4. SITE 5551

Shipboard Scientific Party²

HOLE 555

Date occupied: 21 August 1981

Date departed: 10 September 1981

Time on hole: 221 hr., 45 min.

Position (latitude; longitude): 56°33.70'N; 20°46.93'W

Water depth (sea level; corrected m, echo-sounding): 1659

Water depth (rig floor; corrected m, echo-sounding): 1669

Bottom felt (m, drill pipe): 1669

Penetration (m): 964

Number of cores: 98

Total length of cored section (m): 926

Total core recovered (m): 505.25

Core recovery (%): 54

Oldest sediment cored: Depth sub-bottom (m): 927.32 Nature: Micaceous siltstones and mudstones Age: late Paleocene (NP9) Measured velocity (km/s): 2.5

Basement:

Depth sub-bottom (m): 927.32 Nature: Basalt Velocity range (km/s): 5.3-6.0

Principal results: See Chapter 1: Introduction and Explanatory Notes.

BACKGROUND AND OBJECTIVES

The five sites originally scheduled for Leg 81 were designed to provide a complete transect of the "dipping reflector" type of margin from the oceanic crust to thick continental crust. Unfortunately, losses of time resulting from frequent bad weather and the chain of operational problems detailed in the operations sections allowed us enough time (10 days) to drill only one of the two remaining sites located, respectively, on oceanic crust and thick continental crust. Of these two sites, it was felt that more fundamental problems related to the genesis of passive margins—their paleoenvironment, the development of North Atlantic climate, and ocean circulation—could be addressed at the site ostensibly located on the thick continental crust between Hatton Bank and Edoras Bank. Further, there was an open possibility that time would remain to hydraulic piston core (HPC) the important Pliocene–Pleistocene section again, either at this site or by a return to Site 552.

Geological Background

Site 555 was the most "landward" (Zone IV) site of the Leg 81 transect and was situated on the col between Hatton Bank and Edoras Bank some 160 km ENE of Site 554 (Figs. 1-3). Hatton Bank and Edoras Bank make up a prominent ridge locally shallower than 600 m in the north and deepening southward (Fig. 2). The banks are bounded to the west by a steep slope marking the inner edge of the Edoras Basin containing the dipping reflectors. This slope trends obliquely to the magnetic anomalies and to the trend of the outer high. The difference in relief of the basement between the high and the basalts of Hole 553A is about 2000 m. Gravity modelling of the margin (Scrutton, 1972) (Fig. 4) shows that crustal thickness changes from 25 km beneath the banks to about 12 km beneath the dipping reflectors over a distance of about 30 km, demonstrating rapid crustal thinning between the banks and the outer high.

Although the Hatton and Edoras banks are presently isolated highs, they can be considered as marking the transition from the thicker crust of the Rockall Plateau microcontinent to the thinner crust of the outer margin. In this sense, their western slope may be comparable with the so-called hinge line marking the change from the thin, attenuated, or transitional crust (where dipping reflectors may be present) to the thicker crust of the continental platform (see east coast of the United States, Hutchinson et al., in press). The banks may also be analogous to the structural high that underlies the Vøring Plateau escarpment (Hinz, 1981). However, there are no direct equivalents to these highs on the conjugate East Greenland margin (Featherstone et al., 1977), but a possibly equivalent transition from oceanward dipping reflectors via a steep slope to shelf and landmass of Greenland is present.

Results obtained at Hole 553A as well as at previously drilled Sites 403 and 404 demonstrate that inner-shelf conditions prevailed immediately prior to the onset of spreading in early Eocene time, indicated by Anomaly 24B (Montadert, Roberts et al., 1979). The present rela-

Roberts, D. G., Schnitker, D., et al., *Init. Repts. DSDP*, 81: Washington (U.S. Govt. Printing Office).
 ² David G. Roberts (Co-Chief Scientist), Institute of Oceanographic Sciences, Wormley,

⁴ David G. Roberts (Co-Chief Scientist), Institute of Oceanographic Sciences, Wormley, Godalming, Surrey, United Kingdom (present address: British Petroleum Co. Ltd., Britannic House, Moor Lane, London, United Kingdom); Detmar Schnitker (Co-Chief Scientist), Department of Oceanography, University of Maine, Walpole, Maine; Jan Backman, Geologiska Institutionen, Stockholms Universitet, Kungstensgaten 45, S-113 & Stockholm, Sweden; Jack G. Baldauf, Paleontology and Stratigraphy Bureau, U.S. Geological Survey, Menlo Park, California; Alain Desprairies, Laboratoire de Géochime des Roches Sédimentaires, Université de Paris XI, 91405 Orsay, France; Reiner Homrighausen, Laboratorium fur Erdolgewinnung, Deutsche Texaco AG, 3101 Wietze, Federal Republic of Germany; Paul Huddlestun, Georgia Geological Survey, Atlanta, Georgia; Alfred J. Kaltenback, Denve Research Center, Marathon Oil Company, Littleton, Colorado; John B. Keene, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, California (present address: Department of Geology, University of Sydney, NSW, Australia); Klaus A. O. Krumsiek, Geologicshes Institut, Bonn, Nussallee 8, D 53 Bonn 1, Federal Republic of Germany; Andrew C. Morton, British Geological Survey, Keyworth, United Kingdom; Jean Westberg-Smith, Geological Research Division, Scripps Institution of Oceanography, La Jolla, California; Herman B. Zimmerman, Department of Civil Engineering, Union College, Schenectady, New York.

Figure 1. Northeast Atlantic bathymetry showing locations of Sites 552, 553, 554, 555, 403, 404, 405, 406, 116, and 117.

tive relief of the basement between these sites, Site 555 and Sites 116 and 117, is of the order of 2000 m, yet depths were apparently equivalent in early Eocene time at Site 117 (Laughton, Berggren et al., 1972; Roberts et al., 1979). Quite clearly the relief has been created subsequent to this time and may have formed in several ways. Conceivably it might represent the relief created rapidly during the terminal phases of rifting, or it might have formed by subsequent flexing of the entire margin, perhaps in response to postrift differential thermal subsidence reflecting differences in crustal thickness. In the former case, a substantial subaerial relief is implied in early Eocene time, and, in the latter, strong differential subsidence and/or uplift of an original relief created at or close to sea level is implied.

In terms of examining the paleoenvironmental history of the northern North Atlantic Ocean, Site 555 was important in several respects. The sedimentary section was thick (c. 700 m) in comparison to that at Sites 552 through 554, and developed on top of a regional high. Regional seismic studies show that the thicker section is part of the ubiquitous sediment drifts on the Rockall Plateau, where deposition under the pervasive influence of bottom currents was initiated in post-Eocene time (Roberts, 1975; Roberts, et al., 1979). The site was also close to the present axis of the North Atlantic Drift current.

The development of this thicker section offered the opportunity to examine a number of problems of North

Atlantic paleoceanography. Intercomparison of Site 555 with Sites 553 and 552 (as well as Sites 403-404), situated at greater depths, might allow some assessment of the evolution of temperature gradients in the water column with time from the response of benthic foraminiferal assemblages, although the effects of subsidence would need to be taken into account. The possibly more complete stratigraphic and paleontologic record at this site might also provide data on timing of important events, such as the subsidence of the Iceland-Faeroes Ridge, the impact of Eocene-Oligocene cooling, and the significance of the Eocene through Miocene unconformities observed at the deeper sites. By no means least, there might be an opportunitiy to HPC a complete Pliocene-Pleistocene section to examine glacial climate and migration of the North Atlantic Drift. In this context, it was noted that the first description of North Atlantic Pliocene-Pleistocene biostratigraphy was made from Site 116 in the adjoining Hatton-Rockall Basin (Berggren, 1972).

In summary, the principal objectives of Site 555 were to examine the following:

1. Subsidence history: Determining the subsidence history of the site using quantitative paleobathymetric data would contribute to the problem of the timing, rate, and amount of relative movement across the zone of crustal attenuation. Specifically, the site would examine the question of a rift or postrift origin for the topographic relief.

2. Basement: Coring of basement was intended to determine whether basic lava flows or continental meta-morphic rocks are present.

3. Paleoceanography: The drilling was intended to core a complete Neogene and Paleogene section to examine the evolution of North Atlantic climate and ocean circulation. In particular, the site was intended to document lithologic and biostratigraphic changes across key hiatuses and their relationship to global sea level variations (Vail et al., 1977).

4. Pliocene-Pleistocene climatic history: Drilling was intended to obtain by HPC a complete Pliocene-Pleistocene section in an area of increased sedimentation.

OPERATIONS

After making a return crossing of the beacon at Site 554, *Glomar Challenger* set course for Site 555 some 120 n. mi. distant (Fig. 5). The site was approached from the southwest at 1400Z, 30 August (Fig. 6). Unfortunately, a substantial discrepancy existed between the LORAN-C and OMEGA fixes, but a satellite fix was obtained at 1446Z. This allowed an approximate estimate of the fixed error between the satellite fix, OMEGA, and LORAN-C. Although the LORAN-C signals were weak, requiring frequent resetting of the receiver, these proved to be the most reliable during the site approach.

At 1500Z, course was adjusted to 205° (-3° leeway) to run down the control seismic Profile IPOD 76-9B to the site (Fig. 6). LORAN-C fixes indicated that the *Glomar Challenger* track lay approximately 1.6 n. mi. east

Figure 2. Principal structural elements of the southwestern Rockall Plateau based on seismic reflection profiles and magnetic data.

of the line, and at 1530Z course was altered to 270° to return directly to the control line. At 1540Z, course was adjusted back to 205° to run directly along the control seismic line. The site was identified on the *Glomar Challenger* seismic profile at 1550Z, but course was maintained until 1630Z to obtain a good crossing of the site. At 1632Z, *Glomar Challenger* executed a Williamson turn, returning to deploy a 16.5 kHz beacon at 1740Z, 30 August. After retrieving the geophysical gear, *Glomar Challenger* began positioning and maneuvering to the beacon.

At 1830Z, preparations began to pick up the bottomhole assembly and to run-in hole. At 0030Z, 31 August, shortly before reaching bottom, abnormally low pump pressures were noted. At 0050Z, sinker bars were run in hole to feel for the core barrel. It was eventually concluded that the pipe was open-ended. Between 0130 and 0215Z, the heave compensator and Bowen sub were set back preparatory to tripping the pipe. At 0458Z, the drill stem reached the rig floor; it was then found that the hydraulic bit release had shifted and released the bit. The cause remains unknown. Between 0458 and 1000Z, the pipe was again run back. After a possible premature spud at 1652 m, the first core was finally cut at the mudline at 1325Z, 31 August. Continuous coring then began. Heat-flow measurements were taken at 62.5, 99.5, 148.0, 199.5, and 243.0 m subsea, and the intervals from 72.0 to 91.0 m and from 100 to 129.0 m were washed. Continuous coring continued to total depth. Gel mud was spotted throughout. Basalt interbedded with sediments was cut in Core 84. Drilling rates in the basalt remained fairly high throughout at 1 to 2 hr. per core. At 933.0 m, a dense fine-grained basalt was cored, and drilling rates slowed to 4 hr. per core. A further 31.0 m of penetration into the basalts to total depth at 964.0 m was achieved by 0518Z, 7 September (Table 1). In view of the fact that rapid deterioration in weather conditions was forecast, it was decided to terminate the hole to ensure that a full logging program could be done in the remaining time available.

Between 0515 and 0730Z, 7 September, the hole was flushed with 50 barrels of gel and the bit released. The hole was then filled with mud, and the pipe pulled back to the logging point of 1869.0 m. The Bowen sub and heave compensator were also set back (0730-1235Z). A rather deeper logging point was chosen to ensure complete burial of the bottom-hole assembly in the soft sediments in the upper part of the hole. Further, pipe could

Figure 3. Multichannel seismic line IOS 76-9B through Site 555. (Right-hand figures represent provisional correlation of seismic reflectors with sonic gamma log.)

Figure 4. Studies of the Rockall Plateau modeled from gravity and available refraction data (redrawn from Scrutton, 1972).

be easily pulled out of the hole in the event of severe weather.

At 1350Z, the sonic-caliper-gamma combination was run in hole. However, a bridge was encountered at 2345.0 m and could not be penetrated despite several attempts to break through with the logging tool. Between 1415 and 1610Z, the hole was logged upward from 2345.0 m, preparatory to an attempt to remove the bridge using the core barrel. Meanwhile, the weather had been deteriorating rapidly, so that by 1610Z there was difficulty positioning in heavy swells and winds were gusting up to 40 knots. Operations were suspended at 1610Z, but every effort was made to keep Glomar Challenger on station and the pipe in hole throughout the night of 7 and 8 September. The poor weather conditions continued until 0930Z, 8 September. At 0930Z, an attempt was made to run pipe back in hole but no progress could be made, suggesting (1) that the pipe had side tracked during the storm or (2) that an obstruction was present or (3) that the pipe was bent. A core barrel was run in hole to check for bent pipe but found none, although a lot of debris was recovered in the barrel. In view of this, it was decided to run back carefully in the hole while rotating to remove the bridges. Between 1400 and 1920Z, the pipe was run in hole, encountering a bridge at 2345 m, but at 2363 m the pipe was still taking weight. By 2200Z, 8 September, with the aid of some rotation, the drill stem reached a point 3 m above (2630.0 m) total depth. One hundred barrels of gel were circulated, and the pipe was then pulled back to the first logging point of 2382.0 m.

This point had been selected because it lay below the troublesome bridge previously encountered at 2355 m. After successfully running in the sonic combination to 2596 m, pipe was pulled back to the second logging point of 1928.0 m, and all the remaining part of the hole was logged with the sonic combination.

Between 0850 and 1515Z, the CNL-FDC gamma and IRL-Gamma combinations were successfully run to a lesser total depth of 2556 m as a result of infilling of the hole. In view of this success in logging through the bridge, a final attempt (between 1515-1800Z) was made to secure a good sonic log for the entire hole. This attempt was successful and completed the important logging program. A special vote of thanks is owed to the captain, drilling superintendent, and operations manager who kindly allowed a later departure for the Azores to complete the logging program. After setting down the logging tools, the pipe was pulled out of the hole, clearing the mudline at 1855 hr., 9 September, despite a temporary failure of the hydraulic lines and gusset on the pipe stabber. Wind and sea conditions deteriorated markedly during the evening. By 2300Z, the rig floor had been secured, and at 2300Z, 8 September, Glomar Challenger departed Site 555 for Ponta Delgada, Azores, in winds gusting to 60 mph. Arrival of Glomar Challenger in Ponta Delgada, 15 September, terminated Leg 81.

SEDIMENT LITHOLOGY

The lithologic sequence drilled at Site 555 has been divided into four units; I to III are composed of sediments and IV is a basalt unit interbedded with sediments. The lithologic divisions are summarized in Table 2 and Figure 7. The detailed composition of the sediments from smear slides is summarized in Appendix A and the gamma-sonic character of lithologic units is shown in Figure 8.

Unit I: Section 1-1 to Sample 3-4, 80 cm; 0 to 22.3 sub-bottom. Age: Quaternary.

Unit I is characterized by cyclic sedimentation. Alternating horizons of foraminiferal-nannofossil ooze, marls, and calcareous muds extend from the seafloor to a depth of 22.3 m. Although moderately to highly disturbed by drilling, the cyclical nature of these sediments is clearly distinguished on the basis of color, texture, and composition. Drilling disturbance precluded further attempts to define or correlate individual cycles or to examine burrowing, primary structures, or the nature of the contacts between cycles. The base of the unit, at the lowermost marl in Core 3, is marked by a hiatus between Pleistocene sediments and those of earliest Pliocene age.

The calcareous facies are pale in color, ranging from white to pale yellow, whereas the marls and muds are various shades of brown, olive, or dark gray. The calcareous sediments appear coarse in grain size as a result of their foraminiferal content which ranges to 60%; nannofossils and a small but persistent clay component (10%) constitute the remainder of the facies. Carbonate bomb values are consistently above 80%.

The mud facies is dominantly clay-sized with a coarse terrigenous component (30%) consisting predominantly

Figure 5. Bathymetry of Sites 552, 553, 554, and 555, Rockall Plateau.

of quartz grains. Feldspar and heavy mineral grains are also present in small amounts (5%), and the carbonate content is about 25%. The disturbed nature of the sediment cores makes it difficult to assign ice-rafted dropstones to any particular horizon. Minor components include sponge spicules, pyrite, glauconite, and echinoid spines. Black sand-sized slate grains are evident throughout this unit.

No lithification is evident in these sediments. The cyclical nature of the unit and the abundance of the terrigenous component distinguishes this sequence from the underlying sediment.

In agreement with several previous studies (e.g., Ericson and Wollin, 1968), the pelagic carbonate ooze of the North Atlantic represents an interglacial climatic stage, whereas the terrigenous marls and muds represent the episodic advances of large continental ice sheets. These stages are reflected in the wide fluctuation of the carbonate content. High carbonate input occurs during the warmer interglacial periods, with relatively high productivity in the overlying waters. The presence of a sea ice cover during the glacial periods effectively reduced surface productivity (Macintyre et al., 1976). Increased erosion of continental areas, the presence of icebergs, and exposure of continental shelves during glacial stages led to the increase in the terrestrial and ice-rafted component of this facies.

Unit II: Samples 3-4, 80 cm to 26, CC; 22.3 to 281.0 m sub-bottom. Age: early Pliocene to early Miocene.

These sediments are essentially pelagic in character. They lie between the cyclical Pleistocene sequence and the volcanogenic-terrigenous sediments beneath the Mi-

Figure 6. Approach of Glomar Challenger to Site 555.

ocene-Eocene unconformity at the base of the unit. A small hiatus between the early and middle Miocene is present in Core 24.

Subunit IIa: Samples 3-4, 80 cm to 23,CC; 22.3 to 252.5 m sub-bottom. Age: early Pliocene to middle Miocene.

In contrast to the cyclic facies and terrestrial component of the overlying sequence, this subunit comprises uniform pelagic biogenic sediments which are bluish white in color with little variation and consist of foraminiferal-nannofossil ooze or biosiliceous foraminifer-nannofossil ooze. The carbonate content is consistently above 90% throughout the section and the biosiliceous content ranges from 5 to 10% as diatoms, radiolarians, and sponge spicules. A persistent clay component in these sediments is estimated at 5 to 10%. Minor constituents include: echinoid spines, fish debris, silicoflagellates, and pyrite. A single pyritized vitric ash bed (2 cm thick) occurs in Core 15 (168.6 m sub-bottom).

Most of the sedimentary structures were destroyed by the drilling process. Where the structure was preserved, the sediments were faintly laminated in black, light gray,

Table	1.	Coring	summary,	Site	555.
-------	----	--------	----------	------	------

	Date		Dep dri	oth from ll floor (m)	Dep	th below afloor (m)	Length	Length	Percent
Core	(1981)	Time	Тор	Bottom	Тор	Bottom	(m)	(m)	recovered
1	Aug. 31	1355	1669	.0-1674.5	0	.0-5.5	5.5	5.5	100
2	Aug. 31	1435	1674	.5-1684.0	5	.5-15.0	9.5	7.18	75
4	Aug. 31 Aug. 31	1626	1693	.5-1703.0	24	.5-34.0	9.5	9.30	97
5	Aug. 31	1721	1703	.0-1712.5	34	.0-43.5	9.5	8.71	92
6	Aug. 31	1815	1712	.5-1722.0	43	.4-53.0	9.5	9.31	98
7	Aug. 31	1917	1722	.0-1731.5	53	.0-62.5	9.5	9.35	98
ô	Aug. 31	2313	1760	0-1769 5	91	0-100 5	9.5	3.24	34
10	Sept. 1	0125	1769	.5-1779.0	100	.5-110.0	9.5	9.66	107
11	Sept. 1	0327	1798	.0-1807.5	129	.0-138.5	9.5	4.41	46
12	Sept. 1	0437	1807	.5-1817.0	138	.5-148.0	9.5	2.78	29
13	Sept. 1	0648	1817	.0-1826.5	148	.0-157.5	9.5	0.47	04
14	Sept. 1	0839	1820	0-1845 5	167	0-176 5	9.5	1.79	19
16	Sept. 1	1000	1845	.5-1855.0	176	.5-186.0	9.5	9.65	101
17	Sept. 1	1055	1855	.0-1864.5	186	.0-195.5	9.5	4.93	52
18	Sept. 1	1321	1864	.5-1874.0	195	.5-205.0	9.5	2.67	28
19	Sept. 1	1457	1874	.0-1883.5	205	.0-214.5	9.5	3.86	41
20	Sept. 1	1557	1883	0 1002 5	214	0 222 6	9.5	3.86	41
22	Sept. 1	1830	1902	5-1912.0	233	5-243.0	9.5	3.20	34
23	Sept. 1	2040	1912	.0-1921.5	243	.0-252.5	9.5	0.15	02
24	Sept. 1	2128	1921	.5-1931.0	252	.5-262.0	9.5	9.55	101
25	Sept. 1	2225	1930	.0-1940.5	262	.0-271.5	9.5	9.44	99
26	Sept. 1	2333	1940	.0-1950.0	271	.5-281.0	9.5	9.53	100
21	Sept. 2	0100	1950	5-1969.0	281	5-300.0	9.5	3.10	103
29	Sept. 2	0253	1969	.0-1978.5	300	.0-309.5	9.5	0.90	105
30	Sept. 2	0353	1979	.5-1988.0	309	.5-319.0	9.5	1.99	21
31	Sept. 2	0507	1988	.0-1997.5	319	.0-328.5	9.5	2.28	24
32	Sept. 2	0600	1997	.5-2007.0	328	.5-338.0	9.5	8.02	84
33	Sept. 2	0704	2007	.0-2016.5	338	.0-347.5	9.5	9.15	96
34	Sept. 2 Sept. 2	0803	2010	0-2035 5	347	0-366.5	9.5	0.13	01
36	Sept. 2	1004	2035	.5-2045.0	366	.5-376.0	9.5	2.06	22
37	Sept. 2	1103	2045	.0-2054.5	376	.0-385.5	9.5	3.45	36
38	Sept. 2	1210	2054	.5-2064.0	385	.5-395.0	9.5	4.93	52
39	Sept. 2	1323	2064	.0-2073.5	395	.0-404.5	9.5	9.82	103
40	Sept. 2	1435	2073	.5-2083.0	404	.5-414.0	9.5	9.69	102
41	Sept. 2	1759	2083	5-2102.0	414	5-433.0	9.5	5 37	57
43	Sept. 2	1925	2102	.0-2111.5	433	.0-442.5	9.5	7.43	78
44	Sept. 2	2032	2111	.5-2121.0	442	.5-452.0	9.5	4.63	49
45	Sept. 2	2142	2121	.0-2130.5	452	.0-461.5	9.5	4.38	46
46	Sept. 2	2250	2130	.5-2140.0	461	.5-471.0	9.5	8.20	86
47	Sept. 3	0105	2140	5-2159.0	4/1	5-490.0	9.5	5.76	61
49	Sept. 3	0210	2159	.0-2168.5	490	.0-499.5	9.5	5.43	57
50	Sept. 3	0300	2168	.5-2178.0	499	.5-509.0	9.5	0.18	02
51	Sept. 3	0405	2178	.0-2182.5	509	.0-518.5	9.5	0.49	05
52	Sept. 3	0535	2187	.5-2197.0	518	.5-528.0	9.5	4.22	44
54	Sept. 3	0803	2197	5-2216.0	528	5-547 0	9.5	8.38	88
55	Sept. 3	0931	2216	.0-2225.5	547	0-556.5	9.5	3.55	37
56	Sept. 3	1043	2225	.5-2535.0	556	.5-566.0	9.5	9.50	100
57	Sept. 3	1210	2235	.0-2244.5	566	.0-575.5	9.5	1.22	13
58	Sept. 3	1345	2244	.5-2254.0	575	.5-585.0	9.5	8.02	84
59	Sept. 3	1505	2254	5-2272 0	585	5-604.0	9.5	9.05	104
61	Sept. 3	1720	2273	.0-2281.5	604	.0-613.5	9.5	8.48	89
62	Sept. 3	1840	2281	.5-2292.0	613	.5-623.0	9.5	7.16	75
63	Sept. 3	1950	2292	.0-2301.5	623	.0-632.5	9.5	1.50	16
64	Sept. 3	2153	2301	.5-2311.0	632	.5-642.0	9.5	6.56	69
65	Sept. 3	2300	2311	5 2220.5	642	.0-051.5	9.5	3.40	36
67	Sept. 4	0155	2320	.0-2330.0	661	0-670 5	9.5	5.86	62
68	Sept. 4	0515	2339	.5-2349.0	670	.5-680.0	9.5	4.24	45
69	Sept. 4	0815	2349	.0-2358.5	680	.0-689.5	9.5	7.72	81
70	Sept. 4	1102	2358	.5-2368.0	689	.5-699.0	9.5	2.31	24
71	Sept. 4	1255	2368	.0-2377.5	699	.0-708.5	9.5	1.50	16
72	Sept. 4	1442	2387	0-2306 5	708	0-727 5	9.5	6.84	44
74	Sept. 4	2125	2396	5-2406.0	727	5-737.0	9.5	3.78	40
75	Sept. 5	0025	2406	.0-2415.5	737	.0-746.5	9.5	2.20	23
76	Sept. 5	0310	2415	.5-2425.0	746	.5-756.0	9.5	6.35	67
77	Sept. 5	0540	2425	.0-2434.5	756	.0-765.5	9.5	7.88	83
78	Sept. 5	0803	2434	.5-2444.0	765	.5-775.0	9.5	5.02	53
80	Sept. 5	1225	2444	5-2463.0	794	5-704.0	9.5	5.90 A 56	62
81	Sept. 5	1520	2463	.0-2472.5	794	.0-803.5	9.5	3.98	42
82	Sept. 5	1805	2472	.5-2482.0	803	.5-813.0	9.5	3.15	33
	1.100 11.000 10.000								

yellowish gray, and pale blue green colors. Vague yellowish gray mottles were also often present. These color variations were apparently unrelated to any obvious compositional or textural change. Bioturbation occurred occasionally, but was rarely intense enough to destroy the lamination. Burrows were light gray in color and related to the presence of pyrite, as were the black laminae.

Apart from the pyrite development, the only other diagenetic effect was the transformation of ooze to chalk as the depth of burial increases. The first chalky interbed appeared in Core 9 at about 95 m sub-bottom; interbeds increase in frequency with depth in the section.

The base of the subunit was marked by the appearance of glauconite. The lower boundary of this subunit was placed at the base of the cored interval for Core 23, for which only a core-catcher sample was retrieved.

Subunit IIb: Section 24-1 to Sample 26, CC; 252.5 to 281.0 m sub-bottom. Age: early to middle Miocene.

Based on the change in recovery (Fig. 7), the upper boundary is marked by a distinct change in physical properties. Although pelagic chalks were more common in this subunit, ooze was the predominant lithology; it graded from a bluish white foraminiferal ooze at the top to a pale green glauconitic foraminifer ooze at the base. The glauconite was present as distinct fine sand to siltsized grains within the ooze matrix.

Basically consisting of biogenic pelagic sediments, the subunit is distinguished from the overlying sediment by the sudden increase in foraminifer content (from 15 to 35%) and in the common occurrence of glauconite. Glauconite content exhibits a gradual increase from 1 to 2% at the top to about 10% at the base and is probably of the same origin as that found at Sites 552 and 553.

This subunit was lithologically identical to Subunit IIb at Sites 552 and 553 but its age is quite different (21 m.y. cf. 12 m.y.), and it was deposited in depths of about 1500 m (cf. 2500 m). Strong independence of depth in the formation of glauconite is thus shown.

The lower boundary of this subunit corresponds to a major unconformity spanning some 30 m.y. from early Miocene to the early Eocene.

Unit III: Section 27-1 to Sample 68-2, 30 cm; 281 to 672.3 m sub-bottom. Age: early Eocene.

This unit consists of a number of widely varying lithologies which lie between the pelagic oozes of Unit II and the basalts and hyaloclastites of Unit IV, and is equivalent to Subunits IVb-f of Site 553. It has been divided into five subunits on a lithological basis.

The upper boundary is placed at the early Miocene/ early Eocene unconformity which is situated in the mixed zeolitic clays and chalks at the top of Core 27 (0-15 cm). The unit's upper boundary is also marked by the reappearance of a terrestrial component. The lower boundary is defined by the downhole appearance of basalts and hyaloclastites.

Subunit IIIa: Section 27-1 to Sample 30, CC; 281.0 to 320.0 m sub-bottom. Age: early Eocene.

This subunit was composed of a number of lithologies and is considered to be a transitional phase between more consistent lithologic sequences above and below. In their order of appearance in Cores 27 and 28, the major lithologies were:

1. Vitric tuff: A dusky green to grayish black to black partially inducated volcanic glass with minor pyrite and sponge spicules.

Table 2. Lithologic summary, Site 555.

Unit	Lithology	Sub-bottom depth (m)	Thickness (m)	Sedimentation rate (m/m.y.)	Age	Core
I	Cylic alternations of muds, calcareous muds, and nanno-foram ooze	0-22.30	22.30	13	Quaternary	1-1 to 3-4, 80 cm
IIa	Nanno ooze, foram-nanno ooze, biosiliceous nanno-foram ooze	22.30-252.50	230.20	16	early Pliocene to mid-Miocene	3-4, 80 cm to 23,CC
пр	Glauconitic foram chalks and oozes	252.50-281.00	28.50	18	middle to early Miocene	24-1 to 26,CC
IIIa	Lithologically variable, including zeolitic chalk, vitric spiculite, volcanic tuff, macrofossil limestone	281.00-320.00	39.00	52	early Eocene	27-1 to 30,CC
IIIb	Tuffaceous glauconitic sandstone	320.00-352.20	32.20	52-265	early Eocene	31-1 to 34-4, 20 cm
IIIc	Tuffs and lapilli tuffs interbedded with feldspathic sandstone and carbona- ceous mudstone	352.20-482.50	130.30	265	early Eocene	34-4, 20 cm to 48-1, 50 cm
IIId	Micaceous carbonaceous mudstone and feldspathic sandstone, often with carbonate cement	482.50-632.50	150.00	265	early Eocene	48-1, 50 cm to 63
IIIe	Volcanic tuff and lapilli interbed- ded with mudstone and sandstone	632.50-672.30	48.80	265	early Eocene	64-1 to 68-2, 30 cm
IVa	Hyaloclastite, basalt, and pillow ba- salt, with thin sandstone interbeds	672.30-822.50	150.20		late Paleocene(?)	68-2, 30 m to 83
IVb	Micaceous sandstone and mudstone, volcanic tuff and lapilli interbeds, and thin basalt flows	822.50-927.32	104.82	95	late Paleocene	84-1 to 95-1, 32 cm
IVc	Basalt and dolerite	927.32-964.00	37+		late Paleocene	95-1, 32 cm to 98

2. Vitric spiculite: Occurs as a loose sand of olive to yellowish green in color with black grains of volcanic glass visible. The sediment contained abundant quantities of sponge spicules and altered glass (palagonite and glauconite).

3. Glauconite zeolitic chalk: A partially indurated, dusky yellow green sediment consisting primarily of carbonate grains with common clinoptilolite, glauconite, clay, and sponge spicules. At the base of Core 27 and in Core 28 this chalk was interbedded with a light olive brown clay; small scale flaser bedding was present.

4. Macrofossil limestone: Occurring as a number of loose cobbles at the base and in the core catcher of Core 28. Yellow and dusky yellow green in color, these rocks consist of firmly cemented (possibly silicified) carbonate shell hash. Thick-shelled bivalves (oysters) were present, suggesting high-energy conditions and close proximity to shore.

The volcanic glass present in this subunit was frequently unaltered and is of basaltic composition throughout.

The top of the subunit is the Miocene-Eocene transition as discussed above: The base is marked by the downhole appearance of highly glauconitic tuffaceous sandstones.

Subunit IIIb: Section 31-1 to Sample 34-4, 20 cm; 320.0 to 352.2 m sub-bottom. Age: early Eocene.

This subunit was characterized by high proportions of glauconite, with the upper and lower boundaries essentially defined on glauconite content. The lower boundary was also the horizon below which volcanic tuffs reappeared and was marked by the downhole appearance of the epidote-amphibole heavy mineral association.

The sediments were slightly tuffaceous glauconitic sandstones and siltstones, with glauconite contents up to about 50%. Zeolitic content reached 30%, and calcareous nannofossils made up as much as 20% of the sediment. The clay minerals consisted entirely of wellcrystallized smectite. There was always a small terrigenous component of quartz, feldspar, mica, and heavy minerals reaching some 25%. The heavy minerals were of the garnet-pyroxene-amphibole-apatite association, indicating derivation from the metamorphic basement of the southern Rockall Plateau.

The sediments were frequently burrowed and laminated throughout, with the laminae occasionally showing flaser bedding. Serpulid worm tubes and fragments of other carbonate shells were scattered through the subunit.

The abundance of glauconite, the disappearance of the epidote-amphibole association, and the early Eocene (NP10) age indicate that the subunit is equivalent to the lower part of Subunit IVb in Hole 553A and is considered to represent the same major transgressive event.

Subunit IIIc: Samples 34-4, 20 cm to 48-1, 50 cm; 352.2 to 482.5 m sub-bottom. Age: early Eocene.

This subunit was characterized by the presence of volcanic tuffs and lapilli tuffs interbedded with carbonaceous sandstones, siltstones, and mudstones which first appear at the top of the unit. The lower unit was marked by the disappearance of tuff. The volcanic glass was altered to smectite in most cases but some fresh glass was preserved, particularly where early calcite concentration has occurred. Volcanic glass was largely of basaltic composition (tholeiitic and alkali) but intermediate types also occurred, indicating a correlation with Unit IVc of Site 553. Although tuffs were frequent, they were less common than at 553, probably as a result of lack of preservation in the higher-energy environment.

The interbedded detrital sediments were highly carbonaceous (10-15% plant debris noted in smear slides), with variable amounts of sand, silt, and clay. The clay mineral assemblage consisted predominantly of smectite, with less than 10% of illite and kaolinite. The sandstones were highly feldspathic (quartz:feldspar being 50: 50 in several cases), with both the epidote-amphibole association (South Greenland derivation) and the garnet-amphibole-apatite association (Rockall Plateau deri-

Figure 7. Lithologic and biostratigraphic summary, Site 555.

vation) being represented. Small amounts of foraminifers and nannofossils occurred throughout.

The mudstone frequently showed well-developed but indistinct laminae. They were occasionally in flaser form and less commonly convoluted. Burrows were not abundant, but when present were usually distinct and often pyritized. Various types of shell debris were scattered throughout and include serpulids, gastropod shells, thin shelled bivalves, a single crab pincer, and in one section a hermatypic coral. The depositional environment of this facies was probably a shallow basin with moderate current activity (tidal) and low oxygen content within the sediment because of the concentration of organic material.

Carbonate cementation occurred both in the sandstones and the tuffs. Other diagenetic phases particularly within the tuffs were smectite and zeolites (clinoptilolite, phillipsite).

Subunit IIId: Sample 48-1, 50 cm to Core 63; 482.5-632.5 m sub-bottom. Age: early Eocene.

Subunit IIId was lithologically similar to the adjacent subunits, except that tuffs are virtually absent. As with Subunit IIIc the dominant lithologies are highly feldspathic sandstones and carbonaceous mudstones, and contain a similar fauna (serpulids, gastropods, thinshelled bivalves, hermatypic corals, etc.; Fig. 9). Heavy minerals were dominated by the garnet-amphibole-apatite association. Chlorite first appeared in the clay fraction. Siderite and hematite were present at the upper boundary of the subunit as well as in the interval of 530 to 550 m sub-bottom. The lower part of the subunit was also distinguished by the presence of cristobalite. A single graded lapilli tuff occurred near the base of the subunit (Fig. 10).

Carbonate cementation frequently occurred in the sandstones, generally in zones with poor recovery, suggesting that other, less-well indurated sands might have been washed out by the drilling process.

Subunit IIIe: Section 64-1 to Sample 68-2, 30 cm; 632.5 to 672.3 m sub-bottom. Age: early Eocene.

This subunit was characterized primarily by volcanic tuff and lapilli tuffs. The upper boundary was placed within Core 64, where vitric tuffs and lapilli tuffs of basaltic composition first appear.

The vitric tuffs were dark gray to olive black in color and contain variably altered basaltic glass, frequently cemented with zeolite (mainly analcite). Small amounts of plant debris, clay, and terrigenous quartz, feldspar, mica, and heavy minerals were present. Graded lapilli tuff beds were interspersed throughout, the black and gray lapilli imparting a distinctive "salt and pepper" appearance to the facies. A single case of reverse grading was noted in the lapilli tuff bed from Core 67, Section 1 (Fig. 11).

Interbedded with this unit were calcite-cemented feldspathic sandstones, light gray in color. These beds were as thick as 30 cm and especially numerous in Core 64. Occasionally, brownish black carbonaceous mudstones, characteristic of the overlying subunits, were also present.

Although burrows are common, the subunit retained a subhorizontal fine lamination throughout, especially in the finer sediments. The laminae were occasionally convoluted and infrequently imbricated. Core 67 contained a number of small slump features or faults associated with pyrite mineralization. Infrequently this subunit contained an intermeshing series of calcite vein fillings.

The presence of slumps, regular and convoluted laminations in the finer-grained sediments, and the thick sequence of volcanic tuff suggests that sedimentation took place in a rapidly subsiding basin where water depth was controlled by the relative rates of deposition and subsidence. Currents (tidal?) were moderate, and, where lamination is preserved, a low oxygen content within the sediment is indicated.

The contact with the underlying pillow basalts (Subunit IVa) is sharp and clearly defined.

Unit IV: Sample 68-2, 30 cm to Core 98; 672.3 to 964.0 m sub-bottom. Age: early Eocene to late Paleocene.

Unit IV was distinguished from the overlying unit by the presence of basalt flows and hyaloclastites in addition to volcanic tuff and lapilli tuff beds, and continues to total depth. It was subdivided into three subunits on the presence or absence of interbedded sediment and hyaloclastite content.

Subunit IVa: Samples 68-2, 30 cm to Core 83; 672.3 to 822.5 m sub-bottom. Age: early Eocene to late Paleocene.

Subunit IVa largely consisted of hyaloclastites and pillow lavas with minor basalt flow units and rare thin sediment interbeds. The top of the subunit was defined by the downhole appearance of basalt and the base by the reappearance of relatively thick detrital sediment interbeds.

Seven basalt units occur within Subunit IVa as follows:

68-2, 23 cm to 69-4, 122 cm	Single flow unit
70-1, 0 cm to 70-2, 32 cm	Composite pillow lava unit
75-1, 130 cm to 76-1, 140 cm	Single flow unit
76-1, 140 cm to 76-5, 56 cm	Composite pillow lava unit
81-2, 42 cm to 82-1, 97 cm	Composite pillow lava unit
82-1, 107 cm to 82-2, 54 cm	Single pillow lava
82-1, 92 cm to 83-3, 26 cm	Composite pillow lava unit

As shown above, several of the basalt units were single or multiple thin pillow basalt flows, rarely greater than 1 m in thickness, which displayed thin (c. 5 mm) rinds of palagonitized glass at their upper and lower surfaces. These surfaces were often curved and oriented at any angle between the horizontal and vertical in the cores; such curved glassy surfaces are characteristic of pillow lavas.

Within each pillow, major textural variations occurred: Below the glassy rind, a zone of very fine to fine-grained basalt was present showing some textural and compositional inhomogeneity resulting from the presence of resorbed fine-grained basalt reincorporated into the pillow flow. This zone was typically vesicular, with large elongate or irregular vesicles, often with their long axes perpendicular to the pillow surfaces: Vesicles in this zone were often calcite lined and smectite or chlorite

Figure 8. Gamma-sonic log response of principal lithologic units, Site 555.

Figure 8. (Continued).

289

Figure 9. Caryophylliid coral and other macrofauna in carbonaceous mudstone (Sample 555-59-4, 9-19 cm).

filled. The central part of the pillow was coarser grained with minor, small, smectite and chlorite filled vesicles; below this, the basalt passed back through a finegrained vesicular zone to glass at the base. The pillows were commonly fractured, with fractures filled with calcite and/or smectite. Incipient brecciation of the pillow flows was observed at several pillow margins, with angular fine-grained basalt fragments occurring within glassy margins.

The basalts were tholeiitic in composition, made up essentially of plagioclase, both as phenocrysts (ranging from An_{52} to An_{76}) and in the groundmass (ranging from An_{48} to An_{52}), and clinopyroxene (ranging from endiopside, $Mg_{49}Fe_{10}Ca_{41}$, to augite, $Mg_{46}Fe_{15}Ca_{39}$), with minor titaniferous magnetite and rare pseudomorphs after olivine (Harrison and Merriman, this volume). They showed variable alteration, with the development of smectite, chlorite, celadonite, and calcite.

Hyaloclastites formed an important part of the interval under discussion. They consisted of angular to subrounded clasts of vesicular or nonvesicular basalt and basaltic glass set in a white groundmass mainly composed of analcite and saponite with minor calcite. Thin sections showed that minor amounts of terrigenous sand have also been incorporated into the hyaloclastites. Generally they were very poorly sorted, with clasts of diameters ranging from less than 1 cm to greater than 20 cm occurring in close association. However, toward the tops and bases of hyaloclastite units some better sorted zones associated with planar bedding were present, indicating some reworking.

Subunit IVb: Section 84-1 to Sample 95-1, 32 cm; 822.5 to 927.32 m sub-bottom. Age: late Paleocene.

This subunit consisted primarily of tuffs and lapilli tuffs interbedded with terrigenous sediments, consisting of micaceous and feldspathic sand-, silt-, and mudstones.

Sediments of mixed origin, such as sandy vitric tuffs, were also commonly present. Three thin basalt flows were also present.

The pyroclastics were similar to those in Subunit IIIe. Beds were often graded from lapilli tuff at the base to finer-grained vitric tuffs above. The beds were varying shades of medium gray and had a "salt and pepper" appearance where lapilli are concentrated. Varying degrees of alteration were noted in the volcanic glass, which was of basaltic type.

The terrigenous facies exhibited a wide variation in grain size and was poorly sorted. Quartz sand and silt constituted about 20 to 40% of the sediment, with feld-spar and mica each at about 10%. The remainder consisted of minor amounts of pyrite, carbonate grains, and plant debris, which together constituted about 10% of the sediment and varying amounts of clay. In contrast to the sediments above, the clay mineral assemblage reflects a large continental contribution, with the presence of illite (20-40%) and lesser amounts of chlorite and kaolinite. Smectite, however, still constituted over 50% of the clay content.

The sediments of the upper portion of this subunit exhibited fine lamination (generally at 5° from the horizontal) and flaser bedding; burrows were infrequent. In Core 86 there was an excellent example of channeling (Fig. 12), with laminated siltstone being crosscut by a channel fill of vitric tuff and lapilli. Core 87 contained a lapilli sand dyke structure which crosscuts fine-grained tuffaceous silts (Fig. 13). The occurrence of scours, cross lamination, and soft sediment deformation structure suggests a high-energy depositional environment with high rates of sediment accumulation.

The sediment of the lower portion of this subunit showed finer and indistinct lamination, occasional wood fragments, scattered serpulids(?), and infrequent shell debris. Burrows were sparse. The frequency of volcanic events increased with depth in this sequence. These features suggest a somewhat deeper water setting for the depositional environment under lower energy conditions than the sections above. High rates of sediment accumulation primarily reflect the influx of volcanogenic material.

Three thin basalt units occur within the subunit:

86-1, 122 cm to 86-1, 136 cm	Single flow unit (or intrusion)
90-2, 50 cm to 90-4, 80 cm	Single flow unit
93-2, 123 cm to 93-3, 4 cm	Single pillow lava

These basalts were petrographically and texturally similar to those in the overlying subunit, except that the basalt in Core 86 lacked glassy chilled margins and might be an intrusion rather than a flow. Core 94 contained a layer of altered basalt clasts (Fig. 14).

Subunit IVc: Sample 95-1, 32 cm to Core 98; 927.32 to 964.0 m sub-bottom. Age: late Paleocene.

Subunit IVc consisted of a single massive unit, with a thin chilled top (15 cm thick) passing down through a medium-grained zone into a coarse-grained dolerite in the central portion. Total depth was reached before the base of the unit.

Figure 11. Typical sedimentary structures of Subunit IIIe (Sample 555-67-1, 100-120 cm). Reversely graded lapilli tuff (130-134 cm); convoluted lamina (126-128 cm); imbricated structure (124 and 125 cm); small slumps or faults, associated with pyrite mineralization (126-120 cm).

Very little textural variation occurred in the main body of the flow, although there were some minor inhomogeneities in grain size and composition resulting from the presence of small resorbed pre-existing basalt xenoliths. Vesicles throughout the flow were rare and generally less

than 1 mm in diameter, and were filled with black smectite and chlorite.

This thick flow unit was extremely fractured, particularly in the coarse-grained massive central zone. Fracturing was generally near horizontal (up to 20°), but

Figure 12. Channel cut in mudstone infilled by lapilli tuff (Sample 555-86-3, 72-95 cm).

high-angle cross-cutting fractures were also frequent and commonly oriented at about 60° to the horizontal. Fractures were usually wholly filled with black smectite: in some cases calcite and analcite occurred as later phases.

Petrographically the dolerites differed from the overlying basalts in that they contained fresh and altered oli-

Figure 14. Altered basalt clasts base of Subunit IVb (Sample 555-94-1, 100-115 cm).

vine (Harrison and Merriman, this volume). They consisted of equigranular intergrowths of bytownite (An₇₄) and augite (ranging from Mg₄₄₋₄₆Fe₁₄₋₂₈) with accessory forsterite (Fo₇₆₋₈₂), titaniferous magnetite, and ilmenite. Some alteration to smectite and chlorite has occurred. Although those dolerites differed both texturally and petrographically from the overlying basalts, they have similar whole rock chemistries and were of tholeiitic type throughout.

BIOSTRATIGRAPHY

Neogene

Site 555 is the shallowest site drilled during Leg 81, and was located in a small basin which separates the highs of the Hatton and the Edoras banks. Neogene sediments are represented in Cores 1 through 26. The Neogene sedimentation rates are based on 21 biostratigraphic events and/or zonal assignments. Individual microfossil groups provided a low biostratigraphic resolution, but collectively the data from all groups gave a coherent biostratigraphic framework with a fairly high resolution (Fig. 7).

The only foraminiferal criterion used in the Pleistocene at Site 555 is the regional first occurrence of *Globorotalia truncatulinoides*. The time-correlation of this biostratigraphic indicator is derived from the results obtained from previous Leg 81 sites. An interval barren of siliceous microfossils occurs during latest Pliocene to Pleistocene times (Samples 555-1,CC to 3,CC). This interval correlates with a similar Pliocene–Pleistocene barren interval observed at Hole 552A. At that site, the upward beginning of the interval barren of siliceous fossils marks the initiation of Northern Hemisphere glaciation.

Virtually all of the Pliocene is represented by a hiatus at Site 555.

The late Miocene represents a period of low biostratigraphic resolution with regard to nannofossils and planktonic foraminifers. Diatoms and radiolarians provide more biostratigraphic information in the upper Miocene sequence. The planktonic foraminifers are characterized by low diversity and long-ranging forms during late Miocene times. In addition, the intra- and interspecific variation of late Miocene foraminifers makes specific identifications difficult and limits their usefulness as precise biostratigraphic tools (see Huddleston, this volume). Because minor differences in taxonomic interpretation between workers may cause major discrepancies in biostratigraphic assignments, Poore and Berggren's (1975) high latitude zonation could not completely be applied to the Leg 81 material.

Radiolarians and diatoms again provided the most precise stratigraphic assignments in earliest late and middle Miocene times. It was virtually impossible to apply Martini's (1971) nannofossil zonation in the interval between Zones NN5 and NN11 in the Rockall area because of the absence of zonal marker fossils. Bukry's (1973) nannofossil zonation provides some useful guide fossils in the middle and earliest late Miocene interval. The extinction of the foraminiferal species *Globorotalia mayeri*, which defines the N14/N15 boundary, appears to represent the least ambiguous foraminiferal datum event in the Rockall area during middle Miocene times.

The early Miocene nannofossil species Sphenolithus belemnos is present at Site 555. It is the first observation of this warm water species in the Rockall area, and its presence indicates that at least one pulse of warmer waters penetrated into this region during the early Miocene. Radiolarians and diatoms provide less detailed biostratigraphic information in the middle and late part of the early Miocene, compared to the information provided by nannofossils and planktonic foraminifers.

Paleogene

The early Miocene is separated from the early Eocene by a hiatus.

The biostratigraphy of the early Eocene (NP12/13-NP10) and the late Paleocene (NP9) was based solely on nannofossils, which were few to rare and poorly preserved as a result of dissolution. The voluminous influx of terrigenous material and the shallow-shelf depositional environments some distance from open ocean may both have contributed to the comparatively low abundance of nannofossils per unit sediment. Occasional samples contain a more diverse nannofossil assemblage.

Macrofossils

No complete macrofossils were observed in the Neogene section, but the presence of spines of irregular echinoids and sponge spicules in many of the samples indicates the existence of these two groups throughout the section. Core 30 contained (at the top) a considerable volume of drill slurry in which there were large numbers of the stem and arm ossicles of crinoids. Their age is uncertain but may be Miocene.

The lower Eocene is relatively abundant in macrofossils, especially the mudstones and particularly between Cores 28 and 67. Beneath this, fossils are sparse. Core 28 contains a bryozoan coquina composed of stick bryozoans (cheilostomes), but in the rest of the succession bryozoans are rare. (A brief description of bryozoans from two Leg 81 samples appears in Appendix B.)

The mudstone faunas commonly consist of irregular echinoids (whole tests preserved but most commonly loose spines), ophiuroids (disarticulated skeletal remains), tunicates (spicules observed in smear slides), and sponges (spicules). At certain levels, e.g., Cores 40 and 58, the infaunal bivalve Nucula is relatively common. Ahermatypic solitary corals are present in Cores 41 and 58 and are abundant in Core 59. Although preserved in a mudstone which does not offer a stable substrate for attachment, it is thought that during life they were cemented to firm substrates such as mollusc shells and serpulid tubes as is modern Caryophylla. Isolated oyster shells and layers rich in them are present in Cores 33, 46, 48, and 49. Finally, the tubes of serpulid worms occur at many levels within the sequence, and they extend down to Cores 92 and 93 where they form the only preserved evidence of marine life.

From this brief survey of the macrofauna it is not possible to make detailed environmental interpretations. However, it is clear that collectively they represent a shelf association with much evidence of shallow water, and this accords with the environmental interpretations based on the benthic foraminifers.

Calcareous Nannofossils

Nannofossil-bearing sediments are present continuously from Cores 1 to 32 and sporadically between Cores 32 and 67. Sediments interbedded with basalt are present from Cores 84 to 94. Some levels in this interbedded sequence contain nannofossils indicative of Zone NP9 of the late Paleocene. The shipboard study of nannofossils from Site 555 was primarily confined to coré-catcher samples.

Cores 1, 2, and the upper half of 3 are Pleistocene in age. The last occurrence of *Pseudoemiliania lacunosa*

occurs within Core 2. *Helicosphaera sellii* and *Calcidiscus macintyrei* are present in the upper half of Core 3. Thus, part of the early Pleistocene is probably missing.

Reticulofenestra pseudoumbilica is present in Sample 555-3-5, 80 cm. No other early Pliocene index fossils were observed below that level in Core 3. The lower part of Core 3 thus may range in age from Zones NN12 to NN15. Discoaster guingueramus is continuously present from 4,CC through 10,CC, indicating Zone NN11. Reticulofenestra minuta is very abundant in 9, CC. Sample 11,CC shows Discoaster bellus, suggesting that this sample may belong to Zone NN10. A distinct downhole increase in abundance of Dictyococcites perplexus is observed in 11,CC. The high abundance of D. perplexus continues down to 16,CC. No five-rayed discoasters or Coccolithus miopelagicus were observed in 12,CC and 13,CC. These two samples may therefore belong to Zone NN9. The first downhole occurrence of C. miopelagicus is in 15,CC, which indicates Zone NN8 according to Bukry (1973). The next obvious change in the assemblage occurs in Sample 555-24-1, 100 cm where Coronocyclus nitescens, Cyclicargolithus abisectus, and C. floridanus are present, and Sphenolithus heteromorphus is missing. This suggests that the interval from 15,CC to 23,CC (where Discoaster kugleri is present) belongs to Zones NN7 and NN8. Zone NN6 is represented between Sample 24-1, 100 cm and 24-3, 135 cm since S. heteromorphus has its last occurrence at the latter level. Zone NN5 is represented between 24-3, 135 cm and 24-4, 135 cm. Samples 24-5, 100 cm through 26,CC show an assemblage indicative of Zone NN3; Sphenolithus belemnos and Helicosphaera ampliaperta are present whereas Triquetrorhabdulus carinatus is missing.

A major change in lithology occurs between 26,CC and the top of Core 27; this change represents a hiatus encompassing approximately 30 m.y. A disturbed drilling breccia, which partly consists of lumps of soft lightbrown sediment, is present in the uppermost 20 cm in Section 555-27-1. A sample at the 5-cm level in Section 27-1 from the nucleus of such a brownish lump contained an early Eocene assemblage (NP12-NP13), e.g., *Discoaster lodoensis, D. keupperi, Tribrachiatus orthostylus, Imperiaster obscurus, Chiasmolithus eograndis, Pontosphaera fimbriata*, etc.

Coccoliths are few in Cores 27 through 32, except in Sample 555-31, CC in which they are common and show a fairly diverse early Eocene assemblage, including Tribrachiatus orthostylus (first occurrence), Chiasmolithus bidens, and Ellipsolithus macellus (last occurrences). Sample 31,CC thus represents the NP10/NP11 boundary. Sample 33, CC is barren. However, rare Tribrachiatus contortus are present in Sample 555-33-2, 80 cm, thus confirming the suggested position of the NP10/ NP11 boundary in 31,CC. The interval between 34-5, 41 cm and 41,CC is barren of coccoliths. Rhomboaster cuspis is present from 43, CC to 45-1, 95 cm, and Chiasmolithus eograndis, Discoaster diastypus, D. lenticularis, and D. mediosus are represented in 45,CC, suggesting that 45,CC is referable to Zone NP10 and thus the lowermost part of the Eocene.

Samples 555-46-1, 70 cm through 56,CC are barren.

Rare coccoliths which are biostratigraphically nondiagnostic occur from Cores 57 to 67,CC. Because fasciculiths are absent, this interval is referred to NP10.

Basalts were recovered from the middle part of Cores 68 though 83, but 84 through 93 recovered sediments. Basalts were cored again in the top of Core 94, and no sediments were recorded below the top of Core 94. A few cores in the middle part of the interbedded sedimentary sequence yielded nannofossils representative of Zone NP9 of the late Paleocene. Section 88-4 contains the most diverse assemblage. Investigation of several samples in that section revealed the following species: Braarudosphaera discula, Chiasmolithus bidens, Coccolithus luminis, C. pelagicus, Discoaster mediosus, D. mohleri (one specimen), D. multiradiatus, Ellipsolithus distichus. E. macellus, Fasciculithus bobii, F. involutus, F. lillianae, F. tympaniformis, Fasciculithus sp., Markalius astroporus, Neochiastozygus sp., Neococcolithes protenus, Pontosphaera aff. P. plana, Prinsius bisulcus, Toweius eminens, T. occultatus, T. pertusus, Zygrhablithus bijugatus, and Zygodiscus sigmoides. Fragments of thoracosphaerids are common. One specimen of a reworked Cretaceous species, Watznaueria barnesae, was observed at 48 cm in Core 88-4.

Planktonic Foraminifers

Sample 1,CC is middle to late Pleistocene in age based on the presence of *Globorotalia truncatulinoides*, which makes its first local appearance in the middle part of the Pleistocene section. Sample 2,CC is probably middle to early Pleistocene in age, based on the presence of abundant *Neogloboquadrina pachyderma* s.s. and common *G. inflata* and the absence of *G. truncatulinoides*.

Samples 3,CC to 5,CC appear to be of earliest Pliocene or late Miocene age based on the occurrence of G. margaritae and the absence of G. puncticulata. Samples 6,CC through 10,CC are late Miocene in age (N17 to N16) based on the occurrence of G. conoidea and Globoquadrina dehiscens. The coiling change in the Neogloboquadrina atlantica plexus occurs between Sections 8-6 and 9-2. The plexus is randomly coiled in 8, CC. The interval from 11,CC to 16,CC is evidently earliest late Miocene to latest middle Miocene in age. This interval can be characterized by the presence of Neogloboquadrina continuosa, G. cibaoensis-scitula, generally more common G. dehiscens, a more consistent occurrence of Globigerinoides quadrilobatus, and Sphaeroidinellopsis seminulina, and by the scattered occurrence of Globigerina nepenthes and Globoquadrina altispira.

Sample 17,CC is middle Miocene in age based on the occurrence of *Globorotalia mayeri*. This sample is no younger than N14 since the extinction of *G. mayeri* defines the top of Zone N14. Sample 19,CC is, at the youngest, N13 in age based on the frequent occurrence of *Globigerina druryi*. The lowest occurrence of the *N. atlantica–N. acostaensis plexus*, represented by *Globorotalia challengeri* (Kennett and Srinivasan), is in Sample 20,CC. The interval 19,CC to 20,CC appears to represent a transition interval above which *G. challengeri-N. atlantica–N. acostaensis, G. mayeri*, and *Globi-*

gerina bulloides-parabulloides are the dominant elements of the fauna, and below which the N. atlantica-G. acostaensis plexus does not occur. The underlying fauna is dominated by Globorotalia panda, and undifferentiated keeled Globorotalia aff. menardii, Globigerina praebulloides, Globoquadrina altispira, and Globigerinoides quadrilobatus are present in relative abundance.

There was no sample recovery in 24,CC. Sample 25,CC is late early Miocene (N6) in age based on the co-occurrence of well-developed *Globigerinoides quadrilobatus*, *G. subquadratus*, *G. cf. altiapertura*, *Catapsydrax dissimilis*, and *Sphaeroidinellopsis seminulina*. It is assumed that 26,CC is the same age as 25,CC because it contains a similar assemblage except for the absence of *G. subquadratus*, *G. cf. altipertura*, and *Sphaeroidinellopsis seminulina*.

Most of the samples between 27,CC and total depth were indurated or were barren of planktonic foraminifers. Only Samples 28,CC; 31,CC; 32,CC; 43,CC; 45,CC; 56,CC; 59,CC; 60,CC; and 67-4, 64 cm contained planktonic foraminifers. Of these samples only 31,CC contained an appreciable quantity of planktonic foraminifers, but only two species are present: *Globigerina patagonica* and *Acarinina* cf. *soldadoensis*. This suggests an early Eocene age for Sample 31,CC. Sample 59,CC contained a single specimen of *Globigerina velascoensis*, which suggests an early Eocene or late Paleocene age for that sample.

Benthic Foraminifers

The basic Planulina wuellerstorfi fauna (including Cibicidoides kullenbergi, Oridorsalis umbonatus, and Epistomella exigua) is present from the Pleistocene (1,CC) to the early Miocene (26,CC). The Pleistocene assemblages (1,CC and 2,CC) also include Cassidulina teretis and Triloculina frigida. The Pliocene is present in 3,CC. Species found only in the Miocene include Globocassidulina subglobosa (often very common), Uvigerina auberiana, U. compressa, Siphotextularia catenata, and Laticarinina pauperata. In the lowermost middle Miocene and early Miocene, Siphonina tenuicarinata is present.

The diversity ranges between $\propto 10$ and 25. Pleistocene values are $\propto 20$ to 22, early Pliocene $\propto 16$, and late Miocene $\propto 14$ to 23, with most values between $\propto 14$ and 19. There are big fluctuations in the middle Miocene, $\propto 11$ to 25, and lower values of $\propto 10$ to 12 in the early Miocene. This suggests that conditions have been variable and especially so during the middle Miocene.

The planktonic:benthic ratio is 99:1 from 1,CC to 20,CC; then 96:4 until 23,CC; 91:9 at 24-7, 55 cm; 98:2 at 25,CC; and 80:20 at 26,CC. There may be some dissolution in the lowermost part of the Neogene succession. However, overall the values are high and indicate open oceanic waters. The *P. wuellerstorfi* fauna suggests depths greater than 1500 m.

It may be reasonable to assume that the site has not in the past been significantly deeper than it is at present, i.e., 1659 m. The sporadic rare occurrence of *Melonis pompilioides* suggests depths less than 2000 m. There is a major hiatus between Cores 26 and 27, with the early Miocene represented in Sample 555-26,CC and early Eocene in Core 27. Fossiliferous early Eocene to late Paleocene continues down to Sample 555-67-4, 64 cm.

The two samples from immediately beneath the hiatus have been affected by dissolution (27-2, 105 cm and 28-1, 37 cm). The faunas are poorly preserved and difficult to identify. The planktonic: benthic ratios are 17:83 and 7:93 respectively, both affected by dissolution. The dominant benthic forms are *Osangularia* spp. together with *Gyroidinoides* spp. These assemblages probably represent outer shelf depths, 150–200 m. No samples were available from Cores 29 and 30.

Samples 555-31-1, 120 cm, 31,CC, and 32,CC have moderate preservation. The planktonic:benthic ratios are 44:56, 72:28, and 26:74, respectively. The assemblages are dominated by *Anomalinoides howelli*, but many other species are present and the diversity values range from α 12 to 20. These are clearly shelf assemblages, probably mid- to outer-shelf, with depths of 75 to 150 m. In Sample 33,CC the planktonic:benthic ratio is 2:98. The dominant species are *Praeglobobulimina ovata*, *Bulimina trigonalis*, and *A. acutus*. The diversity is low (α 5.5), and the environment is interpreted as inner shelf, 25 to 100 m, some distance from the influence of open oceanic waters. The occurrence of oysters in this sample is in accordance with this interpretation.

There then follows a barren interval (34-3, 60 cm; 34,CC) of volcaniclastic sediments. In Sample 35,CC there are rare Cribrostomoides sp., Lenticulina sp., and A. howelli and, in Sample 36-2, 3 cm rare Protelphidium sp. together with plant debris. From Samples 38,CC to 67-4, 64 cm planktonic foraminifers are rare or absent, showing that the area was isolated from the influence of open oceanic waters. All the assemblages are indicative of inner-shelf depths of less than 75 m. The dominant forms vary from sample to sample, but commonly they are Lenticulina spp., Alabamina obtusa, Anomalinoides acutus, A. nobilis, Praeglobobulimina ovata, Cribrostomoides sp., and Nonionella spp. Most of the samples represent near-normal salinities, but brackish influences are evident in 38,CC and 46,CC while 52,CC having 97% Protelphidium sp., is considered to represent a brackish intertidal level; salinity 10-25‰. This sample contains much plant debris. Some levels have very sparse fauna (46,CC; 53,CC; 54,CC), while others are barren (64,CC; 66,CC; 69,CC; 73,CC; 74,CC; 88,CC; 89-1, 29 cm; 92,CC; and 93,CC).

To summarize, foraminiferal faunas first appear up the succession in lithological Unit IVc where they indicate inner-shelf seas of normal salinity, isolated from the open ocean. Shallow water conditions prevailed during the deposition of more than 300 m of sediment. In Zone NP11 the waters deepened to mid- and outer-shelf depths and the influence of oceanic waters became more marked. There is then a major hiatus of around 30 m.y. during which the site subsided to its present depth, for all the Neogene succession was deposited in the epibathyal zone under the influence of North Atlantic Deep Water (see Murray, this volume). **SITE 555**

Diatoms

Hole 555

Diatoms are abundant to rare in Site 555. No siliceous late Pliocene or Pleistocene sediments are present. Within the middle Miocene, the diatom flora ranges from abundant and diverse flora to poorly preserved and rare to absent.

Cores 555-1 through 4 are either barren or contain no age diagnostic species. Species present include *Hemidis*cus cuneiformis, Actinoptychus undulatus, Thalassiosira eccentrica, and Nitzschia reinholdii.

Common moderately preserved diatoms are observed in Cores 5 to 6-4. This late Miocene interval is assigned to the *Thalassiosira convexa* Zone based on presence of *T. miocenica, T. nativa*, and *T. convexa* s. ampl. The interval of dissolution present at the base of this zone occurs in Cores 6 through 8.

Sample 555-8,CC contains N. cylindrica, H. cuneiformis, and N. marina-reinholdii, and is therefore assigned to Nitzschia porteri-Nitzschia miocenica Zone.

The interval from Cores 9-2 to 11-2 is assigned to the *Coscinodiscus yabei* Zone based on the presence of *Coscinodiscus plicatus, Denticulopsis dimorpha, D. hustedtii*, and *H. cuneiformis.* Preservation within this interval is poor to moderate.

Few to common, moderate to well-preserved diatoms occur in Cores 12 to 16. Species present include: D. hustedtii, D. punctata, D. praedimorpha, D. hyalina, C. yabei, C. plicatus, Actinocyclus ingens, and H. cuneiformis. This middle Miocene assemblage is assigned to the Denticulopsis praedimorpha Zone.

The Rhizosolenia barboi Zone occurs in the interval from Cores 16 to 18. The base of this zone is defined by the first occurrence of R. barboi which occurs in Sample 555-18, CC. Other species present include D. punctata var. hustedtii, R. praebarboi, A. ingens, and A. ellipticus.

Cores 19 to 21 are assigned to the *Denticulopsis nico*barica Zone based on the presence of *D. nicobarica* and *D. punctata* var. hustedtii without *R. barboi*. Additional species include Asterolampra marylandica, *R. mioceni*ca, Craspedodiscus coscinodiscus, and A. ingens.

Rare specimens of *Coscinodiscus lewisianus* are found in Samples 555-21,CC and 22-1, and therefore are placed within the *Coscinodiscus lewisianus* Zone. The remaining portion of Core 22 is poorly preserved, and only specimens of *A*. *ingens* are observed.

All other samples below Core 22 with the following exceptions are barren of diatoms. Core 27 contains fragments of the Eocene diatom *Stephanopyxis*. Samples 555-32,CC; 41,CC; 48,CC; 58,CC; 59,CC; 61,CC; and 67,CC contain undiagnostic pyritized diatom frustules.

Radiolarians

Radiolarians were recovered from late Pliocene through middle Miocene sediments of Samples 555-4,CC through 23,CC. None of the samples examined from Pleistocene Cores 555-1 through 3 contained siliceous fossils, and the only radiolarians in the core catcher of Core 555-4 are large, robust, indeterminate actinommids, litheliids, and spongodiscids. In Core 555-5, there is a moderately well-preserved assemblage from the *Stichocorys peregrina* Zone.

The dominance of S. delmontensis over S. peregrina in Sample 555-6-4, 30-32 cm indicates an age below the lower boundary of the S. peregrina Zone, but the species necessary to distinguish between Didymocyrtis penultima Zone and D. antepenultima Zone are not present.

Core catchers from Cores 555-9 and 10 contain very few robust radiolarians and large sponge spicules; most diagnostic species have probably dissolved, but several specimens of D. laticonus indicate middle to late Miocene age. There is more variety, better preservation, and greater abundance of radiolarians in samples below Sample 555-10,CC. Although most of the artiscins are not sufficiently well preserved for species distinction, more D. laticonus are preserved than D. antepenultima, suggesting that Cores 555-11 through 19 belong to the Diartus petterssoni Zone. D. petterssoni is also present in this interval along with Lithopera neotera and other species which range through this zone. The same assemblage persists down through Sample 555-16,CC, but that in 17,CC is noticeably different. There are abundant large sponge spicules, forms that are common in the cores above are very rare or absent, and other forms, some previously undescribed, are common. L. neotera is found in small numbers down to Core 555-21, where its ancestor L. renzae is more abundant. This evolutionary transition is placed in the top of the Dorcadospyris alata Zone by Riedel and Sanfilippo (1978). All of the above zonal assignments correlate well with nannofossil data.

Recovery in Cores 555-22 and 23 was very poor, and most of the siliceous material is dissolved; only large robust actinommids and large sponge spicules remain in Core 22. There is apparently a great deal of downhole contamination in Core 555-23; in addition to the partly dissolved radiolarians and sponge spicules like those in Core 22, there are small forms with very well-preserved delicate spines, and species characteristic of the Pliocene and Pleistocene. Below this, radiolarians are absent except for occasional occurrences of robust, nondiagnostic actinommids.

There is a striking difference between Site 555 and the previous Leg 81 sites in both the thickness of late to middle Miocene sediments and the preservation of siliceous fossils in these sediments. Table 3 summarizes the approximate thickness in meters of radiolarians zones and the Pleistocene and Miocene siliceous barren intervals, in order to compare and contrast the four sites with respect to radiolarian recovery. The question marks in the column for Site 553 note the spot coring in Pliocene and late Miocene sediments.

Site 555 was drilled in a depression between the Hatton and Edoras banks which received current-borne sediment as well as the products of the overlying waters during Miocene time. The other sites also reflect the influence of bottom currents on rate of deposition. Middle Miocene unconformities found at each site are evidence of erosion. Although the linear sedimentation rates

Table 3.	Approximate	thickness	(m)	of	radiolarian
zones	, Site 555.				

	Site							
	552	553	554	555				
Pleistocene	10	15	15	0				
Barren	30	15	15	35				
S. langii Zone	75	?	35	10				
S. peregrina Zone								
D. penultima Zone	5	?	15	40				
D. antepenultima Zone								
Barren	25	20	5	0				
D. alata Zone	0	10	10	140				
D. petterssoni Zone								
early Miocene/Oligocene	5(?)	10	5	0				
Eocene	10	20	0	0				

at the deeper sites in the late Miocene suggest that there was no erosion taking place, the fluctuation in relative amounts of nannofossils and foraminifers indicates that the availability of sediments deposited may have been controlled by the changing strength and position of currents in relation to the sites.

Differences in productivity caused by local upwelling at topographical highs cannot be discounted, but it is difficult to distinguish here between the effects of productivity and transport. Silica preservation is undoubtedly affected by both these factors. Where more silica is deposited per unit time, whatever the cause, more will be available to buffer interstitial waters and burial will take place faster, preserving more siliceous skeletons. This may be why Site 555 has radiolarians preserved below the *D. antepenultima* Zone while the other sites are barren at that interval.

Dinoflagellates

Dinoflagellates from the Paleocene and Eocene sediments of Hole 555 have been examined by Brown and Downie (this volume), and their results are summarized here. The zonal scheme is that devised by Costa and Downie (1979).

Cores 85 to 94 contain Apectodinium hypercanthum, A. quinquelatum, A. homomorphum, A. divissum, A. parvum, and A. augustrum, indicating a Zone Ia assignment.

Between Cores 67 and 85 lies a sequence of basalts and volcanic breccias barren of palynomorphs.

The interval between Cores 45 to 67 is characterized by wide variations in the ratio of dinoflagellate cysts to pollen and spores, indicating that the environment fluctuated between estuarine and shallow shelf conditions. The sporadic occurrence of *Wetzeliella astra* throughout this interval is an indication of Zone Ia1. The interval is also characterized by many reworked dinoflagellate cysts of Jurassic, Cretaceous, and Danian age.

Cores 33 to 44 contain no diagnostic species, probably because of ecological factors. Over most of the interval there are very few cysts and abundant pollen and spores, and the fresh water alga *Pediastrum* sp. is present in one sample. In Cores 33 and 34 the ratio of dinoflagellate cysts to pollen and spores rises dramatically, indicating a change to more normal shallow marine conditions.

Core 32 contains Wetzeliella meckelfeldensis, indicative of a Zone Ib age. The base of this zone presumably lies in the underlying interval of low species diversity.

Cores 27 to 31 are barren of palynomorphs.

PHYSICAL PROPERTIES

Physical properties measured on the sediments and basalts, agglomerates, and terrigenous intercalated sediments penetrated in Hole 555 included compressionalwave velocity, 2-minute GRAPE wet-bulk density, continuous GRAPE wet-bulk density and water content, porosity, and wet-bulk density measured by gravimetric techniques.

The gravimetric measurements were carried out in the shipboard chemistry laboratory. Shear strength measurements were not carried out because the soft sediments recovered by rotary drilling were severely disturbed throughout.

All the measurements and calculations were done as described in the Introduction and Explanatory Notes. All the data measured and calculated are given in Table 4 and plotted in Figure 15 which appears in the back pocket of this volume.

Main Results

According to the physical properties, seven different units can be distinguished. The last unit can be subdivided into two major subunits.

In most cases the boundaries correlate well with the boundaries of the lithologic units or subunits of this site, and they are also established by a preliminary interpretation of the gamma ray log in scale 1:1000.

Unit A: Pleistocene-middle Miocene

Unit A (0-252.5 m) comprises lithologic Units I and Ha and is characterized by sonic velocities averaging about 1.5 km/s and porosity values between 50 and 60%. These data are very typical for nannofossil- and foraminifernannofossil ooze, and they are comparable to those found at the other sites of this leg.

Unit B: middle Miocene-early Miocene

This unit which has its lower boundary at about 281 m sub-bottom shows a steady increase of the sonic velocity from 1.5 to 1.6 km/s, coinciding with a decrease in porosity from 62-55%. The glauconitic foram chalks and oozes are rather homogeneous, which is the reason for the good core recovery within this interval (Unit IIb of the lithologic subdivision).

Unit C: early Eocene

Unit C goes down to about 352 m sub-bottom depth. Because of the poor recovery in the upper part of this unit, there are few physical properties data for this interval. However, the limited core recovered shows a heterogeneous sequence of sediments.

The sonic velocity is higher than 3.0 km/s for some horizons in the upper part and shows a steady increase in the lower part from 1.75-2.0 km/s. All the other data do not show reliable trends.

Unit C includes Units IIIa and IIIb of the lithologic subdivision.

Unit D: early Eocene

The sediments of the interval down to 519 m seem to have the same overall mineralogical composition but have undergone differential cementation as indicated by the sonic velocity variations. For some layers high sonic velocities of about 5 km/s are caused by calcite cementation, with a corresponding decrease in porosity down to 10% and acoustic impedance values higher than 11. These phenomena are restricted to distinct layers as shown by the sonic log. Heterogeneity is the reason for the poor recovery in some intervals of this unit, which covers lithologic Unit IIIc and the upper part of lithologic Unit IIId.

Unit E: early Eocene

The base of Unit E lies at a depth of about 618 m sub-bottom. This unit has fairly uniform physical properties. The porosities vary little, as do the sonic velocities (between 1.7 and 1.8 km/s). The homogeneity of this interval resulted in fairly good recovery of the micaceous carbonaceous mudstones and feldspathic sandstones.

Unit F: early Eocene

Unit F, which overlies the basalt sequence with a very sharp contact at 672 m, again shows great differences in the sonic velocity, which range between 1.8 and 3.6 km/s according to differences in the porosity. The heterogeneity in physical properties of the sediments caused the poor core recovery in this interval. The lower boundary of this interval coincides with the boundary between lithologic Units IIIe and IVa.

Unit G: late Paleocene

The interval from the top of the first basalt penetrated to total depth (964 m) is characterized as Unit G, which is subdivided primarily into Subunits G1 and G2.

Subunit G1 consists of several individual lava flows with intercalated agglomerates and volcaniclastic sediments. The different lava flows are characterized by sonic velocities which range up to 5.0 km/s according to their vesicularity, internal texture, and overall mineralogical composition. The variations in grain densities of the basalts between 2.97 and 3.03 g/cm³ and in the porosities (between 6 and 10%) are also caused by the above features.

The agglomerates interbedded between the basalt flows in the upper part of Subunit G1 show very homogeneous physical properties and are characterized by sonic velocities of 2.7 to 3.5 km/s, grain densities of 2.75 g/ cm³, and porosities of 30 to 40%.

The sedimentary sequence which occurs in the lower part of the subunit has physical properties which allow a subdivision into a more coarse-grained upper part (Cores 84 and 85) and a predominantly argillaceous lower part (Cores 86 to 89; see Fig. 15). Another more argillaceous sedimentary intercalation can be seen at a depth between 890 and 910 m sub-bottom.

Subunit G2: late Paleocene

This subunit comprises the massive basalt which was drilled from 927 to 964 m total depth. Sonic velocities are very high (higher than 5 km/s throughout the interval), grain densities are exclusively higher than 3.02 g/ cm³, and the porosities are lower than 5% in all cases.

				GRAPE "special" Gravimetric					
	Depth in	So velo	und city ^a	Wet-bul 2-min	k density . count	Wet-	Wet-water content		Acoustic impedance
Core-Section (interval in cm)	hole (m)	Beds (km/s)	⊥ Beds (km/s)	(g∕ ∥ Beds	cm ³) ⊥ Beds	density (g/cm ³)	corr. (%)	Porosity (%)	$\left(\frac{g \cdot 10^{5}}{cm^{2} \cdot s}\right)$
2-4, 62-64	10.64	1.515		1.669		1.61	38.77	62.40	2.529
3-1, 83-86	15.86	1.592		1.795		1.76	30.84	54.23	2.858
3-5, 83-86	21.86	1.583		1.811		1.75	30.25	53.04	2.867
4-7, 10-12	33.62	1.567		1.843		1.76	28.68	50.60	2.888
5-6, 81-83	42.33	1.475		1.853		1.70	32.15	54.78	2.733
6-4, 93-96	48.96	1.558		1.796		1.75	29.87	52.34	2.798
0-0, 92-95	51.95	1.503		1.794		1.70	31.72	53.92	2.090
8-2 82-85	64.85	1.539		1.749		1.75	31.45	54 67	2.092
8-5, 78-81	69 31	1 489		1.700		1.74	33 73	57.24	2.646
9-1, 97-100	92.00	1.551		1.846		1.78	30.63	54.49	2.863
10-3, 77-80	104.30	1.554		1.819		1.80	29.92	53.87	2.827
10-7, 35-38	109.88	1.579		1.747		1.77	31.42	55.75	2.759
11-3, 80-83	132.83	1.554		1.710		1.71	34.44	58.97	2.657
12,CC (10-13)	141.28	1.561		1.808		1.74	32.85	57.19	2.822
15-1, 51-54	167.54	1.484		1.739		1.68	35.75	59.97	2.581
16-5, 83-86	183.36	1.504		1.783		1.76	32.03	56.32	2.682
16-7, 31-34	185.84	1.537		1.838		1.79	29.42	52.59	2.825
18 2 27 20	189.30	1.504		1./80		1.75	31.74	53.00	2.793
10.2, 27-30	206.38	1.521		1.857		1.75	30.45	53.10	2.794
20-2 17-20	216 20	1 305		1.033		1.79	32.85	56.60	2.316
21-2, 115-118	226 68	1.505		1 760		1 73	32.05	56.66	2 689
22-2, 10-13	235.13	1.061		1.778		1.65	35.51	58.60	2.847
24-2, 111-114	255.14	1.527		1.663		1.58	38.83	61.39	2.539
24-4, 105-108	258.08	1.530		1.739		1.59	38.16	60.58	2.661
25-3, 114-117	266.17	1.522		1.661		1.62	38.39	62.29	2.528
25-5, 106-109	269.09	1.535		1.669		1.61	37.64	60.79	2.562
26-3, 123-126	275.76	1.554		1.788		1.74	32.75	57.01	2.779
26-6, 121-124	280.24	1.553	1101-022277-01	1.803	111 July 100	1.71	32.96	56.29	2.800
27-1, 17-20	281.20		1.876		1.550	1.54	42.71	65.76	2.908
27,CC (14-17)	284.00		3.332		2.336	2.17	9.57	20.74	7.784
28-1, 15-18	290.68		1.653		1.851	1.81	29.11	52.70	3.060
30,00 (12-14)	311.40		2.510		1.824	1.80	28.60	53.05	4.578
37,1 04-06	321.15		1.709		1 599	1.55	44.47	66.95	2.742
32-4, 111-113	334.13		1.918		1 621	1.69	37.17	62.74	3,109
33-1, 142-144	339.44		1.771		1.568	1.59	42.71	68.09	2.777
33-3, 63-65	341.65		1.871		1.682	1.71	36.26	62.16	3.147
34-1, 108-110	348.60		2.095		1.677	1.83	30.77	56.21	3.513
34-4, 30-32	352.32		4.988		2.308	2.41	9.17	22.12	11.512
36-1, 17-19	366.69		4.346		2.556	2.58	4.04	10.41	11.108
37-1, 92-94	376.94		4.301		2.569	2.61	3.75	9.76	11.049
38-2, 33-35	387.35		3.336		2.340	2.35	9.83	23.05	7.806
38-3, 140-148	390.00		1.738		1.75	1.84	29.02	53.50	3.042
39-1, 87-89	395.89		3.419		2.214	2.31	20.57	47.08	1.570
40.4 100 111	404.40		1.670		1.913	2.08	20.57	42.78	2 829
41-1 146-149	415 50		1.689		1.707	1.75	33 37	59.25	2 883
41-4, 69-71	419.21		1.664		1.682	1.73	35.17	60.80	2.799
42-1, 44-47	424.00		3.580		2.146	2.26	14.08	31.82	7.683
42-2, 118-119	426.20		2.589		2.072	2.06	20.79	42.83	5.364
43-3, 107-109	437.10		1.703		1.744	1.74	33.05	57.51	2.970
44-1, 42-44	443.00		1.714		1.720	1.71	33.89	58.02	2.948
45-1, 4-6	452.06		1.717		1.785	1.78	30.86	54.98	3.065
46-2, 49-51	463.50		3.842		2.412	2.35	10.65	25.03	9.267
46-6, 17-19	469.20		1.808		1.855	1.82	28.36	51.65	3.354
47-2, 113-115	473.65		1.802		1.809	1.79	30.78	55.18	3.260
48-3, 140-148	485.00		1.801		1.793	1.80	30.30	54.68	3.229
52 2 56 59	509.30		3.992		2.500	2.4/	2.28	13.79	2 221
52-2, 30-30	520.38		1.810		1.705	1.79	28.14	51.88	3.231
53-6 10-12	535 60		1.785		1.07	1.04	28.14	52 41	3 274
54-3, 29-31	540.80		1.685		1.786	1.84	28 25	51.96	3.006
56-1, 147-149	558.00		1.760		1.832	1.84	28.69	52.91	3.224
56-5, 81-83	563.30		1.797		1.807	1.81	29.65	53.79	3.247
58-1, 111-114	576.60		1.785		1.806	1.80	28.83	51.93	3.224
58-3, 109-111	579.60		1.781		1.929	1.93	24.19	46.73	3.436
58-6. 25-28	010100		1 000		1.906	1.92	25.39	48.63	3,600
	583.30		1.889		1.200				
59-1, 119-123	583.30 586.20		1.889		1.889	1.86	26.16	48.72	3.478
59-1, 119-123 59-5, 133-135	583.30 586.20 592.35		1.889		1.889	1.86 1.90	26.16 24.53	48.72 46.61	3.478 3.556
59-1, 119-123 59-5, 133-135 60-3, 140-142	583.30 586.20 592.35 598.90		1.889 1.841 1.829 1.737		1.889 1.944 1.876	1.86 1.90 1.82	26.16 24.53 28.99	48.72 46.61 52.84	3.478 3.556 3.259
59-1, 119-123 59-5, 133-135 60-3, 140-142 60-6, 145-147	583.30 586.20 592.35 598.90 603.50		1.889 1.841 1.829 1.737 1.742		1.889 1.944 1.876 1.855	1.86 1.90 1.82 1.87	26.16 24.53 28.99 26.95	48.72 46.61 52.84 50.35	3.478 3.556 3.259 3.231

Table 4.	Physical	property	data,	Hole	555.
----------	----------	----------	-------	------	------

addie in (Continueu).	Table	4.	(Cont	tinued).
-----------------------	-------	----	-------	--------	----

				GRAPE "special"					
		Sa	Courd		k densitu		Wet-water		Acoustic
	Depth in	velo	velocity ^a		. count	Wet-	content		impedance
Core-Section	hole	Beds	⊥ Beds	(g/	cm ³)	density	corr.	Porosity	$\left(\frac{g \cdot 10^5}{2}\right)$
(interval in cm)	(m)	(km/s)	(km/s)	Beds	\perp Beds	(g/cm ³)	(%)	(%)	$(cm^2 \cdot s)$
62-2, 133-135	616.35		1.793		1.841	1.87	27.86	52.20	3.301
62-5, 71-74	620.24		2.116		1.894	1.88	26.17	49.31	4.008
63-1, 141-143	624.40		3.553		2.413	2.44	7.52	18.32	8.573
64-4, 138-141	638.40		3.037		2.094	2.11	17.35	36.58	6.359
65-2, 78-81	644.30		2.864		2.01	2.01	19.93	40.12	5.757
66-1, 78-81	652.30		2.986		2.155	2.08	17.41	36.14	6.435
67-2, 141-143 67 CC (5-7)	666.70		2 992		2.042	2.04	15.08	43.27	4.068
68-2, 128-130	673.30		5.462		2.564	2.82	3.12	8.77	14.005
68-3, 49-51	674.00		5.712		2.597	2.83	2.85	8.06	14.834
69-2, 108-110	683 50		5.745		2.605	2.87	2.14	7.09	13.607
69-5, 37-40	686.40		2.567		2.185	2.19	14.09	30.82	5.609
69-6, 49-52	688.00		2.275		2.156	2.11	15.43	32.59	4.905
70-1, 76-80	690.30		4.226		2.367	2.58	6.97	18.02	6 296
72-2, 129-131	711.30		3.165		2.041	2.20	14.15	38.18	6.460
73-1, 117-119	719.20		2.879		2.026	2.03	19.48	39.56	5.833
73-3, 49-51	721.50		2.873		2.022	2.02	19.47	39.40	5.809
74-1, 109-111	728.60		2.917		2.103	2.11	17.16	36.27	6.184
74-3, 19-21	730.70		3.030		2.096	2.12	16.89	35.78	6.351
75-1, 57-59	737.60		2.712		1.986	1.99	21.38	42.65	5.386
76-3, 127-129	750.80		5.525		2.322	2.85	3.99	11.19	13.405
76-4, 110-112	752.10		5.179		2.641	2.55	5.12	13.06	13.678
76-5, 41-43	753.00		5.068		2.519	2.74	4.69	12.86	12.766
77-3, 27-29	759.30		3.324		2.079	2.11	16.39	34.92	7.014
77-5, 94-97	763.00		3.335		2.070	2.18	15.19	33.06	6.903
78-1, 56-59	767.00		3.157		2.263	2.19	14.77	32.33	7.144
79-1, 41-43	775.40		3.350		2.18	2.18	14.25	31.42	7.105
79-3, 17-19	778.70		3.494		2.75	2.37	9.34	22.09	9.609
79-4, 124-126	780.80		4.287		2.85	2.31	12.46	28.83	12.218
80-1, 44-46	785.00		5.842		2.80	2.17	3.21	8.32	9.525
81-1, 69-71	794.70		5.358		2.198	2.51	7.27	18.28	11.777
81-2, 104-107	796.60		4.316		2.555	2.51	6.06	15.20	11.027
81-3, 70-72	804.00		5.206		2.542	2.67	6.15	16.19	11.540
82-3, 15-17	806.70		4.061		2.319	2.55	8.39	21.35	9.417
83-1, 57-59	814.00		4.767		2.480	2.78	4.45	12.37	11.822
85-1, 21-23	822.00		2.652		2.034	2.19	13.09	28.66	5.986
85-2, 3-5	833.55		3.169		2.158	2.22	14.30	31.79	6.839
86-1, 79-81	842.30		2.249		2.076	2.07	19.05	39.38	4.669
87-1, 82-85	851.85		2.203		2.059	2.07	18.88	38.75	4.460
87-4, 38-40	856.00		2.222		2.029	2.05	19.41	39.81	4.508
87-6, 31-33	858.80		2.377		2.113	2.13	16.89	36.06	5.023
88-4, 28-40	865.40		2.14		2.055	2.06	18.51	38.13	4.398
89-1, 119-121	871.20		2.424		2.138	2.16	14.91	32.20	5.183
90-1, 8-10	879.60		2.235		2.040	2.09	18.67	38.99	4.559
91-1, 120-122	890.20		4.344		2.502	2.67	5.95	15.87	10.869
91-2, 3-5	890.55		2.633		2.191	2.13	15.79	33.67	5.769
92-1, 34-36	898.90		2.426		2.13	2.12	16.57	35.11	5.203
93-1, 7-9	908.10		2.224		2.215	2.08	15.03	31.46	4.926
93-2, 137-139	910.90		4.325		2.451	2.55	5.83	14.87	10.601
94-1, 93-95	918.50		2.483		2.241	2.18	14.11	30.76	5.564
95-3, 3-5	929.85		6.474		2.78	3.02	0.44	0.80	17.998
96-1, 73-75	937.25		5.766		2.707	2.99	0.66	1.96	15.609
96-3, 104-106	940.55		5.237		2.694	2.95	1.42	4.20	14.108
97-1, 3-5	946.05		6.018		2.735	2.98	0.60	1.79	16.243
97-3, 43-45	949.50		5.846		2.708	3.01	0.43	1.29	15.831
97-7, 41-43	954.00		6.638		2.749	2.97	0.88	2.61	18.248
98-1, 94-96 98-4, 97-98	956.00		5.915		2.690	2.96	0.53	1.58	16.166
98-7, 5-7	962.50		6.535		2.721	3.00	0.55	1.65	17.782

^a Sound velocity at 18.5°C.

The physical properties measured on samples from Hole 555 allow a good subdivision of the penetrated sediments and basalts which correlate well with the lithological observations and thus can be used to support the interpretation of the seismic profiles.

ORGANIC GEOCHEMISTRY

Gases

The results of gas analyses run at Site 555 are given in Table 5. Pore-water gas extraction was done on Sections 2-3 through 31-1 (320 m). The occurrence of volcaniclastic sediments at this depth coincided with a significant decrease in the amount of interstitial water that could be squeezed from the sediments. A thick sequence of obviously organic sediments was recovered in Cores 40-60. Since very little pore water was being removed, "vacutainer" samples were drawn from these cores for analysis. Although the hydrocarbon gases occur at low levels (C_1 4-40 ppm), these are the highest levels encountered on Leg 81.

The results suggest low-temperature $(21-32^{\circ}C)$ thermal-decomposition reactions as the source for the light hydrocarbons present in these sediments.

Sediments

The thick sediment sequence at Site 555 contains high levels of organic matter (0.02-4.1%) compared to the other Rockall sites (552-554). Results are shown in Tables 6 and 7 and Figures 16 and 17.

Present-Early Miocene

The Recent-early Miocene section at Site 555 contained organic matter similar to the previous sites, with an average C/N ratio of 10.

Early Eocene

The early Eocene sediments at Site 555 contained 0.1-4.1% organic carbon with an average C/N ratio of

Sample	Air	CO2	c ₁	C2	C ₃	iC4	nC4		C ₁	(%) C ₂ -C ₄		
(interval in cm) (%)	(%)	(%)			(ppm)			C5+	C ₂	C1-C4	Remarks	
2-3, 144-150	21.2	0.08	0.39			nd			-	-	Pore water 1:2 extraction w He	
5-5, 144-150	23.5	0.10	0.25			nd			-	-	Pore water 1:2 extraction w He	
8-5, 144-150	21.7	0.10	0.88			nd			_	_	Pore water 1:2 extraction w He	
9-2, 144-150	22.8	0.10			E E	d					Pore water 1:2 extraction w He	
11-2, 144-150	21.3	0.12	1.07	0.07	0.02	0.02	\rightarrow		15.3	9.3	Pore water 1:2 extraction w He	
15-1, 144-150	22.5	0.12	2.43	0.07	0.05	_	0.02		34.7	5.5	Pore water 1:2 extraction w He	
19-2, 144-150	20.0	0.16	1.35		S	ample I	lost				Pore water 1:2 extraction w He	
22-1, 144-150	33.5	0.14	1.10	0.07	0.16	0.02			15.7	18.5	Pore water 1:2 extraction w He	
25-5, 144-149	24.4	0.16	2.39	0.35	0.16	0.07	0.03	tr.	6.8	20.3	Pore water 1:2 extraction w He	
31-1, 144-150	43.2	0.06			n	d					Pore water limited 1:1 extraction	
34-4, 144-150	23.9	0.05	0.09	-	0.01	-			-		Pore water 1:2 extraction w He	
37-2, 144-150	27.4	0.08	0.42	-	0.01			-	-	-	Pore water 1:2 extraction w He	
43-4, 123	95.6	0.11	4.37	0.11	0.10	0.09	0.10		39.7	8.3	No pore water: Core vacutainer samples	
46-5, 140-150	61.7	0.10	0.89			nd					Pore water 1:1 extraction	
48-3, 57	93.6	0.08	4.35	-	0.2	0.13	0.33		-	13.2	Core "vacutainer" sample	
49-1, 39	91.6	0.18	5.90	0.86	0.48	0.05	0.02	-	6.9	22.0	Core "vacu"-sample, no core, just cuttings	
53-4, 24	93.8	0.09	35.8	0.66	0.61	C4	4's / 52	-	54.2	4.8	Core "vacu"-sample, no core, just cuttings	
58-4, 101	93.1	0.07	4.6	0.29	0.15	0.04	0.03	-	15.9	10.0	Core "vacu"-sample, no core, just cuttings	
60-3, 74	90.6	0.08	37.9	1.66	0.51	0.29	0.79	tr.	22.8	8.1	Core "vacu"-sample, no core, just cuttings	
62-3, 76	93.6	0.06	8.1	0.35	0.22	0.04	-	-	23.1	7.0	Core "vacu"-sample, no core, just cuttings	
64-4, 28	92.9	0.06	3.14		0.05	C4	1's / 02		- <u></u>	2.2	Core "vacu"-sample, no core, just cuttings	
67-4, 47	94.7	0.07	4.65	0.14	0.07	C.	4's / 04	C5-tr.	33.2	5.1	Core "vacu"-sample, no core, just cuttings	

......

Table 5. Gas analyses, Site 555.

about 40. Figure 17 shows that these organic-rich sediments are Type III terrestrial and were probably deposited in a very shallow marsh environment. The very mature nature reflects the major contribution of the reworked or volcanically altered component of organic matter discussed at earlier sites.

The occurrence of two S_2 peaks of different maturity in the sediments indicates that the mature component was not heated *in situ*, but is reworked.

Paleocene

The Paleocene sediments still contain immature kerogen as the major component. This is consistent with the present thermal gradient, and suggests that the interlayered lavas did not significantly heat the sediments or were cool at the time of sedimentation. Finally, the very mature component ($550^{\circ}C T_{max}$) was only a minor part of the Paleocene sediments relative to the Eocene, indicating a different source of organic matter during this time. This may have been the result of a different depositional environment, or a lack of this material available for deposition. A fuller discussion is given elsewhere in this volume by Kaltenback et al.

CORRELATION OF SEISMIC REFLECTORS WITH DRILLING RESULTS

Seismic reflection data in the vicinity of Site 555 consisted principally of several multichannel seismic profiles made by the IOS (Figs. 3, 6, 18). The control seismic line, IPOD 76-9B, was acquired using a 2160 in.³ air-gun array and a 48-channel hydrophone with 50 m between traces. The digitized data were resampled at 4 ms and subjected to true amplitude recovery prior to 24fold processing using deconvolution before and after stack, and time-varied filtering. An additional line, IOS-7 shot using Maxipulse and a 60-channel streamer, also crosses the site. A few NAVOCEANO and LDGO single-channel seismic lines were available in the area in

Table 6. Pyrolysis data, Site 555.

Sample (interval in cm)	S1 g rock	S2 g rock	$\frac{T_m}{S_2A}$	ax°C /S2B	$\binom{S_3}{g \text{ rock}}$	$\binom{S_1 + S_2}{\binom{mg \ HC}{g \ rock}}$	$\frac{s_1}{s_1 + s_2}$	<u>S2</u> S3	$\begin{pmatrix} HI \\ mg HC \\ g OC \end{pmatrix}$	$\begin{pmatrix} OI \\ \frac{\text{mg CO}_2}{\text{g OC}} \end{pmatrix}$	Remarks
2-3, 140	0.05	0.09	-	-	1.35	0.14	0.36	0.07	450	6750	~10 m, mudline, 30% CaCO ₃ , 1W, tan. Pleistocene
5-5, 140	0.03	0.02		_	0.56	0.05	0.60	0.04	14	400	 Miocene, 41 m, top ooze, white, 1W. 96% CaCO₃
15-1, 140	0.04	0.02	_	-	0.75	0.06	0.67	0.03	29	1071	m. Miocene, 168 m, middle ooze, white, 1W, 94% CaCO ₂
25-5, 130	0.04	0.01	_	-	0.81	0.05	0.80	0.01	13	1013	e. Miocene, 270 m, bottom ooze top glauc., SS, 1W, 92% CaCO ₃
31-1, 138	0.12	0.14	411	550	0.75	0.26	0.46	0.19	56	300	e. Eocene, glau. volc. SS, grn., 1W, (top) 320 m, 3% CaCO ₃
34-4, 137	0.22	1.02	412	525	1.25	1.24	0.18	0.82	52	64	e. Eocene, glau. SS, 1W, 346 m, 1% CaCO3
36-1, 11	0.09	0.28	427	510	1.48	0.37	0.24	0.19	39	209	e. Eocene, SS w calcite cement, org. layer, 45% CaCO3
36,CC	0.03	0.05	-	-	0.37	0.08	0.38	0.14	50	370	e. Eocene, SS calcite cement, near org. layer, 78% CaCO3
37-2, 21-25	0.23	1.34	396	550	2.49	1.57	0.15	0.54	33	61	e. Eocene, mudstone w sand, 379 m, 1W, 2% CaCO ₃
38-3, 13	0.25	2.35	428	532	1.45	2.60	0.10	1.62	101	62	 e. Eocene, mudstone w org. layer, 1% CaCO₃
40-5, 138	0.20	2.79	434	550	1.15	2.99	0.07	2.43	297	122	e. Eocene, mudstone, 412 m, 1W, 0% CaCO3
42-4, 70	0.29	0.48	418	550	1.28	0.77	0.38	0.38	45	120	e. Eocene, mudstone, salt marsh, 17% CaCO3
43-4, 148	0.38	1.04	418	550	1.18	1.42	0.27	0.88	81	92	e. Eocene, mudstone, marsh, 437 m, 1W, 2% CaCO ₃
45-1, 145	0.27	0.65	423	550	1.45	0.92	0.29	0.45	63	141	e. Eocene, mudstone, org.? marsh, 2% CaCO ₃
48-4, 90-92	0.22	0.29	400	550	1.11	0.51	0.43	0.26	33	128	e. Eocene, mudstone, marsh, 486 m, 1W, 2% CaCO ₃
52-2, 78	0.10	1.09	410	550	1.46	1.19	0.08	0.75	43	57	e. Eocene, ms, sandy, C1-C4's 520 m, 1W, 17% CaCO3
56-5, 116	0.28	0.98	409	550	1.99	1.26	0.22	0.49	50	101	e. Eocene, ms, org., 2% CaCO3
58-3, 136	0.32	0.52	423	520	1.15	0.84	0.38	0.45	55	121	 e. Eocene, ms, sandy, 580 m, 1W, 4% CaCO3
60-5, 118	0.18	0.39	412	550	1.23	0.57	0.32	0.32	53	169	e. Eocene, ms, light gy., org. 3% CaCO ₃
64-1, 102	0.14	1.54	427	550	0.73	1.68	0.08	2.11	69	80	 e. Eocene, SS or ms, 638 m, 1W, 0% CaCO₃
64-3, 117	0.06	0.18	447	550	1.12	0.24	0.25	0.16	180	1120	e. Eocene, grn. sandy tuff? 2% CaCO ₃
67-3, 138	0.16	0.81	415	550	1.55	0.97	0.17	0.52	72	137	 e. Eocene, ash sed. before volc./ sed. layer, ; L Paleocene, gy. ms, 665 m, 1W? 1% CaCO3
85-1, 40-43	0.06	0.40	437	-	0.34	0.46	0.13	1.18	56	48	I. Paleocene, 2% CaCO ₃
86,CC	0.08	0.40	420	(485)	0.69	0.48	0.17	0.58	36	62	I. Paleocene, volc. SS, 866 m 2% CaCO ₃
87-5, 145	0.19	1.68	415	550	0.98	1.87	0.10	1.71	62	36	 Paleocene, volc. sed. w org.? 2% CaCO₃
90-1, 33-36	0.02	0.27	440	523	0.35	0.29	0.07	0.77	61	80	 Paleocene, org. in sed.? 3% CaCO₃
92-2, 148-150	0.05	0.20	433	-	0.52	0.25	0.20	0.39	30	78	 Paleocene, org. in seds? 899 m, 2% CaCO3

addition to the single-channel seismic profile obtained during the site approach by *Glomar Challenger*.

Site 555 was located very close to SP 11782 on Line IPOD 76-9B (Fig. 18).

Seismic Stratigraphy

The multichannel profile across the site shows several reflectors of contrasting character discussed here in order of increasing depth. These are shown in Table 8.

Seabed-Reflector 1

The interval between the seabed and underlying Reflector 1 is acoustically transparent in comparison to the interval below Reflector 1. The seismic stratigraphy of the seabed Reflector-1 interval can be best appreciated by noting that the site is located in the channel between two sediment drifts (Fig. 3). The crest of the adjacent drift to the northeast is 0.23 s shallower than the channel. Within the drift, Reflector 1A divides the drift into two seismic subunits and can be followed to a depth of 0.27 s beneath the channel. Both of these are characterized by laterally impersistent reflectors. The upper subunit, Seabed-1A thins southwestward toward the axis of the channel. Within the subunit, reflectors downlap onto Reflector 1A. The interval thus marks a period of strong differential deposition beginning at the level of Reflector 1A. In the underlying Subunit 1A-1, reflectors are truncated by Reflector 1A and also downlap onto Reflector 1. Pinch-outs within the subunit also suggest

Table 7. Organic C/N data summary, Site 555.

Sample no.	Core-Section (interval in cm)	N (%)	Corg (%)	Н (%)	$\frac{14}{12}\times\frac{C_{\text{org}}}{N_{\text{org}}}$	CaCO3 (bomb) (%)
1	2-3, 140	0.02	0.02		1.2	30
2	5-5, 140	0.01	0.14		16.3	96
3	8-5, 137	0.01	0.08		9.3	94
4	9-2, 140-143	0.01	0.08		9.3	91
5	15-1, 140	0.01	0.07		8.2	94
6	19-2, 140	0.01	0.09		10.5	92
7	22-1, 142	0.01	0.11		12.8	90
8	25-5, 130	0.01	0.08		9.3	92
9	31-1, 138	0.01	0.25		29.2	3
10	34-4, 137	0.04	1.95		56.9	1
11	36-1, 11-12	0.01	0.71		82.8	45
12	36.CC	0.005	0.10		29.2	78
13	37-2, 21-25	0.08	4.10		59.8	2
14	38-3, 13	0.06	2.33		44.9	1
15	40-5, 138	0.03	0.94		36.6	0
16	42-4, 70	0.05	1.07		24.7	1
17	43-4, 148	0.05	1.28		29.9	2
18	45-1, 145	0.04	1.03		30.0	2
19	48-4, 90-92	0.04	0.87		25.4	2
20	52-2, 78	0.07	2.55		42.5	1
21	56-5, 116	0.08	1.98		28.9	2
22	58-3, 136	0.03	0.95		38.5	4
23	60-5, 118	0.03	0.73		28.4	3
24	64-1, 102	0.03	0.91		35.4	0
25	64-3, 117	0.01	0.10		11.7	2
26	67-3, 138	0.04	1.13		33.0	1
27	86.CC	0.04	1.12		32.7	2
28	87-5, 145	0.06	2.70		52.5	2
29	85-1, 40-43	0.02	0.71		41.4	2
30	90-1, 33-36	0.01	0.44		51.3	3
31	92-2, 148-150	0.02	0.67		39.1	2

the characteristics of a sediment drift. The strong unconformity marked by Reflector 1 at the base of the unit clearly marks the onset of drift growth.

Interval 1 to 2A

Beneath the strong unconformity defined by Reflector 1, a thin 0.08-s-thick interval is present at the site. Overlap of the basal Reflector 2A both to the northeast and southwest again suggests erosion associated with the Reflector 1 unconformity. At the site the basal reflector has a channel-like form that may be erosional in origin.

Interval 2A to 2

This interval thins to the northeast and thickens to the southwest. Truncation of the weak laterally impersistent reflectors in the overlying Reflector 2A indicate erosion at that level. The basal Reflector 2 is a particularly strong reflector that is locally faulted (e.g., at SP 11620). To the southwest, Reflector 2 passes laterally into a weaker reflector that rises westward.

Interval 2 to 3

The underlying 2-3 interval can only be confidently identified beneath the site and to the northwest. In this direction, Reflector 2 downlaps onto Reflector 3, and a thickening in the interval is present.

Interval 3 to 4

Three strong reflectors (4A, 4B, and 4C) occur in this interval at the suite. They form part of a suite of reflec-

tors exhibiting strongly cross-cutting relationships that may be sills or lavas. To the southwest, these reflectors are not evident beneath Reflector 3 but may be masked by the strong diffractions. These reflectors are underlain at 3.08 s subsea by the strong Reflector 4 that was the objective of Site 555. Beneath Reflector 4, a number of strong but laterally impersistent events are present.

Relationship to Hatton Bank and Edoras Bank

Site 555 was located in the depressions between the two structural culminations forming these banks. To the southwest Reflector 3 rises to form the shallow (2.1 s) basement. To the northwest, Reflector 3 rises to onlap Reflector 4, which underlies the upper slope of Hatton Bank at a depth of 2.0 s.

Correlation of Seismic Reflectors

Correlation of the seismic reflectors has been mainly made using the interval transit time data provided by the sonic log and the lithologic logs.

The interval transit time data requires a small correction since sonic logging did not begin until the tool left the drill stem at 196 m subsea. This unusually great depth was necessary because of poor hole conditions. Severe cycle skipping is evident on the sonic log (Fig. 8), and the interval transit times may be in error. Correlation of the logs with lithology should thus be regarded as preliminary. Further the tool did not reach the basalt cored from 920 m to total depth at 964.5 m because of hole infilling.

Table 9 and Figure 3 summarize the correlation of the seismic reflectors:

The correlations given above should be regarded as tentative; synthetic seismograms as well as more detailed lithologic studies are required to establish them precisely. Nonetheless some general remarks can be made.

Reflector 2 is almost certainly correlative with Reflector 1 of Sites 553, 403, and 404 and is seemingly caused by a tuff close to the NP10/NP11 boundary. This reflector is thus an important time horizon that can be used regionally as a marker horizon.

Reflector 4 at 3.90 s, corresponding to the base of the basalts of Subunit Va, was identified as the basement on the seismic profile. However, the massive flows were encountered some 80 m or so below the computed depth of this reflector.

The discrepancy may have arisen for three reasons. Firstly, persistent cycle skipping on the logs may have resulted in a cumulative error (a decrease) in the interval transit time with depth. Secondly, irregularities in the basement topography and the position of the site slightly off the control profile may account for the discrepancy. Thirdly, the strong reflection from basalts of Unit Va and the long seismic wavelength may have masked the sandstone interval between Subunits Va and Vc.

SEDIMENT ACCUMULATION RATES

Ninety-eight cores were recovered from Site 555. The following major lithologic and stratigraphic units are recorded.

Cores 1-26: Neogene sediments (Pleistocene-Miocene, NN21-NN3)

Figure 16. Sediment pyrolysis data, Site 555.

Cores 27-68: Paleogene sediments (early Eocene, NP12/13-NP10)

Cores 68-83: Basalt

Cores 84-93: Paleogene sediments (Paleocene, NP9) Cores 94-98: Basalt

The Pleistocene sedimentation rate is 1.3 cm/1000 yr. The entire Pliocene appears to be missing (Fig. 19; Table 10). This hiatus probably begins close to the Miocene/ Pliocene boundary and ends in the lowermost part of the Pleistocene. In view of the fact that sedimentation rates increased at about the Miocene/Pliocene boundary in Sites 552 and 553, it follows that the bottom current influence at Site 555 was different from that at the former sites. The reason for this difference probably lies in differences in depth of the three sites: Site 552, 2301 m; Site 553, 2329 m; Site 555, 1659 m. The changing sedimentation patterns thus indicate a major reorganization of flow regimes of intermediate and deep waters in the western part of the Rockall area at approximately the Miocene/Pliocene boundary, albeit differently expressed at different water depths.

Moreover, Site 555 differs from Sites 552 and 553 in showing a comparatively thick middle Miocene sequence. A short hiatus representing Zone NN4 and probably a part of Zone NN5 is present in Core 24. The 24-m-thick lower Miocene sequence ends in 26,CC. The drilling breccia in the uppermost 20 cm in Core 27 consists of a mixture of early Miocene and early Eocene sediments. Some sedimentary lumps in the breccia exclusively represent Zones NP12 and NP13 of the early Eocene.

Zone NP11 shows a sedimentation rate of 5.2 cm/1000 yr., which must be considered as a minimum value since the top of this zone is associated with a hiatus. The earliest part of the Eocene, Zone NP10, shows a

Figure 17. Kerogen-type plot of sediments, Site 555.

Refraction profile

Figure 18. Location of principal seismic profiles, Site 555 (56°33.70'N; 20°46.93'W).

Table 8. Seabed reflectors, Site 555.

	Two-way time (s)					
Reflectors	Total	Subsea				
Seabed	2.18					
1A	2.29 2.45 2.53	0.08 0.27 0.35				
1						
2A						
2	2.67	0.49				
3	2.72	0.34				
4A	2.81	0.63				
4B	2.91	0.73				
4C	3.00	0.82				
4	3.10	0.92				

Note: This numbering system does not imply any common seismic identity with units identified at Sites 552-554.

Table 9. Correlation of seismic reflectors.

Time (two-way)		D	epth			
Reflector no.	Total (s)	Subsea (s)	Subsea (m)	Lithology/age		
Seabed	2.18	÷.	0			
1A ^a	2.29	0.11	82	Washed interval, poor recovery		
1 ^a	2.45	0.27	202	Transition calcareous-biosili- ceous ooze?		
2A	2.53	0.35	216	Poor recovery		
2	2.67	0.49	336	Tuffaceous glauconitic sandstone below NP10/11 boundary?		
3	2.72	0.54	391	Base of cemented sandstones in Unit IIIC		
4A	2.81	0.63	475	Transition tuffs to interbedded mudstones and sandstones Unit IIIc		
4B	2.91	0.73				
			561-576	Change in cementation sand- stones?		
4C	3.00	0.82	671-681	Top basalt Unit IVa		
4	3.10	0.92	791-831	Base basalt Unit IVa		

^a Computed from physical properties data.

sedimentation rate of 26.5 cm/1000 yr. However, Cores 46 through 56 are barren of nannofossils and Cores 57 through 67 lack age-indicative fossils. Therefore, one cannot exclude the possibility that the lower part of the interval, which is interpreted to represent Zone NP10 (Cores 32 through 67), may actually belong to NP9. In consequence, the suggested sedimentation rate of 26.5 cm/1000 yr. for this interval may be somewhat high. The entire sedimentary sequence which is interlayered between the basalts (Cores 83–93) is thought to represent NP9, which gives a sedimentation rate of 9.5 cm/1000 yr. This is considered to represent a minimum value since both the upper and the lower boundary of Zone NP9 are unknown at Site 555.

Accumulation Rates

The accumulation rates span the period early Miocene to Pleistocene (Fig. 20; Table 11). The total accumulation rate ranges from moderate values in the early Miocene through high values in the middle and late Miocene to moderate values in the Pleistocene. The total $CaCO_3$ rates follow the same pattern. However, although the nannofossils show a similar pattern, in detail they show fluctuations reciprocating those of the foraminifers. The middle late Miocene section has the appearance of a contourite, and this shows clearly on the seismic profile (Fig. 3).

SUMMARY AND CONCLUSIONS

The structure and topography of the west margin of Rockall Plateau has already been discussed in terms of three distinct units (see Site 553).

The most landward (Fig. 2) of these units comprises the Hatton and Edoras banks which form the western culmination of the Rockall Plateau and are separated from the shallower Rockall Bank by the intervening Hatton-Rockall Basin (Figs. 2, 4).

In detail, the Hatton and Edoras banks are flat-topped and are the highest parts of the culmination defining this third unit.

Drilling on the Hatton-Edoras Bank offered the opportunity to compare its subsidence history with that obtained on the thin crust of structural Unit 2 to the west for the period both during and after rifting. This would aid assessment of the relative roles of rifting and postrift differential subsidence in fashioning the observed structural relief.

Site 555 was located midway between the Hatton and Edoras banks near SP 11780 on line IPOD 76-9B.

Late Paleocene

Basaltic lava flows (lithologic Unit IV) interbedded with sediment were drilled from 672 m sub-bottom to total depth at 964.0 m.

The basalts drilled from 927.0 m to total depth at 964.0 m compose a single massive flow unit with a finegrained chilled top that contrasts with the coarser-grained doleritic interior. No pillowed upper surface was evident. The flow exhibits reverse polarity.

In the overlying basalts, 11 flow units were identified in the recovered core. These consist of single, relatively thick flows or single and composite pillow lava units. The more massive flow units are extensively cross cut by high angle and near horizontal fractures. In thin section, these thick dolerites are mainly phyric, consisting of bytownite (An_{74}) and augite with minor olivine; subophitic textures are common. In the upper part of these units, plagioclase phenocrysts are altered to clays.

The pillow basalts are comparable in composition to the more massive flows except that olivine is absent. Individual flow units rarely exceed 1 m thickness. Textures within individual pillows reflect chilling and cooling behavior. Within the chilled glassy rind, radially disposed elongate vesicles pass into the coarse-grained and lessvesicular core of the pillow. Incipient brecciation occurs at the pillow margins. Interbedded with basalts are 47 m of autoclastic(?) breccias with thin intercalations of sediment. The breccias consist mainly of angular clasts of basalt and basaltic glass (hyaloclastites) set in a cement of analcite and saponite. Minor amounts of terrigenous sand are also present. Toward the top of the breccias, there are indications of sedimentary reworking.

Shallow marine sediments are interbedded with the basalts of Units IV. These sediments show reverse polarity and are of late Paleocene (NP9) age. They consist of tuffs and lapilli tuffs interbedded with poorly sorted micaceous and feldspathic sandstones and silty mudstones. Plant debris and serpulids are present together with scours and cross laminae and evidence of soft sediment deformation such as sand dykes. The contact between the basal lapilli tuffs and the underlying basalt is sharp and marked by large basalt clasts with deeply altered rims.

Resting with sharp contact on the underlying basalts are sediments of NP10 age. These sediments make up Subunit IIIc and are of reverse polarity. The principal li-

Table 10. Biostratigraphic data used to derive sedimentation rates for Site 555 (see Fig. 19).

Paleontologic event	Sub-bottom depth (m)	Ма	Sedimentation rate (cm/1000 yr.)	
Younger than NN19	5.5	< 0.458		
NN19 L.O. C. macintyrei	19.5	1.45	1.3	
NN12-NN15	22-24.5	3.53-6		
Below top NN11	34	>6		
F.O. T. convexa, F.O. T. miocenica	43.5-48	6.2		
L.O. C. plicatus	92	8.3		
NN10/NN11	110-138.5	10.3		
NN9?	148-167	10.9-11.6	2.7	
L.O. D. punctata var. hustedtii	180-186	12	2.1	
L.O. G. mayeri	186-195	12.2		
NN7-NN8?	176.5-252.5	12.6-13.8		
F.O. R. barboi	205-206	12.5		
L.O. C. lewisianus	226.5-233.5	13.8		
NN6	253.5-256	13.8-14.7		
NN5	256.5-257.5	14.7-16.3	1.0	
NN3	259-281	18.2-19.4	1.0	
NP12/NP13	281	50.4		
NP11 F.O. T. orthostylus	281.5-328.5	51.4-52.2	7-11	
NP10	328.5-480.5	52.2-54.6		
NP9	480.5-868	54.6-56.6		

Table 11. Data for sediment accumulation rates, Site 555.

Sample	Α	В	С	D	Е	F	G	н	1	J
2,CC	1.3	1.669	1.02	1.32	77	1.00	34.09	0.74	0.26	0.32
3,CC	1.3	1.811	1.26	1.64	94	1.22	20.82	0.49	0.73	0.42
4,CC	2.7	1.843	1.31	3.54	95	2.56	8.86	0.44	2.12	0.98
5,CC	2.7	1.853	1.26	3.40	96	2.59	4.79	0.24	2.35	0.81
6,CC	2.7	1.794	1.22	3.30	93	2.51	3.83	0.19	2.32	0.79
7,CC	2.7	1.749	1.21	3.27	94	2.54	6.92	0.33	2.21	0.73
8,CC	2.7	1.777	1.18	3.19	93	2.51	6.24	0.30	2.21	0.68
9,CC	2.7	1.846	1.28	3.46	94	2.54	17.95	0.89	1.65	0.92
10,CC	2.7	1.747	1.20	3.24	91	2.46	8.35	0.39	2.07	0.78
11,CC	2.7	1.710	1.12	3.02	94	2.54	8.07	0.37	2.17	0.48
12,CC	2.7	1.808	1.21	3.27	93	2.51	13.00	0.63	1.88	0.76
13,CC	2.7	1.808	1,21	3.27	93	2.51	4.05	0.20	2.31	0.76
14,CC	2.7	1.808	1.21	3.27	92	2.48	2.19	0.11	2.37	0.79
15,CC	2.7	1.739	1.12	3.02	92	2.48	5.37	0.25	2.23	0.54
16,CC	2.7	1.838	1.30	3.51	89	2.40	3.87	0.19	2.21	1.11
17,CC	2.7	1.786	1.22	3.29	93	2.51	17.54	0.85	1.66	0.78
18,CC	2.7	1.837	1.28	3.96	93	2.51	9.10	0.45	2.06	0.95
19,CC	2.7	1.853	1.27	3.43	92	2.48	6.19	0.31	2.17	0.95
20,CC	2.7	1.775	1.19	3.21	92	2.48	9.92	0.47	2.01	0.73
21,CC	2.7	1.760	1.18	3.19	93	2.51	12.28	0.58	1.93	0.68
22,CC	2.7	1.778	1.15	3.10	93	2.51	6.94	0.33	2.18	0.59
23,CC	2.7	1.778	1.15	3.10	95	2.56	36.21	1.73	0.83	0.54
24-7, 55	1.8	1.739	1.07	1.93	95	1.71	30.79	0.96	0.75	0.22
25,CC	1.8	1.669	1.04	1.87	92	1.66	25.64	0.77	0.89	0.21
26,CC	1.8	1.803	1.21	2.18	81	1.46	20.72	0.67	0.59	0.72

Note: For key to letters, see Site 552 chapter.

Figure 20. Neogene sediment accumulation rates, Site 555. (See Site 552 for explanation of lettering A to H.)

thologies are vitric tuffs and lapilli tuffs with minor interbeds of calcite-cemented sandstones and carbonaceous mudstones. The volcanic glass is of basaltic type, but in many cases is severely altered. Typical sedimentary structures include slumps, microfaults, and regular and convoluted laminae. Grading and, in one instance, reverse grading is present in the lapilli tuff beds. The subunit is barren of planktonic foraminifers, diatoms, and radiolarians, but the benthic foraminifers are indicative of inner-shelf depths.

These primarily volcanogenic sediments pass upward into the sediments of Subunit IIId, of late Paleocene (NP10) age (Cores 48 to 63). The predominant facies in this subunit is a brownish black carbonaceous mudstone with interbeds of highly feldspathic sandstones, many of which are calcite cemented. Various types of shell and shell debris occur throughout and include serpulids, gastropods, thin-shelled bivalves, and ahermatypic solitary corals; plant debris is present throughout in small amounts. Benthic foraminifers show an upward decrease in depths of deposition, from inner shelf (Core 61) to brackish intertidal marsh by Core 52. Seismic Reflector 4B may be caused by lithological changes within the subunit, but Reflector 4A, close to the boundary with the overlying subunit, reflects the differences in tuff content.

Subunit IIId is considered to be equivalent to lithologic Unit IVd at Site 553. Furthermore, the normal polarity interval found in Cores 58-62 correlates with that in Cores 35-37 at Site 553, demonstrating the equivalence of the section below at Site 555 to the basalts (and dipping reflectors) of Site 553.

Subunit IIIc is represented by a series of volcanic tuffs and lapilli tuffs interbedded with carbonaceous mudstones and highly feldspathic sandstones of early Eocene (NP10) age. A significant proportion of the tuff beds are intermediate to acidic in composition, indicating a correlation with Subunit IVc of Site 553, and are interbedded with a coarse sand. During the intervening periods, carbonaceous mudstones accumulated with somewhat slower sedimentation rates.

The appearance of abundant glauconite marks the upward transition from Subunits IIIc to IIIb. Subunit IIIb is of NP10 age in its lower part and NP11 age at the top, and exhibits reverse polarity in its lower part and normal polarity in the upper. Tuffaceous glauconitic sandstones, black to greenish black in color, characterize this unit, and represent the same major transgressive event as that at the base of Subunit IVb at Site 553. The base of the unit is also marked by the upward disappearance of the epidote-amphibole heavy mineral association indicating the cessation of supply from south Greenland. Heavy minerals indicate derivation from the metamorphic basement of the Rockall Plateau throughout.

The unit shows an upward-decreasing gamma response. Principal sedimentary structures include laminae and flaser bedding. Benthic foraminifers show an increase in water depth of deposition from 25–100 to 100–200 m, which accords with the interpretation of the unit as marking a major transgression. The overlying subunit, IIIa, is marked by poor recovery, and the low fragments were disturbed intensely. The principal lithologies are vitric spiculite, glauconitic zeolitic chalk, vitric tuff, and a bioclastic limestone, of NP11 age. Volcanic glass is of basaltic type and is rarely altered. Although benthic foraminifers suggest water depths of deposition of 150 to 200 m, thick-shelled oysters also present suggest higher energy conditions and proximity to shore. The lower boundary falls within NP11. The uppermost part of the unit is of normal polarity. The comparable lithologies, biostratigraphy, and magnetostratigraphy suggest that Unit III is the lateral equivalent of the upper part of Unit IVb at Site 553.

Early Miocene

A hiatus of 30 m.y. is represented by the unconformity between the early Eocene volcanogenic beds and the overlying chalks of early Miocene age. During this hiatus from 50 to 19.5 m.y., the site evidently subsided close to its present depth, and the supply of terrigenous and volcaniclastic material was completely cut off. Perhaps surprisingly, no seismic reflection is associated with the hiatus, but truncation of beds at the level of Reflector 2 just below the unconformity is convincing evidence of erosion.

The early Miocene section consists of glauconite-rich oozes and chalks deposited in water depths in excess of 1500 m. Decreasing content of glauconite upward is also shown by a concomitant decrease in gamma response. A small hiatus representing NN4 time is present between the early Miocene and the succeeding middle Miocene. The early Miocene accumulated at a rate of 1.8 cm/ 1000 yr.

Middle Miocene-Early Pliocene

The middle Miocene section is characterized by the absence of glauconite. The principal lithology consists of bluish white foraminifer-nannofossil or biosiliceous foraminifer-nannofossil ooze. Clay components comprise about 10% of the sediment, and the biosiliceous components are diatoms, radiolarians and sponge spicules. A single pyritized ash bed (2 cm in thickness) is present in Core 15 but is clearly older (NN7-8) than that found at Site 552 (NN19). Sedimentary structures have been mostly destroyed by drilling. However, faint clay(?) laminae may be shown in the logs by increased gamma response, although transformation of ooze to chalk is another possible explanation. Depths of deposition were in excess of 1400 m.

A small hiatus is present in the lowermost part of the middle Miocene (Fig. 19). Sediments accumulated at an average rate of 1.8 cm/1000 yr.

Pliocene-Pleistocene

A hiatus beginning close to the Miocene/Pliocene boundary and ending at about 1.5 m.y. ago separates the late Miocene from the Pleistocene. The Pleistocene shows the expected alternations of foraminifer-nannofossil oozes, marls, and calcareous muds distinguished by color, texture, and composition that contrast markedly with the uniform lithologies below. These cyclical variations, extensively disturbed by drilling, probably represent glacial-interglacial cycles. Sediments accumulated in the Pleistocene at 1.3 cm/1000 yr. in depths comparable to those at present. In comparison to the underlying late Miocene, nannofossil accumulation rates show a sharp decline although foraminifers accumulated at a slightly higher rate.

REFERENCES

- Berggren, W. A., 1972. Late Pliocene-Pleistocene glaciation. In Laughton, A. S., Berggren, W. A., et al., Init. Repts. DSDP, 12: Washington (U.S. Govt. Printing Office), 953-963.
- Bukry, D., 1973. Coccolith and silicoflagellate stratigraphy, Tasman Sea and South Western Pacific Ocean. In Burns, R. E., Andrews, J. E., et al., Init. Repts. DSDP, 21: Washington (U.S. Govt. Printing Office), 885-893.
- Costa, L., and Downie, C., 1979. Cenozoic dinocyst stratigraphy of Sites 403 to 406, Rockall Plateau. *In* Montadert, L., Roberts, D. G., et al., *Init. Repts. DSDP*, 48: Washington (U.S. Govt. Printing Office), 513-529.
- Ericson, D. B., and Wollin, G., 1968. Pleistocene climates and chronology in deep-sea sediment. Science, 162:1214-1217.
- Featherstone, P. S., Bott, M. H. P., and Peacock, J. H., 1977. Structure of the continental margin of southeastern Greenland. Geophys. J., 48:15-40.
- Harrison, R. A., Knox O'B., R. W., and Morton, A. C., 1979. Petrography and mineralogy of volcanogenic sediments, DSDP Sites 403-404, Leg 48. In Montadert, L., Roberts, D. G., et al., Init. Repts. DSDP, 48: Washington (U.S. Govt. Printing Office), 771-786.

- Hinz, K., 1982. A hypothesis on terrestrial catastrophes: Wedges of very thick oceanward dipping layers beneath passive continental margins—Their origin and palaeoenvironmental significance. Geol. Jahrb. Ser. E., 22:3-28.
- Hutchinson, D., Grow, J., et al., in press. Tectonic and depositional patterns off Eastern North America. Mem. Am. Assoc. Petr. Geol.
- Laughton, A. S., Berggren, W. A., et al., 1972. Init. Repts. DSDP, 12: Washington (U.S. Govt. Printing Office).
- Macintyre, A., Kipp, N. G., et al., 1976. Glacial North Atlantic 18,000 yr. ago: A climap reconstruction. In Cline, R. M., and Hays, J. D. (Eds.), Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Mem. Geol. Soc. Am., 145, 43-76.
- Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proc. Second Planktonic Conf.: Rome (Technoscienza), 2:739-785.
- Montadert, L., Roberts, D. G., et al., 1979. Init. Repts. DSDP, 48: Washington (U.S. Govt. Printing Office).
- Poore, R. Z., and Berggren, W. A., 1975. Late Cenozoic planktonic foraminifera, biostratigraphy and climatology: Hatton-Rockall Basin, DSDP Site 116. J. Foram. Res., 5(4):279-293.
- Riedel, W. R., and Sanfilippo, A., 1978. Stratigraphy and evolution of tropical Cenozoic radiolarians. *Micropalaeontology*, 24(1):61-96.
- Roberts, D. G., 1975. Marine Geology of the Rockall Plateau and Trough. Philos. Trans. R. Soc. London, Ser. A., 278:447-509.
- Roberts, D. G., Montadert, L., and Searle, R. C., 1979. The Western Rockall Plateau: Stratigraphy and crustal evolution. In Montadert, L., Roberts, D. G., et al., Init. Repts. DSDP, 48: Washington (U.S. Govt. Printing Office), 1061-1088.
- Scrutton, R. A., 1972. The crustal structure of Rockall Plateau microcontinent. Geophys. J., 27(3):259-275.
- Vail, P. R., Mitchum, R. M., and Thompson, S., 1977. Global cycles of relative changes in sea level. Mem. Am. Assoc. Pet. Geol., 26: 83-98.
APPENDIX A Smear Slides

Appendix A. (Continued).

Dominant lit	thology	Y							Sme	ar Slie	le Sur	nma	ıry,	Hole	555						< 5–2 25–5 >5	5% 5% 0%	TRACE RARE COMM ABUNI DOMIN	ON DANT NANT	Ì	Ŀ
(î		BIO	GENIC	CON	PON	ENTS	-		NON	-BIOC	ENIC	co	MP	ONE	NTS	-		-	AUTH	IGEN		MPON	IENT	s	-	
Core-Section (interval in cr	Forams	Nannofossils	Radiolarians	Diatoms	Sponge Spicules	Fish Debris	Silico- flagellates	Quartz	Feldspars	Heavy Minerals	Light Glass	Dark	Glass	Glauconite	Clay Minerals	Other MICA (Specify)	Palagonite	Zeolites	Amorphous Iron Oxides	Fe/Mn Micro Nodules	Pyrite	Recrystal. Silica	Carbonate (unsnecified)	Plant	Debris	(specify)
52-1,20			ļIII	Ш	Ш		Ш				Ш	П		Ш					Ш	Ш						Щ
52-1, 75	++++	++++	$\left\{ \right\}$	++++	++++	+++	++++	-			$\left\{ + + + + + + + + + + + + + + + + + + +$	+++		₩	-				++++	++++		$\left\{ + + \right\}$			H	++
53-3, 7		++++		HH	1111	+++	++++				$\left\{ \right\}$	+++	\mathbb{H}	₩					+++						H	Ħ
54-3, 85																										Ħ
56-4, 95	1111										Ш		Ш	Ш					111	1111					Ш	11
57-1, 53					111	++++	++++				$\left \right \right $	111		##				-	++++	++++			-		111	
59-5, 80				$\left\{ + \right\}$	•	++++	+++				++++	+++	₩	₩					++++	+++	++	$\left\{ + + \right\}$		-	H	H
60-2, 20	n	F	F									+++		₩			HH					++++			H	Ħ
60-6, 20																										Ш
61-2, 15			LIII		1111						1111						111		1111	1111		1111			111	
61-3, 20				+++			++++				$\left \right \right $	111		₩					++++	++++		$\left\{ + + + \right\}$		-	+++	++
62-4, 140	[+++				 	+++		₩					+++	++++		++++			H	H
62-5, 65	fiii	រាយ			fiii								Ht	ttt					1111							Ħ
63-1,70																								Ш	Ш	Ц
64-1, 57	++++	LIII	LIII	1111	++++	1111	4111		┛		$\left \right \right $		11	##					++++	1111					111	
64-2, 137	++++	r+++	┍╷╷╷	$\left \right \right $	++++	+++	+++				++++	+++	\mathbb{H}	₩					++++	+++		$\left \right $				++
65-1, 30	++++	+++	 				++++				++++	H		₩					+++			+++			H	Ħ
66-1, 50						1111					1111			Ħt	1111											
67-1, 15																									Ш	П
67-3, 15	++++	111			4444	++++	1111				1111	111	11	111					4444	1111					111	
84-1, 130	++++	╀┼┼	++++	+++	++++	++++	+++				$\left\{ + + + \right\}$	++	$\left \right $	₩					++++	+++		$\left\{ + + + \right\}$			H	++
85-1, 50							++++					Ħ	Ht	ttt						++++		++++			H	Ħ
86-1, 25														Ħ												Ħ
86-2, 85														Ш											Ш	11
87-2, 29	1111		$\left \right \right $	444	++++	++++	4111				1111	111		₩					++++	111		1111			111	
87.5 122	++++		$\left\{ + + + + + + + + + + + + + + + + + + +$	++++	++++	++++	+++			┍┥┼┼	$\left\{ + + + \right\}$	+++		₩					++++	++++		$\left\{ + + + \right\}$			+++	++
88-1, 7					+++							Ħ	Ht	ĦĦ					++++	++++		1111	m		Ħ	Ħ
88-2, 15																										
89-1, 130	Ш	Ш					Ш				Ш			Ш					Ш			1.111			Ш	Щ
90-1, 30		$\left\{ \right\}$	$\left \right \right $			++++	++++					111		###					$\left \right \right $						Ш	-++
91-2, 5	++++	++++	++++	+++	+++	++++	++++				++++	₩	\mathbb{H}	₩				++++	++++	+++		$\left\{ + + + \right\}$			H	++
92-1, 77		++++											H	ĦŦ											Ħ	Ħ
93-3, 80																									Ш	Т
94-1, 90																									Ш	
Minor litholo	vpc																									
1-3, 75		Ш	Ш	Ш	Ш	тт	ΠΠ		Ш		ПΠ	Ш	П	Ш			Ш	Ш	Ш	Ш		ПΠ	Ш	TIT	Ш	Π
6-6, 53								m						ttt												T
8-6, 107						Ш			Ш	Ш	Ш			Ш					Ш			1111			Ш	
11-3, 52								++++		$\left \right \left \right $	$\left \right \right $	Ш		₩			++++	++++	++++	++++		$\left \right \left \right $		+++	HH	++
22.2 22							f	++++	r+++	$\left \right \left \right $									╫╫					+++	H	Ħ
24-4, 84								1 111											 	1111	1111				Ħ	Ħ
25-1, 116														Ш											Ш	П
27-1, 29	$\left \right \right $						1111							Ш			1111		1111	1111		1111		+++	Ш	
27-2, 132	++++		$\left\{ + + + + + + + + + + + + + + + + + + +$		++++	++++	1111		$\left \right \left \right $			+++		₩					++++	++++	++++	++++		++++	###	++
32-5.78			$\left\{ \right\}$		+++	++++	++++	┫┼┼			$\left \right \right $	++		+++	TTT				++++	+++		+++		+++	₩	++
35-1, 10												$^{++}$	++	††	t+++				1111	1111					ttt	#
42-1, 25												Ш			Ш											П
42-1, 25	1111	μΠ	HIT	Ш	111	HΠ	111	IIII		μП	Ш		-	ΗT		HII	Ш		Ш	HΠ	HIT	ΗП		111	Ш	1
47-4, 4	++++	411	44	1111	++++	++++	++++					+++		++++		444		44	++++	$\left\{ \left \right\rangle \right\}$	++++	$\left \right \left \right $	411	+++	###	++
64-2 10	++++	F +++	- ++	++++	++++	++++					$\left \right \left \right $	+++		+++					++++	$\left\{ \left \right\rangle \right\}$	╉╫╫┾	++++		+++-	₩	++
93-1, 46																										Ħ
				_	_		the second se	the second se	the second se	- second s		_	_	_				_		_		_			_	the second division in which the second division is not the second division of the second division is not the second division of the seco

Appendix A. (Continued).

APPENDIX B Bryozoa from Leg 81 Krister Brood, Paleozoologiska sektionen, Riksmuseet, 104 05 Stockholm, Sweden

Two samples from Site 555 have been investigated for bryozoans. Sample 555-28,CC contains numerous identifiable bryozoan fragments. All are badly worn, and it is almost impossible to make even a generic identification of the bryozoans. The specimens are approximately 1 to 2 mm long and of rather uniform size, suggesting some transportation and current sorting. Unfortunately, the bryozoans are recrystallized, which makes their identification even more difficult.

The bryozoan fauna is dominated by cyclostomes but many cheilostomes are also present.

The following cyclostomes were identified from Sample 555-28, CC: Diastopora sp., Nevianopora cf. bialternata (Gregory, 1893), Crisisina carinata (Römer, 1840), Idmidronea sp., Pustulopora sp., Crisina cf. farehamensis (Gregory, 1893).

Since there is no complete identification of specimens, it is impossible to attribute a certain age to the samples. However, the fauna seems to be consistent with the upper Paleocene or lower Eocene (Gregory, 1893). It must be remembered, however, that the bryozoan fauna from this interval is badly known and a certain determination is not possible even when good bryozoan faunas are present.

The composition of the fauna (with a high content of idmidronids, crisinids, and erect diastoporids) suggests that the bryozoans have grown on a shelf in moderately deep water below the wave base.

REFERENCE

Gregory, J. W., 1893. On the British Palaeogene Bryozoa. Thans. Zool. Soc. London, 42(8):219-279.

	GRAPHIC LITHOLOGY UTHOLOGY		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARACT SNVINE TOIDER	BENTHIC 3	SECTION	METERS	GRAPHIC ITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Preistocena B B C C C C C C C C C C C C C		10YR 6/4 2.5Y 5/4 10YR 8/3 10YR 7/4 N9 10YR 7/4 2.5Y 4/4	CALCAREOUS MUD, olive brown (2.5Y 4/4) and dark olive brown (2.5Y 2/4) in color; interbedded with FORAM OQZE, white (N9) and FORAM MARL, very pale brown (10YR 7/4) and light yellowish brown (10YR 6/4). Sedimants are in cyclical arrangement, although very disturbed. Foram content gives ooze coarse textural appearance, Ooze also contain grains of hale. Dropstone in Core-Catcher (gray sandstone). SMEAR SLIDE SUMMARY (%): 2, 70 2, 115 3, 75 D M Start 20 30 5 Sitt 20 30 5 Sitt 20 30 5 Sitt 20 30 5 Sitt 20 30 10 Feldspar – 3 – Micia Tr – 2 Heavy minerais – 2 1 Clay a 53 82 Glauconite Tr – 3 Catcher Fr – 5 Sitt 7 Catcher Fr – 5 Catcher Fr – 5 CARBONATE BOMB (%): 2, 70 – 88 2, 115 – 31	Pleitosne	Paeutoemiilania Jacunosa (N)				3	1.0			10YR 6/4 2.5Y 4/4 2.5Y 6/4 10YR 8/2 10YR 6/4 2.5Y 7/4 2.5Y 7/4 2.5Y 7/4 2.5Y 7/4 2.5Y 7/4 2.5Y 5/6	FORAM MARL, light olive brown (10YR 6/4) and 1 vellowish brown (2.5Y 6/4) in color, interbedded 1 NANNO FORAM 002E, white (2.5Y 8/2) and CALC EOUS MUD, olive brown (2.5Y 4/4). Sediments are in cyclical arrangement, although viry turbed. Foram maris appear coarser in texture due to foram of tent – otherwise mud texture. Black grains of shale found throughout. Large dropstone in Core-Catcher (basalt). SMEAR SLIDE SUMMARY (%): 4,45 4,05 D D Texture: Sand 30 30 Sitt 30 20 City 40 50 Composition: Quartz 2 10 Feldique – 3 Heavy minerels 1 2 City 20 49 Glauconite Tr 1 Pyrite Tr – Curbonate urapec, – 5 Foraminifers 35 20 Cide, nanofosilis 42 10 Sponge spicules Tr – Ech. Spices Tr – Ech. Spices Tr – CurCo ₂ BOMB (%): 3,140 – 30 4,45 – 77 4,65 – 21

÷E,

++++++

AG AM

BRG

CC

2.5Y 6/2, 5Y 4/3, & 5GY 6/1 mixed

TE	555	-	но	LE		_	CC	RE	3 CORED	INTE	R	AL	15.0-24.5 m				
è	APHIC		CHA	RAG	TEF	1											
UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DES	SCRIPTIC	ON	2
tocene	(N)						1	0.5			-		2.5Y 7/4 2.5Y 6/4 2.5Y 7/4 2.5Y 6/4	NANNO FORAM (58 9/1) to light upper sections with NANNO FORAM 6/4) to very pale b (2.5Y 5/4).	DOZE, gray (N): MARL, prown (10	white 7) in col light y DYR 7/2	(N9) to bluish white or, interbedded in the allowish brown (2.5Y) and light olive brown
Piels	Pseudoemiliarúa lacun						2	and one of		111	I		2.5Y 8/2 2.5Y 5/4 10YR 7/2	Black grains of sh Core appears to fii firm areas (nanno ment throughout : and structuraless, Section 6, Cyclicity decreases	ale are form at this foram of Sections except down co	ound abo t point a oze — N 3 and 4; for some re.	ove Section 2, 124 cm. s well, Shale grains and 9) in cyclical arrange- Sections 5–6 are firm a very faint lamina in
			AM AM					0.00		-	-	-	N8	SMEAR SLIDE SU	MMARY 1, 90 D	(%): 3,90 D	6, 90 D
4							3	and and may			-		10YR 7/3 10YR 5/3 N9 N7 N8 6GY 8/1	Texture: Send Silt Cay Composition: Quartz Heavy minerals Clay Glauconite	25 15 60 10 2 20 Tr	20 20 60 2 10	15 15 70
Late Pliocens	Discoaster brouweri? (N		NN182	в			4	el conficente			0	-		Pyrite Carbonate unspec, Foraminiters Calc, nannofossils Sponge spicules Silicoflagellates Fish remains Ech. spines	Tr 1 15 43 Tr - - Tr	- 20 65 2 - Tr 1	2 15 67 1 Tr -
	lica (N)							1			D			CARBONATE BO! 1, 87 = 48 6, 90 = 94	AB (%):		
	Reticulationestra pseudoumbi			В			5	and the set of a set				OG	58 9/1				
early Pliocene	urolithus tricomiculatus (N)	-N17	2-NN15				6	and see and			D						
	Ame	N19-	INN				7										
		AG	AN	RP	RP	RG	cc										

	PHIC		F	OSS	L	1							
UNIT UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	SUB GRAI LITHO	HICLOGY	ORILLING DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
Late Miccene	Discoaster quinqueremus (N)	Probably M17	NN11	8			1 2 3 4 5 5					FORAM NANNO OOZE, whi (58 8/1) in color. Core is highly disturbed throug (yellowich gray (5Y 8/1) and m preserved in Section 6. Dropstones (up hole contamination out as are areas of light clive bit 4 and 5. SMEAR SLIDE SUMMARY (%): 5, 100 Texture: Sand 15 Sitt 15 Clay 70 Composition: Clay 10 Volcanic glas 77 Foraminifart 19 Calc. namofossilis 70 Sponge splcules 1 CARBONATE BOMB (%): 5, 111 = 96	e (N9) to bluish whit hour. Some faint lamin dium light gray (N6)) ar on) are scattered through own sediment in Section
		AG	AM	RP	FP	RG	CC	++++			_		

SITE 555	б но	LE	C	ORE	5 CORED IN	TERVAL	34.0-43.5 m		SITE	555	н	DLE		COR	RE 6 CORED	INTERVA	L 43.5-53.0 m		
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	RADIOLARIANS	BENTHIC FORAMINIFERS SECTION	METERS	GRAPHIC LITHOLOGY SNITTHE	SEDIMENTARY SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	TIME ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL TARACT SIVE INVITED OUT	DIATOMS BENTHIC BENTHIC FORAMINIFERS	SECTION	GRAPHIC LITHOLOGY	ORILLING DISTURBANCE SEDIMENYARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	
iate Miocene Disconter quinqueranus (N)	D Probaby N17 W NN1	M S perevolute zonne M A A M M Tatelassición commerce a B	1 2 3 4 5 6 6 6 6 6	0.5			5B B/1	FORAM NANNO OOZE, bluish white (58 9/1) in color. Core is highly disturbed in the upper 4 sections, firming in the lower part. Where firm, the sadiment shows some very vague mottles and famina, vellowish gray (5Y 8/1) to med- ium light gray (N6). SMEAR SLIDE SUMMARY (%): 5, 110 D Texture: Sand 10 Clay 80 Composition: Clay 10 Foraminiforn 15 Cale, nannofossilis 09 Diatoms 4 Radiolariana Tr Sponge spicules 2 Silcoffagellates Tr CARBONATE BOMB (%): 5, 100 = 66 5, 140 = 98	Late Miccore	Disconter quinquerenue (N)	LIN AG	CM autor multitumedrate (Chamiteline C) and the CM	R Lystereconserver R R	1 1 1 2 3 4 5 7 7			58 0/1 5Y 8/1 58 9/1	FORAM NANNO OOZE, bluich white (58 g) upper sections Iower sections. Core is highly disturbed but firming in lower Deformed lamina, veilowith gray (5Y 8/1) a light gray (N8), throughout the lower sections. Section 6, 53 cm - pryite nodule. SMEAR SLIDE SUMMARY (%): 2, 55 0, 0 D M Texture: 0 Sand 10 Ditt 10 Clay 80 Sitt 10 Clay 80 Clay 10 Prite - Clay 10 Prite - Section 6, 53 cm - pryite nodule. Stit 10 Clay 80 Composition: 10 Clay 10 Foromainifiers 15 Silcollagistis 3 5 Radiolasians 3 5 Silcollagististic 1 1 Ech. spines - Tr CARBONATE BOMB (%): 2, 55 = 92	V1) in the S FORAM ress in the r sections. d medium

HIC	T	C	F	DSSI	L						Π		
BIOSTRATIGRAM	FORAMINIFERE		NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
							1	0.5 10 10		000000		5B 9/1	BIOSILICEOUS FORAM NANNO OOZE, bluish white (58 9/1) in color. Core is highly disturbed to Section 7, where it firms and shows vague lamina of light greenish gray (5GY 8/1) and medium light gray (N6). SMEAR SLIDE SUMMARY (%):
							2	0 0 0 0		0000000			7, 20 D Texture: Sand 10 Silt 10 Clary 80 Clary 80 Clary 5 Foraminifers 15 Cale, namofossils 67 Diatome 5
(N)							3	0.0.0.0.		0000000			Radiolarians 5 Sponge spicules 2 Silicotagellates 1 CARBONATE BOMB (%): 7, 20 = 94
late Miocene Discoester quinqueramus	•				RP		4	2-12-12-12-12-12		0 0			
				FM			5	181.81.8181	┙┙┙┷┈╱┈╱┈ ╄╫╫╪┾┾┾╫╫╫ ╊╫╫╪┾┾╫╫╫				
		/ OF N 10		penultima/D. antepenultima zon			6	Preferment	++++++++++++++++++++++++++++++++++++				
	A	GA	AG	G	СМ	CC	7			!	ŀ	_ VOID	

	PHIC		F	OSS	CTE	R						
TINU	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DETLURG	SAMPLES	LITHOLOGIC DESCRIPTION
Lase Miccene	Disconter quirquerance (N)	NIZ OR NIS		E perturbanduttions (C) and a source and a s	FP RI supervisi adjunction of the second		2 3 4 5 6	0.5				FORAM NANNO OOZE, bluish white (58 9/1) in o Core is moderately deformed throughout, with area flow-in, in general, however, the cose has stiffened. Vague lamina and mottles, light greenish gray (56 and medium light gray (N6) present throughout. Section 6, 60–150 cm – area where lamina are more p inent. Gray lamina has concentrated pyrite (smear Section 6, 107 cm). SMEAR SLIDE SUMMARY (%): 4,70 8, 107 0 M Texture: Sind 10 10 Sint 10 10 Cary 10 10 Cary 10 10 Cary 10 10 Cary 10 10 Cary 10 10 Carbonate unspec. – 1 Composition: Cale, nanofostion 66 85 Diatoms 3 4 Radiolariant 4 5 Sponge spicules 1 1 Slitooffagelätes Tr 1 Ech. spines 1 – CARBOARE BOMB (%): 4,70 = 93 5,137 = 94

SITE	555	-	HOL	E.			CC	RE	9 CORED	INT	ER	VAL	91.0-100.5 m	
1	PHIC		F	OSSI	L					Π				
TIME - ROCH	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	LITHOLOGIC	DESCRIPTION
					RP		1	0.5					FORAM NAM Core is moder throughout: ar (5Y 8/1), and m (5Y 8/1), and m 58 9/1 Pyrite bielss in concentration b	IQ QOZE, bluish white (58 9/1) in color tely disturbed. Vague lamina are present te blue green (56G 7/2), yetlowish gray edium light gray (N8). the lower portion of Section 2, with great tetween 57-63 cm.
late Miocene	Discoaster guinquerarnus (N	S N17 or N16	LINN AM	Cascinodiscus yabel	FM RP RP	CC	3					IW.	- VOID Chalky layers o SMEAR SLIDE Texture: Sand Siti Clay Composition: Clay Focaminifers Calc: nannofos Diatoms Radiotarians Songra spicula	cur at: Section 2, 89–91 and 126–130 cm. SUMMARY (%): 10 10 10 10 10 10 10 10 10 10
													CARBONATE 0 1, 10 = 94 2, 140 = 91	IOMB (%):

					_	_	60	nc	TO CORED	IN	TER	VAL	100.5-110.0 m	
×	APHIC		CHA	OSSI	L	1								
TIME - ROC	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
Late Mocree	Discoatter quinquaranua (N)	B M13 or M16		RP FP	49 E Cascinodiscue yabei a E E A A	RG	1 2 3 4 5 6 6	0.5			7	*	58.9/1	FORAM NANNO OOZE, bluish white (58 9/1) in color. Core is highly disturbed through Section 5, Lamina are smeaned by flow-in. Section 6, 48 cm to bottom fo core: vague lamina, slightly deformed, medium light gray (NS) and yellowish gray (SY 8/1). Dropstones (Section 1, 0 cm; Section 3, 30 cm) are prob- ably downhole contaminants. SMEAR SLIDE SUMMARY (%): 4, 60 Texture: Sand 15 Sitt 15 Clay 70 Composition: Clay 10 Foraminifers 20 Cafe, nanofostis 62 Diatom 5 Radiolatian 2 Spong spicules 1 Silicoffagelites Tr Fish remains Tr CARBONATE BOMB (%): 4, 80 – 91

SITE	555		HOI	.E		-	CC	RE	13 CORE	DINTE	RVAL	148.0–157.5 m
¥	APHIC		CHA	OSS	TER	8						
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
middle Miccene?	Disconter hamatus? (N)	N17 or N16 B	AG	D. petterssoni zone 2 2	Denticulopsis praedimorpha S S	CC					*	58 9/1 BIOSILICEOUS NANNO FORAM OOZE, bluish white (58 9/1) in color. Section 1, 0–15 cm, smeared with pair yellow (2.5Y 3/4) addiment – downhale contaminant. Core Catcher shows faint lamina: medium light gray (N0), pair green (5G 7/2), and yellowish gray (5Y 8/1). SMEAR SLIDE SUMMARY (%):
												CC = 93

CORE 14 CORED INTERVAL 157.5-167.0 m SITE 555 HOLE FOSSIL CHARACTER LIME - ROCK 10 - 12 MINIFERS METERS RS. GRAPHIC URES NANNOFOSSIL RADIOLARIAN LITHOLOGIC DESCRIPTION RATSON ĩ BIOSILICEOUS NANNO FORAM OOZE, bluish white 58.9/1 ~ NN92 CM BN (5B 9/1) in color. Vague mottles and lamina: medium light gray (N6), pale green (5G 7/2), yellowish gray (5Y 8/1). + + AM CM FM IG CC ÷. SMEAR SLIDE SUMMARY (%): N17 or N16 1,35 Disc D oue Texture Sand 15 D. pettersson Silt 20 Clay 65 Compo sition 10 Clay Foraminifers 20 Calc. nannofossils 58 Diatoms Radiolarians Sponge spicules Silicoflagellates Tr **Fish remains** Tr Ech, spines Tr CARBONATE BOMB (%): 1.25 = 92

321

SITE	555		HOL	.Е			CC	RE	15 CORE	INTER	VAL	167.0-176.5 m			
×	UPHIC		F	OSS	TEF	2					IT				
TIME - ROC UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTI	ON
iocene	(N)	NIS 7		CM autor	FM		1	0.5		-00		5B 9/1	BIOSILICEOUS I (5B 9/1) in color. gray (N6), pale gr Section 2, 5-7 c	FORAM Vague la een (5G m: pyrit	NANNO OOZE, bluish white emina and mottles; medium light 7/2), yellowish gray (5Y 8/1). sized ash, grayish black (N2) –
niddle M	coalitus	N16, or	eq P	ttersson				1.0	注葉		•		mixed zone abov	e (0-5	em): light gray (N7) in color.
	stinaster	LIN AG	AM AM	ND. P	нр	RG	2	_				N7 N2 5B 9/1	SMEAR SLIDE SU	1, 100 D	/ (%): 2,6 M
	1/ N)-C												Texture: Sand Silt	10 10	30 40
	er kugle				orpha								Clay Composition: Feldsoar	80	30 Tr
	Discoast				praedim								Clay Volcanic glass	10	5 25 10
					curlopsis								Foraminiters Calc. nannofossits	15 63	5
					Dentik								Diatoms Radiolarians Sponge spicules	5 5 2	20 15 2
													Silicoflagellates	Tr	Tr
													1 95 = 92 1, 140 = 94	vid (76):	

	000	_	101	- E		_	- CC	JHE 16	CORED	INTE	RVAL	176.5-186.0 m	
×	APHIC		F	OSS	TER	2				Π	T		
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DESCRIPTION
middle Mosene	Disconter Augleri (N)-Carinatter conitus (N)	2 N17, N16, or N157	annung	20 Departmension i zone 53	2 Rhizoolenia barbo/ 3 Oeniculopate prestimorphe	P 86	1 2 3 4 5 6 6 7 7			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	58 9/1	FORAM NANNO OOZE, bluish white (58 9/1) in c Core is highly disturbed in upper sections, but firs slight disturbance below. Vague motites throughout: pale green (5G 7/2), yello gray (5Y 8/1), and medium light gray (NB). Appears faintly burrowed in Section 7. SMEAR SLIDE SUMMARY (%): 4, 70 7 exture: Sand 10 Siti 10 Clay 80 Composition: Clay 10 Pyrite Tr Carbonate unspec. 1 Fortaminifers 15 Cole, namofonith 67 Distorns 4 Radiotarians 2 Sponge spicules 1 Stilocrtagelizes Tr Fish remains Tr CARBONATE BOMB (%): 5, 55 – 89

HIE	555		HO	LE	_	_	CO	RE 1	7 CORED	INTER	VAL	186.0–195.5 m
~	PHIC		CHA	OSS	IL	R						
UNIT UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
middle Mipcene	ter kupteri (N)-Catinaster coalitus (N)		erssoni zone	FM			2	0.5				58 9/1 FORAM NANNO OOZE, bluish white [58 9/1) in color. Vague and indistinct mottles: light greenish gray (5GY B/1), veltowish gray (5Y 8/1), and medium light gray (N8). Alternating soft and firm areas. Section 2, 42–50 cm prominent burrow with dark halo. Section 2, 42–50 cm prominent burrow with dark halo. Section 4, 10–13 cm; chalky. SMEAR SLIDE SUMMARY (%): 3,76 D Composition: Clay 10 Foraminifers 15 Calc, name/Dostish 20 Batoms 2 Radiolarians 2 Spong spicules 1 Fish remains Tr Dolomis thombs Tr
	Discost	14	N7-NNB D. peth	см	Rhizosolenia T		3	in the first of		 	*	CARBONATE BOMB (%): 3, 73 = 93

K APHIC	Ι	CH/	OSS	TEP	1			1			
BIOSTRATIGR	ZONE	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
middle Miocene Discoetter kupler (N)-Catinatter coalitue (N)	> NIX NIZ NIZ	A NN7-NN8	2 D. petterssoni zone	iodred eineiosofiet Bh	88	2	0.5		00000		FORAM NANNO OOZE, bluish white (58 9/1) in colo Vague mottles throughour, predominantly vellowish gr (5Y 8/1). Occasional pyrite blebs (N6) are also preser Chalky areas: Section 2, 31–33, 48–49, and 60–69 or SMEAR SLIDE SUMMARY (%): 2, 75 0 Texture: 0 Texture: 10 Sit 10 Sit 10 Sit 10 Calposition: 10 Foraminifers 19 Calc, namofosilis 65 Diatoms 2 Radiolarian 3 Sponge spicules 1 Stillor dispelletes 1 Sit 50 Diatoms Tr Fish remains Tr

PHIC		c	F	OSS RAG	TER	4					Π			
TIME - ROCI UNIT BIOSTRATIGRA	ZONE	LUKAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	RENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DE	SCRIPTION
middle Miocene Discosster kogleri (N)-Carinaster coelitue (N)	A number of the second s	S NIS, NIZ	≤ NN7-NN8	W G D. petterssoni zone	M Denticulopsis arcobarica D D	CC	2	1.0				58 9/1	BIOSILICEOUS f (58) 9/1) in color and minor medium Atternating chalk a SMEAR SLIDE SL Texture: Sand Sitt Clay Composition: Clay Foraminifers Calc, nanofossilis Diatoms Radiolarianis Spoong spicules Silicoftagallaes Fish remains Ech. spines CARBORATE BOO 2, 87 = 92	VANNO FORAM OCZE, bluich whin , motiled with vellowish gray (SY 6/1 light gray (NB), and ooze. /MMARY (%): 2, 80 D 15 15 15 15 15 15 15 15 15 15 15 15 15

	0	<u> </u>								TT	TT		
×	APHI		CHA	RAC	TEF	1			1	[]	[]		
UNIT UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC	DESCRIPTION
middle Miocene	Discoaster kugheri (N)-Catinester coalitus (N)	SIN G	P NN7-NNB	E D. alata D. alata zone	S 2 Denticulopsis ricoberica 3	3 CC. FG	2	0.5			•	58 9/1 BIOSILICEOU (58 9/1) in o yellowish gray Alternating oo SMEAR SLID Taxture: Sand Silt Clay Composition: Clay Foraminiters Cate, nanofo Diatoms Rafiolarians Sponge spiculu Siltooflagellat CARBONATE 2, 74 = 93	S NANNO FORAM OOZE, bluish whit for. Very faintfy and sparsely mottled wit (SY 8/1). E SUMMARY (%): 2,80 D 15 15 15 15 20 10 20 40 5 4 4 5 4 5 4 5 5 4 5 5 5 4 5 5 5 5

X	DHIC		FICHA	RAC	L										
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DE	SCR (PT)	DN	
Ti middle Miocene Ti middle Miocene (N) (BIOS)	Catinaster coalitus (N)	-N12?	-NNB	FM avoz 43	- C. lewisianus		1	0.5			58 9/1	BIOSILICEOUS N (58 9/1) in color. gray (N6), yelfow: 6/2). Becoming chalky th Section 2, 34–35 6/2) grains – plauce	IANNO Very fain sh gray hroughou cm: be onite.	FORAM http://ami (5Y 8/1) nt. d of scat	OOZE, bluish white nated in: medium light , and pale green (10G ttered pale green (10G
	Discoaster kugleri (N	GRN AG	NN7	U BU	RP	RG	2					SMEAR SLIDE SU Texture: Sand Silt Composition: Clay Gluconite Foraminifes Calc, nannofosils Diatoms Songe spicules Silicoflagetans Fibr remains	MMARY 1,98 D 15 15 70 10 1 20 58 3 2 55 77 1	(%): 2,22 M 20 60 10 1 30 51 2 0 51 2 - 1	2, 38 D 25 50 10 2 30 30 38 3 - 7 Tr
						1						CARBONATE BON 1, 125 = 93 1, 142 = 90	MB (%):		

	l ₽	Γ	F	oss	IL .		T		JOILL	TT	TT	21010 20210111	
×	4P		CHA	RAC	TER	1				11			
TIME - ROC UNIT	BIOSTRATIGR. ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINI FERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SAMPLES	LITHOLOGIC	DESCRIPTION
		AG	AM	RP	AG	CC		-	V	1		58 9/1	
	(N)	12?	- BNN		nation	10						BIOSILICEOL (58-9/1) in co	S FORAM NANNO OOZE, bluish white or.
Miecen	oalitus	N-16N	-LNN		ontami							Core-Catcher of	niy.
hiddle I	laster c				0 - 01							SMEAR SLID	SUMMARY (%):
5	1 in				8								cc
	1				eist							Texture	D
	2				a.							Cond	10
	La .											Serio	10
	3	r I										Class	80
	2											Composition:	255
	1 in											Clav	10
	1 g				6							Foraminiters	15
	õ											Calc. nannofos	ils 69
											- 1	Diatoms	5
												Radiolarians	4
												Sponge spicule	6 1
												Fish remains	1

ITE	555		HOI	E			CC	RE	24 CORED	INTE	RV	AL	252.5-262.0 m				
	PHIC		F	OSS	TER	1											
LIND	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTIC	IN	
				в	в		1	0.5					N9	NANNO FORAM color. Glauconite g Ooze and chalk al structureless. Color becomes wh in the lower section	OOZE trains disp ternate t hite (N9)	AND CF sersed thr hroughou to light	IALK, white (N9) in oughout. It, otherwise generally greenish gray (5G S/1)
middle Miocen	Discoaster exilia (N)		NNG		в		2	in the stress				•	N9-10YR 8/2	SMEAR SLIDE SU Texture: Sand Siit Clay Composition: Clay Glauconite	UMMARY 2, 75 D 40 30 30 10 Tr	(%): 4,84 M - - 90	6, 82 D 40 30 30
				8			3			 			N9-5G 8/1	Zeolite Carbonate unspec. Foraminiters Calc. nannofossils Sponge spicules Fish remains Unspecified ailica Ech. spines CARBONATE BOI	2 10 38 40 Tr - Tr Tr	1 1 5 5 1 1 1 1	5 5 35 38 - Tr 5
-	nolithus heteromorphus (N)		NN5				4	and the states					N9	2,75 = 95 5,75 = 93	and Calif.		
	Spher						5	the second s				G	N9-6G 8/1				
early Miocene	Sphenolithus belennos (N)		ENN AM			СМ	6		┷┷┷┷┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿								

SITE 555

SITE	555	_	HOL	.E			CO	RE	26 CORED	INTERVAL	271.5-281.0 m				
	PHIC		F	OSS	L										
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DES	CRIPTIO	N	
				B			1	0.5			N9-5G 8/1	FORAM OOZE AV gray (SG 8/1) gr CONITIC FORAM pale green (SG 7/2) Chalk and ooze alto Prominent grains o Section 3, 148 cm	ND CHAI ading ine I OOZE, I. ernating to of glaucon of glaucon of glaucon	.K, white egularly pale blu hroughon hite, dus ction 6,	e (N9) to Tight greenis downward to GLAL ee green (5BG 7/2) s ut. ky green (5G 3/2) a 60, 141, and 142 cn
					в		2		$\begin{array}{c} - & - & - \\ - & - & - & - \\ - & - & - &$			SMEAR SLIDE SU Texture: Sand Silt Clay Composition:	MMARY 1, 120 D 40 30 30	(%): 6,60 M 50 25 25	6, 116 D 50 25 25
locene	(N) su						3				- 58G 7/2	Quartz Clay Glauconite Pyrite Carbonate unspec. Foraminifers Calc, nannofossils Sponge spicules Fish remains	10 3 	5 50 20 10 5 10 Tr	Tr 10 10 31 30 -
early M	Sphenol/ithus belemin						4				- N9	CARBONATE BOI 5, 26 = 91 6, 43 = 51	ИВ (%):		
				8			5				-				
							6				56 7/2				
		NN NR	AP	в	в	CG	7				= 5Y 6/1 5G 8/1				

16 555)	HOL	E			CO	RE	27 CORED	INTER	VAL	281.0-290.5 m					
DHIC		F	OSSI	L												
UNIT BIOSTRATIGRAI ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHO	LOGIC DESCR	RIPTION			
early Eocene Discouster binodone (N) NP12-NP13	8	FM HdN RM B	B	RP	RP	1	0.5			•	Mixed Mixed Ni section N1 Outs siz matrix 5GY 3/2 5GY 5/2 Section ist gra- vague fl Section	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	a mixed at white (N9) brown (2. VITRIC (N9) brown (2. VITRIC (1) upper (2.) a r VITRIC (1) to dusk (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	semblege o dusky greater (VF 5/6) - 1 (26-5) SPICULIT vellow gr vellow gr	r clasts of r clasts of r (N1) to (N1) to r (N1) to r (SG) (N1) to r (SG) r (SG)	1 vari- (vari- travitation of the second o

RMCC

1.0

328

	APHIC		F	RAC	L							
UNIT							SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	samples	LITHOLOGIC DESCRIPTION
		8	B			RP	1	-		1	* 5B 7/	
												Calcite-cemented sandstone, light bluish gray (5B 7/1) in color. Completely indurated,
												SMEAR SLIDE SUMMARY (%):
												1, 10
												M
												Composition:
												Mica Tr
												Heavy minerals 2
												Glauconite 2
												Pyrite 1
												Carbonate unspec. 91
												CARBONATE BOMB (%):
			1									1.7=68

111	-			-					TT	_	T		
HID		F	RAC	TEF	i								
UNIT UNIT BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATONS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES		LITHOLOGIC I	DESCRIPTION
	8	6	8	8	RP	1 2 CC	1.0					CALCITE-CEM (58 7/1) in co irregular lamina Section 1, 42 SANDSTONE, in lamina 1 mm Core-Catcher: (bluish gray (65 shell debris. SMEAR SLIDE Texture: Sand Silt Clay Composition: Quartz Faldspar Mica Heavy minerals Clay Palagonite Clay Clay Palagonite Clay Clay Clay Clay Clay Clay Clay Clay	NTED SANDSTONE, light bluish gra or, indurated with indistinct burrows an of plant material, Section 1, 0–42 cn crm-Section 2, 27 cm; FELDSPATHI olive black (SY 2/1) in color. Plant materi to 1 cm thick. ALCITE-CEMENTED SANDSTONE, ligi 7/1), with indistinct inclined lamina ar SUMMARY (%): 2, 20 D S0 30 20 50 50 53 55 5 5 5 5 5 5 5 5 5 5 5 5 5

-

SITE 555

3, 13 = 1

	LITHOLOGIC DES	CRIPTI	ON		
N4	LAPILLI TUFF, (N4), interbedded brownish black (5 Iapilli scattered thro	dark gra with C YR 2/1 oughout	iy (N3) ARBONA I) shell (to medium dark gray CEOUS MUDSTONE, debris and black (N1)	
2/1	Section 2, 112-14 STONE, black (N: lamina and beds 8° dip.	2 cm: 1 2) to gr (up to 3	VITRIC F eenish bl 3 mm th	ELDSPATHIC SAND- ack (5G 2/1). Distinct lick), inclined bedding	
N4	Lapilli tuff: lapill fragments and frag subangular and so shades of gray and coarser lapilli.	up to ments brown,	5 cm d of vitric w chilled Section 1	iamater include besalt tuff. Clasts are mostly d margins. Colors are 1, 16-44 cm: distinctly	
	SMEAR SLIDE SU	MMARY	(%):		
1		1, 25	1, 25	2, 130	
2/1		M	м	D	
	Fexture:		-	50	
	Cile		2	20	
	Clay		-	30	
	Composition:				
	Quartz	-	<u> </u>	35	
	Feldsper	65	4	15	
	Mica	-	_	5	
	Heavy minerals	-	-	3	
	Clay	-	16	16	
	Volcanic glass	-	20	-	
	Palagonite	15	10	15	
2/1	Pyrite	-	-	2	
	Zeolite	-	-	5	
	Carbonate unspec.	5	50	-	
	Foraminifers	-	-	2	
	Cale, nannofossils		-	Tr	
	Sponge spicules	-	-	Tr	
	Plant debris	-	-	2	
	Opaque	15	-	-	
	CARBONATE BO 4, 69 = 2	MB (%):			

ž	APHIC 9		F	DSSI RAC	L			nc	CORED				455.5-555.6 m	
TIME - RO UNIT	BIDSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFER	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION	
							1						N6 CALCITE-CEMENTED VITRII (N6), Matrix consists of calcit black (5/N Z/1) and class class. Included are many large and complete.	C TUFF, medium light gran , glass grains, and brownial and shell debris form th and thick shells – fragment
													CARBONATE BOMB (%): 1, 3 = 32	

South AUCTER NULL SUM SUM	South ALTER CHARACTER No. 5 CARDATIC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>TIME - ROCK UNIT BIOSTRATH ZONE</th> <th>FORAMINIFERS</th> <th>HANNOFOSSILS</th> <th>RADIOLARIANS</th> <th>DIATOMS</th> <th>AIC AIL</th> <th>CTION</th> <th>ERS</th> <th>GRAPHIC</th> <th>,</th> <th>À.</th> <th></th> <th></th> <th></th>	TIME - ROCK UNIT BIOSTRATH ZONE	FORAMINIFERS	HANNOFOSSILS	RADIOLARIANS	DIATOMS	AIC AIL	CTION	ERS	GRAPHIC	,	À.			
B CARBONACEOUS MUDSTONE, brownish black (5 0.5 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 10 1 11 1 11 1 11 1 11 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 19 10 10 10 10 10 10 11	D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>		4	~	-		CRAN ORAN	ŝĒ	MET	LITHOLOGY	RILLING	EDIMENTAR	AMPLES		LITHOLOGIC DESCRIPTION
								1 2 3 4 5 6	0.5			5 5 5		5YR 2/1	CARBONACEOUS MUDSTONE, brownish black (2 21). Calcareous concretions and shell debris common throu out otherwise structureles. Burrowing infrequent, shell debris throughout, or wise structureles. SMEAR SLIDE SUMMARY (%): 3, 8 Texture: 3, 8 Texture: 3, 9 Texture: 3, 9 Texture: 3, 9 Texture: 3, 9 Texture: 3, 9 Texture: 3, 9 Texture: 3, 9 Composition: Ouartz 10 Feldspar 3 Mica 4 Heavy minerals 3 Clay 40 Pyrite 5 Carbonate unspec. 20 Calc. nannofosilis Tr Plant debris 15 CARBONATE BOMB (%): 5, 95 = 1
			в	8		8	RG	cc	-		0				

¥	APHIC		F	OSSI RAC	TEF	1							
UNIT UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
~	~						1	0.5		> 0 0		Carbonaceous muditone, brownish black (SYR 2/1). SYR 2/1 Core-Catcher: prominent carbonate nodule (5 cm c	liameter),
		в	FM		B	RP	cc	1.0		00	Ц	SMEAR SLIDE SUMMARY (%): 1, 55 D	
												Texture: Sand 15	
- 1			1	1							- 1	Silt 20	
	3	1.11									- 1	Composition:	
-	Lo1		11									Quartz 12	
E.	8										- 1	Feldspar 3	
00	š		2								- 1	Mica 2	
v E	to:		2			1.1					- 1	Heavy minerals 1	
L.	8		1									Clay 60	
	à											Pyrite 4	
	10										- 1	Zeolite 2	
- 11	(1	11								- 1	Carbonate unspec. 5	
												Foraminifers Tr	
												Calc. nannofossils 1	
- 0											- 1	Radiolarians Tr	
											- 1	Plant debris 10	

LITHOLOGIC DESCRIPTION

scattered lapilli.

tered throughout.

in quantity upwards.

Texture:

Sand

Silt

Clay

Ouartz

Mica

Clay

Pyrite

Zeolite

Glauconite

Feldspar

Composition

Heavy minerals

Carbonate unspec.

Calc, nannofossils

CARBONATE BOMB (%): 4, 58 * 2

Foraminifers

RedioIrians

Plant debris

SMEAR SLIDE SUMMARY (%):

60 3 15

25

25 -

40 1 11

10

3 1 - 1

15 -

5 -

15 _

1 t 2

7 2

VITRIC FELDSPATHIC SILTSTONE, medium-dark gray (N3-

N4), grades downward to CALCITE CEMENTED VITRIC SAND-

STONE, medium light gray (N8) which grades downward to CARBONACEOUS MUDSTONE, brownish black (5YR 2/1).

Generally structureless, occasional lapilli bands (1 cm thick) or

Sections 4-5: indistinct lamina and very fine shell debris scat-

Section 2, 70-20 cm: palagonized black (N1) glass grains increase

2,15 2,30 3,20 D M D

90

2

1 Te

15 70

4

5 1

55

6

5

1

SITE 555 HOLE

CORE 64

SITE 555

SITE 555 HOLE CORE 67 CORED INTERVAL 661.0-670.5 m

	PHIC		F CHA	OS AR/	SIL	R					П	Τ		
UNIT UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
								a	0.5					Bealt (see visual core description for igneous rock). Overlying volcanic fapilii tuff unit (intermixed with terrigenc and and clary). Terrigences component shows fining upwe trend from andstone through ally sandstone to mudsto Color grades from dark greening arys (5G 4/1) through olive gr (5Y 4/1) to colive black (5Y 2/1). Mudstone immediately below basalt is indurated and probal
								2	tradition (1) tradition					baked. NOTE: Due to practice of spacing basalt pieces total recover may not correspond with recovery marked on basalt shee
								3	11111111111					
								4	and food from			5Y 2/1		
								5	fundree		-			5Y 4/1
							в	6	the second s				5GY	5GY 4/1

	10	lies	ies	sei	se	50	5		CORE 68, SECTION 2 Depth 672.3-673.5 m
	Number ic sentation ation bard Stud tion	Number ic sentation ation bard Stud tion	Number ic sentation ation bard Stud tion	Number ic sentation ation oard Stud	Number ic sentation lation bard Stud tion	Number ic sentation ation oard Stud	Number ic sentation ation oard Stud tion		Piece 1: Medium gray (N5) phyric baskit with vertical fracture filled with basait breccia and calcite cement. Minor calcite-filled vesicles. Fine-grained. Piece 2: Fine-prior basit as above calcite vein fill.
	oe 1 aphi aphi ent pbb tera	aph pre- pre- ipbo	ce l aph pre ient ipho tera	pre- pre- ipbo	aph aph pre- pre- ient ient ient	pre pre ient ipbo	pre- pre- pre- tera		Piece 3: Fine grained basalt as above minor fractures.
cm	Ath Shi	Att Or Real	Alt Shi Shi	Shi Ori	A Star Period	Ar Original Bar	Alt Re-		Piece 4: As above with vein near horizontal lined with fractured basalts in calcite commt. Slightly coarser grained
07				10				1	than above, vesicles very rare,
-			10				.N	-	Piece 5: Basait rubbie as above.
-			F	2	17	A	A-8	-	Pieces 6 and 7: Medium-grained basalt as above. Very small vesicles calcite and smectite filled. Fractures — some horizontal but others irregular,
-		S			A-F20-	A-D	\mathbf{V}	1	CORE 68, SECTION 3 Depth 673.5-675.0 m
-		2 3	50°0°	3 A-N		TH	2	-	Medium light gray (NB) phyric basalt, 1 mm vesicles rare throughout, filled with smectite, rarely calcite. Two large vesicles filled with smectite and calcite with smectite alteration rims. Much fractureing, all smectite filled; larger fractures have calcite second-stage fill. One large fracture 1 cm wide in Pioce 11 has basalt breccia fill with smectite/ calcite cement.
-	e	2	Ĕ=	X			AB	-	CORE 68, SECTION 4 Depth 675.0-675.3 m
_	1	400		na		2	3	-	Similar to Section 3, minor smectite-filled vesicles. Fractures mainly near-horizontal.
-	0			H		\Box		-	CORE 69, SECTION 1 Depth 680,0-681,5 m
50— -	2	BIC		NI	-	3	•	-	Medium light gray (NB) phyric basalt. Scattered minor 1 mm smectite filled vesicles, rarely calcite. Some glomero- phyric textures. Fractures abundant, numerous horizontal but largely irregular, filled with smectite and lath calcite. Below 80 cm becoming coarser grained, otherwise similar.
	3					4		-	CORE 69, SECTION 2 Depth 681.5-683.0 m
-		,0		Z	K		5	-	Uniform glomerophyric basalt similar to Section 1. Vesicles and fractures as before. Two resorbed clasts [at 15 and 120 cm] of vesicular basalt slightly darker (medium dark gray – N4). Vesicles up to 0.5 cm filled with smettite. Calcitis: minor pyrite in upper clasts, Clasts 5 cm, elongate.
_	4			Ë		5]	CORE 69, SECTION 3 Depth 683,0-684,5 m
					2		A-C	-	As above, less fractured. One small resorbed clast at 13-14 cm.
_		°U			AG	6		-	CORE 69, SECTION 4 Depth 684.5-686.0 m
	°6 0	D				A-F		_	0-70 cm; Similar to Section 3.
100	5 200 0 3 0	10 MUH		Ŧ	VHV 7		Z	1 - 1	70-120 cm: Gradational unit Piece RA limitar to basati above, Piece 6B becoming darker and finer grained glomero- phyric basalt. Vexicles change to calcite-fill, slightly more abundant, still less than 1 mm in size. 120-150 cm: Baked sediment – claystone, indurated, olive black (5Y 2/1), fine grained with volcanic lapilli clasts.
1								1	
				Ŧ				-	
1	\approx	12		4				1	
	7	6)		F					
_		PD		10		T		_	
-	R	13				IF.		-	
150								_	
CORE-SEC	110N 06-2	00-3	00-4	00.1					

÷ .

SITE

555

×	PHIC		F	OSS	TEF	2					Τ	Τ	
TIME - ROC UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	RENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	SAMPLES	LITHOLOGIC DESCRIPTION	
							- 1	0.5 1.0					Besalt and volcanic breccia (hyaloclastite) separated by sandsto- bed. Sandstone is greenish gray (5GY 6/1), coarse graine feldpathic. At base contains 2 cm size basalt clasts and bival fragments. Hyaloclastite is clive black (5Y 2/1), Clast size variable, angula vitric basaltic material, Size 0.5–1 cm (lapitil). Comented wi analicite and calcite.
							2					-	NOTE: Due to practice of spacing basalt pieces total recover may not correspond with recovery marked on barrel shee 5GY 6/1

cm	Piece Number Graphic Representation Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Drientation Shipboard Studies Alteration	Piece Number Graphic Representation Representation Shipboard Studies Alteration	Place Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	CORE 70, SECTION 1 Depth 689.5–6990,0 m Pieces 1 and 2: Fine grained glomerophyric basalt, medium gray (N5). Vesicles, 1 up to 0.5 cm smectite filled, rare pyrite. 23 cm: Probably zone of core loss – base of flow. Piece 3: Sediment coarser andstone at top over childs glassy margin 1 mm thick. Fine grained medium dark gray (N4) basalt. Elongate verically oriented vericelise lined/filled with smectite.
°_ 		6						Pieces 4 and 5A to 80 cm: Fine grained basalt, abundant small calcite/smectite filled vesicles, largest around 70–80 with more smectite here. Resorbed class of vesicular attered basalt/signometate. Pieces 5A (80 cm) and 5S: Coarte grained, less vesicular, giomerophytic basalt, medium gray (NS). Horizontal and vertical fractures, smectite and calcite filled. Vesicles are rare. Base – vertical vesicle train, calcite filled and smectite lined.
			-					CORE 70, SECTION 2 Depth 691.0–692.3 m 0–22 cm; Similar to Section 1, vesicle trains, smectite and calcite. 22–32 cm: Finer grained chilted contact with underlying sandstone, partly incorporated into base of the flow (medium gray – N5). 32–54 cm: Sandstone, coarse grained, feldspathic probably volcanicitatic well bedded, planar: calcite cement, greenis gray (SGY 61). Coarse base – large basist class? cm in diameter and bivalves and other broken-up macro- fauna. 54–132 cm: Hyaloclastite, olive black (SY 2/1). Class size variable, angular, probably vitric basaltic material, be- tween 0.5–1 cm (lapilli size). Cemented with silica phase(?) and calcite.
100 	CTION 70-1							

	2	Г		059		T	1	I	T	1 I		000,0 - F 00,0 III				
ę	APHI		CH4	RA	CTER											
UNIT UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION				
ITE						1	0.5					Volcanic breccia (hysioclastite), brownish black (5YR 2/1 Clast size generally 1-2 cm but some up to 6 cm. Clasts at basatic glass and basait, some larger clasts contain vesicles. We packed and cemented with white (N9) calcite, analcite an quartz. Possible base of one unit at 130 cm. Below is slightly finer grai size.				
ITE	555		HOL	OLE		co	DRE 7	2 CORED	INT	ER	VAL	708.5718.0 m				
	PHIC		F	OSS	TER											
TIME - ROCK	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION				
				-		1	0.5					Volcanic breccia (hystoclastite). Baseltic glass clasts with some vesicular baselt clasts 8 to 14 cm in size. White (N9) coment of analcite and celcite.				
						2										
						3	a set a sea la sea									

cm	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	CORE 75, SECTION 2 Pieces 1—5A: Fine grained medium light gray (N6) vesicular bas lined/filled. Large irregular vesicles in Pieces 1–4 and small circul Pieces 58–E: Coarse grained giomerophyric medium light gray Minor fracturing. Calicle followed by smectrie fills: bruizontal an Pieces 8 and 7: Finer grained vesicular basalt, vesicles 1–6 mm cal	Depth 738.5–739.6 m ait. Vesicles up to 5 mm, calcite filled and smectite ir in Piece 5A, abundant. (N6) basait. Rare vesicles (calcite and smectite). vertical. cite filled irregular. Base of flow?
					1 24			CORE 76, SECTION 1 0-50 cm: Coarse to medium grained glomerophyric basalt with a smeetic filled; occurred irregular 2 cm (vertical orientation). 50-119 cm: As above but vesicles become smaller and rarer, all is 90-33 cm: Almost completely resorbed clast of vesicular basil. 140-160 cm: Fine grained unit with abundant vesicles – vertic and ameetite. 140-150 cm: Sharp angular contact to glassy black (N1) basa colorite filled vesicles. CORE 76, SECTION 2 0-19 cm: Glassy margin at top. Fine grained highly vesicular the addite filled vesicles. CORE 76, SECTION 2 0-19 cm: Glassy margin at top. Fine grained highly vesicular the calcite filled vesicles. CORE 76, SECTION 2 0-19 cm: Glassy margin at top. The grained highly vesicular the calcite filled vesicles. CORE 76, SECTION 2 0-19 cm: Glassy margin at top. The grained highly vesicular the calcite filled vesicles. CORE 76, SECTION 2 0-19 cm: Glassy margin at top. The grained highly vesicular the calcite filled. 48-61 cm: Coarser, uniform basalt, Rare large vertical filled vesicle 61 cm: Irregular contact. 61-70 cm: Vesicular and incorporated glass with chilled very fine 70-73 cm: Glass, hereciated, comented with calcite between lowe 73-85 cm: Vesicular and incorporated glassy clasty. Vexicl 116-117 cm: Glass rind of both above and below basalt units. 117-135 cm: Vesicular fine grained mare abundant vesicles and resorbed 116-117 cm: Glass rind of both above and below basalt units. 117-135 cm: Vesicular fine grained mare lump vesicles, calcite clast. 135-160 cm: Sloping contact with 2 cm black glass margin w CORE 76, SECTION 3 0-20 cm: Glassy rind at lare clay fill vesicles. 20-42 cm: Coarse grained basalt large vesiclar. Vesicles rare but la 42-53 cm: Fine grained basalt less vesicular. Vesicles rare but la 42-53 cm: Fine grained basalt less vesicular. Vesicles rare but la 42-53 cm: Fine grained basalt less vesicular. Vesicles rare but la 42-53 cm: Fine grained basalt less vesicular. Vesicles rare but la 42-53 cm: Fine grained	Depth 746.5–748.0 m abundant 1–2 mm spherical vesicles. Calcite and/or nectite filled. aalete fills]. al, irregular up to 2 cm vesicles filled with calcite it possibly pillow margin, calcite veined and small Depth 748.0–740.5 m osati. Vesicles up to 2 cm, elongate and irregular, to below). Diffue: irregular darker patches – re- ed, bed darker glassier fragments as above. Calcite and les. 1 cm glass margin, curved. r glassy margin, curved. r glassy margin, curved. e and fater clay fills, up to 1 cm; glassy resorbed th calcite fractures. Vesicles in glass calcite filled. Depth 740.5–751.0 m th reworked irregular glass patches and abundant wrge. tr filling large fractures. asse, bes – quartz fill, asts. Depth 751.0–752.5 m meticles and remothed clasts
CORE-SEC	TION 79-2	70-1	102			1222		Piece 1: Glassy rind, cakite fracture fill basit. Fine grained with 10-42 cm: Glissy rind at top with fractured glass cemented i vesicles up to 1 cm and resorbed glassy class. 42-90 cm: Coarser grained glomerophyric basit with horizo calcite and clay.	esicles and resorbed clasts. with clay and calcite below. Fine basalt with large ntal fractures and minor large vesicles filled with

90-107 cm: Fine grained zone as above, 107-110 cm: Glassy rind as above, 110-150 cm: Fine zone as above.

0-24 cm: Glassy rind. Fine grained unit as above. 24-48 cm: Coarse unit as above. 48-58 cm: Fine unit with glassy rind at base.

58-95 cm: Volcanic tuff/lapilli, lithified (baked?), greenish black (58 2/1) clasts up to 5 mm.

CORE 76, SECTION 5

£

Depth 752,5-753.5 m

2	HIC		F	OSS						П		
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUNTARY	SAMPLES	LITHOLOGIC DESCRIPTION
							1	0.5				Volcanic breccia (hysioclastite). Smaller clasts (up to 2 cm) an besatic glass. Clasts of baselt are up to 10 cm in size, some with glassy rinds and some contain vesicles. White cement is analoit and calcite. Massive, no evidence of bedding.
							2	The second s				
							3	tree la configura				
							4	and and the				
							5	and read and				
							6	1.1.1				

LITHOLOGIC DESCRIPTION

Volcanic breccia (hyaloclastite) and basalt.

All cemented by analcite and calcite.

LITHOLOGIC DESCRIPTION

dark greenish gray (5GY 4/1).

lies mudstone also planar bedded,

correspond to that shown here.

Basalt, more fully described on visual core descriptions for igneous rocks, interbedded with sandstone and mudstone, both

Sandstone is medium grained, planar bedding evident, and over-

NOTE: Due to specing of besalt pieces total recovery may not

Breccia consists of angular clasts of basaltic glass up to 1 cm in

size, Larger angular clasts of basalt are set in the matrix of glass.

Note: Due to practice of spacing basalt pieces during curation, total recovery may not correspond to that shown here.

cm	Piece Number Graphic Representation Orientation Shipboard Studies	Proce Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Prece Number Graphic Graphic Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	CORE 81, SECTION 2 Depth: 796,5-787.0 m Aggiomerate as Core 77, Section 1. 42-85 cm; Very fine grained basit. Top: glassy top and incroporated glass. Resorbed: some glassy infills fractures. Some vesicles, rare – white analcite/calcite fills. 85-150 cm: Medium grained highly vesicular busalt. Infills all smectrits, analcite and calcite. Some horizontal vesicle trains.
50	Piece h Crantis Representation of the second of the seco		Precent Precent Precent Precent	A and the second		Piece P Graphi Repres Cointer Shiplo	Piece	Some veidet, rar – white analistic/addits fills. 85–150 cm: Nedium grained highly vesicular basalt, Infills all smectrit, analisite and calcite. Some horizontal vesicle trains. CORE 81, SECTION 3 Depth: 797.0–788.5 m Coarse grained glomerophyric basalt, vesicles common throughout. Mostly analisite filled at top, then calcite lower down (about 50 cm) and below 90 cm all ametite. Some smectrite filled fractures, vertical and horizontal, very minor. CORE 82, SECTION 1 Depth 803.5–805.0 m 0–38 cm: Fine grained fractured basalt, irregular vesicle patches. Some brecclation, minor. Smectrite and analiste filled. 38–07 cm: Highly bracclated fine grained basalt. Fractures filled with lapilit size basalt clasts set in glass smectrite. 67–85 cm: Fine grained vesicular basalt. Piece 4: Sandstone, fiGY 4/1 106–121 cm: Fine grained basalt, rare vesicles smectrite filled, fracturing. 121–150 cm: Coarse grained basalt, numerous irregular calcite filled vesicles, glomerophyric, minor fractures, and ametita/alabite vesicle. 64–56 cm: Coarse grained basalt, numerous irregular calcite filled vesicles, glomerophyric, minor fractures, and an exciting field. CORE 82, SECTION 2 Depth 805.0–806.5 m 0–40 cm: Coarse grained basalt, numerous irregular calcite filled mainly, some calcite, Minor fracturing. 54–92 cm: Basel sandstone with basalt fragments brecclasted during flow into sandstone. Sandstone is fine to medium grained dark greenish gray (5GY 4/1). 92–142 cm: Glassy rind at sharp upper contact to fine grained basalt and fractured glasy base also. Larger irregular smeetife/alabite vesicle. 54–92 cm: Basel sandstone with basalt fragments brecclasted during flow into sandstone. Sandstone is fine to medium grained dark greenish gray (5GY 4/1). 92–142 cm: Fine grained basalt, Smectrite filled fractures and minor large vesicles. Rubble.
		813	82.1	82.2	82-3	i [· .	

SITE 555

 $E \rightarrow \frac{1}{2}$

. .

cm	Piece Number Graphic Representation Oriantation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Rapresentation Orientation Shipboard Studies Alteration	Prece Number Graphic Representation Orientation Shipboard Studies Alteration	CORE 83, SECTION 1 Depth 813.0–814.5 m Very coarse grained phyric basalt with abundant irregular smectits filled vesicles up to 2–4 mm throughout; some caloits filled. Rare fractures, Smectite, pyrite, and calcite fills. CORE 83, SECTION 2 Depth 814.5–816.0 m	n Je
cm 0 - - - - - - - - - - - - - - - - - -								As Core 83, Section 1. Vesicles much smaller – 1 mm, still abundant toward base, Calcite filled veins at 110 cm CORE 83, SECTION 3 Depth 816.0–816.3 Piece 1: Rubble. Piece 2: Finer grained basalt than in Core 83, Section 2. Abundant fine vesicles, smectite filled. Some pyrite filled rectures.	n L 3 3 d
150		832	L L					1	

110	000		HOL	.E	_	_	CC	RE	87 CORED	INTER	VAL	851.0-860.5 m						SITE	555	_	HOL	.E
~	PHIC		F	OSSI	TER														PHIC		F	0
TIME - ROCH	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC FORAMINIFERS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANGE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	CDESCF	IPTION			TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	The second se
							1	0.5	©	0.0		10YR 2/2 N5	MICACEOUS SIL (10YR 2/2); mino TUFF, grav (N5). Color grading down Lamina throughout Section 3, 6–7, 53 Section 5, 30–18 c	TY ML r lapilli ward to are subl 54, 70 m: lapill	JDSTON bands th dark gran horizonta 1–68, and I dyke.	E, dusky yelle roughout, LAP / (N4). I. 186–87 cm: lo	owish brown ILLI VITRIC			-	B	
							2		(P) (P	0 0		10YR 2/2 N5 10YR 2/2	SMEAR SLIDE SU Texture: Send Silt Clay	MMARY 2, 29 D 20 50 30	(%): 4,75 D 20 30 50	5, 122 D	÷				В	
scene	itus (N)		6dN RP				3	the state of the state		-		N3 10YR 2/2	Composition: Quartz Feldspar Mica Heavy minerals Clay Volcanic glass Palagonite Pyrite Carbonate unspec.	1 	22 8 10 2 40 5 10	4 1 4 - 15		late Paleocene	Discosster multivadiarus (N		8dN	
late Palec	Discoaster multiradia			104			4	a sector sector sector		141	•	N4 and 10YR 2/2	Calc. nannofossils Plant debris CARBONATE BOI 5, 145 = 2 6, 24 = 3	_ ив (%):	1			-			RP 6dN 6	
							5					N4		x							nr.	
					в		6					10TH 2/2										

SITE	555		HOI	LE			CC	RE 8	9 COREC	INTER	RVA	L 870.0-879.5 m	
×	UPHIC		F CH/	OSS	IL. CTEF	4				П			
TIME - ROC UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	BENTHIC	SECTION	METERS	GRAPHIC	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						8	1	0.5	1			10YR 2/2	SILTY MUDSTONE, dusky vellowish brown (10YR 2/2); faintly laminated. Soction 1, 95–91 cm; graded LAPILLI TUFF; "salt and pepper" appearance, medium light gray (N6) lapilii in dark gray (N3) matrix. SMEAR SLIDE SUMMARY (K): 1, 130
		4				AND A AND AND AND							Texture: Sand 20 Clay 40 Composition: Quartz 28 Foldspar 7 Mica 5 Heavy minarias 1 Clay 40 Palagonite 5 Pyrite 2 Carbonate unippe, 7 Plant debris 5
SITE	555		но	LE			co	DRE	90 CORED		RVA	L 879.5-889.0 n	
	Ę	Г	F	oss	IL.							-	1

	PHIC	СН	OSSIL	R		5	14		1]				
TIME - ROCH	HOSTRATIGRA	ORAMINIFERS	ADIOLARIAMS	ORAMINIFERS SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE EDIMENTARY TRUCTURES	8	LITHOLOGIC DESCRIPTION						
5.	E.				0.5		00	_10YR 2/2 = + N5	MICACEOUS SILTY MUDSTONE (10YR 2/2). Indistinctly laminated. Section 1, 55 cm: contact with basal mergin with pillow structure – a crack, immediately above contact in (NS).	, dusky yellowish brown it contact exhibits chilled iso sediment-filled cooling a sandstone, medium gray			8		
					2			х.	SMEAR SLIDE SUMMARY (%): 1, 30 D Texture: Band 20 Sint 40 Clay Clay 40 Clay Composition: Quartz 25 Feldipar 8 Mica Maxy minerals 1 Clay Palagonite 2 2		ĩ		i î		
					3 +			e di A	Pyrite 4 Carbonate undpec, 8 Foramilifers Tr Plant debris 2 CARBONATE BOMB (%): 1, 33 = 3	\$ *		(K)			
						<u>]:::::::::</u>									

CARBONATE BOMB (%):

2.148 = 2

Shipboard Studies Atteration Piece Number Graphic Representation Shipboard Studies Atteration Piece Number Graphic Representation Orientation Piece Number Piece Number Piece Number Piece Number Piece Studies Atteration Shipboard Studies Atteration Piece Atteration Orientation CORE 95, SECTION 1 Piece Number Graphic Representation ece Number Nece Num cm 0-08°0 2 A-1 сi: 50-10 3 A-8 -100-4 A-B A-1 150-

95-3

95-2

0—15 cm: Mudstone, medium gray (NS), fine grained, indurated. 15–20 cm: Sandstone, coarse grained, dark greenish gray (ISGY 4/1), indurated. Also in Pieces 2 and 3A. Piece 3: Fine grained theatt flow. Baalt dark gray (NS), Contact with anabtone adove and below. Piece 3: Fine grained glomerophyric baalt, medium dark gray (NS), care fractures, near vertical. Very rare vesicles filled with green smecitie. Pieces 3B and C: Vary fine grained basalt, aphyric at top becoming phyric, vesicles rare, smecifier Filled, grading trom N3 to N4. CORE 95, SECTION 2 Depth 928.5–930.0 m Medium grained glomerophyric basalt becoming coarser below 50 cm. Non-vesicular; fractures minor mainly oriented at 60° to horizontal, some at 90° to this direction. Fractures filled with smecifie. CORE 95, SECTION 3 Depth 930.0–930.3 m Coarse grained glomerophyric basalt as before, no vesicles, rare smecifie filled fractures; sharp fractures noted which have no common direction.

360

CORE-SECTION 95-1

0

÷

Depth: 927.0-928.5 m

361

14

ŧ.

cm	Piece Number Graphic Rapresentation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Atteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	Piece Number Graphic Generesentation Orientation Shipboard Studies Alteration	Piece Number Graphic Representation Orientation Shipboard Studies Alteration	CORE 97, SECTION 1 Depth Coarse grained glomerophyric medium dark gray (N5) basalt. No vesicles, but very frequent frac mainly aligned within 20° of horizontal but mainly cross-cutting fractures at no particular alignmen CORE 97, SECTION 2 Depth	h 946.0–947.5 m sturing. Fractures t. : 947.5–949.0 m
°]						$\overline{\mathbf{R}}$		As before. One coarser band at 50 cm but otherwise uniform. Fracturing becoming more intense to that previously described, with some pieces completely shattered.	in similar fashion
-	1	1	10		1			CORE 97, SECTION 3 Dept	949.0-950.5 m
_	-	-	Cr (\leq	1		Uniform coartie grained glomerophylic basit at before, one coarser band at Jo-40 cm, +ractum, viously described (name horizontal dominating, with cross-cutting fractures oriented in no partic though some suggestion of about 60°1.	g intense, as pre- sular direction al-
_			2			6		CORE 97, SECTION 4 Dept	950.5-952.0 m
-		2						As before, orientation of fractures becomes dominantly 60° below 50 cm. Some fractures have lat fills (after smeetite).	te calcite/analcite
_		101			R			CORE 97, SECTION 5 Depth	n 952.0—953.5 m
-	2	NY	3			2		Fractured coarser glomerophyric basalt as before. Fractures filled with smectite, with one shot also. Fractures dominantly marked about 80° to horizontal.	wing analcite fill
50—	E	3				\square		CORE 97, SECTION 6 Depth	n 953,5–955,0 m
	5	Х		2				 Highly fractured basalt as before. Fractures dominantly about 60° from horizontal but others are dom. Basalt texture unchanged from previous sections. 	e apparently ran-
_		2						CORE 97, SECTION 7 Depth	955.0–955.4 m
								As before, fractures revert to about 20° from horizontal. Additional amount of core here possib upacing out of basalt during curation.	ly resulting from
CORE SECT	10N 97-1	97-2	97-3	97-4	97-5	97-6	97-7		

-0 cm	13-1	13,CC	14-1	14,CC	15-1	15-2	15,CC	16-1	16-2	16-3	16-4	16-5
L	A							22	3	1.00	and the second	
				and		1		T.Y	7	6		· · · · · ·
Γ	E-1-A		1 1	and the	Alter	12013	Linet	5.29	X			
F				1 des		E.C.	N. W.		No.	1.6	1	1
-	- And	冬湖		Annel	00	Γ I	1 1	OR	1	12		*
-25	the th	[]	-						2	and the second	-	and a
F	Ter.			1 1	Paler			C	in 1	(Nor	ARA CONTRACTOR	1.00
L	- 11-12		1	1	1100					and the second	Source!	
	1 1					•				-	1	
Γ			-					1	R		大田と同	
F			1		13.20°			C				
-50			1.12		ar t			the second	Contraction of the second		-	
F			The second					1.5	1		1.00	
F			-					7	A.		* *	
L			the star		4			the second	200	A		
L								in an a		CQ	1.1	
ſ								1		(I)		14
- ⁷⁵								The start	9	51		
F								1 and	Tital		and the second	
-									1121	1	5.	1.
F								P.		. en		
F										1A		201
								and the		4	in the	Ser.
-100					1			L	1 A	(and)	1	a se
F								100		-103	1	
F					1000			使任		La.	A CONTRACT	Harris and
-								16		E S		ten.
-					in come			-16-1			10	200
-125					~						1	
										the second	2	
Γ										. 245		and the second
F					a desta				1.5			and the second
F								1	Same	Prest and		the state
F									÷ 3		and c.	then of
L_150								Sumain Co.	- united and	10.2 C	1-marile	1

-0 cm	16-6	16-7	17-1	17-2	17-3	17-4	17,CC	18-1	18-2	19-1	19-2	19-3
-	2-1.			13		1.3				the second		4
-	Ter.		A. C. C.					A. S.		0-04		- inter
-25	17-	ALC: NO		3_1-1 1-1-1	1-1-1-1-1							
F	Cone.	(Here)	+242.	-	1			1	·**		A R. C.	AL
-		1		Q							***	124
-50	- 20-		Ţ					Page 1	N:29			0
-		ALC: NO	1	1. A.	En a			COL.		-		1000
	A A A				the second				a sur anna	-		
-75		16,CC	14	-02.								
F	1.				1			0	4	1		
E	14								14		and the second	
-100			10	100	AL-			and the second		1 607	A.	19,CC
	1							調合				
-			14						No.			
			the state		-			-		1		
F			1	A.						100 m	1	
-			•	in the second	100 M			4	18,00	4		
-			20		T							

-0 cm	20-1	20-2	21-1	21-2	21-3	22-1	22-2	23,CC	24-1	24-2	24-3	24-4
Ļ	N.			AL COMPANY						- The		Carlo
L	144			An an			410	14	Tor -	1		
L	1		The second			1	and a star		-		-	
L	gel in	ALL	1	and the				4		1	· · · ·	1 design
- 25	S. 2.	12 12	-	1.2			and the second	Catt of	at ?			
25		and a	-		and the		The state of	1	Marine M			
t i	10		13	ALL ALL		1	1.		- Card		and the second	
F			1 Fe	教育		AND AND	1			a la sur	1	
F				C.R.	21,00	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	2.4		inter i		and a second	
F	107.54	E	a la k	and a							THE A	
-50				13 3		1.5			the second second			44
F		Winter !!	time .	素					P R R	- Sector	-# .	o I.
-				- Age							1999	-
ŀ	12	20,CC	1	1.2.8							Sea .	
Ļ			E	14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		E			and a		100	Sec.
-75			1-1			A COL			the state			- Kan
						1				- Cal		15.9
			1. 20 L						ALT -		Sec.	-
[an an			1.1						- Algerta	1200	虚
F			5.00	1		0 1				141	ma L	A.
F			and the second			>					1.4	雪
-100	200		R	. Fr		- the			71	1.00	35	Er.
F	12		C T			-					Ser.	1
-	ALL		hai	1. 4 S					No.	in the	all a	
-	-			and the second		1. S.					The second	
F			and a								-	
-125	-		and and a star	the the						The second	and a second	Sh
				A. 1						-		
[a and		19	1 200 M		2			-			-
Γ	1		×									5
F			and and			No. Contest				· · · · · ·		A. A.
F	14		「家の						Cel	the second	a -in	20
L_150	1		100	a at					10-10	A	a de	1000

-0 cm	24-5	24-6	24-7	25-1	25-2	25-3	25-4	25-5	25-6	25-7	25,CC	26-1
-		10	1.75						1		A A	
-	ter.	1	A A A	and the second			ر بن د ا	11 - A	3.			
- 25					1.		1		1 Style	The second se		12.5
-		Y			- 1	Land L	S	17				River,
		1			A	1 + 12 2 - 1		*	121			in the second
-	1	N. W.		0			4	2				
-	The second	P. I		H. T.		100		4.4	0			ACL SOL
—75 -	The Part	The second		1. 1. Call	1				23			
-	t and	E.J.				4.) 1	A.S.		N			A States
	1967 - 194 194	A.			1		14		2			EL
	it.	3				and -	1.16	*	A LAND			
-	A.S.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		A A A A A A A A A A A A A A A A A A A	19			-	and a second			14.14
-125				1	m		198.0	alkin .				1
		it's			N.	A.						A. C.
-150		No.		-		11	1.3		Ex Th			

(30-2	31-1	31-2	32-1	32-2	32-3	32-4	32-5	32-6	32,CC	33-1	33-2
		1.5		-	1/2	Shiel	Non I	-	Carlos -	105276		and a
Γ	Parties.			Ster.					(The			
F	S.	1. 2-		1	Lanet.	190				-		
			to she			-			-0	1.4	No.	
F						R.			4	1	L'ATTA	
-25					and the second					1		
F				52/1	-			and and			- The second	
F							SET		an an			
	1000		< 1			1			1 Ĩ			2
			N JUR	t Var				53.9			A. C.	
Γ			2			ALC: NO		A CONTRACT				
-50	-			and the		2-1	-					
t	30 CC I		1	34							1	
F	00,00							and a second			- D	
-						1		A. C. C.				
F				199 - 19 19 - 19	2			and the second				
-75							2.5				PAN A	
L					1							
				2		Y	e colles	1				
F											1	T
F					* · · · · · ·		100					
				100				- 4			15-13	
-100								A. A.			ない	
-			, 31,CC								and the	-
F											- and the second	~
						27	长达	1				
			1 1								- A	
[-			1 1				
-125					-		4					
F				ST.	And	200						
-		15		~	M	A REAL	27					
F					-	at a					E.	1-1-1
-					-		10.00				-	
L_150					SON							A constant

-0 cm	33-3	33-4	33-5	33-6	33,CC	34-1	34-2	34-3	34-4	34-5	34,CC	35-1
-			Town of		7	L Mar		699				K.
25		N.		No. of Street, or Stre								-
-		I.Y.				Nr A						
- 50 -		1	and the second	1		JU						
-	F	AAAA					No.			- 201		
75 				1 AL		YC						
-						Ser of		1 周 1				
-		A		1								
- - 	L.L.							A A				
				- June		8						
L_150	1					The second secon						

0 cm	36-1	36-2	37-1	37-2	37-3	37,CC	38-1	38-2	38-3	38-4	39-1	39-2
- - - 25 -	NOD	A MARINE A		「「「「「「「」」」				al Maria	ADUC T	Theo?		
- - 50 - -									A North A	38,CC		R. C.
- 75 - - -		36,CC					M. W. Y.		LAN AC			
												the second se
- - - -			2 × 1						R J I		000	

—0 cm	39-3	39-4	39-5	39-6	39-7	40-1	40-2	40-3	40-4	40-5	40-6	40-7
		C.L.	N NO	JAA R.						ACKOC/TY		MAKO
- 25		Star E	1	T.M	(P)	Y A						
- 50 -			TOC	·				Name of Street			THE P	
			XX	MAK	The second secon			The second se	M	Kau		
-			1		39,CC	0000	1. 4	22	J'AL	Nond	T NN	
- 		RO	KI			TIT	COX.			S	~	
	AL AL	COX				10.19						
-		in the		N. K.		And I				Sin h	KICO	
L_150)X										

— 0 cr	45-4	46-1	46-2	46-3	46-4	46-5	46-6	47-1	47-2	47-3	47-4	47-5
- - - -25	くくろうか		0.0000000							STOCK S		
- - 50 -	A CONTRACTOR	THE REAL COM		F T T T								47,CC
- 75 - - - 	45,CC		X + Ko			N. M.	46,CC					
- - 		NUL DOUDD						A DUNCI		N. N.	Party and an	
- - 		100K										

0 am	48-1	48-2	48-3	48-4	48,CC	49-1	49-2	49-3	49-4	50-1	51-1	52-1
- 25	Contraction of the											
Γ	1	1 200	X	1								
-50	1			-							1 1	
F		Topo	5				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)					
F	and the second	1.1.1		-		· · ·						
ŀ		-										
-		tin.		-								
-75				-		:			LEERE			
			1						3			
									~			
Γ		5		An.					24			
F				10.0					.49 CC			
-		17A		T T					43,00			
-100	T	20										
F						· ·						-
-	~					-						
-	A-	10										Inc
-												
-125												2 A
	2	1	1					i				3
		S										1
Γ		100	-				ine e	State State				
F		-	and a				(L. 89)					
F	-											
-150		13 mar				Sec. and						

	\square
	A THE MUNICIPAL AND A DEPARTMENT OF A REAL AND A DEPART

	54-3	54-4	54-5	54-6	54,CC	55-1	55-2	55-3	55,CC	56-1	56-2	56-3
- 0 cm	54-3		54-5	54-6	54,CC	55-1	55-2	55-3	55,CC			
-	To	A LOD		LILL							A STATE	
-	(COLORIO)	A COLO	0000	RUL		d				000	Net Pos	\$100x
-150		C.	3	5						B	NO.	R
0	56-4	56-5	56-6	56-7	56,CC	57-1	58-1	58-2	58-3	58-4	58-5	58-6
---	--	------	------	------	-------	--	---	------	------	--	------------	---------
- - - - - 25 -	CONTRACT OF STATE					a state of the second s	N.				ない。この	OCCUL)
- - - - - - - - - - - - - - - - - - -	And the second statement of th					57,CC	The second			The state of the s	LA LANTINA	58,CC

-0 cm	60-7	60,CC	61-1	61-2	61-3	61-4	61-5	61-6	62-1	62-2	62-3	62-4
- ^{0 cm} - - - - 25 -				01-2								
-					-	-		-		-		
-50	103			-			reg	and the second s			1	-
-			1	See.								1
-			-	0					-			
$\left \right $						-						
-				2		C			100			
-75			1993. 1993.				~					-
F			-		-		2					
F						College College				-	7	
F												-
F					L				and a			9
-100			1					-	1			
Ē.								1				
E								1		5	4	0
				-4			S	61,CC	1			
-125				1								D
_				5					174			ar
Ļ			The second	-1	1	~	30		-	7		
F					2	Í Í	T					5
-			and and	20	\square		to.					STATE
L_150										12	A second	1

0 cm	67-2	67-3	67-4	67,CC	68-1	68-2	68-3	68-4	69-1	69-2	69-3	69-4
			000						6.4		Contraction of the second	674A
- 25			R I			N J	R	S.			TIT	
			THE L				S		XFX			
-		12:12:20					0		MV			
75 	1					1.1			MIN .			
- 100 -						New Y			Z			
-		1001	F									
-							N		The state	7		
-150					N. A.					PR 20	1	4 10

-0 cm	69-5	69-6	70-1	70-2	71-1	71-2	72-1	72-2	72-3	73-1	73-2	73-3

-0 cm 73-4	73-5	74-1	74-2	74-3	75-1	75-2	76-1	76-2	76-3	76-4	76-5
-0 cm 73.4	73-5		74-2 A A A A A A A A A A A A A								
			A.						a.(]	P.	(4)
-150			ALC: NO. OF COMPANY					10° V.			

-0 cm	79-3	79-4	80-1	80-2	80-3	80,CC	81-1	81-2	81-3	82-1A	82-2A	82-3A
-		A state			F		CAN Y			BZ-1		
-		: E		X					A.Y.			S. R.J. W.
				1 W.	N. BAL					2		
	A LA	-			100							
- 			2		2 m			the Cart			1. 1. 1. 1	
- 					1 [B	T	
				1	NO.					A.		

-0 cm 83-1A	83-2A	83-3A	84-1	84-2	85-1	85-2	85-3	86-1	86-2	86-3	86,CC
					THE RUNTER TO THE REPORT	人のアメイトとしていたから、		A A A A A A A A A A A A A A A A A A A			

-0 cm	87-1	87-2	87-3	87-4	87-5	87-6	88-1	88-2	88-3	88-4	88-5	89-1
			151			CO.	Cars.		-		15	
F	- 74			- THE					1996	12.974	575	and the second
L			at 22 m			TO		-	1201	T	27	-
	1000			1 million	Carl I		25	1-	19-20-1	-		
	a 313			-	1	Care and	And in case of			1995-10	The second	
	1.1	14			-	F	and the second		1	See allow		- 4
Г		5.5	Belles.		2		100	and the second	Kar I			
-25		1			Lake-	1		(and	- The second second	and the second	- 4	The first
		P		-				States .	-	1200		
	1942	-		-	199	1792		and the second	South 1			
L		Siz-	ANT OF	a sta		1/0	Contract of	1 and	1. Care	100	Ang	
		1		-	N			1 alter				-
F		1000	-	Constant of		1.10				1371	i de	
	1		-		11/2		A State	exercite h	1	- 4	2	-
	1	-	-	-	The second		-		Acres 1		Same?	
-50	1	1.500	1	1	and the second	100	and the second s	a Tra	and the second		-	-1
			Part and	4		>	and the second		-		-	P
	1		-		State of the state	11				THE START	2	
		Loca	Contraction of the second	-	7		C-	5			P	6
Γ		A COLOR	2-2-2	422	5	30-30	Marrie States					4.5
-			25-10	min -		87,CC	-					P
	Same.	245			10			Exoting and				R
-	E.	des.	The		-		and the	3		-		Mr. V
-75	Con Call	1		Ser la			En .	Part of		in a		
	-				Colores and		6					La
-		-		E e	ALC: NO		1					1
				a financia	1000		and the second s		1 mar			E H
	1	1 and					-	-		1	, ,	3-4
	1200	7	The second				1	- John Star				-a
	Ellan .			A CO	1		- The second	Distant in			and a	m
-		2	Star 12	7 -	-		COSSI	-	~		Contra S	100
_100				- 4			Ne.		and the second	-	1 88 CCI	-
100	1	-	and the second	-	> -		UR-	12 Contract	- 1	-	00,00	
-		700	2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		Con-		Sec. 2			1
		2/	1000	pr -	Ruda		E		-			1
	1 A	and and a	A STATE	IE-SA			2	in the	100	230		-
			-	1	1 and		ent	Carl I	all's		1 1	
	Mr. Time	122/1		-				14	The Part			Constant of
-	19	-	Frank	4			Cal	19 per	-	- Manaka		
105	15 7 2	1	Eal	Elle	1000		10	The state				-
-125	All of		X	17	1		2	-	1			
-	190	-	1500	EA	-		1	dia t				S/A
	E.	-	1 and	A -	1 de		100	Star -		第二十五十		
	Seg/S		23	1	22		Terres		-			1-A
	1000			FT	-		120	-	-	25		
Г	E ASI.	-	-		1		GA		CHERT-			
F	1	192	Parkel .		6		1/2	Ser.				130-3
	and the second	1000	1				and the second	120	and the second second			E Mile
-150				And shows do	And in case of the local division of the loc							12.1

-0 cm ^{93,CC}	94-1	94-2	95-1	95-2	95-3	96-1	96-2	96-3	96-4	96-5	96-6
	E				9534			P			X
25		And a state	Sand S		1	NX I			5-		
-	Y							1	L.		
-			-			-	2 JL	K	the state		
-	2		3	1			1		100	2	
-50								5		9	1
	Dire		1	R							THE OWNER
	1		T'						N	1	No.
	60		1	1 mg		Contraction of the local division of the loc					-
-75			1	r							
-	Z					a X	all and			1000	The second
-						and a		A CONTRACT	-		
-								14		1000 M	16
-											
-100						ALC.			R		
-	The P		ACT.			atta	-	1.	25		
-								12/10			
-	1200					-					
			1 store	7					-		
-125	0		-				AND AND		-		
-	-			5			A STATE			10	
-				or spilling					The second se	1	
			127				1		1		
F		1		1 200							
L-150	-				L				-	-	

97-1	97-2	97-3	97-4	97-5	97-6	97-7	98-1	98-2	98-3	98-4	98-5
- 25 - 25		97-3-A		TTSA	17-61					R	
			H W V			240 CHAS 37	N N	KP K	X		XI
75 - - -	P		NY KY	XX				A	L'L		
	+		A MAN					Z	NATE		IN IN
FN0 Sec	文			Evo Str.	2.40 2.40		T			K	

