6. SITE 575¹

Shipboard Scientific Party²

HOLES 575, 575A, 575B, 575C

Date occupied: 20 April 1982

Date departed: 24 April 1982

Time on site: 3.9 days

Position: 05°51.00'N, 135°02.16'W

Water depth (sea level; corrected m, echo-sounding): 4536

Water depth (rig floor; corrected m, echo-sounding): 4552

Bottom felt (m, drill pipe): 4550

Penetration (m): 575-98.6 575A-208.4 575B-119.0 575C-15.8 Number of cores: 575-11

> 575A-33 575B-14 575C-2

Total length of cored section (m): 575-98.6 575A-114.63 575B-115.73 575C-15.8 Total core recovered (m): 575-99.35 575A-140.534 575B-118.684 575C-15.91

Core recovery (%): 575-100 575A-136⁴ 575B-119⁴ 575C-100

Oldest sediment cored:

Depth sub-bottom (m): 208.4 Nature: Nannofossil ooze Age: earliest Miocene Measured velocity (km/s): 1.6

Basement: Not reached

Principal results: Site 575 (05°51.00'N, 135°02.16'W), in water 4536 m deep, overlies acoustically well stratified sediments at least 0.57 s thick in a region where basement relief is minimal. Seismic records show evidence of considerable erosion throughout the region, and there is a seamount 1000 m high 10 km to the northeast. The operational objective of drilling this site, which was to recover a complete and undisturbed section of Eocene to Quaternary central Pacific sediments, was met only partially because of a lack of time. Hydraulic piston coring was used to drill four holes: 575 (0 to 98.6 m sub-bottom, 11 cores); 575A (93.8 to 208.4 m, 33 cores); 575B (3.3 to 119.0 m, 14 cores); and 575C (0 to 15.8 m, 2 cores).

A nearly complete and undisturbed section from lowest Miocene (22 Ma) to Pleistocene was recovered. The section was divided into a topmost cyclic siliceous calcareous ooze (0 to 32.3 m subbottom) and a lower calcareous ooze chalk (30 to 208.4 m sub-bottom). Centimeter-thick sandy to pebbly turbidite layers, containing mostly sand-sized foraminifers, basalts, and/or volcanic glass, were intercalated throughout the section.

With few exceptions, all major planktonic microfossils are well represented. They allow most early Miocene to Pleistocene biozonal boundaries to be recognized. The exceptions occur in the very compressed upper 30 m of the section, where the zones are difficult to distinguish.

The rates of sediment accumulation are variable but moderate (15.4 to 20 m/m.y.) in the older (12.5 to 22 Ma) part of the cored section and much lower (about 3.6 m/m.y.) and constant in the younger part (0 to 9 Ma). A hiatus, or perhaps a further compression of the depositional record, occupies the interval from 9 to 12.5 Ma.

The changes in natural remanent magnetization (NRM) intensity are correlated with changes in both sedimentation rate and lithology. The values are generally high (on the order of 10^{-6} G or above) in the upper unit (0 to 30 m) and in the brown subunits of the lower calcareous chalk unit. As at other sites, the physical properties are sensitive indicators of changes in lithology, particularly changes in carbonate content. Pore-water chemistry shows trends consistent with the findings at previous sites.

BACKGROUND AND OBJECTIVES

The JOIDES Ocean Paleoenvironment Panel proposed Site 575 as the northernmost in a three-site north-south transect at a latitude of approximately 133°W. Site 575 is on the northern flank of the equatorial high-productivity zone and just south of the Clipperton Fracture Zone. The sedimentary section recovered at Site 575 documents the migration of the site from about 3°S at 39 Ma, across the equatorial high-productivity zone, to its present location at about 5°50'N. Our operational objectives were to recover a complete and undisturbed section as deep as the hydraulic piston core (HPC) allowed, to repeat the hydraulic piston coring to ensure complete recovery, and, if time permitted, to rotary core the rest of the section to basement.

A detailed survey of the area around Site 575 was conducted for the Joint Oceanographic Institutions by the R/V Thomas Washington (Ariadne Leg I). Seabeam bathymetry, as well as digital, single-channel, water, and air gun data were collected. Additional seismic data were collected for the vicinity of Site 575 by Lamont's R/V Conrad (Conrad 15-1) in 1971. The region around Site

¹ Mayer, L., Theyer, F., et al., Init. Repts. DSDP, 85: Washington (U.S. Govt. Printing

Office). ² Larry Mayer (Co-Chief Scientist), Dalhousie University, Halifax, Nova Scotia, Cana-² Larry Mayer (Co-Chief Scientist), Dalhousie University, Halifax, Nova Scotia, Canada; Fritz Theyer (Co-Chief Scientist), Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii (present address: University of Southern California, Los Angeles, California); John A. Barron, U.S. Geological Survey, Menlo Park, California; Dean A. Dunn, University of Rhode Island, Narragansett, Rhode Island (present address: University of Southern Mississippi, Hattiesburg, Mississippi); Tim Handyside, The University, Newcastle upon Tyne, United Kingdom; Scott Hills, Scripps Institution of Oceanography, La Jolla, California; Ian Jarvis, City of London Polytechnic, London, United Kingdom (present address: Kingston Polytechnic, Kingston-upon-Thames, United Kingdom); Catherine A. Nigrini, La Habra Heights, California; Nicklas G. Pisias, Oregon State University, Corvallis, Oregon; Annick Pujos, Université de Bordeaux, Talence, France; Tsunemasa Saito, Yamagata University, Ya-magata, Japan; Paul Stout, Scripps Institution of Oceanography, La Jolla, California; Ellen Thomas, Scripps Institution of Oceanography, La Jolla, California (present address: Lamont-Doherty Geological Observatory, Columbia University, Palisades, New York); Norbert Weinreich, Institut für Geophysik, Ruhr Universität Bochum, Bochum, Federal Republic of Germany; and Roy H. Wilkens, Massachusetts Institute of Technology, Cambridge, Massachu-3 Not including overlap (see Operations).

⁴ Including overlap (see Operations).

575 is characterized by moderate relief, with water depths ranging from 4500 m in the northeastern end of the survey area to approximately 4680 m in the western end (Fig. 1). Ten kilometers northeast of the site, a double-peaked seamount rises 1000 m above the regional mean seafloor depth.

The section is typically 0.5 to 0.6 s thick and seismically well stratified (Fig. 2). There is evidence of erosion throughout the area in both the low-frequency and 3.5kHz records. Some of the erosion can be linked directly to the seamount (moating), but much of it seems to be regional in extent and may be related to the site's proximity to the Clipperton Fracture Zone. The spot selected for coring is one of the few places in the area that has retained the youngest part of the section (Fig. 2). This spot may be protected by the seamount from erosion by regional currents.

The ridges and valleys trend east-west in the eastern end of the area and north-northwest/south-southeast in the western end. The drill site is in a flat, elongated area that trends east-west and overlies a very slight basement depression. Sediment thickness is approximately 0.57 s to acoustic basement (Fig. 2); there is some seismic evidence that the acoustic basement is not basalt. Except for the seamount, basement relief is minimal, with a subdued north-northwest/south-southeast trend.

The closest previously drilled DSDP site is Site 70 (6°20.08'N, 140°21.72'W), which was drilled on Leg 8. Site 70, however, is north of the Clipperton Fracture Zone and is thus probably less like the section at Site 575 than the section at Site 71. At Site 71 (at 4°28.28'N, 140° 18.91'W), 558 m of uppermost Eocene to Quaternary calcareous and siliceous oozes and chalks were recovered. Acoustic basement at Site 71 proved to be indurated chalk and chert.

OPERATIONS

The D/V *Glomar Challenger* arrived in the vicinity of Site 575 at 0000Z on 21 April after completing the 150-mi. steam from Site 574 in 16.5 hr. In transit we collected continuous seismic profiles (air gun and 3.5 kHz), bathymetric, and magnetic data. Because the bathymetric features in the region of the proposed site run roughly northwest-southeast, we planned an approach that took us through a point northeast of the site and from there along a track at right angles to the orientation of

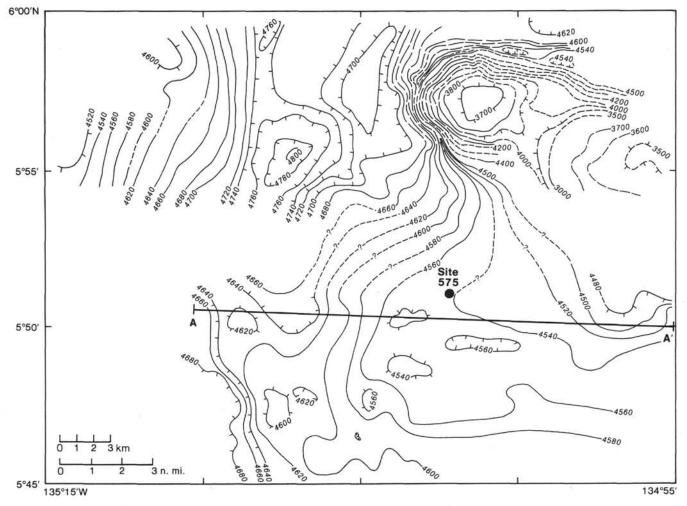


Figure 1. Bathymetry at Site 575 (20-m contour interval; 100-m contour interval for depths <4500 m). Uncorrected water depth (velocity = 1.5 km/s) of site is 4528 m. Corrected water depth is 4536 m. Profile A-A' is the seismic profile shown in Figure 2.

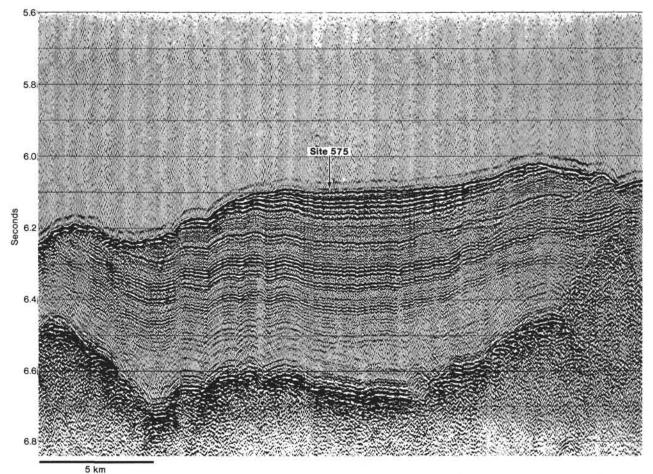


Figure 2. Seismic profile near Site 575 (see Shipley et al., this volume).

the bathymetry. Our target was a small flat region with a water depth of about 4550 m (uncorrected) and approximately 0.58 s of sediment overlying acoustic basement.

West

We entered the area covered by Seabeam bathymetry (from R/V *Thomas Washington*, Ariadne Leg I) at 0010Z on 21 April. As at Site 574, relative bathymetric relationships displayed on the Seabeam chart agreed with our findings, but the absolute depth values disagreed by 10 to 30 m. In general, the Seabeam depths were greater than those measured by the *Challenger's* echo sounder. Nonetheless, we had little difficulty in finding our location with respect to the bathymetry and the seismic section, and at 0104Z we crossed the proposed site. We continued past the site for approximately 1 n. mi., and at 0113Z we turned to return to the proposed site.

An unexpectedly strong current pushed us quite a bit north as we tried to return to the site, but since the flat area we wanted to drill extended to the north we dropped the beacon (at 0140Z, 21 April). We continued to survey for 1 n. mi. past the beacon.

The beacon was acquired quickly, and drill pipe runin began at 0400Z on 21 April. In accordance with our primary directive, we rigged the 9.5-m variable-length HPC (VLHPC) and began coring. The first core established the mudline at 4550 m. We acquired 10 more 9.5-m hydraulic piston cores without difficulty. We exerted more that 40,000 lb. of pullout force on Core 12 (which was at 98.6 m sub-bottom), however, and the quick disconnect parted, leaving the core barrel in the mud.

We realized that we did not have enough time both to hydraulic piston core the upper section twice and to rotary drill to basement. Since a switch to rotary drilling would involve 24 hr. of pipe trip time, we decided not to try to rotary drill to basement but to re-rig the VLHPC with a 5-m barrel to see how deep we could get. To try to reduce the necessary pullout force we decided to wash 5 m after each core and then to pull up 2 m before shooting the next core. By coring in this manner the core barrel would travel through 2 m of wash and 3 m of previously uncored material. The resulting core is, in essence, only 3 m long, but the surface area of the corer exposed to undisturbed sediment is reduced.

We washed down to just above our deepest penetration in Hole 575 and began Hole 575A at 93.8 m subbottom. We collected five 3-m cores. The sediment seemed rather soft, so we tried a full 5-m core for Core 6, but we needed to exert 30,000 lb. of pullout force to retrieve the core barrel, so we went back to the 3-m method. We collected a total of 33 3-m cores and penetrated to a subbottom depth of 208.4 m (Table 1). The 1- to 2-m wash

Table 1. Coring summary, Site 575.

Core	Date (Apr. 1982)	Local time (hr.)	Depth from drill floor (m)	Depth below seafloor (m)	Length cored (m)	Length recovered (m)	Recovery (%)
Hole 57	5						
1	21	0502	4550.2-4557.5	0.0-7.3	7.3	7.36	100 +
2	21	0625	4557.5-4567.0	7.3-16.8	9.5	9.66	100 +
3	21	0735	4567.0-4576.5	16.8-26.3	9.5	9.70	100 +
4	21	0830	4576.5-4585.2	26.3-35.0	8.7	8.72	100 +
5	21	0945	4585.2-4594.7	35.0-44.5	9.5	9.60	100+
6 7	21	1043	4594.7-4604.0	44.5-54.0	9.5	9.53	100+
8	21 21	1143 1311	4604.0-4613.5 4613.5-4623.0	54.0-63.5 63.5-73.0	9.5 9.5	9.62 9.56	100 + 100 +
9	21	1420	4623.0-4630.2	73.0-80.2	7.2	7.22	100+
10	21	1530	4630.2-4639.1	80.2-89.1	8.9	8.91	100 +
11	21	1640	4639.1-4648.6	89.1-98.6	9.5	9.47	99
					98.60	99.35	100
Hole 57	5A						
1	21	2108	4644.0-4649.1	93.8-98.9	5	5.11	100
2	21	2230	4647.4-4652.5	97.2-102.3	5	5.12	100
3	21	2330	4651.3-4655.3	101.1-105.3	5	4.25	85
4	22	0050	4655.4-4660.1	105.2-109.9	5	4.73	95
5	22	0150	4659.2-4664.3	109.0-114.1	5	5.06	100
67	22	0300	4664.3-4669.3	114.1-119.1	5	5.13	100
8	22 22	0400	4668.6-4673.5 4673.3-4676.6	118.4-123.3 123.1-126.4	5	4.90 3.72	98 65
9	22	0610	4675.5-4678.4	125.4-128.2	5	2.92	58
10	22	0720	4677.5-4682.3	127.3-132.1	5	4.78	96
11	22	0820	4680.8-4685.9	130.6-135.7	5	5.05	100
12	22	0920	4685.3-4689.8	135.1-139.6	5	4.45	89
13	22	1030	4689.0-4693.1	138.8-142.9	5	4.11	82
14	22	1130	4692.1-4696.6	141.9-146.4	5	4.50	90
15	22	1305	4694.9-4699.3	146.7-149.1	5	4.36	87
16	22	1420	4698.2-4702.1	148.0-151.9	5	3.94	79
17	22 22	1530	4700.2-4703.9 4702.7-4707.2	150.0-153.7	5 5	3.74 4.48	75 90
18 19	22	1640 1750	4707.0-4711.0	152.5-157.0 156.8-160.8	5	4.48	79
20	22	1906	4711.0-4714.9	160.8-164.7	5	3.91	78
21	22	2025	4714.9-4718.9	164.7-168.7	5	4.00	80
22	22	2135	4718.3-4722.6	168.3-172.4	5	4.32	86
23	22	2245	4722.3-4725.2	172.1-175.0	5	3.91	78
24	23	0005	4724.4-4729.4	174.2-179.2	5	4.99	100
25	23	0059	4727.4-4732.2	177.2-182.0	5	4.83	97
26	23	0205	4730.3-4735.9	180.1-185.7	5	4.76	95
27	23	0310	4735.1-4738.6	184.9-188.4	5	3.56	71
28 29	23	0410	4737.4-4740.8	187.2-190.6	5	3.36	67
30	23 23	0510 0615	4739.9-4743.9 4563.8-4748.1	189.7-193.7 193.6-197.9	5	4.05 4.31	81
31	23	0715	4747.6-4752.0	197.4-201.8	5	4.41	88
32	23	0820	4751.5-4755.3	201.3-205.1	5	3.89	78
33	23	0920	4754.5-4758.6	204.3-208.4	5	4.06	81
					165.00	142.67	136
Hole 57	5B						
1	23	1230	4553.5-4563.0	3.3-12.8	9.5	9.60	100
2	23	1340	4562.2-4571.7	12.0-21.5	9.5	9.52	100
3	23	1450	4571.2-4579.9	21.0-29.7	9.5	8.70	92
4	23	1600	4579.7-4589.3	29.5-39.1	9.5	9.64	100
5	23	1715	4589.2-4598.5	39.0-48.3	9.5	9.30	98
6 7	23	1825	4598.2-4606.2	48.0-56.0	9.5	8.02	84 99
8	23 23	1935 2045	4605.6-4614.9 4614.9-4624.0	55.4-64.7 64.7-73.8	9.5 9.3	9.37 9.14	99
9	23	2200	4624.0-4631.6	73.8-81.4	9.5	7.61	80
10	23	2330	4631.6-4641.2	81.4-91.0	9.5	9.63	100
11	24	0038	4641.1-4649.8	90.9-99.6	9.5	8.69	91
12	24	0145	4649.8-4659.4	99.6-109.2	9.5	9.62	100
13	24	0305	4659.4-4664.3	109.2-114.1	5.0	4.90	98
14	24	0405	4664.3-4669.2	114.1-119.0	5.0	4.94	
					123.80	118.68	119
Hole 57	5C						
1 2	24 24	0715 0850	4549.2-4555.5 4555.5-4565.0	0.0-6.3 6.3-15.8	6.3 9.5	6.39 9.52	100 100
-		0050	4555.5-4505.0	0.5-15.0			
					15.8	15.91	100

Note: All four holes were hydraulic piston cored. Lengths cored and recovered for Holes 575A and 575B include overlap (see Operations).

zone at the top of each core was of course badly disturbed, but the remaining 3 to 4 m were, in general, almost completely undisturbed. For reasons we do not yet understand, starting each core above the bottom of the hole appears to improve core quality. We probably could have gone deeper with the 3-m cores, but we decided not to, because time was running out and we wanted to get cores from overlapping depth intervals in at least the upper 100 m of the section.

At 1700Z on 23 April, we pulled back up to the mudline and started Hole 575B with the 9.5-m VLHPC. We decided to continue to shoot the core from 2 m above the bottom of the hole and proceeded to take 12 7.5-m cores, coring to a sub-bottom depth of 109.2 m. At that depth we switched to the 5-m HPC and took two fulllength 5-m cores. Hole 575B ended at 119.0 m sub-bottom. When we pulled back out to the mudline we took two more 9.5-m cores (Hole 575C) to attempt to retrieve Plio-Pleistocene sediment that was undisturbed and therefore suitable for the study of the site's magnetostratigraphy. This attempt was successful: we recovered two undisturbed cores representing the interval from 0 to 15.8 m sub-bottom. Core 2 of Hole 575C came on deck at 1650Z on 24 April. We had agreed to begin pulling pipe at 1700Z, so this core was the last acquired on Leg 85. The pipe was pulled and the rig floor secured in a record time of 7.5 hr. At 2250Z on 24 April the Glomar Challenger turned toward the setting sun and got under way for an 8-day steam to Hawaii and the conclusion of Leg 85.

LITHOSTRATIGRAPHY

Lithostratigraphic Subdivision

We divided the sediments at Site 575 into two units: a cyclic siliceous calcareous ooze (Unit I) and a calcareous ooze chalk (Unit II). The division into units is based on sediment composition as determined from smear slide observation; a further division into subunits was based on color (Table 2). Thin turbidites of foraminiferal ooze occur throughout the succession.

Table 2. Lithostratigraphy of Site 575.

Unit	Unit sub-bottom depth (m)	Unit depth (Hole-Core-Section, level in cm)
I (cyclic siliceous calcareous ooze)		
A (mottled brown ooze)	0-14.1	575-1-1, 1 to 575-2-5, 75 575B-1-1, 1 to 575B-2-6, 45 575C-1-1, 1 to 575C-2-4, 150
B (brown white ooze)	14.1-25.7	575-2-5, 75 to 575-3-6, 140 575B-2-6, 45 to 575B-4-3, 150 575C-2-4, 150 to 575C-2,CC
C (gray brown ooze)	25.7-32.3	575-3-6, 140 to 575-4-4, 150 575B-4-3, 150 to 575B-5-4, 70
II (calcareous ooze chalk)		
A (pale brown ooze)	32.3-68.5	575-4-4, 150 to 575-8-4, 50 575B-5-4, 70 to 575B-10-2, 30
B (green ooze)	68.5-94.6	575-8-4, 50 to 575-11-4, 100 575A-1-1, 1 to 575A-1,CC 575B-10-2, 30 to 575B-14-2, 150
C (yellow brown ooze)	94.6-136.5	575-11-4, 100 to 575-11,CC 575A-2-2, 20 to 575A-12-1, 150 575B-14-2, 150 to 575B-14,CC
D (varicolored ooze chalk)	136.5-208.4	575A-12-1, 150 to 575A-33,CC

Note: Sub-bottom depths for Subunits IA to IIB are calculated from Hole 575 and for Subunits IIC to IID from Hole 575A only.

Unit I: Cyclic Siliceous Calcareous Ooze (upper Miocene to Pleistocene)

The sediments in Unit I (0 to 32.3 m) contain siliceous and calcareous microfossils, amorphous iron oxides, pyrite, and a relatively large amount of pelagic clay (up to 30%). The high clay content is consistent with the low sediment accumulation rate calculated for the upper 30 m of the site (Table 3). Bioturbation and sediment reworking are extensive, as evidenced by the presence of intense mottling of brownish color and mixtures of biogenic particles of different ages. The calcareous microfossils are intensely fragmented, and many are faint or barely visible under the microscope, characteristics suggestive of extensive dissolution. We divide the cyclic siliceous calcareous ooze unit into Subunits IA (mottled brown ooze), IB (brown and white ooze), and IC (gray brown ooze).

Subunit IA: Mottled Brown Ooze (upper Miocene to Quaternary)

The mottled brown ooze subunit (0 to 14.1 m) is heavily bioturbated, contains abundant burrows (Planolites common), and varies from brownish white (10YR 8/1 to 9/2) through dark grayish brown (10YR 6/2 to 3/2). The darker brown color probably results from the relative abundance of clays and iron oxides (up to 30%). The sediment ranges from clayey siliceous calcareous ooze to siliceous nannofossil and calcareous radiolarian diatom oozes. Microfossil composition varies widely. Nannofossils are rare to abundant (5 to 70%), foraminifers are absent to common (0 to 30%), and radiolarians and diatoms are common (5 to 20%). In terms of particle size, clay is abundant (40 to 75%) and silt and sand are common to abundant (silt, 25 to 40%; and sand, 5 to 40%). This subunit was 2 m thicker in Hole 575C than in Hole 575, probably because recovery in the Hole 575C mudline core was better. This subunit grades down into the brown white ooze.

Subunit IB: Brown and White Ooze (upper Miocene)

The brown white ooze subunit (14.1 to 25.7 m) ranges from very pale brown (10YR 7/3) to white (N9) radiolarian nannofossil to nannofossil oozes, and it contains very little pelagic clay (0 to 1%). Foraminifers are rare (trace to 5%), and nannofossils are common to dominant (14 to 92%). Biogenic silica may comprise up to 35% of the sediment, with radiolarians often more abundant than diatoms. The grain-size distribution is similar to that in the overlying (mottled brown ooze) subunit. This subunit grades down into the gray brown ooze.

Subunit IC: Gray Brown Ooze (upper Miocene)

The gray brown ooze (25.7 to 32.3 m) is a mottled light gray pale brown (2.5Y 7/2, 10YR 7/3) to dark brown (10YR 5/3 to 3/3) clayey radiolarian ooze. Both radiolarians and pelagic clay are abundant (radiolarians, 45%; pelagic clay, 40%), and calcite is common (10%). A layer of volcanic ash occurs at 29.5 m. There is a gradational contact between Subunit IC and the underlying (calcareous ooze chalk) unit.

Unit II: Calcareous Ooze Chalk (lower to upper Miocene)

The calcareous ooze chalk (32.3 to 208.4 m) comprises the remainder of the section drilled at Site 575. It consists of nannofossil oozes, with rare to common siliceous microfossils (0 to 20%) and foraminifers (0 to 20%). The sediments of Unit II contain rare to common sand (3 to 20%), rare to abundant silt (3 to 50%), and abundant to dominant pelagic clay (45 to 90%). Color was used to divide the unit into Subunits IIA (pale brown ooze), IIB (green ooze), IIC (yellow brown ooze), and IID (varicolored ooze chalk). The color changes do not seem to reflect major changes in sediment composition, although the more siliceous layers tend to be darker in color and display more prominent burrow mottling.

Subunit IIA: Pale Brown Ooze (middle to upper Miocene)

The pale brown ooze subunit (32.3 to 68.5 m) is characterized by its uniform very pale brown (10YR 8/3), brown white (10YR 8/1 to 8/2), to white (N9) color, and it is virtually devoid of burrow mottling. This subunit is composed of siliceous nannofossil to nannofossil oozes. In terms of particle size, clay is dominant (80 to 88%), sand is common (9 to 17%), and silt is rare to common (3 to 10%). Nannofossils are abundant (45 to 60%), and radiolarians, diatoms, and foraminifers are rare to common (radiolarians, 4 to 12%; diatoms, 1 to 6%; foraminifers, 2 to 6%). Subunit IIA rests with a very sharp contact on the underlying green subunit. The contact is a prominent color change from very pale brown (10YR 8/2) to light greenish gray (5G 8/1).

Subunit IIB: Green Ooze (lower to middle Miocene)

The green ooze subunit (68.5 to 94.6 m) consists of weakly mottled, greenish white (5G 9/1) to light greenish gray (5GY 7/1 to 8/1) siliceous nannofossil to nannofossil oozes that are similar in composition to those in the overlying subunit. Volcanic debris (particles about 3 mm in diameter) occurs in Cores 575-9 and 575-10, and a pebble of ignimbrite was found in Core 10. The green subunit grades down into the yellow brown subunit.

Subunit IIC: Yellow Brown Ooze (lower Miocene)

The yellow brown ooze subunit (94.6 to 136.5 m) contains yellowish white (2.5Y 8/1 to 8.2) to yellow (5Y 7/ 3), yellow brown (2.5Y 7/4, 10YR 6/4), and very pale brown (10YR 7/3 to 8.4) nannofossil to siliceous nannofossil ooze. The darker yellow brown (10YR 7/4) sediments tend to occur as discrete layers, and they are more bioturbated and richer in biogenic silica (up to 50%). In terms of particle size, sand in this subunit is common (5 to 20%), silt is common to abundant (5 to 50%), and clay is abundant (43 to 85%). Nannofossils are abundant to dominant (50 to 90%), radiolarians are common (3 to 20%), diatoms are rare to common (3 to 10%), and foraminifers are trace to common (>1 to 9%). Pyrite, iron oxides, and pelagic clay are also present in trace amounts. The yellow brown subunit grades down into the varicolored subunit.

Subunit IID: Varicolored Ooze Chalk (lower Miocene)

The varicolored ooze chalk subunit (136.5 to 208.4 m) is composed of yellow white (5Y 8/1), white (N9), pale purple (5P 7/2 to 8/2), gray (N6 to N7), and greenish gray (5G 8/1-9/1 to 5GY 7/1-8/1) foraminiferal nannofossil ooze, nannofossil ooze, and nannofossil chalk. The subunit is characterized by color banding and mottling, with streaks of the darker colors, particularly pale purple (5P 6/1 to 6/2). Between 158 and 178 m sub-bottom, the sediments are more uniform in color (brownish white to very pale brown and greenish white to greenish gray) and less banded and mottled. Sand-sized particles are rare to abundant (1 to 50%) in Subunit IID, silt is common to abundant (5 to 40%), and clay is common to dominant (20 to 90%). Nannofossils are common to dominant (30 to 93%), foraminifers are rare to abundant (2 to 50%), and radiolarians and diatoms occur in amounts from trace to common (radiolarians, <1 to 7%; diatoms, <1 to 7%). Iron oxides are rare to common (1 to 10%), and there are traces of pyrite. The content of biogenic silica decreases gradually from about 10% to 1-2% with increasing depth.

The section below 150 m is characterized by sporadic thin (5 cm or less) beds of chalk. The presence of undisturbed beds of chalk suggests that the chalk ooze variations at the other Leg 85 sites are primary features and not entirely drilling artifacts.

Foraminiferal Turbidites

Beds of foraminiferal sand and ooze are common throughout the succession cored at Site 575 (Fig. 3). These beds vary in thickness from a few millimeters to 45 cm and generally contain a darker colored layer of altered volcanic glass at the base. In general, the basal contacts of the foraminifer-rich turbidites are planar (possibly erosional). At some levels the volcanic glass includes welded aggregates (ignimbrite pebbles) and fragments of basalt up to 1 cm in diameter. Most beds display finingupward sequences, with coarse foraminiferal and volcaniclastic sands at the base grading into fine-grained foraminiferal oozes above.

The foraminiferal assemblages in the turbidites are reworked and contain a benthic fauna that is older and inhabits shallower water than the fauna of the surrounding oozes (Thomas, this volume). These data suggest that the sands were deposited by turbidity currents originating from a topographic high in the immediate area. A seamount 1000 m high and 10 km to the northeast is a potential source region.

The turbidites in the upper part of the succession are generally poorly consolidated and highly porous; they contain more water than the more competent surrounding oozes. The foraminiferal sands toward the base of the cored succession, however, have undergone a high degree of dewatering and contrast with the surrounding oozes by being more indurated. The preferential induration of calcarenites in shallow-water carbonates is well known; it results from grain-size differences and higher permeability.

Carbonate Stratigraphy

Shipboard carbonate bomb analyses were made on sediment from Holes 575, 575A, and 575B at 1.5-m intervals (Fig. 4). The carbonate record for Site 575 is similar to the records for Site 573 and 574; the Pleistocene to upper Miocene section shows cyclic alternations between high-carbonate and low-carbonate intervals, and the lower to middle Miocene section shows relatively constant, high calcium carbonate values (80 to 95%). In the middle part of the lower Miocene, there is a shift from constant carbonate values of about 94% to relatively constant carbonate values of about 86%. This shift coincides with an increase in the proportion of siliceous microfossils.

The sedimentation rate curve for Site 575 reveals a hiatus (see Sediment Accumulation Rates) at a depth of 32 m. This hiatus coincides with an abrupt decrease in the carbonate content of the sediments from 92% (at 33 m) to 10% (at 27 m). Thus, the hiatus may be related to an increase in carbonate dissolution. This depth is also the level at which the sediments change from constant high carbonate values to cyclic high and low carbonate values. Analysis of Site 575 carbonate curves indicates that these data may be correlated with the Neogene carbonate event stratigraphy of the equatorial Pacific.

BIOSTRATIGRAPHY

The sediments recovered at Site 575 represent an almost complete sequence from the lower part of the lower Miocene through the upper Pleistocene (Fig. 5; see also Barron et al., this volume, for an updated version of this biostratigraphic summary). The preservation of the calcareous microfossils is good except in the upper 30 m of Holes 575, 575B, and 575C and in Sections 575A-3,CC, -4,CC and 575B-14,CC, where the planktonic foraminifers and nannofossils are strongly to moderately dissolved. The diatoms and radiolarians are well preserved throughout.

Two sequences can be distinguished. The lower sequence, which extends from the bottom of Hole 575A to the top of Core 4 in Holes 575 and 575B, has a high sedimentation rate (15 to 20 m/m.y.), and all early and middle Miocene zones can be found for each microfossil group studied. The lower/middle Miocene boundary occurs in Sections 575-9,CC and 575B-10,CC, and the middle/upper Miocene boundary lies in Core 4 in both Holes 575 and 575B.

Between Section 575-3,CC and the first section of Core 575-4, in the upper part of Subzone B of the *Coscinodiscus yabei* diatom Zone, there is a hiatus that seems to be comparable to hiatuses found at Sites 573 and 574. The upper sequence, which lies above this hiatus (above 30 m sub-bottom) and extends between the lower part of the upper Miocene and the upper Pleistocene, has a very low rate of sedimentation (3 m/m.y.). The diatom zonation suggests another possible hiatus between the lower-most Pleistocene and the uppermost Pliocene (in Sections 575-1-3 and -4). In both Holes 575 and 575B, there is

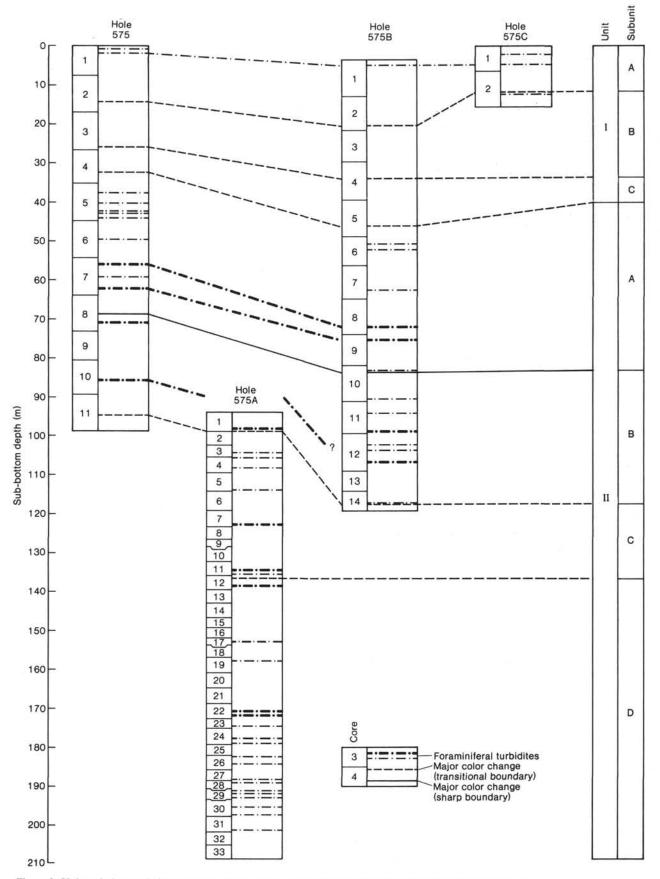


Figure 3. Hole-to-hole correlation of lithostratigraphic boundaries and foraminiferal turbidite layers at Site 575.

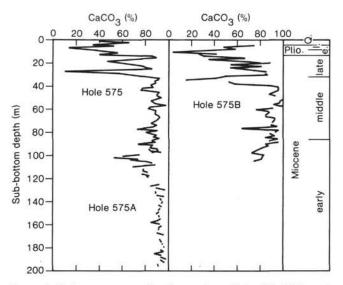


Figure 4. Carbonate content of sediments from Holes 575, 575A, and 575B (as indicated by shipboard analysis).

considerable reworking of radiolarians, diatoms, and nannofossils in Core 1, with lesser amounts in Cores 2 and 3.

Throughout the sequence, there are distinct turbidite layers containing reworked planktonic foraminifers from Zone N12 (for the uppermost layer) through P21 (for the lowest one). The benthic foraminifers in these layers also seem to be reworked; they inhabit shallower water depths than the *in situ* benthic foraminifers.

Planktonic Foraminifers

The sediments recovered from Site 575 yield abundant to common planktonic foraminifers. Preservation is good to moderate throughout the section except for the uppermost 25 m of the sequence (Cores 575-1 through -3) and a short interval in Cores 575A-3 and -4 and the ageequivalent Core 575B-14.

The rich foraminiferal assemblages recovered can readily be assigned to the standard zonal sequence (Fig. 5). The dissolution curve for planktonic foraminifers is shown in Figure 6. The evolution of *Orbulina* from *Praeorbulina*, which could be traced at Site 574, was also recovered at this site; the transition occurs in Cores 575-9 and 575B-10. The N7/N8 zonal boundary was difficult to recognize because of intense dissolution near the boundary. The interval from Zones N6 through N8 appears to be greatly condensed, although both the overlying zones (N9 through N12) and the underlying zones (N4 and N5) are very expanded.

Many discrete layers of foraminiferal sand that exhibit a distinct downward increase in grain size occur throughout the recovered sequence. The turbidite layers that occur in the uppermost part of the sequence (e.g., in Sample 575-1-4, 51-52 cm) contain a mixed assemblage indicative of Zones N12 through NN17. Those in the lower part of the sequence, on the other hand (e.g., Sample 575A-31-3, 70-71 cm), contain a Zone P21 assemblage. In general, the assemblages in a given turbidite layer are a few to several zones older than those in the *in situ* sediments, and the time lapse between the

oldest reworked fossil and the *in situ* assemblage appears to decrease with increasing sub-bottom depth. If this trend continues downward through the uncored sequence at this site, the age of the basement for Site 575 and the turbidite source area is nearly the same.

Nannofossils

The nannofossils at Site 575 are generally common to abundant and well preserved. The placoliths are only moderately well preserved in Sections 575-2,CC and -3,CC. The discoasters and placoliths are highly dissolved in Sections 575-1,CC and 575A-3,CC and -4,CC. Nannofossil species occurrence is shown in Figure 7.

The top of Hole 575 (Section 575-1-1, \approx 15 cm) is upper Pleistocene (Zone CN15), but strong dissolution prevents any age determination for Section 575-1,CC. Sections 575-2,CC through -4,CC correspond to the upper Miocene and the upper part of the middle Miocene. Because of the low rate of sedimentation, not all of Bukry's (1971) nannofossil zones could be found by examining the core-catcher samples.

Zones CN3 and CN4 (which occur from Sections 575-7,CC to 575A-5,CC) could not be separated with precision because *Helicopontosphaera ampliaperta* is absent at Site 575. *Sphenolithus heteromorphus* is common to abundant throughout Zone CN3-4 except in Section 575-7,CC, where it is absent. Section 575-7,CC also contains the first specimen of *Reticulofenestra pseudoumbilica* and the last specimen of *Cyclicargolithus floridanus*, so it can be placed in Zone CN4.

The oldest nannofossils at the site belong to Subzone CN1b. The presence of common specimens of *Cyclicar-golithus abisectus* from Sections 575A-31,CC to -33,CC indicates the proximity of Subzone CN1a.

Radiolarians

Radiolarians in Holes 575 and 575A are common and well preserved, and the oldest among them may be assigned to the upper part of the *Cyrtocapsella tetrapera* Zone. Section 575A-33,CC marks the latest occurrence of *Theocyrtis annosa*. The zonal sequence observed is shown in Figure 5.

There is considerable reworking of Miocene and Oligocene species at the top of the cored sequence (in Core 575-1). Reworking is less common in Cores 575-2 and -3, although minor amounts of reworking occur throughout the recovered material.

The Quaternary and Pliocene zones in the top two cores of Site 575 are either missing or greatly compressed. From about 30 m downhole, all zones are present and apparently complete. Hole 575B contains the same sequence as Hole 575 and terminates in the *Calocycletta costata* Zone.

Diatoms

Diatoms are abundant to few, and preservation is good to moderate in the section cored at Site 575. The sequence is easy to zone from the late Quaternary *Pseudoeunotia doliolus* Zone (Sample 575-1-1, 51-52 cm) to the early Miocene Subzone A of the *Rossiella peleacea* Zone (Section 575C-33,CC) (Fig. 5).

	Hole 575	Hole 575A	Hole 575B	Hole 575C	Age	Foraminifers	Nannofossils	Radiolarians	Diatoms
0-	1			1	Quat.		CN15-13	Collosphaera tuberosa /	- Pseudoeunotia doliolus
	2		1	2	Plio. e. l.	?	?	Spongaster pentas	Nitzschia reinholdii Rhizosolenia praebergon Nitzschia jouseae
	-		2			N17	CN9b	 Stichocorys peregrina Didymocyrtis penultima 	Thalassiosira convexa
20-	3				late			Didymocyrtis	Nitzschia miocenica
			3		-	N16	CN8a	antepenultima	Nitzschia porteri
	4					N15	onou	unoponunna	Coscinodiscus yabei
			4			N14	Caracter Cont	Diartus	Actinocyclus moronensis
40-	5			6		N13	CN6-5b	petterssoni	Craspedodiscus coscinodiscus
			5			N12			Coscinodiscus
	6		6				CN5a		gigas var. diorama
					e			Dorcadospyris	
60-	7		7		middle	N11		alata	Coscinodiscus Iewisianus
1									ic wisiands
	8		8			N10	CN4		
	9		9			N9			B
80-	10					N8			Cestodisus peplum
-	10		10		-				A
~	11	1	11		ø	?		Calocycletta costata	
E 		2			Miocene	1.	22772	ooonana	В
dept		3	12		Mio	?	CN3		Denticulopsis
E E		4	13						nicobarica
-bott		6	14			N7			A
Sub-bottom depth (m) 100 - 150 -		7		1		N6	CN2	Stichocorys wolffii	
		8					GNZ		Triceratium
		10							pileus
140-		12					CN1c		
		13				N5			
		15			early				Craspedodiscus
		16			ea				elegans
		$\frac{17}{18}$							
160-		19							
		20							
		21						Stichocorys delmontensis	
		22					CN1b	Gennontensis	C
		24					CIVID		
180-		25			k - 8				
		26				N4			Rossiella
		27				2.0172.0			paleacea
		29							В
000		30							
200 -		32							
		33					ŀ	Cyrtocapsella tetrapera	
L								Cyntocapsella tetrapera	

Figure 5. Summary of biostratigraphy at Site 575.

The uppermost part of the section (Cores 575-1 to -3) accumulated very slowly (≈ 3 m/m.y.), and further study will be necessary to locate the zonal and subzonal boundaries. Nevertheless, the diatoms suggest a hiatus or an even more greatly compressed section for the uppermost Pliocene to lowermost Quaternary: specimens of *Mesocena quadrangula* (a silicoflagellate that lived from 0.8 to 1.3 Ma) are common in Sample 575-1-3 (51-53 cm), and

specimens of *Thalassiosira convexa* and *Rhizosolenia* praebergonii (which lived from 2.1 to 3.0 Ma) are present in Sample 575-1-4 (47-48 cm).

Core 575B-3 appears to be anomalously thick for the time interval it represents and may contain transported sediment from the nearby seamount. Section 575B-2,CC contains specimens of *Nitzschia miocenica* and is therefore less than 7.3 m.y. old, whereas the assemblages in

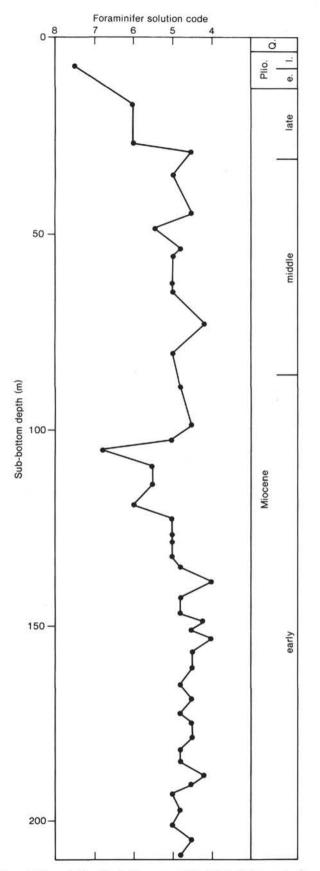


Figure 6. Foraminifer dissolution curve at Site 575 (solution code after Berger and von Rad, 1972).

Section 575B-3, CC are aged more than 8.0 Ma (the date of the last occurrence of *Thalassiosira burckliana*; Barron, this volume). The intervening samples contain latest middle Miocene diatoms, including *Coscinodiscus tuberculatus* and *Denticulopsis punctata* f. *hustedtii*. The relatively high sediment accumulation rate for this core ($\approx 10 \text{ m/m.y.}$) contrasts with the much lower rate for this interval in Hole 575 ($\approx 3 \text{ m/m.y.}$).

The early late Miocene hiatus at Sites 573 and 574 (9.8 to 10.5 Ma) is expanded at Site 575, as indicated by the close proximity of the first appearance datum of *Nitzschia cylindrica* s. ampl. (8.7 Ma) (Section 575-3,CC) and the last appearance datum of *Coscinodiscus vetustissimus* var. *javanica* (10.7 Ma) (Sample 575-4-1, 52-53 cm).

Comparison of the early Miocene diatom sequence within the *Triceratium pileus* and *Craspedodiscus elegans* zones (18.0 to 19.9 Ma) at Site 575 with the equivalent sequence at Site 71 (Barron, 1983) suggests that the Site 575 sequence is more complex. Keller (1981) argues for a short hiatus at 244 m sub-bottom (at the boundary between the *T. pileus* and *C. elegans* zones) at Site 71, so Site 575 may not contain this early Miocene hiatus.

Benthic Foraminifers

Benthic foraminifers are absent or extremely rare in Sections 575-1,CC through -3,CC and rare in the remainder of the section (except in the foraminiferal turbidites). Preservation is moderate to good and does not seem to be linked to the dissolution of planktonic foraminifers. The diversity of the assemblage is high (as many as 52 taxa in counts of 200 specimens), especially in the lower cores (Core 11 and below).

The main faunal constituents are Epistominella exigua, Nuttallides umbonifera, and species of Gyroidinoides, Oridorsalis, Cibicidoides, Stilostomella, and Pleurostomella. Cibicidoides species are much less common than at the other sites, especially below Section 575-8,CC (lower Miocene). Specimens of Stilostomella and Pleurostomella are most abundant below Section 575-10,CC (i.e., in the lower Miocene). Uvigerina graciliformis peaks in abundance in Section 575-4,CC, the first sample below the interval where benthic foraminifers are rare or absent as a result of dissolution, as at Site 574.

Site 575 differs from the other sites in that there are fewer specimens of the common genera (*Epistominella*, *Oridorsalis*, *Cibicidoides*, *Gyroidinoides*), especially in the lower Miocene. No single species or species group takes their place; many rare species are present instead (mainly species of miliolids, nodosariids, pleurostomellids, and agglutinants), with the result that diversity is high, as noted above. The ratio of rectilinear to rotaliid species is higher at Site 575 than at the other sites.

The lower few centimeters of some of the turbidites contain abundant benthic foraminifers. The assemblages in the turbidites are different from those in the normal sediments. Some species are found in both the turbidites and the other sediments, but the specimens of these species are larger in the turbidites. Large, thick-walled species (e.g., Favocassidulina favus, F. subfavus, Globocassidulina subglobosa, Cibicidoides grimsdalei, Stilostomella abyssorum, and Oridorsalis umbonatus) are well

Hole 575	Core-S Hole 575A	Section Hole	Hole	Total abundance	Preservation of coccoliths	Discoaster abundance	1971)	Gephyrocapsa oceanica Ceratolithus cristatus	Discoaster brouweri	Discoaster intercalaris Discoaster quinqueramus	Discoaster berggrenii Discoaster surculus	Discoaster variabilis	Cyclococcolithina macintyrei Sphenolithus abies	Reticulofenestra pseudoumbilica	Discoaster beilus Discoaster loeblichii	Discoaster pseudovariabilis Discoaster variabilis	Coccolithus miopelagicus	Discoaster deflandrei	uiscoaster exilis Helicopontosphaera granulata	Sphenolithus moriformis Cvclicargolithus floridanus	Discoaster dilatus	Discoaster aulakos Discoaster moorei	Sphenolithus heteromorphus	Reticulofenestra aff. gartneri	Triquetrorhabdulus milowi	l riquetrornabdulus carinatus Sphenolithus belemnos	Cyclicargolithus abisectus	Discoaster saundersi Sohenolithus dissimilis	Orthorhabdus serratus	Dictyococcites att. scrippsae Reticulofenestra gartneri s/s
575	5754	575B	575C	R F C A	P of co	L F C A	Zone (Bukry, 1971)	Gephyr	Discoas	Discoas	Discoas	Discoas	Cycloci	Reticul	Discoas	Discoas	Coccol	Discoas	Helicop	Spheno Cvclica	Discoas	Discoas	Spheno	Reticula	Triqueti	Spheno	Cyclica	Discoas	Orthorh	Dictyoc
1-1, 30 1,CC 2,CC 3,CC 4,CC 5,CC 6,CC 7,CC 8,CC 9,CC 10,CC 11,CC	1,CC 2,CC 3,CC 4,CC 5,CC 6,CC 7,CC 8,CC 10,CC 11,CC 12,CC 13,CC 14,CC 15,CC 16,CC 17,CC 18,CC 15,CC 16,CC 19,CC 20,CC 21	1,CC 2,CC 4,CC 4 & 5,CC 6,CC 7,CC 8,CC 9,CC 10,CC 11,CC 12,CC 13,CC 14,CC	1,CC 2,CC	Maragar and sorradian	W W W W W W W W W W W W W W W W W W W	A WAY A A A A A A A A A A A A A A A A A	CN14b ? CN9b CN8a CN6/5b CN5a CN4 CN3/4 CN3 CN2 CN1c CN1b				11	1				11														

Figure 7. Occurrence of nannofossil species at Site 575.

represented in the turbidites. Some species in the turbidites are absent in the normal sediments (e.g., Bulimina jarvisi, Eggerella propinqua, and Uvigerina spinulosa; other species in the turbidites are extremely rare in the normal sediments (e.g., Hanzawaia cushmani and Planulina renzi). Some of the species present in the turbidites are typical of the Oligocene and Eocene.

SEDIMENT ACCUMULATION RATES

The age-depth plot for Site 575 (Fig. 8) indicates long intervals of relatively constant sedimentation rate. During the interval from 12.5 to 22.2 Ma the rates average 18.0 m/m.y. (Table 3). The slightly higher sedimentation rate at the base of the section (20.0 to 22.2 Ma) may reflect the proximity of the site to the equator during this time. This interval is followed by a hiatus that represents about 3.5 m.y. The interval above the hiatus (<9 Ma) is characterized by a low sedimentation rate (3 m/m.y.). For a more detailed discussion see Barron et al. (this volume).

The extrapolated age of surface sediments from the data shown in Figure 8 is 1.6 Ma. This age is much older than the late Pleistocene age estimated for samples tak-

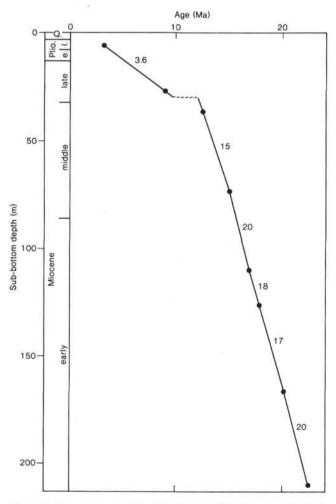
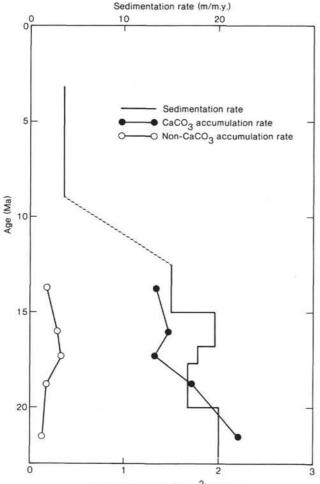


Figure 8. Age versus depth-in-hole based on biodatums at Site 575. Numbers on curve represent sedimentation rate in m/m.y.

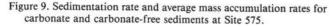
Table 3.	Sedimentation	rates a	and	carbonate	and	noncarbonate	mass
accu	mulation rates a	at Site	575	•			

Sub-bottom depth	Age	Sedimentation rate	Mean dry bulk density	Mean CaCO3	Mean	mass accu ([g/cm ²]/1	mulation rate 000 yr.)
(m)	(Ma)	(m/m.y.)	(g/cm ³)	(%)	Total	CaCO ₃	Non CaCO
6	3.2						
		3.6	0.60	56	0.21	0.12	0.09
27	9.0						
Hiatus							
36	12.5						
		15.4	0.99	88	1.52	1.34	0.18
73	14.9						
		19.5	0.91	83	1.77	1.47	0.30
110	16.8						
		17.8	0.92	80	1.64	1.31	0.33
126	17.7						
		17.4	1.10	91	1.91	1.74	0.17
166	20.0						
		20.0	1.08	94	2.20	2.07	0.13
210	22.2						

en in the upper section of Core 1 of Site 575. Thus, as inferred from the biostratigraphic analysis, a hiatus or an interval of much lower sedimentation rate must occur in the late Pliocene or early Pleistocene.


The mass accumulation rates for total sediment and for the carbonate and noncarbonate sediment fractions were calculated by using shipboard physical property and carbonate bomb analyses (Table 3; Fig. 9). The carbonate accumulation rate closely follows the total sediment mass accumulation rate, whereas the noncarbonate rate shows an inverse relationship. The noncarbonate accumulation rate is low in the highest sedimentation rate interval (between 20.0 and 22.2 Ma, or between 166 and 210 m). Above this interval (i.e., at 14.9 to 17.7 Ma, or 73 to 126 m), the noncarbonate rate increases to the maximum value for Site 575. In general, carbonate accumulation rates decrease with decreasing age. Thus, the relationship between noncarbonate and carbonate deposition at Site 575 is weakly negative (Fig. 10), unlike the relationships at Sites 572, 573, and 574 (see also Theyer et al., this volume).

PHYSICAL PROPERTIES


The physical properties measured for this site included wet-bulk density (ρ_b), porosity, sonic velocity (V_p), formation factor (F), and shear strength. Measurements were made at regular intervals except where the sediment was disturbed. A discussion of the data collection techniques, procedures, and pertinent references is presented in the introductory section before the individual site chapters. All numerical data are listed in the Appendix (this volume).

The data for Site 575 are plotted against depth and presented in Figures 11 to 16. The profile for formation factor (Fig. 14) is incomplete in the intervals from 30 to 60 m and 100 to 160 m and because of a malfunction in the conductivity meter. Overall, formation factor increases slightly with increasing depth, the range of values changing from 1.5-2.0 to 2.0-2.5.

The sonic velocity data (Fig. 13) increase from approximately 1.5 km/s at the top of the hole to 1.6 km/s at 200 m. The anomalously high velocities at depths of 38, 40, 42, 98, 118, 130, 160, and 180 m correspond to the depths of foraminiferal turbidites. The high sonic ve-

Accumulation rates ([g/cm²]/1000 yr.)

locities create contrasts in acoustic impedance that should appear as reflectors in the seismic survey.

The porosity and wet-bulk density data (Figs. 12 and 11) show similar but opposite trends (1.2 to 1.5 g/cm³ and 85 to 65%) for the topmost 30 to 40 m. The interval from 40 to 130 m shows data scattered about comparatively constant mean values (1.6 g/cm³ and 60%, respectively). Below (from 130 to 180 m), wet-bulk density generally increases (from 1.6 to 1.8 g/cm³) and porosity generally decreases (from 65 to 55%). Below 180 m the values remain approximately constant (1.8 g/cm³ and 55%, respectively).

Thermal conductivity increases from about 1.5 mcal/ cm·s·°C at the surface to about 2.7 mcal/cm·s·°C at 25 m. It then remains generally stable until the bottom of the hole, with the exception of high values (up to $3.9 \text{ mcal/cm} \cdot \text{s} \cdot \text{°C}$) at about 175 m (Fig. 15).

A shear strength profile is presented in Figure 16. For the first 80 m, the values gradually increase from 100 to 400 g/cm². From 100 to 190 m the data show considerable scatter around an approximate mean value of 200 g/cm².

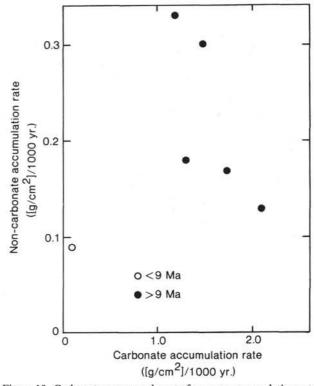


Figure 10. Carbonate versus carbonate-free mass accumulation rates at Site 575.

PALEOMAGNETISM

At Site 575 only a few polarity changes could be distinguished by 180° changes in the measured NRM₀ declinations. These apparent reversals are not accompanied by changes in the sign of the inclination. Conversely, sign changes in the inclination are not accompanied by a 180° rotation of the declination. Holes 575, 575A, 575C, and the top of Hole 575B (Cores 1 to 9) show reasonably strong NRM₀ magnetizations, with means varying from 2.4 to 3.7×10^{-6} G.

Hole 575C was cored because the first two cores in Holes 575 and 575B were badly disturbed. The sequence recovered from Hole 575C is complete and undisturbed down to a depth of 15.8 m below the seafloor, a depth that corresponds to an age of at least 5 m.y. The dark brown sediments recovered from Hole 575C show the strongest magnetization of the sediments recovered at this site, averaging $6.14 (\pm 4.06) \times 10^{-6}$ G. In general, the NRM intensities at this site seem to correlate better with changes in sedimentation rate than with changes in color of sediment.

INTERSTITIAL-WATER CHEMISTRY

The concentration of alkalinity, calcium, and strontium in the interstitial water increases gradually, and after an initial increase the concentration of magnesium decreases gradually (Fig. 17). The profiles for this site are difficult to interpret because we did not drill to basement, and the reactions at greater depths may be affect-

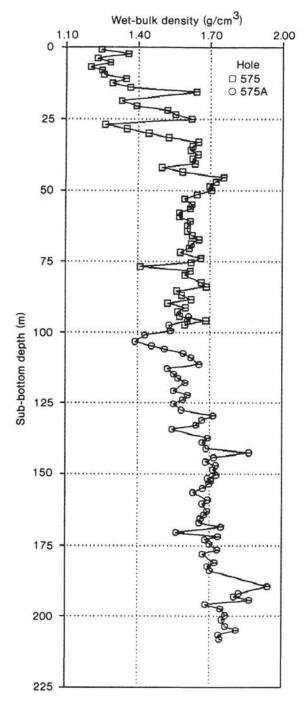


Figure 11. Wet-bulk density versus depth for Site 575.

ing the concentration gradients we observed. The abrupt increase in alkalinity near 180 m sub-bottom coincides with an increase in sediment accumulation rate. The concentration of magnesium and calcium may be influenced by the alteration of basaltic material. This would be indicated if the magnesium concentrations were to decrease and the calcium values were to increase down to basement.

The steady downhole increase in the concentration of strontium indicates calcite recrystallization. The shallow first occurrence of chalk (near 160 m) suggests that the increases in strontium are related to the diagenesis of

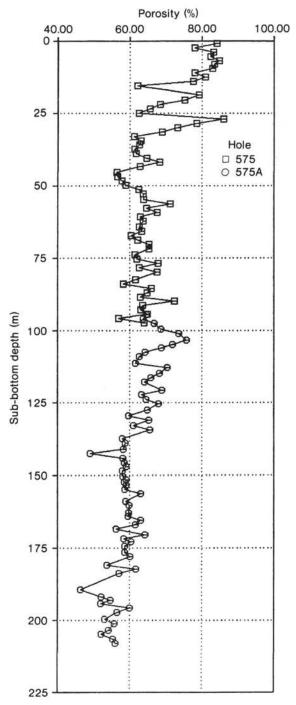


Figure 12. Porosity versus depth for Site 575.

calcite. However, the strontium profile may also be affected by reactions with volcanic material within the sediments or by the alteration of underlying basalt.

SUMMARY AND CONCLUSIONS

Located at almost 6°N and just south of the Clipperton Fracture Zone, Site 575 is the northernmost of three sites that were drilled in a north-south transect of the equatorial sedimentary bulge at approximately 133°W. Lack of time prevented us from drilling to basement. Nevertheless, the objectives of drilling the site, which were

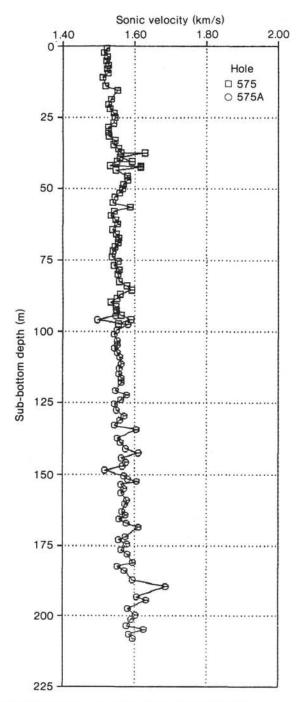


Figure 13. Sonic velocity (Vp) versus depth for Site 575.

to study its paleoenvironment and stratigraphy, were met. Three HPC holes were drilled, which penetrated to a depth of 208.4 m sub-bottom and ended in lowermost Miocene sediment. In total, 374.47 m (the upper 120 m overlap) of sediment were recovered, most of it undisturbed. As expected, the nearly complete Neogene section bears out the tectonic depositional model most widely accepted for the equatorial Pacific high fertility belt (van Andel et al., 1975); the early to middle Miocene (12 to 22 Ma) sediments record a highly productive environment dominated by the equatorial belt, whereas the sediments deposited in the most recent 10 m.y. testify to

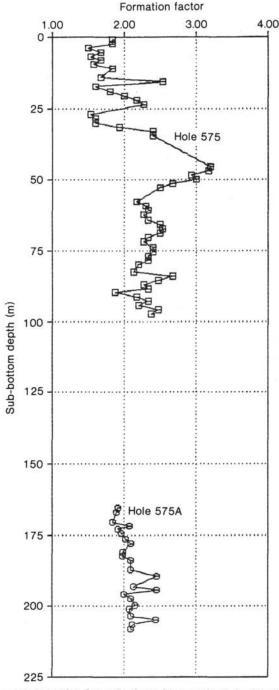


Figure 14. Formation factor (horizontal) versus depth for Site 575.

the site's emergence from beneath this belt and its migration to the north.

Two sedimentary units express the lithostratigraphic makeup of the sequence: an upper Miocene to Quaternary cyclic siliceous calcareous ooze (Unit I, 0 to 32.3 m sub-bottom) and a lower to middle Miocene calcareous ooze chalk (Unit II, 32.3 to 208.4 m). Unit I is characterized by cyclic alternations in carbonate content, whereas Unit II has relatively high (94%), constant carbonate values down to the middle part of the lower Miocene, where there is a slight decrease in the mean carbonate content (to about 86%). Subunits based on color can be

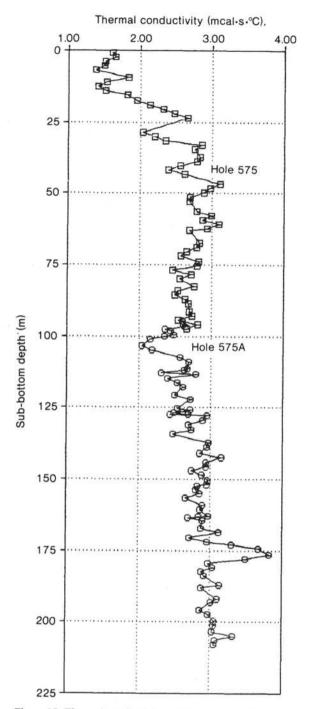


Figure 15. Thermal conductivity versus depth for Site 575.

distinguished in both units, and centimeter-thick sandy to pebbly turbidites are intercalated throughout them. The turbidites are composed primarily of allochthonous foraminifers and volcanic debris.

Except for a hiatus from 9.0 to 12.5 Ma, the sequence was complete from the lowest Miocene (22 Ma) to the upper Pleistocene. All major microfossils occur throughout, although the preservation of calcareous skeletons is poor to almost nil in the upper unit (cyclic siliceous calcareous ooze). The upper unit is characterized not only by calcareous dissolution, but also by microfossil reworking and extreme stratigraphic compression; as a result, some of the biozonal boundaries in these upper Neogene sediments could not be recognized. In contrast, the expanded sequence in Unit II and the excellent preservation of microfossils (except for a very brief interval about 17 Ma) make it one of the most complete lower Neogene sequences available from the equatorial Pacific.

Foraminifers in the sandy to pebbly turbidites indicate grading downsection, with coarser grains lower in the record. The planktonic and benthic foraminifers in these layers are considerably older than those in the *in situ* sediments, and the benthic foraminifers suggests that the layers originated in shallower water.

The sediment accumulation rates confirm the twofold lithostratigraphic subdivision. Moderate and variable rates of 14 to 20 m/m.y. characterize the siliceous nannofossil oozes of Unit II, and a very low but virtually constant rate of 3 m/m.y. generated the siliceous calcareous Unit I. The small fluctuations in rate in the lower unit are not necessarily correlated with the subunits; the maximum rate of 20 m/m.y. prevails between about 22 and 20 Ma. There is a prominent hiatus between about 9.0 and 12.5 Ma.

NRM intensity is correlated with both sedimentation rate and lithology as expressed by color. Consistently high values, on the order of 10^{-6} G or above, are typical of the sediments in Unit I and for most of the browner intervals in Unit II.

Physical properties show strong gradients over the topmost 30 to 40 m, followed by scatter about a constant mean in the subsequent 40 to 130 m sub-bottom; at 130 m a shift toward a new mean begins. In general, the changes in data closely reflect changes in lithology, particularly carbonate content. Sonic velocity (V_p) appears to have fluctuations of greater amplitude than at previous sites, although some of the fluctuations are the result of the turbidites interspersed in the column. The seismic section (the upper 200 m) consists of a zone of strong, closely spaced reflectors, which is underlain by a long interval with very weak, closely spaced reflections. As at most of the Leg 85 sites, the upper, seismically stratified zone correlates extremely well with the interval of largeamplitude, short-wavelength fluctuations in wet-bulk density.

The trends in inorganic pore-water geochemistry are comparable to those at the earlier sites, although the gradients are more compressed and possibly indicative of reactions deeper in the section. The evidence for a hiatus at 9.0 to 12.5 Ma is supported by the geochemical evidence.

In conclusion, the sedimentary column cored at Site 575 records a picture that is comparable to that of the other sites: first, deposition took place from about 22 to 12.5 Ma under the direct influence of the equatorial belt; and then (from 12.5 Ma to the present) the belt's influence waned as the underlying lithosphere migrated toward the northwest.

Finally, there is evidence of multiple episodes of erosion in the seismic records around the site, and this, the proximity of a prominent seamount, and the consistent appearance of brief turbidites (which contain basalt pebbles, volcanic glass, and allochthonous foraminifers) tell

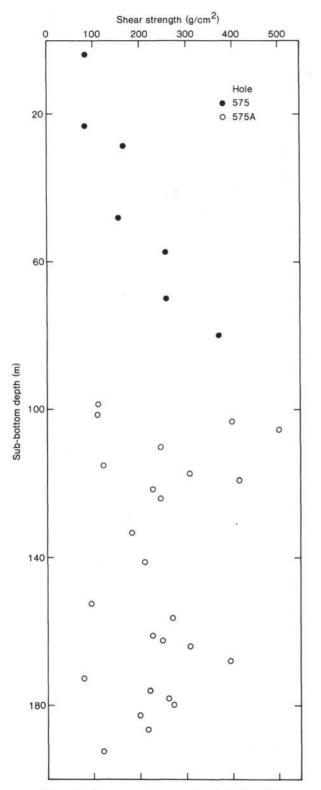


Figure 16. Shear strength versus depth for Site 575.

a story of discrete erosional, redepositional, and possibly volcanic events that punctuate the last 20 m.y. of the region's geological history.

REFERENCES

- Barron, J. A., 1983. Latest Oligocene to early middle Miocene diatom biostratigraphy of the eastern tropical Pacific. Mar. Micropaleontol., 7:487-515.
- Berger, W. H., and von Rad, U., 1972. Cretaceous and Cenozoic sediments from the Atlantic Ocean. In Hayes, D. E., Pimm, A. C., et al., Init Repts. DSDP, 14: Washington (U.S. Govt. Printing Office), 787-954.
- Bukry, D., 1971. Cenozoic calcareous nannofossils from the Pacific Ocean. Trans. San Diego Soc. Nat. Hist., 16:307-327.
- Keller, G., 1981. Miocene biochronology and paleoceanography of the North Pacific. Mar. Micropaleontol., 6:535-551.
- van Andel, T. H., Heath, G. R., and Moore, T. C., Jr., 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean. Mem. Geol. Soc. Am. 143.

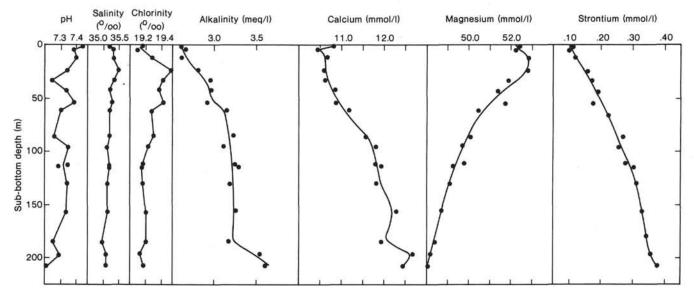


Figure 17. Interstitial-water chemistry, Site 575.

T T T T T T T T T T T T T T T T T T T	RADIOLARIANS	TER	SECTION	METERS	GRAPHIC LITHOLOGY	DISTILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	10	CHARA STISSOJONNEN	ACTER	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
Autouary Carter Cart	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11. jouesee Rh/brooterie Areaterracia/ autoone B // reinhold/ withome B P. doliolur D Areater B // reinhold/	pes. M	ior l	ithologic boundaries a		10YR 4/3-5/3 10YR 4/3-5/3 10YR 8/3 10YR 8/3 10YR 8/3 10YR 8/3-5/3 10YR 6/3-7/3 10YR 6/3-7/3 10YR 6/3-7/3 10YR 6/3-7/4 10YR 8/3 10YR 6/3 10YR 6/3 10YR 8/3 10YR 8/3 10	all-scale	Lan Pilorena				a cheragerina	1	0.5		1. 코프 - 1 - - - - -	10YR 4/2-5/2 10YR 4/2 10YR 4/2 10YR 4/2 10YR 4/2 10YR 4/2 10YR 4/2 5/2 10YR 4/2 8/3 10YR 6/3 8/4 10YR 6/3 8/4 10YR 6/3 10YR 6/3 1	MOTTLED BROWN OOZE (SUBUNIT IA) (7.3–14. Top 6.75 meters consists of mottled, bioturbated, par disturbed elayey #liceous calcereous eoze. Colors from brownish white (10/TR #2/2) to very paie to (10/TR #7/2, 8/4, 8/3), dark brown (10/TR #/2) and bi- ins gray, sprayin brown to dark grayin brown (10/TR BROWN WHITE OOZE (SUBUNIT IB) (14.4–16.5 Sediments change from rad diatom namo ooze to no ooze in bottom sections. Colors become lighter, brow white (10/TR #/1, 9/2) to white (N9). SMEAR SLIDE SUMARY (%): 1, 75 5, 00 Texture: Sand 15 5 2 Sitt 40 55 15 Citay 45 40 83 Composition: Citay 10 2 – Pyrite 00 2 – Pyrite 00 – Carbonate umpec. 25 10 – Carbonate umpec. 25 10 – Foraminifiers Tr Tr 1 Cita, and orossis 15 50 92 Diatom 15 13 5 Sponge spicules Tr Tr 7 FilicoTagelise – 1, 75 cm - 28% 4, 75 cm - 40% 2, 75 cm - 28% 5, 75 cm - 85% 3, 75 cm - 58% 6, 75 cm - 80%

late Mi

N

7

cc

1±÷

10YR 9/1 N9-10YR 9/1 N9-10YR 9/1

10YR 8/2-9/2

SITE 575 HO	DLE	co	RE 3 CORED IN	TERVAL	L 16.8–26.3 m	_	SITE	575	HOL	E	cc	DRE	4 CORED	INTERVAL	26.3-35.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORAMINIFERS	FOSSIL IARACTER SNVIJUARA	SECTION	GRAPHIC LITHOLOGY	SEDIMENTARY SEDIMENTARY SAMPLES	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	CHA	RADIOLARIANS IT SATING	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY SEDIMENTARY SAMPLES SAMPLES		LITHOLOGIC DESCRIPTION
late Micoree N16 CV8a	CHBs D. antepanolinu D. antepanolinu C. yabar subscendes X. miocentes	1 2 3 4 5 6 7 7 7			OVR 8/2 10YR 8/3 BROWN WHITE OOZE (SUBUNIT 1B) (16.8–25.7 m): 10YR 8/3 10YR 8/3 Sediment is a rad nanoo ace. Top 90 om is uniform though Section 2. At 4 meters wallment becomes which GRAV RDOWN OOZE (SUBUNIT 1C) (25.7–26.3 m); Sediment becomes more monthed light grav (2.5Y 7/2, 10YR 8/3 + 7/2 10YR 8/3 + 7/2 Sediment is comes more monthed light grav (2.5Y 7/2, 10YR 8/3 + 7/2 10YR 8/3 + 7/2 Sediment becomes more monthed light grav (2.5Y 7/2, 10YR 8/3 + 7/2 10YR 8/3 + 7/2 Texture: Sediment becomes index monthed light grav (2.5Y 7/2, 2.125 5, 75 10YR 8/3 + 7/2 Texture: Sediment becomes index monthed light grav (2.5Y 7/2, 2.125 5, 75 10YR 8/3 + 7/2 Texture: Sediment becomes index monthed light grav (2.5Y 7/2, 2.125 5, 75 10YR 8/2 + N8 Texture: Sediment becomes index monthed light grav (2.5Y 7/2, Cate manofostils 40 10YR 8/2 Cay T 10YR 8/2 Cay Tr 10YR 8/2 Cay Tr 10YR 8/2 Sponge solalis Tr 10YR 8/2 Sponge solalis Tr 2.3 5 cm = 45% 3, 75 cm = 80% 4, 75 cm = 77% 5, 75 cm = 80% N9 10YR 8/2 10YR 8/3 10YR 8/2 10YR 8/3 10YR 8/2 10YR 8/3		middle Miccene 1 late Miccene		N 14 CV6/58	D. pertension/ D. pertension/ C. yabel substore A Consumedation Activesycius muriconnelitie C. yabel substore A	1 2 3 4 5 6 0 7			· · · · · · · · · · · · · · · · · · ·	10YR 8/3 10YR 9/2 10YR 3/3 10YR 9/2 10YR 3/3 10YR 8/3 ± 10YR 8/3 10YR 8/3 10YR 8/3 10YR 3/3 10YR 3/3 + 5/3 Ash layer 10YR 3/2 + 5/3 10YR 7/1 - 7/2 ± 8/2 10YR 7/1 - 7/2 ± 8/2 10YR 7/1 - 7/2 ± 8/2 10YR 8/1 ± 8/2 10YR 8/1 - 8/2 to NS Volcanic debris 10YR 8/1 - 8/2 10YR 8/1 - 8/2	Carbonate unspec. 6 48 43 Foraminifers - 1 2 Cate. namofossilis 3 25 45 Diatoms 5 7 2 Radiolariana 45 17 7 Sponge spicules 3 1 Tr Silicoflagellates - Tr - Fish remains Tr - - CARBONATE BOMB: - - -

350

SITE 57		HOLE	E		ORE	5	COF	REDI	NTER	VAL	35.0-44.5 m			SITE		но	LE		COR	6	COREC	INTERVA	L 44.5-54.0 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FORAMINIFERS	CHAR	BADIOLAHIANS BADIOLAHIANS	SECTION	METERS	l l	GRAPHIC	C Y C	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		OSSIL RACTO SNUT SNUT SNUT SNUT SNUT SNUT SNUT SNUT	,	SECTION	-	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
					1.0						10YR 8/2-N9	PALE BROWN OOZE (SUBUNIT IIA): Very unitorm siliceous nanno ooze. Varying p white to brownish white (ND-10YR 8/3) to pu (10YR 8/3). Core contains 5 thin foram turbidite layers, all o volcanic debris. SMEAR SLIDE SUMMARY (%):	ale brown						1	土			10YR 8/3 Foram + volcanics	PALE BROWN OOZE (SUBUNIT IIA): Uniform pale brown (10'R 8/3) to white (N9–10'R 8/1, 8/2) namo coze. Thin foram turbidite layers with volcanic debris in Sections 1 and 4. Also, 2 mm, basalt fragment in Section 4. SMEAR SLIDE SUMMARY (%): 4, 20
	N12			3	2				2		10YR 8/2N9 Foram sand with volcanics	4, 30 Composition: Carbonate unspec. 23 Foraminifers 2 Cate, nannofossils 60 Diatoms 6 Radiolarians 9 Scoops spicules Tr Silicoflagellates Tr					dina mana a		2				10YR 8/1N9	Texture: Send 10 Sitt 5 Clay 85 Composition: Carbonate unspec. 22 Foraminifers 6 Cate, nannofossik 65 Diatom 1 Radiolarians 7 Soones trickles Tr
middle Miocene			D. pettersson/ nodiscue		3				1		10YR 8/2-8/1	CARBONATE BOMB: 1, 75 cm = 88% 4, 96 cm = 87% 2, 75 cm = 98% 5, 75 cm = 78% 3, 75 cm = 85% 6, 75 cm = 77%		middle Miccene			an ann	L. 91945 435	3				N9-10YR 8/1	Sponge spicules Tr CARBONATE BOMB: 1, 75 cm = 92%, 4, 75 cm = 93% 2, 75 cm = 91%, 5, 75 cm = 89% 3, 75 cm = 90%, 6, 75 cm = 85%
			C. coscie						<u>G</u>		Foram turbidites? + volcanics 10YR 8/28/1								4	***			Basalt fragment foram volcanics 10YR 8/2N9	
				-	5				6		10YR 8/3 Foram sand Foram + volcanics					CN5a			5				10YR 8/2-N9	
			diorama		5			8"6"6"8		TW	10YR 8/2						-		6			ח שב ח שב ח שב ח	10YR 8/2N9	
	N12		D. alata C. gigas var.	cok	7				Q		Foram + volcanics 10YR 8/2 10YR 8/2-8/1					21N	D. alata	C. rewistance	7				10YR 8/2-N9	

ITE 575 HOLE	CORE 7 CORED INTERVAL	54.0–63.5 m		CORED INTERVAL 63.5-73.0 m	
TIME - FOCK UNIT ZONE FONAMINIFERS FONAMINIFERS MARMOFOSSILLS PLATOMS INTOMS	GRAPHIC State Concernance Stat	LITHOLOGIC DESCRIPTION		PHIC STATES	PTION
niddle Nicerea N11 N11 CN4 D. Alea D. Alea C. Ponicionos		10YR 8/2 PALE BROWN OOZE (SUBUNIT IIA): Uniform paie brown to white rad namo ooze. Slightly darker near summit and base of core. 10YR 8/2-N9 SMEAR SLIDE SUMMARY (%): 4.30 10YR 8/2-N9 SMEAR SLIDE SUMMARY (%): 6.30 10YR 8/2 Texture: Sand Clay 10YR 8/2-N9 Texture: Sand Clay 10YR 8/2-N9 Texture: Sand Clay 10YR 8/2-N9 Sitt 10YR 8/2-N9 Clay 10YR 8/2-N9 Clay 10YR 8/2-N9 Clay 10YR 8/2-N9 Sitt 10YR 8/2-N9 Sitt 10YR 8/2-N9 Sitt 10YR 8/2-N9 3.75 cm = 85% 10YR 8/2-N9 Sitt 10YR 8/2 Sitt 10YR 8/2 Sitt 10YR 8/2-N9 Sitt	NIO OMA Middle Miccone 0.004 0.004 0.004 0.005 0.004 0.004 0.005 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.004 0.006 0.004 0.014	Top 5 m is uniform abused 10YR 8/2-Ng GREEN OOZE (SUBU) Light greenish gray na sharp contact with hi foram layer, Below th 8/1) namo ooze.	75 4, 108 6, 75 M 50 15 515 5 55 80 Tr - 8 Tr 5 7 50 9 35 75 1 2 1 6 Tr 1

352

	HIC	- 5		OSS	TER	Т		9 CORED	П		Π			
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DES	SCRIPTION
middle Miocene		N8 N9 N10	CN3/4	C. costate	C. peplum subtions A C. peplum subtions B	1 2 3 4 5	0.5	┍╴┝╴┝╴┝╴┝╴┝╵┝╵┝╵┝╵┝╵┝╎┝╵┝╵┝╵┝╵┝╵┝╵┝╵┝╵┝╵┝		trans and the second of the second		5G 8/1 5GY 7/1 Very stiff 5GY 7/1 5G 8/1 5G 8/1 5G 8/1 5G 8/1 5G 8/1 5G 8/1 5G 7/1 5G 9/1-8/1 5G 9/1 5G 9/1	gray siliceous name	mottdd, greenish white-light greenish nooze, Voleanie detrii is present is fragments) and Section 3 (a welded tuff MMARY (%): 4,75 17 3 80 Tr 9 9 9 70 3 9 Tr

×	APHIC		F	OSSI		3				Π			
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES		LITHOLOGIC DESC	RIPTION
							1		0		5GY 7/1	ish white (5G 9/1)	eenish gray (5G 8/1, 5GY 7/1) to green siliceous foram nanno ooze. Weekl e brownish colors (10YR 7/1, 8/2)
											Volcanic 3 mm pebble 5G 8/1-9/1	Foram rich interval content, Increasing	at 50 cm, Section 4, having high wate stiffness.
							-				5G 8/1	SMEAR SLIDE SU	MMARY (%): 3, 140
							2		2		5GY 7/1	Texture: Sand Silt Clay	20 10 70
middle Miocene							1		8".8". 		Flow in with 5GY 7/1 + 5G 8/1-9/1	Composition: Pyrite Carbonate unspec. Foraminifers Calc. nannofossils Diatoms	Tr 30 15 40 9
midd									5		5G 9/1 5GY 7/1 5GY 8/1 5GY 7/1	Radiolarians Sponge spicules	6 Tr
ane							3				with N9 flow in 5GY 7/1	2, 75 cm = 90% 3, 75 cm = 87% 4, 75 cm = 93%	5, 75 cm = 86% 6, 75 cm = 88%
early Miocene									- 1 I K	÷.			
										٤	5G 8/1		
							4		+175	00	N9 foram sand 10YR 7/3 filled burrow 10 cm long		
									3	i IW	5G 8/1		
					× ×				75"75"	1	5G 9/1		
			CN3/4		peplum subzone		5		2	1	10YR 7/1 mottles		
					G		6		5"75"75"		5G 9/1-8/1 with 10YR 8/2-8/1 mottles		
		8N		C. costata		cc	-		75."7"	11	5GY 8/1 very stiff 5GY 7/1		

	575		HOL	oss	L	T	DRE 11			Π	89.1-98.6 m	
ž	HJAH		CHA	RAC	TER	-						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURFS	SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5 1.0 1.0		==+/		5G 9/1 Very stiff 5Y 6/2 5Y 7/2	GREEN OOZE (SUBUNIT IIB) (89.1–94.6 m): Nanno ooze. Downcore sequence of subtle color chang from pale greens (SY 47, 72, 56 87) in the upper 5–1 meters, to: YELLOW BROWN OOZE (SUBUNIT IIC) (94.6–98.6 m): Pale clive gray to very pale brown (10YR 8/2) nanno ooze Weak mortiling at color changes. Volcanic chip (2 x 3 mm at 6.75 m.
					C. peptium subzone A	2	********				5G 8/1 N9 5GY 8/1	SMEAR SLIDE SUMMARY (%): 4, 25 Composition: Volcanic glass Tr Pyrite Tr Carbonate unspec. 12 Foraminifers 9 Calc. nanofossilis 70 Diatoms 3 Radiolarians 6
						-			1		5G 8/1 5GY 7/1	Sponge spicules Tr CARBONATE BOMB: 1, 70 cm = 74% 4, 75 cm = 90%
						3			1		5GY 8/1 5GY 7/1 5G 8/1	2, 75 cm = 88% 5, 75 cm = 91% 3, 75 cm = 84% 6, 75 cm = 86%
early Miocene						4			5 2 1		5GY 7/1	
					8				'n		5G 8/1 5Y 8/2 5Y 7/2	
			CN3		3. nicobarica subzone	5			11		5Y 6/2 5Y 8/2 Volcanic chip	
					D.	_					N9 + 5Y 8/2 5Y 8/1	
						6	1.				10YR 8/2	
		NS		C. costata		7			ľ		10YR 8/2	

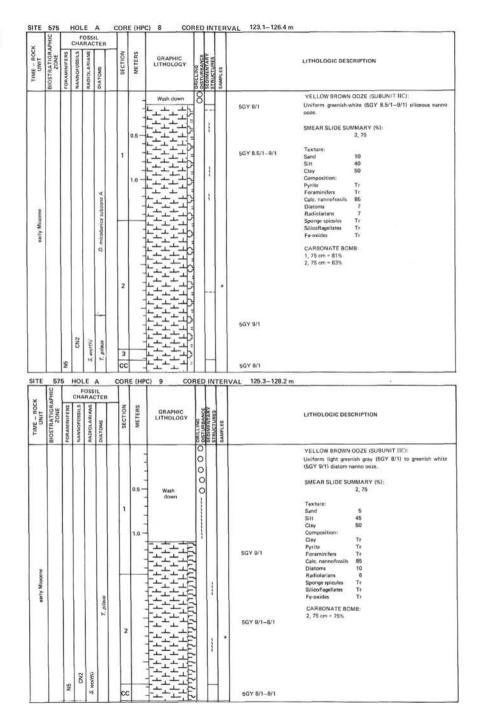
. 1	HIC		F	OSSI RAC	TER										
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCR	IPTIO	N.	
				1				+++++++++++++++++++++++++++++++++++++++	1		1000000000000	GREEN OOZE (SUBL			
							0.5 -				N9-2.5Y 9/2 2.5Y 8/2	Dominantly yellow-w 7/3) nanno ooze. Pa (2.5Y 7/4-2.5Y 6/4) Foran turbidite with and burrows evident, ments.	le yell siliced volcan	ow to ous laye ic chips	pale yellowish brown ins in Cores 3 and 4, in Section 3, Mottle
						1	1 8	+	1 +			SMEAR SLIDE SUM	ARY	\$5:	
							1	+_+_+				Shern Selee Som	1,75	3, 85	3, 120
	- 1		- 11					****				÷	D	м	м
						1.1	1.0 -	1			N9-2.5Y 9/2	Texture: Sand	5	50	10
								エーエート				Silt	25	30	50
												Clay Composition:	70	20	40
- 11					æ		1.1	Void		IW		Clay		÷.	5
- 1					20		-	F TOU T	1	HW-		Micronodules	Tr	-	-
	- 8				nicobarica subzone		1	1				Carbonate unspec. Foraminifers	1	60	10 Tr
	- 1		- 0		15 42			1	1 11		5Y 8/2	Calc. nannofossils	90	40	25
					arric		1	1, 1, 1		1.1		Diatoms	3	-	20
					cop		1.1	+	1 12.			Radiolarians	Б	Te	40
	- 1		- 1		D. ni		-	+			5Y 7/3	Sponge spicules Fe-oxides	Tr	Tr	Tr
	- 1		- 1		2			*	11			Pe-oxides	-	ans	-
						2	1	*		11		CARBONATE BO	MB:		
- 11							1 3	L	1 .			1, 75 cm = 83%			
							1		11			2, 75 cm = 85% 3, 75 cm = 94%			
							-	L+_+_	1		5Y 9/1-9/2	3, 70 cm - 84%			
	- 0							1-1-1-	4 1.						
early Miocene	- 0							┶┶┶╘	1 1						
Mio	- 10							1+++++	11						
÷.	- 4							k+++++	11						
8								L+++++	1 11	1	5Y 9/1-9/2				
- 11								F	1		2.5Y 8/2				
							1.8	1	1 11	11					
									1						
	n a							1-1-1-							
							1.1	1-1-1	1 +						
						1		1-1-1	1 1		2.5Y 7/4				
						3		+-+-	1 4		10212-0122122-010				
							1.1	++++++			Volcanic chips N9 +				
			13					++++++	- P		foram turbidite				
			CN3					+++++++++++++++++++++++++++++++++++++++	1 1.						
			5					1-1/2	1		2.5Y 6/4 + 7/4 mottles				
							1.2	1-10-2	1 11						
								1-2-2							
					11		-	1-1-1-1	1 [7		2.5Y 8/2				
								1-17-2	1 1		2.5Y 9/2-N9				
								1 7-2	1						
						4		1	1						
				costata		12	1 ::	1			0.69/2/4				
		N8		C. 605			-	1	1 1		2.5Y 7/4 2.5Y 9/2-N9				

×	PHIC		СНА	OSS	TER						
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5	Wash down			YELLOW BROWN OOZE (SUBUNIT II(7) (98.9–102.3 m Dominantly brownish white (107K 8/2) nanno ooz with sliphty darker pale brown (107K 7/4) rad nan oozes, Mottling and burrows present. SMEAR SLIDE SUMMARY (%): 3, 75 Texture: Sand 15 Sitr 20 City 65 Composition: Heavy minerals Tr City Tr Pyrite Tr Foraminifers Tr Cale, nannofossils 75 Diatoms 5
early Miocene						2					Radiolations 20 Sponga spicules Tr 10YR 8/2 CARBONATE BOMB 2,75 cm 75% 3,75 cm 60%
			CN3		D. nicobarica subzone B	3					10YR 8/2 10YR 7/4 10YR 8/2 ± 8/3 burrows
		N8		C. costata		4					10YR 8/2

SITE 575 HOLE A CORE (HPC) 3 CORED INTERVAL 101.1-105.3 m

×	PHIC			OSS RAC	TER				Π									
UNIT	BIOSTRATIGRAPHIC ZCNE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPT	FION			
safty Micosne	8008		NANN	HQM	D. nicobarica ubtorne B Diart	2	0.5-		Y and Backing and Land		* * * \$	10YR 8/3 10YR 7/4 10YR 7/4 10YR 7/4 10YR 8/4 Plan0iffes with 10YR 8/1–7/6 10YR 8/4 10YR 8/2 10YR 8/2 10YR 8/2 10YR 8/2	YELLOW BROWN Upper mater continuants of the second	ains vo wed by rann overlie silicec MMAR 2, 35 D 15 40 45 - Tr Tr 75 8 15 Tr 77	ry pale y 50 cr o rad o s brow ius nam Y (%):	brown n of lig oze, lyi nish w	(10YR ght yello ng above hite (10 <i>Planolite</i>	a foram YR 8/2)
		zone indeterminate	CN3	costata	t l	14												
		RM		3		c		キューエー		-								

355


8 2	FOSSIL		GRAPI	41C 3≩ m		LITHOLOGIC DESCRIPTION	ROCK	IGRAPHIC	CHAR	SSIL RACTER	N	RS	GRAPHIC	N A		
UNIT BIOSTRATIGRAPH ZONE FORAMINIFERS	RADIOLARIA DIATOMS	SECTION	GRAPI LITHOL	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		TIME - ROCK UNIT	BIOSTRATIGE	FORAMINIFERS NANNOFOSSILS	FIADIOLARIANS DIATOMS	SECTI	METERS	LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION
					10YR 8/3 10YR 9/2 10YR 8/2-8/3	YELLOW BROWN OOZE (SUBUNIT IIC): Brownish white to very pale brown (10YR 8/2–8/3) rad nance coze. Foram rich layers at 30 cm and 3.3 meters, the latter probably a turbidite. SMEAR SLIDE SUMMARY (%): 2,75						0.5		0 0 0		YELLOW BROWN DOZE ISUBUNIT IICI: Brownish while to very pale brown silicerous nann- color IOYR 872–872, 773. Foram turbidite with v glass fragments at 4,75 meters. SMEAR SLIDE SUMMARY (%): 3,30
			1.0 		10YR 8/3	Texturii: Sand 10 Silt 35 Clay 55 Composition:					ľ	1.0 -			10YR 9/2 with 8/2 May be out	Texture: Sand 5 Sin 50 City 45 Composition:
					10YR 8/2 10YR 9/2	Clay Tr Pyrita Tr Foraminifers Tr Cate. nanofossis 80 Diatoms 7 Radiolarians 13 Fe-oxides Tr					-	11111		1 1	of place 10YR 8/2 10YR 8/3	Pyrite Tr Foreminiters 1 Cale, nannofossils 89 Diatomi 3 Radiolarians 7 Fe-oxides Tr
Beneficial Article	licobarica subzone B	2		51555555555555555555555555555555555555	10YR 8/2-8/3	Feoxides Tr CARBONATE BOMB: 1, 75 cm = 74% 2, 75 cm = 81% 3, 75 cm = 86%	estry Miocene			D. nicobarice subzone B	2				10YR 8/2	CARBONATE BOMB: 2, 75 cm = 89% 3, 75 cm = 89%
	0.0	3			10YR 9/1 10YR 8.5/2						3	11111			* 10YR 9/2-8/2 10YR 7/3	
					10YR 8/2-9/2				CN3	rice subzone A	3	1111		1	10YR 8/2	
2N	C. costata	4 CC			10YR 8/2-9/2				ð	lii D. nicobarica	4	-		-0	10YR 9/2 10YR 9/2 ± 7/3 Foram + volcanics 10YR 9/2	

SITE 575

ITE 57		HOI	055		T		PC) 6 COF		VAL 114.1-119.1			SITE			-	FOS	s
LIME - HOCK UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	ORILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DE	SCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	FORAMINIFERS		RADIOLARIANS	
early Milcone	N	ž		D. nicobarkia subcone A D	2	0.5-		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10YR 8/3-8/2 10YR 7/4 10YR 8/2-8/3 10YR 8/2 10YR 8/3 10YR 8/3 10YR 8/3 10YR 8/3	Brownish white nanno ooze, Stight	UMMARY (%): 1,75 3 45 52 Tr Tr 1 90 3 5 Tr Tr Tr	anto Miccone			CN2	CM2	
	8N	CN2	S. wolffit		4				10YR 8/2					NG NG	90		N. Marrie

	PHIC		CHA	OSS	IL							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
early Milocene	8		CN2	u	0. ni/cobanica tubrone A	1				•	YELLOW BROWN COZE (SUBUNIT IIC): A tilicous mano coze, Color charge from white (JVR 9/2) updivet A white SY 8/1) obvious charge in sediment composition. Foram at 4 meters, with basait and glas fragments nee layer. SMEAR SLIDE SUMMARY (%): 2,75 10YR 9/2 2,75 Clay 0 65 Composition: Pyrite Tr Carbonate unspec. Pyrite Tr Galc nanofossils 87 01 torm 5 Sy 8/1 CARBONATE BONB: 2, 75 cm = 83% SY 8/1 - N9 From turbidies with volcanic glass. SY 8/1	without
		NB		S. walffii		4			-			

357

	HIC			OSS	TER								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
	-					1	0.5	Wash down				Baselt chip 1 x 2 cm	YELLOW BROWN 002E (SUBUNIT IIC): Nanno ooze. Color changes down core from pale vel- low/greenish gray (55 47/156 47/1 to slight) datker greenish gray (56 8/1), N8 mottles occur in places, as well as flatt 5 rmn light gray (N7) bands in Section 2. These are ~50 total, and are evenly distributed. A 3 mm volcanic pebble was near base of Section 3.
							1.0 -		1			5G 9/1-5Y 8/1	
							-						SMEAR SLIDE SUMMARY (%): 2, 75 Texture:
early Miocene						2	111111					5Y 8/1–N9 with faint N7 bands 5 mm	Sand 10 Silt 5 Ctay 85 Composition: Pyrite Tr Carbonate unaper. 12 Foraministres 5 Calc, nannofossis 75 Diatoms 3 Radiolarians 5 Sponge spicules Tr CARBONATE BOME:
			î		T. pileus								2,75 cm = 92% 3,75 cm = 85%
					T. P.	3						5Y B/1 motfied with N9	
							111			m in		Pyrite burrow	
			CN1c	delmontensis								Volcanic pebble 5GY 8/1	
		NS		S. delmo		4							

358

-	HIC		F	OSS	IL	 Τ	(HPC) 11 _ COI	Π					
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTION
serity Miccine		NS	CNIC	S. choimanneaula	7. prieus	1				•	SGY 8/1 SG 9/1 N7 mottling S8 9/1 N7 mottling S8 9/1-8/1 S8 9/1-8/1 S8 9/1-5G 9/1 S9 9/1-5G 9/1 N7 banding (week) N8-58 8/1 N4 burrow fill SG 8/1 craw, volcanic, turblidite S8 9/1 craw,	Weakly mottled, bluish white (58 9) bands in Sections	2,75 20 10 70 Tr 8 6 6 9 12 Tr Tr Tr

SITE 575 HOLE A CORE (HPC) 12 CORED INTERVAL 135.1-139.6 m

×	DIHA			OSS	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	are over	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
								-			YELLOW BROWN OOZE ISUBUNIT IIC) (135,1-138,5 m)
early Milocene					T, pileus		22			and the man and test	135, 1-136, 5m? Varicolored namo coze. The top 2 meters range from greenish white (55 9/1) to light gray (N6, N7) to pal purple (5P 6/2). 5G 8/1 (136, 5-130, 6m); 5P 6/2 Prom 2 to 3.3 meters, colors range from very light gray (N6, N7) to pal (N8) to purplish (5P 6/2) gray nanoo coze with derker light gray (N8, N7) banding. The color become with derker gray (N8) next the base, and is motted. 5G 9/1 (136, 5-130, 6m); 5G 9/1 (136, 5-130, 6m); 5G 9/1 gravity (N6, N7) banding. The color become with derker light gray (N8) next the base, and is motted. 5G 9/1 A 25 cm-thick foram turbidite (with volcanical is at 3. meters. SMEAR SLIDE SUMMARY (%): Sitt 5G 8/1 Status: SMEAR SLIDE SUMMARY (%): Sitt 5G 8/1 Status: SMEAR SLIDE SUMMARY (%): Sitt 5G 8/1 bands Sponge spicules N7 - 5P 6/2 Diatoms 5G 8/1 bands Sponge spicules 5G 8/1 CARBONATE BOMB: 80 Sponge spicules 81 Sponge spicules 82 Sponge spicules 83 Sponge spicules 84 Sponge spicules 85 Sponge spicules 84 Sponge spicules 85 Spinger Spinger Spinger Spinger Spinger Spinger Spinger Spinger Spinger Spinge
				S. chelmontansis	C. elegant		3			D:	Foram + volcanic debris, turbidite 10 10 10 56 9/1 + N8 mortled
		SN	CN1c	R S			c			-	NB

359

IME - ROCK UNIT STRATIGRAI ZONE	FOS	SWO	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	ZONE	CHAP	PADIOLARIANS	SECTION	 GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
aarly Miccente NS		uerrizoiteess C. aligant	2	╎╷┝╒┾╒┝┝┝╞┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝	/ /m n m/ n n	VARICOLORED OOZE/CHALK (SUBUNIT IID): Varicotored nanno ooze. Cotors include greenish gray (ISG 8/1). purplis gray (PN) SMEAR SLIDE SUMMARY (%): 2,75 Varicolored SP 6/2 Sand Clay BP Clay SP 6/2 Sand Carbonate unspec. SP 6/2 Sand SP 6/2 Carbonate unspec. SP 6/2 Composition: Carbonate unspec. SP 6/2 Paraiolarians Spong sploule Tr CARDNATE BOMB: 2, 75 cm = 90% 3, 75 cm = 90% 3, 75 cm = 90% SG 8/1-9/1 SG 8/1-9/1 <td></td> <td></td> <td>NK</td> <td>10</td> <td>& definiontensis C. eligente</td> <td>2</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>North State of the second seco</td> <td>5P 6/2 5G 8/1 5P 6/2 Very stiff 5G 8/2-9/1 5F 6/2 + 5G 8/1 mottled 5G 8/1-9/1 N8 burrow hill N8 fine-grained carbonu 5G 9/1 Pyrite filled 5P 6/2-N8 N8-5F 6/2</td> <td>VARICOLORED OOZE/CHALK (SUBUNIT IID): Nanno ooze. Contains ~1 m of purple (pale) gravite (5P 62) with very pale green/greenith while layers. Below this i.15 m of weakly mottled greenith white/very pale green material grading to a lighter green. Pytrien/lied bur rows and a fine grained carbonate layer present in Section 3. Purplish grav-white at base. SMEAR SLIDE SUMMARY (%): 2.75 Texture: Sand 10 Sitt 5 Clay 85 Composition: Carbonate umpec. 6 Foraminifers 7 Calc. nannofossils 80 Diatom 2 Rediolarism 5 Sponge spicules Tr CARBONATE BOMB: 2.75 cm = 94%</td>			NK	10	& definiontensis C. eligente	2	· · · · · · · · · · · · · · · · · · ·	North State of the second seco	5P 6/2 5G 8/1 5P 6/2 Very stiff 5G 8/2-9/1 5F 6/2 + 5G 8/1 mottled 5G 8/1-9/1 N8 burrow hill N8 fine-grained carbonu 5G 9/1 Pyrite filled 5P 6/2-N8 N8-5F 6/2	VARICOLORED OOZE/CHALK (SUBUNIT IID): Nanno ooze. Contains ~1 m of purple (pale) gravite (5P 62) with very pale green/greenith while layers. Below this i.15 m of weakly mottled greenith white/very pale green material grading to a lighter green. Pytrien/lied bur rows and a fine grained carbonate layer present in Section 3. Purplish grav-white at base. SMEAR SLIDE SUMMARY (%): 2.75 Texture: Sand 10 Sitt 5 Clay 85 Composition: Carbonate umpec. 6 Foraminifers 7 Calc. nannofossils 80 Diatom 2 Rediolarism 5 Sponge spicules Tr CARBONATE BOMB: 2.75 cm = 94%

	PHIC		CHA	OSS	IL	S								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DES	CRIPTION
early Miccene		NS	CN1b	S delmontentet	C. elaparte	2				and and a second of the second		N8 5P 6/2N7 5G 7/1 bends N75P 6/2 N7	Pale purplish to gr green (5G 7/1) bar	2, 120 5 85 40 7 46 2 5 Tr

SITE 575 HOLE A CORE (HPC) 16 CORED INTERVAL 148.0-151.9 m

¥	DHI			RAC	TER							
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
earty Miccene		N5	CNIb	S. definantensis	C. alogana	2			000000			VARICOLORED GOZE/CHALK (SUBUNIT 11D): Varicolored name coze. Very gradual color ching grav-purplish gray (NS-56 6(2), pale green (SC and very light gray (NS). Mottling is very weak to al Sediment contains 3-4% unidentified needle-like par SMEAR SLIDE SUMMARY (SI): 2, 75 Texture: Sand 15 Silit 5 Clay 80 Composition: Pyrise Tr Carbonare unspec. 10 Foraminifers 6 Cole. cannofosula 75 Diatoms 2 Radiolariann 7 Solong spicules Tr Solong spicules Tr

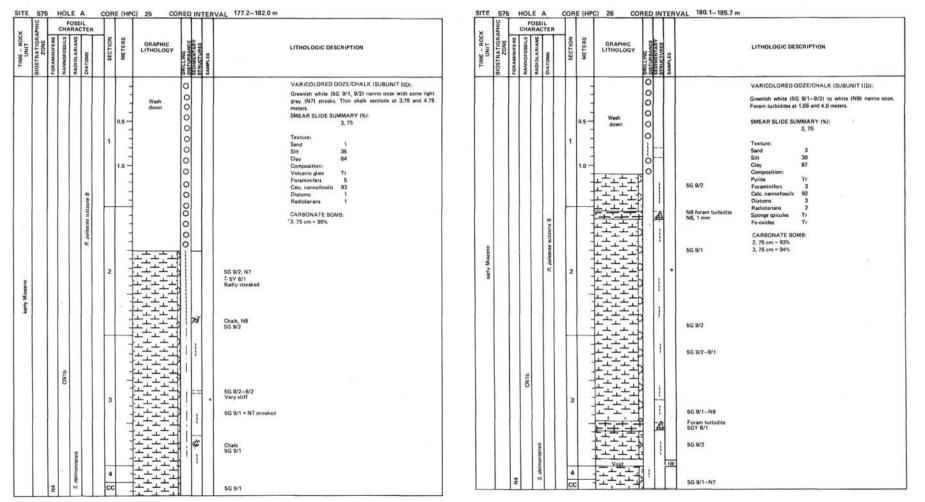
361

	RVAL 150.0-153.7 m	SITE 5		LE A	- 10	TE (Br		TTT	RVAL 152.5-157.0 m	
	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FOSSIL IARACTE SWEINEROUGEN	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION
Math Math <th< td=""><td>VARICOLORED OOZE/CHALK (SUBUNIT HID: Varioolered foram name ooze, including very light gray to pale purple (N8–59–62), gereink white to white (SG 9/1-N9), bluich white to white (SB 9/1-N9) and light gray (N7, N8). Mottles, lamination and bandling are common. Foram turbidite with volcanics in Section 2. SMEAR SLIDE SUMMARY (%): 2, 95 Texture: Sand 25 Sitt 5 Clay 70 Composition: Pyrite Tr Carbonate unspec. 30 Foramin(Fen 21 Calc. namofoxis 40 Diatoms 3 Rediolarians 6 N8–5P 6/2 CARBONATE BOMB: 5G 9/1 -N9 2, 75 cm = 93% N9–5B 9/1 Forams + volcanics SRP 8/2 5B 9/1 N7 N8 SG 7/1 SINCE</td><td>early Miccone</td><td></td><td>C/016</td><td>2</td><td>1.0</td><td>Wash down</td><td>000000</td><td>N9 with N7 mottles N8 N9 SG 101 SG 101 Varicolored N9 with SW 11 SG 9/1-8/1 SG 9/1-8/1 SG 9/1-N9 SY 8/1</td><td>VARICOLORED OOZE/CHALK (SUBUNIT IID): Varicolored nanno ooze with mottling and banding, marily shades of white, including green IGS 04711 and yel (SY 871), and gray (NB-N6). Lamination occurs. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 15 Sitt 5 Clay 80 Composition: Pyrite Tr Carbonate unspec. 17 Foraminifers 9 Cale. nannofossik 65 Diatoms 2 Radiolarians 7 Sponge ripoles Tr Silicoflagellates Tr CARBONATE BOMB: 2, 75 cm = 80%</td></th<>	VARICOLORED OOZE/CHALK (SUBUNIT HID: Varioolered foram name ooze, including very light gray to pale purple (N8–59–62), gereink white to white (SG 9/1-N9), bluich white to white (SB 9/1-N9) and light gray (N7, N8). Mottles, lamination and bandling are common. Foram turbidite with volcanics in Section 2. SMEAR SLIDE SUMMARY (%): 2, 95 Texture: Sand 25 Sitt 5 Clay 70 Composition: Pyrite Tr Carbonate unspec. 30 Foramin(Fen 21 Calc. namofoxis 40 Diatoms 3 Rediolarians 6 N8–5P 6/2 CARBONATE BOMB: 5G 9/1 -N9 2, 75 cm = 93% N9–5B 9/1 Forams + volcanics SRP 8/2 5B 9/1 N7 N8 SG 7/1 SINCE	early Miccone		C/016	2	1.0	Wash down	000000	N9 with N7 mottles N8 N9 SG 101 SG 101 Varicolored N9 with SW 11 SG 9/1-8/1 SG 9/1-8/1 SG 9/1-N9 SY 8/1	VARICOLORED OOZE/CHALK (SUBUNIT IID): Varicolored nanno ooze with mottling and banding, marily shades of white, including green IGS 04711 and yel (SY 871), and gray (NB-N6). Lamination occurs. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 15 Sitt 5 Clay 80 Composition: Pyrite Tr Carbonate unspec. 17 Foraminifers 9 Cale. nannofossik 65 Diatoms 2 Radiolarians 7 Sponge ripoles Tr Silicoflagellates Tr CARBONATE BOMB: 2, 75 cm = 80%

5Y 8/1 5B 8/1 5G 9/1-8/1

362

	PHIC	1	CHA		TER								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
						1	0.5	Wash down	00	O III		5G 8/1-7/1 NG Weakly mottled 5G 7/1 Pyrite filled	VARICOLORED OOZE/CHALK ISUBUNIT IID): Varicolored namo core. Motted pale green (5G 8/1–2/1) to white (5G 9/1), very light gray N8) and yellow white (5Y 9/1) struka. Pyrite filed burrows present (grayib). Foram sigh layer at 70 cm, Section 1. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Send 10 Silt 5 City 85 Composition: Pyrite Tr Carbonate unipec. 12
early Miconne				C. eleptros	2						. 5G 9/1	Foraminifers 7 Calc, nanofossils 75 Diatoms 3 Radiolariant 3 Sponge spicules Tr CARBONATE BOMB: 2, 75 cm = 92% 3, 50 cm = 92%	
		CN1b			3				a and some some two		5G 9/1-8/1 with 5G 8/1 and N7 streaks and mottles		
												Pyrite filled	
				deimantensis		4						5G 7/1 5G 7/1 5G 8/1-9/1	
		NG		S. de		co				1		5G 9/1-9/1	


~	PHIC	Ľ	СН	RA	TER							
TIME - ROCK UNIT BIOSTRATIGRAPHIC		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
early Miocone		N5	CNIb	S. deimontensis	R. palvareo subtone C	2	1.0				Vold SG 9/1-8/1 Varioolored Stressed and motified 1 cm N7-5P 6/2 5G 9/1-8/1 5G 9/1 5G 8/1 5G 8/1 SG 8/1-9/1 Varioolored SG 9/1-N9 N7 motifies SG 8/1-9/1 SG 8/1-9/1	VARICOLOREO DOZE/CHALK (SUBUNIT IID): Varicolored namo soze. Motied and traved gravy (15) pale green to greenia while (15G 8/1-9/1) and purplis gravy (15) 6/2). Colors thange constantly without discert ible contracts. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 9 Sit 6 Clay 85 Composition: Volcanic glass Tr Pyrise Tr Cortboontie unspec. 10 Foraminifer 6 Cale, nonofossili 80 Distorm 1 Radiolariam 3 Sponge spicules Tr CARBONATE ROMB: 2, 76 cm 92%

TE 575 HOLE	OSSIL RACTER	R						1			APHIC	c	FOSS	L TER	Π			П	Τ		
UNIT STRATIGR ZONE AMINIFERS NOFOSSILS	RADIOLARIANS DIATOMS		METERS	GRAPHI	IC DGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRA	FORAMINIFERS	OF OSSILS OLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
erry Micenee 4 Micenee CM15 Me	S. dehrmonitensis Recentis geneticones D. C.		2		┠┾┾╞╞┝┿┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝┝			5G 8/1 5G 8.5/1 5G 9/1-N9 Weakly mottled 5G 9/1 5P 6/2 patches 5G 9/1	VARICOLORED OOZE/CHALK (SUBUNIT IID): Nanno ooze, Light greenish gray (5G 9/1) to greenish white (5G 8.5/1, 5G 9/1) to white (M9). Motied weakly with purplish (5F 9/2) patches near base. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 2 Chay 78 Composition: Pyrite Tr Carbonats unspec. Tr Foraminifers 2 Cate, annotosalis 90 Distorms 4 Radiolarians 4 Sponge spicules Tr SilloofTagellates Tr CARBONATE BOMB: 1,75 cm = 81%. 2,75 cm = 85%	entry Miscente	00		CN1b CN1b A definiontensis	R. paleoce ubrone C	2		· · · · · · · · · · · · · · · · · · ·		S AF	5G 9/2 with purple streaks 102 streaks Form subdite 5G 9/2 Duby pren (6G 3/2) votence glass 5G 9/2 N=5F8 8/2 votence glass 5G 9/2 N=5F8 8/2 1 mm votenics 5G 9/2 Stiff chalkish nodule	VARICOLORED OOZE/CHALK (SUBUNIT IID): Namo ooze. Greenith white (5G 9/2) predominant with occasional purplish (5PB 7/2) to light gray (N7, N colora. Two 25–30 cm foram turbidites with 1–3 cm fragmer of volcanic glass. Glass altered, forams stained, very st ooze to chaik nodule at base of Section 3. SMEAR SLIDE SUMMARY (%): 2,50 2,93 Texture: Sand 7 – Sint 20 – Clay 7 – Sint 20 – Clay 73 – Composition: Volcanic glass = 10 Pyrite 8 Tr Carbonate unspec. Tr – Foraminifers 3 50 Calc. nanofossils B9 38 Diatoms 2 Tr Radiolarians 5 Tr Sponge spicules 1 – Fe-oxide – 2 CARBONATE BOMS: 2,83 cm = 92%

PHIC			F	OSS	TER								
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION	
early Miccine		N	CN1b	S. deimontentat	R. parleaceu subsone C	1 2 CCC	0.5		0 0	S		VARICOLORED ODZE/CHALK (SUBUNT 11D): Greenish white (SG 81–971) motifs namo ober foram turbidite (light gray (NB=N71) at 2.3 m Stiff ooze/chalk section at top of nonwahed sed SMEAR SLIDE SUMMARY (%): 2, 70 Texture: Sand 5 Silt 25 Clay 70 Composition: Pyrite 7 Calc namofoxile 87 Diatoms 3 Radiolariant 3 Sponge spicules Tr CARBONATE BOMB: 1, 75 cm = 92%	neters.

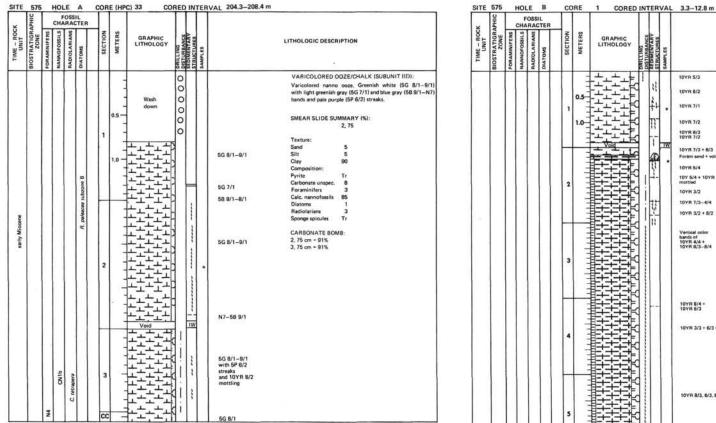
FOSSIL TIME - ROCK UNIT FOR AMINIFERS NANNOFOSSILS RADIOLA RIANS METERS NO GRAPHIC DRILLING DISTURBANCE SEDIMENYARY LITHOLOGIC DESCRIPTION BIOSTRAT SECT SWO 00000 VARICOLORED DOZE/CHALK (SUBUNIT IID): Foram nanno ooze, ranging in color from greenish white (5G 9/1, 9/2, 8.5/1, 8/2) to light gray (N8, N7). Wash down More consolidated foram turbidites in Section 3. Chalk section at 120 cm, Section 2. 0.5 0 SMEAR SLIDE SUMMARY (%): 2, 110 Texture: Sand 10 5G 9/1 with N7 streaks Silt 25 65 Clay Composition: Pyrite Foraminiters Tr 15 aleaceu 5G 9/1-8.5/1 -Cale, nannofossils 83 臣 Diatoms Radiolarians ÷ Sponge spicules Tr N7-5G 9/1 CARBONATE BOMB: ÷ 2, 75 cm = 91% 3, 75 cm = 96% 5G 8.5/1-9/1 1 early Mico 臣 5G 9/1 ÷, ÷ 100 Chalk ++++ Đ 5G 9/2 Foram turbidite (stiffer) N7 南 5G 9/2 はははは + CNIB N8 ī 5G 9/2 \$ NB foram turbidite (stiffer) 111 5G 9/2 ٦, -++++ N7--N8 VIEIS 臣 5G 8/2-9/1 4 CC 5G 8/2-9/1

SITE 575 HOLE A CORE (HPC) 24 CORED INTERVAL 174.2-179.2 m

366

×	APHIC			OSS	TER				Γ			AL 184.9–188.4 m			
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DE	SCRIPT	non
												1	VARICOLORED O	DOZE/C	HALK (SUBUNIT IID):
							0.5	Wash down	0000					to med 5P 8/2)	
							-		0						
						1						5	SMEAR SLIDE SU		
esrly Miocene					R. paleaces subzone 8	2						5G 9/1-9/2 +N7 5P 8/2 +N7	Texture: Sand Site Composition: Yvrits Foraminifers Calc, nannofossits Diatoms Radiolariams Sponge spicules Fe-oxides CARBONATE BOI 3, 75 cm = 95%	3 25 72 Tr 5 90 2 3 Tr -	2, 75 3 25 72 75 90 2 2 2 7 Tr
		NA	CNIB	S. delmontensis		3	-			卒		Foram turbidite 5G 9/2-N8 5P 8/2 ± N8 Net oriented 5G 9/2-N8 Net oriented 5G 9/2-N8 SG 9/2-N8 May be upside down	own		

SITE 575 HOLE A CORE (HPC) 28 CORED INTERVAL 187.2-190.6 m


×	PHIC	3		OSS	TER	1				Γ		П		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
early Miccone		NA	CNIb	deimontenzis	R. pañacea subzone B		2			000000000000000000000000000000000000000			Variacioned ooze 5P 7/2 Bio 8/2 chalk MP Stranks MB 55 5G 9/2 NB with 5G 9/2 + 5P 7/2 strasks 5G 9/2 NB with 5P 7/2—8/2 + NG strasks NB + 5P 7/2 strasks and bands	VARICOLORED OOZE/CHALK (SUBUNIT IID): Varicolored namo ooze. White (N9) color with streaks an bands of purplinh (SP 7/2) greenish white (SG 9/2) and light gray (N6). Grayish white (N8.5) foram turbidite at 20 cm, Section 2 Chalk at base of Section 1. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 1 Sitt 20 Clay 79 Composition: Carbonate unspec. 40 Foraminfers 3 Cale. nanofossils 55 Diatoms 1 Radiolarians 1 CARBONATE BOMB: 2, 75 cm = 96%
_		-		S			CC	-	H. L. L				N9	

TIME - ROCK IUNI BIOSTRATIGRAPHIC 20NE ANAMOROSISILS MAMOROSISILS INAMOROSISILS BIADIOLARIARS BIATOMS	STATUTE GRAPHIC LITHOLOGY Statute Stat	LITHOLOGIC DESCRIPTION	CK	PLOSING TONE	CHAR	BIATOMS BIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
NA NA NA NA CN1b CN1b S. defensionmentic A. publication 8		VARICOLORED DOZE/CHALK (SUBUNIT IID): Varicolored namo doze, White (NB) with tracks of light purple (SP 7/2) and light green (SG 7/2). Foram turbidites at 1.2, 1.8, and 2.7 meters. Top 2 are bediv distorted. SMEAR SLIDE SUMMARY (%): 2, 75 Texture: NB5G 9/1 Smanl 10 SP7/2 streaks Sitt 30 Foram turbidite Clay 60 NB with 5P 7/2 Carbonate unsport Toolanic glass Tr N9 with 5P 7/2 Carbonate unsport Sponge spicules. Tr Foram Diatoms 2 turbidite Radiolarian 2 N9 Sponge spicules. Tr Foram Carbonate unsport N9 With 5P 7/2 J. Z. 75 cm = 94% Streaks 3, 45 cm = 96% N9 N9 N9 N9 N9 N9 N9 N9 N9 N9	anty Miconne		CMIb	S. definiontensis R. pelveces subsorie B	2				VARICOLORED GOZE/CHALK (SUBUNIT IID): Greenish white (6G 9/1-8/1) and light gray (N7-A namo coze. Foram turbidites at 1.5 and 3.25 m, the one at 1.5 chalkish. (Chalk also at 0.7 m.) SMEAR SLIDE SUMMARY (%): 2, 75 Texture: Sand 1 Siit 40 Clamponition: Volcanic glass Tr Pyrite Tr Poraminifers 2 Calc. nanorobuils 93 Diatoms 1 Radiolatians 4 CARBONATE BOMB: 1, 75 cm = 95% 2, 75 cm = 94%

APHIC	L	CHA	OSS	TER				Π				
UNIT UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESC	RIPTION
e le'hy Miozenek	W	Cutb	S. delimantensis	R. parlecere subcone B	2	1.0				5G 9/1-8/1 Varicolored 0027 5G 7/1 band N7 diffue band N7-N8 5G 7/1 5G 9/1 5G 9/1 with 5G 7/1 56 9/1 with 5G 7/1 56 9/2 bands 52 57 8/1 varicolored 5G 7/1 very stiff ooze 5F 9/2 5G 9/1 5G 8/1-9/1 Foram turbidite	Varicolored nanno (5G 9/1-8/1), pal purple gray (5P 6/ and banding are cor	middle of Section 3. MMARY (%): 2,80 10 5 85 Tr 14 7 7 5 2 2 2 7 7 7 7 7 7 7

× 1	VPHIC		CHA	OSS	TER								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	STRUCTURES SAMPLES		LITHOLOGIC DESCI	RIPTION
early Milocene		NA.	CNIb	S. cleimontentis	R. pulleacea subscina B	1 2 3	1.0			and another was in a same server that and a	5G 9/1 5P 6/2–N8 5G 7/1–8/1 5G 8/1–9/1 Varicolored ooze 5G 8/1 5P 6/2–N7 5G 9/1–N7 5G 9/1 5G 9/1	Varicolored name pale purple (5P 6 and greenish gray (m. Pyrits-filled burrow in Core Cetche MMARY (%): 2, 75 5 90 7r 9 2 85 1 3 Tr

SITE 575 HOLE A CORE (HPC) 32 CORED INTERVAL 201.3-205.1 m

TE	575		HOL		В	cc	RE	1 CORED	INTE	ERVA	L 3.3-12.8 m			
	DIHIO	3		RAC	L TER									
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADEDLARIAMS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES		LITHOLOGIC DE	SCRIP	TION
							-	+++++	1		10YR 5/3	MOTTLED BROW		
			1				0.5				10YR 8/2	Colors range from	very p	I brownish siliceous nanno ooze ale brown (10YR 8/3, 8/4, 7/3) 3), yellowish brown (10YR 4/3,
						1	. =			F# .	10YR 7/1	dark - 10YR 4/4), Rare clay was obse	to very	dark grayish brown (10YR 3/2).
							1.0			-	10YR 6/3 10YR 7/2	Also present near 1 sharp base and volc		ection 2 is a foram turbidite with bris.
						\vdash		Vold		1 =	10YB 7/3 + 6/3	SMEAR SLIDE SU		
										Ð,	Foram sand + volcanics			2, 30
										¥.	10YR 5/4 10Y 5/4 + 10YR 7/3	Texture: Sand	15	45
						2	3				mattled	Silt	10	35
							3		1 il		10YR 3/2	Clay Composition:	75	20
										13	10YR 7/3-4/4	Clay	-	4
									111	-	10YR 3/2 + 8/2	Pyrite Carbonate unspec.	1 8	1 30
										8	1000000 34	Foraminifers	8	20
							1	++++++			Vertical color bands of	Calc. nannofossils Diatoms	70	15 9
											bands of 10YR 4/4 + 10YR 8/3-8/4	Radiolarians	8	20
						3						Sponge spicules	Tr	Tr Tr
						1.			111			Silicoflagellates Fe-oxides	1	1
								++++				CARBONATE BO	MR-	
					11	11			111			1, 75 cm = 75%		4, 75 cm = 36%
							-				12.500 million and a	2, 71 cm = 48%		5, 75 cm = 5%
								++++			10YR 8/4 + 10YR 6/3	3, 75 cm = 59%		6, 75 cm = 42%
											100000			
											10YR 3/3 + 6/3 + 8/4			
						4	1		111					
							13							
							1							
						-	1		11		1			
							1 7							
							1 3				10YR 8/3, 6/3, 8/4			
							1							
						5	1							
							1							
							1							
							1							
							-				10YR 4/3 with			
				1.1			1				10YR 4/3 with 10YR 8/3 streaks			
		1	1				-		11		1. 11.00.000			
						1.	1				1			
				1		6	1 3							
			2				-							
		1	(CN112)		1		1 3	E-I-I						
		1			joursee		3							
	1		B. D.		N. jo	7	-				1			
		1	1			co	+ -		111		10YR 4/3			
_	1	1		1		_	-	H		_	r slides and do not always		_	

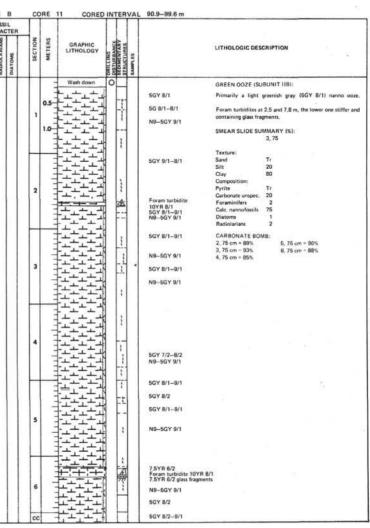
NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundaries are shown but gradational contacts, tanàlicasi cyclicity and ocac-daha istemations are nepresented schematically. Color changes approximate to lithologic changes.

370

LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS	PIADIOLARIANS PADIOLARIANS PIADIOLARIANS PIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY DISTRICTION	SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
MOTTLED BROWN OGZE (SUBUNIT IA) (12.0-15.1 m); Top 3 metrs is a clayry calcareous silicous oore. Colors are metriced way paid before (10YR 6/3, 5/3) and dark grayich becom (10YR 4/2). BROWN WHITE OOZE SUBUNIT IB) (15.1-21.5 m); Below tecliments grade into: metriced are paid before into the anone occe and namo cocte. Colors become lighter studies of brown (10YR 8/3, 8/4) to whistin (10YR 8/2) and light gray (10YR 7/1). 10YR 8/3 10YR 8/3	91N	CNBA/h C. vader interime B					10YR 8/2 Very unitern 10YR 8/3 wire 25 8/2 steeks 2.5Y 8/2–10YR 7/1 10YR 8/3 10YR 7/2 10YR 8/3 10YR 7/2 10YR 8/3 10YR 7/2 10YR 8/3 10YR 8/3	BROWN WHITE OOZE (SUBUNIT IB): Top 8.5 meters are uniform brownish white to light gr (10YR 87, 25Y 87 to 10YR 7/11 ref anno oo Moderately deformed from Sections 2 through 4. Col becomes whiter near base and skit change to nanno oo SMEAR SLIDE SUMMARY (%): 2,20 5, 110 Texture: Sand 15 10 Suit 5 5 Clay 80 85 Clay 80 85

NOTE: Graphic lithologies represent average compositions derived from smear slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundries are shown bit gradiational contacts, small-scale cyclicity and ooze-chaik alternations are represented schematically. Color changes approximate to lithologic changes.

SITE 575


SITE 575 HOLE B	CORE 4 CORED INTERVAL	29.5-39.1 m	SITE 575 HOLE B CORE 5 CORED INTERVAL	39.0–48.3 m
FOSSIF CHARACLER BIOTARAN BIOT	SECTORAL SEC	LITHOLOGIC DESCRIPTION	FOSSIL CHARACTER CHARACTER SUBJUE SUB	LITHOLOGIC DESCRIPTION
N12 CN6/7 Actinocycled mucromaid	Wath down Image: Construction of the construct	IOVYR 8/2 BROWN WHITE OOZE (SUBUNIT IB) (20.5–34.0 m): Uniform white to brownish white namo ooze And YB BKWN White to brownish white namo ooze and the second	N13 COB0 Componentiation contribution COB0 Componentiation COB0 Com0 COB0	10YR 4/4 GRAY BROWN QOZE (SUBUNIT IC) 138.0–40.2 ml: Dark ysilowih brown (10YR 4/4) clawy calcereous rad core. Below Change galdally to: Name coze, with colors going from brown (10YR 5/3) to light brownith gay (10YR 5/2) to brownish white and white (10YR 8/2–N9). 10YR 7/3 SMEAR SLIDE SUMMARY (S): 3,75 6,75 10YR 6/3 Sand 10YR 6/3 Sitt 10YR 6/3 Sand 10YR 6/3 Sand 10YR 6/3 Sitt 10YR 6/3 Clay 10YR 6/3 Clay 10YR 6/3 Clay 10YR 6/3 Songe spicules 10YR 6/2 Sponge spicules 10YR 6/2 Sponge spicules 10YR 8/1 Clay 10YR 8/1 10YR 8/1 10YR 8/2

	HIC			OSSI							IT		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SINOTER	_	SECTION	SY GRA LITHO	HIC LOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
							1					10YR 8/2 10YR 8/4	PALE BROWN OOZE (SUBUNT 11A): Uniform name ooze, colors range from very pale brown (10YR 8/4) to brownish white and white (10YR 8/2–N9). Vertical burrow 30 cm long and 1 cm wide at 1 m.
										××××		10YR 5/3 burrow 1 cm wide 10YR 8/4	Thin foram turbidites at 1.9 and 3.9 m, including volcanic debris. SMEAR SLIDE SUMMARY (%):
							2			æ	-	10YR 8/4—N9 Foram + volcunic	3, 75 Texture: Sand 8 Sitt 7 Clay 85 Composition: Carbonate unapec. 15
												10YR 8/2N9	Foraminifers 2 Cale, nanonolosiis 75 Diatoms 1 Radiclarians 7 Sponge spicules Tr CARBONATE BOMB:
							3			Ģ	- W	Forams + volcanics	2, 75 cm = 96% 3, 75 cm = 92% 4, 75 cm = 88% 5, 75 cm = 94%
							4					10YH 8/2	
					diorama							10YR 8/4	
					Coscinodiscus gigas var. dii		5					2 mm baselt gless chip	
		N12	CN5a		Coscinodisc	сс	6					10YR 8/2-N9 10YR 8/2-N9	

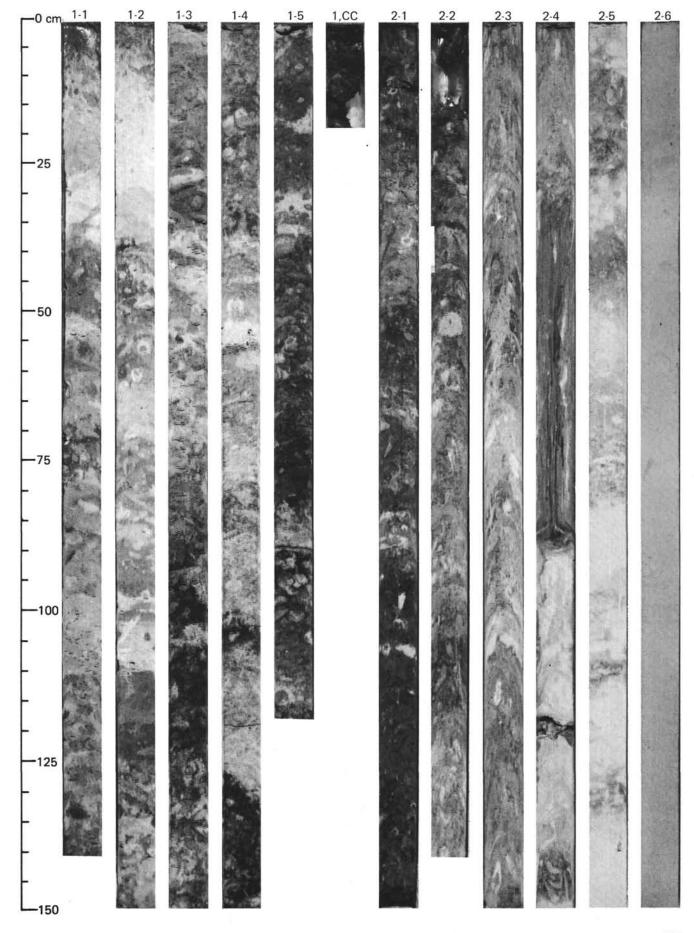
~	PHIC		F	OSS	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
							0.5	Wash down	1		0.7 cm vesicular pebble	PALE BROWN OOZE (SUBUNIT IIA): Uniform brownish white to white (10YR 8/2-N9) nann ooze.
						1	1.0				10Y8 8/2-N9	Foram turbidite with 2 mm baselt chip at 7.2 m. Vesicular pebble 0.7 cm at 0.4 m.
						-	-					SMEAR SLIDE SUMMARY (%): 3, 140
						2						Texture: Sand 7 Silt 3 Clay 90
							1 I I I I				N9	Composition: Carbonate unspec. 12 Foraminiters 2 Calc. namofossits 80
											10YR 8/2	Diatoms 1 Radiolarians 5 Sponge spicules Tr Fish remains Tr
						3	to to to to to					CARBONATE BOMB: 2, 75 cm - 100% 5, 75 cm - 92% 3, 75 cm - 98% 6, 75 cm - 99% 4, 75 cm - 97%
						4					N9-10YR 8/2	
						5				9	Foram turbidite 2 mm basalt chip	
						6						
		N12	CN5a			7					10YR 8/2N9	

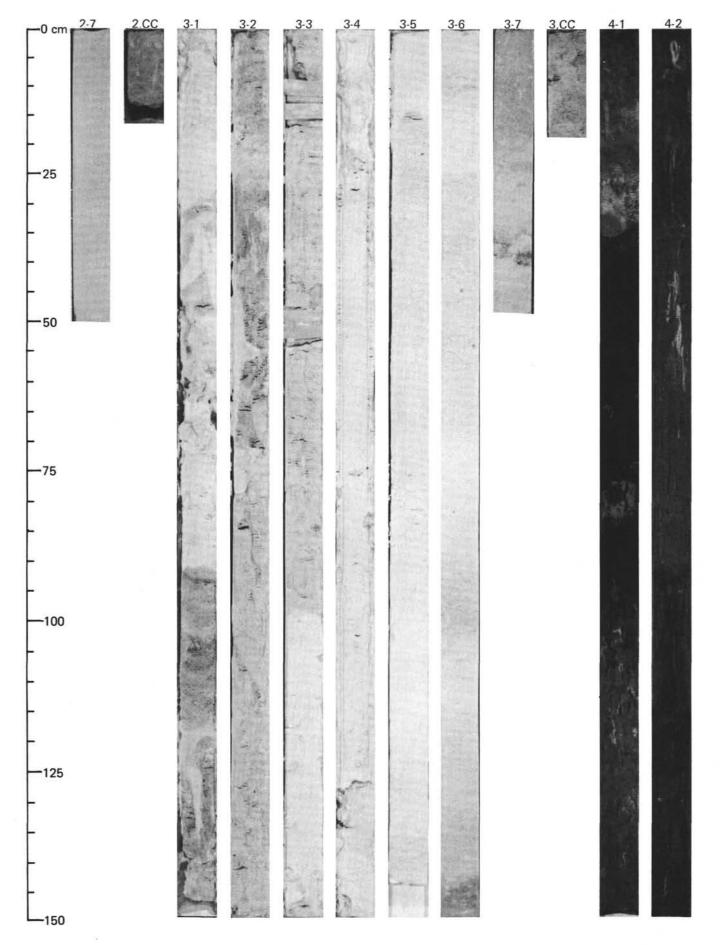
		₽ FOSSIL	
RAPHIC ULTHOLOGY ULTHOLOGY		UICER S GRAPHIC US	LITHOLOGIC DESCRIPTION
	PALE BROWN OOZE (SUBUNIT IIA): 10YR 9/1-9/2 Foram turbidite with 0.1-3.0 mm volcanic debris at		10YR 8/2 PALE BROWN OOZE (SUBUNIT 11A): Uniform brownish white (10YR 8/2, 9/2, 9/1) namo ooz
	3 mm volcanic 7 m. glass fragment SMEAR SLIDE SUMMARY (%): 2, 75		Foram turbidite at 1.3 m. 10YR 9/2 SMEAR SLIDE SUMMARY (%): 3,75
	Texture: Sand 5 Sitr 30		Foram turbidite N9-10YR 9/2 Texture: Sand 2 Sit 20
2 	Clay 65 Composition: 10YR 9/1-9/2 Pyrite Tr Foraminifiers 3 • Celc. nanofostila 86 Diatoms 5 Radiolarians 5		Ciay 78 Composition: Pyrite Tr 10YR 6/2 Foraminifers 5 Calc, nanofostilis 86 Dictoms 5 Radiolarians 3
	Sponge spourse Tr Silicotagellates Tr ToYR 9/1 CARBONATE BOMB:		Sponge spicules Tr Fe-oxides Tr CARBONATE BOMB:
	3, 75 cm = 77% 6, 75 cm = 85% 10YR 9/2 4, 75 cm = 87%		2,75 cm - 85% 3,75 cm = 93% 4,75 cm = 93% 5,75 cm = 91%
	10YR 9/1 volcanic fragment		Faint mottles
	10YR 9/2		
4	10YR 8/2 10YR 9/2		10YR 9/1-9/2
	10YR 9/1		
	10YR 9/1-9/2		10YR 8/1-5/2
5			10YR 9/1-9/2
	olass		10YR 8/2
	10YR 9/1-N9		10YR 9/1-9/2
	1 10YR 9/1-9/2	Void -	10YR 9/1-N9
			10YR 9/1-9/2
	а сонотехнолого и сонотехноло	No. St. GRAPHIC LITHOLOGY Divesting and the second of the second second provide second second provide second second provide second second provide second second provide second second provide second second second provide second second second second provide second second second second second provide second second second second second second provide second	No. State Construction Construction Construction 1 05 1

E 575			B		ORE	10 CORED	T	TT	81.4-91.0 m		 SITE				E B	-	CORI	11 COR
APHI	1	CHAR	ACTER								×	THI			SSIL			1
UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION	TIME ROCK UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIAMS DIATOMS		SECTION	GRAPHIC
					0.5				Void 10YR 9/2 10YR 8/2 10YR 9/2	PALE BROWN OOZE (SUBUNIT IIA) (81.4–83.2 ml Largely a brownish white nanno ooze, GREEN OOZE (SUBUNT IIB) (83.2–910 ml): Some layers richer in biogenic silica at 3.3 m, 4.6 m, an a rad nanno ooze at 5.5 m. These layers are light greenis gray (6GY 7/2). The brownish white to green ooze contact is sharp, locate at 1.8 m.							1 1 1,	S
				3					Foram turbidite 9/1 10YR 8.5/2 10YR 6/3 10YR 8.5/2 Green cozes 5GY 8/1-9/1	Foram turbidites at 1.7 m and 8.75 m. SMEAR SLIDE SUMMARY (%): 3.76 4,77 D M Texture: Sand 3 5 Silt 15 45 Clay 82 50 Composition: Pyrite Tr –							2	
				3					5GY 9/1 5GY 9/1 5GY 8/1 5GY 7/2	Carbonate unspec. 70 35 Foraminifers 5 T Calc. nanofostili 18 10 Diatoms 2 9 Radiotariant 5 45 Sponge spicules Tr Tr Silicontagelitates Tr - CARBONATE BOMB: 2,75 cm = 90% 5,75 cm = 90% 3,75 cm = 90% 6,75 cm = 94%							3	
		· CN4							5GY 8/1 5GY 7/2 5GY 8/1 5GY 9/1 ± 8/1	4, 75 cm = 64%				CN3-4			4	
				5					5GY 9/1-8/1								5	
					2		A		5GY 8/1 Foram turbidite 7.5YR 5/	2			Indeterminate				6 cc	
	BN			17					5GY 9/1-8/1 5GY 8/1 5GY 9/1-8/1									

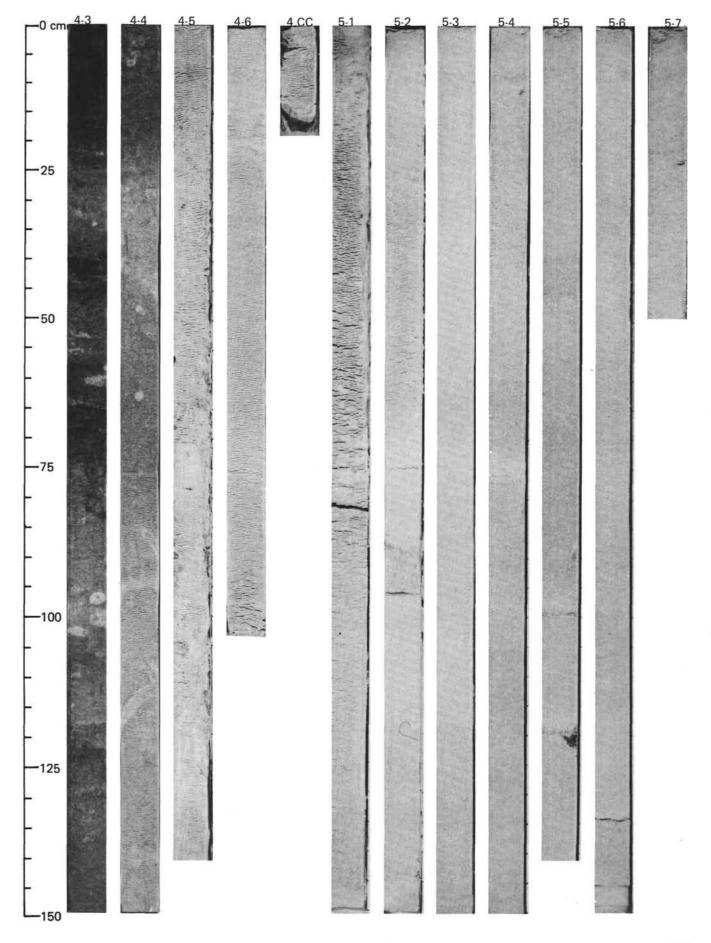
₽ FOSSIL					- 1						1		5	1.1	FOSSIL										
BIOSTRATIGRAPHIC BIOSTRATIGRAPHIC ZONE FORAMINIFERS RADIOLARIANS RADIOLARIANS RADIOLARIANS RADIOLARIANS	R	METERS	L	BRAPHIC THOLOG	Y	DISTURBANCE	60		LITHOLOGIC DES	CRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC	CH	ARACTI	Т	SECTION	GLIT	RAPHIC HOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESC	RIPTION	
0101 10120 10130 1013 1013 1013 1013 101	3	1 0.5 1 1.0 2 3 3 4 5 6	23000000000000000000000000000000000000		~ <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>			5GY 7/7 5GY 8/1-9/1 5GY 8/1-9/1 8GY 8/1-9/1 8GY 8/1-9/1 Ne-5GY 9/1 Foram turbidite 5GY 7/2-8/7 Ne-5GY 9/1 Foram turbidite Ne-5GY 9/1 Foram turbidite Ne-5GY 9/1 Foram turbidite 5GY 7/2-8/2 Ne-5GY 9/1 Foram turbidite 5GY 8/1-9/1 5GY 8/1-9/1 5GY 8/1-9/1 5GY 8/1-9/1 5GY 8/1-9/1 5GY 8/1-9/1 5GY 9/1-9/1	N9) nanno ooze. Be grav, (67 (27-8/5) 7.5 and 9.1 m. Foram turbidites at SMEAR SLIDE SUI Texture: Sand Sitt Clay Composition: Clay Pyrite Carbonate unspec. Foraminiters Cale: nanofostis Diatoms Radiolarians	green gray to white clavey calcareous ra 4, 8, 8, and 2,7 m, AMARY (%): 3, 75 5, 130 D M 1 25 30 50 69 25 - 15 Tr Tr 30 15 5 - 55 5 4 8 4 50 Tr Tr Tr Tr 75 5	gray to yellowish		980	N8 100			2 3 4 CC				* <u>*</u>	5GY -5Y 8/1-0/1 5Y 8/1 5Y 8/2 5Y 8/1 5Y 8/1 5Y 8/1 5Y 7.5/2 5Y 7.5/2 5Y 7.5/2 5Y 8/1-9/1	Texture: Sand Sitt Clay Composition: Clay Carbonate unspec. Foraminifers Calic, nannofossils Diatoms Radiolarians	white to lig WAARY (%): 2,60 3,100 D M 2 25 20 50 78 25 - 5 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 7	

1 1	~	VPHIC			OSS RAC	TER	3				ITT		
1 1	TINU	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	ЦТНО	LOGIC DESCRIPTION
3				CN3		×		2		┍╵╘╵┢╵┝╵╘╵╘╵┝╵┝╵┝╵┝╵┝╵╘╵╘╵╘╵╘╵┝╵┝╵╘╵┝╵┝╵┝╵┝		G remi to 2.5 Y PLL1 (117,1 13,1 m 2.5Y 9/1 3.1 m 2.5Y 9/1 3.1 m 2.5Y 8/2 Textur 2.5Y 8/2 Clay Prite Carbon 2.5Y 8/2 Clay Prite Carbon Sab	th white to vellowish white and vellow (§Y 9/ 77 /20 ± 25 /7 /41 uisceus, namo ozes. CW BROWN 002E (SUBUNIT 11C) −1190 m): of very pale brown (10Y 8 //4) usanto rad ozes a and 4.2 m, and 2.8 m, Foram turbidite at 2.9 m R SLIDE SUMMARY (¥G): 2, 75 3,7 D M **: 3 2,5 5 50 72 2,5 osition: – 5 Tr Tr aste urspec. 10 20 initiefen 5 50 expoulse Tr Tr des Tr Tr des Tr Tr ONATE BOM8: m = 91%

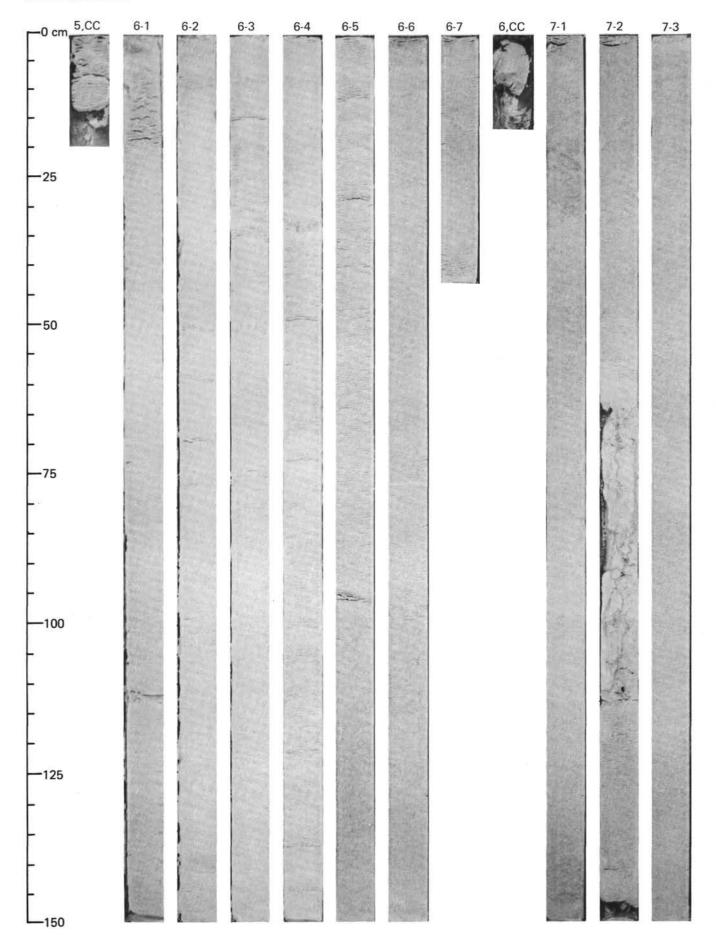

USA SOUTIENT NUMBER N	APH		-	HAI	-	L TER										
1 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 1 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 1 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 1 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 10/17 8/7 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 10/17 8/7 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 10/17 8/7 10/17 8/7 Mottled clayer silicours calcerous oo rowd, bioturbated, Brownish colors ta 10/17 8/7 10/17 8/7 10/17 8/7 Sections 2 and 4 contain foram turbidition oo romparison with first hole, this core of upermost sediment. 10/17 8/7 10/17 8/7 Sections 2 and 4 contain foram turbidition oo romparison with first hole, this core of upermost sediment. 10/17 8/7 10/17 8/7 Sections 2 and 4 contain foram turbidition oo romparison with first hole, this core of upermost sediment. 10/17 8/7 10/17 8/7 10/17 8/7 10/17 8/7 10/17 8/7 10/18 8/7 10/17 8/7 10/18 11	TIME - ROC UNIT BIOSTRATIGR ZONE	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DES	CRIPT	ION	
V 000000000000000000000000000000000000						subzone A	2				•	10/78 7/3 10/78 8/3 10/78 8/3 10/78 8/4 10/78 6/4 1 months 10/78 6/3 1 months 10/78 3/2-8/3 1 months 10/78 3/2-8/3 1 months 10/78 6/3 1 months 10/78 8/3 1 months	Mottled clayer proved, Bioturbater (NDW B/I) to w pale brown (6/3), (10YR 8/4, 5/4), (10YR 4/2, 3/3, 3/ Sections 2 and 4, on comparison wit of uppermost sedin SMEAR SLIDE SU Texture: Sand Silt Composition: Clay Composition: Clay Composition: Clay Composition: Clay Composition: Clay Composition: Clay Composition: Clay Composition: Clay Composition: Clay Carbonate unspec. Foraminfers Cale.nanofossils Diatom Radiclarians Sponge spicules Fe-oxides	iliceous d, Brow rry pail browwand di 2). Plar contain h first nent. 1, 5 20 30 50 15 5 5 5 5 20 10 Tr	catareous oczes; haavily b multic colors ranging from whi is brown (10YR 7/3, 5/3, 7/6 n (10YR 5/3), veltowich brow no/fize present. • foram turbidites deposits, Ban hole, this core contains 2 m me ty (%): 1, 100 10 10 10 10 10 10 10 10 10 10 10 10	ite 4), vn vn

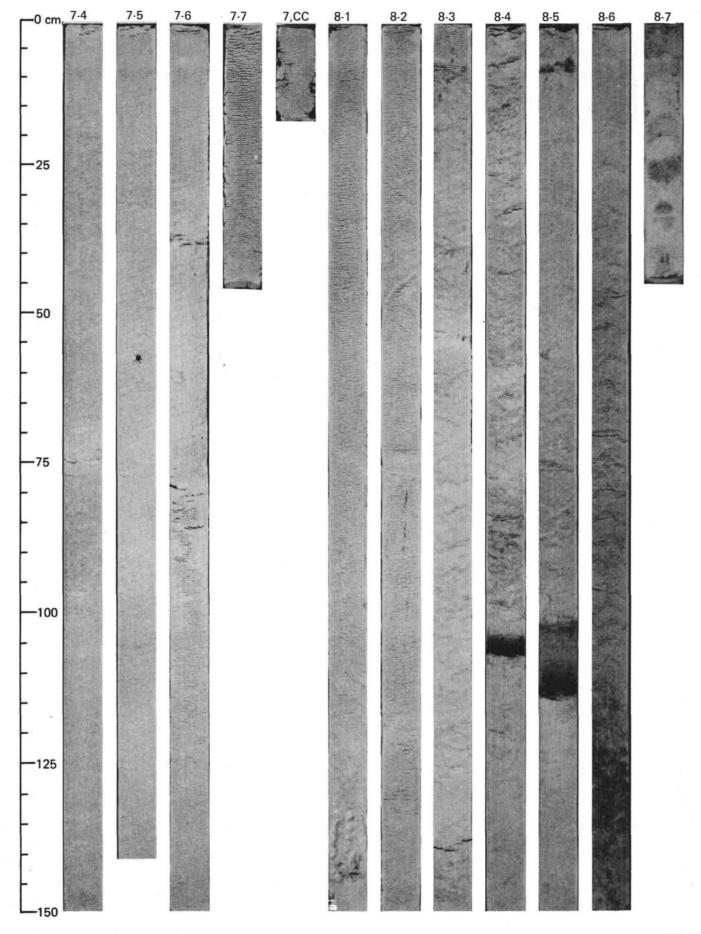

NOTE: Graphic lithologies represent average compositions derived from smear tildes and do not always reflect the detailed alternation of sediment types. Major lithologic boundarias are shown but gradational contacts, mail-table cyclicity and oxec-table alternations are represented tehematically. Color changes approximate to lithologic changes

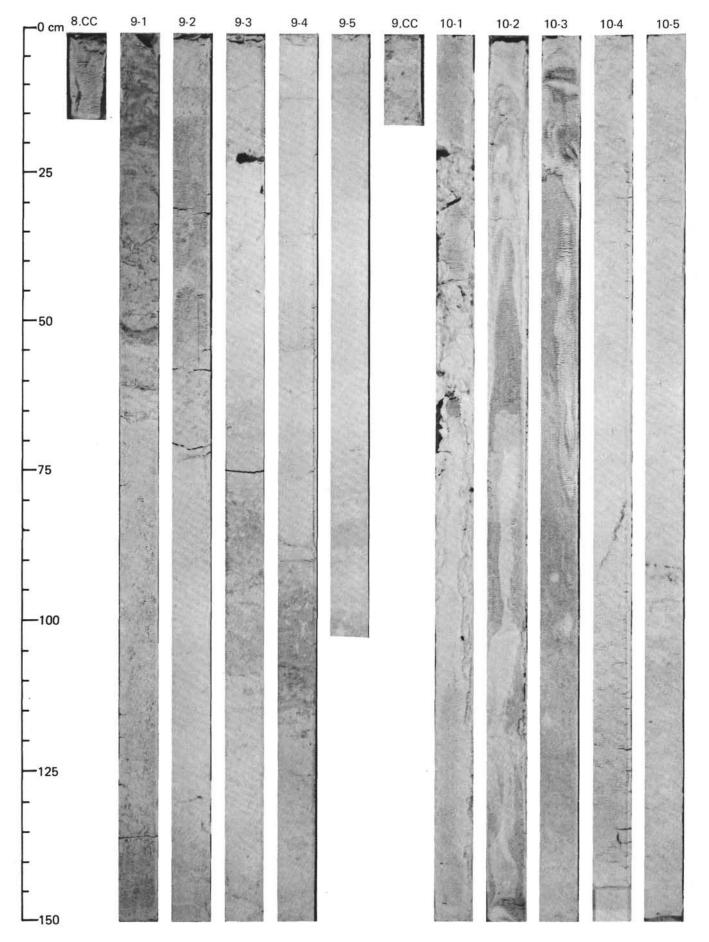
	0	-		-	C	- 1	T	1				T	6.3–15.8 m		
	HH			RAC											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DES	CRIPTION
			CMBB				2 3 3 4 5 -6	0.5	F F F F F F F F F F F F F F F F F F F	00	[] 문평영 와 파고 레이네 IIII 및 建부탁 22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		10YR 3/2-4/2 10YR 3/2-4/2 10YR 6/3-5/3 10YR 6/3 10YR 6/3 10YR 6/3 10YR 6/3 10YR 6/3 10YR 6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 5/3-6/3 10YR 6/3-7/3 10YR 6/3 10YR 6/3-7/3 10YR 6/3-7/3 10	Biotrubated, mott ooze. Colors range ooze. Colors range brown and dark. Gnet on Panolifest BROWN WHITE Rad diatom nann nating. At 7,75 m changes Foram turbolite p tains volcanic plat size. SMEAR SLIDE SU Texture: Sand SMEAR SLIDE SU Texture: Sand Clay Composition: Clay Pyrite Carbonate unspec. Foraminifes Calc, nannofossis Diatom Radiolarians Sponge spicules Fe oxides	DOZE (SUBUNIT IB) (12.0-15.8 m) o ooze, with pale brown color dom to white nanno ooze, present at base of Section 4. It cor is fragments and baselt, 0.5-5 mm i

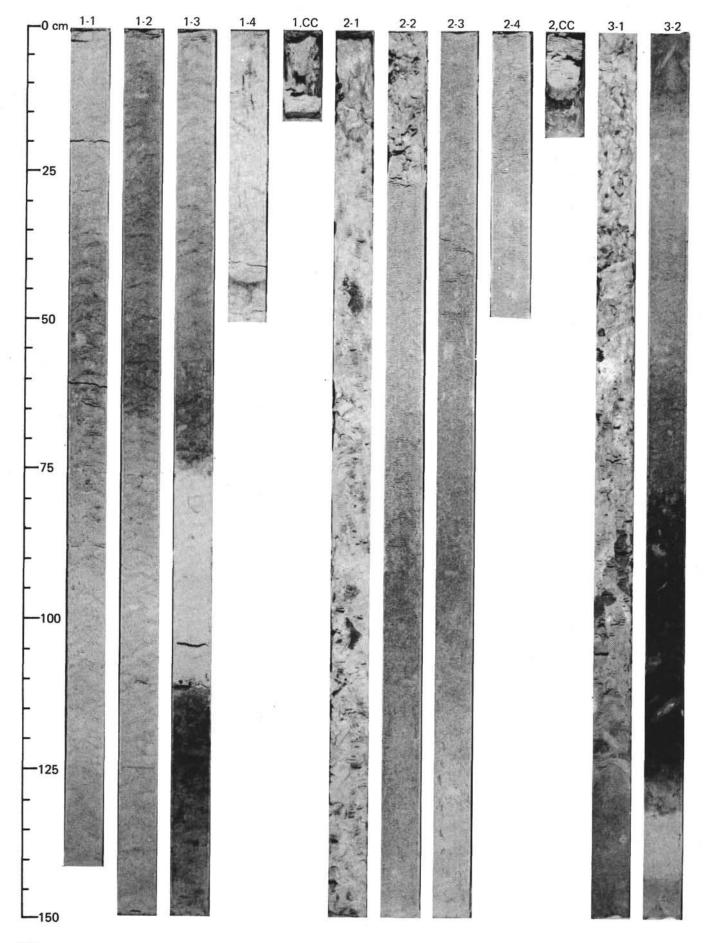

NOTE: Graphic fithologies represent average compositions derived from smaar slides and do not always reflect the detailed alternation of sediment types. Major lithologic boundaries are shown but gradational contacts, small-cole cyclicity and ooze-chalk alternations are represented schematically. Color changes approximate to lithologic changes.

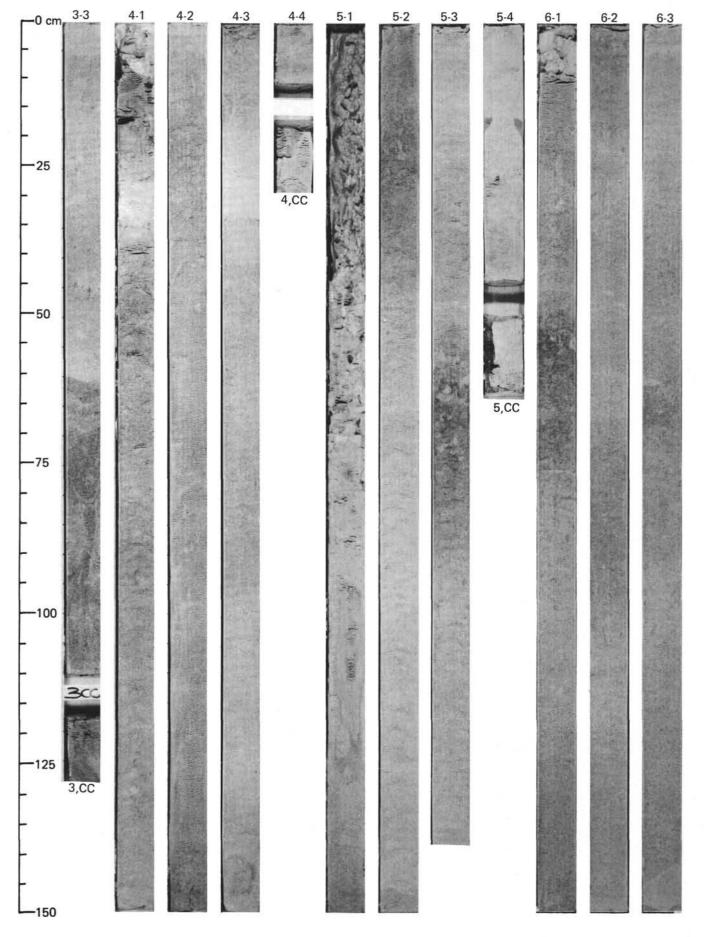
378

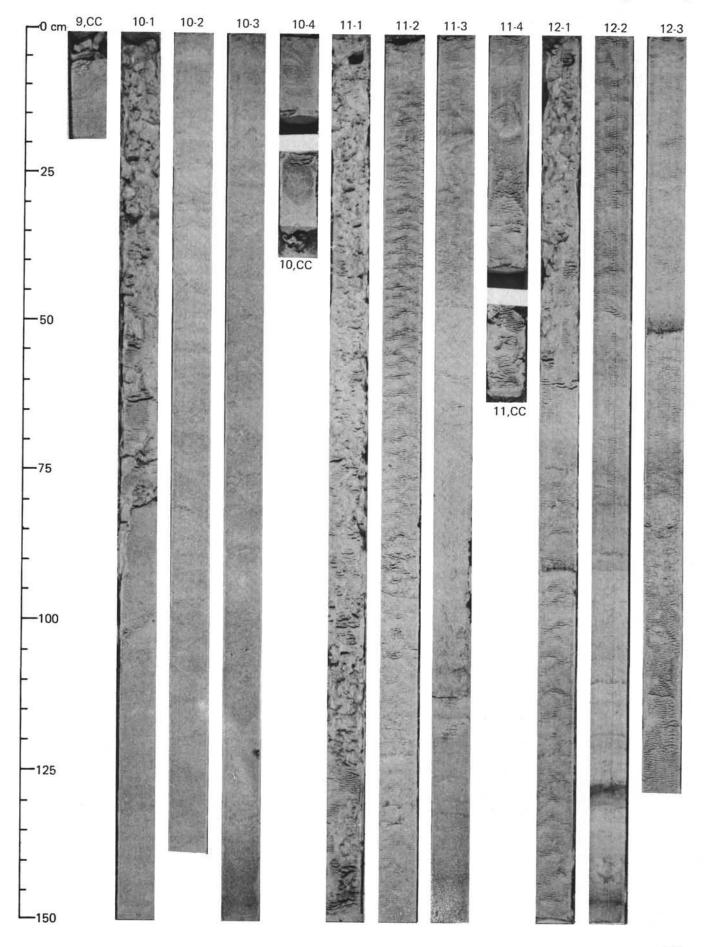


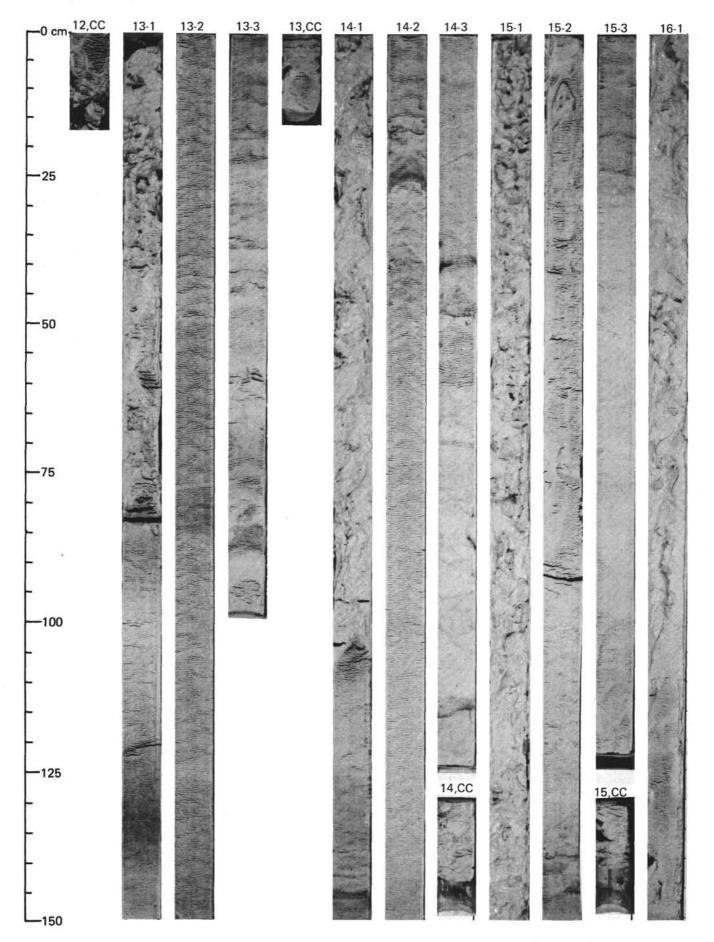


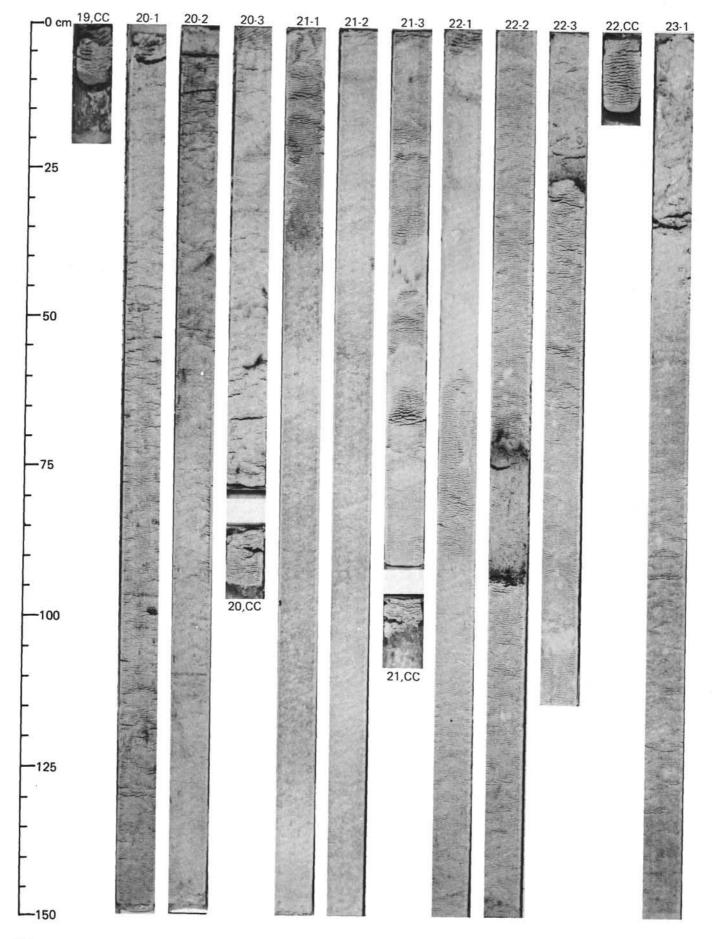

SITE 575 (HOLE 575)

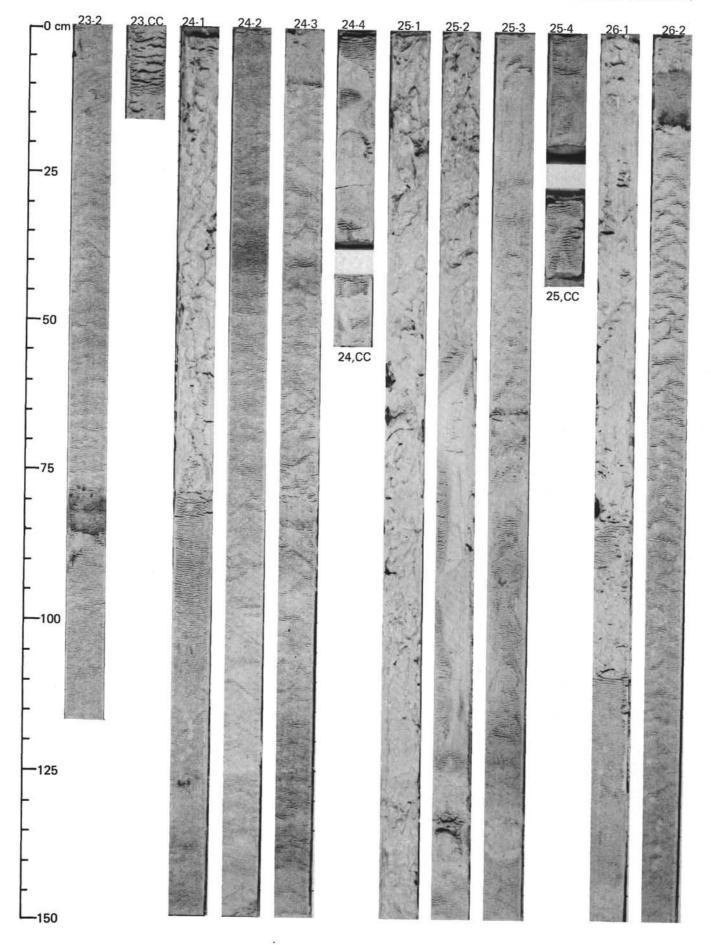

SITE 575 (HOLE 575)

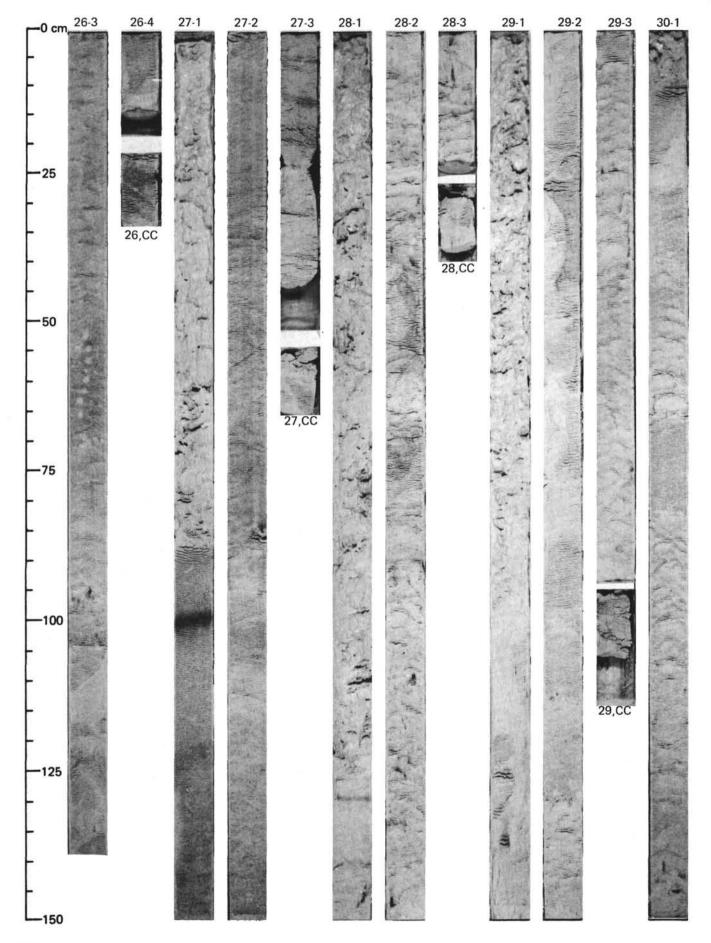


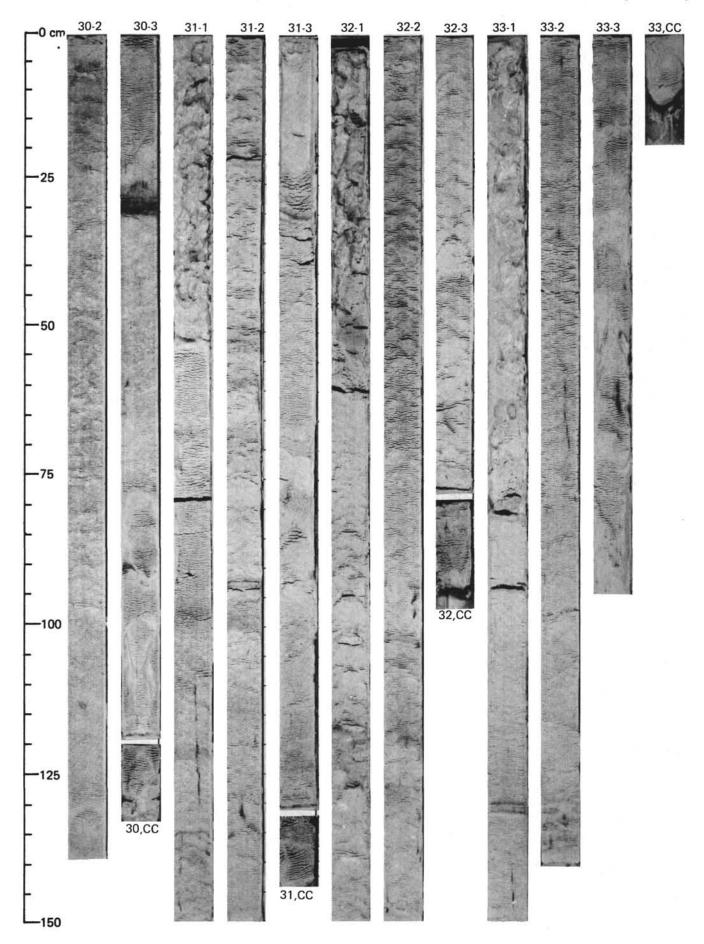


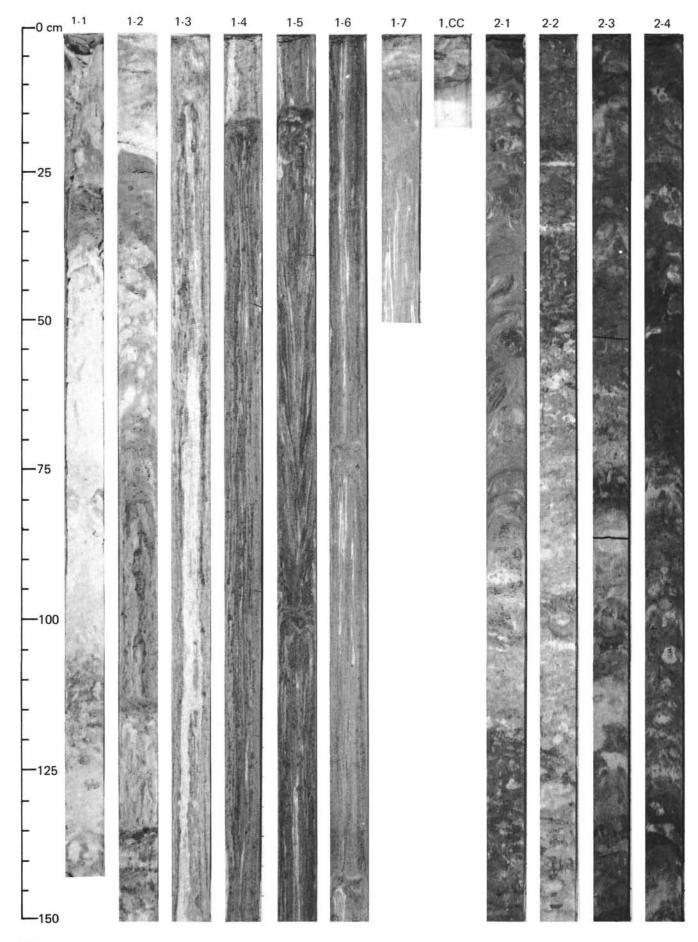


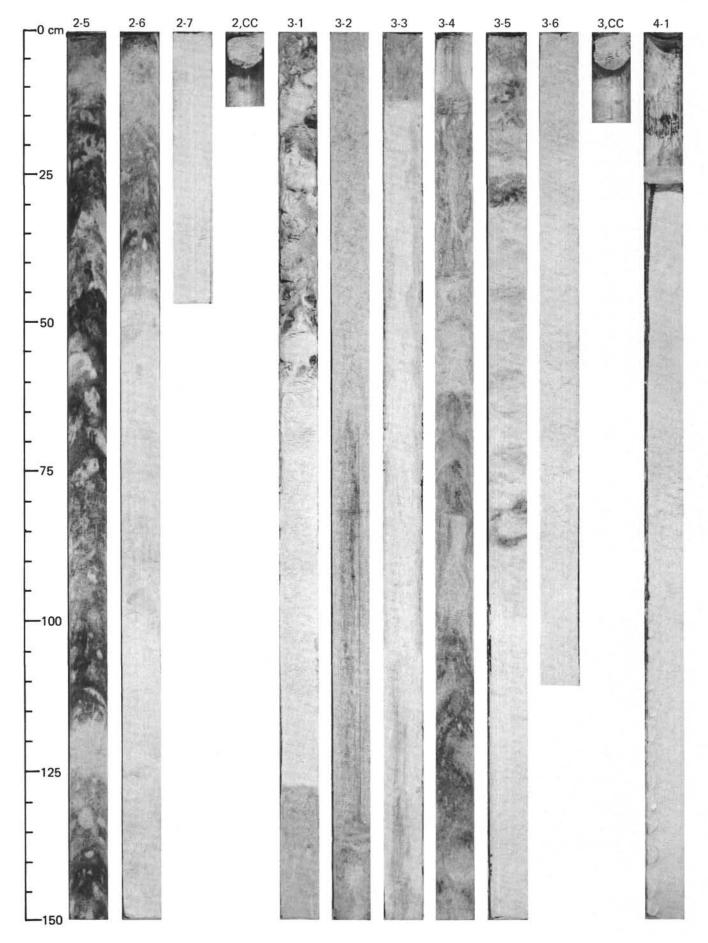


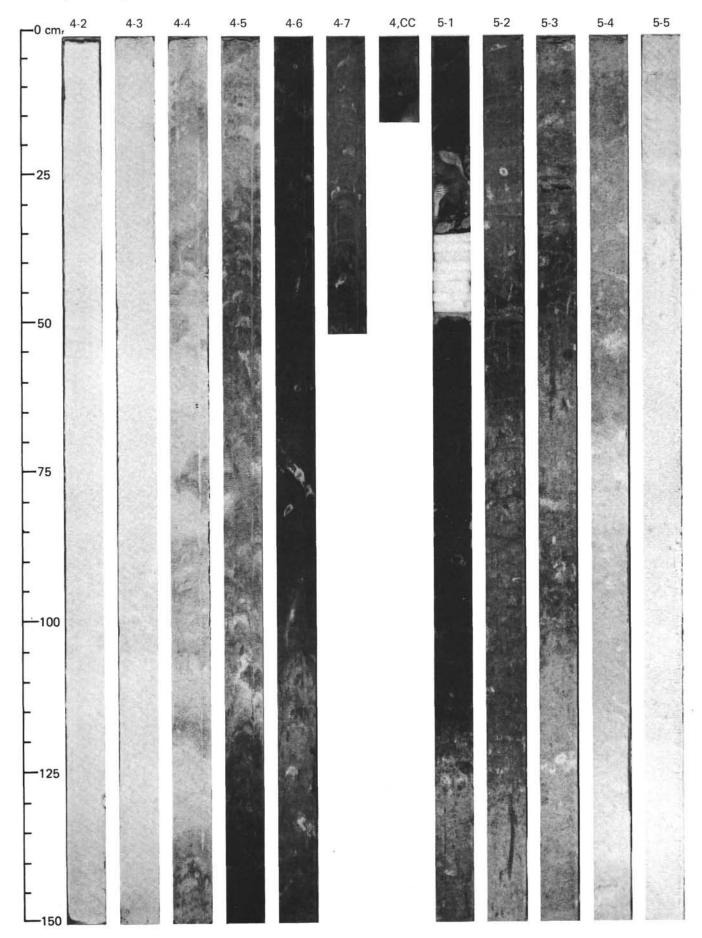

SITE 575 (HOLE 575A)

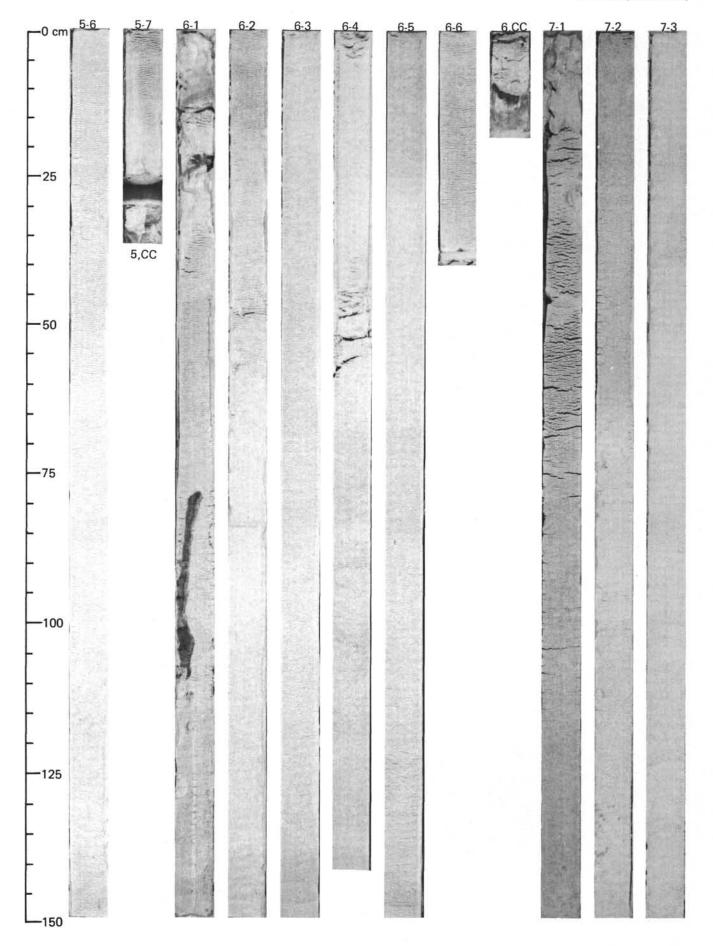


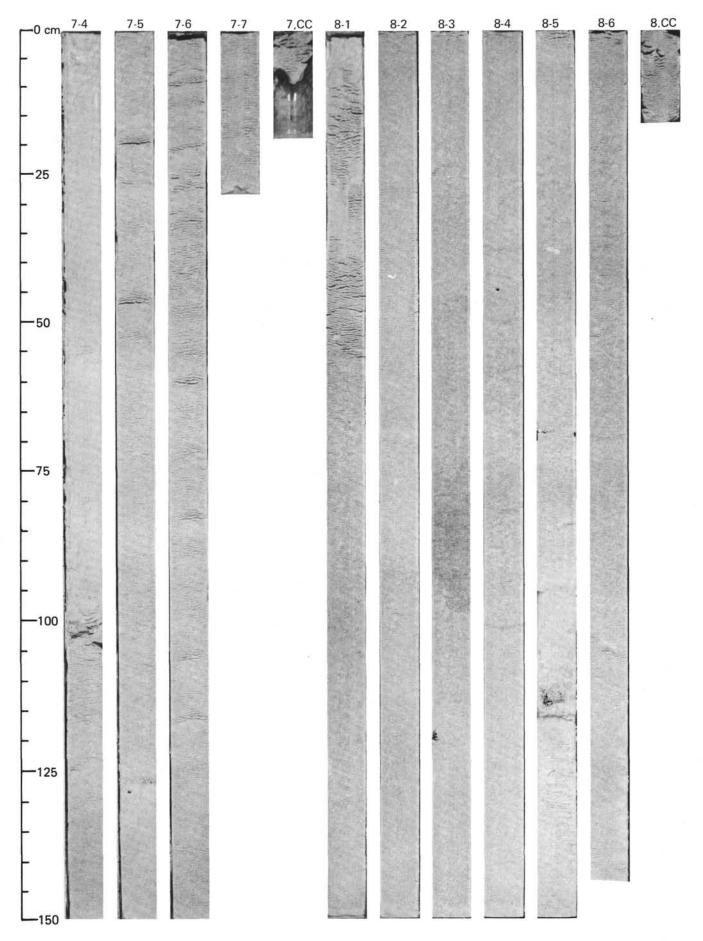


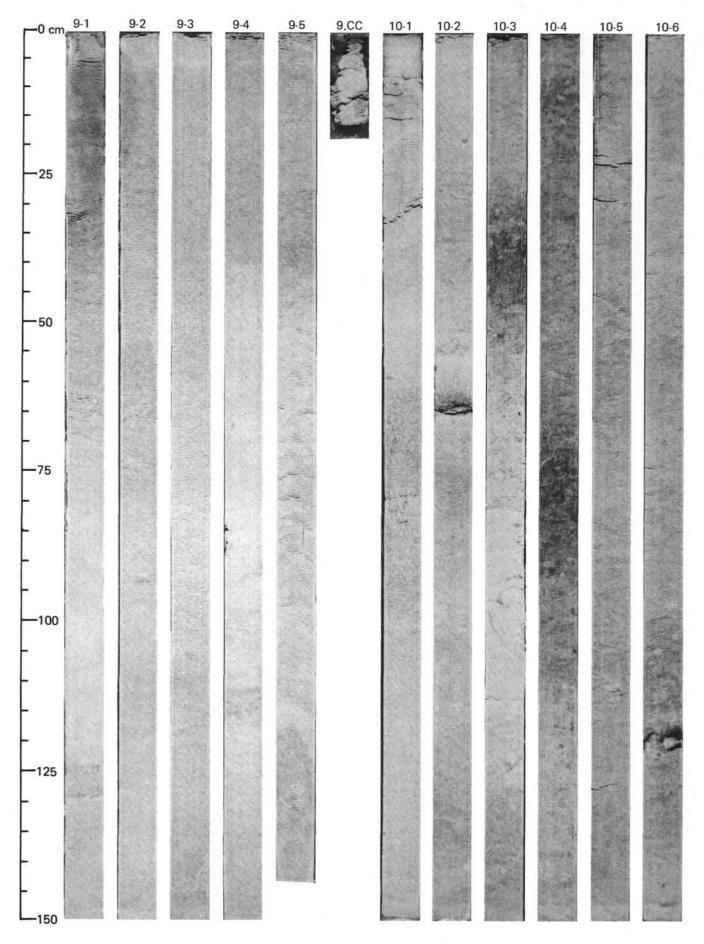


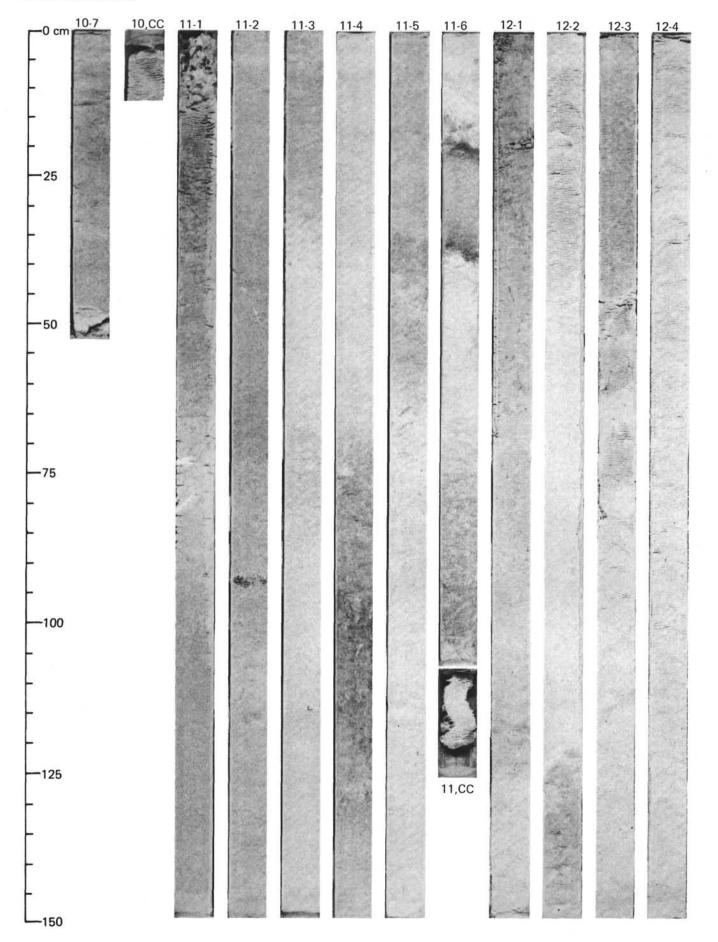


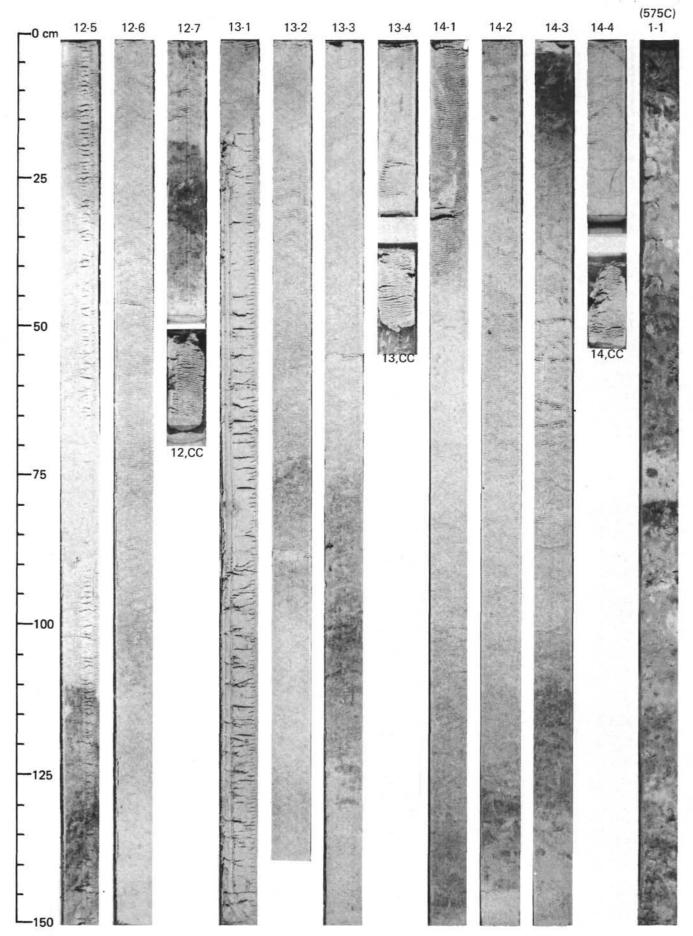


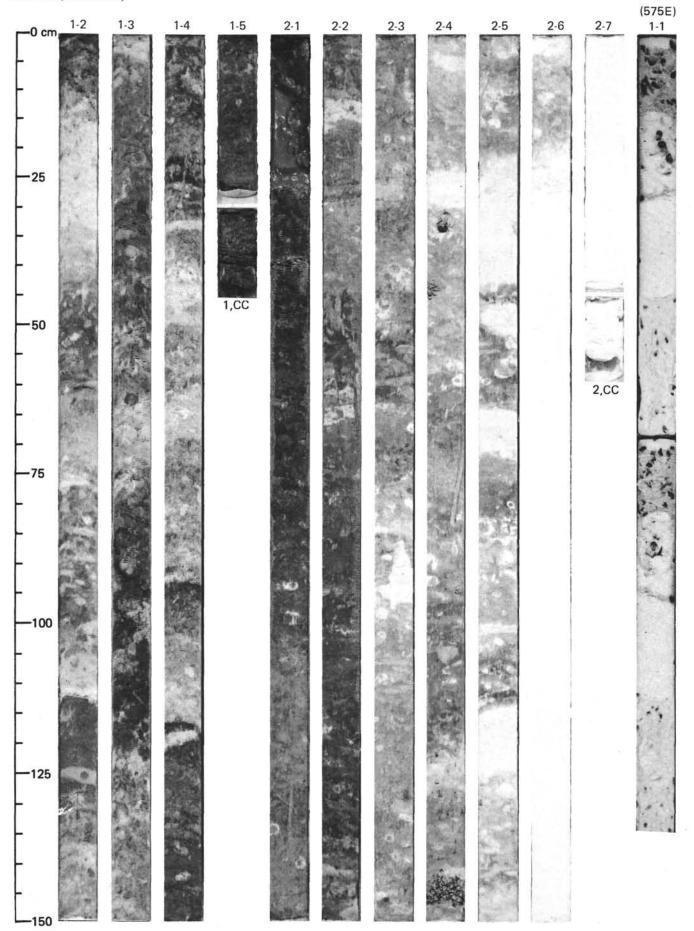

SITE 575 (HOLE 575A)








SITE 575 (HOLE 575B)


SITE 575 (HOLE 575B)

SITE 575 (HOLE 575B)

SITE 575 (HOLE 575C)

