15. CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY, DEEP SEA DRILLING PROJECT LEG 85, EASTERN EQUATORIAL PACIFIC¹

Stefan Gartner and Jinder Chow, Texas A&M University²

ABSTRACT

Pelagic sediments recovered during Leg 85 span the uppermost Eocene to Pleistocene interval in a series of fairly continuous sections. The calcareous nannofossils are normally not very well preserved in the cores from this leg; coccoliths, discoasters, and other morphologic types have been corroded and overgrown by secondary calcite. Poor preservation in some cases precludes a sharp and precise biostratigraphy at the subzonal level, although remarkably, most zones can be clearly identified. Middle Miocene markers are the most consistently troublesome, and it is suggested that *Coronocyclus nitescens* be introduced as an additional useful marker in this interval.

INTRODUCTION

During Leg 85, tropical deep-water pelagic sediments were cored in the equatorial Pacific. Four sites (572 to 575) in particular were cored extensively, and multiple holes were drilled at each site (Fig. 1). The sediment at each of these sites consists principally of pelagic, biogenic constituents, both calcareous and siliceous. In total, 217 samples from the four sites (two holes from each site) were used in biostratigraphic analysis. This chapter presents the results of these analyses. The scope of this study is to provide a concise biostratigraphic framework that is developed from the calcareous nannofossils and based on a limited number of samples. It is not intended to be a comprehensive regional study.

Age assignments are mostly made according to the zonation scheme of Bukry (Bukry, 1975; Okada and Bukry, 1980), with minor modifications where a given zonation proved inadequate or unsuitable. One such case is Pleistocene, but it was not sampled in sufficient detail to present serious problems. A second instance is the Miocene/Pliocene boundary, which, according to the best data available, should probably be placed at the extinction of Discoaster guingueramus (Gartner et al., 1983). A third area of difficulty introduced by Bukry's zonation is his use of the beginning or end of an acme to delimit zones. The beginning or end of an acme can be rendered meaningless by differential dissolution because the abundance of a species can be decreased or enhanced greatly depending on its susceptibility to dissolution. Finally, the first appearance of Sphenolithus distentus cannot be used as a marker where indicated by Bukry because the species occurs consistently at a much lower level.

One recommendation for improving existing zonations of the middle Miocene where several of the designated markers are notably sporadic and unreliable is to use the

¹ Mayer, L., Theyer, F., et al., *Init. Repts. DSDP*, 85: Washington (U.S. Govt. Printing Office). ² Address: Department of Oceanography. Texas A&M University. College Station, TX

2 Address: Department of Oceanography, Texas A&M University, College Station, TX 77843.

highest occurrence of Coronocyclus nitescens as a marker. This species is distinctive and hence easy to recognize and identify. It is consistent in its occurrence in pelagic and hemipelagic sediments and relatively resistant to dissolution. Although the species is rarely a major constituent of the assemblage, it is in all other respects a nearly ideal marker species. The bio-horizon marked by the last or highest occurrence of this species is above the highest occurrence of Sphenolithus heteromorphus and below the first appearance of Catinaster coalitus. It probably occurs within the lower part of magnetic polarity epoch 13 and has an age of about 13 Ma. In Hole 572D C. nitescens last occurs somewhat below the CN5a/CN5b zonal boundary; in Holes 573B and 574 its last occurrence is imprecisely known because the accepted marker species are not present. In Hole 574C the highest occurrence of the species may not have been recovered, and in Hole 575 C. nitescens disappears just below the CN5a/ CN5b zonal boundary. It should be noted that the apparent inconsistencies in the highest occurrence of C. nitescens can partly be explained by inconsistent occurrences of designated markers but could also reflect the relatively wide sample spacing of this study.

A summary overview of the zonal and age assignments of the cores from Leg 85 is given on Table 1.

METHODS

Smear slides were prepared for each sample from unprocessed material. The slides were examined with a light microscope at approximately $\times 1600$ magnification using cross-polarized light, differential interference constrast, and phase contrast optics. Abundance estimates were made on optimum density areas of the slides, that is, areas where most of the field was covered with sample material without appreciable piling of specimens or sample material. The abundance code translates as follows: A (abundant), usually more than 10 specimens occurring per field; C (common), 1 to 10 specimens per field; F (few), 1 specimen per 1 to 10 fields; R (rare), 1 specimen per more than 10 fields.

SITE 572

Holes 572A and 572C

Forty-nine samples were examined from Site 572. Seventeen samples are from Holes 572A and 572C; four of

Figure 1. Location of DSDP Leg 85 sites in the eastern equatorial Pacific. Contours show sediment thickness in seconds (two-way traveltime).

these are core-catcher samples. The two samples from Hole 572C (Cores 1 and 2) are combined on one chart with fifteen samples from Hole 572A (Cores 3 through 17). The calcareous nannofossil checklist for these samples is given in Table 2. Preservation of nannofossils is fair to poor throughout the interval, and the biostratigraphy lacks sharp definition because marker species are usually present only sporadically. Nevertheless, the age determinations given are considered accurate and reliable.

Samples 572C-1,CC through 572A-3,CC are of Pleistocene age (Zones CN14 and CN13) and extend from the middle to the upper Pleistocene in the topmost sample and down to the lower Pleistocene in the lowermost sample. Conspicuous markers include *Pseudoemiliania lacunosa* and *Calcidiscus tropicus* (= *C. macintyrei*).³

Sample 572A-4-5, 139-140 cm is uppermost Pliocene; it contains the lone asterolith species *Discoaster brouweri* characteristic of this level (Zone CN12d). The Pliocene extends through Core 10 (Sample 572A-10-7, 40-41 cm), the Miocene/Pliocene boundary being in the next lower core. The Pliocene succession is complete, although poor preservation prevents recognition of all subzones. Zones 12, 11, and 10 are, however, recognizable as distinct units.

Sample 572A-11-6, 140-141 cm contains *D. quinqueramus* and thus is assigned to the uppermost Miocene *D. quinqueramus* Zone (Zone CN9). This zone continues to the bottom of the section (Sample 572A-17-6, 8-9 cm) where the presence of *Amaurolithus amplificus* indicates an age probably not older than Zone CN9b, which corresponds to the upper part of the *D. quinqueramus* Zone.

Hole 572D

The 32 samples from Hole 572D extended from the lower Pliocene (Zone CN10) to the lower middle Miocene (Zone CN4) (Table 3). Poor preservation makes accurate biostratigraphic subdivision of this hole difficult, although most of the zones and several subzones can be recognized. The Pliocene/Miocene boundary is tentatively placed within Core 5 because the sample immediately above it (Sample 4,CC) contains the birefringent *Ceratolithus armatus*, whereas the base of the next lower core (Sample 5,CC) lacks birefringent ceratoliths. *Discoaster quinqueramus*, the extinction of which marks the top of the Miocene, was encountered only lower (Sample 8, CC) where it co-occurs with *D. loeblichii*, a species that does not occur above the middle part of the upper Miocene.

Within the upper Miocene Subzones 9b, 9a, and 8b are recognizable, but below that zones and subzones are less clearly distinguishable. The marker species *D. hamatus* and *Catinaster coalitus* (for Zones CN7 and CN6, respectively) are very rare and both occur in only one (and the same) sample (15,CC). Immediately below Zone CN6, markers are lacking until *D. kugleri* is encountered in Samples 19,CC and 21,CC. This marks Zone CN5b, the *D. kugleri* Subzone. The next lower zone (CN5a) has no distinctive marker of its own, but its lower limit is recognizable by the last occurrence of *Sphenolithus heteromorphus* (Sample 28,CC), which continues to the bottom of the section (Sample 32,CC).

SITE 573

Hole 573

Nineteen core-catcher samples were examined from Hole 573 (Table 4). Calcareous nannofossils are common to abundant in all samples, but preservation is most-

³ The name Calcidiscus tropicus (Kamptner) is used in preference to C. macintyrei (Bramlette and Bukry). The latter is considered a junior synonym (Gartner et al., 1983).

Table 1. Summary of zonal and age assignments of Leg 85 cores based on calcareous nannofossils from Holes 572 through 575. Nannofossil zonal numbers are those of Okada and Bukry (1980). For more detailed age assignments see Tables 2 through 9.

Age		Nannofossil zones	572A	572C	572D	573	573B	574C	575	575A
Pleistoc	ene	CN15 to CN13	3,CC	1,CC 2,CC		1,CC/ 3,CC				
		CN12	4,CC 5,CC			4,CC 6,CC			1,CC	
Pliocer	ne	CN11 to CN10	6,CC 10-7	В	1,CC/4,CC	7,CC 9,CC			2,CC	
	late	CN9	11-6 17-6		5,CC 7,CC	10,CC 18,CC			3,CC	
		CN8		-	8,CC	19,CC	1,CC/4,CC	1		
		CN7					5,CC		_	
		CN6								
Miocene	middle	CN5			27,CC		8,CC	1,CC	7,CC	
	*1	CN4			28,CC 32,CC		9,CC	2,CC	8,CC 11,CC	1,CC
		CN3					13,CC	3,CC		5,CC
		CN2					14,CC	4,CC		6,CC 9,CC
	early	CN1				lv.	15,CC	5,CC		10,CC
///////	1/////		-				20,CC	17,CC		33,CC
//////	late	CP19				3	21,CC	18,CC		
		in the second seco					30,CC	20,CC		
Oligocene		CP18					31,CC	21,CC		
	early	CP17				[.]	37,CC	28,CC		
		CP16					38,CC 40,CC	29,CC 34,CC		
Eocene	late	CP15						35,CC		

ly fair to poor. Only in the uppermost three core-catcher samples is nannofossil preservation fair to good. Both dissolution and overgrowth are noticeable, and the low species diversity of some samples suggests that some species have probably been removed by corrosion.

The 19 samples extend from the upper Pleistocene at the top (Zone CN14b) to the upper Miocene *Discoaster neohamatus* Zone (Zone CN8) at the bottom. All of the intervening zones can be recognized, and in several cases subzones can be distinguished as well. The Pliocene/Pleistocene boundary is placed within Core 4; the base of that core contains the upper Pliocene marker *D. brouweri*. The next higher sample (3,CC) lacks discoasters. The Pliocene zones appear to be of uneven spans (e.g., CN11 and CN12), which could be the result of poor preservation of some marker species or notably different sediment accumulation rates, possibly stemming from differential dissolution of biogenic carbonate. However, it may be entirely an artifact introduced by the wide spacing between adjacent samples.

The Miocene/Pliocene boundary is placed at the highest occurrence of D. quinqueramus, which is within Core 10. The upper Miocene D. quinqueramus Zone (Zone CN9) is more expanded than the Pliocene zones, although nannofossil preservation is not notably better.

Hole 573B

Forty samples, all but one of them core-catcher samples, were examined from Hole 573B (Table 5), and these extend from the upper Miocene at the top to upper Oli-

Age	Sample (interval in cm)	Preservation	Nannofossil zones	Gephyrocapsa oceanica	Pseudoemiliania lacunosa	Crenalithus productellus	Gephyrocapsa caribbeanica	Calcidiscus leptoporus	Ceratolithus cristatus	Helicosphaera carteri	Umbilicosphaera sibogae	Reticulofenestra minutulus	Ceratolithus rugosus	Ceratolithus telesmus	Calcidiscus tropicus	Helicosphaera sellii	Coccolithus pelagicus
Pleist.	572C-1,CC 2,CC 572A-3,CC	F F-P F-P	CN14 to CN13	C F	C A A	A C	C C F	C C C	FR	C F C	F C C	C A	F F	F	C C	с	F
	4-5, 139-140 5,CC, 14-15	F-P F-P	$CN12 \frac{d}{a}$		С			F	F	F F		A F	R F		A A	A F	A
Pliocene	6-6, 140-141 7-6, 100-101 8-6, 59-60	F-P P P	CN11		F				F R			A C A	F R		A C C		C F
	9-6, 140-144 10-7, 40-41	P-F F-P	CN10			C F		F		C C		A A			C C		R
Miocene	11-6, 140-141 12-6, 140-141 13-6, 140-141 14-6, 140-141 15-6, 100-101 16-6, 40-41 17-6 8-9	P-F P-F P-F P-F P-F F-F	CN9					F F C F C F		RCFCRRF		A A A A A C C			R C C	R	C F F

Table 2. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Holes 572A and 572C, Leg 85.

Note: A = abundant; C = common; F = few; R = rare. See text for further explanation. Preservation: F = fair; P = poor.

gocene at the bottom of this hole. Not all intervening zones are identifiable, again resulting from poor preservation and the absence of certain key marker species. The youngest zone represented is the upper Miocene *Discoaster neohamatus* Zone (Zone CN8). The middle Miocene Zones CN7, CN6, and CN5 cannot be differentiated, although all three may be represented in the interval of Cores 5 through 8. The two critical markers for this interval, *Catinaster coalitus* and *D. hamatus*, were not found in the samples. Zones CN4 and CN3, which are the *Sphenolithus heteromorphus* and *Helicosphaera ampliaperta* Zones, together cover the interval of Cores 9 through 13. The marker species for differentiating these two zones, however, were not considered reliable over this interval.

The Oligocene/Miocene boundary cannot be placed precisely (it does not correspond to a nannofossil biohorizon used in Bukry's zonation), although the interval in which it is contained, the *Triquetrorhabdulus carinatus* Zone (Zone CN1), is well developed from Cores 15 through 20. The Oligocene Zones CP19 through CP16, which are the *Sphenolithus ciperoensis* through *Helicosphaera reticulata* Zones, are represented from Cores 21 through 40. Zones CP18 and CP17 cannot be separated because the marker species *Sphenolithus distentus* extends well below the next lower marker, an apparent internal inconsistency in Bukry's zonation. There is a break in the range of *S. distentus* (Cores 33 and 34), and it is tempting to place the zonal boundary at this level; however, that interpretation of the data would be incorrect.

SITE 574

Two suites of samples were examined from Site 574: one from Hole 574 consists of 30 core-catcher samples, and the second from Hole 574C consists of 35 corecatcher samples. The two sections combined extend from the Pleistocene at the top of Hole 574 to the uppermost Eocene at the bottom (Core 35) of Hole 574C. The section appears to be continuous over the entire interval to the extent that it can be resolved given the sample spacing and the poor preservation of much of the section.

Hole 574

The 30 samples from Hole 574 are from the core catchers of each of the 31 successive cores, except for Core 23 from which no sample was available (Table 6). The upper Neogene (upper Miocene, Pliocene, and Pleistocene) is represented in only the uppermost 7 cores (Zones CN8 through CN14), whereas the middle Miocene is represented in Cores 8 through 31 (Zones CN4 through CN7). This great difference in thickness probably indicates a pronounced change in sedimentation rates; however, the preservation of the nannofossils is poor throughout and thus does not reflect the different sedimentation rates perfectly. Preservation is rendered poor by both dissolution of some species and overgrowth of others, often within the same sample.

The Pleistocene is represented in Core 1 and possibly the upper part of Core 2, although the base of Core 2 is Pliocene as are Cores 3 through 5. The three zones of

Discoaster brouweri	Discoaster pentaradiatus	Discoaster tamalis	Discoaster surculus	Discoaster asymmetricus	Discoaster variabilis	Ceratolithus armatus	Reticulofenestra pseudoumbilica	Sphenolithus abies	Ceratolithus acutus	cf. Catinaster sp.	Discoaster intercalaris	Amaurolithus primus	Amaurolithus delicatus	Amaurolithus tricorniculatus	Discoaster quinqueramus	Discoaster berggrenii	Discoaster sanmiguelensis	Triquetrorhabdulus rugosus	Discoaster neohamatus	Amaurolithus amplificus	Helicosphaera parallela
F A	A	R	F	R	F			_	_												
F C C	F		F	R	F C C	R	R C C	F C	cf.	F											
C F	C F	R	F F		F F	R	A C	C C	R R		F R	R	R	R							
C R F	R F		C R F		F		C C C	C C A			R	R R F			R R P	F	C	P			
C C F	R		R C R		R C R		C C A	A C C				R cf.	R		C F R	R F R	C	ĸ	R	R	R

the Pliocene (CN12 through CN10b) are represented but subzones cannot be identified consistently. The upper Miocene zones can only be identified imperfectly. Subzone CN10a was not identified, although it may be present within an unsampled interval of Core 6. The bottom of Core 6 (Sample 6,CC) belongs to Zone CN9. The interval from the *Discoaster neohamatus* Zone through the *D. exilis* Zone (Zones CN8, CN7, CN6, and CN5) is reasonably complete, but the boundary between the lower two zones is unclear because of the absence in the samples of the marker species *Catinaster coalitus*.

The boundary between Zone CN5 and CN4 is also unclear because of the rare but unambiguous occurrence of *Sphenolithus heteromorphus* in Core 16. This species is not found in the three immediately subjacent cores but does occur in much greater abundance from Cores 20 through 31. Thus the occurrence of the species in Core 16 is suspect. If the occurrence of *Sphenolithus heteromorphus* in Core 16 is spurious, as assumed here, then the sedimentation rate change in the section implied by the spacing of nannofossil bio-horizons occurred somewhat later and was less intense than indicated by the actually documented last occurrence of *Sphenolithus heteromorphus*.

Hole 574C

The 35 core-catcher samples from Hole 574C (Table 7) extend from the middle Miocene Sphenolithus heteromorphus Zone (CN5) to the upper Eocene Discoaster barbadiensis Zone (CP15). Although not all zones and subzones can be clearly identified, primarily resulting from poor preservation of marker species, the section appears to be continuous. The lower to middle Miocene Helicosphaera ampliaperta Zone (CN3) cannot be clearly identified. Similarly the Miocene/Oligocene boundary remains somewhat ambiguous because it is not possible to clearly identify the marker horizon, the acme of *Cyclicargolithus abisectus*. The boundary is placed within Core 17; however, it could be somewhat higher because specimens intermediate between *C. abisectus* and the smaller *C. floridanus* are common.

The Paleogene interval from Sphenolithus ciperoensis Zone through the D. barbadiensis Zone (Zones CP19 through CP15) are well represented. The boundary between the S. distentus Zone (CP18) and the S. predistentus Zone (CP17), however, cannot be determined because the marker species S. distentus ranges well below the level implied by the zonation scheme. Clearly the Oligocene zonal succession merits further study, including identification of some additional nannofossil marker species.

The Eocene/Oligocene boundary is within Core 35 because the base of that core contains the distinctive D. *barbadiensis* and D. *saipanensis*, both characteristic of the upper Eocene, along with several other upper Eocene species.

SITE 575

Two suites of sample were examined from Site 575: one from Hole 575 consists of 11 samples, and the second from Hole 575A consists of 33 samples. All of the samples are from core-catcher material. The total interval represented by the two sections includes part of the Pliocene and nearly all of the Miocene. Pleistocene nannofossil assemblages were not identified; the youngest sample, although nearly barren, appears to be Pliocene

S. GARTNER, J. CHOW

Miocene		572 Pliocene	Age S
8,CC 9,CC 10,CC 11,CC 12,CC 13,CC 14,CC 15,CC 16,CC 17,CC 18,CC 19,CC 20,CC	5,CC 6,CC 7,CC	2D-1,CC 2,CC 3,CC 4,CC	Sample
P-F F F F F F F F F-P F-P F-P F-P F-P	P F-P P	F-P F-P P F-P	Preservation
CN8 2 CN7 ?	CN9 $\frac{b}{a}$	CN10	Nannofossil zones
A C A A A C C C C C C A F C	A A C	C A C A	Sphenolithus abies
C VA C A A A A A A A	A A F	A A A A	Reticulofenestra pseudoumbilica
CCFCFRCCCCCCC	C C C C	C A A A	Coccolithus pelagicus
CCCRRRRCFCFCC	A C C	C C C C C	Calcidiscus leptoporus
C C F C F R F F F F F F F	C C R	C C C	Discoaster variabilis
F F C C R R	F R	F F	Discoaster brouweri
	R	R	Discoaster pentaradiatus
FCFR RFFFFRR	F F F	R R F	Helicosphaera carteri
	C F R	R R R	Discoaster surculus
	R	R R	Amaurolithus primus
R R R R R R R	R F R	R R R	Calcidiscus tropicus
		R	Ceratolithus armatus
		R	Amaurolithus tricorniculatus
cf. cf.	F		Helicosphaera sellii
	R		Discoaster challengeri
FR			Discoaster loeblichii
R R			Discoaster quinqueramus
F F R			Helicosphaera granulata
C C R C R			Discoaster bellus
R			Discoaster neohamatus
R R			Helicosphaera parallela
R			Catinaster coalitus
R			Discoaster hamatus
cf.			Discoaster bollii
F	8		Discoaster kugleri
RR			Discoaster deflandrei
F			Discoaster exitis
F			Triquetrorhabdulus rugosus
			Coronocyclus nitescens
			Cyclicargolithus floridanus
			Sphenolithus heleromorphus

Table 3. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 572D, Leg 85.

Note: Symbols as in Table 2.

614

			-	-					-				_					_				_	_	-		_	_		-							
Age	Sample	Preservation	Nannofossil zones	Gephyrocapsa oceanica	Gephyrocapsa caribbeanica	Calcidiscus leptoporus	Helicosphaera carteri	Umbilicosphaera sibogae	Ceratolithus cristatus	Thoracosphaera sp.	Pseudoemiliania lacunosa	Helicosphaera sellii	Discoaster brouweri	Discoaster brouweri (3 rays)	Coccolithus pelagicus	Calcidiscus tropicus	Discoaster pentaradiatus	Discoaster tamalis	Discoaster asymmetricus	Ceratolithus rugosus	Reticulofenestra minutulus	Discoaster variabilis	Sphenolithus abies	Reticulofenestra pseudoumbilica	Discoaster surculus	cf. Discoaster sanmiguelensis	Amaurolithus primus	Amaurolithus tricorniculatus	Ceratolithus acutus	Amaurolithus delicatus	Discoaster quinqueramus	Amaurolithus amplificus	Discoaster berggrenii	Discoaster loeblichii	Discoaster bellus	Discoaster challengeri
Pleist.	2,CC 3,CC	F-G F-G	$\begin{array}{c} \text{CN14} \frac{\text{b}}{\text{a}} \\ \text{CN13} \end{array}$	A A C	A A A	C C C	F F F	R R	R R R	С	A A	F																								
	4,CC 5,CC - 6,CC	F F P	CN12			F F A	R C F		R R	F	A C		C F F	R R	C C	c c	F R	F	R R	R	A	F														
Pliocene	7,CC	F	CN11		_	С	R		F				A		С	F			R	R	A	R	Α	A	R	R										
	8,CC 9,CC	F F	CN10			с			F				С		C A	c c	F R		R	F	A	R R	A C	A A	F C	R	R R	R	R	R						
Miocene	10,CC 11,CC 12,CC 13,CC 14,CC 15,CC 16,CC 17,CC 18,CC	P-F F F-P F-P F-P F-P F-P F-P	b CN9 — a			F F C C C	R R R R						FCFFFCA	R R R	CCACCCCCF	C C C C C C C C C C R	C R R				C C C A F	C R C F F F C A A	A C A C C A C	A C C R R A	C C F F F F F F		R R F			R R R R	C R R R R R	R R	F	RR	с	R
	19,CC	F-P	CN8			С							F		С	С						F	Α	С											R	

Table 4. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 573, Leg 85.

Note: Symbols as in Table 2.

in age (see below). Preservation of nannofossils is rather poor throughout both sections, with notable evidence for corrosion and overgrowth.

Hole 575

Hole 575 (Table 8) extends possibly from Pliocene (the core-catcher sample of Core 1 yielded only very rare *Discoaster brouweri*) to the middle Miocene *Sphenolithus heteromorphus* Zone (CN4). From Cores 2 through 7 the *D. quinqueramus* through *D. exilis* Zones (Zones CN10c through CN5) are represented, but the assemblages are too poorly preserved to allow more refined zonal assignments. Marker species are not present, and even some of the most resistant species are notably sporadic in their occurrence. Samples from Cores 8 through 11 yielded abundant *Sphenolithus heteromorphus*, and these cores are thus assigned to the *S. heteromorphus* Zone (CN4).

Hole 575A

The samples from Hole 575A (Table 9) extend from the Sphenolithus heteromorphus Zone (CN4) through the Triquetrorhabdulus carinatus Zone (CN1). The S. heteromorphus Zone grades into the subjacent Helicosphaera ampliaperta Zone (CN3) from which, however, it cannot be separated because of inadequate preservation of marker species. The next lower zone, the S. belemnos Zone (CN2), extends from Cores 6 through 9. The remaining interval, Cores 10 through 33, is assigned to the *Triquetrorhabdulus carinatus* Zone (CN1). Further subdivision of the relatively long Zone CN1 is not practical in this section because the two critical marker species *Discoaster druggii* and *Cyclicargolithus abisectus* are unreliable. The first is a generalized asterolith species that is particularly susceptible to overgrowth and alteration; the second is a solution-resistant form whose abundance is enhanced in a residual assemblage, and hence, a true acme is not necessarily recognizable.

One line of evidence that may indicate that Hole 575A penetrated into the uppermost Oligocene is the presence of *Helicosphaera recta* in Core 31; however, that is an isolated occurrence and may be spurious.

REFERENCES

- Bukry, D., 1975. Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 677-701.
- Gartner, S., Chen, M. P., and Stanton, R. J., 1983. Late Neogene nannofossil biostratigraphy and paleoceanography of the northeastern Gulf of Mexico and adjacent areas. *Mar. Micropaleontol.*, 8:17-50.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). *Mar. Micropalentol.*, 5: 321-325.

Date of Initial Receipt: 28 October 1983 Date of Acceptance: 6 April 1984

Age	Sample (interval in cm)	Preservation	Nannofossil zones	Calcidiscus leptoporus	Sphenolithus abies	Coccolithus pelagicus	Discoaster variabilis	Reticulofenestra pseudoumbilica	Discoaster brouweri	Discoaster loeblichii	Discoaster bellus	Helicosphaera granulata	Discoaster neohamatus	Discoaster bollii	Coronocyclus nitescens	Helicosphaera parallela	Sphenolithus heteromorphus	Cyclicargolithus floridanus	Discoaster exilis	Discoaster deflandrei	Coccolithus miopelagicus	Discoaster calculosus	Sphenolithus belemnos	Triquetrorhabdulus carinatus	Sphenolithus conicus	Sphenolithus moriformis	Sphenolithus dissimilis	Cyclicargolithus abisectus	Sphenolithus ciperoensis	Helicosphaera intermedia	Sphenolithus distentus	Discoaster tani	Reticulofenestra bisecta	Sphenolithus pseudoradians	Helicosphaera compacta	Sphenolithus predistentus	Helicosphaera reticulata	Helicosphaera euphratis	Reticulofenestra umbilica	Leptodiscus larvalis
	573B-1,CC 2,CC 3,CC 4,CC	F-P P P	CN8	C C F C	A C C C	C F F	C F R F	F F A A	F F R	R R	R C	R R	R																											
	5,CC 6,CC 7,CC 8,CC	P P P P	CN7 to CN5	C R C C	C C A	FCCC	F F	A A C A	F			R R		F	R	R																								
Miocene	9,CC 10,CC 11,CC 12,CC 13,CC	P P P P	CN4 to CN3	R F R cf. cf.	A C C C C C C	00000		A C C F				C C F R			R R R		C A A C C	F C C C C C	F cf. cf. cf.	F R C C	F	cf.																		
	14,CC	Р	CN2		С	С		F							F			С			F	R	F																	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15,CC 16,CC 17,CC 18,CC 19,CC 20,CC	P P-F P-F P-F P-F	CNI		000000	000000		F F F							F F F			C C A A C A		F F F C	F	R F R		000000	F F F	ccc c	F	R												
Oligocene	21,CC 22,CC 23,CC 24,CC 25,CC 26,CC 27,CC 28,CC 29,CC 30,CC	P-F P-F P-F P P P P P P P	b CP19 — a		C	000000000000000000000000000000000000000		R R F F							R F R C			A A C C C C C C C C C C C C C C C C C C		C C C C C C A F F C	R R	F F F				C F F F C C F F F	F	R R C C C C C F	R R R R R R R R R R R R R	R R	FFRRR	cf.								
	31,CC 32,CC 33,CC 34,CC 35,CC 36,CC 37-2, 23-24	P P P P P P	CP18 to CP17			0000000		C C F C C C										AACCCCCC		F F	С					FAAACCA				R	F C R R R	cf. cf. R R	R F F R C C	F R	R R F F	F C F R	R	R		
	38,CC 39,CC 40,CC	P P P	CP16			C C C		с										с								A C				1	R C C	R	C R C		F R R	C C F	R R	R R R	F F	R

. .

Table 5. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 573B, Leg 85.

Note: Symbols as in Table 2.

()																																		1						
Age	Sample	Preservation	Nannofossil zones	Gephyrocapsa oceanica	Pseudoemiliania lacunosa	Calcidiscus leptoporus	Calcidiscus tropicus	Discoaster brouweri	Discoaster tamalis	Ceratolithus cristatus	Discoaster pentaradiatus	Coccolithus pelagicus	Discoaster surculus	Discoaster variabilis	Sphenolithus abies	Reticulofenestra pseudoumbilica	Helicosphaera carteri	Discoaster asymmetricus	Discoaster brouweri (3 rays)	Ceratolithus acutus	Amaurolithus primus	Discoaster quinqueramus	Discoaster berggrenii	Triquetrorhabdulus rugosus	Amaurolithus delicatus	Discoaster bellus	Discoaster loeblichii	Helicosphaera granulata	Discoaster challengeri	Discoaster hamatus	Discoaster prepentaradiatus	Discoaster kugleri	Discoaster bollii	Discoaster exilis	Coronocyclus nitescens	Discoaster deflandrei	Sphenolithus heteromorphus	Coccolithus miopelagicus	Discoaster druggii	Cyclicargolithus floridanus
Pleist.	574-1,CC	Р	CN14a	R	С	F	С	_															_																	
	2,CC	Р	CN12		С		F	С	R	R	R	R	R	R																										
Plio.	3,CC 4,CC	Р Р	CN11				C C	C C		R	С	F		R	c c	C C	R	R	R	R																				
	5,CC	Р	CN10 c/b				F	С			F	F		R	А	С	R				F									_										
	6,CC	Р	CN9	<			С	С				С			A							R	F	R	R															
	7,CC	Р	CN8b				С	С				С		F	Α	С	R					R				F	F	F												
	8,CC 9,CC	Р Р	CN7				C F	C C				с		C C	R A	C C			R			A A		F					R F	cf. R	R									
	10,CC 11,CC 12,CC 13,CC 14,CC 15,CC 16,CC	PPPPPP	CN6 to CN5b			FFFF	F C F aff. aff.	R R cf.				0000000		C F R R R	F F A A A A A	CACCAAC	RFFRR							cf. R R				R F R				cf. R R R	R	F R R R	R R F	RR	R	F		
Miocene	17,CC 18,CC 19,CC	P P P	CN5a			F C	F R F					C C A		R	C C A	A C A												R						R R R	R			F F R	F F R	R
	20,CC 21,CC 22,CC 24,CC 25,CC 26,CC 27,CC 28,CC 29,CC 30,CC 31,CC	P P P P P P P P P P	CN4			F	aff.					A C C C C C C A C A C			A A C C C C F F f. cf. C	AACCCCCCCAC	F F F R											R R R F						R R F cf.	R R R R R R R R R	C C F F F C	AACCAAACAAA	F F R R F R R R	R	F F R F C C C A C

Table 6. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 574, Leg 85.

Note: Symbols as in Table 2.

CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY, LEG 85

Age	Sample	Preservation	Nannofossil zones	Discoaster exilis	Coccolithus miopelagicus	Coccolithus pelagicus	Discoaster deflandrei	Sphenolithus moriformis	Cyclicargolithus floridanus	Coronocyclus nitescens	Discoaster calculosus	Sphenolithus heteromorphus	Discoaster variabilis	Calcidiscus leptoporus	Sphenolithus helemnos	Sphenolithus abies	Reticulofenestra pseudoumbilica	Helicosphaera granulata	Triquetrorhabdulus carinatus	Sphenolithus conicus	Helicosphaera intermedia	Triquetrorhabdulus milowii	Cyclicargolithus abisectus	Sphenolithus ciperoensis	Helicosphaera wilcoxoni	Dictyococcites bisectus	Sphenolithus distentus	Leptodiscus larvalis	Chiasmolithus altus	Helicosphaera truncata	Helicosphaera parallela	Discoaster tant	Helicosphaera compacta	Sphenolithus predistentus	Sphenolithus pseudoradians	Reticulofenestra umbilica	Bramletteius serraculoides	Cyclococcolithus formosus	Isthmolithus recurvus	Helicosphaera euphratis	Discoaster barbadiensis	Cribrocentrum reticulatum	Discoaster saipanensis	Helicosphaera reticulata
	574C-1,CC	Р	CN5	F	R	с	c	с	с	R	F																					_												
	2,CC 3,CC	Р Р	CN4- CN3	R		c c	C	c c	C C	F	F F	C R	C C	R	с	F	R	R	с												2													
	4,CC	Р	CN2		R	A	с	с	С	F	F				С		F		с																									
Miocene	5.CC 6.CC 7.CC 9.CC 10.CC 11,CC 12,CC 13,CC 14,CC 15.CC 15,CC 16,CC	PPPFPPPPPP	c/b CN11 a?		C R R	C C C C C C C F F C C	F FFFCC FFFC		F C C C VA VA A C A A C A	R R R R R R R R R	F F R R R F					C C C	C C C C C R F F ef.	R	RFFRRCFFRFCC	F F F C C	R R R R	FF	cf. cf. cf. C																					
	18,CC 19,CC 20,CC	F P P	CP19			C A C	C R R	A C C	A C C	R F							cſ. cſ. cſ.				R		F F C	R F F	R	R																		
Oligocene	21,CC 22,CC 23,CC 24,CC 25,CC 26,CC 27,CC 28,CC	P P F F P F F F F	CP18 to CP17			CCCCCCFC	F C C F		A A A A A F C A	F R R		_				,	ŝ				R		R R		R	R R	F F R R F R	R R	R R	R R R R	R R R	R R F	R R	FF	R	cf. cf. cf. cf. cf. cf. cf. cf. cf.								
	29,CC 30,CC 31,CC 32,CC 33,CC 34,CC	P P P P P	c CP16 b/a			00 0000	R	C C C C F F	C F C F F																	C R F C A F	F	R R	R R	R R R R	R R	R R R	R R R	R R F F	R	C C C C F C	F F	R C F	FR					
Eoc.	35,CC	P	CP15			А		F												-						F		-					R			С	R	С		R	F	R	R	R

Table 7. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 574C, Leg 85.

Note: Symbols as in Table 2.

Table 8. Occurrence of calcareous nannofossils in core-catcher samples, DSDP Hole 575, Leg 85.

Age	Sample	Preservation	Nannofossil zones	Discoaster brouweri	Coccolithus pelagicus	Reticulofenestra minutulus	Calcidiscus tropicus	Discoaster surculus	Calcidiscus leptoporus	Sphenolithus abies	Discoaster pentaradiatus	Ceratolithus rugosus	Discoaster variabilis	Reticulofenestra pseudoumbilica	Discoaster asymmetricus	Discoaster quinqueramus	Discoaster deflandrei	Helicosphaera granulata	Coccolithus miopelagicus	Helicosphaera carteri	Cyclicargolithus floridanus	Coronocyclus nitescens	Sphenolithus heteromorphus	Discoaster exilis
Plio.	575-1,CC 2,CC	VP P	CN12- CN10c	VR P	с	A	с	F	R	F	R	R	R	с	R									
Miocene	3,CC 4,CC 5,CC 6,CC 7,CC	P P P P	CN9b to .CN5 b/a	P P P P	C C C C A		F		C C C C R	F C C A A	F		F R cf cf cf	C C A A A		A	F F R	R F	R	F	с	R		
	8,CC 9,CC 10,CC 11,CC	P P P	CN4	P P P P	A A C C				R R R F	A C C				A C C C			R R R F	F F C F		R	C C C C C	R F	A A A A	R R R

Note: Symbols as in Table 2; V = very.

	-	vation	ofossil zones	aster exilis	olithus pelagicus	olithus moriformis	argolithus floridanus	nocyclus nitescens	ulofenestra pseudoumbilica	iolithus heteromorphus	aster deflandrei	olithus miopelagicus	osphaera intermedia	iolithus belemnos	etrorhabdulus carinatus	olithus abies	argolithus abisectus	rhabdus serratus	nolithus dissimilis	osphaera granulata	osphaera parallela	osphaera obliqua	nolithus capricornutus	solithus conicus	osphaera recta
Age	Sample	Prese	Nanr	Disco	Cocci	Sphei	Cycli	Corol	Retic	Sphei	Disco	Cocci	Helic	Sphei	Triqu	Sphei	Cycli	Orthe	Sphe	Helic	Helic	Helic	Sphe	Sphei	Helic
	575A-1,CC 2,CC 3,CC 4,CC 5,CC	P P P P	CN4 to CN3	R R R R	C C C C C C	CCCCC	A A C C	R F F F	с с с с с с с	A A C C C	F C	R · R	R												
	6,CC 7,CC 8,CC 9,CC	P P P	CN2		C C C C C C	C C F	C F C C	F F F	C C C C C		C F R	R		F A C F	F	c c	R								
Miocene	10,CC 11,CC 12,CC 13,CC 14,CC 15,CC 16,CC 17,CC 18,CC 19,CC 20,CC 21,CC 22,CC 23,CC 24,CC 25,CC 24,CC 25,CC 26,CC 27,CC 28,CC 29,CC 30,CC 31,CC 31,CC 31,CC	P P P P P P P P P P P P P P P P P P P	CNI		C C A C A C C C C C C C A F C F F F F F	C C C C C C C C C C C C C C C C C F C F	C R C C C C C C C C C C A A A A A A A A	F F F F F F R R R R R R R R R R R R R R	C A C A C A C A C C A C C A C C C C C C		R CFC FC CCFFFFA CCC FC FC	F cf. C C C C C C C F C	RR		RR F CFC F RRFRFFRRRRF	R F A A A C C F R C A A A A F A C C	F F F F F F F C F C C C C C C C C C C C	C F cf.	FFF	F R R R R R R R R R R	R R	R	R	RR	R
Oligo.?	33,CC	P			č	ċ	A	R	F		•		R		F	~	č		F	R		<u>.</u>		R	

Note: Symbols as in Table 2.