Selected sections of Cores 93, 94, 95, 96, and 104 from Hole 530A, showing the red, green, and black shales characteristic of Lithologic Unit 8.
Initial Reports
of the
Deep Sea Drilling Project

A Project Planned by and Carried Out With the Advice of the
JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES)

VOLUME LXXV, Part 1
covering Leg 75 of the cruises of the Drilling Vessel Glomar Challenger
Walvis Bay, South Africa, to Recife, Brazil
July–September, 1980

PARTICIPATING SCIENTISTS
William W. Hay, Jean-Claude Sibuet,
Eric J. Barron, Simon Brassell, Walter E. Dean,
Alain Y. Hue, Barbara H. Keating, Charles L. McNulty, Philip A. Meyers,
Masato Nohara, Roger E. Schallreuter, John C. Steinmetz,
Dorrik Stow, Herbert Stradner

SHIPBOARD SCIENCE REPRESENTATIVE
Robert E. Boyce

EDITOR
Rosemary Amidei

Prepared for the
NATIONAL SCIENCE FOUNDATION
National Ocean Sediment Coring Program
Under Contract C-482
By the
UNIVERSITY OF CALIFORNIA
Scripps Institution of Oceanography
Prime Contractor for the Project
This material is based upon research supported by the National Science Foundation under Contract No. C-482.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

It is recommended that reference to the whole or to part of this volume be made in one of the following forms, as appropriate:

Effective Publication Dates of DSDP Initial Reports

According to the International Code of Zoological Nomenclature, the date of publication of a work and of a contained name or statement affecting nomenclature is the date on which the publication was mailed to subscribers, placed on sale, or when the whole edition is distributed free of charge, mailed to institutions and individuals to whom free copies are distributed. The mailing date, *not the printed date*, is the correct one.

Mailing dates of the more recent *Initial Reports of the Deep Sea Drilling Project* are as follows:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Month, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>January, 1983</td>
</tr>
<tr>
<td>66</td>
<td>February, 1982</td>
</tr>
<tr>
<td>67</td>
<td>November, 1982</td>
</tr>
<tr>
<td>68</td>
<td>October, 1982</td>
</tr>
<tr>
<td>69</td>
<td>May, 1983</td>
</tr>
<tr>
<td>70</td>
<td>April, 1983</td>
</tr>
<tr>
<td>71</td>
<td>September, 1983</td>
</tr>
</tbody>
</table>

June 1984

Library of Congress Catalog Card Number 74—603338

For sale by the Superintendent of Documents, U.S. Government Printing Office

Washington, D.C. 20402
The world's first major oceanographic expedition took place between 1872 and 1876. This four year expedition, aboard the H.M.S. Challenger covering nearly 70,000 nautical miles and gathering oceanographic data from 362 stations, expanded our basic knowledge of the world's oceans and provided a solid foundation for future studies in marine geology. A century later, another vessel also named Challenger has continued to expand our knowledge of the world's ocean and has helped revolutionize our concepts of how the seafloor and the continents form and change. The Drilling Vessel Glomar Challenger is plying the same waters as its historic counterpart, seeking answers to new questions concerning the history of our planet and the life it supports. The continued advancement of knowledge about the fundamental processes and dynamics of the earth will lead to a greater understanding of our planet and more intelligent use of its resources.

Since 1968, the Deep Sea Drilling Project has been supported by the National Science Foundation, primarily through a contract with the University of California which, in turn, subcontracts to Global Marine Incorporated for the services of the D/V Glomar Challenger. Scripps Institution of Oceanography is responsible for management of the University contract.

Through contracts with Joint Oceanographic Institutions, Inc. (JOI, Inc.), the National Science Foundation supports the scientific advisory structure for the project and funds pre-drilling geophysical site surveys. Scientific planning is conducted under the auspices of the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). The JOIDES advisory group consists of over 250 members who make up 24 committees, panels and working groups. The members are distinguished scientists from academic institutions, government agencies and private industry from all over the world.

In 1975, the International Phase of Ocean Drilling (IPOD) began. Present IPOD member nations, Federal Republic of Germany, Japan, United Kingdom and France, provide partial support of the project. Each member nation takes an active role in the scientific planning of
the project through membership in JOIDES. Scientists from these countries also participate in the field work aboard the D/V *Glomar Challenger* and post-cruise scientific studies.

The first ocean coring operations for the Deep Sea Drilling Project began on August 11, 1968. During the ensuing years of drilling operations in the Atlantic, Pacific and Indian Oceans, the Gulf of Mexico, Caribbean Sea, Mediterranean Sea, and Antarctic waters, the scientific objectives that had been proposed were successfully accomplished. Primarily, the age of the ocean basins and their processes of development were determined. The validity of the hypothesis of sea floor spreading was firmly demonstrated and its dynamics studied. Emphasis was placed on broad reconnaissance and testing the involvement of mid-oceanic ridge systems in the development of the ocean basin. Later legs of the *Challenger*’s voyages concentrated on the nature of the oceanic crust, the sedimentary history of the passive ocean margins, sediment dynamics along active ocean margins and other areas of interest. The accumulated results of this project have led to major new interpretations of the pattern of sedimentation and the physical and chemical characteristics of the ancient oceans.

Technological advances have provided new tools which in turn have opened new dimensions of scientific discovery. Since the introduction of the Hydraulic Piston Corer in 1979 virtually undisturbed cores of soft sediment layers can now be obtained. This technological advance has greatly enhanced the ability of scientists to study ancient ocean environments, as recorded by sediment characteristics and flora and fauna preserved in these sedimentary layers.

A second major advance is the use of the hole after it is drilled. The project continually logs holes and performs geophysical and geochemical studies before, during and after drilling. Long term downhole geophysical seismic monitoring devices have been implanted successfully in DSDP holes. These new listening devices and geophysical studies have provided valuable information as to the origin and nature of the dynamic processes involved with plate tectonics.

These reports contain the results of the initial studies of the recovered core material and the associated geophysical information. All people benefit either directly or indirectly from this fundamental research. Knowledge about past and present conditions and processes are the foundations for future predictions and developments. Both short and long term benefits are obtained by advances in drilling technology and instrumentation. Information is being obtained about the origin and geographic distribution of natural resources. Just as the H.M.S. *Challenger* had a profound impact on scientific thought for over a century, this second *Challenger* expedition has given and will continue to give a greater understanding of the oceans and the processes that form and shape the earth.

Edward A. Knapp,
Director

Washington, D.C.
July 1983
Recognizing the need in the oceanographic community for scientific planning of a program to obtain deep sedimentary cores from the ocean bottoms, four of the major oceanographic institutions that had strong interests and programs in the fields of marine geology and geophysics formed, in May 1964, the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES). This group—Lamont-Doherty Geological Observatory; Rosenstiel School of Marine and Atmospheric Science, University of Miami; the Scripps Institution of Oceanography, University of California at San Diego; and the Woods Hole Oceanographic Institution—expressed an interest in undertaking scientific planning and guidance of the sedimentary drilling program. It was the purpose of this group to foster programs to investigate the sediments and rocks beneath the deep oceans by drilling and coring. The membership of the original group was later enlarged, in 1968, when the University of Washington became a member and again in 1975 when University of Hawaii Institute of Geophysics, the Oregon State University School of Oceanography, the University of Rhode Island Graduate School of Oceanography, and Texas A&M University Department of Oceanography became members. In accordance with international agreements, institutions of participating nations became members of JOIDES. Thus, during 1974 to 1976, the Bundesanstalt für Geowissenschaften und Rohstoffe of the Federal Republic of Germany, the Centre National pour l’Exploitation des Oceans of France, the National Environmental Research Council of the United Kingdom, the University of Tokyo of Japan, and the Academy of Sciences of the USSR became JOIDES members.

Through discussions sponsored by the JOIDES organization, with support from the National Science Foundation, Columbia University’s Lamont-Doherty Geological Observatory operated a drilling program in the summer of 1965 on the Blake Plateau region off Jacksonville, Florida.
With this success in hand, planning began for a more extensive deep sea effort. This resulted in the award of a contract by the National Science Foundation to the Scripps Institution of Oceanography, University of California at San Diego for an eighteen-month drilling program in the Atlantic and Pacific oceans, termed the Deep Sea Drilling Project (DSDP). Operations at sea began in August 1968, using the now-famous drilling vessel, the Glomar Challenger.

The goal of the Deep Sea Drilling Project is to gather scientific information that will help determine the age and processes of development of the ocean basins. The primary strategy is to drill deep holes into the ocean floor, relying largely on technology developed by the petroleum industry.

Through the efforts of the principal organizations and of the panel members, who were drawn from a large cross section of leading earth scientists and associates, a scientific program was developed.

Cores recovered from deep beneath the ocean floor provide reference material for a multitude of studies in fields such as biostratigraphy, physical stratigraphy, and paleomagnetism that afford a new scope for investigating the physical and chemical aspects of sediment provenance, transportation, deposition, and diagenesis. In-hole measurements, as feasible, provide petrophysical data to permit inference of lithology of intervals from which no cores were recovered.

A report, describing the core materials and information obtained both at sea and in laboratories onshore, is published after the completion of each cruise. These reports are a cooperative effort of shipboard and shore-based scientists and are intended primarily to be a compilation of results which, it is hoped, will be the starting point for many future new and exciting research programs. Preliminary interpretations of the data and observations taken at sea are also included.

Core materials and data collected on each cruise will be made available to qualified scientists through the Curator of the Deep Sea Drilling Project, following a Sample Distribution Policy (p.xvii) approved by the National Science Foundation.

The advent of Glomar Challenger, with its deep-water drilling capability, is exceedingly timely. It has come when geophysical investigation of the oceans has matured through 20 to 30 years of vigorous growth to the point where we have some knowledge about much of the formerly unknown oceanic areas of our planet. About one million miles of traverses have been made which tell us much about the global pattern of gravity, magnetic and thermal anomalies, and about the composition, thickness, and stratigraphy of the sedimentary cover of the deep sea and continental margin. The coverage with such data has enabled the site selection panels to pick choice locations for drilling. The knowledge gained from each hole can be extended into the surrounding area. Detailed geophysical surveys were made for most of the selected locations prior to drilling.

The earth sciences have recently matured from an empirical status to one in which substantial theories and hypotheses about major tectonic processes are flourishing. Theories about the origin of magnetic fields and magnetic reversals, about ocean floor spreading and continental drift, and about the thermal history of our planet have led to specific predictions that could be tested best by an enlightened program of sampling of deep sea and continental margin sediments and underlying rocks.

In October 1975, the International Phase of Ocean Drilling (IPOD) began. This international interest, and the true participation of both the scientists and governments of a number of nations, are eloquent testimony to the importance of the work being done by the Deep Sea Drilling Project.

The members of JOIDES and DSDP and the scientists from all interested organizations and nations who have served on the various advisory panels are proud to have been of service and believe that the information and core materials that have been obtained will be of value to students of earth sciences and to all humanity for many years to come.
Deep Sea Drilling Project

MEMBER ORGANIZATIONS OF THE JOINT OCEANOGRAPHIC INSTITUTIONS FOR DEEP EARTH SAMPLING (JOIDES):¹

Bundesanstalt für Geowissenschaften und Rohstoffe, Federal Republic of Germany

University of California at San Diego, Scripps Institution of Oceanography

Centre National pour l'Exploitation des Océans, Paris

Columbia University, Lamont-Doherty Geological Observatory

University of Hawaii, Hawaii Institute of Geophysics

University of Miami, Rosenstiel School of Marine and Atmospheric Science

Natural Environment Research Council, London

Oregon State University, School of Oceanography

University of Rhode Island, Graduate School of Oceanography

Texas A&M University, Department of Oceanography

University of Tokyo, Ocean Research Institute

University of Washington, Department of Oceanography

U.S.S.R. Academy of Sciences²

Woods Hole Oceanographic Institution

OPERATING INSTITUTION:

Scripps Institution of Oceanography
University of California at San Diego
La Jolla, California
W. A. Nierenberg, Director

DEEP SEA DRILLING PROJECT

Dr. M. N. A. Peterson
Principal Investigator
Project Manager

Mr. Robert S. Bower
Assistant Project Manager for Administration and Contracts Officer

Dr. Yves Lancelot
Chief Scientist

Dr. Matthew H. Salisbury
Associate Chief Scientist for Science Operations

Dr. Russell B. Merrill
Associate Chief Scientist for Science Services

Dr. William R. Riedel
Curator

Mr. Stanley T. Serocki
Project Development Engineer

Mr. Paul Porter
Operations Manager

Mr. William T. Soderstrom
Finance Administrator

Mr. Robert Olivas
Logistics Officer

Ms. Sue Strain
Personnel Officer

¹ Includes member organizations during time of cruise.
² This institution and its committees and panel members were noncontributing members of JOIDES at time of cruise.
Participants aboard
GLOMAR CHALLENGER for Leg Seventy-five

Dr. William W. Hay
Co-Chief Scientist
Joint Oceanographic Institutions, Inc.
2600 Virginia Avenue, N.W.
Washington, D.C. 20037

Dr. Jean-Claude Sibuet
Co-Chief Scientist
Centre Océanologique de Bretagne
B.P. 337
29273 Brest Cedex
France

Mr. Eric J. Barron
Sedimentologist
Rosenstiel School of Marine
and Atmospheric Science
University of Miami
Miami, Florida 33149

Mr. Robert E. Boyce
Staff Science Representative and
Physical Properties Specialist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Simon Brassell
Organic Geochemist
Organic Geochemistry Unit
University of Bristol
Bristol BS8 1TS
United Kingdom

Dr. Walter E. Dean
Sedimentologist
Branch of Regional Geochemistry
U.S. Geological Survey
P.O.Box 25046, Mail Stop 925
Denver, Colorado 80225

Dr. Alain Y. Huc
Organic Geochemist
Institut de Recherche
Ressources et Matériaux Minéraux
Université d'Orléans
45045 Orléans Cedex
France

Dr. Barbara H. Keating
Paleomagnetist
Hawaii Institute of Geophysics
University of Hawaii at Manoa
Honolulu, Hawaii 96822

Dr. Charles L. McNulty
Paleontologist (foraminifers)
Department of Geology
University of Texas at Arlington
Arlington, Texas 76019

Dr. Philip A. Meyers
Organic Geochemist
Department of Atmospheric and
Oceanic Science
University of Michigan
Ann Arbor, Michigan 48109

Dr. Masato Nohara
Sedimentologist/Inorganic Geochemist
Geological Survey of Japan
Ibaraki 305
Japan

Dr. Roger E. Schallreuter
Sedimentologist
Geologisch-Paläontologisches Institut
Universität Hamburg
2 Hamburg 13
Federal Republic of Germany

Dr. John C. Steinmetz
Paleontologist (nannofossils)
Department of Marine Science
University of South Florida
St. Petersburg, Florida 33701

Dr. Dorrik Stow
Sedimentologist
British National Oil Corporation
150 St. Vincent Street
Glasgow G2 5LJ
United Kingdom

Dr. Herbert Stradner
Paleontologist (nannofossils)
Geological Survey of Austria
A-1031 Wien III
Austria

Mr. Robert Knapp
Cruise Operations Manager
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Robert Connolly
Weatherman
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093
Captain Loyd E Dill
Master of the Drilling Vessel
Global Marine Inc.
8369 Vickers Street
San Diego, California 92111

Mr. A. C. Wheeler, Jr.
Drilling Superintendent
Global Marine, Inc.
8369 Vickers Street
San Diego, California 92111

Mr. Dennis Graham
Laboratory Officer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. David Allard
Curatorial Representative
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. William Meyer
Chemist
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Larry Axline
Logging Engineer
Gearhart-Owen Wire Line
P.O. Box 1258
Fort Worth, Texas 76101

Mr. Paul Laughlin
Electronics Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Perry Dempsey
Special Tools Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Bruce Blumer
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Don Marsee
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. James Pine
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. John Shay
Marine Technician
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Mr. Kevin Reid
Photographer
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Ms. Joanne Collins
Yeoperson
Deep Sea Drilling Project, A-031
Scripps Institution of Oceanography
La Jolla, California 92093

Deep Sea Drilling Project Publications Staff

Principal Editor
Jan H. Blakeslee

Editors
Rosemary Amidei
Marian G. Bailey
Susan Orlofsky
Elizabeth Whalen

Production Manager
Raymond F. Silk

Production Assistants
Elaine Bruer
Madeleine A. Mahnken

Production Coordinators
Mary A. Young
Carolina Bertling

Art-Photo Supervisor
Virginia L. Roman

Illustrators
Myrtali Anagnostopoulos
Vicki Cypherd
Tommy F. Hilliard
Elizabeth Peters (this volume)
Alice N. Thompson
JOIDES Advisory Groups

Executive Committee
Dr. James D. Baker, Jr.
University of Washington
Prof. Dr. F. Bender
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William W. Hay
Rosenstiel School of Marine and Atmospheric Science
Dr. G. Ross Heath
Oregon State University
Dr. Charles E. Helsley
Hawaii Institute of Geophysics
Sir Peter Kent, F.R.S.
Natural Environment Research Council
Dr. John A. Knauss
University of Rhode Island
Dr. Noriyuki Nasu
University of Tokyo
Dr. William A. Nierenberg
Scripps Institution of Oceanography
Dr. M. N. A. Peterson (ex-officio)
Scripps Institution of Oceanography
Monsieur Gerard Piketty
Centre National pour l’Exploitation des Océans
Dr. A. V. Sidorenko
Academy of Sciences of the U.S.S.R.
Dr. John Steele, Chairman
Woods Hole Oceanographic Institution
Dr. Manik Talwani
Lamont-Doherty Geological Observatory
Professor T. K. Treadwell, Jr.
Texas A&M University

Planning Committee
Dr. Helmut Beiersdorf
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. William R. Bryant
Texas A&M University
Dr. Joe R. Cann
University of Newcastle
Dr. Joe S. Creager
University of Washington
Dr. J. Dymond
Oregon State University
Dr. John Ewing, Chairman
Woods Hole Oceanographic Institution
Dr. Dennis E. Hayes
Lamont-Doherty Geological Observatory

Dr. Kazuo Kobayashi
University of Tokyo
Dr. Yves Lancelot
Scripps Institution of Oceanography
Dr. Xavier LePichon
Centre National pour l’Exploitation des Océans
Dr. Ralph Moberly
Hawaii Institute of Geophysics
Dr. T. C. Moore, Jr.
University of Rhode Island
Dr. L. Nikitin
Academy of Sciences of the U.S.S.R.
Dr. Wolfgang Schlager
University of Miami
Dr. E. L. Winterer
Scripps Institution of Oceanography

Advisory Panel on Sedimentary Petrology and Physical Properties
Dr. Michael Arthur
U.S. Geological Survey
Dr. R. Bennett
National Oceanic and Atmospheric Administration
Dr. J. Conolly
ERA North America Inc.
Dr. John W. Handin
Texas A&M University
Dr. George deVries Klein
University of Illinois
Dr. I. N. McCave
University of East Anglia
Dr. Frédéric Mélières
Université Pierre et Marie Curie
Dr. Ralph Moberly (ex-officio)
Hawaii Institute of Geophysics
Dr. O. H. Pilkey
Duke University
Dr. A. Richards, Chairman
Lehigh University
Dr. Peter Rothe
Geographisches Institut der Universität Mannheim
Dr. Matthew H. Salisbury (ex-officio)
Scripps Institution of Oceanography
Prof. Peter P. Timofeev
Academy of Sciences of the U.S.S.R.

Advisory Panel on Organic Geochemistry
Dr. Earl W. Baker
Florida Atlantic University
Dr. Geoffrey Eglinton (ex-officio)
University of Bristol

* Membership at time of cruise.
Dr. Xavier LePichon (ex-officio)
Centre National pour l'Exploitation des Océans
Dr. Kazuaki Nakamura
University Institute of Tokyo
Dr. Thomas Shipley (ex-officio)
Scripps Institution of Oceanography
Dr. Roland von Huene, Chairman
U.S. Geological Survey
Dr. H. W. Walther
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Joel S. Watkins
Gulf Science and Technology Company

Advisory Panel on Ocean Margin (Passive)
Dr. Helmut Beiersdorf (ex-officio)
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. Arnold H. Bouma
U.S. Geological Survey
Dr. William R. Bryant (ex-officio)
Texas A&M University
Dr. Joseph R. Curray
Scripps Institution of Oceanography
Mr. John A. Grow
U.S. Geological Survey
Dr. K. Hinz
Bundesanstalt für Geowissenschaften und Rohstoffe
Dr. John M. Hunt (ex-officio)
Woods Hole Oceanographic Institution
Dr. H. Kagami
University of Tokyo
Dr. Yves Lancelot
Scripps Institution of Oceanography
Dr. L. Montadert
Institut Français du Pétrole
Professor V. Nalivkin
Liteyny Prospect, Leningrad
Dr. D. G. Roberts
Institute of Oceanographic Sciences, Surrey
Professor Dr. E. Seibold
Universität Kiel
Dr. Robert E. Sheridan, Chairman
University of Delaware
Dr. S. Snelson
Shell Development Company
Dr. J. Thiede
Universitetet i Oslo
Dr. P. R. Vail
Exxon Production Research Company
Dr. Jan E. Van Hinte
Vrije Universiteit

Advisory Panel on Pollution Prevention and Safety
Dr. N. I. Beliy
Ministry of Gas Industry, U.S.S.R.

Dr. George Claypool
U.S. Geological Survey
Dr. Brian E. Davies
Sohio Petroleum Company
Dr. R. G. Douglas (ex-officio)
University of Southern California
Dr. John Ewing (ex-officio)
Woods Hole Oceanographic Institution
Dr. Paul J. Fox (ex-officio)
State University of New York--Albany
Dr. Louis E. Garrison, Chairman
U.S. Geological Survey
Dr. H. Grant Goodell
University of Virginia
Dr. Arthur E. Green
Exxon Production Research Company
Dr. A. J. Horn
Atherton, California
Dr. Ernst Hotz
Deminex, Essen, Federal Republic of Germany
Mr. J. Laherrère
Compagnie François des Pétroles
Dr. Yves Lancelot
Scripps Institution of Oceanography
Dr. David B. MacKenzie
Marathon Oil Company
Dr. A. E. Maxwell (ex-officio)
Woods Hole Oceanographic Institution
Dr. Robert E. Sheridan (ex-officio)
University of Delaware
Dr. G. D. Taylor
British Petroleum Company, Ltd.
Dr. Roland von Huene (ex-officio)
U.S. Geological Survey

Advisory Panel on Inorganic Geochemistry
Dr. J. Dymond (ex-officio)
Oregon State University
Dr. H. Elderfield
University of Leeds
Dr. Joris M. Gieskes, Chairman
Scripps Institution of Oceanography
Dr. Margaret Leinen
University of Rhode Island
Dr. Frank T. Manheim
U.S. Geological Survey
Dr. Kenneth A. Pisciotto (ex-officio)
Scripps Institution of Oceanography
Dr. I. D. Ryabehikov
Academy of Sciences of the U.S.S.R.
Dr. Samuel M. Savin
Case Western Reserve University
Dr. Y. Tardy
Laboratoire de Pédologie et Géochemie, Toulouse
Distribution of Deep Sea Drilling samples for investigation will be undertaken in order to (1) provide supplementary data to support GLOMAR CHALLENGER scientists in achieving the scientific objectives of their particular cruise, and in addition to serve as a mechanism for contributions to the Initial Reports; (2) provide individual investigators with materials that are stored with samples for reference and comparison purposes.

The National Science Foundation has established a Sample Distribution Panel to advise on the distribution of core materials. This panel is chosen in accordance with usual Foundation practices, in a manner that will assure advice in the various disciplines leading to a complete and adequate study of the cores and their contents. Funding for the proposed research must be secured separately by the investigator. It cannot be provided through the Deep Sea Drilling Project.

The Deep Sea Drilling Project’s Curator is responsible for distributing the samples and controlling their quality, as well as preserving and conserving core material. He is also responsible for maintaining a record of all samples that have been distributed, shipboard and subsequent, indicating the recipient and the nature of the proposed investigation. This information is made available to all investigators of DSDP materials as well as to other interested researchers on request.

The distribution of samples is made directly from one of the two existing repositories, Lamont-Doherty Geological Observatory and Scripps Institution of Oceanography, by the Curator or his designated representative.

1. Distribution of Samples for Research Leading to Contributions to Initial Reports

Any investigator who wishes to contribute a paper to a given volume of the Initial Reports may write to the Chief Scientist, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A., requesting samples from a forthcoming cruise. Requests for a specific cruise should be received by the Chief Scientist two months in advance of the departure of the cruise in order to allow time for the review and consideration of all requests and to establish a suitable shipboard sampling program. The request should include a statement of the nature of the study proposed, size and approximate number of samples required to complete the study, and any particular sampling technique or equipment that might be required. The requests will be reviewed by the Chief Scientist of the Project and the cruise co-chief scientists; approval will be given in accordance with the scientific requirements of the cruise as determined by the appropriate JOIDES advisory panel(s).

If approved, the requested samples will be taken, either by the shipboard party if the workload permits or by the curatorial staff shortly following the return of the cores to the repository. Proposals must be of a scope to ensure that samples can be processed and a contribution completed in time for publication in the Initial Reports. Except for rare, specific instances involving ephemeral properties, sampling will not exceed one-quarter of the volume of core recovered, with no interval being depleted and one-half of all core being retained as an archive. Shipboard sampling shall not exceed approximately 100 igneous samples per investigator; in all cases co-chief scientists are requested to keep sampling to a minimum.

The co-chief scientists may elect to have special studies of selected core samples made by other investigators. In this event the names of these investigators and complete listings of all materials loaned or distributed must be forwarded, if possible prior to the cruise or as soon as possible following the cruise, to the Chief Scientist through the DSDP Staff Science Representative for that particular cruise. In such cases, all requirements of the Sample Distribution Policy shall also apply.

If a dispute arises or if a decision cannot be reached in the manner prescribed, the NSF Sample Distribution Panel will conduct the final arbitration.

Any publication of results other than in the Initial Reports within twelve (12) months of the completion of the cruise must be approved and authored by the whole shipboard party and, where appropriate, shore-based investigators. After twelve months, individual investigators may submit related papers for open publication provided they have submitted their contributions to the Initial Reports. A paper too late for inclusion in the Initial Reports for a specific cruise may not be published elsewhere until publication of that Initial Reports for which it was intended. Notice of submission to other journals and a copy of the article should be sent to the DSDP Staff Science Representative for that leg.
2. Distribution of Samples for Research Leading to Publication Other than in Initial Reports

A. Researchers intending to request samples for studies beyond the scope of the Initial Reports should first contact the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A. On the forms the researcher is requested to specify the quantities and intervals of the core required, make a clear statement of the proposed research, state time required to complete and submit results for publication, and specify the status of funding and the availability of equipment and space foreseen for the research.

In order to ensure that all requests for highly desirable but limited samples can be considered, approval of requests and distribution of samples will not be made prior to 2 months after publication of the Initial Core Descriptions (I.C.D.). ICD's are required to be published within 10 months following each cruise. The only exceptions to this policy will be for specific instances involving ephemeral properties. Requests for samples can be based on the Initial Core Descriptions, copies of which are on file at various institutions throughout the world. Copies of original core logs and data are kept on open file at DSDP and at the Repository at Lamont-Doherty Geological Observatory, Palisades, New York. Requests for samples from researchers in industrial laboratories will be handled in the same manner as those from academic organizations, with the same obligation to publish results promptly.

B. (1) The DSDP Curator is authorized to distribute samples to 50 ml per meter of core. Requests for volumes of material in excess of this amount will be referred to the NSF Sample Distribution Panel for review and approval. Experience has shown that most investigations can be accomplished with samples 10 ml or smaller. All investigators are encouraged to be as judicious as possible with regard to sample size and, especially, frequency within any given core interval. The Curator will not automatically distribute any parts of the cores which appear to be in particularly high demand; requests for such parts will be referred to the Sample Distribution Panel for review. Requests for samples from thin layers or important stratigraphic boundaries will also require Panel review.

(2) If investigators wish to study certain properties which may deteriorate prior to the normal availability of the samples, they may request that the normal waiting period not apply. All such requests must be reviewed by the Curator and approved by the NSF Sample Distribution Panel.

C. Samples will not be provided prior to assurance that funding for sample studies either exists or is not needed. However, neither formal approval of sample requests nor distribution of samples will be made until the appropriate time (Item A). If a sample request is dependent, either wholly or in part, on proposed funding, the Curator is prepared to provide to the organization to whom the funding proposal has been submitted any information on the availability (or potential availability) of samples that it may request.

D. Investigators receiving samples are responsible for:

(1) publishing significant results; contributions shall not be submitted for publication prior to 12 months following the termination of the appropriate leg;
(2) acknowledging, in publications, that samples were supplied through the assistance of the U.S. National Science Foundation and others as appropriate;
(3) submitting five (5) copies (for distribution to the Curator's file, the DSDP repositories, the GLOMAR CHALLENGER's library, and the National Science Foundation) of all reprints of published results to the Curator, Deep Sea Drilling Project (A-031), Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093, U.S.A.;
(4) returning, in good condition, the remainders of samples after termination of research, if requested by the Curator.

E. Cores are made available at repositories for investigators to examine and to specify exact samples in such instances as may be necessary for the scientific purposes of the sampling, subject to the limitations of B (1 and 2) and D, above, with specific permission of the Curator or his delegate.

F. Shipboard-produced smear slides of sediments and thin sections of indurated sediments, igneous, and metamorphic rocks will be returned to the appropriate repository at the end of each cruise or at the publication of the Initial Reports for that cruise. These smear slides
and thin sections will form a reference collection of the cores stored at each repository and may be viewed at the respective repositories as an aid in the selection of core samples.

3. Reference Centers

As a separate and special category, samples will be distributed for the purpose of establishing up to five reference centers where paleontologic materials will be available for reference and comparison purposes. The first of these reference centers has been approved at Basel, Switzerland.

Data Distribution Policy

Data gathered on board D/V Glomar Challenger and in DSDP shore laboratories are available to all researchers 12 months after the completion of each cruise. The files are part of a coordinated computer database, fully searchable and coordinated to other files. Data sets representing a variety of geologic environments can be arranged for researchers who may wish to manipulate the database directly.

Most data requests are filled free of charge, except if they are unusually large or complex and direct costs exceed $50.

When data are used for publication, the National Science Foundation must be acknowledged and DSDP provided with five reprints for inclusion in the DSDP index of publications and investigations. Requests for data should be submitted to:

Data Manager, Deep Sea Drilling Project
Scripps Institution of Oceanography (A-031)
University of California, San Diego
La Jolla, California 92093
Telephone: (714) 452-3526
Cable Address: SIOCEAN

I. The database includes files generally available both in digital form on magnetic tape and as microfilm copies of the original observation forms.

A. Geophysical data include underway bathymetry, magnetics, and sub-bottom profiles; bathymetry data exist both as 12-kHz and 3.5-kHz records. Underway data are processed by DSDP and the Geological Data Center at Scripps Institution of Oceanography (SIO). Seismic records are available in microfilm and photographic prints.

B. Physical property data obtained on board Glomar Challenger include:

- Analytical water content, porosity, and density
- Density and porosity by Gamma Ray Attenuation Porosity Evaluator (GRAPE)
- Acoustic velocity by Hamilton Frame Method
- Thermal conductivity
- Heat flow (in situ)
- Natural gamma radiation (discontinued after Leg 19)
- Well logs

C. Sediment data obtained on board ship and from core samples in DSDP shore laboratories include:

- Core photographs
- Visual core descriptions
- Smear slide descriptions
- X-ray diffraction
- X-ray fluorescence
- Total carbon, organic carbon, and carbonate determinations
- Grain-size determinations (sand, silt, clay)
- Interstitial water chemistry
- Gas chromatography

D. Igneous rock data include:

- Core photographs
- Visual core descriptions
- Rock chemistry
- Paleomagnetics
- Thin-section descriptions

E. Paleontologic data include fossil names, abundance, preservation, and age of sample and are available, for selected sites, for Tertiary and Mesozoic taxa. Range charts can be generated from the database, using the line printer. A glossary of fossil names is available on microfiche or magnetic tape.

F. Ancillary files include:

- Site positions
- Sub-bottom depths of cores
- Master Guide File (a searchable core data summary file)

II. Additional publications, aids to research, are periodically updated and distributed to libraries. Single copies, at no charge, are distributed on microfiche at 48X magnification, except for the Data Datas (C, opposite), which are at 24X. They include:

A. Guides to DSDP Core Materials, a series of printed summaries containing maxima, minima, and typical values for selected observations. Guides are available for each of the
major ocean basins and for Phases I, II, and III of the drilling program. The source data summary file is also available.

B. Index to *Initial Reports* and Subsequent Publications and Investigations is a comprehensive key word index to chapters of the *Initial Reports* and to papers and investigations in progress which cite DSDP samples or data. The Index and its annotated bibliography serve to inform researchers of other investigators working on similar projects. Each paper is assigned key words for field of study, material, geographic area, and geologic age. A complete citation, including the assigned key words, is printed in the bibliography. Key words are permuted to form a comprehensive cross-index to the author reference list.

C. Data Data, a series of informal memoranda providing a quick reference to accessible data, is available on microfiche. Also available is a site position map to assist researchers in large-area studies. (Site positions are plotted on a bathymetry map compiled by the SIO Geologic Data Center.)

D. Data Retrieval and Application Computer Programs to perform data management and retrieval functions and a set of programs designed to provide special graphic displays of data are available; they may be of limited use because of differences in computer hardware. All current programs are written in ALGOL for a Burroughs 7800 computer system. Software inquiries may be addressed to the Data Manager.
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1</td>
</tr>
<tr>
<td>1. INTRODUCTION AND EXPLANATORY NOTES, DEEP SEA DRILLING PROJECT LEG 75</td>
<td>3</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART I SITE CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>2. SITE 530: SOUTHEASTERN CORNER OF THE ANGOLA BASIN</td>
<td>29</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>3. SITE 531: WALVIS RIDGE</td>
<td>287</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>4. SITE 532: WALVIS RIDGE</td>
<td>295</td>
</tr>
<tr>
<td>Shipboard Scientific Party</td>
<td></td>
</tr>
<tr>
<td>PART II SYNTHESIS CHAPTERS</td>
<td></td>
</tr>
<tr>
<td>5. SUMMARY OF BIOSTRATIGRAPHY AND MAGNETOSTRATIGRAPHY OF DEEP SEA DRILLING PROJECT LEG 75</td>
<td>449</td>
</tr>
<tr>
<td>J. C. Steinmetz, E. J. Barron, A. Boersma, B. Keating, C. McNulty, C. Sancetta, and H. Stradner</td>
<td></td>
</tr>
<tr>
<td>6. ORGANIC GEOCHEMISTRY OF SEDIMENTS FROM THE ANGOLA BASIN AND THE WALVIS RIDGE: A SYNTHESIS OF STUDIES FROM DEEP SEA DRILLING PROJECT LEG 75</td>
<td>459</td>
</tr>
<tr>
<td>P. A. Meyers</td>
<td></td>
</tr>
<tr>
<td>7. EARLY EVOLUTION OF THE SOUTH ATLANTIC OCEAN: ROLE OF THE RIFTING EPISODE</td>
<td>469</td>
</tr>
<tr>
<td>J.-C. Sibuet, W. W. Hay, A. Prunier, L. Montadert, K. Hinz, and J. Fritsch</td>
<td></td>
</tr>
<tr>
<td>8. THE EASTERN WALVIS RIDGE AND ADJACENT BASINS (SOUTH ATLANTIC): MORPHOLOGY, STRATIGRAPHY, AND STRUCTURAL EVOLUTION IN LIGHT OF THE RESULTS OF LEGS 40 AND 75</td>
<td>483</td>
</tr>
<tr>
<td>J.-C. Sibuet, W. W. Hay, A. Prunier, L. Montadert, K. Hinz, and J. Fritsch</td>
<td></td>
</tr>
<tr>
<td>9. GEOLOGIC EVOLUTION, SEDIMENTATION, AND PALEOENVIRONMENTS OF THE ANGOLA BASIN AND ADJACENT WALVIS RIDGE: SYNTHESIS OF RESULTS OF DEEP SEA DRILLING PROJECT LEG 75</td>
<td>509</td>
</tr>
<tr>
<td>W. E. Dean, W. W. Hay, and J.-C. Sibuet</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART III PALEONTOLOGY, BIOSTRATIGRAPHY, AND PALEOECOLOGY</td>
<td></td>
<td>PART IV SEDIMENTOLOGY AND INORGANIC GEOCHEMISTRY</td>
<td></td>
</tr>
<tr>
<td>10. CRETACEOUS FORAMINIFERS OF HOLE 530A, LEG 75, DEEP SEA DRILLING PROJECT</td>
<td>547</td>
<td>18. TURBIDITE FACIES, ASSOCIATIONS, AND SEQUENCES IN THE SOUTHEASTERN ANGOLA BASIN</td>
<td>785</td>
</tr>
<tr>
<td>C. L. McNulty</td>
<td></td>
<td>D. A. V. Stow</td>
<td></td>
</tr>
<tr>
<td>11. CRETACEOUS CALCAREOUS NANNOFOSSES FROM THE ANGOLA BASIN, DEEP SEA DRILLING PROJECT SITE 530</td>
<td>565</td>
<td>19. ANATOMY OF DEBRIS-FLOW DEPOSITS</td>
<td>801</td>
</tr>
<tr>
<td>H. Stradner and J. C. Steinmetz with a contribution by Lilian Švábenická</td>
<td></td>
<td>D. A. V. Stow</td>
<td></td>
</tr>
<tr>
<td>12. PRESERVATION OF CALCAREOUS NANNOFOSSES AND FINE-GRAINED CARBONATE PARTICLES IN MID-CRETACEOUS SEDIMENTS FROM THE SOUTHERN ANGOLA BASIN, SITE 530</td>
<td>651</td>
<td>20. MIDDLE CRETACEOUS BLACK SHALES AT SITE 530 IN THE SOUTHEASTERN ANGOLA BASIN</td>
<td>809</td>
</tr>
<tr>
<td>P. H. Roth</td>
<td></td>
<td>D. A. V. Stow and W. E. Dean</td>
<td></td>
</tr>
<tr>
<td>13. PLIOCENE PLANKTONIC AND BENTHIC FORAMINIFERS FROM THE SOUTHEASTERN ATLANTIC ANGOLA MARGIN: LEG 75, SITE 532, DEEP SEA DRILLING PROJECT</td>
<td>657</td>
<td>21. ORIGIN AND GEOCHEMISTRY OF CRETACEOUS DEEP-SEA BLACK SHALES AND MULTICOLORED CLAYSTONES, WITH EMPHASIS ON DEEP SEA DRILLING PROJECT SITE 530, SOUTHERN ANGOLA BASIN</td>
<td>819</td>
</tr>
<tr>
<td>A. Boersma</td>
<td></td>
<td>W. E. Dean, M. A. Arthur, and D. A. V. Stow</td>
<td></td>
</tr>
<tr>
<td>14. CENOZOIC CALCAREOUS NANNOFOSILES FROM DEEP SEA DRILLING PROJECT LEG 75, SOUTHEAST ATLANTIC OCEAN</td>
<td>671</td>
<td>22. SIGNIFICANCE OF CLAY MINERALOGICAL AND GEOCHEMICAL DATA, WALVIS RIDGE, SOUTHEAST ATLANTIC, LEG 75, DEEP SEA DRILLING PROJECT</td>
<td>845</td>
</tr>
<tr>
<td>J. C. Steinmetz and H. Stradner</td>
<td></td>
<td>H. Maillot and C. Robert</td>
<td></td>
</tr>
<tr>
<td>15. DIATOMS FROM LEG 75, DEEP SEA DRILLING PROJECT</td>
<td>755</td>
<td>23. MINERALOGY, PETROLOGY, AND DIAGENESIS OF SEDIMENTS AT SITE 530, SOUTHEAST ANGOLA BASIN</td>
<td>857</td>
</tr>
<tr>
<td>C. Sancetta</td>
<td></td>
<td>D. A. V. Stow and J. Miller</td>
<td></td>
</tr>
<tr>
<td>16. PALYNOLOGICAL EVIDENCE FOR LATE CENOZOIC ARID CONDITIONS ALONG THE NAMIBIA COAST FROM HOLES 532 AND 530A, LEG 75, DEEP SEA DRILLING PROJECT</td>
<td>763</td>
<td>24. FRAMBOIDAL PYRITE IN DEEP-SEA SEDIMENTS</td>
<td>875</td>
</tr>
<tr>
<td>E. M. van Zinderen Bakker, Sr.</td>
<td></td>
<td>R. Schallreuter</td>
<td></td>
</tr>
<tr>
<td>17. CRETACEOUS TO RECENT SUBMARINE FANS IN THE SOUTHEAST ANGOLA BASIN</td>
<td>771</td>
<td>25. OCCURRENCE OF INOCERAMUS IN THE SOUTH ATLANTIC AND OXYGEN ISOTOPIC PALEOTEMPATURES IN HOLE 530A</td>
<td>893</td>
</tr>
<tr>
<td>D. A. V. Stow</td>
<td></td>
<td>E. J. Barron, E. Saltzman, and D. A. Price</td>
<td></td>
</tr>
<tr>
<td>26. CARBONATE AND ORGANIC-CARBON CYCLES AND THE HISTORY OF UPWELLING AT DEEP SEA DRILLING PROJECT SITE 532, WALVIS RIDGE, SOUTH ATLANTIC OCEAN</td>
<td>905</td>
<td></td>
<td>J. V. Gardner, W. E. Dean, and C. R. Wilson</td>
</tr>
</tbody>
</table>
27. INORGANIC GEOCHEMISTRY OF SEDIMENTS AND ROCKS RECOVERED FROM THE SOUTHERN ANGOLA BASIN AND ADJACENT WALVIS RIDGE, SITES 530 AND 532, DEEP SEA DRILLING PROJECT LEG 75 923
 W. E. Dean and N. L. Parduhn

28. INTERSTITIAL WATER STUDIES, DEEP SEA DRILLING PROJECT, LEG 75 959
 J. M. Gieskes, K. Johnston, M. Boehm, and M. Nohara

PART V ORGANIC GEOCHEMISTRY

29. GEOCHEMISTRY OF ORGANIC CARBON IN SOUTH ATLANTIC SEDIMENTS FROM DEEP SEA DRILLING PROJECT LEG 75 967
 P. A. Meyers, S. C. Brassell, and A. Y. Huc

30. ORGANIC GEOCHEMISTRY OF CRETAEOUS BLACK SHALES FROM DEEP SEA DRILLING PROJECT SITE 530, LEG 75, EASTERN SOUTH ATLANTIC 983
 G. Deroo, J. P. Herbin, and A. Y. Huc

31. MIGRATION OF C1 TO C8 VOLATILE ORGANIC COMPOUNDS IN SEDIMENTS FROM THE DEEP SEA DRILLING PROJECT, LEG 75, HOLE 530A 1001
 J. P. Jasper, J. K. Whelan, and J. M. Hunt

32. ORGANIC GEOCHEMICAL COMPARISON OF CRETAEOUS GREEN AND BLACK CLAYSTONES FROM HOLE 530A IN THE ANGOLA BASIN 1009
 P. A. Meyers, T. W. Trull, and O. E. Kawka

33. ALIPHATIC HYDROCARBONS OF A CRETAEOUS BLACK SHALE AND ITS ADJACENT GREEN CLAYSTONE FROM THE SOUTHERN ANGOLA BASIN, DEEP SEA DRILLING PROJECT LEG 75 1019
 S. C. Brassell

34. ORGANIC GEOCHEMICAL CHARACTER OF SELECTED CORES, DEEP SEA DRILLING PROJECT HOLE 530A 1031
 B. J. Katz

35. ORGANIC FACIES VARIATIONS IN THE MESOZOIC SOUTH ATLANTIC 1035
 D. Gilbert

36. ORGANIC CARBON ISOTOPIC COMPOSITION IN CRETAEOUS SEDIMENTS, ANGOLA BASIN, SOUTHEASTERN ATLANTIC, DEEP SEA DRILLING PROJECT SITE 530 1051
 M. Nohara, T. Ishizuka, and J. M. Gieskes

37. C2-C8 HYDROCARBONS IN SEDIMENTS FROM DEEP SEA DRILLING PROJECT LEG 75, HOLES 530A, ANGOLA BASIN, AND 532, WALVIS RIDGE 1055
 R. G. Schaefer and D. Leythaeuser

38. GEOCHEMISTRY AND PETROGRAPHY OF ORGANIC MATTER IN SEDIMENTS FROM HOLE 530A, ANGOLA BASIN, AND HOLE 532, WALVIS RIDGE, DEEP SEA DRILLING PROJECT 1069
 J. Rullkötter, P. K. Mukhopadhyay, and D. H. Welte

39. GEOLIPID COMPARISON OF BIOGENIC SEDIMENTS FROM DEEP SEA DRILLING PROJECT HOLES 530B, ANGOLA BASIN, AND 532, WALVIS RIDGE 1089
 P. A. Meyers and K. W. Dunham

PART VI IGNEOUS PETROLOGY AND GEOCHEMISTRY

40. PETROLOGY AND GEOCHEMISTRY OF ROCKS FROM THE ANGOLA BASIN ADJACENT TO THE WALVIS RIDGE: DEEP SEA DRILLING PROJECT LEG 75, SITE 530 1099
 S. E. Humphris and G. Thompson

PART VII PHYSICAL PROPERTIES

41. GEOTECHNICAL PROPERTIES OF SEDIMENTS FROM WALVIS RIDGE, DEEP SEA DRILLING PROJECT, LEG 75, HOLE 532A 1109
 Geotechnical Consortium

42. INTERRELATIONSHIPS BETWEEN SEDIMENT COMPOSITION, COMPACTION, PORE SPACE, AND SHRINKAGE, LEG 75, HOLE 532A 1129
 A. Wetzel
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>43. DEEP SEA DRILLING PROJECT DRILL SITES 530 AND 532 IN THE ANGOLA BASIN AND ON THE WALVIS RIDGE: INTERPRETATION OF INDUCTION LOG DATA, SONIC LOG DATA, AND LABORATORY SOUND VELOCITY, DENSITY, POROSITY-DERIVED REFLECTION COEFFICIENTS, AND VANE SHEAR STRENGTH</td>
<td>1137</td>
<td>47. MAGNETOMETER MEASUREMENTS ON THE DRILLING FLOOR OF THE GLOMAR CHALLENGER: POSSIBLE CAUSES OF ROCK REMAGNETIZATION</td>
<td>1219</td>
</tr>
<tr>
<td>R. E. Boyce</td>
<td></td>
<td>B. H. Keating</td>
<td></td>
</tr>
<tr>
<td>44. LEG 75 METHODS FOR LABORATORY-MEASURED PHYSICAL PROPERTIES, GEARHART-OWEN WELL LOGS, AND THE UYEDA DOWNHOLE TEMPERATURE PROBE</td>
<td>1179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. E. Boyce</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PART VIII GEOPHYSICS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45. MULTICHANNEL SEISMIC REFLECTION SURVEY OF THE SOUTHEASTERN ANGOLA BASIN</td>
<td>1191</td>
</tr>
<tr>
<td>L. A. Musgrove and J. A. Austin, Jr.</td>
<td></td>
</tr>
<tr>
<td>46. MAGNETOSTRATIGRAPHY OF CRETACEOUS AND EARLY CENOZOIC SEDIMENTS OF DEEP SEA DRILLING PROJECT SITE 530, ANGOLA BASIN</td>
<td>1211</td>
</tr>
<tr>
<td>B. H. Keating and E. Herrero-Bervera</td>
<td></td>
</tr>
</tbody>
</table>

PART IX OTHER

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>48. LABORATORY-DETERMINED SOUND VELOCITY, POROSITY, WET-BULK DENSITY, ACOUSTIC IMPEDANCE, ACOUSTIC ANISOTROPY, AND REFLECTION COEFFICIENTS FOR CRETACEOUS-JURASSIC TURBIDITE SEQUENCES AT DEEP SEA DRILLING PROJECT SITES 370 AND 416 OFF THE COAST OF MOROCCO</td>
<td>1229</td>
</tr>
<tr>
<td>R. E. Boyce</td>
<td></td>
</tr>
<tr>
<td>49. MIDDLE EOCENE TO OLIGOCENE PLANKTONIC DIATOM STRATIGRAPHY FROM DEEP SEA DRILLING SITES IN THE SOUTH ATLANTIC, EQUATORIAL PACIFIC, AND INDIAN OCEANS</td>
<td>1245</td>
</tr>
<tr>
<td>J. Fenner</td>
<td></td>
</tr>
<tr>
<td>50. OLIGOCENE AND OTHER TERTIARY BENTHIC FORAMINIFERS FROM A DEPTH TRAVERSE DOWN WALVIS RIDGE, DEEP SEA DRILLING PROJECT LEG 74, SOUTHEAST ATLANTIC</td>
<td>1273</td>
</tr>
<tr>
<td>A. Boersma</td>
<td></td>
</tr>
</tbody>
</table>

APPENDIX I. GRAIN-SIZE ANALYSES

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1301</td>
</tr>
<tr>
<td>G. R. Bode</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

The foundations for Leg 75 of the Deep Sea Drilling Project were laid by geophysical surveys conducted in 1977 by the Institut Français du Pétrole and the Centre National pour l’Exploitation des Océans aboard the R/V Le Résolution and in 1978 by the Bundesanstalt für Geowissenschaften und Rohstoffe aboard the R/V Explora. Le Résolution used a 48-channel system to make a regional survey, covering 3640 km, of the eastern Walvis Ridge and the Cape and Angola basins. The Explora carried out a more restricted regional survey of the easternmost Walvis Ridge and immediately adjacent parts of the Cape and Angola basins, using a 48-channel system to produce 4350 km of records.

Final site surveys were conducted in 1979 by the University of Texas Institute of Geophysics on board the R/V Fred H. Moore.

We want to thank particularly Lucien Montadert of the I.F.P., Karl Hinz and J. Fritsch of the B.G.R., and James Austin of the U.T.I.G. for organizing and carrying out these geophysical surveys.

Objectives of the 1977 and 1978 cruises were defined by a French and German team including individuals involved in the national French and German IPOD panels. We wish to thank them particularly for their cooperation and encouragement.

Data from these cruises relevant to Leg 75 sites have been incorporated in the IPOD data bank at Lamont-Doherty Geological Observatory. We acknowledge with thanks the work of the JOIDES Advisory Panel on Passive Margins and the JOIDES Advisory Panel on Organic Geochemistry which proposed and endorsed Leg 75 objectives. After the cruise, the Organic Geochemistry Panel organized the sampling and distribution of frozen core materials.

The Glomar Challenger was commanded by Captain Loyd Dill, who was very cooperative. The Scientific Party wishes to thank the entire Global Marine crew for their excellent work and care in taking and recovering cores.

The Deep Sea Drilling Project cruise operations manager was Robert Knapp, who oversaw drilling operations and maintained excellent liaison between the scientific party and the drilling crew. His concerns, advice, and highly professional attitude were very much appreciated by the scientific party.

The marine technician support staff was headed by Dennis Graham, and David Allard was curatorial representative. The technicians performed their duties efficiently and expertly.

Larry Axline of Gearhart-Owen carried out the logging operations.

Robert E. Boyce served as scientific representative of the Deep Sea Drilling Project. Lola Boyce typed many of the manuscripts, and Rosemary Amidei served as editor for this leg.

IPOD France has encouraged many of the shore laboratory investigations reported in this volume.

The co-chief scientists acknowledge the support of Joint Oceanographic Institutions, Inc., of the Centre National pour l’Exploitation des Océans and of IPOD France in making their participation and work possible.