14. CENOZOIC CALCAREOUS NANNOFOSSILS FROM DEEP SEA DRILLING PROJECT LEG 75, SOUTHEAST ATLANTIC OCEAN¹

John C. Steinmetz,² Department of Marine Science, University of South Florida, St. Petersburg, Florida and

Herbert Stradner, Geologische Bundesanstalt, A-1031 Vienna, Austria

ABSTRACT

Sediments from the three DSDP Leg 75 sites in the southeast Atlantic Ocean collectively contain a calcareous nannofossil record of almost the entire Cenozoic. Two rotary-cored holes and six hydraulic piston-cored holes were drilled. The youngest sediment recovered is Recent from the Emiliania huxleyi Zone, and the oldest sediment is at the Cretaceous/Tertiary boundary in Hole 530A. The nannofossils are generally common to abundant and moderately well-preserved. One new species is described, Biantholithus astralis nov. spec.

INTRODUCTION

Cenozoic sediments were recovered on Deep Sea Drilling Project (DSDP) Leg 75 at all three sites occupied in the Angola Basin and on the Walvis Ridge in the southeast Atlantic Ocean (Fig. 1). Only two of the eight holes were rotary-cored; the remainder were hydraulic piston cored (HPC). The oldest Cenozoic sediments recovered are basal Paleocene in age in Hole 530A. Cenozoic sediments generally contain common to abundant, moderately well-preserved nannofossils. Species assemblages are relatively diverse, permitting use of low-latitude zonations for biostratigraphy. Reworked older taxa were rarely encountered.

METHODS

Smear slides of samples were prepared employing commonly accepted techniques suggested by Bramlette and Sullivan (1961) and Hay (1961, 1965). The slides were examined under both cross-polarized and phase-contrast light at ×1200 magnification. The scanning electron microscope was used to confirm the presence of Emiliania huxleyi in cores where it was suspected. The Cenozoic nannofossils considered in this chapter are listed in the Appendix along with an index to the plates. The presence and abundance of all nannofossils observed were recorded in range charts (see Tables 1 through 4). Abundance estimates of the total number of taxa present and of individual taxa in the assemblage were made according to the method introduced by Hay on Leg 4 (1970). The abundance is estimated by the order of magnitude of its frequency per field of view at ×1200. This is expressed in terms of an exponent to the base ten. Table 5 lists the frequency estimate designations used and their meanings. The overall preservation of nannofossil assemblages was recorded using one of three letter designations instituted on Leg 49 (Steinmetz, 1979).

G = Good preservation. Fossils lack evidence of dissolution or overgrowth.

M = Moderately good preservation. A majority of the specimens are slightly etched. Fine structures are missing, but no diagnostic changes of form are evident in light microscopy. Rim margins of placoliths are slightly serrate. All taxa may be easily identified. Diversity is normal.

P = Poor preservation. A majority of the specimens are deeply etched. Identity of many centerless and fragmented specimens is questionable. Diversity is low.

NANNOPLANKTON ZONATION

Three nannoplankton zonations were employed to make zonal and geological age assignments of the samples. The Standard Nannoplankton Zonation of Martini (1971) was used for the shipboard and site reports. After closer inspection of the samples in shore-based studies, we found that Bukry's (1973, Leg 15; 1975, Leg 32) and Ellis' (1979: 1982, Leg 60) zonations offered higher resolution. Okada and Bukry (1981) introduced code numbers to the low-latitude zonation of Bukry (1973, 1975). Table 6 shows a correlation of the calcareous nannoplankton zonation schemes proposed by Martini (1971), Bukry (1973, 1975), and Ellis (1979, 1982), as well as their respective code numbers which are used throughout this report. Table 6 also shows the geologic age and nannofossil zone assignments of Leg 75 cores correlated with the zonations.

Site 530

Site 530 (19°11.26'S, 9°23.15'E; water depth, 4629 m) is located in the southeastern corner of the Angola Basin, about 20 km north of the Walvis escarpment, near the eastern end of the Walvis Ridge. Three holes were drilled at Site 530. Hole 530 was drilled using a standard rotary coring assembly, but was terminated (115 m below the seafloor) by technical failure. Hole 530A (1121 m penetration) was drilled using a standard rotary coring assembly. Hole 530B (180 m penetration) was cored using the hydraulic piston coring (HPC) device first employed on Leg 65.

Four sedimentary units were described in the Cenozoic sediments at Site 530. Unit 1 consists of Holocene to early Pleistocene diatom nannofossil ooze, marl, and debris-flow deposits to a depth of 110.0 m sub-bottom. Unit 2 consists of early Pleistocene to late Miocene nannofossil clay, marl, ooze, and debris-flow deposits from 110.0 to 277.0 m sub-bottom. Unit 3 consists of late Miocene to Oligocene red and green muds from 277.0 to 467.0 m sub-bottom. Unit 4 consists of Eocene to Danian multicolored mudstone, marlstone, chalk, and clastic limestones from 467.0 to 592.6 m sub-bottom.

¹ Hay, W. W., Sibuet, J.-C., et al., Init. Repts. DSDP, 75: Washington (U.S. Govt. Printing Office). ² Present address: Denver Research Center, Marathon Oil Company, Littleton, Colo-

rado

Figure 1. Location of Sites 530-532, Leg 75.

In Holocene through late Miocene sediments, nannofossils are generally common to abundant in number and show moderate to good preservation. The early and middle Miocene is largely unzoned because of repeated barren sections. The remainder of the Tertiary record is well-zoned using common to abundant numbers of moderately to poorly preserved nannofossils.

Hole 530. Only two cores were recovered from Hole 530. The presence of *Emiliania huxleyi* in Core 1 (0.0 m to 1.5 m sub-bottom) indicates the Holocene *E. huxleyi* Zone (NN21, CN15, WPN32). Core 2 (taken after washing to 115.5 m sub-bottom) contains an assemblage characteristic of the early Pliocene *Discoaster asymmetricus* Subzone (upper NN15, CN11b, WPN28b): *Calcidiscus macintyrei*, *D. brouweri*, *D. pentaradiatus*, *D. surculus*, *D. tamalis*, and *Sphenolithus abies*. *Gephyrocapsa caribbeanica* is present as a Pleistocene contaminant.

Hole 530A. Coring in Hole 530A was begun after washing to 125.0 m sub-bottom. Core 1 to Core 4, Section 4 (125.0 m to 158.7 m) are latest early Pliocene age, *Reticulofenestra pseudoumbilica* Zone (NN15, CN11, WPN28). *Discoaster asymmetricus* Subzone (upper NN15, CN11b, WPN28b) is delimited on the top by the last occurrences of Sphenolithus abies and R. pseudoumbilica, and on the bottom by the first occurrence of D. tamalis, not by the acme of D. asymmetricus as proposed by Bukry (1973). The S. neoabies Subzone (lower NN15, CN11a, WPN28a) occurs from 4-4 to 5,CC (158.7 m to 172.5 m) and is delimited on the top and bottom, respectively, by the first occurrence of D. tamalis and the last occurrence of Amaurolithus tricorniculatus. Only one distinct subzone is discernable in the A. tricorniculatus Zone (NN12-14, CN10, WPN27). The Ceratolithus rugosus Subzone (NN13-14, CN10c, WPN27c) occurs between the last occurrence of A. tricorniculatus at 5,CC (172.5 m) and the first occurrence of C. rugosus at 7-4 (187.2 m). Below this is a section with mixed subzone indicators (NN12, CN10a-10b, WPN27a-27b) which extends down to the last occurrence of D. quinqueramus at 8,CC (201.0 m).

The late Miocene D. quinqueramus Zone (NN11, CN9, WPN26) occurs from 8,CC to 15,CC (201.0 m to 267.5 m) and is divisable into two subzones: the A. primus Subzone (upper NN11, CN9b, WPN26b) and the D. berggrenii Subzone (lower NN11, CN9a, WPN26a). The first occurrence of A. primus (13,CC, 248.5 m) separates the two subzones. From 15,CC to 18-4 (267.5 m to 291.7 m) the middle to late Miocene interval is compressed, and individual zones or subzones are not resolvable. Indicators of Subzones CN5b to CN8b (NN7 to NN10, WPN22b to WPN25b) are absent. Much of the middle Miocene is barren and unzoned from Sections 18-5 to 21-5 (293.2 m to 321.7 m). Only one sample, Sample 530A-21-4, 70-71 cm (310.7 m), of the 22 samples taken in this interval, contains a poorly preserved assemblage of C. macintyrei, Coccolithus eopelagicus, C. pelagicus, D. bollii, D. exilis, D. kugleri, D. variabilis, R. pseudoumbilica, S. abies, and Triquetrorhabdulus rugosus, suggesting the D. exilis Zone (NN6 to NN7, CN5, WPN22).

The S. heteromorphus Zone (NN5, CN4, WPN21) is found from Section 21-6 (323.0 m) down to at least 24-2 (345.2 m), and may extend farther down, but the section is barren through 31-1 (410.7 m). The interval from Sections 31-2 to 34-6 (412.3 m to 446.7 m) is largely barren, but a few samples contain moderately well-preserved assemblages indicating the *Dictyococcites bisectus* Subzone of the *Sphenolithus ciperoensis* Zone (NP25, CP19b, WPN17b). This is underlain by a short, but better-represented, interval of the *Cyclicargolithus floridanus* Subzone (NP24, CP19a, WPN17a) from 35-1 to 37-1 (448.7 m to 467.0 m).

Core 37 (467.0 to 476.5 m) contains a relatively wellrepresented, unusually compressed section. The late Oligocene C. floridanus Subzone (NP24, CP19a, WPN17a) is found in Sample 530A-37-1, 1-2 cm. From 37-1, 63-64 cm to 37-2, 2-3 cm, the S. distentus Zone, S. predistentus Zone, and R. hillae Subzone (NP23 to NP22, CP18 to CP16c, WPN16 to WPN14c) are indicated. This interval is characterized by the Braarudosphaera bigelowi ooze, which has been reported at DSDP Holes 14, 17, 19, 20, 22, 362A, and 363 in the South Atlantic Ocean (Maxwell et al., 1970; Bolli et al., 1978). This is a particularly thin section of Braarudosphaera ooze, and is likely an erosional remnant of a much thicker section. It is bounded on either end by barren intervals of unknown duration, and nearby Holes 362A and 363 on the Walvis Ridge contain as many as 42 m of Braarudosphaera ooze or chalk (Bolli et al., 1978).

Samples 37-2, 52–53 cm and 37-2, 81–82 cm are earliest Oligocene (NP21, CP16a and 16b, WPN14a and 14b) and are bounded by the last occurrence of *Calcidiscus formosus* and *Discoaster saipanensis* on the top and bottom, respectively. The latest Eocene, *Isthmolithus recurvus* Subzone (NP19/20, CP15b, WPN13b) is indicated by the assemblage in Sample 37-2, 87–88 cm. Present in rare to few numbers are *R. dictyoda*, *I. recurvus*, *D. saipanensis*, *D. tanii*, and *R. umbilica*. Martini's (1971) *D. tanii nodifer* Zone (NP16, CP13/14) is suggested in Sample 530A-37-2, 105–106 cm with the lowest occurrence of *D. tanii*. Section 8 of Core 37 is middle Eocene (NP15, CP13b).

The early-mid Eocene *D. sublodoensis* Zone (NP14, CP12), bounded on the top by the first occurrence of *Nannotetrina alata* in 37,CC and by the first occurrence of *D. sublodoensis* in 38-2, 1-2 cm, is found between 476.5 and 478.0 m sub-bottom. The early Eocene (NP13 to NP10, CP11 to CP9) is well defined from 38-2, 133-134 cm to 41-1, 75-76 cm (479.3 m to 505.8 m). The *D. lodoensis* Zone (NP13, CP11) is bounded on the bottom by the last occurrence of *Tribrachiatus orthostylus* in 39-2, 19-20 cm. The *T. orthostylus* Zone (NP12, CP10) is bounded on the bottom by the first occurrence of *D. lodoensis* in 40-3, 122-123 cm. Subzones in the *D. diastypus* Zone (NP10/11, CP9) are not resolvable; the zone is bounded on the bottom by the first occurrence of *T. bramlettei* in Sample 530A-41-1, 75-76 cm.

The top of the Paleocene, D. multiradiatus Zone (NP9, CP8), occurs from 41-1, 141-142 cm to 42-2, 63-64 cm (506.4 m to 516.6 m); its base is determined by the first occurrence of D. multiradiatus. The two subzones are not distinguished. The first occurrences of both D. nobilis and Heliolithus riedeli in 43, CC (533.5 m) established the base of the H. riedeli Zone (NP8) of

Martini (1971), and the base of the *D. nobilis* Zone (CP7) of Bukry (1973). *H. riedeli* is usually not used because of its rare and sporadic occurrence in oceanic assemblages (Bukry, 1973), but in this case both zonal markers occur at the same level.

The *D. mohleri* Zone (NP7, CP6) is short, restricted to only one section, Section 44-1 (533.5 to 535.0 m). Its base is defined by the first occurrence of *D. mohleri*.

The *H. kleinpellii* Zone (NP6, CP5) extends from 42-2, 75-76 cm to 46, CC (535.7 to 562.0 m), the first occurrence of *H. kleinpellii*. The *Fasciculithus tympaniformis* Zone (NP5, CP4) is present in only two samples, 47-1, 18-19 cm and 47-1, 70-71 cm. The first occurrence of *F. involutus* in the lower sample defines the base of this zone.

The Ellipsolithus macellus Zone (NP4, CP3) is not distinguished and may be missing. Assemblages of the Chiasmolithus danicus Zone (NP3, CP2) and the Cruciplacolithus tenuis Zone (NP2) (Martini, 1971), or Subzone (CP1b) (Bukry, 1973), are found mixed together from 47-1, 143-144 cm to 48,CC (563.4 to 581.0 m). Chiasmolithus danicus, the first occurrence of which separates these two zones, is found only in the first of ten samples downcore. Poor preservation obscures the true first occurrence datum. Core 49 and part of Core 50 (581.0 to 590.7 m), down to 50-1, 16-17 cm, the first occurrence of Cruciplacolithus tenuis, are in the C. tenuis Zone.

The lowermost Paleogene, or Danian (NP1, CP1a), occurs in a 142 cm interval from 50-1, 30-31 cm down to 50-2, 22-23 cm. The bottom of the Paleogene, or the Cretaceous/Tertiary boundary, is defined here by the first occurrence of *Biantholithus sparsus* (592.2 m subbottom).

Obtaining a section across the Cretaceous/Tertiary boundary was one of the objectives of Leg 75. The boundary is well represented in this unit, documented by poorly to moderately preserved, common to abundant nannofossils in Core 50, Section 2 (592.0 m). Table 2H shows the occurrences of nannofossils at intervals sampled close to the boundary. They reveal that the boundary, as far as can be judged by calcareous nannoplankton, lies between 23 and 28 cm in Core 50, Section 2. The high relative abundance of Micula staurophora across the boundary is a reflection of both the dissolution resistance of M. staurophora (Thierstein, 1980), as well as the generally poor preservational record of the other nannofossils in the assemblage (Thierstein, 1981). The boundary is not a sharp break between Maestrichtian and Paleocene assemblages, and there may be some interlayering or mixing. Paleomagnetic studies (Keating, this volume) show a shift in polarity just below the paleontologic boundary, from normal above to reversed below 63 cm.

Hole 530B. A complete Holocene-Pleistocene record is present from the mudline to 28, CC (113.2 m sub-bottom). The presence of the Holocene *Emiliania huxleyi* Zone (NN21, CN15, WPN32) was confirmed using the scanning electron microscope. A typical assemblage down to 2-1, 10-11 cm (2.5 m) consists of *Calcidiscus leptoporus*, *Coccolithus carteri*, *C. pelagicus*, *Crenalith*- us doronicoides, E. huxleyi, Gephyrocapsa caribbeanica, G. oceanica, Helicosphaera carteri, and Umbilicosphaera sibogae. Four Pleistocene subzones of Bukry (1975) and Ellis (1979) are discernable. The G. oceanica Zone of Martini (1971), or the Ceratolithus cristatus Subzone of Bukry (1975) and Ellis (1979, 1982) (NN20, CN14b, WPN31b), extends from Samples 2-2, 113-114 cm, below the first occurrence of E. huxleyi, down to 7-1, 55-56 cm (5.0 to 24.0 m), just above the last occurrence of E. ovata.

From the last occurrence of *E. ovata* in 7,CC (27.8 m) to the first occurrence of *G. oceanica* in 13,CC (954.2 m), the *E. ovata* Subzone (CN14a, WPN31a) is present. Two other datums of potential biostratigraphic importance are present in this subzone: the last occurrences of *Calcidiscus macintyrei* in 11,CC (45.4 m) and *Discolithina japonica* in 13,CC.

The G. caribbeanica Subzone (mid NN19, CN13b, WPN30b) is present from 14,CC to the first occurrence of G. caribbeanica in 18, CC (58.2 to 76.2 m). The earliest Pleistocene E. annula Subzone (early NN19, CN13a, WPN30a) extends down to 28,CC (113.2 m). The last occurrences of D. brouweri and D. variabilis in 29,CC (116.2 m) indicate that the Pleistocene lies unconformably upon the earliest late Pliocene Discoaster tamalis Subzone (lower NN16, CN12a, WPN29a). From 30, CC to 40,CC (118.2 to 154.6 m) the D. asymmetricus Subzone (upper NN15, CN11b, WPN28b) is indicated, bounded on top by the last occurrence of Sphenolithus abies and on the bottom by the first occurrence of D. tamalis. Below this, the S. neoabies Subzone (lower NN15, CN11a, WPN28a) continues from 41,CC to 44,CC (158.0 to 167.5 m) and lies unconformably upon the late Miocene.

The top of the late Miocene begins between 44,CC and 45,CC with the last occurrence of *D. berggrenii* and *D. quinqueramus* in 45,CC (170.8 m). This defines the top of the *Amaurolithus primus* Subzone (upper NN11, CN9b, WPN26b) which continues to the bottom of the cored section in 48,CC (180.6 m).

Site 531

Site 531 (19°38.40'S, 9°35.47'E; water depth, 1267 m) is located on the eastern end of the Walvis Ridge. Two holes were attempted at Site 531, but in each case the bottom was found to be firm and could not be penetrated. Hole 531 yielded only a core catcher filled with foraminiferal ooze. Hole 531A was 1000 feet west and yielded only 27 cm of foraminiferal ooze.

Holes 531/531A. The following well-preserved, abundant calcareous nannofossils, typically found in the Holocene Emiliania huxleyi Zone (NN21, CN15, WPN32), were observed in 531-1,CC (1284 m): Calcidiscus leptoporus, Coccolithus pelagicus, E. huxleyi, Geophyrocapsa oceanica, Helicosphaera carteri, Pontosphaera syracusana, Syracosphaera pulchra, and Umbilicosphaera mirabilis. In addition to these species, the following occur in Section 531A-1-1: Ceratolithus cristatus, Rhabdosphaera clavigera, and Scapholithus fossilis.

Site 532

Site 532 (19°41.61'S, 10°31.13'E; water depth, 1331 m) is located on the eastern part of the Walvis Ridge in a trough with relatively thick sediment fill, at a position close to Site 362 from Leg 40. The uppermost section at Site 362 was badly disturbed by rotary coring, and the HPC was employed at Site 532 in an attempt to recover an undisturbed upper section, close to the Walvis Bay zone of upwelling and high biotic productivity. Three holes were hydraulic piston cored (HPC) at Site 532. Hole 532 yielded 61 cores reaching a depth of 250.8 m. Hole 532A was offset about 50 m to the SSW. Fortyseven cores were taken to reach a depth of 199.6 m. This set of cores was taken for the JOIDES Sedimentary Petrology and Physical Properties Panel; the cores were sealed and not opened for examination and sampling aboard ship. Hole 532B was offset about 30 m to the south. Seventy-four cores were taken, reaching a depth of 291.3 m. Cores 1 to 56 were not opened, but were frozen to be examined later for geochemical studies. The remainder of the cores were studied in the usual manner. Control from the rig floor was so exact, that Cores 532-61 and 532B-61 correlate within 0.4 m and can be considered to have been taken at the same level. Hence, coring is continuous from the mudline to the total depth of 291.3 m in Core 532B-74.

A thick (291.3 m) Holocene to late Miocene unit of nannofossil marl and ooze was encountered at Site 532. The section was divided into three subunits: 1a, foramnannofossil marl and ooze (Cores 1–12, 0 to 49.5 m, Pleistocene), 1b, diatom-nannofossil marl (Cores 12–26, 49.5 to 114.0 m, late Pliocene), and 1c, nannofossil marl (Cores 27–74, 114.0 to 291.3 m, late Pliocene to late Miocene). Calcareous nannofossils are common to abundant, showing moderate to good preservation in all samples studied. No barren intervals were encountered.

Figure 2 shows a comparison between the calcareous nannofossil biostratigraphy of Hole 362 (Bukry, 1978; Proto Decima, 1978) and Holes 532 and 532B. Immediately evident is the fact that the epoch boundaries in both sections are within 10 m of each other. The zonal boundaries, however, do not correlate as well. The higher zonal resolution in Holes 532 and 532B is the result of the diminished core disturbance with the HPC used in obtaining that core. The low resolution in the Early Pliocene sections of both Holes 362 and 532/532B is likely the result of slumping in the sediment.

Holes 532 and 532B. The Holocene *Emiliania huxleyi* Zone is detected from the mudline to Sample 1-2, 62-63 cm (2.1 m sub-bottom). A complete Pleistocene section, including the four subzones of Bukry (1975) and Ellis (1979, 1982), is present from 1-3, 65-66 cm down to 17,CC (74.4 m). The *E. ovata* datum occurs in 5,CC (21.6 m); the *Gephyrocapsa oceanica* datum occurs in 11,CC (48.0 m); and the *G. caribbeanica* datum occurs in 15,CC (65.6 m).

The last occurrence of *Discoaster brouweri*, defining the Pliocene/Pleistocene boundary, occurs in 18-1,

CENOZOIC CALCAREOUS NANNOFOSSILS

Figure 2. Comparison between the calcareous nannofossil biostratigraphy of Hole 362 and Holes 532 and 532B. Nannofossil zones and subzones are numbered according to the scheme proposed by Okada and Bukry (1980) and shown in Table 6.

125-126 cm (75.6 m). Three of four late Pliocene subzones of Bukry (1973, 1975) and Ellis (1979, 1982) are detectable; the upper two appear to be mixed together from 18-1, 125-126 cm to 18-3, 121-122 cm. The last occurrences of both *D. pentaradiatus* and *D. surculus* in 18,CC (78.8 m) indicate the top of the *D. surculus* Subzone (CN12b, WPN29b). This subzone extends down to 22-3, 80-81 cm (95.8 m). The last occurrence of *D. ta*- malis in 22,CC (96.4 m) indicates the top of the *D. ta-malis* Subzone. This extends down to 36-2, 107-108 cm (149.1 m).

Ellis' (1982) *D. asymmetricus* Subzone (WPN28b) is found in only one sample examined: 36,CC (150.6 m). This sample contains the two datums defining this subzone: the first occurrence of *D. tamalis* and the last occurrence of *Sphenolithus abies*. Bukry's (1973, 1975) *D*. asymmetricus Subzone (CN11b) is defined on the bottom of the acme of *D. asymmetricus*. This is not detectable in Hole 532.

The zones or subzones of the early Pliocene are not resolvable. From 37,CC to 60-3, 31-32 cm (153.8 to 241.1 m), an early Pliocene assemblage (NN12-NN15, CN10a-CN11a, WPN27a-WPN28a) is present, but none of the datums is present in any meaningful order.

The late Miocene Amaurolithus primus Subzone (upper NN11, CN9b, WPN26b) occurs from 60,CC to the bottom of the cored interval, 74B,CC (246.8 to 291.3 m). The first occurrence of A. primus, defining the bottom of this subzone, was not reached.

TAXONOMY

Biantholithus astralis Steinmetz and Stradner nov. spec. (Plate 52, Figs. 1, 4; Plate 53, Figs. 1, 2)

Description: This new species consists of seven to eight segments radiating from a common center. The segments are slightly imbricate and slightly tilted, as are the blades of a windmill. Each segment is in contact with adjacent segments for a little more than half its length. Beyond the point of contact, the segments taper slightly and end with rounded tips. A small hole is present in the center where the segments meet.

Remarks: Biantholithus sparsus Bramlette and Martini differs from Biantholithus astralis nov. spec. in that it has eight to twelve segments which are in contact for almost their entire length.

Holotype: Plate 53, Figure 1. Negative 2/92/007, Elmi-Lab, Geological Survey of Austria, Vienna.

Type locality and level: Southeast Atlantic Ocean, Angola Basin, DSDP 530A-50-1, 6-7 cm, *Cruciplacolithus tenuis* Zone (Martini, 1071). *Cruciplacolithus tenuis* 2010 (Martini,

1971), Cruciplacolithus tenuis Subzone (Bukry, 1973, 1975).

Known range: Danian.

ACKNOWLEDGMENTS

We thank Anthony Greco and Gladys Swigert of the Scanning Electron Microscope Facility, University of South Florida, and Franz Allram of the Elmi-Lab, Geological Survey of Austria, Vienna, for their assistance with the scanning electron microscopy. The SEM at the University of South Florida was purchased in part by NSF grant OCE 79-13233.

We are grateful to William H. Lohman and John L. Wray for their critical review of the manuscript.

REFERENCES

Bolli, H. M., Ryan, W. B. F., et al., 1978. Init. Repts. DSDP, 40: Washington (U.S. Govt. Printing Office).

- Bramlette, M. N., and Sullivan, F. R., 1961. Coccolithophorids and related nannoplankton of the early Tertiary in California. *Micro*paleontology, 7:129–174.
- Bukry, D., 1973. Coccolith stratigraphy, Eastern Equatorial Pacific, Leg 16, Deep Sea Drilling Project. *In* van Andel, Tj. H., Heath, G. R., et al., *Init. Repts. DSDP*, 16: Washington (U.S. Govt. Printing Office), 653-712.
 - _____, 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. *In* Larson, R. L., Moberly, R., et al., *Init. Repts. DSDP*, 32: Washington (U.S. Govt. Printing Office), 677-701.
 - , 1978. Cenozoic silicoflagellate and coccolith stratigraphy, southeastern Atlantic Ocean, Deep Sea Drilling Project Leg 40. *In* Bolli, H. M., Ryan, W. B. F., et al., *Init. Repts. DSDP*, 40. Washington (U.S. Govt. Printing Office), 635–649.
- Ellis, C. H., 1979. Neogene nannoplankton zonation in eastern Mediterranean. Proc. 7th Int. Cong. Med. Neogene (Tome hors serie), 1:391-401.
- _____, 1982. Calcareous nannoplankton biostratigraphy—Deep Sea Drilling Project Leg 60. *In* Hussong, D. M., Uyeda, S., et al., *Init. Repts. DSDP*, 60: Washington (U.S. Govt. Printing Office), 507-535.
- Hay, W. W., 1961. Note on the preparation of samples for discoasterids. J. Paleontol., 35:873.

_____, 1965. Calcareous nannofossils. *In* Kummel, B., and Raup, D. (Eds.), *Handbook of Paleontological Techniques:* San Francisco (W. H. Freeman and Co.), pp. 3-7.

- _____, 1970. Calcareous nannofossils from cores recovered on DSDP Leg 4. In Bader, R. G., Gerard, R. D., et al., Init. Repts. DSDP, 4: Washington (U.S. Govt. Printing Office), 455-503.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Farinacci, A. (Ed.), Proc. Second Plankt. Conf., Roma, 1970: Rome (Tecnoscienza), 2:739-785.
- Maxwell, A. E., Von Herzen, R. P., et al., 1970. Init. Repts. DSDP, 3: Washington (U.S. Govt. Printing Office).
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). *Mar. Micropaleontol*, 5: 321-325.
- Proto Decima, F. Medizza, F., and Todesco, L., 1978. Southeastern Atlantic Leg 40 calcareous nannofossils. *In* Bolli, H. M., Ryan, W. B. F., et al., *Init. Repts. DSDP*, 40: Washington (U.S. Govt. Printing Office), 571-634.
- Steinmetz, J. C., 1979. Calcareous nannofossils from the North Atlantic Ocean, Leg 49, Deep Sea Drilling Project. In Luyendyk, B. P., Cann, J. R., et al., Init. Repts. DSDP, 49: Washington (U.S. Govt. Printing Office), 519-531.
- Thierstein, H. R., 1980. Selective dissolution of Late Cretaceous and earliest Tertiary calcareous nannofossils: Experimental evidence. *Cret. Res.*, 2:165–176.
- _____, 1981. Late Cretaceous nannoplankton and the change at the Cretaceous-Tertiary boundary. *In* Warme, J. E., Douglas, R. G., and Winterer, E. L. (Eds.), *The Deep Sea Drilling Project: A Decade of Progress.* Soc. Econ. Paleont. Mineral, Spec. Publ., 32: 355-394.

Date of Initial Receipt: November 9, 1982

APPENDIX

Cenozoic Calcareous Nannofossils Considered in This Chapter and Index to Plates (in alphabetical order by species epithets)

	Plate: Figures
Sphenolithus abies Deflandre, 1954	41:1, 2, 9, 10
Cyclicargolithus abisectus (Müller, 1970) Bukry, 1973	28:3
Ceratolithus acutus Gartner and Bukry,	
Calcidiscus aequiscutum (Gartner, 1967) Loeblich and Tappan, 1978	24:1-6
Nannotetrina alata (Martini, 1960) Haq and Lohmann, 1976	
Pontosphaera alboranensis Bartolini, 1970	7:1, 2
Chiasmolithus altus Bukry and Percival, 1971 Discoaster altus Müller, 1974	29:1-4
Helicosphaera ampliaperta Bramlette and Wilcoxon, 1967	
Amaurolithus amplificus (Bukry and Percival, 1971) Gartner and Bukry, 1975	
Emiliania annula (Cohen, 1964) Bukry, 1973	
Oolithotus antillarum (Cohen, 1964) Reinhardt, 1968	
Gephyrocapsa aperta Kamptner, 1963	
Scyphosphaera apsteini Lohmann, 1902	
Discoaster araneus Bukry, 1971	
Ceratolithus armatus Müller, 1974	
Biantholithus astralis nov. spec.	52;1, 4; 53:1, 2
Markalius astroporus (Stradner, 1963) Hay and Mohler, 1967	45:6; 50:1-4; 51:1, 2, 5-7
Discoaster asymmetricus Gartner, 1969	15:1-4, 6
Discoaster aulakos Gartner, 1967	
Discoaster barbadiensis Tan Sin Hok, 1927	30:2
Sphenolithus belemnos Bramlette and Wilcoxon, 1967	
Discoaster bellus Bukry and Percival, 1971	
Discoaster berggrenii Bukry, 1971	18:4
Chiasmolithus bidens (Bramlette and Sullivan, 1961) Hay and Mohler, 1967	

Appendix. (Continued).

Plate: Figures

41:3, 4

46:4

36:2

47:5

28:1, 2

42:7

28:7, 8

6:5

14:3, 4

17:3; 22:4; 23:10

43:4; 44:3, 4

17:1, 20:3; 23:9

2:3, 4; 6:6

Appendix. (Continued).

	Plate: Figures	
Braarudosphaera bigelowi (Gran and Braarud, 1935) Deflandre, 1947 Zverhablithus bijugatus (Deflandre, 1954)	21:3; 25:1-4	Sphenolithus delphix Bukry, 1973 Discoaster diastypus Bramlette and Sullivan, 1961
Deflandre, 1959		Dictyococcites dictyoda (Deflandre and Fert,
Discoaster binodosus Martini, 1958 Reticulofenestra bisecta (Hay, Mohler, and Wade, 1966) Roth, 1973	32:1, 2; 33:2-5 28:9, 10	1954) Martini, 1959 Discolithina discopora (Schiller, 1925) Braarudosphaera discula Bramlette and Riedel,
Prinsius bisulcus (Stradner, 1963) Hay and Mohler, 1967		1954 Sphenolithus distentus (Martini, 1965)
Discoaster bilii Martini and Bramlette, 1963 Discoaster bollii Bukry, 1971	23:8	Bramlette and Wilcoxon, 1967 Ellipsolithus distichus (Bramlette and Sullivan, 1961) Sullivan, 1964
Tribrachiatus bramlettei (Brönnimann and Stradner, 1960) Proto Decima, Roth, and Todesco, 1975		Discoaster distinctus Martini, 1958 Crenalithus doronicoides (Black and Barnes, 1961) Roth, 1973
Discoaster brouweri Tan Sin Hok, 1927	12:1-4; 19:1, 2; 21:1, 2	Neococcolithites dubius (Deflandre, 1954) Black, 1967
Discoaster calcaris Gartner, 1967		Discoaster druggii Bramlette and Wilcoxon,
Catinaster calyculus Martini and Bramlette, 1963		1967 Cruciplacolithus edwardsii Romein, 1979 Toweius eminens (Bramlette and Sullivan,
Heliolithus cantabriae Perch-Nielsen, 1971	45:1-2	1961) Perch-Nielsen, 1971
Gephyrocapsa caribbeanica Boudreaux and Hay, 1967	1:2-4; 6:3	Coccolithus eopelagicus (Bramlette and Riedel, 1954) Bramlette and Sullivan, 1961
<i>Coccolithus carteri</i> (Wallich, 1877) Kamptner, 1941	3:1, 3, 5-7	Helicosphaera euphratis Haq, 1966 Discoaster exilis Martini and Bramlette, 1963 Chiasmolithus expansus (Bramlette and
Helicosphaera carteri (Wallich, 1877) Kamptner, 1954	9:1-4	Sullivan, 1961) Gartner, 1970
Ericsonia cava (Hay and Mohler, 1967) Perch- Nielsen, 1969	43:6; 44:1, 2	1961 Heliorthus fallax Brönnimann and Stradner,
Discoaster challengeri Bramlette and Riedel, 1954	17:2	1960 Ericsonia fenestrata (Deflandre and Fert, 1954)
Neochiastozygus chiastus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971		Stradner, 1968 Cyclicargolithus floridanus (Roth and Hay,
Sphenolithus ciperoensis Bramlette and		1967) Bukry, 1971
Rhabdosphaera clavigera Murray and Blackman, 1898	8:1-5	Calcidiscus formosus (Kamptner, 1963) Loeblich and Tappan, 1978
Catinaster coalitus Martini and Bramlette, 1963	23:4, 5	Discoaster formosus Martini and Worsley, 1971 Scapholithus fossilis Deflandre, 1954
Discoaster colleti (Parejas, 1934) Bersier, 1939 Helicosphaera compacta Bramlette and		Nannotetrina fulgens (Stradner, 1960) Stradner, 1969
Chiasmolithus consuetus (Bramlette and	32:3, 4; 33:6-9	Sullivan, 1961) Loeblich and Tappan, 1978
Sullivan, 1961) Hay and Mohler, 1967 Tribrachiatus contortus (Stradner, 1958)		Reticulofenestra gartneri Roth and Hay, 1967 Chiasmolithus gigas (Bramlette and Sullivan,
Bukry, 1972 Minilitha convallis Bukry, 1973		1961) Radomski, 1968 Chiasmolithus grandis (Bramlette and Riedel,
Coccolithus crassus Bramlette and Sullivan, 1961	42:1, 2	1954) Radomski, 1968 Discoaster hamatus Martini and Bramlette,
Toweius craticulus Hay and Mohler, 1967		1963
1961) Stradner, 1962		Kamptner, 1954
Ceratolithus cristatus Kamptner, 1954 Nannotetrina cristata (Martini, 1958) Perch-		Discoaster helianthus Bramlette and Sullivan, 1961
Nielsen, 1971 Rhomboaster cuspis Bramlette and Sullivan, 1961		Sphenolithus heteromorphus Deflandre, 1953 Reticulofenestra hillae Bukry and Percival, 1971
Chiasmolithus danicus (Brotzen, 1959) Hay and Mohler, 1967	45:3	Syracosphaera histrica Kamptner, 1941 Emiliania huxleyi (Lohmann, 1902) Hay and
Discoaster decorus (Bukry, 1971) Bukry, 1973 Discoaster deflandrei Bramlette and Riedel,	22:3 17:4; 36:1	Mohler, 1967 Discoaster icarus Stradner, 1973
Thoracosphaera deflandrei Kamptner, 1956		<i>Thoracosphaera imperforata</i> Kampther, 1952 <i>Discoaster intercalcaris</i> Bukry, 1971
Campylosphaera dela (Bramlette and Sullivan, 1961) Hay and Mohler, 1967		Helicosphaera intermedia Deflandre, 1942 Scyphosphaera intermedia Deflandre, 1942
Amaurolithus delicatus Gartner and Bukry, 1975	10:1, 2; 11:1	Markalius inversus (Deflandre, 1954) Bramlette and Martini, 1964
Discoaster delicatus Bramlette and Sullivan, 1961		Triquetrorhabdulus inversus Bukry and Bramlette, 1969

J. C. STEINMETZ, H. STRADNER

Appendix. (Continued).

	Plate: Figures
Fasciculithus involutus Bramlette and Sullivan, 1961	41:7, 8
Discolithina japonica Takayama, 1967	
Neochiastozygus junctus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971	48:4
Heliolithus kleinpellii Sullivan, 1964	34:5
Bramlette and Sullivan, 1961	31:3, 4 19:2: 22:6 7
Discoaster kagieri Walthi and Brannette, 1965 Discoaster lenticularis Bramlette and Sullivan, 1961	34:7, 8
Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and Tappan, 1978	4:1, 3
Discoaster Iodoensis Bramlette and Riedel, 1954	31:2
Discoaster loeblichii Bukry, 1971 Helicosphaera lophota (Bramlette and Sullivan, 1961) Jafar and Martini, 1975	19:9
Ellipsolithus macellus (Bramlette and Sullivan, 1961) Sullivan, 1964	34:1-4, 6; 46:1-3
Calcidiscus macintyrei (Bukry and Bramlette, 1969) Loeblich and Tappan, 1978 Coccolithus magnicrassus Bukry 1971	4:2, 4; 5:1-4; 10:3, 4
Discoaster mediosus Bramlette and Sullivan, 1961	40:4
Discoaster megastypus Bramlette and Sullivan, 1961	
Triquetrorhabdulus milowii Bukry, 1971	
Coccolithus minutus Stradner, 1962	
Umbilicosphaera mirabilis Lohmann, 1902	
Discoaster mirus Deflandre, 1954	
Discoaster mohleri Bukry and Percival, 1971 Sphenolithus moriformis (Brönnimann and Stradner, 1960) Bramlette and Wilcoxon, 1967	
Discolithina multipora (Kamptner, 1948) Martini, 1965	
Discoaster multiradiatus Bramlette and Riedel, 1954	34:9; 35:2-4
Discoaster musicus Stradner, 1959 Sphenolithus neoabies Bukry and Bramlette, 1969	23:2, 3
Discoaster neohamatus Bukry and Bramlette, 1969	
Discoaster neorectus Bukry, 1971	
Coronocyclus nitescens (Kamptner, 1964) Bramlette and Wilcoxon, 1967	
Chiasmolithus camaruensis (Deflandre 1954)	
Hay, Mohler, and Wade, 1966	
Reticulofenestra oamaruensis (Deflandre, 1954) Stradner, 1968	
Discoaster obtusus Gartner, 1967	
Gephyrocapsa oceanica Kamptner, 1943	1:1
Discoaster okadai Bukry, 1981	38:1-6; 39:1-4; 40:1-3
Martini, 1964	45:7, 8
Discoaster ornatus Stradner, 1951	20:4-0
Emiliani ovata Bukry, 1973	51.1
Discoaster pansus (Bukry and Percival, 1971) Bukry, 1973	20:7-9
Nannotetrina pappii (Stradner, 1959) Perch- Nielsen, 1971	
Coccolithus pelagicus (Wallich, 1877) Schiller, 1930	3:2, 4

Appendix. (Continued).

	Plate: Figures
Discoaster pentaradiatus Tan Sin Hok, 1927 Blackites perlongus (Deflandre, 1954) Shafik, 1981	15:5
Hayaster perplexus (Bramlette and Riedel, 1954) Bukry, 1973	
Fasciculithus pileatus Bukry, 1973 Pontosphaera plana (Bramlette and Sullivan, 1961) Hag. 1971	
Zygodiscus plectopons Bramlette and Sullivan, 1961	
Sphenolithus predistentus Bramlette and Wilcoxon, 1967	
Discoaster prepentaradiatus Bukry and Percival, 1971	
1971) Gartner and Bukry, 1975	
Cruciplacolithus primus Perch-Nielsen, 1977 Cyclolithella prionion (Deflandre and Fert,	47:1, 2 43:7
1954) nov. comb. (ex Cyclolithus)	2.1.2
Thoracosphaera prolata Bukry and Bramlette, 1969	2:1, 2
Neococcolithes protenus (Bramlette and Sullivan, 1961) Perch-Nielsen, 1971 Sphenolithus preudoecoliens Deflandre, 1952	49:3
Reticulofenestra pseudoradians Donahore, 1952 Reticulofenestra pseudoumbilica (Gartner, 1967) Gartner, 1969	26:1-4; 27:1-4
Discoaster pseudovariabilis Martini and Worsley, 1971	22:1, 2
Scyphosphaera pulcherrima Deflandre, 1942 Discolithina pulchra (Deflandre, 1954) Levin, 1965	
Syracosphaera pulchra Lohmann, 1902 Discoaster quadramus Bukry, 1973	6:1, 7
Discoaster quinqueramus Gartner, 1969 Sphenolithus radians Deflandre, 1952	41:5, 6
Cyclagelosphaera reinhardtii Wind and Wise, 1977	51:3, 4
Helicosphaera reticulata Bramlette and Wilcoxon, 1967	
Heliolithus riedelii Bramlette and Sullivan, 1961	12.2 6 12.1 2
1966) Bukry and Percival, 1971 <i>Biscutum romeinii</i> Perch-Nielsen, 1981	42:3-0; 43:1-3
Braarudosphaera rosa Levin and Joerger, 1967 Calcidiscus rotula (Kamptner, 1956) Loeblich	
and Tappan, 1978 Ceratolithus rugosus Bukry and Bramlette, 1968	
Triquetrorhabdulus rugosus Bramlette and Wilcoxon, 1967	
Discoaster saipanensis Bramlette and Riedel, 1954	30:1
Discoaster salisburgensis Stradner, 1961	35:1; 36:5-7; 37:1-4 45:9
Pontosphaera scutellum Kamptner, 1952 Helicosphaera sellii (Bukry and Bramlette,	10:5-7
1969) Jafar and Martini, 1975 Helicosphaera seminulum (Bramlette and	
Sumvan, 1961) Jarar and Martini, 1975 Umbilicosphaera sibogae (Weber-van-Bosse, 1901) Gaarder, 1970	
Rhabdosphaera sicca (Stradner, 1963) Fuchs and Stradner, 1977	7:4
Zygodiscus sigmoides Bramlette and Sullivan, 1961	48:1-3, 5-7
Discoaster signus Bukry, 19/1	

CENOZOIC CALCAREOUS NANNOFOSSILS

Appendix. (Continued).

	Plate: Figures
Zygrhablithus simplex Bramlette and Sullivan, 1961	
Biantholithus sparsus Bramlette and Martini, 1964	52:2, 3, 5-9; 53:3, 4
Discoaster splendidus Martini, 1960	36:8, 9
Discoaster stellus Gartner, 1967	
Aspidorhabdus stylifera (Lohmann, 1902) Boudreaux and Hay, 1969	
Discoaster sublodoensis Bramlette and Sullivan, 1961	
Discoaster surculus Martini and Bramlette, 1963	16:1-4; 19:3-7
Nannotetrina swasticoides (Martini, 1958) Martini and Stradner, 1960	36:3
Pontosphaera syracusana Lohmann, 1902	6:4
Discoaster tamalis Kamptner, 1967	13:1-4
Discoaster tanii Bramlette and Riedel, 1954	30:3
Discoaster tanii nodifer Bramlette and Riedel, 1954	25:1

D	pendix.	(Continued).	
- A			

	Plate: Figures
Cruciplacolithus tenuis (Stradner, 1961) Hay and Mohler, 1967	47:3, 4
Discoaster toralus Ellis, Lohmann, and Wray, 1972	18:1, 2
Amaurolithus tricorniculatus (Gartner, 1967) Gartner and Bukry, 1975	11:2, 3
Discoaster trinidadensis Hay, 1967	
Discoaster trinus Stradner 1961	30:4
Braarudosphaera turbinea Stradner, 1963	
Fasciculithus tympaniformis Hay and Mohler, 1967	
Reticulofenestra umbilica (Levin, 1965) Martini and Ritzkowski, 1968	
Discoaster variabilis Martini and Bramlette, 1963	19:8; 20:4–6; 23:1
Markalius variabilis Perch-Nielsen, 1977	
Micrantholithus vesper Deflandre, 1954	

Table 1. Distribution of Holocene-Pliocene calcareous nannofossils, Hole 530.

Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Sphenolithus abies	Emiliania annula	Discoaster asymmetricus	Discoaster brouweri	Gephyrocapsa caribbeanica	Coccolithus carteri	Helicosphaera carteri	Rhabdosphaera clavigera	Ceratolithus cristatus	Amaurolithus delicatus	Crenalithus doronicoides	Thoracosphaera ellipsoidea	Thoracosphaera heimii	Emiliania huxieyi	Discolithina japonica	Calcidiscus leptoporus	Calcidiscus macintyrei	Discolitnina multipora	Corrolithus valuatoris	Disconstar nontaradiatus	Discousier pentaruatuus Reticulofenestra pseudoumbilica	Syracosphaera pulchra	Thoracosphaera saxea	Helicosphaera sellii	Umbilicosphaera sibogae	Aspidolithus stylifera	Discoaster surculus	Discoaster tamalis	Discoaster variabilis	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
0.25	1-1, 25-26 1-1, 60-61 1-1, 125-126 1.CC	CACC	M M M					CCCC	CCCC	FFFF	F	F			R	R			cccc		0000	F		r	R	FFFF		R R F					WPN32	CN15	NN21	Holocene
117.7	2-2, 71-72 2-3, 72-73 2-5, 62-63 2-6, 117-118	C A A A	M M M	F F F		R R	R F F	F C C	F F F F	F F F F		ĸ	R	F C C C	1	R	1	F I F I F I	F F F F	F F F F	F	F		F C C C			F		R	R R R	R R	F	WPN28b	CN11b	upper NN15	early Pliocene

Note: Abundance: A = abundant; C = common; F = few; R = rare; B = barren; lower case letter = reworked older fossils. Preservation: G = good; M = moderate; P = poor.

			Τ	Τ								Γ				Τ																								
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Calcanolishing ablan	ceratolithus acutus	Discoaster altus Helicosphaera ampliaperta	Amaurolithus amplificus	Emiliania annula	Discoaster asymmetricus	Discoaster aulakos	Sphenolithus belemnos Discoaster bellus	Discoaster berggrenii	Braarudosphaera bigelowi	Reticulofenestra bisecta	Discoaster blackstockae Discoaster bollii	Discoaster brouweri	Discoaster calcaris	Discoaster calculosus	Catinaster calyculus	Laterations current	Disconstar challanaari	Catinaster coalitus	Minilithina convallis	Ceratolithus cristatus	Discoaster decorus	Discoaster deflandrei	A maurolithus delicatus	Crenalithus doronicoides	Discoaster druggi	Discoaster exilis	Cyclicargolithus floridanus	Micrantholithus flos	Discoaster formosus	Reticulofenestra gartneri	Discoaster hamatus	Thoracosphaera heimii	Sphenolithus heteromorphus	Discoaster icarus	Thoracosphaera imperforata	Discoaster intercalaris Discolithina japonica
134.5	1-1, 75-76 1-4, 67-68 1-5, 9-10 1,CC	ACCC	MMM		R F	R		FFRF	F			R	R			F R R R			FFFC									ACCCC		F						R				R
144.0	2-1, 70-71 2-2, 70-71 2-3, 70-71 2,CC	A C A A	M M M		6. fr.			F C F	R F R			R			R	FRFR			C F F	F	2 2 2 2					r r		CCCC		F	r									
153.5	3,CC	A	G	1	F							T			F	F			F	I	F	1						с		F							5			
163.0	4-2, 77-78 4-3, 77-78 4-4, 77-78 4-5, 77-78 4,CC	AACAA	GGMGG	F	-				F F F R				R			FFFFF			FORCO		R			R R				CACAC		F										
172.5	5,CC	A	G	I	7							T			R	F			F	F	1						F	Α		R	r		-							R
182.0	6-1, 72-73 6-2, 72-73 6-3, 12-13 6,CC	A A F A	GGPM		R										R	F F F			F	F	F	ē.					F	A C F		F								R		
191.5	7-1, 77-78 7-2, 77-78 7-3, 77-78 7-4, 77-78 7-5, 77-78 7-6, 77-78 7,CC	A A A A A A A A A A A A A A A A A A A	GMMMGGM	FFFF	2 2 2 2 2 2		R						R	R	F F	FFFFF			R	FFFFFRR				F R	R	r	F R F	CFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		F									1	F
201.0	8-1, 77-78 8-2, 77-78 8-3, 77-78 8-4, 77-78 8-4, 77-78 8-5, 77-78 8-6, 77-78 8,CC	A A A A A A A	GGMGMGM	FFFFFF	F		F R								FFFFFFF	FFFFFF	1		F F F R	FFFFFF	F				FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		RRFFFFR	FFFFFF		F								R		
210.5	9-1, 77-78 9-2, 77-78 9,CC	A A A	M G M	F	r.								R		F	R F	R R			FFR	F				F		F			F F F										
220.0	10-1, 77-78 10-2, 77-78 10-3, 77-78 10-4, 77-78 10-5, 77-78 10-6, 77-78 10,CC	A A A A A A A A A	GGGGGGG	FFRF											R F	F F F F	F			R F R F R F R F R	F				R R R		R R R			F F F					R			F		R
	11-1, 77-78 11-2, 77-78	AA	G	R			R						R							F	R	8			R		R			C F										

Table 2. Distribution of calcareous nannofossils, Hole 530A 2A. Early Pliocene to Late Miocene.

Note: Abundance: A = abundant; C = common; F = few; R = rare; B = barren; lower case letter = reworked older fossils. Preservation: G = good; M = moderate; P = poor.

Discoaster kugleri Calcidiscus leptoporus Discoaster loeblichti	Calcidiscus macintyrei Triguetrorhabdulus milowii	Coccolithus miopelagicus Discolithina multipora	Discoaster musicus	Sphenolithus neoabies	Discoaster neohamatus	Discoaster neorectus	Coronocyclus nifescens	COCOUNTRY DIANGENESS	Emiliania ovata Discoaster pansus	Coccolithus pelagicus	Discoaster pentaradiatus	Hayaster perplexus	Discoaster prepentaradiatus Amaurolithus primus Reticulofenestra pseudoumbilica	Discoaster pseudovariabilis Discoaster auadramus	Discoster mindueramus	Calcidiscus rotula	Ceratolithus rugosus	Triquetrorhabdulus rugosus	Fortiospracture staticities	Discoaster stellulus	Aspidorhabdus stylifera	Discoaster surculus	Amaurolithus tricorniculatus	Discoaster trinidadensis	Discoaster variabilis Micrantholithus vesper	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
F F F	F F F				R		c			AFCC	F R R R		C F F							227		R R			F				
F F F	F C F F									CCCCC	F		F F C F						FFF	2		R F		r		WPN28b	CN11	NN15	
F F F	F F F	R					F	1		CCCF	F F F		c c c				R		F	7		F R F F F			F				
F	F					g	R	ł		F	F		c						F	Ē.		R			F	28a	1		
F	F		_		-		R	1		C	F	1	C		t				+	-	R	F	R		F				
F F F	F F									CCCF	R R		C C F C									R R	R	r	F	WPN27c	CN10c	NN13-14	early Pliocen
F F F	F F F F									F F F	F		C A A C				RR		R	2		FFRF	R		F F F				
FF	FFF							1		FFF	F		R A C						B	Ł		RFR	R		F F				
F F F F F	F F F F F	R								F C F C F F F	R F F F F		A A A A A A									F F F	F		F R F R F	WPN27a-27b	CN10a-10b	NN12	
F	F	R		-	-	-		+	R	F	F	+	A A	R	R	-	-	-	+		-	F	R	_	F	-			
F F	F F	0.25							2553	FF	F F		A C		F							R R			F F				
F F F F F F F F F F F	FFFFFFF			R						FFFFRFR	F F F F F F F		A C A A A C A	R R	FFFCFF		100	R R R R				R R	R		F F F F F	WPN26b	CN9b	NNII	late Miocen
F	F	R		R			E	-	•	RF	F		R A A	R	FF				T	R					C F R				

Table 2A. (Continued).

			_	-		_	_		_		_					="				_	_	_	_		_		_	_	_	_		_	_		_	_				_	_	_		_	_		-	1	_
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Sphenolithus abies	Ceratolithus acutus	Luscousier anns	Helicosphaera ampliaperta Amanolithus annilitous	Emilionia annula	Oolithotus antillarum	Genhvrocansa anerta	Scyphosphaera apsteini	Discoaster asymmetricus	Discoaster aulakos	Sphenolithus belemnos	Discoaster bellus	Discoaster berggrenti Broardorshoere hisoloui	Datautauospinera oiscioni Daticulafanetro hierto	Discoaster blackstockae	Discoaster bollii	Discoaster brouweri	Discoaster calcaris	Discoaster calculosus	Catinaster calyculus	Gephyrocapsa caribbeanica	Coccolithus carteri	Helicosphaera carteri	Discoaster challengeri	Rhabdosphaera clavigera	Catinaster coalitus	Minilithina convalits Ceratolithus cristatus	Discoaster decorus	Amaurolithus delicatus	Sphenolithus detphix	Coccolithus eopelagicus	Discoaster exilis	Cyclicargolithus floridanus	Disconster formosis	Reticulofenestra gartneri	Discoaster hamatus	Thoracosphaera heimii	Sphenolithus heteromorphus	Syracosphaera histrica	Emiliania huxleyi	Discoaster icarus	Thoracosphaera imperforata	Discoaster intercataris	Discolithing innonica	Discontinua japonica	C/ICOULING JUNESI
229.5	11-3, 77-78 11-4, 77-78 11-5, 77-78 11-6, 77-78 11,CC	A A A A A	M M M M	F	R		1	R											R	F F R R F	F					R	R					R F R			F F C C F				R R										
239.0	12-1, 72-73 12-2, 72-73 12-3, 72-73 12-4, 72-73 12-5, 72-73 12-6, 72-73 12-C	A A A A A A A A A	MPMPMM	F F			1	R					R						F	FFCFFFR	R F R				R	R F R R R	R			с				F	F C F F F								1		î				
248.5	13-1, 77-78 13-2, 77-78 13-3, 77-78 13-4, 77-78 13-5, 77-78 13-5, 77-78 13,CC	AAAAA	ммрмм	RR												R I R	R		R	R R R R R F F	F R R					F R R						R		R	F F R R														
258.0	14-1, 77-78 14-2, 77-78 14-3, 77-78 14-CC	AAAA	MMMM	F												F			F	FFFF	F					R				R	P	t		R										F					
267.5	15-1, 77-78 15-2, 77-78 15-3, 77-78 15-4, 77-78 15-5, 77-78 15-6, 77-78 15-6, 77-78 15,CC	AACBAAC	MMP MPP	FFFFF		R									R					F F F C F C	F F					R R F F	FFF		R	R R R	R			F	F				RR					F R R R R R R		F			
277.0	16,CC	A	м			_										1	F		R	F			_		_	F	F		R					F	_							_	- 33	R					
286.5	17,CC	C	P					-			_				F		+		R	R			_		_	_		1	R		-	_	_	_	-		_	_			_	_	_	-		_	_	_	_
296.0	18-1, 73-74 18-2, 73-74 18-3, 22-23 18-3, 73-74 18-4, 73-74 18-5, 73-74 18,CC	A C A A C B B	MMMP	F F R											R	5	2		RRRR	F	R F	R				R	FFCFR		C F R R R		R				R R F F	F			FF				10	F					
305.5	19-1, 73-74 19-2, 73-74 19-3, 73-74 19-4, 73-74 19-5, 73-74 19-6, 73-74 19.CC	B B B B B B B B B B B B B B B B B B B																															-																

Table 2B. Late Miocene-middle Miocene. Hole 530A (Continued).

					×							Unzoned	Unzoned	Unzoned	Indeter- minate
	R F R	C R R R	FR		R C	R F F F F F	A C A F	-		F	C C C C A F	WPN22b-25b	CN5b-8b	NN7-10	middle Miocene
<u> </u>	R	F	R			R	C	F			c			1.1	/
R R	F	F	R	F	RF	R F	R C C	R		R	C A C				
F	R F F	FF	R	R R	F	C R R F R R	F F F C R	F R R R			c c c	WPN26a	CN9a		
. F	FFFF	FFFC	R F	F	F F F	C F C R F R	A A F	F F F			F F C C				Miocen
R	R R R F	R	R R		R R F R	R R R R R F R R R R R	A AR AR AR AR RA	C C C F F F		R	C C F F F F F F			NNII	late
FFR	F F R F R	F	F	F	F R R F R	F F F R C R F R F F F F R R R	A A A A A A	C F F C C			00000	WPN26b	CN9b		
F	R R F F			F	F R R	F F R R R R R F F F	R A A A R A A	F F R F	R	R	F F C C				
Discoaster kugleri Calcidiscus leptoporus Discoaster loeblichili	Calcidiscus macintyrei Triquetrorhabdulus milowii	Coccolithus miopelagicus Umbilicosphaera mirabilis	Discolithina multipora	Sphenolithus neoables	Discoaster neohamatus Discoaster neorectus Coronocyclus nitescens Gephyrocapsa oceanica Coccolithus orangensis	Emiliania ovata Discoaster pansus Coccolithus pelagicus Discoaster peritaradiatus Hayaster perplexus	Pontosphaera plana Discoaster prepentaradiatus Amaurolithus primus Reliculofenestra pseudoumbilic Discoaster pseudovariabilis	Scyphosphaera pulcherima Scyphosphaera pulchra Discoaster quadramus Discoaster quinqueramus Helicosphaera reticulata	Calcidiscus rotula Ceratolithus rugosus Triquetrorhabdulus rugosus Pontosphaera scutellum Helicosphaera sellii	Rhabdosphaera sicca Discoaster stellulus Aspidorhabdus stylifera Discoaster surculus Pontosphaera syracusana	Discoaster lamalis Amaurolithus tricorniculatus Discoaster trinidadensis Discoaster variabilis Micrantholithus vesper	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age

Table 2B. (Continued).

Table 2C. Middle Miocene. Hole 530A (continued).

														_	_	_					_		_		_			_						_	_		_	_	_		_			_	-	_	_	-
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Sphenolithus abies	Ceratolithus acutus Disconster alme	Helicosphaera ampliaperta	Amaurolithus amplificus	Emiliania annula	Oolithotus antillarum	Gephyrocapsa aperla	ocypnospnaera apsterni Discoaster asymmetricus	Discoaster aulakos	Sphenolithus belemnos	Discoaster bellus	Discoaster berggrenti	Ditutatutophiatta bigetowi Reticulationectra bisacta	Discoaster blackstockae	Discoaster bollii	Discoaster brouweri	Discoaster calcaris	Discoaster calculosus	Catinaster calyculus	Gephyrocapsa caribbeanica	i riqueirornabautus carinatus Helicosnhaera carteri	Discouster challengeri	Rhabdosphaera clavigera	Catinaster coalitus	Minilithina convallis	Ceratolithus cristatus	Discoaster decorus	Discoaster deflandrei	Diventer drugai	Coccolithus eopelagicus	Discoaster exilis	Cyclicargolithus floridanus	Micrantholithus flos	Discoaster formosus	Reticulofenestra gartneri	Discoaster hamatus	Thoracosphaera heimii	Sphenolithus heleromorphus	syracospnaera nisirica Emiliania huxlevi	Discoaster icanus	Thoracosphaera imperforata	Discoaster intercalaris	Scyphosphaera intermedia	Discolithina japonica	Cricolithus jonesii
315.0	20-1, 78-79 20-2, 78-79 20-3, 93-94 20-4, 70-71 20-5, 47-48 20-6, 59-60 20,CC	B B A B B B B	м	F													R	1															F	F														
324.5	21-1, 77-78 21-2, 77-78 21-3, 77-78 21-4, 77-78 21-5, 77-78 21-6, 53-54 21-6, 53-54 21-6, 77-78 21.CC	B B B B B A C B	MP	F																				F						4	F		F	F	A F						F			(* (*				
334.0	22-1, 51-52 22-2, 51-52 22-3, 61-62 22-4, 61-62 22-5, 61-62 22-6, 61-62 22,CC	B B A B B B C	P																											3	F		F	A	R		F											
-	23-1 Top	B			-	-				-		t	_	-	-	t	-						-	-	t	-		_			-			1				1	-	- 33			1					Γ
353.0	24-1, 83-84 24-1, 149-150 24-2, 10-11 24-2, 28-29 24-3, 22-23 24,CC	R A A A B B	G M M G	F F F		1.4							R F								R R			F F F F							c c	R	t F	F	A C C C C		-	R		1	FFRR			F				
362.5	25-1, 68-69 25-3, 68-69 25-5, 68-69 25,CC	B B B B																																														
372.0	26-1, 28-29 26-3, 28-29 26-5, 28-29 26,CC	B B B B																																														
381.5	27-1, 73-74 27-4, 73-74 27-6, 73-74 27,CC	B B B B																																														
	28-1, 59-60 28-3, 59-60 28-7, 59-60	B B B																																														

Table 2C. (Continued).

Discoaster kugleri	Calcidiscus leptoporus Discoaster loeblichti	Calcidiscus macintyrei	Triquetrorhabdulus milowii	Coccolithus miopelagicus	Umbilicosphaera mirabilis	Discolithing multipora	Discoaster musicus	Sphenolithus neoabies	Discoaster neorectus	Coronocyclus nitescens	Gephyrocapsa oceanica	Coccolithus orangensis	Emiliania ovata	Coccolithue relation	Disocaster pentaradiatus	Hayaster perplexus	Pontosphaera plana	Discoaster prepentaradiatus	Amaurolithus primus	Discoaster needdovariabills	Scyphosphaera pulcherima	Syracosphaera pulchra	Discoaster quadramus	Discoaster quinqueramus	Helicosphaera reticulata	Calcidiscus rotula	Ceratolithus rugosus	Triquetrorhabdulus rugosus	Pontosphaera scutellum	Helicosphaera sellti	Nabadosphaera sicca	Amidorhabdus stutiuus	Discoaster surculus	Pontosphaera syracusana	Discoaster tamalis	Amaurolithus tricorniculatus	Discoaster trinidadensis	Discoaster variabilis	MICLANINGUINAS Vesper	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
F		с		F			R							I	P.													F										с		WPN22b	CN5b	NN7	
_				_	-									_		_					_					_		_	_			_			_		_	+	_				
F		R		_						R				0					6							F R												C F					middle Miocene
F		F		c			F						c						c																			с		WPN21_WPN22h	CN4-CN5b	NN5-NN7	
R		R		_	_		R				_			_		1			F	R) 				_	_	_		_		_	_	_	-				F	-		citt cito		
_		_	-	R	-		_			F	_	-	0	F	2	R	-		5			_		-	-				+		B	2	_	+	_			с	-				
		F F	R R R	C C F		R R				FF			000	F		R			111												0	1					F	C C C					
-	_	-		_		-	-						-			-	_	-											-	-				+	-			+					
_		-	-	-			_				_				_	-	-	_		+				_					-					-				+					
																																								Unzoned	Unzoned	Unzoned	Indeter- minate
																													1												-	- C	
-	-	-	-		-	-	-		-	-	_	-	-		-	+	-	-	-	+		-	_	-			_	-	-			_		+		-	-	+	-				
_																																											

×				_				197		_											1	_				_		_		_	_		_		_	_				_					_		-	_	_	_		-	_				
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Cyclicargolithus abisectus	Nannotetrina alata	Markalius astroporus	Discoaster araneus	Discoaster barbadiensis	Chiasmolithus bidens	Braarudosphaera bigelowi	Zygrhablithus bijugatus	Discousier pinouosus Beticulofeneetro hicerto	Prinsius bisulcus	Tribrachiatus bramlettei	Ericsonia cava	Neochiastozygus chiastus	Sphenolithus ciperoensis	Helicosphaera compacta	Chiasmolithus consuetus	Tribrachiatus confortus	Coccolithus crassus	Toweius craticulus	Nannotetrina cristata	Chiasmolithus danicus	Discoaster destandrei	Campylosphaera dela	Discoaster delicatus	Discoaster dlastypus	Reticulofenestra dictyoda	Braarudosphaera discula	Sphenolithus distentus	Ellipsolithus distichus	Discoaster distinctus	Neococcolithites dubius	Towetus eminens	Coccolithus eopelagicus	Chiasmolithus expansus	Discoaster falcatus	Heliorthus Jallax		Cycucargournus floradnus Micrantholithus flor	Calcidiscus formosus	Scapholithus fossilis	Calcidiscus pammation	Reticulofenestra gartneri	Chiasmolithus gigas	Chiasmolithus grandis	Discoaster helianthus	Reticulofenestra hillae	Helicosphaera intermedia	Markalius inversus	Triquetrorhabdulus inversus	Fasciculithus involutus	Neochiastozygus junctus	Heliolithus kleinpellii	Disconsterotaes Aurephan	DISCODSIET IDGUCENSIS
391.0	28,CC 29-1, 97-98 29-3, 97-98 29-5, 97-98 29,CC	B B B B B																																																							5
410.0	30-1, 101-102 30-3, 101-102 30-6, 101-102 30,CC	B B B B											T																																												
419.5	31-1, 71-72 31-2, 87-88 31-3, 72-73 31-5, 75-76 31,CC	B C B C B	P M	F C						R		1												1	R F																				R												
429.0	32-2, 77-78 32-3, 77-78 32,CC	B B B											T																																												
438.5	33-1, 67-68 33-3, 67-68 33,CC	B B											T																																												
448.0	34-1, 41-42 34-3, 61-62 34-6, 14-15 34-6, 77-78 34,CC	B B C A B	M	CA					į	R		F					R								F F										2000	R				1	F				F					F							
457.4	35-1, 70-71 33-2, 70-71 35-3, 127-128 35,CC	C A C B	G M P	AAC						R R	R	R F							R						F C R						R R				1.124.142.14	R R R																					
467.0	36-1, 5-6 36,CC	B																																																							
	37-1, 1-2 37-1, 25-26 37-1, 50-51 37-1, 63-64 37-1, 70-71 37-1, 80-81 37-1, 96-97 37-1, 115-116 37-1, 131-132 37-2, 1-2 37-2, 8-9 37-2, 52-53 37-2, 81-82 37-2, 87-88	A B B A A A A A A A A A F	M PPMPPMPPPM PPPM	C AAAAAA						R ACFACRA	FFFF	A C C C C C C C C C C C C C C C C C C C					r							1.000 States of the second states and second states	C C C A F C C F R				F A C A R		R F R F F R F F	1	R			R FFFFF FFR					R	RC							R R F								

Table 2D. Late Oligocene-late Eocene. Hole 530A (continued).

a WPN13b b WPN14a-14b c CP15b d CP16a-16b

e NP19-20 f NP21 g late Eocene-early Oligocene

686

Ellipsolithus macellus Coccolithus magnicrassus Discoaster mediosus Discoaster meaatvrus	Lanternithus minutus Lanternithus minutus Discoaster mirus Sphenolithus morfformis Discottishua multipora	Discoaster multiradiatus Discoaster nobilis Chiasmolithus oamaruensis Discoaster okadai Thorocosthaera operculata	Coccolithus orangensis Tribrachiatus orthostylus Coccolithus pelagicus Blackites perionga Fasciculithus pileatus	Sphenolithus predistentus Thoracosphaera prolata Sphenolithus pseudoradians Discotithua pulchra Sphenolithus radians	Isthmolithus recurvus Cyclagelosphaera reinhardtil Helicosphaera reticulata Heliolithus riedeli Cyclolithina robusta	Blscutum romeinii Braarudosphaera rosa Discoaster saipanensis Discoaster salisburgensis Thoracosphaera saxea	Helicosphaera seminulum Zygodiscus sigmoides Biantholithus sparsus Discoaster splendidus Discoaster sublodoensis	Discoaster surculus Nannotetrina swasticoides Discoaster tanii nodifer Discoaster tanii nodifer Cruciplacolithus tenuis	Braarudosphaera turbinea Fasciculithus tympantformis Reticulofenestra umbilica Markaltus variabilis Micrantholiithus vesper	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
										Unzoned	Unzoned	Unzoned	Indeter minate
	R		R R R		r R			R	r R				
										WPN17b	СР195	NP25	late Oligocen
	F R F		F C	R	R								- Chigocen
	F	R	F F	R	R				R	WPN17a	CP19a	NP24	
			с	с		r		F	ſ				
		R R R R	0000000	CFCFCCFCCFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R R R			F F R F R F R F R	R C C F F F F	WPN14c, 15, 16	CP16c, 17, 18	NP22-23	early Oligocen
			F		R			F F F	CC	ь	d	r	8
					194	D		D D	1 6				

Table 2D. (Continued).

								a second diaman and a second								_	_		_				_	-		-	_			
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Cyclicargolithus abisectus Nannotetrina alata Markalius astroporus Discoaster araneus	Chicamolithus bidans	Criassmonitmus biaeris Braarudosphaera bigelowi Zygrhabilithus bijugatus Discoaster binodosus Reticulofenestra bisecta	Prinsius bisulcus	Tribrachiatus bramlettei Ericsonia cava Neochiastozygus chiastus Sohenolithus ciperoensis	Helicosphaera compacta	Chiasmolithus consuetus Tribrachiatus contortus	Coccolithus crassus Toweius craticulus	Nannotetrina cristata	Chiasmolithus danicus Discoaster deflandrei	Campylosphaera dela	Discoaster delicatus	Discoaster diastypus	Reticulofenestra dictyoda	Sphenolithus distentus	Ellipsolithus distichus	Discoaster distinctus Neococcolithites dubius Toweius eminens Coccolithus eopelagicus Chiasmolithus expansus	Discoaster falcatus Heliorthus fallax Ericsonia fenestrata Cyclicargolithus floridanus Microarkolithus flor	Calcidiscus formosus	Scapholithus fossilis	Calcidiscus gammation	Reticulofenestra gartneri Chimmilithus aians	Chiasmolithus gigus	Discoaster helianthus	Reticulofenestra hillae Helicosphaera intermedia	Markalius inversus	Triquetrorhabdulus inversus Fasciculithus involutus Neochiastozygus junctus
476.5	37-2, 105-106 37-2, 148-149 37-3, 15-16 37-3, 25-30 37-3, 40-41 37,CC	C B C A R C	M P P P	F F R C	FFC	R C				R F F			F	2			c c			R R	F R R	R	ų,		F	C R				F
486.0	38-1, 39-40 38-1, 74-75 38-1, 86-87 38-1, 134-135 38-2, 1-2 38-2, 50-51 38-2, 105-106 38-2, 133-134 38.CC	F C B B A B B F C	P P P	F	b. h. h.	R C C											FI	z		R F				F F		F				
495.5	39-1, 8-9 39-1, 48-49 39-1, 85-86 39-1, 110-111 39-2, 5-6 39-2, 19-20 39-2, 42-43 39-2, 80-81 39-2, 120-121 39-C2	CCACBCACAC	PPPP PPPP		AL IN FAILY PARAMETER	C F F				F F				R						F				R F F	R	F R F				
505.0	40-1, 10-11 40-1, 75-76 40-1, 140-141 40-2, 13-14 40-2, 13-14 40-2, 140-141 40-3, 8-9 40-3, 68-69 40-3, 122-123 40-4, 9-10 40-4, 72-73 40-4, 92-93 40,CC	BCCBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	PP PPPPPPPPPPPPPP	C A F C	E ACCE	F F F R F R	A A A A A	R		F F R						C F F				F	F R R	R		с						A A A A
	41-1, 33-34 41-1, 75-76 41-1, 90-91 41-1, 141-142 41-2, 10-11 41-2, 70-71 41-2, 110-111	A B C A A A	P P P P P			R	A A R C C C	R		R	CFFF							0		R C F C										A C R C C C

Table 2E. Middle Eocene-late Paleocene. Hole 530A (continued).

CENOZOIC (CALCAREOUS	NANNOFOSSILS
------------	------------	--------------

Table 2E. (Continued).

Hetiolithus kleinpelli Discoasteroides kuepperi	Discoaster lodoensis	Ellipsolithus macellus	Coccolithus magnicrassus	Discoaster mediosus Discoaster meenstynus	Lanternithus minutus	Discoaster mirus	Discoaster mohleri	Sphenolithus moriformis	Discolithina multipora	Discoaster multiradiatus	Discoaster nobilis Chiasmolithus oamaruensis	Discoaster okadai	Thoracosphaera operculata	Tribrachiatus orthostylus	Blackites perionea	Fasciculithus pileatus	Sphenolithus predistentus	Thoracosphaera prolata	Discolithing pulchra	Sphenolithus radians	Isthmolithus recurvus	Cyclagelosphaera reinhardtii	Heliolithus riedeli	Cyclolithella robusta	Biscutum romeinii	Braarudosphaera rosa	Discoaster saipanensis	Discoaster salisburgensis	I noracospnaera saxea Helicosphaera seminulum	Tunolious clamoidae	Lygoalscus sigmolaes Biantholithus sparsus	Discoaster splendidus	Discoaster sublodoensis	Discoaster surcutus Nannotetrina swasticoides	Discoaster tanii	Discoaster tanii nodifer	Cruciplacolithus tenuis	Braarudosphaera turbinea	Fasciculthus tympaniformis Reticulofenestra umbilica	Markalius variabilis Micrantholithus vesper	Zone (Ellis, 1982)		Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
														1																T					R				F		WPN12	2a	CP13/14	NP16	-
	F													1						F														R					F				СР13ь	NP15	middle Eocene
														H						R										Ī		2	с	R									CP12	NP14	
R	C F C												F	(F													с										CP11	NP13	
R	c c					F				R			F	1						с																					(00				
	CAFAC								1	R			F							CCFFF																					zonatio publishe	n d)			early Eocene
	C C					1					1			C I						F			2													5	Ĩ,					-	CP10	NP12	
	C R								1	RF	z		F							00000								A													-				
										F F A F C	7		F	R		-		R R										cccc															CP9	NP10-11	
									0	CF	ł			0														c																	
		R R								C F A F A F	2			FOFO														R F F															CP8	NP9	late Paleocene

Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Cvelicargolithus abisectus	Optimus contrats along the Markalius astroporus Markalius astroporus Discoaster araneus Discoaster barbadiensis	Chiasmolithus bidens	Braarudosphaera biselowi	Zygrhablithus bijugatus	Discoaster binodosus Reticulofenestra hisocta	Prinsius bisulcus	Tribrachiatus bramlettei	Heliolithus cantabriae	Ericsonia cava Nonchinetorvous chinetus	Sphenolithus cineroensis	Helicosphaera compacta	Chiasmolithus consuetus	Tribrachiatus contortus	Coccolithus crassus	Toweius craticulus	Nannotetrina cristata	Chiasmolithus danicus	Discoaster de flandrei	Campylosphaera dela	Discoaster delicatus	Discoaster diastypus	Reticulofenestra dictyoda	Braarudosphaera discula	Sphenolithus distentus	Ellipsolithus distichus	Discoaster distinctus	Neococcolithites dubius	Cruciplacolithus edwardsii	I owenes eminens	Coccolithus eopelagicus	Chiasmolithus expansus	Discoaster falcatus	Heliorthus fallax	Ericsonia fenestrata	Cyclicargolithus floridanus	Micrantholithus flos	Calcidiscus formosus	Scapholithus fossilis	Calcidiscus gammation	Reticulofenestra gartneri	Chiasmolithus gigas	Chiasmolithus grandis	Discoaster helianthus	Reticulofenestra hillae	Helicosphaera intermedia	Markalius inversus Triquetrorhabdulus inversus
514.5	41-3, 8-9 41-3, 80-81 41-3, 140-141 41,CC	AAAA	P P M M			FFF				CCCCF			3	2													1						CCCCC	R R																
524.0	42-1, 17-18 42-1, 61-62 42-1, 140-141 42-2, 20-21 42-2, 63-64 42-2, 140-141 42-3, 10-11 42,CC	AAAABAA	P P P P P P P			H H H H H H H				F F C A A A A									F C C C						R				R				CCCCC C			R R R R R F F											RR			1
533.5	43-1, 14-15 43-1, 57-58 43-1, 110-111 43-2, 20-21 43-2, 76-77 43-2, 122-123 43,CC	ACAAAAC	MPPMMPP			FFF		1	F F F	A A A C A A C			F	2		F R R R			C C C C C F F										R				CCCCF														F F F			
543.0	44-1, 19-20 44-1, 69-70 44-1, 113-114 44-1, 129-130 44-2, 15-16 44-2, 75-76 44-2, 115-116 44,CC	AAABBRRC	P P M P P P							A C R C			F	2		R R R			R F F		ū.	4				a,						1	F																	
552.5	45-1, 43-44 45-1, 57-58 45.CC	BRR	P							R		ş	R																	1						T													,	
562.0	46-1, 34-35 46-1, 50-51 46,CC	RAC	P P P							c			c	T					R F							1						F	R																	
571.5	47-1, 18-19 47-1, 70-71 47-1, 143-144 47-2, 25-26 47-2, 75-76 47,CC	AAACF	P M P P P		R							F	A A A C F			R			c c		R R											R R R R																		
581.0	48-1, 40-41 48-1, 79-80 48-1, 127-128 48-2, 1-2 48-2, 43-44 48,CC	ACAAAA	P P P P P										C F A A A																		Contraction of the	FRFFFFF																	1	r F

Table 2F. Late Paleocene-early Paleocene. Hole 530A (Continued).

18	DI	e.	ZF.	(CO	nti	nu	iec	1).																																											
Fasciculithus involutus	Procession of the second secon	madual Simonau	Discoaster lodoensis	Ellinsolithus macellus	Coccolithus magnicrassus	Discoaster mediosus	Discoaster megastypus	Lanternithus minutus	Discoaster mirus	Discoaster mohleri	Sphenolithus moriformis	Discolithina multipora	Discoaster multiradiatus	Discoaster nobilis	Chiasmolithus oamaruensis	Discoaster okadai	Tribookiatus arthostulus	Coccolithus pelagicus	Blackites perionga	Fasciculithus pileatus	Sphenolithus predistentus	Thoracosphaera prolata	Sphenolithus pseudoradians	Discolithina pulchra	Sphenolithus radians	Isthmolithus recurvus	Cyclagelosphaera reinhardtii	Helicosphaera reticulata	Heliolithus riedeli	Cyclolithina robusta	Biscutum romeinii	Braarudosphaera rosa	Discoaster salpanensis Discoaster salishurpensis	Thoracochaera cayea	Helicosphaera seminulum	Zveodiscus siemoides	Biantholithus sparsus	Discoaster splendidus	Discoaster sublodoensis	Discoaster surculus	Nannotetrina swasticoides	Discoaster tanii	Discoaster lanii nouyer	Crucipiacontraus tenuis	Braaruaosphaera turoinea Eoscioulishus turnomiformis	Patiento function (ympunit) ormis Datiento function (umbilion	Markalius variabilis	Micrantholithus vesper	10	Zone kada and Bukry, 1980)	Zone (Martini, 1971)	Age
CCCC				R		R							C A A C			FR	R	FFRF												F			C C F	R	2	R							1	R								
ACCCCC				R	2	R				R		ć	ACCFF		100	F R		FCCCF											R R R	F F F F F			0000			R														CP8	NP9	
C C	1	ł				R R				F F					1	R														C F																						
CCCCFFF		22		RRRR		R				RFFFF				R	111	F	R	FFCCCC											R R R R	F F F						F F R														CP7	NP8	late Paleocene
F R F	F	ł		R		T				RRF	Γ							CCC		Γ														T		R							F							CP6	NP7	
R R F	5	ł																																R		R							F	2						CP5	NP6	
R	5	2																R							2																											
R F F	C	ĩ															7	R F																									R	t.								
FR	T					T					T				T	1	7			T			1						1				_	F		RF			T	-			F	-						CP4	NP5	
																1	222	R C															1	FRR		FFRF							FRFR	R					c	CP16-2	NP2-3	early Paleocene
																I I I I I	2	F																FRFFF		CRFFFF							R R F C				А					

Т

Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Markalius astroporus	Ericsonia cava	Thoracosphaera operculata	Coccolithus pelagicus	Cruciplacolithus primus	Biscutum romeinii	Thoracosphaera saxea	Zygodiscus sigmoides	Biantholithus sparsus	Cruciplacolithus tenuis	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
590.5	49-1, 30-32 49-1, 45-46 49-1, 73-74 49-1, 136-137 49-2, 40-41 49,CC 50-1, 6-7 50-1, 11-12	A A A B A C F	P P P P P	R R F R	AAAA	C C F C R C	R	R		F F R	FFFF FRR	R	C C F F R R	CP1b	NP2	
	50-1, 16-17 50-1, 30-31 50-1, 33-34 50-1, 47-48 50-1, 47-48 50-1, 47-48 50-1, 47-48 50-1, 60-61 50-1, 60-70 50-1, 78-79 50-1, 82-83 50-1, 90-91 50-1, 110-111 50-1, 110-112 50-1, 110-113 50-1, 136-137 50-1, 136-136	AACFFFFRFBBBCFFFCFCCCA	MPPMPPPPP PPPMPPPMMM	FRRRR	R	CCCFF RRR RR			RR R R RR RRR	R RR R FR	RRRR R RRRR	R R	R	CP1a	NPI	Early Paleocene
	$\begin{array}{c} 50-2, \ 28-29\\ 50-2, \ 31-32\\ 50-2, \ 37-38\\ 50-2, \ 49-50\\ 50-2, \ 52-53\\ 50-2, \ 52-53\\ 50-2, \ 52-96\\ 50-2, \ 123-124\\ 50-2, \ 145-146\\ 50-3, \ 50-51\\ 50-3, \ 94-95\\ 50-3, \ 132-133\\ 50-4, \ 7-8\\ 50-4, \ 17-18\\ 50-4, \ 24-25\\ \end{array}$	~~~~~~~~~	**********							ĸ				Micula mura	Micula mura	late Maes- trichtian

2G. Early Paleocene. Hole 530A (Continued).

50-4, 24-25
A
P

Note: The following species were not found: Cyclicargolithus abisectus, Biantholithus astralis, Discoaster araneus, Discoaster barbadiensis, Chiasmolithus bidens, Braarudosphaera bigelowi, Zygrhabilhus bilugatus, Discoaster biodosus, Reticulogenesta bisecta, Prinsibus bisucus, Tribarchiatus bramettei, Neochiastozyus, Oriasto, Sphenolithus ciperoensis, Helicosphaera compacta, Chiasmolithus consuens, Tribarchiatus stozyus, Discoaster data provensis, Areitculos, Nannoterina cristata, Chiasmolithus cancus, Tovenis craitculos, Nannoterina cristata, Chiasmolithus cancoccolithus conceccilithus, consust. Discoaster disculos, Discoaster distribut, Discoaster disculos, Discoaster distribut, Campylosphaera dela, Discoaster delicatus, Discoaster distribut, Noncoccoccolithus conceccilithus dubius, Towelus eminens, Coccolithus eopelagicus, Chiasmolithus gannation, Calcidiscus, Concourcelithus glasz, Crisconous, Scapholithus floridanus, Micrantholithus flos, Calcidiscus formosus, Scapholithus fossilis, Discoaster helion, Calcidiscus garmation, Chiasmolithus gigas, Chiasmolithus grans, Discoaster alactus, Heliorthus glasz, Chiasmolithus grans, Discoaster halentus, Previsto, Fascorialina singuitas, Neckinatorygus, Junctus, Heliorthus and Scapholithus fossilis, Cyclicococcilithus ginamation, Calcidiscus garantion, Heliorthus and Scapholithus glasz, Chiasmolithus grans, Elipsolithus macellus, Coccolithus magnicrassus, Discoaster mediosus, Discoaster megastypus, Lanternithus minutus, Discoaster minus, Discoaster nobleri, Sphenolithus andrios, Discoaster mediosus, Biacoaster nuclinas, Biacoaster nuclinas, Sphenolithus garadisto, Discoaster nuclinas, Sphenolithus garadistus, Discoaster nuclinas, Sphenolithus garadistus, Discoaster nuclinas, Sphenolithus garadistus, Discoaster subidosphera rens, Discoaster subidosphera rens, Discoaster subidosphera rens, Discoaster subidosphera renson, Biscoaster subidospheres rens, Discoast

					Т	ertiar	y sp	ecie	s		_			_	Cre	taced	ou≤	spe	cies		_			
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Markalius astroporus	Ericsonia cava	Coccolithus pelagicus Biscutum romainil	Thoracosphaera saxea	Zygodiscus sigmoides	Biantholithus sparsus	Cruciplacolithus tenuis	Markalius inversus	Ceratolitholdes kampineri	Reinnarances levis Chiaetozvane littararine	Micula murus	A hmuellerello octoradiata	Micula prinsii	Quadrum quadratum	Prediscosphaera spinosa	Zygodiscus spiralis	Micula staurophora	Microrhabdulus stradneri Eiffellithus turrissiffeli	Zone (Okada and Bukry, 1980)	Zone (Martini, 1979)	Age
590.5	49-1, 30-32 49-1, 45-46 49-1, 73-74 49-1, 136-137 49-2, 40-41 49,CC	A A A B A	P P P P	R R F	A A A A		F	F F F F		C C F F				R						F	R	СР1Ь	NP2	
	50-1, 6-7 50-1, 11-12 50-1, 16-17	C F A	P P M	R	R	R	R	RRR	R R	R R R				R	B				R R	FFC	R			
	$\begin{array}{c} 50-1, \ 30-31\\ 50-1, \ 33-34\\ 50-1, \ 47-48\\ 50-1, \ 49-50\\ 50-1, \ 49-50\\ 50-1, \ 60-61\\ 50-1, \ 67-68\\ 50-1, \ 67-70\\ 50-1, \ 78-79\\ 50-1, \ 10-72\\ 50-1, \ 10-102\\ 50-1, \ 100-102\\ 50-$	ACFFFFRFBBBCFFFCFC	PPMPPPP PPPP PPPMPPP	FRRRR	R	P P P R R		R R R R R	R		R	R		R R R R R R R R		R R R	R	R R	R	CFFRRFRF CFFFC	R	CPia	NPI	Early Paleo- cere, Danian
592.0	50-2, 3-4 50-2, 13-14 50-2, 22-23	C C A	M M M	R	2	R	FR	R R R	R R		R I R I R	R R	74	R		R		ī	R R R	C C	R R			
594.0	50-2, 28-29 50-2, 31-32 50-2, 37-38 50-2, 49-50 50-2, 52-53 50-2, 62-63 50-2, 95-96 50-2, 123-124 50-2, 145-146 50-3, 50-51	A A A A A A A A A A A A A A A A A A A	PPPPPPPPPPP		-		R				R	R	F	F R F F F R	R	R R R	R F R	F R R R	FR	AAAAAAAAAA	R R R R R	Micula mura	Micula mura	late Maes- trichtian
	50-3, 94-95 50-3, 132-133	AA	P P											R	[R	2	R	AA				
595.5	50-4, 7-8 50-4, 17-18 50-4, 24-25 50-4, 54-55	A A A A	P P P											R F F R					R	C A A A				

Table 2H. Tertiary/Cretaceous boundary. Hole 530A (Continued).

Table 3. Distribution of Holocene-late Miocene calcareous nannofossils, Hole 530B.

Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Sphenolithus abies	Emiliania annula	Discoaster asymmetricus	Sphenolithus belemnos	Discoaster berggrenii	Braarudosphaera bigelowi	Discoaster braarudii	Discoaster brouweri	Discoaster calcaris	Gephyrocapsa caribbeanica	Coccolithus carteri	Helicosphaera carteri	Discoaster challengeri	Rhabdosphaera clavigera	Ceratolithus cristatus	Discoaster decorus	Discoaster deflandrei	Amaurolithus delicatus	Discolithina discopora	Crenalithus doronicoides	Discoaster exilis	Thoracosphaera heimii	Emiliania huxleyi	Discolithina japonica	Discoaster kugleri	Calcidiscus leptoporus	Calcidiscus macintyrei
2.4 2.5	1-1, 37-38 1-2, 37-38 1,CC 2-1, 10-11	A A A A	M M M										F C C C	F C C C	F F F		F R R					F F	CCCC		F	F F F C	R		C C F C	
6.8 11.2 15.6 23.4 23.45	2-2, 113-114 2,CC 3,CC 4,CC 6,CC 7-1, 55-56	A A A A A A	M M M M M										CCCCCC	C C C C F F	FFFFFF		R			a.		F F	C C C A A A						C F F F F	
27.8 32.2 36.6 41.0 45.4 49.8 54.2	7,CC 8-3, 14-15 8,CC 9,CC 10,CC 11,CC 12,CC 13,CC	A A A C C C C A	M M M M M M P M				r		R	2			CCCCCFCC	FFFFFFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF					r r		F F F	A C C A F F F				F		F F F F F F F C	R R R
58.2 63.0 67.4 71.8 76.2	14,CC 15,CC 16,CC 17,CC 18,CC	C R F B C	M P M										F F F	F F F	F F F								F F F				F		F F F	F F F
80.6 85.0 92.4 96.8 99.6 102.9 107.2 110.2	19,CC 20,CC 21,CC 22,CC 23,CC 23,CC 24,CC 25,CC 26,CC 27,CC	C C C C R F R C R C	P M M P P P M P M M		F F F									F F F F F	R F F F		R					F F	F C F R F F R F R F				F		F F F F F F F F F	F F F R F R F F
113.2	28,CC 29,CC	CA	M	-	F	-	-	-		F	F	_	_	F	F F	-		R				F	A A				F	-	F F	F
118.2 122.6 127.0 131.9 134.9 138.9 142.2 145.2 145.2 145.2 145.2 145.2 153.0 154.0	30,CC 31,CC 32,CC 33,CC 34,CC 35,CC 36,CC 37,CC 38,CC 39,CC 40,CC	A A A A A C A A A A A A	M M M M M M M M M M	R R F F R F F F F F F F F F	F	R R R F F F F F F			R R	F F	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R		F C C C C C F	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF			R			R R R R	F F F F	A A A F F F F F F F F F F F F F	F F F F				F F R F F R	F F F F F F F F F F F F F F F F F F F	FFRCFFFFCF
158.0 163.0 167.4	41,CC 43,CC 44,CC	C C A	M M M	F							F R F			F R	F F F								F F	F				F	F F F	C C C
170.8 174.2 177.6 180.6	45,CC 46,CC 47,CC 48,CC	A A A A	M M M	R F F		R R		R R	R R	R	F F F			F F F F	F F F	R R			R		R			F F F				R F F	F F F	F F F

Note: Abundance: A = abundant; C = common; F = few; R = rare; B = barren; lower case letter = reworked older fossils. Preservation: G = good; M = moderate; P = poor.

Table 3. (Continued).	
-----------------------	--

Coronocyclus nitescens	A A A A A Gephyrocapsa oceanica	Emiliania ovata	COCOLIthus pelagicus	Discoaster pentaradiatus	Reticulofenestra pseudoumbilico	Discoaster pseudovariabilis	H H Syracosphaera pulchra	Discoaster quinqueramus	Ceratolithus rugosus	H Thoracosphaera saxea	고 Pontosphaera scutellum	Helicosphaera sellii	보 내 내 내 Umbilicosphaera sibogae	Aspidorhabdus stylifera	Discoaster surculus	Discoaster tamalis	Amaurolithus tricorniculatus	Discoaster trinidadensis	Discoaster variabilis	Micrantholithus vesper	Scyphosphaera sp.	Zone (Ellis 1982) WPN32	Zone (Okada and Bukry, 1980) CN15	Zone (Martini, 1971) NN21	Age
	A C C C		C F F							F		F										WPN31b	CN14b	NN20	
	A C C A C C C A	R F F F F F F F F F	FFFFFFFF		R R F F		R			R R	R R F	F						г				WPN31a	CN14a		late Pleistoc
		F	F		F																-		011101		
		r F	F		F					R		R										WPN30b	CNI30	NN19	
R		FFF	F F F F		F F		F F					F F F										WPN30a	CN13a		early Pleistoc
		F	F				1					F													
R		1	C									F		_	_				R		R				
R R R R R		R	CCCCCCCFFCC	F RFRFF FFF	F F A F C C C C C F F	R			R	R R R		F R R F		R R	R F R R F F	R F R F F F	R		RRF FFFFF F	г		WPN28b	CN11b	NN15	early Pliocer
R R			F F F	R R F	CCC		R							R	F R F				F R F			WPN28a	CN11a		
			F F F F	R F R R	CCCCC			R R F				R F			R F F		F R R		F F R F			WPN26b	СN9Ъ	NN11	late Miocer

· · · · · · · · · · · · · · · · · · ·					_				_				_						_				_						-															
Sub-bottom depth (m)	Core-Section (interval in cm)	Abundance	Preservation	Sphenolithus abies Amaurolithus amplificus	Emiliania annula	Discoaster asymmetricus Discoaster barbadiensis	Braarudosphaera bigelowi	Discoaster blackstockae	Gephyrocapsa caribbeanica	Coccolithus carteri	Helicosphaera carteri Discoaster challengeri	Rhabdosphaera clavigera	Ceratolithus cristatus	Discoaster deflandrei	Trochaster deflandrei	Amauronnuus aencanus Discolithina discopora	Crenalithus doronicoides	Discoaster druggii	Cyclicargolithus floridanus	Thoracosphaera heimii	Emiliania huxleyi Dissolishina lananisa	Discoaster kugleri	Calcidiscus leptoporus	Calcidiscus macintyrei Schenolithus moriformis	Discolithina multipora	Coronocyclus nitescens	Gephyrocapsa oceanica	Discoaster pansus	Coccolithus pelagicus	Discoaster pentaradiatus A maurolithus primus	Reticulofenestra pseudoumbilica	Discoaster pseudovariabilis Svracosphaera pulchra	Discoaster quinqueramus	Triquetrorhabdulus rugosus	i noracospnaera saxea Pontosphaera scutellum	Helicosphaera sellii	Umbilicosphaera sibogae Aspidorhabdus sivlifera	Discoaster surculus	Discoaster tamaits Amaurolithus tricorniculatus	Discoaster variabilis	Zone (Ellis, 1982)	Zone (Okada and Bukry, 1980)	Zone (Martini, 1971)	Age
	Hole 532		T				T																									T										-		
2.1	1-1, 12-13 1-2, 63-64	CA	G						C	F F	F F						C C			R	C		F F				C C		F F								F				WPN32	CN15	NN21	Holocene
4.0 8.4 12.8 17.2 20.8	1-3, 65-66 1,CC 2,CC 3,CC 4,CC 5-2, 68-69 5-3, 59-60	A A A A A A A A	GGGGGMG		R				C A C A A A A	F F C C C C C C C	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF					F F	C A C A A A A				I	R	FFFFFF				C C C F F F C		F F C C C C C C C		R	F		1	R R R		F F R R R R R R			R	WPN31b	CN14b	NN20	late
21.6 26.0 30.4 34.8 39.2 43.6 48.0	5,CC 6,CC 7,CC 8,CC 9,CC 10,CC 11,CC	A A A A A A A A	GGMMGMG		F				A F F C C C	CCC CCC CCC	FFFFFFFF					FFFFFF	A A C A C A C A			R			FFFFFF	RRFRF				4.00000000	с с с с с с с с		F R	R		1	2	FRF	R R R R			R	WPN31a	CN14a	NN19	Pleistocene
52.4 56.8 61.2 65.6	12,CC 13,CC 14,CC 15,CC	C A A A	M G G M		F				C C F	F C C C	F F F F					F F F	C A A A				I	7 7 7	F F F F	FFFFF					FCCC			R R R		ł	R	F F F		R		R	WPN30b	CN13b		early Pleistocene
70.0 74.4	16,CC 17,CC	CA	M		F					F C	F						CC						F F	F F			C F	1111	FC		R F			1	2 2	F					WPN30a	CN13a		
78.6	18-1, 125-126 18-2, 125-126 18-3, 121-122	A A A	M M					1	R F R	C C C	F F F					R	C A A				5	2	F F F	F F F			F C C		C C C							F F F					WPN29c-29d	CN12c-12d	NN17-18	
78.8 83.2 87.6 92.0 95.8	18,CC 19,CC 20,CC 21,CC 22-2, 81-82 22-3, 80-81	AAAAC	MMMGG				R		R F F R R R R	C C C C F F	FRRRFR			R		R	AAACC				F	ł	F F F F F	F F F F F F F		R			000000	R	FC					F R F R	R	R		R	WPN29b	CN12b		
96.4 100.8 105.2 109.6 114.0 117.4 120.8	22,CC 23,CC 24,CC 25,CC 26,CC 27,CC 28,CC	A C A A A A A	M M M M M		R	R R R F F	R		FFRFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	C C F F F F F F	F F R F F F F		R R	FRRRR			A C A A C A A C				F	R	FFFFFFF	FFFFFFFF		R			0000000	R	F C F C C C C	R		5	ł	F F F F F F		F F R F R F	2 2 2	R R R	WPN29a	CN12a	NN16	late Pliocene

Table 4. Distribution of Holocene-late Miocene calcareous nannofossils, Holes 532, 532B.

Table 4. (Continued).

124.4 127.4 131.8 135.2 139.2 142.6 146.6 149.1	29,CC 30,CC 31,CC 32,CC 33,CC 34,CC 35,CC 36-1, 37-38 36-2, 107-108	A A A A A A A A A	M M M G G M M M	Rr R R R F R	R R R	FFFFF	C F F C C C C F F	R F F F F F F F F F		R R F R F F F F F	A A A A R A R A A A		RR	F C C C C C C F F		F	F R F	C C C C C C F F		CCCC FCF		R	RR	R F F F F			R F R R	WPN29	a	CN12a		
150.6	36,CC	A	GR	R		F	F	F			A			FF		F		F		F					F	R	R	WPN28	5			
153.8 156.8 165.2 169.6 174.0 178.4 182.8 186.8 191.2 195.6 203.6 203.6 207.6 211.6 216.0 224.0 228.0 221.4 234.8 238.8	37,CC 38,CC 39,CC 40,CC 41,CC 42,CC 43,CC 44,CC 45,CC 45,CC 45,CC 47,CC 48-1,106–107 48-3,66-69 48,CC 49,CC 50,CC 51,CC 51,CC 54,CC 55,CC 55,CC 55,CC 55,CC 55,CC 56,CC 57,CC 58,CC 60-1,118–119 60-3,31–32	A A A A A C C C C A A A A A A A A A A A	GG M M F F F F F F F F F F F F F F F F F	R	R	א איא איא איז איז איז איז איז איז איז אי	FFFCCFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		R	F R F R R F	A A A A A A A A C C C C C C A A C C C C	т т	R R F F F F		Ţ	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	F R R F R F	C C C C F F F F F F F F F F F F F F F F	R RRR RRF FFFFFFF	FCCCCAACCCCAAAAAAAAAAAAAAAAAAAAAAAAAAA		R	R R R R	F F F F F R R R			R R RRRFF RFFFFFFFFFFFFFFFFFFFFFFFFFFF	WPN27a-2	28a	CN10a-11b	NN12-15	early Pliocene
246.8 251.2	60,CC 61,CC and 61B,CC	A A	G F G F		R	F F	С	F F	I	R	F F F F		R F	F F F F		F F	F	C C	F R R	A A	F R				F		R F F					
	Hole 532B																											5				
254.7 259.7 263.7 275.5 279.3 285.3 285.3 288.3 288.3 290.3 291.3	62-3, 22-23 62,CC 63-1, 50-51 63-2, 20-21 63-2, 120-121 63,CC 64,CC 64,CC 66,CC 66,CC 66,CC 67,CC 68,CC 69,CC 70,CC 71,CC 72,CC 73,CC 74,CC	A A A A A A A A A A A A A A A A A A A	M FFFFFFFCFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R R	R	FFFF FFFFF FFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R	RRRR	F R RFR RRR RR R R F F F R R R R R R R R	F RFFFFF FFFF R	F	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	5	FFF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R	FCCCCCCCCCFFFFF	FRF RRFFFRRFFFRRFFFR	A A A A A A A A A A A A A A A A A A A	RR R FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	R R	R		F F F F		FFF FFFFFFFFF FFFF	WPN26t		С№Ь	upper NN11	late Miocene

Note: Abundance: A = abundant; C = common; F = few; R = rare; B = barren; lower case letter = reworked older fossils. Preservation: G = good; M = moderate; P = poor.

Table 5. Frequency estimate designations.

Abundance of specimens	Logarithm	Designation	Letter designation
10-100 specimens per field of view	+1	Abundant	А
1-10 specimens per field of view	0	Common	С
Single specimen in 1-10 fields of view	-1	Few	F
Single specimen in 10-100 fields of view	-2	Rare	R

Table 6. Geologic age and nannoplankton zone assignment of cores.

Series		Zone	Zone or	Zone or			DSDP Holes	1					
or subseries		(Martini, 1971)	(Okada and Bukry 1980)	(Ellis,	530	530A	530B	531	531A	532/532B			
Ink	Cene	NN21	CN15	WDNI22	1.00	an Antin	1-1 to 2.1	1.00	1-1	1.2			
	o	NN20	CN14b	WPN31h	1,00	1	2-2 10 7-1	1,00		1-3 to 5-3			
cene	lat		CN14a	WPN31a	1		7.CC to 13.CC			5.CC to 11.CC			
isto	ly.	NN19	CN13b	WPN30b	1	Washed	14.CC to 18.CC			12.CC to 15.CC			
ĕ	ear		CN13a	WPN30a	Washed		19.CC to 28.CC			16,CC to 17,CC			
		NN18	CN12d	WPN29d	1220000					10.1			
	2	NN17	CN12c	WPN29c			Missing			18-1 to 18-3			
	la		CN12b	WPN29b	1		wiissing			18,CC to 22-3			
2		NN16	CN12a	WPN29a						22,CC to 36-2			
ocer						unes traisi	20 CC 10 40 CC			36,CC			
H		NN15	CN11b	WPN28b	2-2 to 2,CC	1-1 to 4-4	30,CC 10 40,CC						
- 1			CNIIa	WPN28a		4-5 10 4,CC	41,00 10 44,00						
	urly	NN14	CN10c	WPN27c		5 CC to 7-4				37,CC to 60-3			
	2	NN13		With the the		5,00 10 7 7	Missing			2241470hii			
		NN12	CN10b	WPN27b		7-6 to 8-6			1 · · · ·				
			CN10a	WPN27a									
- 1		NNU	CN9b	WPN26b		8,CC to 13,CC	45,CC to 48,CC			60,CC to B74,CC			
	e	inon	CN9a	WPN26a		14,CC to 15-5			2				
	la	NN10	CN8b	WPN25b	1		1						
		intro	CN8a	WPN25a									
		NN9	CN7b	WPN24b		15-6 to 18-4							
	22		CN7a	WPN24a		1.01.01.001641135							
cene	Idle	NN8	CN6	WPN23	1								
Mio	P NN	NN7	CN5b	WPN22b	1	20-4							
		NN6	CN5a	WPN22a	1	21-5 10 24-2				1			
		NN5	CN4	WPN21	1	21.010.21.2							
		NN4	CN3	WDMD	1		1						
	Ň	NN3	CN2	WPN20	-				1				
	ear	NN2	CN1c	WDN19	1	Barren							
				WFINIOC		100100.0000			1				
-		NN1	CN1b	WPN18b									
			CN1a	WPN18a	-		-						
	e	NP25	CP19b	WPN17b		31-2 to 34-6							
	e	NP24	CP19a	WPN17a		35-1 to 37-1							
cene					1		1						
igo		NP23	CP18	WPN16		1-22000			1				
ō			CP17	WPN15		37-1 to 37-2							
	rly	NP22	CP16c	WPN14c					1				
	ca		CP16b	WPN14b									
		NP21	CP16a	WPN14a		37-2							
							-		1	1			
	2	NP20	CP15b	WPN13b		37-2			1				
	la	NP19	CDIE	WPN11-	-	N1056	-						
	-	NP18	CP15a	WPN13a	-	Missing							
		NP17	CP140	WPN129	-	37-2	1						
	Idle	INP 10	CP14a	1	1								
ene	mic	NPIS	CP13c	1 1		37-3 10 37 00							
Eoc		14713	CP130	1 1		31-3 10 31,CC							
			CP12b	-			1						
		NP14	CP12a			38-1 to 38-2							
		NP13	CP11			38-2 to 39-1	1		1				
	arly	NP12	CP10	1		39-2 to 40-1	1						
	0	NPII	CP9b			57 4 10 40-3	1						
		NP10	CP9a	ishe		40-4 10 41-1			1				
-	-			Iduc			-						
		NP9	CP8b	Cur		41-1 to 42-2							
			CP8a			Kardeliki -	1		1	1			
	late	NP8	CP7	1		42-2 to 43.CC	1						
ane		NP7	CP6	1		44-1]		1	1			
coce		NP6	CP5	1		44-2 to 46,CC	1			1			
Pal		NP5	CP4	1		47-1]						
	12	NP4	CP3	1		Missing	1		1				
	arly	NP3	CP2	1			1						
	9	NP2	CP1b	1		47-1 to 50-1	30-1						
		NP1	CP1a	1		50-1 to 50-2	1		1				

NOTE ON THE PLATES

The following abbreviations are used in the captions to the plates: NL = normal light; (Al) = aluminum-shadowed; (Au) = gold-shadowed; (RP) = Reverse print; PHC = phase contrast; XN = crossed nicols; SEM = scanning electron microscope (Elmi-Lab of the Geological Survey of Austria); and SEM* = scanning electron microscope (Electron Microscopy Facility of the University of South Florida).

Plate 1. 1. Gephyrocapsa oceanica, Sample 530B-4,CC, SEM*; 2. G. caribbeanica, Sample 531A-1-1, 0-2 cm, SEM; 3. G. caribbeanica, Sample 532-5,CC, SEM*; 4. G. caribbeanica coccosphere, Sample 530B-4,CC, SEM*.

Plate 2. 1. Crenalithus productellus, distal view, Sample 532-44, CC, SEM; 2. C. productellus, proximal view, Sample 532-55, CC, SEM; 3. C. doronicoides, distal view, Sample 530B-29, CC, SEM; 4. C. doronicoides, coccosphere, Sample 530A-12-3-72/74 cm, SEM*.

Plate 3. 1. Coccolithus carteri, Sample 531A-1-1, 0-2 cm, NL (Al, RP); 2. C. pelagicus, Sample 531A-1-1, 0-2 cm, NL (Al, RP); 3. C. carteri, Sample 531A-1-1, 0-2 cm, NL (Al, RP); 4. C. pelagicus, Sample 530A-35-1, 30-31 cm, PHC; 5. C. carteri coccosphere, Sample 530B-38, CC, SEM*; 6. C. carteri, distal view, Sample 530B-4, CC, SEM*; 7. C. carteri, proximal view, Sample 530B-4, CC, SEM*.

Plate 4. 1. Calcidiscus leptoporus, distal view, Sample 530B-39,CC, SEM*; 2. C. leptoporus, side view of proximal face, Sample 531A-1-1, 0-2 cm, SEM; 3. C. macintyrei, side view of proximal face, Sample 532-55,CC, SEM; 4. C. macintyrei, detail of center of proximal side of distal plate, Sample 532-5,CC, SEM*.

Plate 5. Calcidiscus macintyrei. 1. Distal view, Sample 532-36,CC, SEM; 2. Proximal view, Sample 530B-39,CC, SEM*; 3. Distal side of proximal plate, Sample 532-33,CC, SEM; 4. Side view, Sample 532-46,CC.

Plate 6. 1. Syracosphaera pulchra, Sample 531-1,CC, XN; 2. Syracosphaera cf. S. pulchra, Sample 531-1,CC, PHC; 3. Gephyrocapsa caribbeanica, Sample 531-1,CC, XN; 4. Pontosphaera syracusana, Sample 530A-1-1, 0-2 cm, XN; 5. Emiliania huxleyi, distal view, Sample 531A-1-1, 0-2 cm, SEM; 6. Crenalithus doronicoides, distal view, Sample 532-36,CC, SEM; 7. Syracosphaera pulchra, distal view, Sample 531A-1-1, 0-2 cm, SEM.

Plate 7. 1. Pontosphaera alboranensis, proximal view, Sample 531A-1-1, 0-2 cm, SEM; 2. Pontosphaera cf. P. multipora, proximal view, Sample 530B-29,CC, SEM*; 3. P. alboranensis, detail of Figure 1, SEM; 4. Rhabdosphaera sicca, side view, Sample 532-46,CC, SEM (inset, NL).

Plate 8. Rhabdosphaera clavigera. 1. Side view, Sample 530B-39,CC, SEM*; 2. Side view, Sample 531A-1-1, 0-2 cm, SEM. 3. Oblique proximal view, Sample 531A-1-1, 0-2 cm, SEM; 4. Proximal view of basal plate, Sample 531A-1-1, 0-2 cm, SEM; 5. Distal view, Sample 531A-1-1, 0-2 cm, SEM.

Plate 9. Helicosphaera carteri. 1. Proximal view, Sample 531A-1-1, 0-2 cm, SEM; 2. Distal view, Sample 530B-29,CC, SEM*; 3. Proximal view, Sample 532-55,CC, SEM; 4. Proximal view, Sample 530B-29,CC, SEM*.

Plate 10. 1. Amaurolithus delicatus, Sample 532-55, CC, NL.; 2. Calcidiscus macintyrei, Sample 532-33, CC, PHC; 3. A. delicatus, Sample 532-55, CC, NL (Al); 4. C. macintyrei, Sample 532-33, CC, NL (Al, RP); 5-7. Helicosphaera sellii, distal view, etched, Sample 532-55, CC, SEM.

Plate 11. 1. Amaurolithus delicatus, Sample 532-46, CC, SEM; 2. A. tricorniculatus, Sample 532-55, CC, SEM; 3. A. tricorniculatus, Sample 532-46, CC, SEM; 4. A. cf. A. tricorniculatus, Sample 532-55, CC, SEM.

Plate 12. Discoaster brouweri. 1. Distal view, Sample 532-36, CC, SEM; 2-3. Proximal view, Sample 532-55, CC, SEM; 4. Oblique proximal view, Sample 532-55, CC, SEM.

Plate 13. Discoaster tamalis. 1. Proximal view, Sample 530B-38,CC, SEM*; 2. Proximal view, Sample 532-36,CC, SEM; 3. Proximal view, Sample 532-5,CC, SEM*; 4. Distal view, Sample 530B-38,CC, SEM*.

Plate 14. 1. Discoaster cf. D. pentaradiatus, distal view, Sample 530B-29,CC, SEM*; 2. Discoaster cf. D. pentaradiatus, proximal view, Sample 532-5,CC, SEM*; 3. D. intercalcaris, distal view, Sample 530B-38,CC, SEM*; 4. D. intercalcaris, distal view, Sample 532-55,CC, SEM.

Plate 15. 1. Discoaster asymmetricus, Sample 532-33, CC, NL; 2-4. D. asymmetricus, Sample 532-33, CC, NL (Al); 5. D. pentaradiatus, distal view, Sample 532-33, CC, SEM; 6. Discoaster asymmetricus, proximal view, Sample 530B-38, CC, SEM*; 7. Discoaster cf. D. asymmetricus, proximal view, Sample 530B-38, CC, SEM*;

Plate 16. Proximal view, Discoaster surculus. 1. Sample 532-46, CC, SEM; 2. Distal view, Sample 532-55, CC, SEM; 3-4. Proximal view, Sample 532-55, CC, SEM.

Plate 17. 1. Discoaster exilis, Sample 532-46,CC, SEM. 2. D. challengeri, Sample 532-55,CC, SEM; 3. D. icarus, Sample 532-46,CC, SEM; 4. D. deflandrei, heavily calcified, Sample 530A-37-1, 96-97 cm, SEM.

Plate 18. 1. Discoaster toralus, Sample 530A-12-3, 72-73 cm, SEM*; 2. D. toralus, Sample 532-33, CC, SEM; 3. D. kugleri, Sample 530B-39, CC, SEM*; 4. D. berggrenii, Sample 530A-12-3, 72-73 cm, SEM*.

5 µm

5 µm 5 µm 5 µm 7 8 9 5 µm 5 µm

Plate 19. Sample 532-55, CC. 1-2. Discoaster brouweri, NL; 3-7. D. surculus, NL; 8. Discoaster variabilis, NL; 9. D. loeblichii, CC, NL.

4

5 µm

5 µm

Plate 20. 1-2. Discoaster cf. D. surculus, NL; 3. D. exilis, PHC; 4. D. variabilis, NL; 5. D. variabilis, PHC; Sample 532-55, CC. 6. D. variabilis, NL (Al); 7-8. D. pansus, NL (Al); 9. D. pansus, NL. Sample 532-33, CC.

Plate 21. 1. Discoaster brouweri, Sample 530A-15-5, 77-78 cm, NL; 2. D. brouweri, Sample 530A-15-5, 77-78 cm, PHC; 3. Braarudosphaera bigelowi, corrosion etching, detail of Plate 25, Figure 2, Sample 530A-37-1, 96-97 cm, SEM; 4. Discoaster sp., heavily calcified, Sample 532-55, CC, SEM.

Plate 22. 1. Discoaster pseudovariabilis, Sample 530A-15-6, 77-78 cm, NL, high focus; 2. D. pseudovariabilis, Sample 530A-15-6, 77-78 cm, NL, low focus; 3. D. decorus, Sample 530A-12-3, 72-73 cm, NL; 4. D. icarus, Sample 530A-15-6, 77-78 cm, NL.

9

5 µm

5 µm

5 µm

 Plate 23. 1. Discoaster variabilis, Sample 530A-20-4, 70-71 cm, NL; 2-3. D. musicus, Sample 530A-20-4, 70-71 cm, NL; 4-5. Catinaster coalitus, Sample 530A-18-3, 73-74 cm, NL; 6. D. kugleri, Sample 530A-15-6, 77-78 cm, NL; 7. D. kugleri, Sample 530A-15-6, 77-78 cm, PHC; 8. D. bollii, Sample 530A-20-4, 70-71 cm, NL; 9. D. exilis, Sample 530A-20-4, 70-71 cm, NL; 10. D. icarus, Sample 530A-15-6, 77-78 cm, NL.

Plate 24. *Calcidiscus aequiscutum.* 1. Sample 530A-24-2, 28-29 cm, NL; 2. Sample 530A-24-2, 28-29 cm, XN; 3-4. Sample 532-36,CC, SEM; 5. Sample 532-55,CC, SEM; 6. Sample 532-36,CC, side view, SEM.

Plate 25. Sample 530A-37-1, 96-97 cm. 1. Braarudosphaera bigelowi and Discoaster tanii nodifer, NL; 2-3. B. bigelowi, distal view, SEM; 4. B. bigelowi, proximal view, SEM.

Plate 26. Reticulofenestra pseudoumbilica. 1. Coccosphere, Sample 532-55, CC, SEM; 2. Distal view, Sample 530B-29, CC, SEM*; 3. Side view, Sample 532-55, CC, SEM; 4. Fractured cross section, Sample 532-55, CC, SEM.

Plate 27. Reticulofenestra pseudoumbilica. 1. Distal view of proximal plate, Sample 532-36,CC, SEM; 2. Proximal view, Sample 532-55,CC, SEM; 3. Proximal view, Sample 532-46,CC, SEM; 4. Oblique proximal view, Sample 532-46,CC, SEM.

Plate 28. 1. Cyclicargolithus floridanus, Sample 530A-49-1, 23-24 cm, PHC; 2. C. floridanus, Sample 530A-35-1, 30-31 cm, XN; 3. C. abisectus, Sample 530A-35-1, 30-31 cm, XN; 4, 5. C. orangensis, Sample 530A-35-1, 30-31 cm, XN; 6. Reticulofenestra gartneri, Sample 530A-35-1, 30-31 cm, PHC; 7. Coccolithus orangensis, Sample 530A-35-1, 30-31 cm, PHC; 8. R. gartneri, Sample 530A-35-1, 30-31 cm, XN; 9. R. bisecta, distal view, Sample 530A-37-1, 96-97 cm, SEM; 10. R. bisecta, proximal view, Sample 530A-37-1, 96-97 cm, SEM.

Plate 29. Chiasmolithus altus, Sample 530A-37-1, 96-97 cm, SEM. 1-2. Distal view. 3. Proximal view. 4. Oblique proximal view.

Plate 30. Sample 530A-37-1, 96-97 cm. 1. Discoaster saipanensis, SEM; 2. D. barbadiensis, SEM; 3. D. tanii, SEM; 4. D. trinus, heavily calcified, SEM.

Plate 31. Sample 530A-39-2, 21-22 cm. 1. Tribrachiatus orthostylus, SEM; 2. Discoaster lodoensis, SEM; 3. Discoasteroides kuepperi, proximal view, heavily calcified, SEM; 4. D. kuepperi, distal view, heavily calcified, SEM.

Plate 32. Sample 530A-43-2, 20-21 cm. 1-2. Discoaster binodosus, SEM; 3. Chiasmolithus consuetus, NL; 4. C. consuetus, distal view, SEM.

5 µm

5 µm 7 5 µm

5 µm 9 5 µm

Plate 33. Sample 530A-43-2, 20-21 cm. 1. Discoaster sp., NL; 2-4. D. binodosus, NL; 5. D. binodosus, NL (Au); 6. Chiasmolithus con-suetus, NL (Au). 7. C. consuetus, XN; 8. C. consuetus, NL, 9. C. consuetus, XN.

4

Plate 34. 1. Ellipsolithus macellus, Sample 530A-43-2, 20-21 cm, NL (Au); 2-3. E. macellus, Sample 530A-43-2, 20-21 cm, XN; 4. E. macellus, Sample 530A-43-2, 20-21 cm, NL (Au); 5. Heliolithus kleinpellii, Sample 530A-45-1, 57-58 cm, XN; 6. E. macellus, Sample 530A-43-2, 20-21 cm, XN; 7. Discoaster lenticularis, Sample 530A-41-1, 33-34 cm, NL; 8. D. lenticularis, Sample 530A-41-1, 33-34 cm, PHC; 9. D. multiradiatus, Sample 530A-41-1, 33-34 cm, NL.

Plate 35. 1. Discoaster salisburgensis, Sample 530A-41,CC, SEM; 2. D. multiradiatus, Sample 530A-39-2, 21-22 cm, SEM; 3-4. D. multiradiatus, Sample 530A-41,CC, SEM.

Plate 36. 1. Discoaster deflandrei, Sample 530A-35-1, 30-31 cm, PHC; 2. D. distinctus, Sample 530A-43-2, 20-21 cm, NL; 3. Nannotetrina swasticoides, Sample 530A-38-1, 39-40 cm, NL; 4. Discoaster sp., Sample 530A-43-2, 20-21 cm, NL (Au); 5-7. D. salisburgensis, Sample 530A-43-2, 20-21 cm, NL (Au); 8. D. splendidus, Sample 530A-43-1, 15-16 cm, XN; 9. D splendidus, Sample 530A-43-1, 15-16 cm, NL.

Plate 37. 1-3. Discoaster salisburgensis, Sample 530A-43-2, 20-21 cm, SEM; 4. D. salisburgensis, side view, Sample 530A-43-2, 20-21 cm, SEM.

Plate 38. 1-6. Discoaster okadai, Sample 530A-43-2, 20-21 cm, NL (Au).

Plate 39. 1-4. Discoaster okadai, Sample 530A-43-2, 20-21 cm, SEM.

Plate 40. 1-3. Discoaster okadai, Sample 530A-43-2, 20-21 cm, SEM; 4. D. mediosus, Sample 530A-43-2, 20-21 cm, SEM.

Plate 41. 1. Sphenolithus abies, Sample 532-55, CC, PHC; 2. S. abies, Sample 532-55, CC, XN; 3. S. distentus, Sample 530A-37-2, 1-2 cm, XN; 4. S. distentus, Sample 530A-37-1, 80-81 cm, XN; 5. S. radians, Sample 530A-43, CC, NL; 6. S. radians, Sample 530A-43, CC, XN; 7-8. Fasciculithus involutus, Sample 530A-43-2, 20-21 cm, NL (Au); 9. S. abies, Sample 532-55, CC, SEM; 10. S. abies, Sample 532-46, CC, SEM.

Plate 42. Sample 530A-43-2, 20-21 cm. 1. Coccolithus crassus, NL (Au); 2. C. crassus, XN; 3. Cyclolithella robusta, NL (Au); 4. C. robusta, XN; 5. C. robusta, SEM; 6. C. robusta, SEM; 7. Calcidiscus formosus, proximal view, SEM.

Plate 43. 1. Cyclolithella robusta, Sample 530A-43-2, 20-21 cm, NL (Au); 2. C. robusta, Sample 530A-43-2, 20-21 cm, PHC;3. C. robusta, Sample 530A-43-2, 20-21 cm, XN;
4. Toweius eminens, Sample 530A-43-2, 20-21 cm, NL (Au);
5. Toweius cf. T. craticulus, proximal view, Sample 530A-43-2, 20-21 cm, SEM;
6. Ericsonia cava, proximal view, Sample 530A-37-1, 96-97 cm, SEM;
7. Cyclolithella prionion, Sample 530A-37-1, 96-97 cm, SEM;

Plate 44. Sample 530A-43-2, 20-21 cm. 1. Ericsonia cava, distal view, SEM; 2. E. cava, proximal view, SEM; 3. Toweius eminens, distal view, SEM; 4. T. eminens, proximal view, SEM.

4 5 $5 \mu m$ $5\,\mu m$ 5 µm 9 8 7 5 µm 5 μm 5 µm

Plate 45. 1-2. Heliolithus cantabriae, Sample 530A-43,CC, NL; 3. Chiasmolithus danicus, Sample 530A-47-1, 142-143 cm, PHC; 4. Biscutum cf. B. castrorum, Sample 530A-49-1, 73-74 cm, NL; 5. Biscutum cf. B. castrorum, Sample 530A-49-1, 73-74 cm, PHC; 6. Markalius astroporus, Sample 530A-50-1, 6-7 cm, PHC; 7-8. Thoracosphaera operculata, Sample 530A-50-2, 13-14 cm, XN; 9. Thoracosphaera saxea, Sample 530A-50-2, 13-14 cm, XN.

Plate 46. Sample 530A-43-2, 20-21 cm. 1. Ellipsolithus macellus, partly polarized (Au); 2. E. macellus, SEM; 3. E. macellus, SEM; 4. E. distichus, SEM.

Plate 47. 1. Cruciplacolithus primus, Sample 530A-50-1, 6-7 cm, PHC; 2. C. primus, Sample 530A-50-1, 6-7 cm, XN; 3. C. tenuis, Sample 530A-47-1, 142-143 cm, PHC; 4. C. tenuis, Sample 530A-43-2, 20-21 cm, NL (Au); 5. C. edwardsii, distal view, Sample 530A-50-1, 6-7 cm, SEM; 6-7. Biscutum sp., Sample 530A-50-1, 6-7 cm, SEM.

Plate 48. 1-2. Zygodiscus sigmoides, Sample 530A-50-1, 6-7 cm, PHC; 3. Z. sigmoides, Sample 530A-48-2, 43-44 cm, XN; 4. Neochiastozygus junctus, Sample 530A-50-2, 13-14 cm, NL; 5-7. Zygodiscus sigmoides, Sample 530A-50-1, 6-7 cm, SEM.

Plate 49. 1. Zygodiscus sp., distal view, etched specimen, Sample 530A-43-2, 20-21 cm, SEM; 2. Zygodiscus sp., side view, etched specimen, Sample 530A-43-2, 20-21 cm, SEM; 3. Neococcolithites protenus, distal view, Sample 530A-43-2, 20-21 cm, SEM; 4. Zygodiscus cf. Z. spiralis, proximal view, Sample 530A-50-2, 13-14 cm, ? reworked, SEM.

Plate 50. 1-4. Markalius astroporus, Sample 530A-50-1, 6-7 cm, SEM. (1) distal view; (2) distal view; (3) central detail, distal view; (4) distal view.

Plate 51. 1. Markalius astroporus, Sample 530A-50-1, 6-7 cm, NL; 2. M. astroporus, Sample 530A-47-1, 142-143 cm, XN; 3-4. Cyclagelosphaera reinhardtii, Sample 530A-50-1, 6-7 cm, XN; 5-6. Markalius astroporus, proximal view, Sample 530A-50-1, 6-7 cm, SEM; 7. M. astroporus, oblique proximal view, Sample 530A-50-1, 6-7 cm, SEM.

4

7

5 µm

5 µm

6

9

5

5 µm

5 µm

5 µm

5 µm

Plate 52. 1. Biantholithus astralis nov. spec., Sample 530A-50-2, 13-14 cm, NL; 2-3. B. sparus, Sample 530A-50-2, 13-14 cm, NL; 4. B. astra-lis nov. spec., Sample 530A-50-2, 13-14 cm, NL; 5-9. B. sparsus, (5) Sample 530A-50-1, 6-7 cm, XN, (6) Sample 530A-50-1, 6-7 cm, NL, (7) Sample 530A-50-2, 13-14 cm, PHC, (8) Sample 530A-50-2, 13-14 cm, XN, (9) Sample 530A-50-2, 13-14 cm, PHC.

Plate 53. Sample 530A-50-1, 6-7 cm. 1. Biantholithus astralis nov. spec., holotype, SEM; 2. B. astralis nov. spec., SEM; 3-4. B. sparus, SEM.

Plate 54. Thoracosphaera cf. T. operculata. 1. Complete cyst, Sample 530A-50-2, 13-14 cm, XN; 2. Complete cyst, Sample 530A-50-1, 6-7 cm, SEM; 3. Closeup detail of outer wall surface of specimen shown in Figure 2; 4. Closeup detail of outer wall surface of specimen shown in Figure 2.