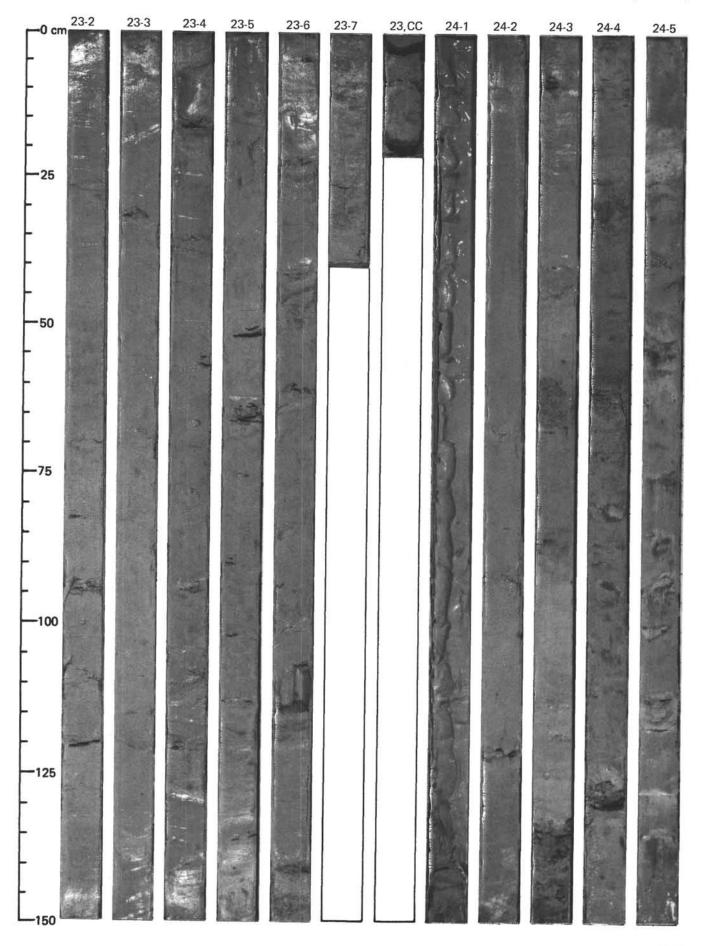


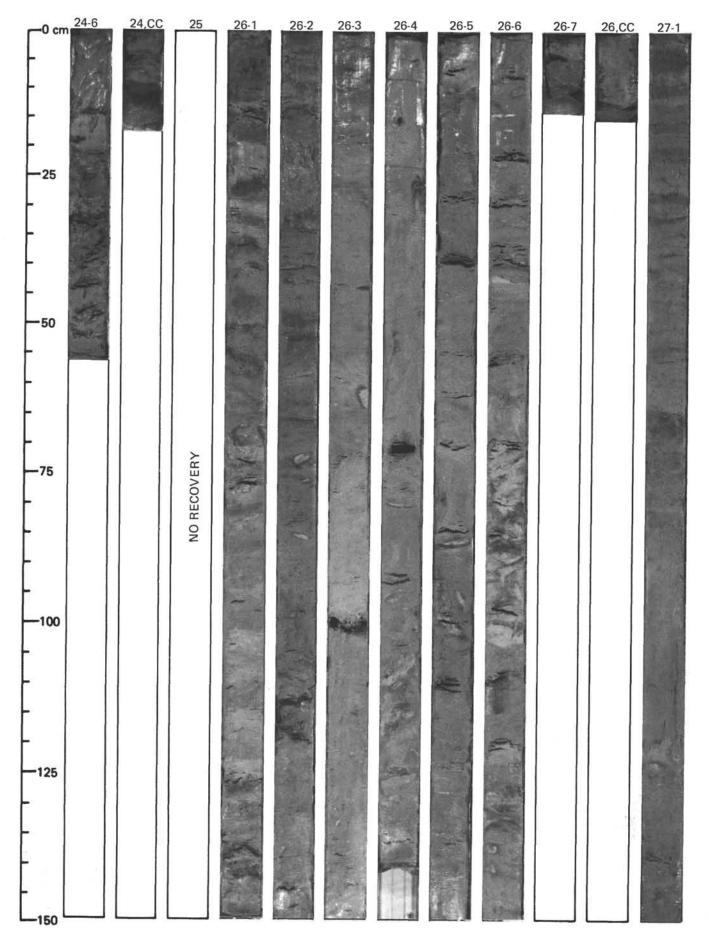


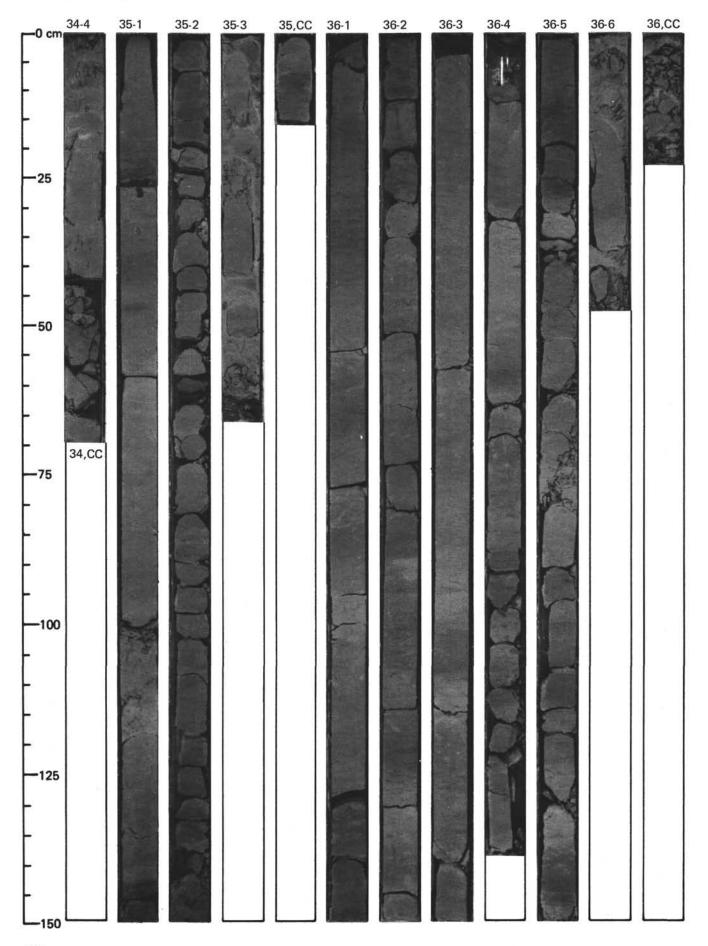


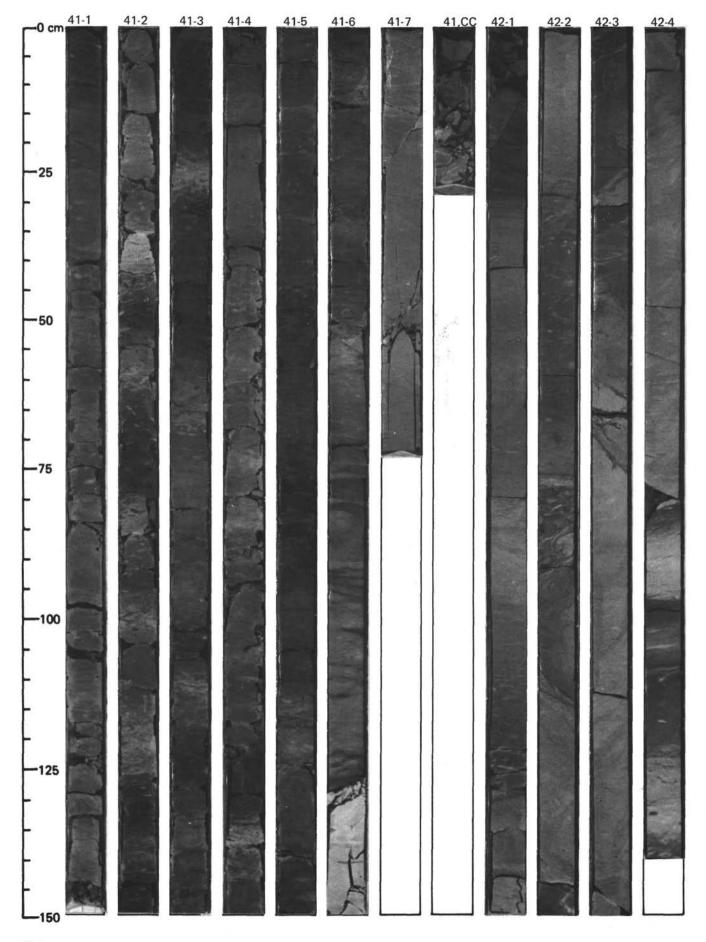


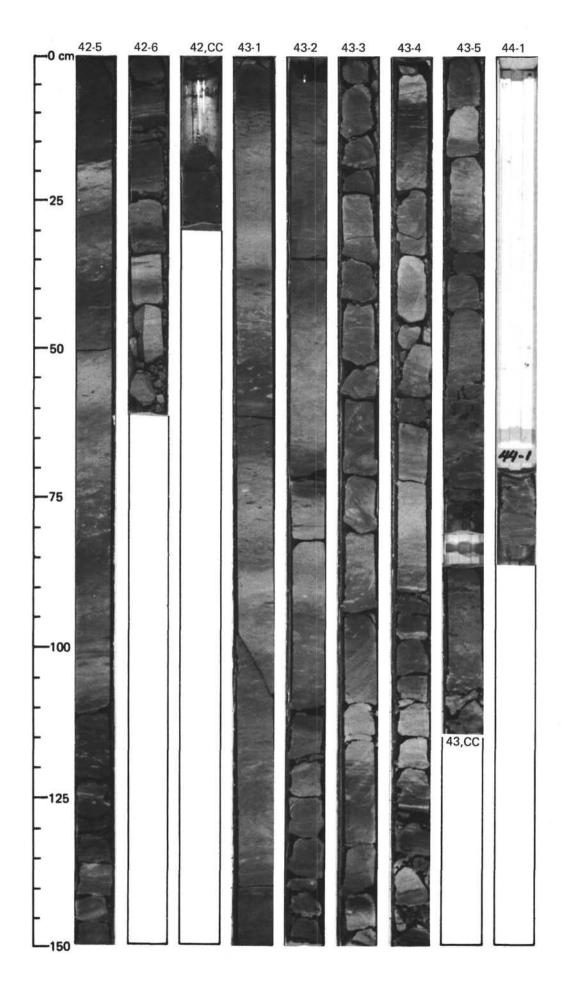





-0 cm	17-1	17-2	17-3	17-4	17-5	17-6	17-7	17,CC	18-1	18-2	18-3
- 97		a mart		17		-				1 8	
-									23		
-			1 Alexandre	7	1				N III		
-			-					- 4¥	-		T.
-25	155		N.			1					
-			1 Est			and the					
-					No.						
	S				-	Inst					Carlos Carlos
-				a the second	100				K	Sa al	
-50					and the		Sec.				
				Yes	-						
				14 Car	-				1	Yes	C.A.
				E al	Life of		2 mill			AT ST	
75	1 here		E	Nor					2/	1000	
			in	10						19	
				行					the last		
			E.	1 h	4.2				and the	C	
	115 C	1	1	1/20	The second				0		Sec.
				N.	1	40-				Ma	
-		1-1		除力	22					16th	
			The last	11/							A REAL
	The second	K	11/1						Contraction of the	5	-
			1.5	14						R.	1
-125		E	S.	And the second		B.C.					
	1º	RE		1	Carl I	1915				12	
		EU	1 the	No.	ALC: NO	Ent			in fil		
		1	No.		-				R		
	1	YES			all all	-				41	
	(تحرب	建筑基本的情	7 .	and the	and the second						




0 cm ²⁷⁻²	27-3	27-4	27-5	27-6	27-7	27,CC	28-1	28-2	28-3	28-4	28-5
-		- dan			1 to	. 11	1 4 1 m	" A.B.		a series	4-10-2
-	and the second	10	A REAL PROPERTY AND	a filler					1		1
		A LANDAL						1		por al	-
-25	1	er de la compañía de	=1						-291	-	and the second
_				2	20.20			and a		ed al	124
	The last		1						2 t	2	
-		12 1.5	R	And a	A				1	1	
-		2						A.		B. C.	1
-50		-			100			A.		1	100
1 C	2		and the	and the second s			and the second	Call	10		
			1	17	and and		1 C	8 2	18	Card a	Tre !
-	14 19	-					1 St	2	18	10-10-1	-
-75							A.		与和		-
							1		1	2 1-1-1	
	1	6.3					150		Carlos A		-
-	-			A.			PAR -	A A			
-100	-	2.4	2 M	1			人			2	2 martine
-	-	4		-			E.	-		2	
-		S		the second			- All			-	200
-		22		m						6	
-	2		5	A A A				6		21	N.
			2				DA	-			
_		1		-			2	1Ca			1
-		6.7T	Ed.				Can a	+		191	1
-	-			-					-		1
-150				and a					and the	-	a derin a


-0 cm 28-6	28,CC	29-1	29-2	29-3	29,CC	30	31-1	31-2	31-3	31,CC	32-1
			The walk of the second of the			NO RECOVERY	A REAL AND A				

0 cm 32-2	32-3	32-4	32-5	32,CC	33-1	33-2	33-3	33-4	34-1	34-2	34-3
- 100	2	N			(3)	inger (25	1	
-											
-				- 5/6			18.63				
							2				
-25											
-											
-			and a second								
		0				Level .		G (1000
		7	2								
-50		X	1								and the
	-Star		-							61	计学
-			1		- HARR					r i	14.27
-			T.L.					100			25 21
75	N							Serie -			Sa.
-						T					16 1
-						8					
-	12				and the second			5			and the second
-					1	N	1				14.5 A
-100						T I					
		A						33,CC			
		1. T									
-125											
-											
-											and a
-		5								15	
-										-	
_150 	and the second								4-51	- the ci	Line.

0 cm ³⁷⁻¹	37-2	37-3	38-1	38-2	39-1	39-2	39-3	40-1	40-2	40-3	40,CC
				ANS.	(inter	1		1 and			
-						1		1	1		and a
-			100							÷.	
-		2					100				
-25	10.00										
-										ks f	
	1.00	E CO									
-50											
		37,CC									
_		07,00									
- 64	200					0	39,CC				
-			-						1 1		
-75											
-										1000	
-											
-									ment		
-100											
_			, A								
-											
-									S.		
-125									100		
-									Č.		
-			1 and						2		
-								1			
-											
-150											1(2)

