10. SITE 543: OCEANIC REFERENCE SITE EAST OF THE BARBADOS RIDGE COMPLEX¹

Shipboard Scientific Party^{2,3}

HOLE 543

Date occupied: 28 February 1981

Date departed: 3 March 1981

Time on hole: 3 days, 14 hr.

Position: 15°42.74'; 58°39.22'

Water depth (sea level; corrected m, echo-sounding): 5633

Water depth (rig floor; corrected m, echo-sounding): 5643

Bottom felt (m, drill pipe): 5637.0

Penetration (m): 332

Number of cores: 34

Total length of core section (m): 324.0

Total core recovered (m): 228.4

Core recovery (%): 79.5

Oldest sediment cored: Depth sub-bottom (m): 332 Nature: Claystone Age: early Eocene Measured velocity (km/s): 2.453 (543-34,CC—hard claystone)

Basement: Not reached

HOLE 543A

Date occupied: 3 March 1981

Date departed: 9 March 1981

Time on hole: 6 days, 1 hr.

Position: 15°42.74'; 58°39.22'

Water depth (sea level; corrected m, echo-sounding): 5633.0 Water depth (rig floor; corrected m, echo-sounding): 5643.0 Bottom felt (m, drill pipe): 5637.0

Penetration (m): 455.0

Number of cores: 16

Total length of core section (m): 142.5

Total core recovered (m): 69.4

Core recovery (%): 48.7

Oldest sediment cored: Depth sub-bottom (m): 409 Nature: Ferruginous, calcareous claystone Age: Campanian-Maestrichtian Measured velocity (km/s): 1.671 (543A-10-1, 28-32 cm)

Basement:

Depth sub-bottom (m): 411.0 (top); 455 (bottom of hole) Nature: Basalt Velocity range (km/s): 4.910 to 5.621

Principal results: At Site 543 we penetrated a 411-m sequence of hemipelagic and pelagic sediments and 44 m of basaltic pillow lavas. The Recent sediments consist of ashy mud to a depth of 10 m. The subjacent sediments to 70.5 m are Pleistocene to upper Pliocene ashy nannofossil mud, transitional to a unit of lower Pliocene to lower Miocene mud and ashy mud that extends to 176 m sub-bottom. Radiolarian clay, initially with local ash layers, and subsequently with manganese stains, occurs from 176 to 322 m sub-bottom spanning the lower Miocene to Oligocene, respectively. Zeolitic clay-claystone is present from 322 to 379 m sub-bottom and overlies a basal calcareous, ferruginous, Maestrichtian to Campanian claystone that contacts basalt at 411 m. Plagioclase and plagioclase-olivine phyric pillow basalts extend to a total sub-bottom depth of 455 m.

Overall, the lithology at Site 543 records the birth and evolution of an open-ocean crustal sequence with its progressive approach to the Lesser Antilles volcanic arc. The upper 200 m of early Miocene and younger rocks are lithologically and paleontologically identical to the sequences cored at Sites 541 and 542, arguing for the oceanic derivation and hence offscraping of the latter at the deformation front of the Barbados Ridge complex. A marked increase in density and shear strength between about 180 and 200 m sub-bottom lies just under the seaward extension of a reflector separating the apparently offscraped and subducted units to the west. The observed changes in physical properties seemingly predict development of a décollement at 180 to 200 m sub-bottom as inferred from seismic data.

A downhole seismometer with temperature and tilt recorders was emplaced in the basaltic basement at Site 543. The instrument remained in the hole while a seismic refraction experiment was conducted. Malfunctioning of the seismometer necessitated retrieval of the downhole instrument and prevented deployment of the long-term recording package on the seafloor.

BACKGROUND AND OBJECTIVES

Site 543 lies on seismic line A1C about 22 km northnortheast of Sites 541 and 542 and 3.5 km seaward of the deformation front of the Barbados Ridge complex (Fig. 1-3). The substantial northward offset of Site 543 relative to Sites 541 and 542 was required in order to minimize the sediment penetration and therefore ensure reaching the ocean crust. Site 543 is on the northern

 ¹ Biju-Duval, B., Moore, J. C., et al., *Init. Repts DSDP*, 78A: Washington (U.S. Govt. Printing Office).
 ² Bernard Biju-Duval (Co-Chief Scientist), Institut Français du Pétrole, 92505 Rueil

²⁴ Bernard Biju-Duval (Co-Chief Scientist), Institut Français du Pétrole, 92505 Rueil Malmaison, France (present address: Centre National pour l'Exploitation des Océans, 66 Avenue d'Iéna, 75116 Paris, France); J. Casey Moore (Co-Chief Scientist), Earth Sciences and Marine Studies, University of California at Santa Cruz, Santa Cruz, California; James A. Bergen, Department of Geology, Florida State University, Tallahasee, Florida; Grant Blackinton, Hawaii Institute of Geophysics, University of Hawaii at Manoa, Honolulu, Hawaii; George E. Claypool, Branch of Oil and Gas Resources, U.S. Geological Survey, Denver Federal Station, Denver, Colorado; Glenn Foss, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Rodolfo T. Guerra, Exploration Services Center, Mobil Exploration and Producing Services, Dallas, Texas; Christoph H. J. Hemleben, Institut und Museum für Geologie und Paläontologie, Universitä Tübingen, D-7400 Tübingen 10, Federal Republic of Germany; Michael S. Marlow, U.S. Geological Survey, Menlo Park, California; James H. Natland, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California; Carol J. Pudsey, Department of Geology, University of Leicester, Leicester, United Kingdom; G. W. Renz, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California (present address: 5260 Angeles Crest, La Canada, California); Marc Tardy, Départment de Sciences de la Terre, University de Savoie, BP 1104, Chambéry, France; Douglas Wilson, Hawaii Institute of Geophysics, University of Leicestr, Jeanoa, Honoluu, Hawaii (present address: Department of Geophysics, University of California; California); Audrey Wright, Earth Sciences and Marine Studies, University of California at Santa Cruz, Santa Cruz, California (present address: Deep Sea Drilling Project, Scripps Institution of Oceanography. La Jolla, California); Marce

of Oceanography, La Jolla, California). ³ With a contribution from Daniel Davis, Department of Earth and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Figure 1. Regional location map. (Note position of deformation front defining eastward boundary of Barbados Ridge and Tiburon Rise underthrusting deformation front near Site 543. Contour intervals are in kilometers.)

flank of the Tiburon Rise and therefore penetrated a depositional sequence similar to that lying on the ocean plate seaward of Sites 541 and 542. Moreover, the principal acoustic reflectors noted at Sites 541 and 542 can be traced to Site 543 via the site survey seismic grid. Thus the demonstrable continuity in acoustic stratigraphy throughout the Leg 78A area permits Site 543 to be used as an oceanic reference site for Sites 541 and 542, despite their lateral offsets.

Both the Tiburon and Barracuda rises constitute prominent highs emerging from the Atlantic abyssal plain and presently intersecting the deformation front of the Barbados Ridge complex (Fig. 1). The sediment thickness near Site 543 is about 400 to 500 m and locally reaches at least 1100 m on the ocean plate in the Leg 78A area (Ngokwey et al., this volume). To the south on the Atlantic abyssal plain, sediments gradually attain a thickness of more than 4 km, suggesting derivation and lateral transport from the south (Biju-Duval et al., 1978; Mascle et al., in press). The damming effects of the Tiburon and Barracuda rises also contribute to the northward thinning of sediment on the Atlantic abyssal plain.

The principal goal of Site 543 was definition of an oceanic reference section that would allow multiple comparisons to the sequences cored landward of the deformation front at Sites 541 and 542. Specific objectives of drilling at Site 543 were: (1) to test by lithologic and paleontologic criteria whether the sections cored at Sites 541 and 542 are of ocean-plate origin and thereby offscraped from the Tiburon Rise area; (2) to provide a physical-property profile through the undisturbed oceanplate section and thereby a basis for measuring the tectonic consolidation of any offscraped rocks of similar lithology; (3) to date and establish physical and lithologic contrasts across the seaward projection of the reflector separating the apparently off-scraped and underthrust sequences landward of the deformation front (here we hoped to determine the physical basis for their apparent

Figure 2. Detailed site location map (box, Fig. 1). (Note position of deformation front and location of seismic reflection lines used for site survey. Bathymetry is in meters. Lines A1A to A1D from IFP/CNEXO survey [from Ngokwey et al., this volume].)

Figure 3. Seismic reflection line A1C. (From Ngokwey et al., this volume.) Reflector 1 is equivalent to the boundary between a discontinuously reflective (deformed) unit and an acoustically layered unit at Sites 541 and 542. Reflector 2 separates seismic units of tabular (above) and irregular (below) thicknesses. Reflector 3 is top of oceanic crust.

décollement surface); (4) to sample the section underthrust deeply beneath the Barbados Ridge complex (because we failed to penetrate this underthrust sequence at either Site 541 or Site 542, sampling it at Site 543 was crucial); and (5) to date the ocean crust and emplace a downhole seismometer in the basement.

OPERATIONS

Hole 543

Site 543 is located about 12 mi. north-northeast of Site 542 and seaward of the toe of the trench slope. Its primary purpose was to provide an undisturbed reference section for comparison with the disturbed and accreted sediments cored on the slope. The inability to penetrate to basement at Sites 541 and 542 dictated that Site 543 would also be the location for the downhole seismometer implantation.

The move and site approach consumed only 2 hr., and a positioning beacon was launched at 0450 hr., 28 February. The seismic gear was retrieved and on-site stationing began while the beacon was still falling. The beacon signal, which had never been strong, faded completely after 1 hr., and a second beacon (of alternate frequency) was dropped to replace it.

The pipe trip was extended by about 4.25 hr. to assemble a new bottom-hole assembly (BHA) to replace the one lost in Hole 542B. Several satellite navigation fixes were received during the trip, and a positioning offset of 910 m to the south was made to move the vessel onto seismic profile.

Using the corrected precision depth recorder (PDR) reading of 5653 m as a guide, an initial seafloor punch core was taken by lowering the bit to 5655.5 m. Signs of "taking weight" were first noted on the rig weight indicator at about 5649 m. On recovery the inner core barrel was filled to its top, which had penetrated to 5646 m. Water depth was therefore estimated at 5645 m. Continuous coring then continued to 324 m sub-bottom without significant difficulty. Coring and recovery data are given in Table 1.

As Core 34 was being recovered, the inner barrel suddenly became jammed in the drill pipe about 1500 m above the bit. The overshot shear pin failed during attempts to free the inner barrel and the sand line was retrieved. A second inner barrel was pumped down to jar the first barrel loose, but without success. A second wireline recovery attempt also failed to move the stuck core barrel. It was then necessary to pull about 4200 m of drill pipe to recover the core. The barrel was found to be jammed in place by a steel ball that had fallen down the pipe from the latch of the adjustable line wiper.

Hole 543A

With the drill string cleared of obstructions, it was tripped back to the seafloor. A second attempt to recover a "mud-line" punch core and to verify water depth was then made by lowering the bit to 5647 m. On recovery, sediment was again found packed to the top of the barrel, and water depth was revised to 5637 m. Again, coring and recovery data are presented in Table 1.

The hole was drilled, without coring, to 332 meters sub-bottom. Considerable hole problems occurred below about 260 m. Torquing and vertical sticking of the pipe, along with annular plugging, nearly forced us to abandon the hole at one point. The problems were attributed to adherence of sticky clay to the drill collars. Fortunately firmer sediments were reached near the end of the drilled interval and an improvement in hole conditions was noted after "working" the pipe and circulating mud slugs. The "wash" core barrel was recovered, and continuous coring commenced. Core recovery for the lower sediment section was consistently below normal for unknown reasons. Basaltic basement was reached

Table 1. Coring summary, Site 543.

Core	Date	1245	Depth from drill floor (m)	Depth below seafloor (m)	Length cored	Length	Amount
no.	(1981)	Time	top bottom	top bottom	(m)	(m)	(%)
Hole 5	43						
1	Feb. 28	2150	5635.0-5645.5	0-10.5	10.5	9.12	90
2	Feb. 28	2342	5645.5-5655.0	10.5-20.0	9.5	7.86	83
3	Mar. 1	0148	5655.0-5664.5	20.0-29.5	9.5	9.73	102
4	Mar. 1	0334	5664.5-5674.0	29.5-39.0	9.5	9.71	102
5	Mar. 1	0524	5674.0-5683.5	39.0-48.5	9.5	6.51	69
6	Mar. 1	0706	5683.5-5693.0	48.5-58.0	9.5	9.49	100
2	Mar. 1	0850	5693.0-5702.5	58.0-67.5	9.5	5.20	33
0	Mar. 1	1041	5702.3-5712.0	77 0 96 5	9.5	7.43	101
10	Mar. 1	1410	5721 5 5721 0	86 5 06 0	9.5	9.00	70
11	Mar 1	1600	5731 0-5740 5	96 0-105 5	9.5	4 47	47
12	Mar. 1	1741	5740 5-5750 0	105 5-115 0	95	9.78	103
13	Mar. 1	1925	5750.0-5759.5	115.0-124.5	9.5	9.72	102
14	Mar. 1	2120	5759.5-5769.0	124.5-134.0	9.5	8.12	85
15	Mar. 1	2307	5769.0-5778.5	134.0-143.5	9.5	3.59	39
16	Mar. 2	0109	5778.5-5788.0	143.5-153.0	9.5	6.83	61
17	Mar. 2	0258	5788.5-5797.5	153.0-162.5	9.5	6.81	72
18	Mar. 2	0448	5797.5-5807.0	162.5-172.0	9.5	9.03	95
19	Mar. 2	0630	5807.0-5816.5	172.0-181.5	9.5	8.54	90
20	Mar. 2	0816	5816.5-5826.0	181.5-191.0	9.5	5.98	63
21	Mar. 2	1010	5826.0-5835.5	191.0-200.5	9.5	0.0	0
22	Mar. 2	1155	5835.5-5845.0	200.5-210.0	9.5	Tr.	0
23	Mar. 2	1350	5845.0-5854.5	210.0-219.5	9.5	3.61	38
24	Mar. 2	1010	3834.3-3864.0	219.5-229.0	9.5	0.74	71
25	Mar. 2	2020	5004.0-58/3.5	229.0-238.5	9.5	3.51	37
20	Mar 2	2030	5883 0-5897 5	238.3-248.0	9.5	9.02	93
28	Mar 3	0150	5892 5-5902 0	257.5-267.0	9.5	7.91	83
29	Mar. 3	0340	5902.0-5911.5	267.0-276.5	9.5	9.82	103
30	Mar. 3	0530	5911.5-5921.0	276.5-286.0	9.5	8.96	94
31	Mar. 3	0715	5921.0-5930.5	286.0-295.5	9.5	1.88	20
32	Mar. 3	0945	5930.5-5940.0	295.5-305.0	9.5	7.12	73
33	Mar. 3	1230	5940.0-5949.0	305.0-314.5	9.5	4.02	44
34	Mar. 3	2358	5949.5-5959.0	314.5-324.0	9.5	2.80	29
Total					324.0	228.4	79.5
Hole 543A							
1	Mar. 4	0827	5627.0-5637.0	0-10.0	10.0	7.87	79
HIa	Mar. 4	1808	5637.0-5959.0	10.0-332.0	Washed	5.21	-
2	Mar. 4	2050	5659.0-5968.5	332.0-341.5	9.5	2.44	26
3	Mar. 4	2245	5968.5-59/8.0	341.5-351.0	9.5	2.92	31
4	Mar. 5	0150	5976.0-3967.3	351.0-300.3	9.5	3.90	42
5	Mar. 5	0510	5997 0_6006 5	370 0-370 5	9.5	4.21	13
7	Mar. 5	0745	6006.5-6016.0	379.5-389.0	9.5	4 91	52
8	Mar. 5	1045	6016.0-6025.5	389.0-398.5	9.5	1.11	12
9	Mar. 5	1315	6025.5-6035.0	398.5-408.0	9.5	0.97	11
10	Mar. 5	1805	6035.0-6044.5	408.0-417.5	9.5	3.12	32
11	Mar. 5	2105	6044.5-6047.0	417.5-420.0	2.5	2.27	91
12	Mar. 6	0145	6047.0-6054.0	420.0-427.0	7.0	4.17	60
13	Mar. 6	0710	6054.0-6063.0	427.0-436.0	9.0	8.53	95
14	Mar. 6	1011	6063.0-6065.0	436.0-438.0	2.0	0.85	43
15	Mar. 6	1724	6065.0-6072.0	438.0-445.0	7.0	6.61	94
16	Mar. 7	0102	6072.0-6082.0	445.0-455.0	10.0	9.0	90
Total					142.5	69.4	48.7

^a Core 543A-H1 is a wash core that recovered material from 10 to 332 m sub-bottom with the core barrel in place; percent recovery data are not given for this core.

at 411 m sub-bottom. Good hole conditions and 81% core recovery prevailed in the basement rocks, with penetration at a slow 2 m/hr. Coring operations were terminated at 455 m sub-bottom due to time and scheduling considerations.

The core bit and associated components were released by activating the mechanical bit release with a wire-line shifting tool. The open-ended drill string was then pulled to 280 m sub-bottom for logging. Because of the soft nature of the sediment, the pipe was left fairly deep in the hole to avoid the bridging and plugging tendencies of soft clay that have often frustrated logging attempts.

The temperature-density-gamma ray sonde was rigged and run down the pipe to 5600 m, the starting point for the temperature log. When only about 20 m of temperature log had been recorded—and before seafloor depth had been reached—a downhole electrical problem developed that caused the loss of temperature logging capability. The equipment was switched to the density-caliper-gamma ray mode, but the problems remained. The logging tool was recovered and the trouble was traced to seawater in the DSDP-furnished sinker bar. A backup sinker bar was installed and a second attempt was made. An open-hole bridge was encountered just 2 m below the end of the pipe. The sonde was worked through this and two other obstructions as temperature was logged to 375 m sub-bottom. A more substantial bridge at this point could not be penetrated after several attempts. A static temperature measurement was then recorded and the logging mode was switched to the density mode to log up to the pipe. It was then found that the density log detectors had apparently been damaged by the rough treatment the tool had received in getting through obstructions. The logging sonde became stuck upon reentering the drill string and could be moved neither up nor down. During attempts to dislodge it, the tool suddenly came free while under considerable pull. It was subsequently found that the caliper backup arm had been broken off and left in the hole. The caliper and gamma ray curves were good, however, and verified that the borehole was badly eroded, with an average diameter of 13 to 14 in. Density or sonic logs would therefore have been of little value in the sediment section. Because insufficient operating time remained to clean the hole and log the basement interval, the logging cable was then reheaded for the attachment of the Hawaii Institute of Geophysics (HIG) ocean sub-bottom seismometer (OSS) package.

While the reheading and final instrument package tests were in progress, the power sub was picked up and the hole was cleaned to 4 m above total depth. To avoid plugging the end of the pipe, high pump rates were used to clean the hole, and downward progress was stopped at the first sign of contact on the weight indicator. Two joints of drill pipe were then set back, leaving just 22 m of open hole.

At just past midnight on 8 March, the seismometer was started down the pipe. Unfortunately, the instrument met an obstruction at the end of the drill string and would not pass into open hole. It was concluded that, despite precautions, the end of the bit release top connector had become plugged with sediment and/or drill cuttings and that pump circulation was through the "windows" in the side of the top connector. After a few minutes of unsuccessful effort to get the instrument out of the pipe, it was recovered for an attempt to unplug the pipe. A specially weighted junk inner core barrel section was assembled and pumped down the pipe at maximum pump rate. Pump pressure was abnormally high and no change in pressure was noted after an adequate interval of pumping. With a great deal of anxiety, we again lowered the seismometer package through the pipe on the logging cable. At 0905 hr., the instrument passed out of the pipe. It was then successfully emplaced in the open basalt hole and a series of tests were run.

With the seismometer finally in place, the logging cable was clamped off at the top of the drill pipe and cut. A special cable slip-pulling neck assembly was attached to the end of the in-hole portion of the cable. This was latched up to an overshot-swivel assembly on the sand line, the weight of the cable was taken by the sand line, and the clamp was removed. The logging sheaves were then rigged down, and the slow process of stripping the pipe out of the hole begun. The pipe trip proceeded smoothly, however, and over 6 km of pipe were pulled past the cable in 16 hr.

The cable in the hole was then respliced to the remainder on the winch by means of a "torpedo" connection. Following tests of the downhole instrument package, the cable on the winch was slowly payed out while the ship was offset a total of 3.6 km from the hole. As this exceeded the maximum offset capability of the positioning system, it was necessary to drop a new acoustic beacon for station-keeping at the new location.

The accompanying vessel, North Star, had emplaced an array of five ocean bottom seismometers (OBS) several miles across and centered on Site 543. Test charges were then fired to test the response of the OSS and communications between the two vessels in preparation for refraction profiling. At this point, the downhole seismometer data were found to be garbled and not usable. The data from one shooting line was taped in the hope that some data could be retrieved.

The *Challenger* was then slowly moved back to the drill site as the logging cable was retrieved. The OSS was pulled from the hole without undue difficulty, despite the inability to retract the caliper arm. The instrument was on deck at 1945 hr., 9 March, and the vessel got underway at 2006 hr.

Site 543 to San Juan

The *Challenger* steamed about 20 mi. north to rendezvous with the *North Star*, which was engaged in refraction shooting for the OBS array. Following transfer of personnel back to the *North Star*, the profiling gear was streamed and the *Challenger* began postsite profiling that passed over Site 543. At 0056 hr., 10 March, the survey was completed and course was set for the return to San Juan.

SEDIMENT LITHOLOGY

Lithostratigraphy

Site 543, the oceanic reference site, was drilled in 5627 m water depth, 3.5 km east of the toe of the accretionary prism. Two holes were drilled at Site 543: Hole 543 was continuously cored for 324 m before a core barrel jammed in the drill pipe and the hole had to be abandoned. Hole 543A was cored continuously below 332 m and penetrated 44 m of basaltic basement. The first sediment continuously cored at Hole 543A (Core 2) is just beneath the deepest sediment cored at Hole 543 (Core 34). The sediment recovery from Holes 543 and 543A was sufficient to permit good lithostratigraphic definition of the oceanic reference site sediments.

Based on macroscopic core descriptions, smear slide analyses, and calcium carbonate bomb data, the sequence of sediments and rock units drilled at Site 543 can be divided into seven lithologic units (Fig. 4). A summary of these units is shown in Table 2. Downhole percentages

Figure 4. Summary lithology, sediment composition, structure, physical properties, and seismic stratigraphy, Site 543. (In X-Ray Mineralogy column blackened areas simply show presence.)

SITE 543

Figure 4. (Continued).

Table 2.	Lithologic	units,	Site	543.
----------	------------	--------	------	------

	Hole	543	Hole 5	43A		
Unit, subunit	Sample (core-section, cm level)	Sub-bottom depth (m)	Sample (core-section, cm level)	Sub-bottom depth (m)	Dominant lithology	Age
1	_	-	1	0-8	Ashy mud	Quaternary
2	1 to 7-2, 100	8-68.5	1 <u>1</u> 1 	-	Ashy nannofossil mud and vitric mud with ash layers	early Pleistocene-late Pliocene
3	7-2, 100 to 18-3, 50	68.5-174.0	-	-	Mud and vitric mud with ash layers	early Pliocene-early Miocene(?)
4	18-3, 50 to 26-5, 100	174.0-253.0	-	\rightarrow	Radiolarian clay with ashy layers	early Miocene-Oligocene
5a	26-5, 100 to 32	253.0-313.0	 *	-	Mn-stained radiolarian clay	Oligocene-middle late Eocene
5b	33 to 34	313.0-322.0	2 to 3	322.0-351.0	Zeolitic clay-claystone and clay-claystone	Eocene
5c	_		4 to 6	351.0-379.5	Claystone	Eocene
6	_	-	7 to 10-2, 100	379.5-411.0	Calcareous ferruginous claystone	Cretaceous (early Maestrichtian- early Campanian)
7	-	-	10-2, 100 to 16	411.0-455.0	Pillow basalts	Cretaceous

Note: - indicates no data.

of calcium carbonate at Site 543 were determined with the shipboard carbonate bomb (Fig. 4).

Lithologic Unit 1 is an 8-m-thick, Quaternary ashy mud drilled in the mud-line core (Core 1) of Hole 543A that overlies and is younger than the first sediment drilled at Hole 543. It is primarily brown (10YR 5/3) with dark grayish brown (10YR 4/2) to light brownish gray (10R 6/2) ashy layers and patches, vague streaking, and slight color variations throughout. The entire unit has been intensely deformed and swirled by drilling.

Lithologic Unit 2 is a 60-m-thick, lower Pleistocene to upper Pliocene, brown (10YR 5/3) ashy nannofossil mud with interbedded grayish brown (10YR 5/2) vitric muds and gray to dark gray (5Y 5/1-5Y 3/1) ash layers. The color of this unit gradually changes downhole to olive gray (5Y 5/2) and gray (5Y 5/1-5Y 6/1). It has been moderately to intensely deformed by drilling throughout.

Lithologic Unit 3 is a 105-m-thick, lower Pliocene to lower Miocene, mottled and bioturbated mud and vitric mud with ash layers. It is differentiated from the overlying unit by an absence of calcareous components, indicating deposition below the CCD. The clay is primarily olive gray (5Y 5/2) with some brown (10YR 5/3) to grayish brown (10YR 5/2) layers in the top 35 m, gradually changing to greenish gray (5GY 5/2) below Core 12. The ash layers and patches range from medium dark gray (N4) to very dark gray (10YR 3/1) to brownish black (5YR 2/1) to black and often have distinctive greenish gray (5G 6/1) alteration halos around them. The unit has been intensely deformed by drilling that has greatly disturbed original bedding and burrows.

Lithologic Unit 4 is a 79-m-thick, bioturbated, lower Miocene to Oligocene radiolarian clay with ashy patches and ash layers. It is differentiated from the overlying unit by the presence of more than 10% radiolarians. The greenish gray (5GY 5/1) with olive (5Y 5/3) and olive gray (5Y 5/2) mottles in the upper 10 m, gradually changing to primarily olive gray (5Y 5/2-5Y 6/2) and olive (5Y 5/3), with greenish gray (5GY 5/1) layers below Core 19, Section 2. The ash beds vary from 1 to 10 cm thick, range from dark gray to grayish brown (10YR 4/ 1-10YR 4/2) to black (N2.5), and are frequently associated with pale blue green (5BG 7/2) to greenish gray (5G 6/1) alteration halos. Bioturbation is faint except near the upper contacts of the ash layers. Though the unit has been moderately deformed by drilling, horizontal layering is observed in Core 25. A white 5-mm-thick layer of rhodochrosite is found in Core 24, Section 4.

Lithologic Unit 5 is a 124-m-thick, Oligocene to lower Eocene pelagic unit that is divisible into three subunits (5a, 5b, and 5c) on the basis of macroscopic core descriptions, smear slide analyses, and shipboard XRD results (see the section on X-Ray Diffraction, this chapter).

Subunit 5a is a 60-m-thick Oligocene(?) to middle upper Eocene, burrowed and mottled, manganese-stained radiolarian clay. It is differentiated from the overlying unit by the presence of abundant manganese-oxide stains. The clay is light yellowish brown (10YR 6/4) to very pale brown (10YR 6/3-10YR 7/3) and contains abundant gray (10YR 6/1) to dark grayish brown (10YR 4/2) to black (20YR 2.5/1) manganese-oxide stains. Distinctive parallel laminations are observed in Core 32, Section 1.

Subunit 5b is a 38-m-thick, Eocene interbedded zeolitic clay-claystone and clay-claystone unit. It is differentiated from the overlying subunit by a scarcity (less than 10%) or absence of radiolarians, rather than by the presence of zeolites in the sediment (zeolites first appear in XRD analyses of the sediments in the radiolarian clay of Core 30, Hole 543; see the X-Ray Diffraction section, this chapter). The zeolitic clays or claystones in this unit are light yellowish brown (10YR 6/4) to pale brown (10YR 6/3); the interbedded clays or claystones are yellowish red (5YR 4/6-5YR 6/6). Rare blebs and approximately 1-cm-thick layers of greenish gray (5GY 6/1-5GY 7/1) altered ash are found throughout the unit. Dark gray (N4) to very dark grayish brown manganese-oxide stains occur in Core 3, Hole 543A. The entire unit has been intensely deformed by drilling, consisting of pancake-shaped coherent lumps ("biscuits") separated by thin shear zones ("rotational shear zones"), which are an artifact of drilling and are spaced every 2 to 5 cm down the core. Laminations and burrows are found in the firm, coherent "biscuits."

Subunit 5c is a 28-m-thick, Eocene, predominantly reddish brown (2.5YR 4/4-2.5YR 4/5) burrowed claystone. It is differentiated from the overlying subunit by an absence of zeolites (see the section on X-Ray Diffraction). The upper portion of the subunit (Core 4, Hole 543A) contains some yellowish brown (10YR 5/4) to brown (7.5YR 5/4) layers and has some dark grayish brown (10YR 4/2) to very dark grayish brown (10YR 3/2) manganese-oxide stains. It has been very deformed by drilling, consisting of coherent "biscuits" embedded in a highly brecciated, sheared, and slickensided matrix of the same material.

Lithologic Unit 6 is a 31.5-m-thick, lower Maestrichtian to lower Campanian, horizontally laminated, bioturbated, calcareous ferruginous claystone deposited on top of Cretaceous basement (see Hemleben and Troester, this volume). It is differentiated from the overlying sediment by the presence of calcareous and ferruginous components. The unit is variegated dark brown (7.5YR 3/2) to reddish brown (5YR 4/3-5YR 4/4) and contains yellowish red (5YR 5/4) nannofossil-rich layers. Cores 7, 8, and 9 (Hole 543A) contain authigenic dolomite.

Lithologic Unit 7 consists of Cretaceous basement pillow basalts (see the section on Basalts, this chapter).

All of the sediments cored at Site 543 were deposited below the lysocline (see the section on Paleoenvironments, this chapter). The vast majority of sediments accumulated by pelagic-hemipelgic settling in quiet, deep water on top of Cretaceous basement (Lithologic Unit 7). Evidence for deposition of some material by gravity flows was found in a 4-cm-thick, foraminifer-rich layer in Core 3, Section 5, Hole 543. Ash beds found in Lithologic Units 1 to 4 do not appear to have been redeposited as turbidites, but probably settled to the seafloor following volcanic eruptions on the Lesser Antilles island arc. The relatively great amounts of ash particles in Lithologic Units 1 to 4 indicate a substantial input of volcanic material from the Lesser Antilles island arc as the Atlantic crust moved toward the arc.

Bioturbation

Bioturbation is prevalent in the Site 543 cores, but there are fewer recognizable forms than at either Sites 541 or 542. The uppermost 70 m of sediment are too badly swirled by drilling to detect any original sedimentary features. Slight burrow mottling first appears in Core 8 (543) and becomes a little more pronounced in Core 12. Core 18 contains burrowed ash beds and all further cores down to 29 are burrow mottled, but without recognizable ichnogenera. Core 30 is mottled at the top and base only. Core 31 contains rather large "mottles" 1 to 3 cm across instead of the normal burrows less than 1 cm in diameter. Some of these may be diagenetic nodules rather than burrows. Core 32 contains sporadic burrows of Planolites type. The lowest two, Cores 33 and 34 at Hole 543, contain drilling biscuits in a deformed matrix. The biscuits preserve lamination and bioturbation. The sedimentation rate was high enough that burrowing animals did not have time to rework the sediment completely.

In Hole 543A, Cores 2 to 4 are not conspicuously burrowed. Together with the lack of arenaceous benthic foraminifers, this characteristic may indicate anoxic or at least oxygen-poor bottom conditions. Cores 5 and 6 are burrow mottled, and the variegated ferruginous clays of Cores 7 to 9 exhibit spectacular burrowing (Fig. 5). Abundant *Planolites*, a few *Zoophycus*, tiny *Chondrites*, and a pelleted oblique burrow (*?Teichichnus*) were identified in Core 7. Core 9 contains laminae of lighter and darker brown sediment, and the tops and bases of the laminae are burrowed on a minute scale.

There are two possible reasons for the preservation of lamination in these basal ferruginous sediments deposited near the ridge crest: (1) the sedimentation rate was too high to allow complete reworking; (2) the environment may have been fairly rugged, with the water full of noxious exhalations and ferruginous manganiferous brines and vapors (c.f., Galapagos Rift), and not many animals lived there.

X-Ray Mineralogy

Fifty-six samples were analyzed from this site, using the same method as described for Site 541. The minerals identified include quartz, alkali feldspar, plagioclase, calcite, zeolites (clinoptilolite and ?heulandite), cristobalite, palygorskite, kaolinite, illite, smectite and dolomite, plus traces of apatite and hematite. A thin white vein in Sample 543-24-4, 92 cm was identified as rhodochrosite. Results are summarized in Figure 4 and described in more detail in Pudsey (this volume).

Quartz occurs throughout. Feldspars occur from 0 to 250 m sub-bottom, and in general the peak for alkali feldspar is higher than that for plagioclase. Calcite is present in the Pleistocene and Pliocene muds above 75 m sub-bottom, and sporadically in the Eocene and Cretaceous below 380 m. Zeolites are present from 250 to 350 m and cristobalite from 280 to 320 m. Palygorskite occurs from 335 m to the base of the sediments, but its peak height fluctuates wildly and it is not present in all samples in this interval. Dolomite occurs only in Cores 543A-7, -8 and -9 (385-410 m), but is an important constituent of Core 9. Of the nonfibrous clay minerals, kaolinite is present throughout, but its peak height is relatively low from 100 to 200 m. Illite is an important constituent only from 0 to 100 m and is absent from 135 to 170 m and below 355 m; smectite is most abundant from 100 to 200 meters, and it decreases noticeably in the lowest 70 m of sediment.

In the manganiferous Lithologic Subunit 5a, black layers contain much more clay and less quartz than orange layers. Manganese oxides are presumably amorphous, because they do not give a peak on the diffractograms.

Volcanic Ash

Core disturbance was extreme throughout most of the upper 150 m of the sediment section (Cores 543-1 to -13, and 543A-1, covering part of the upper Miocene, the Pliocene, and the Quaternary), which made ash beds difficult to identify and sample. Fortunately, the corresponding interval was much less disturbed at Site 541.

Despite the disturbance, ashy intervals were prominent in many of the upper 14 cores of Hole 543. These are sufficiently disturbed that they have been somewhat mixed with mud, hence they are described as ashy mud,

Figure 5. Bioturbated ferruginous clay, Sample 543A-7-3, 0-34 cm. (*Planolites* burrows are filled with lighter material than the surrounding mud.)

for the most part, on the core barrel sheets. In a few intervals, there are relatively undisturbed major ash beds up to 5 cm thick that must correlate with those found at Sites 541 and 542, although the disturbance may make precise correlation nearly impossible.

The principal addition to the ash record that Hole 543 provides is documentation of a significant pulse of explosive volcanism on the Lesser Antilles arc in the early and early middle Miocene (Cores 17–20). Below these cores, there are only scattered and very minor ash occurrences, mostly completely altered to clays. There is one ash deposit in the Oligocene (Core 27). There are none in the middle and upper Eocene. The lower Eocene has 10 thin wisps of altered ash beds that may correspond to the oldest volcanism known from highly altered and restricted outcroppings in the limestone Caribbees. Site 543 was quite a bit further from the arc in the early Eocene than it is now, hence no comparison of the volume of explosive volcanism between the Eocene and modern Lesser Antilles arc is possible with these cores.

The Lesser Antilles arc thus has had three periods of major explosive volcanic activity, corresponding to the early Miocene, early Pliocene, and Quaternary ash beds recovered by drilling at Sites 541, 542, and 543, as well as in surface piston cores. This finding is a significant improvement in resolution of ash chronology compared with the sketchy data available from the islands. These topics are discussed further by Natland (this volume).

STRUCTURAL GEOLOGY AND DRILLING DEFORMATION

Most, if not all, of the small-scale structures we observed in cores from Site 543 can be interpreted as drilling-induced. However, there is an apparent correlation between material response and sediment composition that may be a clue to how this stratigraphic section would behave if it were deformed *in situ*.

Numerous horizontal layers were observed in Cores 543-1 through -31 and in Cores 543A-2 and -3. The base of an ash layer in Section 543A-4-1 at 62 cm dips 5° . Burrow-mottled layering in Sample 543A-7-2, 80–130 cm dips up to 30° in biscuits but varies in magnitude and sense from biscuit to biscuit, partly due to rotation along horizontal drilling fractures. However, some of the dip is probably primary and may reflect deposition on irregular basement topography or faulting near the ridge crest in newly formed basement.

Cores 543-1 to -13 display swirling patterns that are typically produced by drilling in the shallowest, least consolidated sediments. In parts of Cores 543-14 and -16 we noticed firm, coherent chunks of mud separated by softer, more highly deformed mud. Most of Cores 543-17 to -19 and Sections 1 and 2 of Core 543-20 consist of these firm chunks and soft "matrix." Some coherent chunks, when broken open, showed slickensided, polished curviplanar surfaces spaced <1 cm apart. Soft portions between chunks have polished surfaces spaced >1 cm, and locally they have been churned into a hash of small irregular chips averaging a few millimeters in length. The overall alternation of coherent pieces and softer matrix is reminiscent of sections in which ordinary drilling biscuits are separated by rotational disc fractures induced by drilling. Randomly oriented, polished surfaces spaced between about 1 mm and 1 cm were also noted in some cores from Sites 541 and 542 (see Sites 541 and 542 reports, this volume), but they occur in firm, sticky mud and clearly predate drilling disc fractures. In Core 543-23 we again noted swirling.

Sediments in Core 543-26 through part of Core 543-32 are manganese-stained pelagic clays that are locally rich in radiolarians. A dip-slip fault dipping 40°, with steps on the polished surface suggesting normal faulting, occurs in Section 5 of Core 29. The first development of well-defined disc fractures and biscuits roughly coincides with the lithologic change from clay to pelagic clay in Core 26. In Hole 543A, Cores 2 through 7 contain pelagic clays devoid of radiolarians. These sediments occur in variably sized, firm, relatively undeformed chunks and lumps, separated and locally surrounded by coherent, highly deformed mud. Some chunks contain polished surfaces spaced >1 cm, but many bear no signs of internal deformation. The deformed zones between these biscuits range from 2 mm to at least 20 cm in thickness. As freshly cut surfaces of cores dry out, tiny hairline cracks form and reflect an internal fabric defined by subparallel polished surfaces spaced about 1 mm apart. This crude scaly foliation is easily visible when samples of deformed mud are broken apart. In thin, well-defined zones between biscuits, the minicracks (and foliation) are horizontal, but in thicker zones they have variable orientations. Some deformed zones also display wispy and contorted patches of mud that are colored differently from their more voluminous host. Compared with the scaly clays occurring in the bottom few cores at Site 541, the foliation in the deformed zones in Cores 2 through 7 of Hole 543A is less penetrative and less strongly oriented. In addition, these zones in Hole 543A are still sticky and coherent, rather than flaky.

The change from well-defined biscuits separated by thin disc fractures to chunks separated by wider zones of deformed mud coincides approximately with the transitions above and below the radiolarian pelagic clay to pelagic clays at Site 543. This coincidence suggests that deformational response may depend partly on sediment composition. The deformed zones in Cores 543-14 to 20 and 543A-2 to 7 are probably due to drilling rather than in situ deformation. In these cores, we can generally see a complete range in thickness of deformed zones. The thinnest are clearly rotational shear fractures, separating well-formed biscuits; thicker zones (<1 cm) are identical in their fabric and composition. The material constituting the thickest zones is very similar to deformed sediment in drilling laminations. It is possible, but unlikely that some of this sheared material in the thickest zones formed in situ. Even if all of the deformation in Cores 543-14 to -20 and Cores 543A-2 to -7 can be ascribed to drilling, it is clear that these clay-rich parts of the sedimentary section are weaker and more easily deformed than the radiolarian mudstone, which we obtained in Cores 543-21 to -32, and are thus more likely to serve as horizons of natural décollement. Notably the upper boundary of the radiolarian mudstone

coincides approximately with Reflector 1, which apparently represents a décollement surface separating offscraped and subducted deposits landward of the deformation front.

PORE FLUID CHEMISTRY

Nine samples were taken for interstitial water geochemistry at Site 543, six from Hole 543, and three from Hole 543A. The data are listed, plotted versus depth, and summarized in Gieskes et al. (this volume). Prominent features of the data are an initial drop in pH from 0 to 273 m sub-bottom, then an increase below that to just above basalt, steady decrease of Ca²⁺ with depth, and an initial decline of Mg²⁺ to about 150 m, then a slight increase and leveling off between 250 m to the top of basalts at 408 m. The excess Mg²⁺ may be reflected in the lowermost sediments by an abundance of palygorskite and the occurrence of dolomite (Pudsey, this volume). The causes for these variations are discussed elsewhere (Gieskes et al., this volume), but migration of fluids similar to those below 350 m along the shear zone at Sites 541 and 542 could cause the perturbations in Mg²⁺ abundances observed at those sites.

ORGANIC GEOCHEMISTRY

Organic carbon content in Site 543 sediments decreases regularly with depth, as was the case for Sites 541 and 542 sediments. C_1 to C_6 hydrocarbons are just detectable at 100 to 400 standard gas volumes per 10⁹ volumes of sediment. A minor show of nonhydrocarbon gas was confirmed at a depth of about 245 m in Hole 543. A similar observation at a depth of about 240 m in Hole 541 was discounted and attributed to core disturbance and air contamination. Subsequent shore-based analyses of this gas (Claypool, this volume) show nitrogen and argon contents in excess of atmospheric content. The origin of this minor nitrogen gas show is unknown at this time.

BIOSTRATIGRAPHY

A biostratigraphic summary for all microfossil groups examined on board ship is given in Figure 6. The biostratigraphy described here is based on shipboard investigations. For more refined discussions of nannofossils and radiolarians see Bergen (this volume) and Renz (this volume), respectively.

Nannofossils

Hole 543

Samples from Cores 1 through 8, Section 1 contain nannofossil assemblages as old as early Pliocene. The preservation in these samples is noticeably worse than in samples of equivalent age from Sites 541 and 542.

Cores 1 through 3 are zoned as early Pleistocene *Pseudoemiliania lacunosa* is found in all samples from these cores in which nannofossils occur. The presence of *Cyclococcolithina macintyrei* in Samples 543-1-1, 60-61 cm to 543-3-2, 62-63 cm place this interval in the *Cyclococcolithina macintyrei* Zone of Gartner (1977). No *Gephyrocapsa* are useful in age determinations.

Figure 6. Summary biostratigraphy and magnetostratigraphy, Site 543. (Polarity normal intervals are black, polarity reversed intervals are white, and polarity uncertain intervals [or intervals with no data] are diagonally striped.)

Cores 4 through 7, Section 2 are late Pliocene. Discoaster tamalis, D. surculus, and D. pentaradiatus have their last occurrences in Sample 543-5-2, 100-101 cm. Therefore, a hiatus exists between that sample and Sample 543-5-1, 100-101 cm. Samples 543-5-2, 100-101 cm to 543-7-2, 55-56 cm are placed in the Discoaster tamalis Subzone (CN12a). Core 4 through Sample 543-5-1, 100-101 cm are assigned to the Calcidiscus macintyrei Subzone (CN12d). The Discoaster surculus and Discoaster pentaradiatus Subzones (CN12b,c) are not recognized in this hole.

Samples 543-7-3, 55-56 cm through 543-8-1, 65-66 cm are placed in the *Reticulofenestra pseudoumbilica* Zone (CN11), based on the extinctions of *Amaurolithus tricorniculatus* and *R. pseudoumbilica*. Sphenolithus neo-abies, whose extinction is used in addition to *R. pseudo-umbilica*, is last seen in Sample 543-7-2, 55-56 cm. *S. abies* becomes extinct in this same sample.

This hole is barren below Sample 543-8-1, 65-66 cm.

Hole 543A

Nannofossils recovered from Hole 543A are poorly preserved, but are unusually common when found. Cores 1 through 6 and Core 8 are barren.

Core 7, Section 1 is barren, except for the occurrence of very rare *Micula mura* and *Ceratolithoides kamptneri* in very poorly preserved assemblages. If not reworked, this section is from the very top of the Maestrichtian.

Core 7, Section 3 and the lower part of Core 7, Section 2 all contain *C. aculeus, Arkangelskiella*, and large *Prediscosphaera cretacea*. The absence of *Broinsonia parca* in this interval suggests that it is not Campanian; it is most likely early Maestrichtian. Core 7, Section 4 is barren.

Sample 543A-9,CC and the bottom part of Section 543-9-1 are barren. Assemblages containing *Quadrum* nitidum, Q. geothicum, C. aculeus, and B. parca constricta are found near the top of Core 9, Section 1. This interval is assigned to the early late Campanian, based on the presence of the above species, but also on the absence of Q. trifidum.

Samples from Core 10, which include the contact with basement, are dated as early Campanian. This assignment is based on the co-occurrence of *B. parca* and *Marthasterites furcatus*.

Radiolarians

Radiolarians in varying abundances and states of preservation were recovered from both holes. The most significant recovery is a Cenozoic sequence ranging from lower Eocene to middle Miocene in the first hole.

Hole 543

A sparse Quaternary assemblage of radiolarians showing strong dissolution occurs in Section 543-1,CC. Cores 2 through 16 are barren. Radiolarians occur again in Section 543-17-1 and continue through the last core (34,CC).

At the beginning of this long sequence (Sample 543-17-1, 10-12 cm) a few fragments are seen. One of these is identified as *Calocycletta costata*, dating the sample as no younger than the *Dorcadospyris alata* Zone (Riedel and Sanfilippo, 1978) of the middle Miocene. Sample 543-17-2, 10-12 cm through 543-18-1, 30-32 cm show increasing abundances and better states of preservation. They are placed in the *Dorcadospyris alata* Zone. The following species are present: *C. costata*, *Cyrtocapsella cornuta*, *D. alata*, *Stichocorys delmontensis*, and *S. wolffii*.

In Samples 543-18-2, 31-33 cm through 543-20-1, 70-72 cm, *D. dentata* is consistently more abundant than its descendent, *D. alata*. This fact, along with the continuing occurrence of *Calocycletta costata* as well as *C. virginis, Phormostichoartus corona*, and *Cannartus violina*, places these samples in the *Calocycletta costata* Zone of the early Miocene. This correlates well with the beginning radiolarian sequence found at Site 541 (Core 48, Section 5).

Samples 543-20-2, 70-72 cm through 543-20, CC are assigned to the *Stichocorys wolffii* Zone because of the presence of *S. wolffii*, *C. virginis, Carpocanopsis bramlettei*, and *Cyrtocapsella cornuta*, and the absence of *Calocycletta costata*. Specimens are very abundant, occurring in highly diverse assemblages of moderate to good preservation.

There was no recovery from Core 21. What little was recovered from Core 22 (Section 543-22-1, top—approximately 25 cm³) is assigned to the *Stichocorys delmontensis* Zone. S. delmontensis, C. virginis, Carpocanopsis bramlettei, Calocycletta serrata, Cyrtocapsella cornuta, C. tetrapera, D. ateuchus, and Eucyrtidium diaphanes are present. S. wolffii and Theocyrtis annosa are notably absent. Specimens are abundant and well preserved.

Samples 543-23-1, 145-147 cm through 543-24-1, 2-4 cm have common to abundant radiolarians, and the quality of preservation remains moderately good. This sequence is placed in the Lychnocanoma elongata Zone (straddling the Oligocene/Miocene boundary) because of the presence of L. elongata, Calocycletta virginis, D. ateuchus, and T. annosa and the absence of C. serrata, Cyrtocapsella cornuta, and C. tetrapera. This assignment indicates that the Cyrtocapsella tetrapera Zone may have occurred in the sediment lost in Core 22.

Samples 543-24-2, 40-42 cm through 543-26-1, 64-66 cm show a rapid decrease in the quality of preservation and great variability in abundance. The assemblage has a very low diversity that is dominated by *D. ateuchus*, *L. elongata* and *T. annosa* are absent. This places the samples in the *Dorcadospyris ateuchus* Zone.

The *Theocyrtis tuberosa* Zone occurs in Sample 543-26-2, 43-45 cm through 543-27-2, 126-128 cm. The following species are noted: *D. ateuchus, Lithocyclia angusta* (C), *L. aristotelis* (R), *T. tuberosa*, and *Tristylospyris triceros*. Abundance and quality of preservation are increasing.

The Eocene/Oligocene boundary occurs between Sample 543-27-2, 126–128 cm and 543-27-3, 53–55 cm. Samples 543-27-3, 53–55 cm through 543-28-3, 73–75 cm are assigned to the *Thyrsocyrtis bromia* Zone. *L. angusta* drops out above the sequence, whereas *L. aristotelis* oc-

curs with greater frequency. Lophocyrtis jacchia and Lychnocanoma amphitrite appear consistently and increase in abundance. Calocyclas turris and Thyrsocyrtis bromia occur in Sample 543-27-5, 104-106 cm through the end of the sequence. Both species are dominant members of the assemblage. Radiolarians are common to abundant and moderately well preserved.

No assemblage is assigned to the *Podocyrtis goetheana* Zone, although specimens of *P. goetheana* are frequently found in Sample 543-28-2, 40-42 cm.

Samples 543-28-4, 110-112 cm through 543-29-2, 72-74 cm are assigned to the *Podocyrtis chalara* Zone. *P. chalara* appears consistently with common or greater abundance. *Rhandolithus pipa* occurs rarely. *P. goetheana* is absent. Specimens are common to abundant and moderately well preserved.

Sample 543-28,CC contains displaced material from the *Thyrsocyrtis bromia* zone.

Samples 543-29-3, 6-8 cm through 543-30-1, 10-12 cm are assigned to the *Podocyrtis mitra* Zone. *P. chalara* continuously decreases in abundance until it disappears in the middle of the sequence, whereas *P. mitra* is ever present with a fluctuating abundance. *P. sinuosa* is absent until the very end of the sequence. Specimens range from common to abundant and are moderately well preserved.

Samples 543-30-1, 38-40 cm through 543-30-3, 7-9 cm are assigned to the *Podocyrtis ampla* Zone. *P. sinuosa* is consistently more abundant than *P. mitra*, which disappears in the middle of the sequence. *P. ampla* is present throughout; *P. phyxis* is absent. Radiolarians are abundant to common and moderately well preserved.

Samples 543-30-3, 132-134 cm through 543-30-5, 129-131 cm are assigned to the *Thyrsocyrtis triacantha* Zone. *P. phyxis* and *Eusyringium Fistuligerum* are absent, whereas *Theocotyle venezuelensis* appears with increasing abundance. Radiolarians are common and moderately well preserved.

Sample 543-30-6, 60-62 cm through Section 543-31,CC are assigned to the *Theocampe mongolfieri* Zone due to the common presence of *T. mongolfieri* and to the absence of *E. lagena*. Specimens are abundant and moderately well preserved.

Samples 543-32-1, 37-39 cm through 543-32-5, 68-70 cm have abundant, very well preserved assemblages (for the most part). Specimens superficially similar to *T. mon-golfieri* are common, but they lack strict longitudinal pore alignment and ribs. *Calocycloma castum* appears with increasing abundance. According to the zonal definition, these facts place the samples in the *Theocotyle cryptocephala* Zone (Riedel and Sanfilippo, 1978, amend.; Sanfilippo and Riedel, 1982).

Sections 543-32, CC through 543-34, CC show assemblages with decreasing abundances and all in very poor states of preservation. Specimens of *C. castum, Calocy-clas hispida, Lithochytris vespertilio, Phormocyrtis striata striata,* and *T. cryptocephala* are seen rarely and cannot be used with confidence for zonation. Species of the genera *Amphicraspedum* and *Spongodiscus* dominate the assemblages.

Hole 543A

Offset drilling recovered one core from the surface, washed down to 332 m and continuously cored to 411 m at basement and 44 m into basalt.

Sections 543A-1-3 and 543A-1,CC contain a Quaternary radiolarian assemblage of low to moderate diversity, showing breakage and signs of dissolution.

Section 543A-H1-1 is barren of radiolarians.

After voids in the recovery, Samples 543A-H1-4, 95-97 cm through 543A-2-1, 95-97 cm contain common to few radiolarians in moderate to poor states of preservation. Sample 543A-H1-4, 95-97 cm contains specimens of *Podocyrtis mitra* (C), *P. trachodes* (R), and *Sethochytris triconiscus*, which bracket the sample, placing it in the upper half of the *Podocyrtis mitra* Zone. This correlates best with samples from Section 543-29-7.

The presence of rare specimens of *Eusyringium fistuligerum* and *P. dorus* and the common occurrence of *P. sinuosa* place Sample 543A-H1-5, 85-87 cm at the boundary of the *Podocyrtis ampla/Thyrsocyrtis triacantha* Zones. This correlates closest with Section 543-30-3. Radiolarians are abundant and moderately well preserved.

Sample 543A-H1-6, 64-66 cm contains no diagnostic species to indicate its zone. Specimens are few and very poorly preserved. *Lithochytris vespertilio*, *P. sinuosa*, and *Rhandolithus pipa* are dominant.

Section 543A-H1,CC contains both specimens of *Theocorys anaclasta* and *Theocampe mongolfieri*, which bracket it in the *Theocampe mongolfieri* Zone. Specimens of *Thyrsocyrtis triacantha* are rare with respect to those of *T. tensa. Periphaena delta* is absent. This places the sample near the middle of the zone, which correlates best with Section 543-31-1.

These correlations for Core H1 illustrate the characteristic of a washed core to collect samples from different intervals in the sediment column.

Sample 543A-2-1, 95-97 cm contains an assemblage of high diversity, common abundance, and poor preservation. *T. mongolfieri* is absent, and *Calocycloma castum* and *Theocotyle cryptocephala* are present. This sample is assigned to the *Theocotyle cryptocephala* Zone and correlates best with Section 543-32-4.

Section 543A-2-2 and 543A-2,CC contain radiolarians in common abundance but very poorly preserved. Several specimens of *Calocycloma castum* and *Buryella clinata* are seen throughout.

Cores 3, 4, and 5 contain radiolarians in varying abundances (C-R) but so poorly preserved that specimens are unrecognizable. Fragments of three specimens in Section 543A-5,CC are probably contaminants. Cores 6 through basement are barren. Rare fragments found at the contact are again thought to be contaminants.

Foraminifers

Hole 543

Hole 543 was drilled to 324 m sub-bottom. The upper 10 cores (approximately 96 m of section) contain foraminifers varying from sparse to abundant. Cores 1 through 3 are assigned to the lower Pleistocene Zone N22 of Blow. Specimens of Globorotalia (G.) truncatulinoides, G. (T.) tosaensis, and Globigerinoides obliquus obliquus are present throughout. Sample 543-3-4, 30-32 cm contains G. obliquus extremus and is assignable to Berggren's Zone PL6. As seen at Site 541, the top of Zone PL6 appears to occur in the lower Pleistocene.

The interval from Sample 543-3-4, 30-32 cm to Sample 543-4-6, 147-149 cm is assigned to Zone PL6. The Pliocene/Pleistocene boundary is placed below Section 543-3, CC on the basis of the nannofossil data.

Globorotalia (G.) miocenica occurs in Section 543-4,CC. This section is assigned to the upper Pliocene Zone PL5 (i.e., Zone N21 of Blow). Cores 4 and 5 are assigned to Zone PL5.

Core 6 is assigned to the upper Pliocene Zone PL4 (i.e., Zone N21 of Blow) on the basis of the presence of *Globorotalia (G.) multicamerata*.

Core 7 is assigned to that part of Zone N19 to N20 (i.e., PL3) below the extinction datum of *Sphaeroidinellopsis subdehiscens paenedehiscens*. The foraminifers in Core 7 are sparse. The lower/upper Pliocene boundary is placed above Sample 543-7-3, 55-56 cm, on the basis of the nannofossil data (Bergen, this volume).

Cores 8 to 10 contain only sparse foraminifers; most of which are broken. Thus no zonal assignments are attempted.

Cores 11 through 34 are barren of foraminifers.

Hole 543A

In Hole 543A, the first 10 m below the seafloor are cored. The hole was then washed to 332 m and continuously cored to 455 m.

No diagnostic planktonic foraminifers were observed throughout the cored interval. Some benthic foraminifers assignable to the Upper Cretaceous, Campanian to Maestrichtian (Hemleben and Troester, this volume), are found from Cores 6 to 10.

PALEOENVIRONMENT

Recent seafloor sediments of Site 543 were deposited about 450 m below the local calcite compensation depth (CCD). As a consequence, the top of Core 1 of Hole 543 is barren of calcareous fossils and Cores 1 through 8, Section 1 contain mostly moderate to poorly preserved assemblages of planktonic foraminifers. In general the sedimentation rate of Site 543 is considerably lower compared with Site 541. Thus it is not possible to obtain the same resolution of events such as climatic changes. However, changes in preservation of calcareous fossils in Cores 1 through 3 may reflect the glacial and interglacial phases during the Quaternary. Core 3 seems to represent mostly the Nebraskan (Berger, 1977) interval. A comparison of the Nebraskan preservational peaks at Sites 541 and 543 demonstrates a slight shift (Site 541) toward the Pliocene; however, this shift may be influenced more by gravity flow deposits than by climatic changes. Samples of glacial intervals (e.g., Nebraskan) contain cold-water species (e.g., G. truncatulinoides, G. inflata, and Neogloboquadrina cf. pachyderma) along with the normal tropical assemblage. The cooling of the water mass is less rapid at the Pliocene/Pleistocene boundary in low latitudes than in high latitudes. The first appearance of the subtropical species G. *truncatulinoides* coincides with the Nebraskan glacial interval and not necessarily with the Pliocene/Pleistocene boundary.

Compared with Site 541, the preservation is less, indicating earlier deposition closer to the CCD during the late Pliocene. Sediments of Sections 543-7,CC through 543-10,CC were deposited close to or below the CCD. Siliceous microfossils first appear in Core 17, Section 1, indicating a depositional environment definitely below the CCD.

Sediments of Hole 543A (Cores 1 through 6) contain no calcareous microfossil assemblages and thus are deposited below the CCD. In these cores little or no bioturbation can be seen. The occurrence of numerous arenaceous and calcareous benthic foraminifers together with increasing bioturbation in Cores 6 to 10, Section 1 indicates better bottom conditions than seen in Cores 4 to 5. The first occurrence of calcareous benthic foraminifers in Core 7, Section 2 may indicate a depositional environment above the CCD. However, the abundance of benthic foraminifers or the ratio of arenaceous-calcareous foraminifers changes rather drastically in each core (Cores 7 through 10) and may reflect the relative movement of the CCD. In addition, the total lack of planktonic foraminifers (tests or even fragments) points toward a relict fauna of abyssal, benthic species. Thus the depositional environment can be placed close to the CCD. In comparing Holes 541, 542, and 543A with the Barbados outcrops in respect to the foraminiferal abundance, it is obvious that the depositional environment of Barbados, especially the Oceanic Formation, must be placed several thousand meters higher up the slope than the sites of Leg 78A.

BASALTS

Lithology

Altogether, 35.9 m of basalt were recovered in Hole 543A, out of 44 m cored, for a recovery rate of 81%. This is one of the highest rates of recovery for a singlebit hole into basement ever obtained by DSDP, and remarkably, was even higher than the rate of recovery in the sediments. The recovery was so exceptional that it was possible to log each pillow recovered on the igneous rock description forms, and determine that a total of 59 separate cooling units had been cored. Coring in basaltic basement began 3 m into the interval encompassed by Core 10 of Hole 543A, and proceeded through Core 16. It was terminated in order to leave sufficient time for logging and downhole experiments.

The reasons for the exceptional basalt recovery were (1) alteration was sufficient to have "healed" the abundant fractures typical of pillowed basalts, and (2) interpillow voids were largely filled, or at least lined, with spectacular, virtually geoidal calcite, which preserved entire glass selvages on many pillows. The pillows themselves are fairly small, rarely more than 1 m thick, and usually only a few tens of centimeters thick. Glass selvages were commonly curved, and were recovered on both the top and bottom, as well as the sides, of pillows. Some pillows were cored precisely on their edges, resulting in strikingly curved marginal glass zones that extend for several tens of centimeters through several pieces of rock. There were also three glass rinds that changed trend abruptly, curving sharply back upon themselves, representing places where the pillows formed "buds" one from another, during eruption.

The basalts vary from sparsely to strongly phyric, with plagioclase phenocrysts being most abundant and clinopyroxene and olivine phenocrysts occurring in some samples. The distribution of these phenocrysts varies mainly on a sample to sample basis, making it difficult to define distinctive petrographic units. However, phenocrysts are most abundant in Core 10, and again in Cores 14 to 16.

The most important downhole lithologic variations concern alteration and the distribution of interpillow sediments. Alteration is quite extensive in Cores 10 through 12. The rocks are pervasively altered to a dark gravish brown color, and some, mainly at pillow margins, are an almost brick-colored orange brown, highlighting the pale gray plagioclase phenocrysts. Through Core 13, calcite is the major mineral lining fractures, which, even in pillow interiors, can be 1 to 2 cm wide. Below this core, fractures are narrower-never more than 0.5 cm wide-and are lined either with calcite or green clays. Below Core 12, Section 4, the extent of the grayish brown zones of oxidative alteration diminishes, and most of the basalts are gray and dark gray in color. Clays identified by X-ray diffraction in these cores are primarily celadonite, mixed-layer clays, and dioctahedral smectite, all of which occur in the same samples, suggesting predominantly oxidative conditions of alteration. Trioctahedral smectite was found in only one sample. The celadonite-mixed-layer clay association forms distinctive dark bluish green encrustations on fracture surfaces, and is especially prevalent in Cores 14 and 15, with an additional occurrence in Core 16, Section 5. Primarily, there are only very narrow veins of calcite in the latter core.

Inter- and intrapillow sediments occur only in Cores 10 to 13. They include one sample with brown claystone between two pieces of glass, calcite-cemented basaltic sands, and one example of a wide fracture partially filled with brown claystone, then completely filled with calcite above the claystone. The claystone/calcite contact is horizontal, implying that clays partly filled the fracture well after it had formed in the solidified rock. The sediments in the basalts therefore probably only filled in void spaces as they were deposited. The pillows did not "intrude" soft sediments.

Petrography

Seventeen thin sections reveal the Hole 543A basalts to be petrographically typical of many previously described basalts from the Mid-Atlantic Ridge. They have the textures and crystal morphologies typical of pillows, namely zones of spherulites adjacent to glassy rinds becoming coarser grained and more microlitic toward pillow interiors. The principal variations occur in the abundances and, to some extent, the varieties of phenocrysts, and in the types of alteration. Plagioclase phenocrysts occur in all thin sections, and are as abundant as 15% in some of the sections from Cores 14 to 16. There are two types: large plagioclase megacrysts, often having inclusions of spherulitic devitrified glass and sharp exterior normal zones, and euhedral or tabular smaller phenocrysts, which are more numerous. Both types can occur as glomerocrysts, although the larger megacrysts form rather massive glomerocrysts and the smaller type frequently is only loosely clumped. Rare altered olivine is associated with the megacrysts, and clinopyroxene occurs with the smaller euhedral plagioclase phenocrysts. Single spinel crystals occur in three samples. The abundance of clinopyroxene phenocrysts, the rarity of olivine, and the rarity of chrome spinel, imply that the basalts are fairly extensively fractionated. The groundmass consists of plagioclase microlites or spherulites, spherulitic to dendritic clinopyroxene, and titanomagnetite, almost invariably altered to reddish iron hydroxides.

The phenocryst distribution in the cores can be summarized as follows: (1) Cores 10 to 11, Section 1: moderately plagioclase-olivine phyric basalt; (2) Core 11, Section 1 to Core 12, Section 2: sparsely to moderately plagioclase phyric basalt with rare augite phenocrysts and no calcic plagioclase megacrysts or glomerocrysts; (3) Core 12, Section 2 to Core 14: sparsely to moderately plagioclase-olivine phyric basalts; and (4) Cores 15 and 16: moderately to strongly plagioclase-clinopyroxeneolivine phyric basalt.

The other striking petrographic feature of these basalts is the distribution and type of secondary minerals. In Cores 10 and 11, there has been significant replacement of plagioclase by K-feldspar and calcite, with associated almost complete oxidation of groundmass titanomagnetite. The K-feldspar and calcite replacements are intimately associated texturally, and there is strong crystallographic control in the plagioclases on the occurrence of these secondary minerals.

Below Core 12, alteration is confined to partial replacement of the groundmass and olivines by green or blue green clays and iron hydroxides, filling in of vesicles by clays, iron hydroxides, and pyrite, ofttimes strikingly zoned, and veining by calcite with or without clays. Formation of iron hydroxides in the groundmass or in vesicles is more extensive near cracks. This phenomenon can even be seen macroscopically by tracing narrow calcite veinlets into pillow interiors. No matter how narrow these veinlets are, they are usually accompanied by narrow parallel zones 1 to 2 mm wide of oxidative alteration and iron hydroxide coloration. In some cases, particularly deeper in the cored basement, the calcite veins themselves either line or are lined with reddish iron hydroxide fillings. Overall, the alteration in Hole 543A basalts is very similar to that of basalts from Hole 417A, drilled during Leg 51, particularly in regard to the formation of K-feldspar near the top of basement, and the generally oxidative character of alteration elsewhere. The primary petrology and a summary of the

features of alteration are presented in more detail in chapters by Natland et al. (this volume) and Bougault et al. (this volume).

PHYSICAL PROPERTIES

The physical properties of cores recovered from Site 543 are similar to the properties measured in cores from Sites 541 and 542.

Sonic Velocity

An average of two ultrasonic velocity measurements were made on samples from each core from Site 543 (Table 3). The variation in compressional velocity throughout the entire site, excluding the basaltic basement rocks at the bottom of the hole, is uniform and generally small. As can be seen in Figure 7, the increase in velocity down to basement in the hole is very slight, very gradual, and linear (except for a few scattered points).

We converted the vertical components of sonic velocities to acoustic impedance, defined as

$$z = \rho \cdot V_p$$

where $\rho =$ density and $V_p =$ vertical velocity. As can be seen in Figure 7, the acoustic impedance at Site 543 increases uniformly down the hole, starting at about 2.0×10^5 g/cm²s near the seafloor and increasing to about 3.0×10^5 g/cm²s near the bottom of the hole.

In order to describe the variations in velocity with depth, we calculated mean velocities for given depth measurements as well as for the entire site above basaltic basement (Table 4). The average velocities parallel and perpendicular to the cores (exclusive of basalt basement samples) are virtually indistinguishable for the entire site. This relationship suggests that sedimentary material from the site is acoustically isotropic.

In order to test whether sedimentary samples from Site 543 are indeed acoustically isotropic, we computed relative anisotropy for each core sample from the relationship:

Anisotropy
$$A_n$$
 (%) = 100 × $(V_{\parallel} - V_{\parallel}/V_{\parallel} + V_{\parallel})$

where V_{\parallel} and V_{\perp} are the velocity values parallel and perpendicular to bedding, respectively. The results of these calculations are shown in Table 5. For all 61 computations, the average anisotropy, \overline{A}_n , is 0.395% with a standard deviation of 1.103%. The average anisotropy is slightly positive albeit very small. A cursory examination of Table 5 suggests that the slightly positive anisotropic effect discovered at Site 543 is confined to the sedimentary section below 300 m. Above 300 m, the drilled section at Site 543 is isotropic, as are the drilled sections at adjacent Sites 541 and 542.

Porosity, Density, and Water Content

Plots of water content, porosity, and density are shown in Figure 8. Porosity is also plotted versus depth in Figure 4. The density averages about 1.50 g/cm^3 from the seafloor to a sub-bottom depth of about 190 m. We have no sample data between about 190 and 210 m at

Horizontal O Vertical
 Horizontal and vertical superimposed

Figure 7. Plot of acoustic impedance and sonic velocity versus subbottom depth at Site 543. (Sonic velocities are calculated from recovered core samples and are *not* corrected to *in situ* values.) Acoustic impedance values also are *not* corrected to *in situ* values.) Table 3. Summary of physical properties for Site 543.

				2-min. GRAPE									
		So	nic	Wet	-bulk	Poros	sitv	G	ravimetrics		Acoustic		Thermal
Sample (core-section, interval in cm)	Sub-bottom depth (m)	(kn H ^a	1/s) V ^a	(g/c H ^a	v ^a	(%) H ^a) V ^a	Wet-bulk density (g/cm ³)	Porosity (%)	Water content (%)	(×10 ⁵ g/cm ² s) V ^a	Shear strength (kPa)	[$\times 10^{-3}$ (cal/ cm \cdot s \cdot deg)]
Hole 543	Sec.19			_						<u> </u>		2 36	
1-2, 56-59	2	1.490		1.35		80.6		1.41	76.2	55.6	2.10		
1-2, 105-108	3											18.1	
1-4, 116-118	5	1.499		1.50		71.6		1.54	65.3	43.4	2.31		
1-4, 105-108	6											17.3	
1-7, 90-93	10	1.493		1.49		72.2		1.50	70.8	48.3	2.24		
1-7, 103-106	10											13.2	
2-2, 17-20	12	1 400								10 6	2.24	9.1	
2-3, 44-4/	14	1.490		1.49		12.2		1.52	64.6	43.0	2.20	0.1	
2-3, 29-32	17	1 545		1.40		72.2		1.57	64 7	42.2	2.28	9.1	
3-3 120-123	24	1 480		1.49		72.2		1.37	71 1	40.2	2.20		
3-4, 13-16	25	1.400		1.42		14.4		1.40	/1.1	47.4	2.17	18.5	
3-5, 40-43	26	1.545		1.52		70.5		1.55	67.9	44.9	2.39		
3-7, 19-22	29							C 305 F	1000		(7115/52)	6.6	
4-2, 60-63	32	1.492		1.56		71.6		1.54	66.7	44.3	2.30		
4-3, 100-103	34											27.2	
4-4, 60-63	35	1.519		1.57		67.5		1.60	61.9	39.6	2.43		
4-6, 97-100	38	a							12212	22272.0		35.0	
4-6, 130-133	38	1.504		1.49		72.2		1.53	65.6	44.0	2.30		
5-3, 13-16	42	1.500		1.50		71.0		1.56	63.3	41.7	2.34		
5-3, 21-25	42											18.1	2 622
6.2 135 137	42	1 406		1 42		75 9		1 56	61.4	40.4	2 22		2.533
6_4 70 - 72	54	1.490		1.43		66.0		1.50	63.8	40.4	2.33		
6-4, 82-86	54	1.500		1.50		00.9		1.01	05.0	40.0	2.42	17.3	
6-6, 97-100	57											32.5	
6-7, 13-16	58											63.0	
6-7, 21-23	58	1.519		1.58		66.9		1.60	63.2	40.5	2.43		
7-2, 86-89	60											21.4	
7-2, 94-97	61	1.482		1.55		68.7		1.58	63.8	41.4	2.34		
7-3, 138-141	62					1.000			100100			77.8	
7-4, 41-44	63	1.471		1.56		68.1		1.55	67.3	44.4	2.28		
7-4, 47-50	63											26.4	
8-3, 104-107	72	1 405		1.00		(0.7		1.00	(2.2	20.0	2 20	44.9	
8-3, 124-128	72	1.485	1 402	1.55		08./		1.60	62.2	39.9	2.38		
8-4, 50-54	73	1.400	1.493	1.57		07.5		1.01	02.4	39.0	2.40	72 1	
8 CC (5-8)	73											37.1	
8.CC (10-13)	77	1.523		1.63		63.9		1.71	55.8	33.3	2.60	51.1	
9-1, 92-95	78										173.0.0.	12.4	
9-1, 104-107	78	1.482		1.47		72.2		1.53	65.8	44.1	2.27		
9-4, 65-68	82	1.493	1.502	1.50	1.56	71.6	68.1	1.65	59.0	36.6	2.48		
9-4, 73-76	82											45.3	
9-6, 82-85	85											39.5	120203
9-6, 120	86												2.644
10-2, 82-86	89	1.480		1.37		79.4		1.41	71.2	51.8	2.09		
10-2, 92-95	89	1 620	1 620	1.66	1.65	62.1	(2.7	1 20	50.1	36.1	2.67	11.8	
10-4, 01-04	92	1.529	1.529	1.00	1.05	02.1	02.7	1.08	59.1	30.1	2.57	82.4	
10-4, 90-101	92											50 3	
11-1, 101-103	97											19.8	
11-1, 119-123	97	1.470		1.43		75.8		1.40	74.9	54.8	2.06	17.0	
11-3, 49-52	100									2.110		48.0	
11-3, 59-63	100	1.463	1.489	1.51	1.52	71.0	70.4	1.51	69.3	46.9	2.25		
12-2, 110-113	108											31.3	
12-2, 117-121	108	1.485	1.477	1.41	1.44	77.0	75.2	1.46	72.3	50.6	2.16		
12-4, 82-85	111											96.4	5.000 (MAD)
12-6, 100	114											20121	2.644
12-6, 117-120	114	0 13222	15 0.227	8 75	S 183			1000	1222712	12121	2.222	41.2	
12-6, 125-129	114	1.487	1.497	1.44	1.44	75.2		1.49	71.1	48.9	2.23	63.6	
13-2, 104-107	118	1 400	1 606	1.60	1.64	71.0	(0.1	1.64	67.0	45.0	2.22	53.5	
13-2, 110-120	118	1.499	1.505	1.52	1.50	/1.0	08.1	1.54	07.8	45.0	2.32	72.2	
13-6, 63-66	123											76.6	
13-6, 70-74	123	1,520	1.511	1.69	1.60	60.3	65 7	1.63	65.4	41.1	2.46	10.0	
14-1, 83-86	125	1.520	1.511	1.09	1.00	00.3	05.7	1.05	0.1	44.1	2.10	32.9	
14-2, 80-83	127	1.520	1.512	1.49	1.50	72.2	71.6	1.52	71.7	48.4	2.30		
14-3, 103-106	129											24.7	
14-5, 97-100	132											13.2	
14-5, 110-113	132	1.500	1.662	1.39		78.2		1.43	70.9	50.6	2.38		

Table 3. (Continued).

				2-min. GRAPE									
Sample	Sub bottom	Sovelo	onic	Wet-	-bulk isity	Poros	ity	G	ravimetrics	Watan	Acoustic	Sheer	Thermal
(core-section, interval in cm)	depth (m)	(kn H ^a	n/s) V ^a	(g/c H ^a	m ³) V ^a	(%) H ^a	va	density (g/cm ³)	Porosity (%)	content (%)	$(\times 10^5 \text{ g/cm}^2 \text{ s})$	strength (kPa)	$[\times 10^{-3} (cal/cm \cdot s \cdot deg)]$
Hole 543 (Cont.)													
15-3, 36-39	137											39.5	
15,CC	144		1.643	1.77	1.80	55.5	53.7	1.77	58.5	33.9	2.91	55350	
16-2, 73-76	146	10010000									1400-0002	28.8	
16-2, 92-95	146	1.526	1.533	1.47	1.50	73.4	71.6	1.49	74.4	51.3	2.28		
16-4, 24-27	148	1.551	1.506	1.56	1.56	68.1		1.54	71.0	47.3	2.32	43.2	
17-1, 70-73	154	1.527		1.49	1 49	72.2		1 44	76.2	54.1	2 20	43.2	
17-1, 77-80	154				1.15			1.11	70.2	54.1	2.20	62.6	
17-4, 135-138	159	1.518	1.505	1.34	1.35	81.2	80.6	1.41	76.5	55.7	2.12		
18-1, 65-68	163	1.581	1.565	1.40	1.46	77.6	74.0	1.46	74.9	52.6	2.28		
18-6, 99-102	171	1.604	1.598	1.40	1.34	74.0	81.7	1.40	76.2	55.8	2.24	22.0	
19-3, 10-13	175	1 946	1 502	1 34	1 33	81.2	81.8	1 20	76 4	56 A	2 21	32.9	
19-3, 80-84	176	1.596	1.564	1.40	1.36	77.6	80.0	1.43	73.6	52.6	2.24		
19-5, 8-11	178	10000									12100	42.8	
19-6, 8-11	180											19.8	
19-6, 13-16	180	1.514		1.41		77.0		1.39	76.5	56.2	2.10		
20-2, 88-91	184	1 666	1	1 47	1 20		70.0	3.22		60 0		105.4	
20-2, 98-101	184	1.530	1.531	1.47	1.38	73.4	78.8	1.44	74.1	52.7	2.23		
20-3, 94-97	186	1.547	1.550	1.42	1.42	70.4		1.49	/1.5	47.2	2.23	90.6	
20-4, 85-88	187											>118.6	
20-4, 100	187												2.384
23-1, 128-131	211											112.0	
23-1, 138-142	211	1.619	1.580	1.66	1.74	62.1	57.3	1.70	58.9	35.5	2.69		
23-2, 99-103	213	1.578	1.579	1.64	1.59	63.3	66.3	1.68	61.9	37.9	2.65	112.0	
24-2, 95-97	213											75.8	
24-2, 108-111	222	1.563	1.560	1.66	1.70	62.1	58.9	1.68	62.1	37.9	2.62	1010	
24-3, 98-100	224							20.048				118.6	
24-4, 103-106	225	1.572	1.575	1.74	1.76	57.3	56.1	1.71	61.1	36.7	2.69		
24-4, 108-110	225											101.3	
25-1, 7-10	229	1 579	1 520	1.65	1.69	62 7	60.0	1.67	61.0	27.0	2 57	54.4	
25-2, 55-59	231	1.557	1.551	1.65	1.68	62.7	60.9	1.68	60.2	36.5	2.61		
25-2, 65-68	231						0017	1100	00.2			67.5	
25-3, 15-18	232											66.7	
26-2, 54-57	241	1.604	1.541	1.72	1.72	58.5		1.71	59.3	35.5	2.64		
26-2, 102-105	241											106.2	
26-5 55-58	244	1 620	1 570	1.63	1.63	61.0		1 70	57.0	24.9	2.67	112.0	
26-6, 70-73	247	1.020	1.570	1.05	1.05	01.9		1.70	51.9	34.0	2.07	125.2	
27-3, 120-123	252	1.625	1.610	1.68	1.63	60.9	61.9	1.70	59.2	35.8	2.74	120.2	
27-5, 27-30	254											79.1	
27-5, 83-86	255	1.613	1.612	1.67	1.61	61.5	65.1	1.70	58.1	35.1	2.74		
28-1, 71-74	258	1.629	1.622	1.54	1.61	69.3	65.1	1.66	59.2	36.5	2.69	102.1	
28-3, 59-62	261	1.646	1 607	1 76	1 70	56.1	59 7	1 73	57.0	33.8	2 78	102.1	
28-4, 97-100	263	1.010	1.007	1.70	1.70	50.1	37.1	1.75	57.0	55.0	2.70	117.8	
28-4, 125	263												2.588
29-2, 56-60	269	1.643	1.617	1.53	1.53	69.9		1.61	59.3	37.6	2.60		
29-2, 65-68	269											121.9	
29-3, 50-53	271	1 622	1 610	1 56	1.55	60 1	60 7	1.00	60 E	26.1	0.67	123.5	
29-6, 72-75	275	1.023	1.010	1.50	1.55	68.1	68.7	1.00	58.5	30.1	2.07	>115.3	
30-2, 110-113	279	1.603	1.618	1.55	1.50	68.7	71.6	1.61	59.6	38.0	2.60	/115.5	
30-2, 118-120	279	120203-03	19 10 10 10	0.00.00		3.5.6.0						>120.3	
30-4, 38-41	281		1011 (124174)									90.6	
30-5, 125-128	284	1.634	1.641	1.48	1.47	72.8	73.4	1.58	52.7	34.3	2.59		
30-5, 154-157	284	1 784	1 721	1 56	1 57	69 1	67 5	1 70	52.0	22.0	2.04	102.1	
31-1, 45-48	286	1.704	1.751	1.50	1.57	00.1	07.5	1.70	55.0	32.0	2.94	62.6	
31-1, 77-81	287	1.631	1.634	1.53	1.54	69.4	69.3	1.63	58.3	36.6	2.66	02.0	
31-2, 8-11	288	1.604	1.630	1.46	1.51	74.0	71.0	1.62	58.7	37.1	2.64		
31-2, 17-20	288											59.3	
32-1, 50-53	296	1	1 440	1.40			-			<i>i</i> a -		79.1	
32-2, 94-96	290	1.014	1.548	1.46	1.41	74.0	77.0	1.55	63.6	42.1	2.40	74.0	
32-3, 85-87	299											64.2	
32-4, 43-47	300	1.755	1.824	1.47	1.54	73.4	69.3	1.62	58.3	36.9	2.95		

Table 3. (Continued).

Sonic Wet-bulk Gravimetrics	Acoustic		
			Thermal
Sample Sub-bottom velocity density Porosity Wet-bulk Water (core-section, depth (km/s) (g/cm ³) (%) density Porosity conten	impedance at $(\times 10^5 \text{ g/cm}^2 \text{ s})$	Shear strength	conductivity $[\times 10^{-3} (cal/$
interval in cm) (m) $H^a V^a H^a V^a H^a V^a$ (g/cm ³) (%) (%)	Vª	(kPa)	$cm \cdot s \cdot deg)]$
Hole 543 (Cont.)			
33-1, 106-111 306 1.785 1.681 1.43 1.52 75.8 70.4 1.62 57.3 36.3 33-2 80 82 307 307 36.3 <t< td=""><td>2.72</td><td>22.4</td><td></td></t<>	2.72	22.4	
35^{-2} , 00^{-62} 507 22.2 22.26 200 1.500 1.50 1.51 1.52 71.0 70.4 1.50 52.1 40.2	2 52	33.4	
$35^{-5}, 22^{-20}$ 500 1.360 1.392 1.51 1.52 $/1.0$ $/0.4$ 1.50 02.1 40.5 21.3 23	2.32		2 220
33-5,05 500 241146149 216 1.602 1.661 1.40 1.26 72.2 90.0 1.64 61.6 40.0	2 56		2.339
34-1, 140-140 510 1.005 1.001 1.49 1.30 $/2.2$ 80.0 1.34 01.0 $40.724.2$ 04.07 217 1.776 1.711 1.47 1.48 7.2 4.70 1.61 50.2 27.7	2.30		
34-2, 74-97 517 1.770 1.711 1.47 1.46 75.4 72.6 1.01 59.5 57.7	2.15		
54,00 524 2.425 2.455			
Hole 543A			
H1-4, 18-21 327		119.4	
2-1, 8-11 332 1.707 1.704 1.55 1.55 68.7 1.66 57.2 35.4	2.83		
2-2, 52-55 334 1.589 1.569 1.52 1.60 70.4 65.7 1.61 63.7 40.6	2.53		
2,CC 342 1.638 1.624 1.58 1.63 66.9 63.9 1.64 59.2 36.9	2.66		
3-1, 148-150 343 1.749 1.689 1.66 1.67 62.1 61.5 1.74 55.9 33.0	2.94		
3-2, 101-104 344 1.706 1.674 1.81 1.57 53.1 67.5 1.73 58.3 34.6	2.90		
4-1, 6-9 351 1.690 1.646 1.79 1.88 54.3 49.0 1.79 55.2 31.5	2.95		
4-3, 36-39 354 1.689 1.566 1.63 1.81 63.9 53.1 1.80 55.6 31.7	2.98		
5-1, 84-87 361 1.662 1.636 1.30 1.74 83.6 57.3 1.76 56.6 32.9	2.88		
5-2, 58-61 363 1.686 1.651 1.81 1.78 53.1 54.9 1.77 56.6 32.7	2.92		
5-2, 70-73 363		128.5	
6-1, 49–52 370 1.634 1.598 1.61 1.79 65.1 54.3 1.76 57.8 33.8	2.81		
6-1, 66-68 370		130.1	
6-1, 105 371			3.041
7-1, 96-100 381 1.629 1.628 1.89 1.95 48.4 44.8 1.83 55.2 31.0	2.98		
7-1, 101–104 381		70.8	
7-2, 27-30 381		73.7	
7-3, 91–94 384		59.7	
7-3, 100-104 384 1.697 1.672 2.06 1.91 38.2 47.2 1.94 48.4 25.6	3.24		
7-4, 10 384			3.578
8-1, 10-13 389		95.1	
8-1, 17-20 389 1.610 1.586 1.76 56.4 32.9	2.79		
8-1, 87-91 390 1.638 1.587 1.78 56.5 32.5	2.82		
8,CC (5-8) 399		114.9	
9-1, 6-10 399 1.617 1.597 1.80 54.8 31.1	2.87		
9-1, 33-36 399		74.5	
9-1, 50-54 399 1.568 1.585 1.81 54.6 30.9	2.87		
10-1, 14-17 408		71.7	S
10-1, 28-32 408 1.664 1.671 1.85 52.3 28.9	3.09		
10-1, 120-124 409 4.910 4.932 2.74 2.72 2.65 8.5 3.3	13.07		
11-2, 30-34 419 5.621 5.561 2.96 2.97 2.81 5.6 2.1	15.57		
12-1, 80-84 421 5.358 5.287 2.99 2.90 2.80 6.1 2.2	14.80		
13-3, 55-58 431 5.580 5.314 3.06 3.06 2.83 5.7 2.1	15.04		
15-3, 7-11 441 5.293 5.284 3.02 2.91 2.8 4.5 1.6	14.90		
16-3, 46-50 449 5.471 5.327 3.06 2.97 2.82 4.6 1.7	15.02		

Note: Some shear strength measurements exceeded instrumentation limits and are indicated by a greater than (>) symbol. These values are not plotted in any figures and the values are considered below failure strength of the material.

^a H = horizontal; V = vertical.

Table 4. Average sonic velocities, in Holes 543 and 543A.

Sub-bottom depth range (m)	$\overline{V}_{\parallel}^{a}$ (km/sec)	S	N	\overline{V}_{\perp}^{a} (km/sec)	S	N
0-100	1.494	0.021	25	1.495	0.021	29
100-200	1.533	0.037	16	1.544	0.051	18
200-300	1.624	0.055	21	1.610	0.066	21
300-400	1.703	0.176	21	1.676	0.183	21
Total	1.589	0.135	86	1.580	0.120	86

Note: Values listed here are exclusive of measurements in basement. \overline{V}_{\parallel} = velocity parallel to bedding; \overline{V}_{\perp} = velocity perpendicular to bedding. S = standard deviation and N = number of samples.

^a Includes V_{\parallel} presumed to be equal to V_{\perp} in the upper section of semiconsolidated material.

the site, but below the gap in data, the density has increased significantly and averages about 1.70 to 1.75 g/ cm^3 . There is a slight decrease in density from about 260 to 340 m sub-bottom.

The porosity and water content values for the upper 200 m of Site 543 are quite variable, often decreasing or increasing up to 20% in a few tens of meters. Similar trends in the variation in density can be noted in the upper 200 m of Site 543 (Fig. 8). Below the gap in data near 200 m, both the water content and porosity decrease gradually toward the bottom of the hole, as might be expected due to increasing compaction and overburden pressure.

We should note here that there is a great deal more scatter in the water content, porosity, and density values

Table 5. C	alcu	lated sonic	velocity a	nisot	ropy
values	for	individual	samples,	Site	543
(see te:	xt fo	r derivation	1).		

Section (core-section)	Sub-bottom depth (m)	Anisotropy (%)
Hole 543	8.8	<u> </u>
8-4	73	-0.17
9-4	82	-0.30
10-4	92	0.0
11-3	100	-0.88
12-2	108	0.27
12-6	114	-0.34
13-2	118	-0.20
13-6	123	0.30
14-2	127	0.26
14-5	132	-5.12
16-2	140	-0.23
10-4	148	0.42
17-4	159	0.45
18-6	171	0.10
19-3	176	1 01
20-2	184	0.16
20-3	186	0.36
23-1	211	1.22
23-2	213	-0.03
24-2	222	0.10
24-4	225	-0.10
25-1	229	1.25
25-2	231	0.19
26-2	241	2.00
26-5	245	1.57
27-3	252	0.46
27-5	255	0.03
28-1	258	0.22
28-3	261	1.20
29-2	269	0.80
29-3	271	0.40
30-2	279	-0.47
30-5	284	-0.21
31-1	285	-0.09
31-2	288	-0.80
32-1	296	2.09
32-4	300	-1.93
33-1	306	-3.00
33-3	308	-0.13
34-1	316	0.66
34-2	317	1.86
34,CC	. 324	-0.55
Hole 543A		
2-1	332	0.09
2-2	334	0.63
2,CC	342	0.43
3-1	343	1.75
3-2	344	0.95
4-1	351	1.32
4-3	354	1.02
5-1	361	1.05
5-2	303	1.05
7-1	381	0.03
7-3	384	0.05
8-1	389	0.75
8-1	390	1.58
9-1	399	0.62
9-1	399	-0.54
10-1	408	-0.21

for the upper 200 m at Site 543 than for strata drilled at equivalent depths at Sites 541 and 542.

Shear Strength

Shear strength values for cores From Site 543 are listed in Table 3 and are shown in Figures 8 and 4. Unlike shear strengths measured at Sites 541 and 542, the values obtained at Site 543 are quite scattered and variable throughout the drilled section, although the average shear strength values tend to increase down the hole. The scattered data points, especially at depth, for shear strength are very unlike the generally constant (or slightly decreasing), uniform values measured at the other two sites. The difference in data suggests that consolidation or tectonic processes that may be active at Sites 541 and 542 are apparently not currently active at Site 543, or that some other processes are acting on the strata at Site 543.

Thermal Conductivity

Eight conductivity measurements were made at Site 543 (Table 3). The conductivity values measured at site 543 are generally slightly less (about 10%) than values measured for equivalent depths at Sites 541 and 542. Conductivity is nearly constant at Site 543 and averages about 2.5×10^{-3} cal/cm \cdot s \cdot deg, except near the bottom of the hole, where conductivity values increase to slightly more than 3.5×10^{-3} cal/cm \cdot s \cdot deg.

Some Related Findings

Figure 9 is a plot of porosity versus density measurements from cores taken at Site 543. Also shown is the empirically derived equation from DSDP, relation density and porosity:

$$\rho_{\rm b} = 2.70 - 1.675\phi$$

where $\phi = \text{porosity of a sample.}$

The porosity and density values from Site 543 are scattered but do show a generally linear relationship. However, the scatter in the data from Site 543 is considerably greater than density-porosity data from Sites 541 and 542. Data from Sites 541 and 542 consistently plot above the empirically derived function from DSDP, whereas data from Site 543 generally plot below the DSDP equation. Thus for a given porosity, strata from Sites 541 and 542 are generally more dense than equivalent rocks from Site 543.

Earlier, we speculated that the uniform physical properties observed at sites 541 and 542 in a so-called subduction zone may be related to a tectonic overprint. Convergence and subsequent deformation have apparently allowed a relatively irregular physical property profile, as at Site 543, to be transformed to a uniform profile, as at Sites 541 and 542.

PALEOMAGNETICS

The objectives for paleomagnetic sampling at Site 543 were to use polarity stratigraphy for age control and to determine the magnetic properties of the basalts. Refer to the paleomagnetism chapter (Wilson, this volume)

Figure 8. Plot of water content (wet wt.%), porosity (%), density (gm/cm₃), vertical velocity (km/s), and shear strength (kPa) values versus depth at Site 543.

for a complete discussion. Drilling deformation was, again, a major problem in the upper part of the sedimentary section. No samples at all were collected in the interval from Cores 1 to 5, and samples were very sparse from Cores 6 to 16—completely inadequate for polarity stratigraphy. Sample density and stability were adequate for Cores 17 to 20 (161–199 m sub-bottom). The reversed intervals in Cores 18 and 20 should correlate to polarity epochs 16 and 18, respectively (Fig. 10). The radiolarian dates for this range strongly support these identifications, based on the correlation of Theyer and Hammond (1974).

The correlation between core polarity epochs and the marine magnetic anomalies is not rigorous in this inter-

SITE 543

Figure 9. Plot of density versus porosity for core samples from Site 543. (See text for discussion.)

val, but if we have a nearly constant sedimentation rate, these four cores would correspond very nicely to Marine Anomalies 5C and 5D (age range 16 to 18 Ma, from Ness et al., 1980).

Cores 24 to 34 present an interesting problem. Drilling deformation was minimal and recovery was good, so sample density was adequate. Of over 40 samples, more than 30 are confidently judged to be reversed, and only one is normal. This pattern is not remotely compatible with any time scale and indicates remagnetization during a predominantly reversed interval. There is little hope for drawing any useful conclusions from the sediments in Hole 543A due to poor recovery and low paleolatitude.

The basalts are extremely stably magnetized and show very good internal consistency. NRM intensities are fairly strong, generally 5 to 10 Å/m. Directions change less than 2° with AF demagnetization, and median destructive fields are 15 to 30 nT. Inclinations divide neatly into three groups: Section 543A-10-1, -11° ; Sections 543A-11-1 to 543A-12-1, $-35^{\circ} \pm 1^{\circ}$; and Sections 543A-12-2 to 543A-16-7, $25^{\circ} \pm 4^{\circ}$. These correspond to basalts of differing petrography and composition, hence probably represent separate eruptions that recorded secular variation during a single reversed polarity epoch (Natland, this volume; Wilson, this volume).

TEMPERATURE MEASUREMENTS

A temperature logging run was made in Hole 543A using the Gearhart-Owen logging tool. The run extended past the end of the pipe, but stopped short of basement due to bridging in the hole. The results, complicated by an upward flow of warm water from the bottom of the hole, suggest a smaller undisturbed thermal gradient (roughly 20° /km) than that found to the west of the deformation front at Site 541. For more details, see Davis et al. (this volume).

SEISMIC STRATIGRAPHY—CORRELATIONS WITH LITHOLOGY AND PHYSICAL PROPERTIES

In the abyssal plain north of the Tiburon Rise the A1C seismic section is characterized by flat or gently dipping, more or less continuous reflectors of low amplitude and generally low continuity. Nevertheless it is possible to define several units within the sequence.

Seismic unit 1 occurs between seafloor and Reflector 1 and is composed of flat-lying layered sediments passing westward into the toe of the Barbados Ridge complex. Note in profile A1C that the uppermost part of this unit could be slightly folded at the deformation front (Fig. 3).

Seismic unit 2 occurs between Reflectors 1 and 2, is relatively transparent, and shows few thickness variations. This unit passes below the discontinuously reflective sequence of the prism.

Seismic unit 3 occurs between Reflectors 2 and 3 (the top of the acoustic basement) and exhibits rapid variation of thickness due to the paleotopography as well as variations in seismic character.

The location of Site 543 was chosen over a basement high, between the deformation front and the proposed

Figure 10. Stable magnetic inclination in sediments of Hole 543 versus sub-bottom depth, and polarity interpretation. (Black areas indicate normal polarity; white areas show reversed polarity. Open circles represent data judged to be less reliable than the data represented by filled circles; open circles with arrows indicate data that are off the graph.)

reference hole (CAR-1D). Due to navigational difficulties the location of Site 543 is estimated to be 0.5 km north of the Profile A1C (Fig. 2). At shot point 380 on Profile A1C the sedimentary sequence is 0.490 s thick (two-way traveltime), where seismic unit 1 is 220 m/s thick, seismic unit 2 is 150 m/s thick, and seismic unit 3 is 120 m/s thick.

Despite the southern displacement of Profile A1C from Site 543, correlation between the observed seismic stratigraphy and the drilled section is good (Fig. 11):

1) From 0 to 174 m (sub-bottom), the well-layered Pleistocene-Pliocene-upper Miocene sequence (Lithological Units 1, 2, and 3) corresponds to seismic unit 1 (using an average velocity of 1.57 km/s, the thickness of this seismic unit should be about 173 m). We can correlate the prominent Reflector 1 with the significant decrease in porosity and increase in density and shear

strength, which occurs between 180 and 200 m sub-bottom at the uppermost part of the lower Miocene radiolarian muds; the same Reflector 1 was penetrated at Site 541, where the bit entered the very top of the underthrust sequence.

2) From 174 m to the bottom of Hole 543, Lithological Units 4, 5, and 6 correspond to seismic units 2 and 3. A lack of significant change in the physical properties of the cored section in unit 2 makes it difficult to correlate the seismic stratigraphy with the cored section. Nevertheless, using a velocity of 1.68 km/s between 200 and 300 m, we can correlate Reflector 2 at the bottom of seismic unit 2 to the top of zeolitic clays (Unit 5b) of the middle Eocene.

3) The depth to oceanic layer 2 at Site 543 was difficult to predict because of the lack of good velocity analyses from seismic reflection data. The cored contact is estimated at 411 m sub-bottom, a depth close to the calculated depth (404 m) based on core velocity measurements (around 390 m using an average velocity of 1.75 km/s).

SUMMARY AND CONCLUSIONS

Site 543 is located on the Tiburon Rise 3.5 km seaward of the deformation front of the Barbados Ridge complex. Here we penetrated a 411-m sequence of hemipelagic and pelagic sediments and 44 m of basaltic basement.

The recent sediments consist of ashy mud to a depth of 8 m at Site 543. The subjacent sediments to 70.5 m are Pleistocene to upper Pliocene ashy nannofossil mud that is transitional to a unit of lower Pliocene to lower Miocene mud and ashy mud that extends to 176 m subbottom. Radiolarian clay initially with local ash layers, subsequently with manganese stains, occurs from 170 to 322 m sub-bottom, spanning the lower Miocene into the Oligocene. Zeolitic clay-claystone is present from 322 to 379 m sub-bottom and overlies a basal calcareous, ferruginous Maestrichtian to Campanian claystone that contacts basalt at 411 m. Plagioclase as well as plagioclaseolivine phyric pillow basalts extend to a total depth of 455 m.

Overall the lithology at Site 543 records the birth and evolution of an oceanic crustal sequence with its progressive juxtaposition with an active volcanic source. The pillow basalts recovered at the base of Site 543 are typical of those found at the Mid-Atlantic Ridge, and they are succeeded by altered sediments commonly formed during hydrothermal activity at ridges. The claystones and zeolitic clay-claystone and manganese-rich radiolarian clays record slow sedimentation under openocean conditions, removed from any significant terrigenous or volcanic source. Notable quantities of ash occur in the lower Miocene and are also present through the Neogene, suggesting proximity to the Lesser Antilles arc. The carbonate content and occurrence of nannofossils and foraminifers suggest that Site 543 was above the CCD in the Late Cretaceous and the early Pliocene to Pleistocene. In general the Miocene and younger sediments at Site 543 are similar to those cored at Sites 541 and 542.

Figure 11. Correlations between physical properties, lithological units, and main reflectors of profile A1C (Fig. 3).

The structural features observed in the cores from Site 543 are principally induced by drilling. As such, these features provide an excellent reference section and allow separation of drilling induced and natural structures in the tectonically deformed sequences at Sites 541 and 542. Notably, the clay-rich sediments above 191 m and below 315 to 380 m at Site 543 are more easily deformed by drilling than the radiolarian-bearing sediments separating them, suggesting the former may constitute favored zones for décollement when this oceanic section is underthrust beneath the trench slope.

At Site 543 sonic velocity increased uniformly with depth in the sedimentary section. Density and porosity show a sharp increase and decrease, respectively, between 180 and 200 m. An increase in shear strength also occurs at this interval. This marked variation in physical properties correlates with the transition from mud to radiolarian mudstone and the approximate seaward extension of the reflector separating the apparently offscraped and underthrusted units to the west.

A key characteristic of Site 543 is the overall equivalence of its Miocene and younger sediments to the sequences cored at Sites 541 and 542; as such, we may infer oceanic derivation and offscraping of the deformed and faulted sequence penetrated at these latter sites. A second critical result is the association between 165 and 200 m of the top of the radiolarian-bearing mud, the increase in density and strength, and the reflection separating the apparently offscraped and subducted units west of the deformation front. The observed changes in physical properties, while subtle, favor the development of a décollement at this level, as inferred from the seismic data.

A downhole seismometer with temperature and tilt recorders was emplaced in the basaltic basement at Site 543. The instrument remained in the hole while a seismic refraction experiment was conducted. Malfunctioning of the seismometer necessitated retrieval of the downhole instrument and prevented deployment of the longterm recording package on the seafloor.

REFERENCES

- Berger, W. H., 1977. Carbon dioxide excursion and the deep-sea record, aspects of the problem. In Anderson, N. R., and Malahoff, A. (Eds.), The Fate of Fossil Fuel CO₂ in the Oceans. Mar. Sci., 6: 505-542.
- Berggren, W. A., 1973. The Pliocene time scale: calibration of planktonic foraminiferal and calcareous nannoplankton zones. *Nature*, 243:391–397.
- Biju-Duval, B., Mascle, A., Montadert, L., and Wanneson, J., 1978. Seismic investigations in the Columbia, Venezuela, and Grenada Basins, and on the Barbados Ridge for future IPOD drilling. *Geol. Mijnbouw*, 57:105-116.
- Blow, W. H., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Bronnimann, P., and Renz, H. H. (Eds.), Proc. First Int. Conf. Planktonic Microfossils, Geneva, 1967. 1: 199-422.
- Bukry, D., and Okada, H., 1980. Supplementary modification and introduction of code numbers to the low-latitude Coccolith biostratigraphic zonation. *Mar. Micropaleontol.*, 5:321-325.
- Gartner, S., 1977. Calcareous nannofossil biostratigraphy and revised zonation of the Pleistocene. Mar. Micropaleontol., 2:1-25.
- Mascle, A., Lajat, D., and Nely, G., in press. Sediment deformation linked to subduction and argilokinesis in the southern Barbados

Ridge from multichannel seismic surveys. Trans. 4th Latin Am. Geol. Congr.

- Ness, G., Levi, S., and Couch, R., 1980. Marine magnetic anomaly time scales for the Cenozoic and Late Cretaceous: a precis, critique, and synthesis. *Rev. Geophys. Space Phys.*, 18:753-770.
- Riedel, W. R., and Sanfilippo, A., 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropaleontology*, 23:61-69.
- Sanfilippo, A., and Riedel, W. R., 1982. Revision of the radiolarian genera *Theocotyle, Theocotylissa*, and *Thyrsocyrtis. Micropaleon*tology, 28(2):170-188.
- Theyer, F., and Hammond, S. R., 1974. Paleomagnetic polarity sequence and radiolarian zones, Brunhes to Polarity Epoch 20. Earth Planet. Sci. Lett., 22:307-319.
- Verbeek, J. W., 1976. Calcareous nannoplankton biostratigraphy of Middle and Upper Cretaceous deposits in Tunisia, Southern Spain, and France. Utrecht Micro. Bull., 16:1-157.

MIE .	PHIC	-	CHA	OSS	IL	T	ME	CORED			
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		-	FM			1	0.5	/:		* XRD	VITIRC MUD, CALCAREOUS VITRIC MUD Colers are brown (10YR 5/3) and grayint brown (10Y 5/2), generally more athy. Locally dark gray (6Y 3/1 Athy zones represent originally discrete ash fall layer mixed up by drilling. Core is intensely writed by drilling. Carbonate content is greater in Sections 4–3 ing. Carbonate content is greater in Sections 4–3
											SMEAR SLIDE SUMMARY (%): 1, 67 2, 60 3, 55 5, 110 7, 110
			B	RP		2			****		D D D D D D Sand 10 1 3 5 7 Sand 10 1 3 5 7 Sand 20 9 10 10 10 Cary 70 90 87 85 83 Composition:
			RP			3	and and a state of the state of	<u></u>	******		Calc. nannofosilis 25 2 20 40 — CaCO ₃ Bomb (%): 2, 56 = 0,5 3, 55 = 3,4 4, 111 = 1,0 7, 90 = 14.9
Pleistocene			в			4		VOID			
lower F		PR	FP	vR/ P		5	and tradition.			•	
	ooides truncatulinoides N22 (F)		vC/ M			6	tri fi fi fi fi fi				
	Globorotalia (G.) truncatulin	AM	FM	CP		7	the second second			•	

	2		F	oss	L						T	
¢	APH		CHA	RAC	TER	<u>.</u>						
UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			CP					0.5			•	VITRIC MUD, CALCAREOUS VITRIC MUD and MINOI ASH Colors: are dominantly brown (10YR 5/3) and pail brown (10YR 6/3-6/4) with bits of black (N7), and gravish brown (2.5Y 5/2), and yellowish brown (10YI 5/4) ash. Intimately mixed and awired by drilling Ash was probably originally discrete beds, now is bitble blotches, spots, wirls, and etc.
												1,50 2,70 4,75 6,15
		AG	8				2	and a contract			•	D D D D Texture: 3 3 3 Sint 8 10 7 7 Clay 90 87 90 90 Composition: 0 0 1 1 1 Feldspar 2 2 2 2 2
leistocene		см	см				3			**********		Clary 4 0 7 5 Votamic glass 10 5 7 5 Foraminifers 1 2 3 4 Calc Constructions 45 40 40 45 CaCO ₂ Bornb (%): 3, 44 = 10,4 3, 58 = 16,8 5, 44 = 0,0
lower P	runcerul/moldes basal N22 (F)	FP	RP	B			4	in the data is	PP			
	oborotalia (G.) truncatulinoides t		в				5					

253

SITE 543

HIC		F	oss	IL				П			
BIOSTRATIGRAPI ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SMOTADO	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		FP			1	0.5		00000000			 VITRIC MUD, CALCAREOUS VITRIC MUD, MUDDY ASH, and MINOR ASH Colors are pairs brown (10 YR 8/3), pairs olive (SY 6/4) and diner gavs (GY 5/2) toward top of core, chang ing to more ashy grav (GY 6/1) and olive grav (SY 6/2), rear the bottom. Bitels and streaks of grav and dah grav (N4) ash. Stections 1 and 2 are mainly compacted mud breccias Distinct ashy zones more nearly horizontal occur lower in the core. Dherwise it, is parts disturbed by coring
		FP			2	a farachara		000000			SMEAR SLIDE SUMMARY (%): 1,135 3,90 4,80 6,80 6,110 D D M D D Texture: 3 3 3 5 3 Sand 2 3 25 5 3 Sind 2 3 25 5 3 Sit 8 6 15 10 10 Clay 90 91 60 85 87
	СМ	см			3	and accord accord		0			Composition: 1 1 1 1 1 Culture 2 2 3 3 2 Cave 2 2 3 3 2 Cave 2 2 3 3 2 Cave 42 62 42 26 38 Votanic plass 10 - 50 15 6 Foraminiters Tr Tr - 5 3 Calc: nannofoscits 45 30 5 40 50 CaCO_B Bomb (%):
Managere	AG	СМ			4		OG			•	
des basel N22 (F)		vC/ M	в		5	and and have					
truncatulinoides truncatulinoi r macintyrei zone (N)	см	VC/ M			6	and the set of second		1		•	
Globorotalia (G.) Cvelococcolithina	AG	VC P VC			7	- Contraction				Yes	

Little constraint Constraint <thc< th=""><th>ITE</th><th>643 9</th><th>-</th><th>HOL</th><th>E</th><th></th><th>C</th><th>DRE</th><th>CORED</th><th>INTER</th><th>VAL</th><th>5004.5-3674.0 (mbsl)</th><th>37.3-47.0 (most)</th><th></th><th></th><th></th><th>_</th></thc<>	ITE	643 9	-	HOL	E		C	DRE	CORED	INTER	VAL	5004.5-3674.0 (mbsl)	37.3-47.0 (most)				_
Image: Second	UNIT	ATIGRAPHI ZONE	NIFERS	CHA STISSO	ARIANS B	CTER	SCTION	TERS	GRAPHIC LITHOLOGY	NG BANCE NTARY	2		LITHOLOGIC DESC	RIPTION			
FP 0	2	BIOSTR	FORAM	NANNO	RADIOL	DIATON	~	1		DISTUR	SAMPLE						
NP B B C				FP			1	0.5	2172		•		VITRIC MUD, MUD Colors: mainly o with more ashy gray (5% 6/2). L Also dark gray (N The core consist zones, pretty ints probably original by coring, They the core. The co	DY ASH, a zones gray esser light 4) ash. 1 of altern ensely defo ly discrete are more o re is sporad	nd MIN 5Y 5/2 y (5Y 1 brownin ating at rmed by but no oherent lically s	OR ASH () to oliv 5/1) and sh gray (th-rich ar drilling. ow have near the omewhat	e (5Y 5/ light oli 10YR 6/5 nd ash-po Ashes we been mix bottom calcareol
PP B 2 Image: Second Sec													SMEAR SLIDE SUM	MARY (%	:		
BP B B Sand 3 1 2 7 Site 10 5 8 10 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Texture</td><td>1, 110 D</td><td>3, 66 D</td><td>D, 75</td><td>D, 40</td></t<>													Texture	1, 110 D	3, 66 D	D, 75	D, 40
FP B S Sit 100 Sit 100<			RP	8			2						Sand	3	1	2	7
FP B S Composition: Composition: Composition:								1.3					Silt Clay	10 87	5 94	8 90	10 83
FP B S Control of the second se						11							Composition:	45	4	1	
Barbon of the second of the			Ε.						}				Feldspar	3	2	3	3
Image: second						11		1.3					Clay	90	60	60	65
BUDONAL TROOP OF THE SECOND PARTY O								1.2					Foraminifers	2	-	1	1
FP B S Constrained		1				11							Calc. nannofossils	Tr	35	30	20
			1	FP	Ľ		1		1				sponge spicules	_			
Baradolio FP		Ŧ						1.6					CaCO3 Bomb (%):				
BUDOOD FOR PROPARED IN THE PERSON OF THE		-21				11	1						2,80 = 2.5				
		120				11	-						4,60 = 25.2				
		nsis l				11		1.8		1			6, 130 - 11.9				
		OLIDA				11		1 2		11							
		1.1					4			11							
		alia		FP				1.3		•							
		ovota				11		1.5		11							
		Slob				11		1.3		11							
	ene	12					-										
	lioc	ocula						1.8									
	La la	duni				11											
	idn	100	1	1	F	8											
		ulata			Ľ		1										
PP PP PP <		niloc				11				1							
Cooperating of the second seco		pilla						1									
FP 6 Vistor 7 Vistor 7 Vistor 7		ina o	1	1	ł.	11	-	1	PP.	11							
FP 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		oniat							T. * ** * ** 1*								
en e		Pull	1.12	FP				1 5									
aueografia aueogr		-sta-	CIA				6	ā l									
о управили и трановорание и трановорани		PUTTO	auo						1								
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		litic	VOINK		1			1	3								
9 Sold with a second s		m (CARA I	1	1			1									
		a (G	DLDC		1			+									
A CONTRACTOR OF		Otali	101		1			,	VOID								
		opo	200				1	1			*						
		30	5	100			0	-			100						

ITE	<u>543</u> 일	Г	HOI	OSS	11		ORE	5 CORED	INT	ER		5674.0-5683.5 (mbsl) 47.0-56.5 (mbsl)
UNIT UNIT	BIOSTRATIGRAPH ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS B	SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	Vatus subzone CN12c (N)		RP			1	0.5		0000000			CALCAREOUS VITRIC MUD Colors: olive grav (5Y 5/2) and olive (5Y 5/3), swirt with grav (5Y 5/1) and grav (N4) swirts. Core is intensely disturbed by coring. Upper two se tions are compacted mud breccia. Pipe rust is at top Section 1. Core has gas bubbles (-3%).
	ntarad					L		1.21. 118	Pol			SMEAR SLIDE SUMMARY (%): 1, 100 3, 80 5, 20
	lifoculata N20 (F) Discoatter pe	СМ	vC/ P			2			0000000			D D D Texture:
upper FHOCERE	atina obliquiloculete obliqu		CP			3					•	C ₂ CO ₃ Bomb (%): 3,13 = 15.3 3,81 = 14.3
	ilia (G.) multicamerata-Pulleni tamalia subzone CN12a (N)		vC/ M	B		4	the second s					
	oborota					5			00			
	Dia	FP	CP			CC			00		XRD	

×	VPHIC		CHA	OSS	TER						
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			CP			1	0.5		000.000		 CLAY and CALCAREOUS CLAY, traces of ASH Colors: olive (5Y 5/3) and olive gray (5Y 5/2) with minor black (5Y 2:5/1) and dark gray (1AH socts (any)). One durky velow green (55Y 5/2) layer in Section Compacted mud breccis Sections 1 and 2 intensely of formed below that, but coherent bedding cab lema out in Section 8. Ark content it diminished compared with previo (higher) cores.
			vC/				TITT		000		SMEAR SLIDE SUMMARY (%): 1,90 3,75 5,75 1,90 D D M Texture:
	420 (F		P			2			00		Sand – 2 1 – Silt 5 10 8 –
	-besal A						- Inter				Clay 95 88 91 Composition: Quantz 1 2 1 1
	51N 4					H					Feldspar 4 4 3 3
	culate						3		411 1		Volcanic glass Tr 10 8 5
	pulling						-				Foraminifers – Tr Tr 3 Calc. nannofossils 40 40 30 50
	P, obliquiloculata obli		CP			3				•	CsCCg Bomb (%):: 2, 135 = 13.8 4, 70 = 12.3 6, 70 = 9.9
upper Pliocene	wer G. (G.) multicamerata-P		vC/ P	a		4					
	oira-lo						-				
	ina altispira altis		vC/ P			5	Thursday			•	
	ipenbox										
	(N)						-				
	certs dehiscen. bzone CN12a		vC/ M			6	t fritt				
	nella dehis tamalis su						1111				
	aeroidii					7	-				
	Soh	RP	FP			-	-1				

SITE 543

ITE	543		HOL	.Е	_	_	CO	RE	/ CORED	INTER	RVAL	5693.0-5702.5 (mbsi)	66.0-75.5 (mbs)	0		
,	VPHIC		F	OSS	TER						П					
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	-	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESC	RIPTION		
	uiloculata N17-basal N20 (F) Discoaster tamalis subzone	CN12a (N)	CP				L	0.5		00,00,000			CLAY, ASHY MU Colors: gray (5Y gray (5Y 5/2), r very dark gray (1 Compacted mud disturbed, swirler some coherent be SMEAR SLIDE SUN	D, and A (5/1), lig with lesser 0YR 3/1). breccia Se d and agit idding and MARY (%	SH, local ht gray (olive (5 ction 1. E ated. Sec ash layers	Ily CALCAREOU: SY 6/1), and oliv Y 5/3]. One ash i Selow that intensel tions 3 and 4 hav
-	DATIO							-						2,68	3, 117	4,36
	ta 0							1.1					_	D	м	D
	locula							1.5	i				Texture: Sand	Tr	3	Tr
	duti		vC/		11						•		Silt	5	95	4
	opli		М				2		1				Clay	95	2	96
	4							_	1	11	11		Feldspar	3	93	3
-0	â				11			-	1		11		Heavy minerals	-	1	Tr
	1013							1.1			11		Clay	40	-	96
	1 ()				11				OG		1.1		Volcanic glass	-	5	1
	IL N				1 1						11 I.		Carboante unspec.	1	-	-
	50				1 1			1			11		Foraminifers	1		-
8	G. O				1			-	the second s		11		Calc, nannofossils	55	-	-
Ľ.	6 3				1 1			1					Fish remains	Tr	-	-
wer	nbilli		FP				3	-					Fe-oxides	-	1	-
₩.	unn							1.3			11		CaCO- Bomb (%):			
	Siou								mand's + +				2.94 = 9.4			
	ple ple					10		1.5	21. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				3 74 = 3.9			
	atra atra							-		11			3, 92 = 22,2			
	NUB N												4, 41 = 2.0			
) tu								the second second second second				204020443			
	101		1.				4									
	G. Het		vC/	8		cc		-								
		B	P	1.11			-	-			bren.					

5602.0 E702 E (mball 66.0 7E E (mbal)

CORE 8 CORED INTERVAL 5702.5-5712.0 (mbsl) 75.5-85.0 (mbsf) SITE 543 HOLE

	PHIC		F	OSS	L	Τ				Π	
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5				VITRIC MUD and and ASH TRUBIDITE (I) Colors: pale brown (10YR 6/3), light browniab graz (10YR 6/2), grayish brown (10YR 6/3), brown (10YF 5/3), olive gray (GY 5/2) (unbidite), dusky vellow green (5GY 5/2), and olive (GY 6/3). Generally linemals, swirled and deformed mud escopt near bottom which is faintly mosted. Turbidite rests in an island of co herence in an otherwise deformed interval.
						\vdash			11		SMEAR SLIDE SUMMARY (%):
							1				1,80 2,20 4,78 7,40 D M D D
						2	- International Arrest				Texture: Sand Tr 30 Tr – Silt 25 65 8 25 Clay, 75 5 92 75
							1				Feldspar 4 2 2 10
											Heavy minerals Tr — — Tr Clav 75 — 92 75
							-		1	XRD	Volcanic glass 19 93 6 14
							1		1.	1.1	Carbonate unspec. 2 - 1r 1 Calc, nannofossils Tr
						3	- International				CaCO ₂ Bornb (%): 1, 104 – 0.0 3, 84 = 0.0 4, 65 = 0.0
ļ							-			ļļ	
ocene	V20 (F)						Trees		1		
-lower PI	417-besal I			в		4	Tever			•	
ocene	culata t						1				
in addr	opiquilo		я			F					
	Noculata					5	25				
1	obliqu					ľ	14				
	ara-P.										
	carner					F	1	-			
	multi										
	G. (G.					6					
	nda-						1				
	intum								11		
	ples					1					
	(G					7			11		
	9			1		-	1 2			•	

ITE	543 U	-	HOI	E		-	co	RE	10 CORED	INT	ER	VAL	5721.5-5731.0 (mbsl)	94.5104.0 (mbsf)
×	APHI		CHA	RAC	TER									
TIME - ROC UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	BAMPLES		LITHOLOGIC DESCRIPTION
							1	0.5						VITRIC MUD with spots of ASH Colors: mainly olive gray (5Y 5/2) with minor pathore (10YR 6/3) (sop Section 1), and greenish gray (5GY 6/1). Also browning says (25Y 5/2) ash spotentiate (10) and (10)
sr Pliocene	witoculate N17-basel N20 (F)						2	and surfaces						D D Texture:
upper Miocene-low	rerata-P. obliquitoculata oblic			В			3	tereforestrees		**************				1,00-0.0 2,82=0.0 4,83=0.0
	ssiotumida – G. {G.hmulticam		8				4			*************				
	G. (G.) pl	R	в				5			1/		XRD		
ITE	543 9		HOI	E	1	T	co	RE	11 CORED	INT	ER	VAL	5731.0-5740.5 (mbsl)	104.0-113.5 (mbsf)
TIME - ROCK UNIT	BIOSTRATIGRAPHI	FORAMINIFERS	HANNOFOSSILS	RADIOLARIANS 2	DIATOMS DIATOMS		SECTION	METERS	graphic Lithology	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
							1	0.5						VITRIC MUD and an ASH BED Colors: olive gray (5Y 5/2) and gray (5Y 5/1). Brow ish black (5YR 2/1) an, Core is intensity deformed and swirled througho except near ash bed in Section 3. Ashy patches are of tributed levelwhere. SMEAR SLIDE SUMMARY (%): 3, 60 D.
							2	ond one						Texture: Sand Tr Silt 8 Day 92 Composition: FedSpar 2 Char 92
								0.000	OG				1.0	Volcanic glass 6 CaCO ₃ Bomb (%):

257

SITE 543

CORE 13 CORED INTERVAL 5750.0-5759.5 (mbsl) 123.0-132.5 (mbsl)

ITE	543	. 1	HOI	E		_	CC	RE	14 C	ORED	INTER	VAL	5759.5-5769.0 (mbsl)	132.5-142.0 (mbr	sf)		
	PHIC		F	OSS	IL	R											
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPH	IIC DGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCI	RIPTION		
							1	0.5						CLAY, VITRIC MUD Colors: primarily zones or lumpi of brown (10YR 5/2) Ash: Section 1, Section 1, 73–75 dark gray to black ash beds in Sectio sist of compacted minor soupy secti Sections 1 and 3), and MU greenish f olive gr 52-57 s cm: gray c (N4-N2 ins 1 and mud bree ions. Sect s somewf	ID gray (50 av (5Y) (N5); Si (N5); Si (Y 5/1) with mino 5/2) to grayish oliv c (N2.5) burrowed cector 2, 50–55 cm led. Clay with mino ms 3, 4, and 5 con ozed by drilling with mists of soupy clay oted by plano with
							2	are of reaction						and may have rota SMEAR SLIDE SUM Texture: Sand Silt	tional she MARY (9 1, 90 D 2 6	6): 3,80 D	5, 84 D Tr 4
							3	a fi ser a fi rear	VOID			•		Clay Composition: Quartz Feldspar Heavy minerals Clay Volcanic glass CaCO ₃ Bomb (%):	92 1 4 1 92 2	94 1 3 Tr 95 1	 4 1 93 2
							4	tread another the pr	IW		- 000			2,80 = 0.0 5,110 = 0.0			
		0	D				5	and much new			00						
						cc	6	Number of			000000	XAD					

SITE 543 HOLE CORE 15 CORED INTERVAL 5778.5-5788.0 (mbsl) 142.0-151.5 (mbsl)

OB IND IND <th>APHIC</th> <th>L</th> <th>CI</th> <th>FO</th> <th>AC</th> <th>L</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	APHIC	L	CI	FO	AC	L									
B B B B C CLAY CLAY CLAY CLAY CLAY CClor: primarily greenich grey (SGY 4/1) and olive (SY 1) in Sections 2 and 3. CLAY CLAY CLAY CLAY CLAY Clor: a primarily greenich grey (SGY 5/1) mod diversion 2 and 3. Clay a quite time. Outso detormed by difficult in Sections 2 and 3. Clay a quite time. Outso detormed by difficult a clay under owner and the fragment at 15 cm SMEAR SLIDE SUMMARY (%): 1 0 0 3, 30 D 0 Texture: Sand Tr Tr Sitt 5 5 Clay 95 05 Composition: Dartz 1 1 Feitigze 4 5 Herry mineral 1 - Clay 93 93 Votamic glass 1 1	TIME - ROC UNIT BIOSTRATIGR ZONE	FORAMINIFERS	NAMIOCOCCU O	MANNUFUSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGI	CDESCRIPTION	i i
8 8 8 1 1 1 1 1 1 1 1							1	0.5				•	CLAY Colors: pr dark green in Section Clays to g a scaly to Core Catcl SMEAR SLIC Texture:	imarily greenish lish gray (5GY 2 and 3, ite firm, Ouite face owing to a face owing to a face owing to a face owing to a face owing to face ow	gray (5GY 5/1) mottled wi 4/1) and olive (5Y 5/1) are deformed by drilling and h fisruption by the piano wir ell fragment at 15 cm. %): 3,30 D
CaCO ₃ Bomb (%)		в		3	в		 2	and the state of the		1			Faxure: Sand Silt Cary Composition: Quartz Feldspar Heavy minera Clay Volcanic glass CaCO _Q Bomb	Tr 5 95 1 4 3 1 93 1 (%).	Tr 5 5 93 1

GRAPHIC THOLOGY BUILDINGS	LITHOLOGIC DES	CRIPTION	4		TIME - ROCK	BIOSTRATIGRAPHIC
	CLAY • Colors: primarii tional layers and olive (5Y 5/3/1, yellow pren. (6 Sections 1 and and have tadiy Sections 3 and tions 1 and 2.5 IN(5) burrows. breccia produced SMEAR SLIDE SUN Texture: Sand Sitt Clay Composition: Quartz Faidquar Heavy minerals Clay Volcanic glass CaCO ₃ Bomb (5)): 2, 92 = 0.0 4, 23 = 0.0	y greenish faint m ark green 2 are mou ark green 2 are mou 2 are mou 2 are mou by drillin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	gray (BS) tiles of ish gray y derately of any fillow g. The class g. The S S S S S S S S S S S S S S S S S S S	GY 5/1) with grad- olive gray (BY 5/2), (5GY 4/1) and duaky (signation of the second second second from the piano wite. disruption than Sec- ntain sathy, dark gray of compacted clay (s, 75 D 1 8 91 1 5 5 1 8 91 1 5 1 1 8 3 10	seriv middle Micene	the tore

SITE	543		HOL	.Ε			CC	RE	17 CORED	INTER	VAL	5788.0-5797.5 (mbsl) 161.0-170.5 (mbsf)
	PHIC		F	OSS	TER						Π	
TIME - ROCK UNIT	BIOSTRATIGRAN	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
				vR/ vP			•	0.5				CLAY and MINOR ASH Colors: primarily greenish gray (5GY 5/1) with grad tional color changes to small "fayers" of olive (5 5/3), olive greenish gray (5GY 5/1–5Y 5/3), oli gray (5Y 5/2). There are 1–2 on thick layers of pa green (106 6/2) in Section 12 and 4, alteration next ashy spots. Section 1 contains gray burrow mottlin • Ash: Section 1, 130–135 cm; very dark gray (5Y 3/1) be Section 1, 140–143 cm; very (dark gray (15) 3/1) be Section 5, 32–35 cm; dark gray (15) 3/1) be
				FP			2					tion there any specks often surrounded by pale gree (106 & 6/2) alteration. There is a small percent of radii larians in Section 2 and below. The clay is quite fir and the surface has been disrupted by splitting with plano wire. SMEAR SLIDE SUMMARY (%): 1, 75 1,80 2,80 3,82 5,57 D D D D D
early middle Miocene				СМ			3	and read read				Texture: 1 5 2 3 4 Sirt 5 7 8 5 6 Cary 94 88 90 92 90 Composition: 0 0 7 1 1 1 1 Catego Composition: 0 3 5 4 5 3 5 Heavy minerals 1 Tr Tr Tr Tr Tr Cary 89 85 88 92 80 Volcanic glass 4 10 5 2 2 Diatoms - - - - Tr Tr
	alata zone				AG AG		4	and and area				C4CO3 80mb (%): 1,65 = 0,0 6,99 = 0,0
	Dorcadospyris	6	в		AG CG	cc	5		PP		* XRD	

PHIC			F	OSS	IL				Π	Γ	
UNIT	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5				CLAY • Oolon: primarily greenist gray (5GY 5/1) with grad tional layers and faint mottles of olive gray (5Y 5/2) olive (5Y 5/3), dark greenist gray (5GY 4/1) and dusk yellow green (5GY 5/2). The clay is faintly morth Sections 1 and 2 are moderately deformed by drill and have usely surface disruption from the pishen with Sections 3 and 4 have less surface disruption than Se tions 1 and 2. Sections 2 and 3 contain safy, dark gray (NS) burrows. Section 5 consists of compacted cl.
						2	the second s				Detects produced by anting. SMEAR SLIDE SUMMARY (%): 1,75 3,75 6,75 D D D Texture: 3 3 1 Sind 2 1 1 Siti 5 5 8 Clay 93 94 91 Composition: 1 1 1
						3	the second s	OG			Cuartz 1 5 5 Pelotgaar 4 5 5 Heavy minerals 1 5 1 Clay 89 92 83 Volcanic glass 5 2 10 CaCO ₂ Bomb (%): 2,92 = 0.0
		в	в	в		4					
						5		VOID			
									0000		

SITE 543

FOSSIL CHARACTER TIME - ROCK UNIT SILS SECTION METERS 52 GRAPHIC DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES LITHOLOGIC DESCRIPTION BIOSTRATIC ZON FORAMINIFE NANNOFOS RADIOLAR DIATOMS 40 + o RADIOLARIAN CLAY and MINOR ASH 100 ReDictant and CLAT and without April Colors are mainly olive (BY 5/3) and subordinate green-ish gray (SSY 5/1) and olive gray (SY 5/2). Dark gray (SY 4/1) sub with alteration halo greenish gray (SG 5/1) at Section 2, SD cm and Section 3, 110 cm. Grad-100 0.5 N.Y. EP tional change from 5Y 5/3 down to light brown/strong brown (7.5YR 6/4-5/6) in Section 3. Section 4 is 1.0 pale brown (10YR 6/3) to light yellowish brown (10YR 6/4). Core is mottled and swirled, locally ashy. Cavings breccia in top 60 cm of Section 1. F Location L SMEAR SLIDE SUMMARY (%): 1,120 2,96 3,92 D D D AG 2 Texture: Sand R -1 4 2 2 Silt 25 71 18 80 15 Clay 83 Miocene OG Composition: Feldspar 3 2 . E 80 Tr 18 71 Tr 26 83 Clay Ho early Volcanic glass Radiolarians -CG 16 Ed middle Fish remains Tr --CN4 (N) B 10 3 CaCO₃ Bomb (%): 2, 98 = 0.0 3, 88 = 0.0 12 141.134 Note: Core 21, 5826.0-5835.5 (mbsl) 199.0-208.5 1 (mbsf): no recovery. 0 Stichocorys wolffil J ?Sphenolithus hetere B 4 1 1 AG C 0 0

CORE 20 CORED INTERVAL 5816.5-5826.0 (mbsl) 189.5-199.0 (mbsf)

SITE 542 HOLE CORE 22 CORED INTERVAL 5835.5-5845.0 (mbsf) 208.5-218.0 (mbsf)

×	DHHA	- 5	F	RAC	TER						
UNIT UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
0		8	B	AG		1	0.5			XÃD	No recovery except for small sample scraped from the to of the core barrel. • Light brownish gray (2.5Y 6/2) to pale olive (5Y 6/3 radiolarian mud.
Laoo	1 200						10				SMEAR SLIDE SUMMARY (%):
Ň	wasi										cc
2	2440								11		Tastuta
Ba	de la						-		1.1		Sand 4
8	ck.					1					Sitr 25
ĕ	5										Clay 71
E	8	1.1									Composition:
	ich.										Feldsapr 2
	5										Clay 71
		L ()									Radiolarians 27

TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FOSSIL			R				
		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DEBUT	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
igocene/early early Miocene	as sécnogata zone			AG CM	1	0.5	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>		RADIOLARIAN CLAY • Colors mainly pale olive (SY 6/3), greenish gray (SG 5/1); subordinately pale brown (IOYR 6/3), oliv (SY 5/2), and olive gray (SY 6/2), and olive gray (SY 5/2). • Switchd variagetad mud, slightly foraminiferal, local radiolarian. Top of Section 1 brecoisted (this probabil represents Cores 21 and 22). SMEAR SLIDE SUMMARY (%): 2, 135 0 Texture: Sand 1 Sitt 12 Clay 87 Composition: Feldspar 1 Sitt 2 Clay 87 Corposition: 7
late O	Lychnocimam	в	8	CG	3			1	Radiolarians 12 CaCO3 Bomb (%):
				AM	cc	-		XRD	2, 99 = 0.0

SITE 543 HOLE
	PHIC		CH	OSS	TER				Π			
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	L. elongata zone			СМ		1	0.5	EMPTY				 MUD Colors are greenish gray (5G 8/11 and olive gray (5Y 5/2) with light olive gray (5Y 6/2). Swirled, variaged mud: swirling is all a drilling affect. Olive gray and light olive gray predominate. Boundaries between different colors are graditonal. Locally radio larian. Thin chodechrosite layer at Section 4, 94 cm Drilling brecis below Section 4, 130 cm (light) firmer clasts in a toupy matrix). Sections were cut at
				СР		2						the bottom of each of the Volos anticounty singularity the core. The volos were each actually shorter that shown here. SMEAR SLIDE SUMMARY (%): 3,60 4,92 D M Texture: Sand 1 — Sitt 15 — Clay 85 —
				FP		3	and confirm		*****************		X [#] D	Composition: Ferdidaar Tr – Haavy minerals 2 – Cray 84 – Volcanic glass 12 – Riddiolarians 2 – Riddiolarians 2 – 100 CaCO ₂ Bomb (%): 2, 105 – 0.0 4, 105 – 0.0
Oligocene				AP		4	and muchana				XRD	
		B	8	R/ vP		5	ora Trantinona	VOID	0000			- void
	zone					6	and or othered	VOID	000			
	Dorcadospyris ateuchus			R/ vP R/ vP		7	riter (1997)		80000 B			

116	543 2	Ē	HOI	OSS	11.	-	ГОНЕ	25	CORED	IN	TER	VAL	5864.0-5873.5 (mbsi) 237.0-246.5 (mbsi)
T	IGRAPH	ERS	CHA	RAC	TER	Η	ION		GRAPHIC	2	RV		
- IME	BIOSTRAT ZO	FORAMINIF	NANNOFOS	RADIOLARI	DIATOMS		SECT	1	ITHOLOGY	DISTURBAN	SEDIMENTA	SAMPLES	LT HULDUIG DESCHIPTION
	zone			F/ vP			1 1,1						CLAY transitional to PELAGIC CLAY Colors of terrigenous clay are olive gray (BY 5/2), green ish gray (BGY 6/1, 7/1, and 5/1), and light clive gray (BY 6/2). Colors for clav-pelagic clay instrums and pela gic clay are grayish thrown 2.5Y 5/2 and 6/2), and brow (10YR 5/3, cl/2), and 7.5Y 5/2 and 6/2), and brow (10YR 5/3, cl/2), and 7.5Y 5/4. Variageted mottle clay, switted by deliling in upper part, with remains o horizontal layering. Colors in layer 10–20 cm thick with burrowed contacts. Sightly vadiolarian. Few speck of rhodochrosite.
Oligocene	Dorcadospyris ateuchus			C) vP			2						SMEAR SLIDE SUMMARY (%): 3, 15 D Texture: Sand Tr Silt 4 Clay 95 Composition:
		B	B	C/ VP CP			3	11111	IW			* XBC	Feidipae Tr Clav Carbonate unique. Tr Radiolatians 4 Fish remains Tr
													CaCO ₂ Bomb (%): 1, 11 = 0.0 2, 55 = 0.0

SITE 543

TE	543 2	-	HOI	E OSS	IL.	CO	RE	26 CORED	INTER	AL	5873.5-5883.0 (mbsl)	246.5256.0 (mb	if)		
	Hdel		CH/	RAC	TER										
LIND	BIOSTRATIGF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAN	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTION		
	cadospyris atenchus zone			F/ vP		1	0.5					PELAGIC CLAY an © Colors: brown (1 greenish gray (50 yellowish brown 6/6), and black (1 © Mortied brown (c) rotational shear s reddish downward	d RADIC OYR 5/3) Y 6/11. E (10YR 6 OYR 2.5// ay: drillin arfaces evo ts. Mn stai	LARIA mainly, leginning /4), red 1). Mo-st 9 breccis ery 2-4 ning beg	N PELAGIC CLAY with undertones of a in Section 6: light dath yellow (7.5YR alned, a in Section 1. Then cm; becoming more in Section 6.
	Don					H	-					SMEAR SLIDE SUM	MARY (%	2 90	5 90
						11	1		11				D	3, 60 D	0, 00 D
				AP			1.3					Texture: Silt	5	10	10
						2	- 2					Clay	95	90	90
												Composition: Ouartz	Tr	1	1
												Fieldsapr	5	5	5
							1 8				1211-1	Heavy minerals	Tr	97	76
							-	1			- GAS	Volcanic glass	1	67	-
				АМ		3	Provent new					Radiolarians CaCO ₃ Bomb (%): 2, 54 × 0.0 5, 65 = 0.0	3	5	10
ligocene								рр							
0		8	8	AM		4	and another								
						F		IW							
				AM		5	and monthly	OG							
	ocyrtis tuberosa			АМ		6	and see			XRD					
	The second			AP		-			E						

SITE 543

SITE 54	3 HOLE	CORE	30 CORED	INTERV	L 5911.5-5921.0 (mbsl) 284.5-294.0 (mbsf)	SIT	E 543	HOLE	C	ORE	31 CORED INTERVAL	L 5921.0-5930.5 (mbsl) 294.0-303.5 (mbsf)
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FOSSIL CHARACTER SIIISSOJONUVN SUJISSOJONUVN SUJISSOJONUVN SUJISSOJONUVN SUJISSOJONUVN SUJISSOJONUVN	SECTION METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMMERS	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIF ERS CHARACTE MANNOFOSSILS FIADIOLARIANS DIATOMS DIATOMS	SECTION	METERS	GRAPHIC DITTHOLOGY LITHOLOGY LITHOLOGY SWIFTER SWIFTER	LITHOLOGIC DESCRIPTION
And and a second se	AM AM AM CM CM	2			MARLY RADIOLARIAN OOZE, RADIOLARIAN CLAY, and MANGANIFEROUS RADIOLARIAN CLAY • Colors: mainly very pale brown (10YR 7/4), sits grayish brown (10YR 5/2), light brown (2.5YR 6/4) lab burrow fillit, reddish veriow (15Y 6/6), dak grayish brown (10YR 4/2), light prown (10YR 6/3) to light yellowish brown (10YR 6/4) in top 2 sections, Then: mainly pale brown (10YR 6/3) to light yellowish brown (10YR 6/4), with this layers to brown (6.5YR 5/4) and black (10YR 2.5/1) manganese-oxide stains. • Obte and clay, variably stained by Mnoxides (black). • The brown layers are non-radiolarian and burrowed. • Rotational shear turfaces every 3–6 cm. SMEAR SLIDE SUMMARY (%): 1, d5 3, 7/0 8, 60 D D D Texture: Sand 10 20 2 Sift 20 30 8 Clay 70 50 90 Composition: Quarter 1 1 Tr Feldbaar 4 4 4	late ned v for	Theocampe mongolitien zone	B B CM	2	0.5		RADIOLARIAN CLAY and BROWN CLAY • Colors: very pais brown (10YR 3/1) and brown (7.5Y 5/4], with very dark gray (10YR 3/1) and 10YR 4/1) • Alternating very pais brown relationarian clays and trow clays. Layers of each typically mottled by the other Patchy Mnoxities taining. Drilling brecis at very to SMEAR SLIDE SUMMARY (%): • Mathematical State St
		3			Radiolarians 40 45 15	SIT	543	HOLE	C	ORE	32 CORED INTERVAL	L 5930.5-5940.0 (mbsl) 303.5-313.0 (mbsf)
cene	CM	1 3	E Î.	11	CaCO ₃ Bomb (%): 5, 125 = 0.0	×	APHIC	FOSSIL	R			
late early Ec			OG	1	6, 82 = 0,0 8, 89	TIME - ROC	BIOSTRATIGRA	FORAMINIFERS NANNOFDSSILS RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY SEMMETERS SEMMETERS	LITHOLOGIC DESCRIPTION
		6				and Barney	Theocoryle cryptocephale zone	AG AG AG AG AG AG AG F/ VP F/ VP	3	0.5		 RADIOLARIAN CLAY Colons: 2.5YR 17/2; 5YR 4/4, 5/4, 4/3, 5/3, and 5/ mainly brown; 5YR 5/4, 6/4, and 5/2; 10YR 8/3, 7/ 5/4, 6/4, and 6/2). Very minor light gray (5Y 6/1) 5Y 7/2), light booming any (10YR 6/2) and lig greenidy gray (5GY 7/1). Variageted radiolarian clas shades of brown (mainly), paint brown, reditor brown pellowith red, and yellowith brown (yellow mo important towards base). Layers of sack color 5–00 thick; contact graditional and intermittently burrown (planolites type). SMEAR SLIDE SUMMARY (Si): 1, 50 2, 76 0 D Texture: Sand 10 8 Site 30 43 Clay 60 49 Composition: Outry 60 49 Composition: Outry 60 49 Composition: Outry 60 49 Caco_0 Bomb (%): 1, 81 = 00 2, 8 = 0.0

SITE 543

SITE 543

Te

1. Tr

84 88

Tr

84

8 10 5

Heavy minerals

Volcanic glass

CaCO₃ Bomb (%) 1, 148 = 0,0 2, 101 = 0.0

Clay

Zeolite

2	Hd	- 4	CHA	RAC	TER						1	
UNIT - RUC	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
				C/ vvP C/ vvP		1	0.5		°• 		*RD	PELAGIC CLAYSTONE Colors: alternating reddish brown (2.5YR 4/4) brown (7.5YR 4/4); Core clearly becomes redder downwards, Few patches and one thin bed of light greenish (6SY 71); Claystone, burrowed, rotational shear surfaces e 2-5 cm. Brecia at very top of Mn-stained can from further up hole.
							-		11			SMEAR SLIDE SUMMARY (%):
						11						1,80 3,70 CC
early Eoceni				F/ VVP		2	Tana a tana tana tana tana tana tana tan					Texture: Sand – Tr – Silt 5 8 5 Clay 95 92 95 Composition: Quartz Tr Tr Tr
							-					Feldspar 4 4 5
							-				0.00	Heavy minerals Tr Tr -
									11		2.1	Clay 94 94 93
	ned	8	в	в			13			-		Volcanic glass 2 2 2 2
	undetermi			vR/		3	1.1.1.1			**** *	•	CaCO ₃ Bomb (%) 1, 84 = 0,0 2, 58 = 0.0

SITE	543		HOL	E	A	CC	RE	7 CORED	IN	TER	VAL	6006.5-6016.0 (mbsl)	379.5-389.0 (m	bsf)		
×	VPHIC		F	OSS RAC	TER											
TIME - ROC UNIT	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENYARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTION		
richtian)			BP			1	0.5			***** *****			FERRUGINOUS M GINOUS MUDSTON Color mainly dari 3/2-5YR 3/3), M of dark reddinb (5YR 4/3, 4/4), brown (5YR 5/6), Bioturbated, fer XPD (bourbated,	UDSTONE E, and MI brown to linor irreg and tirro the latter ruginout,	E, CALC NOR CH o dark rec ular patch SYR 3/41 wn (7.55 nanofo slightly detects	AREQUS FERRU- ALK Idish brown (7.5YR bes and laminations and reddish brown (7.5/4); also light silf-rich, detemitic (from
tous (upper Campanian-lower Maestrichtian)	AP			2	A DESCRIPTION OF A DESCRIPTION OF				xao		ArtD) locally zelo Pancake shaped sheared matrix. (planolites, few fragments thinky p B Burrow fills light © Top of Section 1 chalk also burror immediately belo rows in ferrugino shear surfaces eve	tragmenta Larger 1 zoophycs arailel lan er brown 3 has 5 c wed. Gray w, about us clay. V v 2-4 cm	emhedd ragments a, tiny unated, than sur m of blu (5GY 5 I cm this thole cor	ed in a brecelated preserve burrows chondrites). Some rounding sediment, ish white (58 9/1) /1) reduction zone ek. Cuts across bur- s cut by rotational		
upper Cretaceous (upper			AP			3	and readings	OG		****	*		SMEAR SLIDE SUM Texture: Sand Silt Clay Composition: Feldspar	MARY (% 1,96 D - 5 95 5): 1, 107 M Tr B B4 6	3, 5 M Tr 100
		в	в	в		4			 	н			Heavy minerals Clay Foraminifers	95	77 94	15 Tr
		PM	1			CC.			Li.	1	XRD		Calc: nannotossils	-	-	85
													CaCO ₃ Bomb (%) 1, 96 = 0.0 3, 100 = 24,4			

SITE 543 HOLE A CORE 8 CORED INTERVAL 6016.0-6025.5 (mbsl) 389.0-398.5 (mbsl)

	PHIC		F	OSSI	L						Γ	T	
TIME - ROCH	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
upper Creteceous	indeterminate	B	8	8		<u>c</u>	0.5	VOID		11	and and a	4 <u>D</u>	FERRUGINOUS CLAYSTONE

SITE 543

CORE 9 CORED INTERVAL 6025.5-6035.0 (mbsl) 398.5-408.0 (mbsl) SITE 543 HOLE A FOSSIL CHARACTER BIOSTRATIGRAPHIC ZONE TIME - ROCK UNIT NANNOFDSSILS SECTION FORAMINIFERS DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES GRAPHIC LITHOLOGIC DESCRIPTION 1 0.5 111 DOLOMITIC FERRUGINOUS CLAVSTONE Color dominantly reddish brown (5YR 4/3), Alizo red-dish brown (5YR 4/4) and dark brown (7,5YR 3/2), Laminated, mottled, farruginous, dolomitic claystone. Lighter and darket brown faminae have slightly wavy, burrowrd magins. Burrowing decreases downwards and drilling disturbance increases downwards. upper Cretaceous (middle--upper Campanian) middle-upper Campanian 11 8 CP CM 13 SMEAR SLIDE SUMMARY (%): 1, 33 D Texture: Silt Clay Composition: Heavy minerals Clay Dolomite 2 98 Tr 90 8 CaCO₃ Bomb (%) 1, 50 = 28.8 1, 6 = 17.6

SITE 543 HOLE A CORE 10 CORED INTERVAL 6035.0-6044.5 (mbsl) 408.0-417.5 (mbsf)

	PHIC	C	FC	DSSI RAC	TER				Π			
TIME - ROC UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
upper Cretaceous (lower Campanian)	tower Campanian	c	р M	B R/ vP		1		100	-1-1	11	KRD	 FERRUGINOUS NANNOFOSSIL CLAY Sediment 0–37 cm, IW isample 10 cm long was take from below this but basils were inadvertently place in this interval during core preparation. Colors: reddish brown (5YR 4/4), veltowish red (5Y) 5/4), and dark reddish brown (2SYR 3/4). Horizontally: laminated, burrowrmottled, farruginou neurofossi clay, Burrows mainly planolites like; fm vertical burrows. CaCO₃ Bomb (%): 1, 28 = 53.2

6048.0-6054.5 mbs/

6054.5-6057.0 mbsl

411.0-417.5 mbsf

PLAGIOCLASE-OLIVINE MODERATELY PHYRIC BASALT

Four distinct cooling unit boundaries are present in this pillow sequence, as indicated by the number alonguide the alteration columns, The basalts are moderately to extensively altered oxidatively to dark brown (10YR 4/2), and dark graylic horizon appcially intense at the top of the coin. There are abundant calcits wins in fractures in much of the coin. The rocks have 5–10% pilloiclass phenocrysts as 11 large impairs giomecorysts up to 5 mm, 21 and ighomecorysts with tabular crystals, and 31 individual tabular or rounded behave crysts. Clivine is persanity attend to align builth giere mineral (sponite?) or to reddish iron hydroxides and clays. Crack-filling interstores cours in Section 2, pice 89.

Thin Section Descriptions

78A.543A-10.1, 115—118 cm, piece 8C: Pillow interior, Sample has ~10% plagioclase phenocrysts and <1% altered of/wire phenocrysts set in an altered microllic groundmass. Some plagioclases are complexly zoned, and have spherultic ineluliano. Others are stabular or chumped into glomercryst. Most are partially impleced with calcie, which form a vein in part of the section, and fills veicles. In the groundmass, clays replace pyroxenes and glass(?), and iron hydroxides replace trianomagnetite.

78A-534A-10.2, 112–115 cm, piece 9A: Pillow interior, The section has ~10% plagioclase phenocrysts and glomen cerysts, and <1% attend olivine phenocrysts, plus one grain of chromian spinel. It is intensity Sitered to reddish iron hydroxistis in the groundmass, and is riddia with calcits. The phenocrysts have abundhat aftered or spherelitic formerly glassy inclusions, some are rounded, and many have ideletal margins. They are partially replaced by calcite and most are transformed to K-feldupar. The groundmass is microlific to coarsely fan spherulitic in texture, but is mostly altered to clays and iron hydroxides.

78A-543A-11

417.5-420.0 mbs1

ALTERED PLAGIOCLASE OLIVINE MODERATELY PHYRIC TO SPARSELY PHYRIC BASALT

Portions of pillow cooling units 4–8 are in this core (right margin of alteration column), marked by distinctive altered glass. Glass occurs on the edge of pillow 4 and on both sides of an interpillow limetone (11-1) piece 4). Phenocrysta are manity plagoclasse, ranging up to 5% and diminishing in abundance downcore. Alteration is modeate to intense with rare olivine phenocrysta altered to clays and iron hydroxides. Glass is replaced by bluish clays. Calcitle wins are prominent in a number of piece.

Thin Section Descriptions

786-6930-11-1; 50-52 cm, piece 581: Billow interior; The section has " >5% plagioctae phenocrysts and pometocrysts, plut 2-3 attered olivines, and one chromian spinal with round, attered, glass inclusion; The groundmass is microllic to somewhat spherulicic, and is partially oxidatively attered to clays and iom hydraxides. There is outcite with on one edge, and calcite in some vesicies. The vein was first lined with pale green clays. Plagioclase phenocrysts are partially replect by clays and X-reloward sequence the vein.

78A.543A-11-2, 89–91 cm, piece 5D: Pillow interior, The section has only 1–2% small plagoclase phenocrysts set in a microlitic to spherulitic groundmass. Crystal size in the groundmass is smaller than in section: above. Alteriating is pervaive, but not a a interes as above with clays, and iron hydroxides aboutant in the groundmass and filling rate weights. Clays also largely replace the plagicolase phenocrysts and many microlites. Only one crystal (olivine?) is replaced by calcitie.

6057.0-6064.0 mbsl

420.0-427.0 mbsf

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

Pillow cooling units 9-18 were recovered in this core, along with interpillow mudstone and fracture-filling limestone in Sections 2 and 3 respectively. The pillow margine are defined by altered stax, Near several pillow margine are large, will-devolged hyporulist. The rocks are moderately to intensity altered, with calcite wins prominent in Sections 1 and 3, and a beautiful win in Section 4, pieces 3A and B. Clay minerals are green and blue, and rare obvines are altered to icen hydroxides.

Thin Section Descriptions

28A-58A-122, 70–72 orn, pixes 16: Pillow interior; The section has -18 Uny (-1 mm) tabular plagoclase microphenocrysts in a microlistic, altered, groundmass. Crystals are aligned, and the pixeo of rock has an alteration rind. The basist also had small evabedral oliving 1 < 0.05% now altered to roddish iron hydroxides. The groundmass is upartially replaced by green and orange clays, and iron hydroxides, which form discrete patches up to 0.5 mm across. The section has a this crack linear with iron hydroxides, which form discrete patches up to 0.5 mm across.

28A-543A-12-4, 128-133 cm, piece 10: Pillow interior. The section contains 3-4% plagiodase phenocrysts, lesier atrand divine phenocrysts, and several throms spinels. The groundmass consists of surzys of microfiles plagiodase separate by zones of brownish. This sphenicity matrix. The feddpast ans tabulat to subhold in, many having altered or devitrified glass inclusions, Most phenocrysts are at heat partially altered to clays. Given clays replace a tabular ferromagnesis phenocrysts (DSX) on dfills number of vescibic. Olivinos are englaced by play replace a tabular ferromagnesis phenocrysts (DSX) on dfills number of vescibic. Olivinos are englaced by play relative clays. The groundmass textures are distinctively different from those in Core 11 and in Core 12, Section 2, place 1G, indicating that this is a third petrographic and probably chemical type.

6064.0-6073.0 mbsl

427,0-436.0 mbsf

SPARSELY-MODERATELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

Pillow cooling units 18–32 are represented by the core (see right margin of alteration column for sequence), Recovery was extremely high, hence portions of every cooling unit, and all of most of them, must have been retrieved. The core has well recovered curved portions of gastry pillow rinds, plus intempillow sediments in several picos. There are prominent calcite veins and interpillow fillings, the latter preserving fresh glass. Alteration seems a mix of oxidative and non-oxidative, with iron hydroxides and blue green clays near glass and in large fractures, and plat green clays in small fractures and pillow interiors. Section 6 has/provinh alterat ponse next to fractures.

Thin Section Descriptions

28A-543A-13-1, 18–20 cm, piece 28: Pillow interior. The section has ~4% plaglociase phenocrysts and lesser ofivines set in a groundmass of plumose plaglicelase spherulities and microlitiss. The ofinines are altered to clays, and the groundmass is altered to inch hydroxidies concentrated in slightly more crystalline zones. The plaglociase phenocrysts are tabular and subedral, sometimes forming clamps, and many have corners with dendritic projections into the groundmass. Most an engineed by clays.

78A-543A-133, 79-82 cm, piece 28: Pillow interior. The section has <-1% plagicolase microphenocrysts mainly tabular in form. The groundmass is microlitic, consisting of small plagicolase needles and tight bundes of plagicolase clinopyroxems sheaks, with semaining lides dotted with situnomagnetile. The groundmass texture is distinctly different from that of immediately adjocent samples above, being as crystalline or moreo, but with small crystals. Alteration is restricted to a narrow wind green clays and Mn-oxides[7]).

78A-543A-13-5, 72-75 cm, piece 2C: Pillow interior. The section has \sim 5% plagloclase and altered olivine phenocrysts test in a sheaf spherulite matrix. The plagloclase phenocrysts occur as glometocrysts with altered olivine, as individual anderal crystals with skettal interiors, and a setter single crystals or loose clumps of tabular exheter having corners with dendritic projections. Green cluys and iron hydroxides line a narrow vein, fill vesicles, and re-place olivines, with the green cluy generally filling interiors of these (formed after the iron hydroxides). There are more large clonger microllers and tabular incorphenocrysts in this han in the previous sample.

438.0-438.0 mbsf

438.0-445.0 mbsf

6082.0--6092.0 mbsl

445.0-455.0 mbst

SPARSELY PLAGIOCLASE-OLIVINE PHYRIC BASALT

Pillow cooling units 41-59 were recovered in this core numbers at right margin of alteration column). Plagioclass phenocrysts form up to 5% of the took and there are rare, altered, olivine phenocrysts. The contact between pillow cooling units 45 and 46 was recovered intact. Alteration is moderate, with brownish zone next to glass, and fractures lined with calcite, green clays, and iron hydroxides, There is a groundmass textunal contrast in Section 3, suggesting contrasting chemical types lottween pieces 8 and 7. Calcite preserves glass at pillow margins.

Thin Section Descriptions

28A.643A.16.1, 89—92 cm, piece 2D. Pillow Interior, The section contains ~3% plagodase phenocryst and glomerocrysts, with rare altered olivine phenocrysts and portions of glomerocrysts, Plagiodase phenocrysts may contain divitified glass includions and form crystals up to 3 mm long. Most, however are tabular, exhedual, and etongate. The groundmass consists of elongate sketical plagiodase microlites separated by a fine grained mesotasis of spherulific clinogryzone, its anongarprinte, and altered glass, dark brown in color. Rave vectices are filled with green and/or brown class, and calcite fills alteration voids in obivines. A calcite vein crosses one corner of the section, and the baalt is more altered near it.

78A-543A-16-3, 108-111 cm, plice 7: Pillow interior. The vection has 2-3% large plagloclase imegacrysts with 1-2%, additional clongate, tabular phenocrysts. There are also a few attered olivine phenocrysts. The plagloclase megacrysts have devirified glass inclusions. The groundmass has about 20% very elongate skeletal plagloclase microlifes, with the remainder either intervecting sheat spherulutes, or more crystalline sprays of uppts between which occur alteried glass and titanomagnetize. Olivines are replaced by brown or vivid green clays, Pale brown and pale green clays abo fill or pathy fill vecicles in concentric layers. One veside also his calcite.

78A-543A-16-7, 60-64 cm, piece 3A: Pillow rim. The section has a 1 cm glassy edge and successive more crystalline spherilite zones away from the glass. There are several large plagloclate megacrysts and glomerocrysts, plus scattered tabular phenocrysts. One megacrysts in the glass is riddeld with glass industance. It glomerocryst are the glass has had olivine almost antirely altered to clays, and plagloclase to zeolite, with a single large chromian spinel still preserved. Some fresh, small, obviens: and clinogroupceness are still retained in the glass, and there is none plagloclase clinopyroxene glomerocryst. A few plagloclases are beautifully rounded. Alteration is mainly oxidation of spheru life zones, which are dark reddah brown as a result, and formation of clay-zeolite veins in the glass. Vescles in the spherulitic zones are filled with calotie.

-0 cm	2-6	2,CC	3-1	3-2	3-3	3-4	3-5	3-6	3-7	3,CC	4-1	4-2
- - 25												
F												
F												
-50												
F							The second					
\mathbf{F}							1 day					
F			1	17								
F												
-75								CH			合語	
F					1							
					2		-	M.E.				
			THE .				2	1 - 6				
-100			THE.					1				
-							1					
-					1							
-												
				and the second								
-125				and a							1	
-												
-			8	N. W.				X				
F					and the			1 St. 19				
L_150							- she	1 Au				

0	0-1	6-2	6-3	6-4	6-5	6-6	6-7	6,CC	7-1	7-2	7-3	7-4
- 0 cm	The state			-	141							
- 	4.9	1					A. A.					
-										N.		
-					1×					A A A	and a	
- 50												A STATE
-	100	2 4									A LAND	
-75	-			Plan In	- 1/2							
_	5.12	AL.		A. Martin	N. C.						1	
	E. M.	2		A.								
		1			No.				in the second			
-		New York	17. W. X.			2 4				4		
		1			A A	14						
		and a		12 A	1							
- 150	-	1	and the second	H.	No.	1 de			40			

C 1

-0 cm	13-4	13-5	13-6	13-7	13,CC	14-1	14-2	14-3	14-4	14-5	14-6	14,CC
L	122						1		22		100	1
			Carrow and				145			112/27		
Γ							-					1100
F					5	Sec.						
ŀ		- Pa						信号		Sec. 1	. 31	
-25	ALL ST	and the		12.25								
L			R. 1	a second a				duite.	12名			[[
						Sec. 1					and the	
F		100 100 100 100 100 100 100 100 100 100									0	
F						S. Des.	See 4					
-			2013					5.25			102	
-50		the second state	13.2					E.			and the second	
	200			Tur				1.185				
Γ			C.Z.To	100		康 1	1					
F				32		No.	Stand.		A State	10		
F	Con the			ALC: NO				and the			12.2	
L		1	123				Dimin Co		ALCONT OF	The s	STREET,	
75			P. Jan						No. A			
Γ′°		-					1000	1.00			P 11	
F											1.1	
-		1 2					Sale C				1	
L		t t				5					5	
							STORING W		TROUGH A		and the	
r i		18	4					and a second	ATT A	1 Frank		
-100	13-14	and the								44.1		
-	The s		and a									
L	ALC: NO			1 1			and the second second	4	article +	A PART		
	1	18	P.T.				and the		The t	· 24		
F I	and the							W22.				
F	25	and the				T I		A SHA	A R	1. 海南 1		
-125	100	Carlo -						Sea. 2		T TOP -		
L	1000	1947								a Real		
	We we have	all and	4				and a			-		
F	in the state		and the			A state of the		(Constant)				
F	Bern !!	15 I	14						1000			
F		and a	Keith						1			
L_150	ANTAL .	7	Gr.			Ser. 1	NOTE OF		1.2	200		

0	20,CC	21	22	23-1	23-2	23-3	23,CC	24-1	24-2	24-3	24-4	24-5
		NO RECOVERY	NO RECOVERY								a the second sec	

	30-4	30-5	30-6	31-1	31-2	31,CC	32-1	32-2	32-3	32-4	32-5	32,CC
-			1000			-3	<u>issis</u>	Station of				
-							Sec.			1474		10
		1.1	33-	- Comp		7.00						IQ.
		in the		12-			1		the se			除 在
25	an ant		and the					1.50				
[]	-											
Ļ	-	E C							2		10	
-			1. S.							1		
-50		#	And And					- Ter			A COLOR	
-		* *		-					1			
-			() - C.	-467			200 2				Briese.	
F	Sec. 4	and the second	bert	12.14								
-			The lot of	the sale								
-75	anne ann	and a		A CONTRACTOR			-				Ramo	
F		and the second s	-	and the				The state				
[and the		Pres 1								
[14	land a	-					and a	-sure		
-100		and a		200				90				
L	-			14.54								
-				的。而今						Sec.	1.414.4	
-		and the second		and the						-		
F		n.		in the								
-125				and the second			· and ·			5		
$\left \right $										STREET, ST		
-		The second		ALC: NO.								
F		-		and in				THE P				
L150				-								

292

