3. SITE 576¹

Shipboard Scientific Party, with a contribution by Patricia Doyle²

HOLES 576, 576A, 576B

Date occupied: 16-18 May (576); 18-19 May (576A);

19-20 May (576B)

Date departed: 21 May 1982

Time on site: 4 days, 16 hr.

Position (latitude; longitude): 32°21.36'N; 164°16.54'E (576) 32°21.38'N; 164°16.52'E (576A) 32°21.37'N; 164°16.52'E (576B)

Water depth (sea level; corrected m, echo-sounding): 6217

Water depth (rig floor; corrected m, echo-sounding): 6227

Bottom felt (m, drill pipe): 6220.3 (576): 6218.0 (576A); 6219.3 (576B)

Penetration (m): 69.2 (576); 65.7 (576A); 74.8 (576B)

Number of cores: 8 (567); 7 (576A); 9 (576B)

Total length of cored section (m): Same as penetration (above)

Total core recovered (m): 68.52 (576); 66.20 (576A); 74.07 (576B)

Core recovery (%): 99 (576); 101 (576A); 99 (576B)

Oldest sediment cored: Depth sub-bottom (m): 73 Nature: Nannofossil ooze-pelagic clay Age: Campanian Measured velocity (km/s): 1.43-1.50

Basement: Not reached

Principal results: Site 576 met all of its objectives. The surface ("transparent") acoustic layer was completely cored three times, with essentially full recovery. One complete section (Hole 576A) was stored vertically, unopened, for shore-based geotechnical studies.

The section cored consists of three lithologic units, with the top unit divisible into two subunits as follows:

Subunit IA (0 to 28 m, contact gradational over several meters) is a yellowish brown to brown pelagic clay of Pliocene and Quaternary age (based on paleomagnetics). Sedimentation rate decreases from 10 m/m.y. in the Brunhes Epoch to less than 3 m/m.y. at the base of the Matuyama Epoch. Based on earlier studies and the abundance of silt-sized quartz, we infer that this unit is largely of eolian origin.

Subunit IB (28 to 55 m) is a dark brown "slick" pelagic clay, zeolitic in part. This material is extremely homogeneous, very fine grained, and manganese rich. If deposition has been continuous, the average sedimentation rate decreased from about 1 m/m.y. during the late Neogene to about 0.35 m/m.y. at about 40 m.y. ago, before increasing to 0.6 m/m.y. (uncorrected for compaction) during the Late Cretaceous. Shore-based studies of ichthyoliths should further constrain these rates. By analogy with similar North and South Pacific pelagic clays, we infer that this subunit contains a large authigenic component.

Lithologic Unit II (55 to 76 m sub-bottom) is an interbedded dark brown pelagic clay similar to Subunit IB and pale brown nannofossil ooze of Campanian age. At the base of the unit, the clay layers also include pink bands and mottles. Several of the carbonate layers are graded and have sharp erosional basal contacts; these are turbidites. Other layers may be pelagic. The absence of microfossils younger than Campanian age and the results of earlier Deep Sea Drilling Project (DSDP) drilling in this region suggest that the components of the carbonate and clay layers are essentially contemporaneous. Whether the carbonate reflects enhanced biogenic deposition due to higher productivity (at the lower latitude of the site 70 m.y. ago) or to fluctuations in the carbonate compensation depth (CCD) is unclear.

Lithologic Unit III (76 m) consists of one small glassy chert chip and a few small fragments of off-white porcellanite. This unit forms the prominent reflector at the base of the "transparent" layer in the northwest Pacific.

Progressive consolidation of the pelagic clays of lithologic Units I and II yielded striking physical properties profiles. Both shear wave velocity and vane shear strength increased with depth (from 6 to 127 m/s and less than 20 to more than 1000 g/cm², respectively) without regard to the lithologic change from Subunit IA to IB. LL44-GPC3 at 30°N, 158°W showed similar trends.

The new Woods Hole Oceanographic Institution (WHOI) corenose heat flow unit worked well on 7 of 11 deployments.

BACKGROUND AND OBJECTIVES

Site 576 (target Site NW-9) was proposed by the JOIDES Ocean Paleoenvironment, Sedimentary Petrology and Physical Properties, and Inorganic Geochemistry Panels as a "type" North Pacific red clay site. The general location was chosen to be far enough west to lie in an area of uniform pelagic sedimentation between Shatsky Rise and the Emperor Seamounts, but far enough east to minimize the fraction of the section occupied by ash layers. Our operational objectives were to recover a complete section above Cretaceous(?) chert by triple hydraulic piston coring (HPC), with the cores from one

Heath, G. R., Burckle, L. H., et al., *Init. Repts. DSDP*, 86: Washington (U.S. Govt. Printing Office).
 ² Addresses: (Shipboard Scientific Party) G. Ross Heath (Co-Chief Scientist) School of

Oceanography, Oregon State University, Corvallis OR 97331 (present address: College of Ocean and Fishery Sciences, University of Washington, Seattle, WA 98195); Lloyd H. Bur-ckle (Co-Chief Scientist) Lamont-Doherty Geological Observatory, Palisades, NY 10964; Anthony E. D'Agostino, ARCO Exploration Company, Houston, TX 77056; Ulrich Bleil, Institut für Geophysik, Ruhr-Universität Bochum, D-4630 Bochum Querenburg, Federal Republic of Germany; Ki-iti Horai, Lamont-Doherty Geological Observatory, Palisades, NY 10964 (present address: Meteorological College, Chiba University, Chiba 277, Japan); Rob-ert D. Jacobi, Department of Geological Sciences, SUNY Buffalo, Amherst, NY 14226; Tom Janecek, Department of Atmospheric & Oceanic Science, University of Michigan, Ann Arbor, MI 48109 (present address: Lamont-Doherty Geological Observatory, Palisades, NY 10964); Itaru Koizumi, College of General Education, Osaka University, Osaka 560, Japan; rence A. Krissek, School of Oceanography, Oregon State University, Corvallis, OR 97331 (present address: Department of Geology and Mineralogy, Ohio State University, Co-lumbus, OH 43210); Nicole Lenôtre, Bureau de Recherches Géologiques et Minières, Centre Océanologique de Bretagne, 45060 Orléans Cedex, France; Simonetta Monechi, Geological Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093 (present ad-dress: Dipartimento di Scienze della Terra, Università di Firenze, 4 Via La Pira, 50121 Firenze, Italy); Joseph J. Morley, Lamont-Doherty Geological Observatory, Palisa 10964; Peter Schultheiss, Institute of Oceanographic Sciences, Surrey GU8 5UB, United Kingdom; Audrey A. Wright, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Ocean Drilling Program, 500 University Drive West, Texas A&M University, College Station, TX 77843). (Doyle) Geological Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093.

entire hole to be returned to shore unopened for detailed geotechnical studies.

Our specific scientific objectives were

1. To recover a very long-term record of North Pacific red clay sedimentation;

2. To assess the nature and history of authigenic sedimentation during the Late Cretaceous and Cenozoic;

3. To determine the Late Cretaceous and Cenozoic history of eolian sedimentation for comparison with the LL44-GPC3 record at 30°N, 158°W;

4. To collect an oriented undisturbed red clay section for paleomagnetic studies;

5. To determine the consolidation history of a "type" red clay section by detailed geotechnical studies;

6. To assess the nature of the red clay/chert boundary, and particularly to determine if the transition is marked by an increase in the content of opaline silica or enhanced diagenesis of the basal red clays.

Geologic and Topographic Setting

The regional seafloor morphology and echo character of the near-surface sediments of the northwest Pacific has been mapped by Damuth et al. (1983) using all available Lamont-Doherty, Scripps, and Hawaii Institute of Geophysics 3.5-kHz reflection records. Site 576 lies east of Shatsky Rise in an area of continuous, acoustically transparent sediment, 20 to 60 m thick, with a few continuous reflectors in the upper 15 m.

The area around Site 576 was surveyed in detail on R/V Vema Cruise 36-12. Based on bathymetric and isopach maps prepared from this survey, a drill site was selected at 32°20'N, 164°15'E. This area is characterized by gently rolling topography, with a northwesterly grain and local relief of less than 50 m over distances of tens of kilometers. There is a regional deepening of 100 m over 100 km from southwest to northeast across the site.

The site lies close to the magnetic bight, probably on Anomaly M13. Thus, the basement age is about 129 m.y.

The 3.5-kHz records show about 55 m of largely transparent sediment overlying a strongly reverberating reflector thought to be chert. The upper 20 m of section contain three strong and several weaker continuous reflectors. There is a weaker continuous reflector at 30 m and an intermittent weak reflector at about 50 m. On the basis of the *Vema*-36 piston cores, these reflectors were believed to be thin beds of volcanic ash. They allow precise correlations of piston and HPC cores.

The site selected for drilling is typical of the surrounding area for thousands of square kilometers.

OPERATIONS

We arrived at Site 576 after steaming for 10 days from Honolulu. This long transit provided an opportunity to check over the lab gear and process test "wash down" sections of core to iron out procedural questions in the lab. Air-gun and 3.5-kHz records collected en route to the site are of superior quality.

The D/V Glomar Challenger entered the E-2 survey area of R/V Vema Cruise 36-12 on 15 May 1982 (Z). Because of the detail of the Vema survey and uniformity of the surficial "transparent" layer, we pulled the air guns and magnetometer as we approached the site from the south and dropped the beacon at 2059Z on the basis of the 3.5-kHz profile.

Drill pipe run-in began at 2200Z on 15 May, with the first 9.5-m HPC core on deck at 1845Z on 16 May. The mud line at Hole 576 was established at 6220.3 m. Coring proceeded uneventfully for eight cores (Table 1), with significant time lost (7 hr.) only when the sand line parted during lowering of Core 7. The problem was attributed to "floating" of the core barrel because of the narrow clearance afforded by the undersize drift of the drill pipe and to omission of a swivel above the corer, again because of clearance problems. Fortunately the broken line caught in the first joint of pipe at the rig floor, thereby minimizing lost time. Because of this incident, however, the lowering speed was reduced for subsequent cores, thereby increasing on-site time.

Conventional heat flow/in situ pore water probe lowerings were made on three occasions in Hole 576. The heat flow system had equipment problems and did not generate usable data. The pore water appears to be seawater, probably because the sediment was not strong enough to support the bottom-hole assembly (BHA) and keep the probe in the sediment.

We had better luck with the new WHOI core nose temperature probe. Despite teething problems (the unit would not fit into its slot, even though the core nose sub had been at WHOI for some time, and the wires from the battery pack to the electronics unit break very easi-

Table 1. Site 576 coring summary (drilling depths).

Core	Date (May 1982)	Local time	Depth from drill floor (m)	Depth below seafloor (m)	Length cored (m)	Length recovered (m)	Percent recovered
Hole 576							
1	17	0545	6220.3-6223.0	0.0-2.7	2.7	2.71	100
2	17	0813	6223.0-6232.5	2.7-12.2	9.5	9.78	103
3	17	1031	6232.5-6242.0	12.2-21.7	9.5	6.64	70
4	17	1445	6242.0-6251.5	21.7-31.2	9.5	10.05	106
5	17	1655	6251.5-6261.0	31.2-40.7	9.5	9.81	103
6	17	2120	6261.0-6270.5	40.7-50.2	9.5	10.07	106
7	18	0805	6270.5-6280.0	50.2-59.7	9.5	9.78	103
8	18	1130	6280.0-6289.5	59.7-69.2	9.5	9.68	102
					69.2	68.52	99
					(total)	(total)	(avg.)
Hole 567A							
1	18	1530	6218.0-6227.5	0.0-8.7	8.7	8.68	100
2	18	1802	6227.5-6237.0	8.7-18.2	9.5	9.28	98
3	18	2045	6237.0-6246.5	18.2-27.7	9.5	9.77	102
4	19	0000	6246.5-6256.0	27.7-37.2	9.5	9.11	96
5	19	0335	6256.0-6265.5	37.2-46.7	9.5	9.75	103
6	19	0540	6265.5-6275.0	46.7-56.2	9.5	9.75	103
7	19	0820	6275.0-6284.5	56.2-65.7	9.5	9.86	104
					65.7 (total)	66.20 (total)	101 (avg.)
Hole 576B							
1	19	1105	6219.3-6227.5	0.0-8.2	8.2	8.21	100
2	19	1400	6227.5-6237.0	8.2-17.7	9.5	9.59	101
3	19	1625	6237.0-6246.5	17.7-27.2	9.5	9.70	102
4	19	1845	6246.5-6256.0	27.2-36.7	9.5	9.73	102
5	19	2130	6256.0-6265.5	36.7-46.2	9.5	8,98	95
6	20	0000	6265.5-6275.0	46.2-55.7	9.5	9.27	98
7	20	0305	6275.0-6284.5	55.7-65.2	9.5	9.71	102
8	20	0600	6284.5-6294.0	65.2-74.7	9.5	8.87	93
9	20	0810	6294.0-6294.1	74.7-74.8	0.1	0.01	10
					74.8	74.07	99

ly), the unit worked on 7 of 11 attempts. Unfortunately, we could not "ground truth" the new instrument with the conventional probe at this location.

Holes 576A (seven cores which were all left upright and unopened for shore-based geotechnical studies) and 576B (nine cores before terminating in chert) proceeded smoothly, with the final core on deck at 2110Z on 19 May (Table 1).

Examination of the cores from Holes 576 and 576B revealed several points of concern:

1. "Flow-in" within cores. On several occasions, cores contained intervals of flow-in separated by intervals of normal looking sediment. The gross layering in the flowin suggests that the HPC barrel was moving ahead as the piston was moving up (due to heave of the ship?). Thus, the sedimentary section is intermittently stretched, presumably with the loss of an equivalent amount of section from the bottom of the cored interval. This phenomenon introduces substantial uncertainties in the exact depths sampled

2. The interbedded clay-nannofossil ooze at the base of the section could be correlated in detail between the two holes. However, the sub-bottom depths were offset by 10 m, a displacement that is not evident in the 3.5-kHz records and that seems excessive given all the indications of laterally uniform post-chert deposition in the area. It is tempting to assume a one-stand (9.5-m) bookkeeping error during drilling of one of the holes, but we have no evidence of this. We hope that shorebased studies will allow the uniform dark brown clays that form the middle part of the cored section to be correlated in detail, thereby throwing additional light on this problem.

3. Shear strength profiles show a systematic decrease from the bottom of one core to the top of the next, even though all the sediments appear undisturbed. Whether this effect is due to progressive artificial consolidation, or to decreasing disturbance downcore is unclear. We favor the latter. It does indicate, however, that HPC samples must be used with caution for geotechnical studies.

Correlation of Holes 576 and 576B

The lithologic units recovered in Holes 576 and 576B are essentially identical (see Lithostratigraphy section that follows). However, the nominal sub-bottom depth (based on the drilling records) to the base of the clay unit (lithologic Unit I) is more than 10 m deeper in Hole 576 than in Hole 576B. In addition, the pattern of magnetic reversals in Cores 576-2 and -3 looks peculiar, and Hole 576B seems to be missing the Jaramillo Event. The remarkable depositional uniformity indicated by the *Vema*-36 piston cores and all the 3.5-kHz acoustic records near the site suggest that the differences in the nominal sub-bottom depths of lithologic boundaries in the two holes are spurious.

We have, therefore, attempted to adjust the core depths and location of "good" core (brecciated and flow-in material excluded) within cored intervals so as to minimize the differences between the two holes. The following "rules" and comments define what we did:

1. The top of Core 576-1 was placed at 4.5 m because of the short Brunhes record relative to Hole 576B and the presence of radiolarians older than 400,000 yr. in the uppermost sediments.

2. Based on the presence of the same volcanic ash bed and duplication of a portion of the magnetic record, we believe that Cores 576-2 and -3 sampled essentially the same early Matuyama section.

3. The absence of the Jaramillo Event in Hole 576B and the correlations of the Brunhes/Matuyama boundary and Olduvai Event between the two holes indicate that there is a gap of 3.4 m between Cores 576B-1 and -2.

4. Similarly, the correlations of the Olduvai Event and "friable"/"slick" boundary between the two holes indicates a gap of 2.4 m between Cores 576-2 and -4 (this interval corresponds to the incomplete recovery in Core 3).

5. To align the zeolitic interval of Subunit IB, and the Unit I/II boundary in the two holes, we have shortened Core 576-5 by 3 m. We hypothesize that the bumper subs may have closed at this point.

6. Intervals of no recovery, drilling brecciation, or flow-in are assigned to the bottoms of cores, unless a correlation is enhanced by attributing part of the defective interval to a core top or to its original position in the core (in the case of flow-in).

7. Except for the case described in (2) above, the adjustments do not lead to overlap of sections of "good" core within a hole.

8. Except for the case described in (5) above, the drillers' core lengths have been conserved. Only the sub-bottom depths have been adjusted.

For Hole 576B, the revisions are rather minor, but the interpretation of Hole 576 is significantly different. We have no simple explanation for the discrepancies, but feel that small topographic variations around the drill site, perhaps in combination with procedural adjustments accompanying the drilling of what was the first hole on Leg 86, may be responsible.

We believe that the section constructed from the adjusted core depths is a good first approximation to the *in situ* stratigraphy. Thus, although the acoustic profiler data were not used in the adjustments, the resultant depth of 55 m for the lithologic Unit I/II boundary is exactly as predicted from 3.5-kHz records. Small discrepancies undoubtedly remain. For example, we suspect that the ash at 12.5 m in Hole 576 lies in the gap between Cores 576B-1 and -2 (ash was found at the very top of Core 2), whereas the thicker ash at 16 m in Hole 576B should lie in the gap between Cores 576-2 and -4.

Table 2 allows depths in the core sections as labeled by DSDP to be converted to the new adjusted sub-bottom depth. Table 3 shows the depths drilled and "good" core recovered in Holes 576 and 576B in terms of the adjusted scale.

It is clear that the nominal 100% core recovery in each of the two continuously cored sections is somewhat misleading. In fact, the recovery of relatively undeformed core is closer to 80%. Fortunately, with the exception of about 2 m at an adjusted depth of 30 m, we managed to recover virtually the entire sediment section.

We departed the site at 1322Z on 20 May, steaming southeast and streaming the gear before profiling across the site en route to Site 577.

Table 2. Key to convert section depths in Holes 576 and 576B to sub-bottom depths in centimeters (see text for discussion).

Table 2. (Continued).

Section	Depth (cm)	Adjusted sub-bottom depth (cm)	Comments	Section	Depth (cm)	Adjusted sub-bottom depth (cm)	Comments
Hole 576			0-450 cm not recovered	Hole 576B (Cont.)		
1-1	0	450	Magnetics (B/M)	1.00	0	807	
1-2	Ō	600	(D) III)	1,00	2	1200	820-1165 cm not recovered
1,CC	0	707		2-1	5	1165	
2-1	0	720	Assumes no gap between Cores	2-2	0	1310	
			1 and 2	2-3	0	1460	
2-2	0	870			25	1646	1560-1645 cm disturbed
2-3	0	1020		2-4	35	1045	
2-5	0	1320		2-5	0	1910	
2-6	Ő	1470		2-7	õ	2060	
2-7	0	1620		2.CC	Ő	2098	
2,CC	0	1670		3-1	0	2110	
3-1	0	960	Repeat of Core 2 ash and	3-2	0	2260	
1000			magnetics	3-3	0	2410	
3-2	0	1110		3-6	21	2470	
3-3	0	1260		3-7	0	2599	
3-4	0	1410		3,00	0	2649	2671 2410
3.00	0	1500		4.2	100	2410	26/1-3410 cm not recovered
5,00	0	1332	1695-1980 cm not recovered	4-5	100	3460	
4-1	70	1980	Correlation of "rough-smooth"	4-5	ŏ	3610	
			boundary	4-6	õ	3760	
4-2	0	2060		4-7	õ	3910	
4-3	0	2210		4,CC	0	3962	
4-4	0	2360					3982-4010 cm not recovered
4-5	0	2510		5-2	0	4010	
4-0	0	2660		5-3	0	4160	
4-/	0	2810		5-4	0	4310	
5-1	40	2850	40 cm of cave-in debris	3-3	0	4460	
2.1	40	2000	2970-3158 cm not recovered	5-0 5-0	2	4010	
5-5	48	3158	Correlation of zeolitic clay	5,00	*	4755	4755-5070 cm not recovered
5-6	0	3260		6-1	110	5070	
5-7	0	3410		6-2	0	5110	
5,CC	0	3459		6-3	0	5260	
100	12/22	85/371 V	3459-3510 cm not recovered	6-4	0	5410	
6-3	70	3510		6-5	0	5560	
0-4	0	3590		6-6	0	5710	
6-6	0	3890		6,00	10	5852	6997 6012 am not recovered
6-7	ő	4040		7.1	5	5013	5887-5915 cm not recovered
6.CC	ŏ	4085		7-1	0	6058	
1000	40	4115		7-3	108	6208	
			4125-4460 cm not recovered	7-4	0	6250	
7-1	0	4460		7-5	0	6400	
7-2	50	4610		7-6	0	6550	
7-3	0	4710		7-7	0	. 6700	
7-4	0	4860		7,CC	0	6734	
. 7-5	0	5010				1010	6771-6860 cm not recovered
7-0	0	5100		8-1	115	6860	
7.00	0	5360		8-2	0	0895	
1,00	v	5500	5385-5425 cm not recovered	8-4	0	7195	
8-1	15	5425	soos suzs en not recorded	8-5	ő	7345	
8-2	0	5560		8-6	0	7495	
8-3	0	5710					7500-7610 cm not recovered
8-4	0	5860		9,CC	0	7610	Hole 576B, 7610 cm total depth
8-5	0	6010					sampled
8-6	0	6160					
8-7	0	6310					
8,00	0	6333			TTT	TIOSTDA	TICDADUV
	0	0338	Hole 576 6379 cm total depth		LU	HUSIKA	IIGKAPHI
			sampled	The sed	iments	recovered	at Site 576 can be divide
			Sampieu	into thread	itholog	a unite ha	ad on macroscopic core d
Hole 576B				into three I	ninolog	all de la	and and and
				scriptions,	smear	side analy	ses, and carbonate conte
1-1	0	0		data. The l	ithostra	tigraphic s	uccession observed in Hol
1-2	0	150		576 and 57	6B con	sists of a p	elagic clay unit overlying :
1-3	0	300		interhedda	1 nelaci	c clay_nan	nofossil or nannofossil f
1-4	0	450		interbedded	- peragi	t which .	turn overlies a short
1-6	0	750		aminifer o	oze uni	it which in	i turn overnes a chert ur
1-0	0	750		(The I The	1. 1)		

(Fig. 1, Table 4).

Table 3. Adjusted sub-bottom depths (in meters, see text for discussion) of Site 576 cores and intervals of good quality core.

	Hole	576	Hole	576B
Core	Length drilled (m)	Length recovered (m)	Length drilled (m)	Length recovered (m)
1	4.50-7.20	4.50-7.20	0.00-8.20	0.00-8.20
2	7.20-16.70	7.20-16.95	11.60-21.10	11.65-21.10
3	9.60-19.10	9.60-16.22	21.10-30.60	21.10-26.71
4	19.10-28.60	19.80-28.60	30.60-40.10	34.10-39.82
5	28.60-35.10 ^a	28.60-29.70 31.58-34.97	40.10-49.60	40.10-47.55
6	35.10-44.60	35.10-41.25	49.60-59.10	50.70-58.87
7	44.60-54.10	44.60-53.85	59.10-68.60	59.15-67.71
8	54.10-63.60	54.25-63.77	68.60-76.10	68.60-75.00
9			76.10-76.20	76.10-76.11

a 3 m short-bumper subs closed?

Unit I: Pelagic Brown Clay

Lithologic Unit I is a pelagic brown clay recovered in both Holes 576 and 576B. It is divided into two subunits as follows.

Subunit IA

Subunit IA is a pelagic yellowish brown to brown, visibly burrowed clay found in Samples 576-1-1, 0 cm to 576-4-6, 53 cm and 576B-1-1, 0 cm to 576B-3-6, 150 cm. This subunit is composed of alternating yellowish brown and dark yellowish brown to brown highly mottled clay with burrows. The abundance of visible burrows decreases downhole. With the exception of Core 576-1, which is a silty clay containing 20-45% quartz, this subunit contains greater than 80% clay-size material and less than 15% visible quartz. Hole 576 contains two layers of volcanic ash in this subunit; each is 1 cm thick. Hole 576B contains three volcanic ash layers in this subunit; they range in thickness from 1 to 3 cm. This subunit contains no nannofossils or foraminifers and less than 10-12% siliceous microfossils (diatoms and radiolarians). Sponge spicules and silicoflagellates are present in only trace amounts. The abundance of siliceous organisms decreases with depth.

Subunit IB

Subunit IB is an unburrowed, homogeneous dark brown pelagic clay found in Samples 576-4-6, 53 cm to 576-8-2, 8 cm and 576B-3-6, 150 cm to 576B-6-4, 121 cm. Zeolites, principally phillipsite, are present in abundances of up to 10% in Sections 576-5-4 to 576-5-6 and 576B-4-1 to 576B-4-5. These two zeolite-rich zones appear to be stratigraphically correlative. Traces of fish debris are found throughout this subunit. The boundary between the two Subunits IA and IB is gradational over several meters.

Unit II: Interbedded Calcareous Ooze and Pelagic Brown Clay

Lithologic Unit II is composed of interbedded calcareous oozes and brown pelagic clays found in Samples 576-8-2, 8 cm to 576-8,CC and 576B-6-4, 121 cm to 576B-8,CC. The thickness of the calcareous ooze intervals ranges from 0.10 to 3.0 m; that of the clay intervals ranges from 0.10 to 1.10 m. The carbonate content in the oozes ranges from 80-98%. The calcareous oozes in these intervals are predominantly nannofossil oozes; fora-minifers are present and increase in abundance down-core to 15% in Sample 576-8-6, 64-72 cm.

The interbedded calcareous oozes and pelagic clays in Hole 576 can be correlated layer-by-layer with those in Hole 576B (Fig. 2). Such a correlation indicates that the bottom of Hole 576 corresponds to Sample 576B-7-4, 110 cm. The thicknesses of the correlative layers are almost identical (Fig. 3) with the exceptions of the interval from Section 576-8-1 to the top of 576-8-2 and from Section 576B-6-4 to the top of 576B-6-5. In the latter hole the units are about 9% thicker (Fig. 4). In addition, the thickest calcareous ooze layer is 3.48 m thick in Hole 576, but 4.30 m thick in Hole 576B. This 0.82-m difference in layer thickness is likely due to "flow-in" in Hole 576B.

Contacts between the calcareous ooze and pelagic clay layers range from gradational to sharp. The base of each calcareous ooze layer is marked by a sharp contact, whereas the bases of the pelagic clay layers vary from very gradational to sharp.

Normal graded bedding is observed in the uppermost calcareous ooze layers in Samples 576-8-2, 8-21 and 34-66 cm and 576B-6-4, 121-132 and 150 cm to 576B-6-5, 40 and 60-80 cm. Normal graded bedding and small-scale crossbedding are also observed in the lower 20 cm of the thickest calcareous ooze layer in both holes (Samples 576-8-4, 25 cm to 576-8-6, 73 cm correlative to Samples 576B-7-1, 5 cm to 576B-7-3, 135 cm). These calcareous ooze layers all have sharp bottom contacts with the pelagic clay layers below. The graded bedding, small-scale cross bedding, and sharp basal contacts observed in these calcareous ooze layers suggest that they are turbidites. The other calcareous ooze layers lack these macroscopic features. It is uncertain, therefore, whether these deposits are also turbidites.

Unit III: Chert

Lithologic Unit III is a chert and/or silicified clay unit. It was not reached in Hole 576 and is only poorly recovered as small chips in Sample 576B-9,CC.

SEISMIC CORRELATIONS

High resolution seismic reflection profiles (3.5 and 12 kHz) and 100-Hz reflection profiles were recorded at Site 576. Both hull-mounted and near-bottom sound sources were utilized; the near-bottom transducer (3.5 and 5.25 kHz) was mounted on the drill string 99 m above the face of the drill bit. The quality of the 3.5-kHz echograms was substantially improved by repairing a factory-produced error in the booster for the hullmounted transducer.

The 3.5-kHz echograms from the hull-mounted transducer revealed a three-part seismic section (Figs. 5 and 6, Table 5). The upper seismic section extends to 0.025 s below the seafloor (about 18 m, Reflector 2) and consists of several parallel sub-bottom reflectors. The middle seismic section has a base with variable sub-bottom

Tabl	le 4		Site	576	lithostratigraphic	units.
------	------	--	------	-----	--------------------	--------

		Core	interval	Adj sub-bottor	usted n depth (m)
	Lithologic units	Hole 576	Hole 576B	Hole 576	Hole 576B
I	Pelagic brown clay Subunit IA:	1-1 to 8-2, 8 cm	1-1 to 6-4, 121 cm	4.5-55.7	0-55.3
	Pelagic yellowish brown to brown burrowed clay	1-1 to 4-6, 53 cm	1-1 to 3-6, 150 cm	4.5-27.1	0-26.2
	Subunit IB:				
	Unburrowed dark brown pelagic clay	4-6, 53 cm to 8-2, 8 cm	3-6, 150 cm to 6-4, 121 cm	27.1-55.7	26.2-55.3
11	Interbedded calcareous ooze and pelagic				
	brown clay	8-2, 8 cm to end of hole	6-4, 121 cm to 8,CC	55.7-63.8	55.3-76.1
III	Chert		9		76.1

Note: - indicates no data.

Figure 2. Correlation of interbedded calcareous ooze and pelagic clay layers in lithologic Unit II at Holes 576 and 576B.

depth (0.07–0.08 s, \sim 53–60 m) and consists of the essentially transparent section above Reflector 4. The lower seismic section consists of a strong, prolonged echo and a slightly deeper and weaker intermittent prolonged echo.

In the upper seismic section, strong echoes occur at 0.0053 s (~ 4 m), 0.016 s (~ 11.5 m, Reflection 1), and 0.025 s (~ 18 m, Reflector 2). Reflector 1 at about 11.5 m is probably the first ash layer (1.4 m.y. ago) encountered in Holes 576 and 576B. Reflector 2 at about 18 m probably represents the third ash layer recovered in Hole 576B. The interval thickness between Reflectors 1 and 2 (~ 6.5 m) is very similar to the observed thickness between the first and third cored ash layers in Samples 576B-2-1, 8 cm and 576B-2-5, 40 cm.

The middle transparent seismic section corresponds to the monotonous brown and reddish brown pelagic clay section cored between the ash layers and the interbedded pelagic clay and nannofossil ooze unit. Reflector 2a is closely associated with the transition between lithologic Subunits IA and IB (Fig. 6).

Reflector 3 (Figs. 5 and 6) is a strong, slightly prolonged echo that occurs 0.0695 s below the seafloor (~51.0 m). It is restricted to localized lows in Reflector 4 and has a ponded character. Although the ponded nature of Reflector 3 is consistent with the interpretation that it represents the calcareous turbidites of lithologic Unit II, the seismic interval thickness between the ash (Reflector 2) and Reflector 3 is about 33 m, whereas the interval thicknesses between the ash and the nannofossil oozes (turbidites) is 39 m.

Reflector 4 (Fig. 6, Table 5) defines the top surface of the lowest seismic section. The local relief on this surface suggests that Reflector 4 is not similar to the overlying ponded turbidites (Reflector 3). Reflector 4 may be a composite echo from turbidites in the local lows and chert on the local highs or it may represent single layers of relatively high density and viscosity. In either case, the thickness of the cored turbidite section (20.5 m) and the sub-bottom depth of the chert encountered at Site 576 (~76 m) do not permit positive correlation of the chert with the strong prolonged echo at Site 576. In order to correlate Reflector 4 with the cored chert, an improbable interval velocity of 2155 m/s would be necessary.

Reflectors 1 (ash), 2 (ash?), 4, and the intervening transparent layer can all be traced westward to the slopes of the Shatsky Rise and eastward for at least 400 km. Site 576 therefore provides control for not only regional lithologic but also time-stratigraphic correlations of Late Cretaceous and younger sediments.

The transducer mounted on the drill string returned weak seafloor echoes similar to those produced by the hull-mounted transducer, but Reflector 5 was more evident on the record of the drill string mounted pinger. The pinger-to-seafloor travel time showed that the Carter Correction Tables were 2 m too deep in this area (i.e., the seafloor depth is 6209, not 6211 m).

The 100-Hz records also reveal a three-part seismic section (Fig. 7): (1) weak, generally parallel reflections from 0 to about 0.05 s below seafloor, (2) strong, parallel echoes from 0.05 s to variable depths of 0.3 to 0.55 s

Figure 3. Graph comparing thickness of correlated calcareous ooze and pelagic clay layers at Holes 576 and 576B. N = nannofossil ooze layer. Inset: comparison of layer thicknesses, \bullet = red clay, \bigcirc = nannofossil ooze.

Figure 4. Graph comparing thickness of correlated calcareous ooze and pelagic clay layers in Holes 576 and 576B. (Expansion of lower part of graph shown in Figure 3.) N = nannofossil ooze layer.

below seafloor, and (3) very strong echoes that define a surface with very high relief. The upper section has a variable thickness of 0.05 to 0.07 s; the unit appears to "pond" in troughs of the underlying middle section. The

upper section may represent sediments above the Cretaceous chert, since the seismic thickness is about 75 m at the site and the cored thickness to chert is 74 m at Hole 576B. The middle section with variable thickness of 0.23-0.5 s consists of an upper unit (2a) of parallel reflectors with variable thickness that overlie a lower semitransparent unit (2b) of relatively constant thickness. Section 2 represents the Cretaceous nannofossil oozes and interbedded cherty sediments. The lowest section with very high relief is the echo off Cretaceous basement of M13 age (about 129 m.y.).

BIOSTRATIGRAPHY

Site 576 recovered 74 m of sediment ranging in age from late Quaternary through Late Cretaceous (Fig. 8). The sequence consists of 55 m of pelagic brown to yellowish brown clay overlying a unit composed of interbedded calcareous ooze and brown pelagic clays. A chert unit underlies this sequence.

Ichthyoliths, which were found throughout the clay interval, vary from rare to abundant in all samples. Nannofossils are restricted to the calcareous ooze layers where an abundant, moderately preserved Late Cretaceous assemblage is present. The brown clays are barren of foraminifers except for those few specimens that have been replaced by manganese oxide. The calcareous ooze layers contain abundant, well-preserved Upper Cretaceous

Figure 5. 3.5-kHz echogram from the hull-mounted transducer at Site 576 showing the three-part seismic section and reflectors described in the text. Sub-bottom depths to seismic reflectors are given in Table 5.

Figure 6. 3.5-kHz echogram from the hull-mounted transducer at Site 576 showing Reflectors 2a, 3, and 4 (Table 5) described in the text.

foraminifers. Although Quaternary-late Pliocene diatoms and radiolarians were found in the first several cores, they are abundant and well preserved only in the upper portion of Core 1 of each of the three holes.

The generally poor preservation and low abundance of each of the major microfossil groups precludes assignment of age boundaries to specific core sections at this site. Ichthyolith determinations indicate that the Oligocene/Miocene boundary lies between 32 and 35 m, the Eocene/Oligocene between 38.6 and 41.6 m, the Paleocene/Eocene between 44.6 and 51 m, and the Cretaceous/Tertiary boundary between 51 and 55 m.

Table 5. 3.5-kHz seismic correlations, Site 576.

	Delative	Sub-bottom	Depth (m)								
Reflector	strengtha	(s)	1440 m/s	1500 m/s	1550 m/s	1574 m/s					
	S	0.00526	3.8	3.9	4.08	4.1					
1	S	0.0158	11.3	11.85	12.24	12.43					
	w	0.0200	14.39	14.92	15.49	15.73					
	w	0.0210	15.1	15.75	16.28	16.57					
2	S	0.0247	17.78	18.50	19.10	19.47					
2a	w	0.0358-0.0389	25.78-28.01	26.85-29.18	27.74-30.15	28.17-30.61					
3	S	0.0695	50.04	52.12	53.86	54.70					
4	S	0.0705-0.0800	50.77-57.53	52.80-59.90	54.60-57.90	55.49-62.90					

^a S = strong; W = weak

Calcareous Nannofossils

The first seven cores recovered at Hole 576 were barren of calcareous nannofossils. Coccoliths are present only in samples from Core 8, where they occur in the calcareous ooze layers interbedded with pelagic brown clays. The common and moderately well preserved coccolith assemblages belong to the *Quadrum trifidum* Zone (upper Campanian).

The first five cores recovered at Hole 576B were barren of calcareous nannofossils. From Section 576B-6-4 to Sample 576B-9,CC, poorly to moderate preserved nannofossils of the Campanian *Q. trifidum, Ceratolithoides aculeus*, and *Broinsonia parca* Zones occur (Thierstein, 1976).

Foraminifers

Core-catcher samples were examined from all eight cores of Hole 576. Foraminifers were found in two Tertiary samples (576-3,CC and 576-4,CC). The individuals were completely replaced by manganese oxide and were difficult to distinguish from micronodules. This phenomenon was recorded by Thompson (1980) in the Japan Trench. The replaced foraminifers were abundant in Sample 576-3,CC, rare in Sample 576-4,CC and absent in Samples 576-1, -2, -5, -6, and -7, CC. Species included: *Globigerina dutertrei*, *G. linaperta*, *Pseudohastigerina wilcoxensis*, *Lagena* spp., and *Pullenia* spp. Rare specimens of the agglutinate form *Reophax difflugiformis* were found in Samples 576-1-1, 56-58 cm and 576-1, CC.

Abundant, moderately preserved foraminifers of Campanian age from the Globotruncana fornicata-G. stuartiformis Zone (Pessagno, 1967) were found in Sample 576-8, CC. Species include: Globotruncana lapparenti, G. bulloides, G. angusticarinata, Globigerinelloides asperus, G. prairiehillensis, Hedbergella planispira, Hastigerina watersi, Heterohelix spp., Lagena spp., and Gyroidina spp.

Samples from Hole 576A were not examined.

Samples 576B-1, CC to 576B-5, CC were barren of any foraminifers. Rare Mn-replaced specimens were found in Samples 576B-2-4, 130–132 cm; 576B-3-1, 92–94 cm; and 576B-3-4, 92–94 cm. Rare benthic foraminifers were found in Sample 576B-6, CC. These were: three specimens of Anomalinoides pinguis and two Gavelinella cf. velascoensis. Rare specimens from Sample 576B-7, CC were caught on the 149- μ m sieve. Three agglutinate species were observed including: Paratrochomminoides vitreus, Praecystammina globigerinaeformis, and the torus-shaped solution remnants of a third species. Other species include: Anomalinoides pinguis, Gavelinella cf. velascoensis, and Globigerina eugubina.

Samples 576B-8,CC and 576B-9,CC were barren in the fraction larger than 149 μ m. The 62.5- to 149- μ m fraction of both samples contained an abundant, wellpreserved Upper Cretaceous fauna (zone uncertain). Representative species include: Globigerinelloides volutus, G. subcarinatus, G. multispinus, Heterohelix striata, H. navarroensis, H. cf. globocarinata, and Hastigerina spp. Preliminary examination has revealed no specimens of Globotruncana. This genus is most important for the identification of Upper Cretaceous zones.

Figure 7. 100-Hz reflection profile taken on approach to Site 576 showing the three-part seismic section described in the text.

Figure 8. Site 576 biostratigraphic summary.

Radiolarians

Radiolarians are present in the first three cores at Site 576 (Section 576-1-1; Samples 576-1,CC; 576-2,CC; and 576-3,CC). The sediments in Core 576-1 are Pleistocene in age, with species characteristic of the *Botryostrobus aquilonaris* Zone (Hays, 1970) and the *Stylatractus universus* Zone (Hays, 1970) in sediments from the top and bottom of Core 576-1, respectively. Poorly preserved specimens are present in the core-catcher samples from Cores 576-2 and 576-3. Radiolarians are absent in corecatcher samples from Cores 576-8 from this hole contains poorly preserved Upper Cretaceous radiolarians.

Core 576A-1 contains common, moderately well-preserved radiolarians belonging to the *S. universus* Zone (Sample 576-1,CC) with only a few specimens present in Core 2 (Sample 576-2,CC). Core-catcher samples from subsequent cores are barren (Samples 576-3,CC through 576-7,CC).

The radiolarian fauna in Core 576B-1 (Section 576B-1-1; Sample 576B-1,CC) is Pleistocene in age with preservation decreasing rapidly from good at the core top to poor at the base. Core 576B-2 (Sample 576B-2,CC) from this hole contains only a few specimens and Core 576B-3 (Sample 576B-3,CC) is barren.

Diatoms

Diatoms become increasingly less abundant between Cores 576-1 and 3 and are absent from Cores 576-4 to 8. The presence of *Pseudoeunotia doliolus* and the absence of *Nitzschia reinholdii* and *N. fossilis* in Core 576-1 places the sample in the middle to late Quaternary *P. doliolus* Zone (Brunhes Normal Epoch, 0-0.73 m.y. ago; Burckle, 1977). Rare to few specimens and fragments of specimens of a moderately preserved Neogene species, *N. reinholdii, Nitzschia* spp., and *Coscinodiscus* spp., were recovered in Cores 576-2 and 3 from this hole. These assemblages consist of diatom taxa that are commonly found in warm water regions.

Only fragments of some Neogene species, N. reinholdii, Thalassiosira lineata, and T. oestrupii, were recovered in Cores 576A-1 through -3. In Core 576A-1, however, many fragments of moderately preserved Ethmodiscus rex were encountered. Diatoms were not found below Core 576A-4.

Core 576B-1 contains only a few fragments of some Neogene species, Coscinodiscus sp., E. rex, T. lineata, and *Thalassiothrix longissima*. Diatoms are absent from Cores 576B-2 to 9.

Ichthyoliths

Ichthyoliths are present throughout Hole 576A. Their abundance ranges from rare in the rapidly accumulating sediments in the top two cores to a peak abundance typically found near the Paleocene/Eocene boundary. Ichthyoliths in Cores 576A-1 and 2 are late Miocene or younger based on the coherent range of *Narrow triangle ragged base*. Core 576A-3 and Sections 576A-4-1 and -3 are Miocene with a rich and diverse assemblage of characteristic taxa. Representative subtypes are: *Two triangles, Triangle sinuous inline, Elliptical with line across,* and *Triangle irregular base.* Section 576A-3-3 contains an aberrant, very sparse assemblage of foraminifers, radiolarians, diatoms, and ichthyoliths. The ichthyoliths indicate only that the sample is Miocene.

The Oligocene/Miocene boundary falls between Sections 576A-4-3 and -4-5 based on the first occurrence of *Triangle with high inline apex* in Section 576A-4-5 and the first occurrence of *Small triangle long striations*, as well as the first occurrences of the discriminating Miocene taxa listed above, in Section 576A-4-3. The first appearance of *Rounded apex triangle* and *Flexed triangle shallow in base* in Section 576A-5-1 correlates with an early Oligocene age.

The Eocene/Oligocene boundary lies between Sections 576A-5-1 and -5-3. Sections 3 and 5 of that core are Eocene, most probably early and middle Eocene based on the absence of younger taxa and the presence of subtypes characteristically found in abundance in the Eocene: *Triangle with triangular projection, Triangle pointed margin ends*, and *Triangle medium wing*.

The Paleocene/Eocene boundary is between Sections 576A-6-1 and -6-3 and the Cretaceous/Tertiary boundary is between Sections 576A-6-3 and -6-5. The Cretaceous assemblages in Sections 576A-6-5 and -7 include subtypes Striated blunt triangle, Triangle long inline, Triangle square inline, and Wide triangle projection.

In Hole 576, the Cretaceous/Tertiary boundary is below Sample 576-8-1, 25 cm. In Hole 576B, the boundary is below Section 576B-6-3.

PALEOMAGNETICS

Detailed paleomagnetic studies of Site 576 samples are reported in a later chapter (see Heath, Rea, and Levi, this volume). Initial results indicate that the Brunhes/Matuyama boundary (0.73 m.y.) lies at 7.05 m subbottom and the Matuyama/Gauss boundary (2.47 m.y.) at 18.21 m sub-bottom. The Jaramillo boundaries (0.91 and 0.98 m.y.) were found at 8.95 and 9.85 m sub-bottom, and the Olduvai boundaries (1.66 and 1.68 m.y.) at 14.85 and 16.3 m sub-bottom, respectively. These levels correlate well with reversals recorded in *Vema*-36 cores collected near Site 576.

SEDIMENT ACCUMULATION RATES

An accurate shipboard determination of sedimentation rates at regular intervals throughout the sediment sequence recovered at Site 576 is difficult because calcareous and siliceous microfossils are not present in most of the cores. The age of the top of the hole is based on radiolarian stratigraphy with paleomagnetic data providing input for rates through the last 2.5 m.y. Ichthyolith stratigraphic ranges constrain ages in the least fossiliferous clays, but not very precisely (Fig. 9). Through the upper 18 m, the sedimentation rate decreased from 9.7 m/m.y during the Brunhes to about 2 m/m.y. at the base of the Matuyama (Fig. 10). A smooth sedimentation rate curve from 2.5 to 70 m.y. yields rates of about 1 m/m.y. at 5 m.y., decreasing to about 0.35 m/m.y. at about 40 m.y., and then increasing slightly to about 0.6 m/m.y. in the Late Cretaceous.

PHYSICAL PROPERTIES

Physical properties measurements at Site 576 were performed using mainly standard DSDP methods (Boyce, 1976a, b; Introduction and Explanatory Notes, this volume). Table 6 summarizes the properties that were measured at Holes 576 and 576B. Cores from Hole 576A were left unopened and used exclusively for detailed shorebased laboratory geotechnical tests (Marine Geotechnical Consortium, this volume). Figures 11, 12, and 13 show profiles of shear strength, compressional and shear wave velocity, and saturated bulk density and water content, respectively.

Measurements were taken at approximately 1.5-m intervals throughout the cores in Holes 576 and 576B. A full discussion of the physical properties of the recovered sediment, including tables of the data, is given by Schultheiss (this volume). However, some of the more interesting features of the data are highlighted here:

1. Shear strengths and shear wave velocities in the carbonate layers are generally much less than in the brown clay. This does not necessarily mean that the *in situ*

Figure 9. Age-depth curve for Site 576. PM = paleomagnetics, I = ichthyoliths, F = foraminifers, N = nannofossils.

Figure 10. Age-depth curve for near-surface Site 576 sediments based on magnetic reversals.

lable	6.	Physical	properties	measurements
ma	ade	at Site 5	576.	

-

	Hole 576	Hole 576B
Shear strength		
Hand operated vane	x	x
Motorized vane	x	x
Wave velocity		
Shear wave	x	х
Compressional wave	x	х
Water content/bulk density		
Shipboard analysis	x	-
Shore-based analysis	x	х
Bulk density by 2 min. GRAPE	x	-

strengths vary by this amount; rather, it is probably caused by different forms of stress disturbance in the different lithologies.

2. Where there is a large amount of visual disturbance ("flow-in"), the shear strength in the brown clay is markedly reduced whereas the shear wave velocity is only slightly reduced.

3. The large increase in the shear strength and shear wave velocities in the brown clay below 65 m in Hole 576B may be indicative of the onset of diagenesis (Figs. 11 and 12).

4. The compressional wave velocity profile shows no obvious trend through the brown clay section and is always less than the water velocity. Peaks in the compressional wave velocity correspond to ash and carbonate layers (Fig. 12).

5. The uniformity of shear wave velocities measured parallel and perpendicular to the core axis indicates a total lack of anisotropy within any of the lithologies.

6. Water content increases markedly by up to 220% between 11 and 20 m in the brown clay unit before it gradually decreases to 110% at 50 m (Fig. 13). The cause of this is not known but a change in mineralogy, similar to that found in LL44-GPC3, is suspected. The increase in water content is consistent with a decrease in shear strength around 16 m as shown in Figure 11. Higher frequency fluctuations in water content (on a scale of approximately 0.5 m) occur in the brown clay and reflect subtle changes in lithology which are not yet understood.

INORGANIC GEOCHEMISTRY

Seven squeezed core samples from Hole 576A and three *in situ* pore water samples (PW-1, PW-2, and PW-3) from Hole 576 were analyzed for the standard suite of components: pH, alkalinity, salinity, calcium, magnesium, and chlorinity (Table 7). The squeezed samples show very little variability downcore, as would be expected from the very slow deposition rate of the pelagic clays which allows diffusional equilibration (Fig. 14).

The *in situ* samples look much like surface seawater, apparently somewhat diluted with distilled water (from the sampler) in the case of Sample PW-3. In all three cases, the Mg/salinity and chlorinity/salinity ratios are so close to surface seawater that contamination by drilling fluid is suspected. We assume that this was caused by the sediments being too weak to support the BHA, thereby allowing the heave of the ship to move the probe into and out of the sediment as it was drawing a sample. Mechanically, the operation of the probe with an HPC BHA did not cause any problems.

HEAT FLOW

A new heat flow instrument, developed by R. P. Von Herzen and others at WHOI, was used for the first time to record bottom hole temperatures. The instrument, specifically designed for use with the HPC, consists of a temperature sensor (thermistor), a recorder, and a battery pack that are inserted as a unit into a slot opened in the metal wall of the corer's shoe so that the temperature sensor is placed close to the shoe's tip. The recorder is a battery powered minicomputer that stores data of measured temperatures as a function of time at intervals specified by a program that is loaded into the computer prior to the operation. This instrument, which provides an efficient way of measuring undisturbed sediment temperature without interfering with the core-sampling process, was used throughout Leg 86.

Out of 11 test runs made at Site 576 (5 in Hole 576, 3 in Hole 576A, and 3 in Hole 576B), 7 (2 in Hole 576, 3 in Hole 576A, and 2 in Hole 576B) were successful. The reasons for the unsuccessful runs varied from case to case. However, either electrical disconnection between the recorder and the battery or problems with computer programming due to inexperienced operators (as the instrument is totally new) generally were responsible.

Figure 11. Plot of shear strength versus sub-bottom depth for Site 576.

Figure 12. Plot of compressional and shear wave velocities versus sub-bottom depth for Site 576.

Figure 13. Profiles of saturated bulk density and water content versus sub-bottom depth for Site 576.

Table 7. Inorganic geochemistry measurements at Site 576.

Sample	pН	Alkalinity (mEq/l)	Salinity (‰)	Calcium mM	Magnesium mM	Chlorinity (‰)
IAPSO	7.74	2.59	35.2	10.55	53.99	19,376
SSW	8.22	2.46	35.2	10.15	53.79	19,174
PW-1	8.26	3.00	35.5	9.79	54.93	19.309
PW-2	8.30	2.53	35.2	9.96	53.31	19.073
PW-3	8.39	2.78	33.8	10.51	51.19	18.264
576A-1-4, 140-150 cm	7.11	2.63	35.2	10.37	53.62	18,871
576A-2-4, 140-150 cm	7.14	2.63	35.5	10.56	53.61	19,208
576A-3-5, 130-140 cm	7.19	2.84	35.5	10.65	51.29	19,174
576A-4-4, 140-150 cm	7.19	2.97	35.5	11.24	51.97	19.342
576A-5-4, 140-150 cm	7.34	3.14	35.5	10.96	53.03	19,376
576A-6-5, 130-140 cm	7.52	3.14	35.5	11.07	53.29	19.275
576A-6-5, 130-140 cm	7.29	2.71	35.8	10.06	53.45	19.275
576A-7-4, 130-140 cm	7.51	2.85	35.5	10.67	53.27	19.140

Temperature data for the successful runs, taken at 10-s intervals for a duration of more than 5 min., clearly show the changing thermal environment at the tip of the HPC. The portion of the cooling curve resulting from the dissipation of frictional heat generated by the HPC as it entered the sediment is most important for estimating the undisturbed sediment temperature. Analyses of the data from all successful runs yield a good estimate of the temperature profile in the unlithified sediments at Site 576 (see Horai and Von Herzen, this volume).

Thermal conductivity measurements on the recovered cores form an integral part of the heat flow study. Measurements were made on 211 samples selected from the cores of Holes 576, 576A, and 576B. These data are combined with the temperature measurements to compute the heat flow at Site 576 (see Horai and Von Herzen, this volume).

SUMMARY AND CONCLUSIONS

Site 576 sampled about 55 m of pelagic clay overlying 20 m of interbedded carbonate turbidites and pelagic clay, before terminating on chert at 76 m.

The upper 25–30 m of clay is yellowish brown, silty, and slightly biosiliceous. It yields a consistent natural remanent magnetization (NRM) record that fits the standard geomagnetic time scale. By analogy with other North Pacific clay sections, we infer that this section is dominated by eolian debris from Asia that increased from the late Miocene or early Pliocene to the late Pleistocene as the onset of northern hemisphere glaciation made large amounts of material available for wind transport. The rate of accumulation of the yellow brown clay has increased from about 2 m/m.y. in the Pliocene to almost 10 m/m.y. during the Brunhes.

The lower dark brown pelagic clays (about 28 to 55 m sub-bottom) are very homogeneous, "slick," and fine grained. Again, by analogy with other North Pacific sections, we infer that much of this material is authigenic. Preliminary ichthyolith dates suggest that the accumulation rate decreased from about 0.6 m/m.y. during the Late Cretaceous to 0.35 m/m.y. at 40 m.y. ago, then increased to about 1 m/m.y. at 2.5 m.y. ago.

Below 55 m, the pelagic clay is interbedded with nannofossil and foraminifer-nannofossil oozes, some, if not all, of which show the graded bedding characteristic of turbidites. The absence of fossils younger than Campanian in the ooze beds suggests that the clays are at least that old and may well be contemporaneous with the

Figure 14. Profiles of pH, alkalinity (mEq/l), salinity (‰), chlorinity (‰), calcium (mM), and magnesium (mM) versus sub-bottom depth (m) from interstitial water samples analyzed at Site 576. Symbols are as follows: $\triangle =$ IAPSO and SSW standards; $\odot =$ samples from Hole 576A; $\boxdot =$ in situ pore water samples from Hole 576.

ooze. If so, the carbonate may be of local derivation, having slumped off nearby hills during a period of enhanced carbonate deposition due either to depression of the calcite compensation depth or increased carbonate productivity or both.

Drilling was terminated by a chert layer that stopped the HPC. The few chips recovered are "flinty" chert and light gray porcellanite typical of silicified pelagic carbonates.

Most of the physical properties of the pelagic clays change fairly monotonically downcore. Both the shear wave velocity and vane shear strength increase by more than an order of magnitude from the surface to 70 m. The deeper clays interbedded with the carbonates are significantly more indurated than the shallower beds. Whether this reflects enhanced diagenesis due to the enclosing carbonate or proximity to the chert remains to be determined. In contrast to the shear wave velocities, the compressional wave values in the clays hover in the vicinity of 1440 m/s. Carbonate values range up to 1510 m/s, explaining why the clay/ooze boundary is such a good acoustic reflector. The water content values peak at about 15-20 m sub-bottom. We attribute this to an increase in the abundance of smectite relative to illite at the base of the eolian-dominated section and continuing downcore. This hypothesis will be tested in shore-based studies.

Site 576 met its objective of recovering a "type" northwestern Pacific pelagic ("red") clay section. If, as suggested by the preliminary results, deposition has been continuous throughout the Cenozoic, this section will provide a record of eolian and authigenic deposition comparable to that in LL44-GPC3.

REFERENCES

- Boyce, R. E., 1976a. Definitions and laboratory techniques of compressional and sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. *In Schlanger, S. O., Jackson, E. D., et al., Init. Repts. DSDP*, 33: Washington (U.S. Govt. Printing Office), 931-958.
- _____, 1976b. Deep Sea Drilling Project procedures for shear strength measurements of clayey sediment using modified Wykeham Farrance Laboratory Vane Apparatus. *In* Barker, P., Dalziel, I. W. D., et al., *Init. Repts. DSDP*, 36: Washington (U.S. Govt. Printing Office), 1059–1068.
- Burckle, L. H., 1978. Early Miocene to Pliocene diatom datum levels for the equatorial Pacific. Geol. Res. and Dev. Centre, Repub. of Indonesia, Special Publ., 1:25-44.
- Damuth, J. E., Jacobi, R. D., and Hayes, D. E., 1983. Sedimentation processes in the Northwest Pacific Basin revealed by echo character mapping studies. *Geol. Soc. Am. Bull.*, 94:381-395.
- Hays, J. D., 1970. Stratigraphy and evolutionary trends of Radiolaria in North Pacific deep-sea sediments. *In Hays*, J. D. (Ed.), *Geological Investigations of the North Pacific*. Mem. Geol. Soc. Am. 126: 185-218.
- Pessagno, E. A., 1967. Upper Cretaceous planktonic foraminifera from the western Gulf Coastal Plain. *Paleontographica Americana*, 5(37): 245-445, pls. 48-101.
- Thierstein, H., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar. Micropaleontol., 1:325-362.
- Thompson, P. R., 1980. Foraminifers from Deep Sea Drilling Project Sites 434, 435, and 436, Japan Trench. In Scientific Party, Init. Repts. DSDP, 56, 57, Pt. 2: Washington (U.S. Govt. Printing Office), 775-807.

Information on core description sheets, for ALL sites, represents field notes taken aboard ship under time pressure. Some of this information has been refined in accord with postcruise findings, but production schedules prohibit definitive correlation of these sheets with subsequent findings. Thus the reader should be alerted to the occasional ambiguity or discrepancy.

68

SITE 576

	APHIC	L	F CHA	OSS	TEP								
TINU	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DESCRIPTION
							1	0.5	GTP	00 2	*		INTERBEDDED PELAGIC CLAY and NANNOFOSSIL ODZE • Dominant bolors: pelagic clay intervals are very dark garyish boom (10YR 7.5/4), very pale brown (10YR 7/3-7/4), and light yellowish brown (10YR 6/4).
						c			рр рр 			10YR 7.5/4	This core consists of interbedded homogeneous pelagic clay and namofosil ooze. Solit intervals in Section 1 are very deformed by deilling; the rest of the split intervals are only slightly deformed.
							2	- from	GTP		×		NOTE that Sections 4 and 6 of this core were mistakenly cut to only 140 cm total length onboard ship. Core section dividers on this barrel sheet have been adjusted accordingly.
(u								-				10YR 7.5/4	
eous (Campania							3	- de la comp		1	ľ	10YH 7.5/4	
ber Cretac									GTP				
Idn						C		from 1	рр GTP L- <u>L</u>- <u>Т</u>-			10YR 7.5/4	
	eous						4	- diam	GTP				
	1: Cretac							-	GTP				
							5	- Aller	GTP			10YR 3/2 10YR 7/3	
	zorei					c		1		:		10YR 3/2 10YR 6/4	
	B. porca-C. oculeus						6	the fame	GTP GTP		* *	10YR 7/3	
	ž						7	the second second	GTP			10YR 7/3	
			414				- CC		· · · · ·	12	*	10YR 3/2	

SITE 576 HOLE B	CORE 2 CORED INTERVA	6227.5-6237.0 mbsl; 8.2-17.7 mbsf	SITE 576 HOLE B CORE 3 CORED INTERVA	L 6237.0-6246.5 mbsl; 17.7-27.2 mbsf
TIME – ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINITERS AMANNOFOSSINS ADDIOLATIANS	BELEVICION GRAPHIC GRAPHIC GRAPHIC GRAPHIC GRAPHIC GRAPHIC STUDIES GRAPHIC GRAPHIC GRAPHIC STUDIES GRAPHIC GRAPHIC STUDIES	LITHOLOGIC DESCRIPTION	TIME - ROCK INIT CHARACTER	LITHOLOGIC DESCRIPTION
B B B RP B		PELAGIC CLAY ¹ Orminant colors: brown (107R 5/3) and brown (7.5YR 5/4) in Section 5, 140 and 1978 4/3) to dark brown at the base of Section 5, Reddah yellow (107R 6/1) and in Section 5, 40 cm, -1 This core is slightly deformed throughout, except for a suppy section in the base of Section 3 and top of Section 4. ¹ This core is tomposed of pelagic day darkning in color downcree with buildnet mottles. Two ash layers were cored at Section 4. 40 cm and Section 5, 0, 40 m, -1 This core is composed of pelagic day darkning in color downcree with buildnet mottles. Two ash layers were cored at Section 4. 40 cm and Section 5, 0, 40 m, -1 This core is composed of pelagic day darkning in color downcree with buildnet mottles. Two ash layers were cored at Section 4. 40 cm and Section 5, 40 cm. SECAR SLIDE SUMMARY (%): 1, 3 1, 120, 2, 70 3, 96 4, 30 4, 40 M M M M M M M M M M M M M M M M M M		PELAGIC CLAY "Dominant color: dark brown (19YR 4/3) and dark yellowith brown (19YR 3/4) clay grading to dark town (7,5YR 3/2) clay blow Section 6. "This core has been slightly deformed, except for Section 4 and 5 which were very deformed. "This core has been slightly deformed, except for Section 4 and 5 which were very deformed. SMEAR SLIDE SUMMARY (%): 1,50 3,50 3,124 4,40 5,80 6,70 7,30 D<

L

	PHIC		F	OSSI	L TER			1										
UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNDFOSSILS	RADIOLARIAMS	DIATOMS	ICHTHYOLITHS.	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOL	ogic di	ESCRIF	TION			
								0.5-		200		INTERBI 	DDED	PELAC	GIC CLA	Y AN	D NAI	NOFOSSIL
							1	1.0				 Domini 3/2) Sectio in Sec ish, ye yellow (10/F) and dia 	ant cold rading 1 4, and ion 5, M low (10 ish brow 6/8), B rk brown	trs: clay downoo i to da lannofo IYR 6/ wn (10 urrows n (7.5Y	y interval ore into ark yello sail ooze 4), yello DYR 5/6 are dark R 4/4).	Is are o brow wish 1 interv wish 1 i), and reddis	fark br n (7.5 arown als are prown f brow h brow	own (7.5YR YR 4/4) in (10YR 3/4) light brown- (10YR 5/8, nish yellow n (5YR 3/4)
	au									i a		*Excep 1, this	for the	breccii lightly d	ated and deformed	soupy throu	portion ghout	ns of Section
	Q. triffdum zi						2					" This petagi ooze. indica	cite cor clay ar Several ing depo	ntains i nd brow of the sition b	nterbedd wnish ye ooze lay oy turbid	led ho flow n yers an ity cur	magen nottled e norm rents.	eous brown nannofossil sally graded,
	z											Note:	Core Cat	cher is	30 cm in	length	Ę	
									-			SMEAR SLIDE S	2, 50	Y (%): 3, 10	0 4, 30	4, 10	0 4, 11	10 4, 125
												Texture:	D	D	D	D	D	D
								1.1	-			Sand	2	1	2	0	0	1
							1	1.1	-			Clay	94	97	88	95	90	85
ŝ.		1							-		•	Composition:						
5												Quartz	1	1	5	5	2	5
5								-	-			Feldspar	94	97	78	3	89	10
2												Volcanic class	2	2	4	2	2	Tr
								1.1			•	Palagonite	~	Tr	-	-	-	21
								1			. 1	Micronodules	2	Tr	-		-	-
								-				Foraminiters	-	-			11	11
							4	1.2		1		Radiolarians			- 21	S	Tr	0
								1 2	-	111		Hematite	1	Tr	10	5	3	2
									1.1.1				5, 20 D	5, 10 D	05 6, 20 D	6, 11 D	0 CC	
								-		114		Texture:						
		1	1.0			[]		100				Sand	0	0	0	1	1	
									1	113		Silt	50	10	40	9	19	
		Ε.	1					1 2		111	1	Camposition	50	90	80	90	00	
		11	1						1 1 1	117	۰ ا	Quartz	5	5	7	3	2	
			1				5		<u></u>	1 2.	-	Feldspar			-	1	-	
		1	1			L (12				Heavy minerals	2	-	-		-	
	2							1.3		11,	1.1	Clay	15	83	20	10	2	
	201	1										Volcanic glass	2		D	1	1	
	site	1	1					-	L	1 3	1	Zaplite	Te	2	3	-	2	
	no,	1								111		Carbonate unorse	5	- 21	15	-	-	
	inti)		1								1.1	Foraminifers	70	-	-	Tr	-	
	stui							1	1 - L , L , J	11	1	Calc, nannofossil	2	5	50	85	95	
	10								F ;	111	1	Hematite	-	5	-	Tr	-	
	ata)	1					6		the stands of	1 1 1 1	1							30 B.E
	-we					1			L. L. L.	115	1	CaCO3	lata:	4,	129 cm -	83%	6,	110 cm = 84
	for	1	1		(1 + + +	1.1				5,	167 cm =	88%	CC	, 30 cm = 88
	0	1	1	1				1.3		1 1								
			1			1	-	-										
		1 PA	6 00	I B	I.R	A I	ICC	1	, - , - he	1 1 1	1.4							

SITE	576	63	HOL	.E	В		cc	RE	7 CORED	INTER	VAL	6275.0-6284.5 mbsl; 55.7-65.2 mbsf
	PHIC		FOSSIL									
TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	SECTION	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							3	0.5			•	INTERBEDDED PELAGIC CLAY AND NANNOFOSSIL OOZE * Dominant colors: clay is dark brown (10YR 3/3) chang ing to dark yellowish brown (10YR 3/4) below Section 3. Nannofossil doora is wery paie brown (10YR 7/4) Minor colors: clay contains brown (15YR 5/4) and brown (10YR 5/3) mottles. Section 3 contains lamina tions of nannofossil coze colored wtry pale brown (10YR 7/4), pink (7.5YR 8/4), light gav (10YR 7/2) white (10YR 8/2), and gay (10YR 5/1).
								-				* Core is slightly deformed throughout.
							2	the second s			 Thick nannofossil ooze layer in Sections 1 to 3 is norm, graded and crossbedded at lower 20 cm with sharp bott contact with underlying perlagic clay layer, thus, app to have been deposited by a turbidity current. Rest of o layers have sharp bottom contacts, but no obvious gradi 	
												SMEAR SLIDE SUMMARY [%]
								2				1, 4 1, 100 2, 75 3, 50 3, 115
								- 7				D D D D D
-		[]	1		0			-		1.1	[]	Sand 3 0 1 0 5
10							3	- 3			•	Silt 12 10 19 40 15
ad .								1.5				Clay 85 90 80 60 80
5								-				Composition
10.00	1.0							1 2		1	*	Quartz 7 5 7 5 4
0	uo.							- 2			1 1	Claw 10 10 10 20 10
the	11							1.11		1	1 1	Volcanic glass 2 2 Tr 2 5
ō	icho							1	·		1 1	Pyrite 1 -
De l	in the									1	1	Micronodules 1 -
3	Ci i							1.3	1		·	Carbonate unspec 1 -
	z				L		4					Foraminifers 3 5
												Cate, namotossis 73 80 80 70 75 Opagues — Hematite and
								- 5	1			Goethite 3 - Tr
					1	1						3, 120 3, 130 4, 75 6, 35 6, 125
		[]				1		-	L		1 1	D D D D
								-	L+_+	11		Texture:
								1		11	11	Sand 6 3 0 0 0
					L			13	· - ·			Clav 74 80 50 85 40
							5	-				Composition:
						1		1.0		1 1	•	Quartz 7 5 20 5 10
										4.1	11	Feldspar 2 3
								1.1				Volconic class 3 5 2 - 2
								-	L			Pyrite1 Tr
200								-	+- + + + -			Micronadules 1 Tr -
12	đ							1.5		111	1.1	Zeolite 1 - 1
UND.	1 20							1.0	-		11	Foraminiters 5 - Tr - 2
rtil	ferra							1.1	+, -, +	1.1-	1	Calc. nannofossils 67 80 65 3 75
thus	actu						6	1.3				Opaques
15	U.									1 -		Hematite and
141	z				1			1.1	1	11	1.1	Goethite T 10 Tr
ų,									1 × 1 × 1 -	11		CaCO ₂ data: 1, 86 cm = 91% 4, 80 cm = 89%
am					1			1	+ + + -	41		2, 86 cm = 91% 5, 94 cm = 95%
0	-						-	-		41		3, 86 cm = 92% 6, 100 cm = 98%
ц.		op					7	1.5			4	3, 119 cm = 84%
		I'''			6		1cc				4	
_		Link	AIM	8	0	LA	Lee.		H			

<i>c</i> - 1	H		CHA	DSSI	L TER						
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	ORILLING DISTURBANCE SEDIMENTARV STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5			••	INTERBEDDED PELAGIC CLAY AND NANNOFOSSIL OOZE * Dominant colors: clay is dark brown (10°R 3/3) grading to dark yellowish brown (10°R 3/4) in Section 3 Namofosiai cose is injet yellownih brown (10°R 6/4) wery pale brown (10°R 7/4), brownih yellow (10°R 6/6), yellowih brown (10°R 5/6), and yellow (10°R 7/6). Minor colors: clay contains dark yellowih brown (10°R 4/4), strong brown (15°N 5/6), and black mottles and very dark brown to black and brown (10°R 5/3–10°R 3/3) laminations. Over in Section 2 contains
						2	orfer ref t		00	•	white (10YR 8/2) zones. *Section 1 is soupy. Section 6 is very deformed. The rest of the core is slightly deformed. *The nanofossi ooza in this core is homogeneous, with no obvious grading or crossbedding. The clay range form both on the clay range.
	sone						3		i)	•	from homogeneous to mottled to laminated.
	sueus						17	<u>+_++</u> _+			SMEAR SLIDE SUMMARY (%): 1, 130 2, 70 - 4, 130 5, 35 - 5, 141
	1 10						1.4		1-	8	D D D D
	ï	0.1				1	1			S 10-	Sand 7 4 0 5 0
	1.1					3	1.02				Silt 23 15 60 25 25
							1		E		Clay 70 81 40 70 75
										í	Composition:
							-				Eldener 2 3 - 3 -
							_		111	11	Clav 25 4 5 8 50
			-				-				Volcenic glass Tr 2 5 2 5
											Palagonite – – 1 – –
				. 1			-				Glauconite 1 - 1
							-		111		Micronodules – – 1 – –
	10					4		1 - 1 - 1	411 1		Zeolite – – 1 – 2
	12										Carbonair Umpic. – – – – – 10 Foraminifars 7 3 1 3 1
	5			- 1		1.1	1	x_ x_ x			Calc. nannofossils 61 80 80 77 20
	reife						- 2	H			Hematite and
	tua						-	+			Goethite Tr 3
	B. parce F. G. fornicata/G. st					5	a second second be second			•	CaCO ₃ data: 1, 135 cm = 94% 4, 135 cm = 91 2, 135 cm = 90% 5, 135 cm = 899 3, 135 cm = 93%
	N					6	The Share				
									1.1.1		

	PHIC		CHA	OSS	IL	R										
TIME - ROCI UNIT	BIOSTRATIGRI	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS	ICHTHYOLITHS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION			
		AM	CP		В	A	cc	-								
								0.5					Core Catcher contained several small chert and silicifie clay chips of a brownish yellow (10YR 6/6) color.			
	ca zone						1	199								
	B. par							1.0								
	N							-								
								-								
							2				1	í Í				
								-								
								111								
								-								
snos							3	-								
Cretac																
Uppei							H	-								
											-					
	is zone						4	-								
	retorm							1								
	/G. stua						-	-								
	rnicata.															
	G. 10						5	1								
												1				
								1								
			ŀ.				°	1								
								100								
							7	-								
				1		1	cc		1							

SITE 576 (HOLE 576)

-0 cm 3-2	3-3	3-4	3-5	3.CC	4-1	4-2	4-3	4-4	4-5	4-6	4-7
25 		3-4	3-5	3.00	4-1	4-2	4.3		4-5	4-6	4-7
-							1				
-150	(Entropy)								1000		

SITE 576 (HOLE 576)

-0 cm 6-4	6-5	6-6	6-7	6-8	7-1	7-2	7-3	7-4	7-5	7-6	7-7
0 cm			Contraction of	1452514	×	1	A. A.			and a	Prove Barrie
-	10.000			Market	2		1962/201			1000	S'ARA
Terret	Mines		1022	125.1		1	ARG	Carles be		San .	1 Same
-		A COLORED	Sec. 1	a sugar		Sec. 1	1000	STATE OF	2.3.25	1.55	A COLOR
			ALC: NO	and the second	COURSE.			Sec. 1		1000	
-		Contraction of the		E State	No.				THE CH	Contract of	1000
A COLOR	3-110-		Pro Carlo	2 6	Contractory of	11 4	- Particular	10000			13 1928
-	1.21		100			195	Contraction of	Sec. A.	Carlo Con		S State
1005				1000	ALC: N		10 all	Contraction of			1.5
-25				1.18128	Sec. 1	1	and the second	20025	1953	122.81	111
				1000	all set of		and the second	to Part	State.	12	and the second
-			世の後日	1000	S LORA		S IS UP	C S	C.E.I	1	14 15 91
	前巨刀	1000		ALC: NO		STOR .	1205 100			1000	12100
-		10.00	1000	1. 100				1000	A specific	200	10000
1025	Sector 1	Black	1200	100			and states	1.1.1	NE		See of Long
- 200		1555	150		San Bart	Pail and	Schola		15-25		
1.000	Sec. 1	Contraction of the		1000	10- 60		3000 -			and the second	E L
-				ALC: NO.	25 1 10	100	1000		120 20	825 D	1000
1000	1 21				ACCURATE AND			Constant	1	1000	A STATE
-50		11 - 4		and the second sec		100	1000	1000	CALL THE	Sec. B	
and the second se		and the second s			10 M 20		1.55	ALC: NO	State 2	1000	
-	1.000			1					THE WAY A		
		-		1.1	ALC: COM			10-2 (12)		TOTAL PROPERTY	
-					2	1 million	Distant	2000		i-nis	
10 ST	for all			1 1	En State	AL STRUCT		1 24 JUL			
-		12.20		1. 1. 2.	Start A			STE			D.
1000				1	102		Contraction of			- and a second	
					L'AND		100	Sec.		1.25	
	1.0	1. 1. 14			A CALL		10,000				
75					100 m			1 Long and	STORE S		
						The second		A DESCRIPTION OF	and the second	144	
-		S MILLS			A INSTANT	Trans.	21-11-11		TOTAL T	1000	
and the second second		1.00						22.4	1000	STOCE I	
-					Constanting of the		Dian 1	-1700-000	1000	1000	
	I Local I					-2 1			A		
-								1200		i sal	
1000					and the second second	Contraction of the second	100	100		Sugar St	
10.39		2.1.2			1 3 S S			3 (N. 194		1 Barris	
100		1.00			Contraction of the				A COLUMN		
-100	10.25						17.1.1		Ser les		
5161		100			6 33			15311	The second s		
	Sector 18	in second				(Carlinson			The second		
600-55°		Courses.			1000		TO LOT	HELLEN P			
	10000	ILV. L				- wanted	200 100	2.33			
						1 Standard	1000		-	1000	
					1	STATES IN	and the second		a second		
_	1112	18			AP In	Elected	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				
	1.500				the second		Section of			1	
-125					So a			COLUMN 1			
120	N. Bass						17-71-8		Sun train	and the second	
	State and				-	Section 2	28122	Sec. 35	23.5	1 the second	
						Street P			-Los -	1 A C A	
	Section 2					3.772					
	Sec.	- PET			5 - S. C	A CONTRACTOR	al al al	The second	a la serie de la s	1.64	
	1000				2.28	1	The state			- Janey	
12					Star Con	233	Main 24	E. S.	12.5.24	Contract of	
-		1 Arrest			5-13 M	- Ballis		S ST	RAN	1 Inter	
		Sec.				N. Martin	E Str	1	The second	IN THE R	
-150	S in such	1			Ser Se	A Descention	and the second	a fair and a second	North Mar	-	

SITE 576 (HOLE 576)

SITE 576 (HOLE 576B)

SITE 576 (HOLE 576B)

SITE 576 (HOLE 576B)

