Shipboard Scientific Party²

HOLES 577, 577A, 577B

Date occupied: 23 May 1982 (577), 24 May (577A), 25 May (577B)

Date departed: 25 May 1982

Time on site: 2 days, 19 hr., 27 min.

Position (latitude; longitude): 32°26.51'N; 157°43.40'E (577) 32°26.53'N; 157°43.39'E (577A) 32°26.48'N; 157°43.39'E (577B)

Water depth (sea level; corrected m, echo-sounding): 2675

Water depth (rig floor; corrected m, echo-sounding): 2685

Bottom felt (m, drill pipe): 2678.2 (577), 2677.6 (577A), 2782.0 (577B)

Penetration (m): 118.8 (577), 123.4 (577A), 113.9 (577B)

Number of cores: 13 (577), 13 (577A), 1 (577B)

Total length of cored section (m): 118.8 (577), 123.4 (577A), 9.5 (577B)

Total core recovered (m): 111.07 (577), 110.64 (577A), 9.63 (577B)

Core recovery (%): 93 (577), 90 (577A), 101 (577B)

Oldest sediment cored: Depth sub-bottom (m): 123.4 Nature: calcareous nannofossil ooze Age: Cretaceous (Maestrichtian) Measured Velocity (km/s): 1.52

Basement: Not reached

Principal results: An unusually good late Cenozoic sequence, a Paleogene sequence, and an undisturbed record of the Cretaceous/Tertiary boundary were recovered at Site 577. The former two sections were recovered in two holes, while the latter was recovered in three holes. A paleomagnetic reversal record was determined for the Neogene but, since the magnetization of the Cretaceous and Paleogene sediments was within the noise level of the shipboard magnetometer, detailed magnetostratigraphy had to await shore-based analysis. Although the sediments recovered are all nannofossil oozes, they can be divided into three lithologic units.

Unit I (0-53.5 m) is a white to light gray nannofossil ooze. It is divided into two subunits based on a downcore decrease in the per-

² Addresses: G. Ross Heath (Co-Chief Scientist) School of Oceanography, Oregon State University, Corvallis, OR 97331 (present address: College of Ocean and Fishery Sciences, University of Washington, Seattle, WA 98195; Lloyd H. Burckle (Co-Chief Scientist) Lamont-Doherty Geological Observatory, Palisades, NY 10964; Anthony E. D'Agostino, AR CO Exploration Company, Houston, TX 77056; Ulrich Bleil, Institut für Geophysik, Ruhr-rai, Lamont-Doherty Geological Observatory, Palisades, NY 10964; Anthony E. D'Agostino, AR CO Exploration Company, Houston, TX 77056; Ulrich Bleil, Institut für Geophysik, Ruhr-rai, Lamont-Doherty Geological Observatory, Palisades, NY 10964 (present address: Meteorological College, Chiba University, Chiba 277, Japan); Robert D. Jacobi, Department of Atmospheric & Oceanic Science, University of Michigan, Ann Arbor, MI 48109 (present address: Lamont-Doherty Geological Observatory, Palisades, NY 10964); Itaru Koizumi, College of General Education, Osaka University, Osaka 560, Japan; Lawrence A. Krissek, School of Oceanography, Oregon State University, Columbus, OH 43210); Nicole Lenôtre, Bureau de Recherches Géologiques et Minibres, Centre Océanologique de Bretagne, 45060 Orléans Cedex, France; Simonetta Monechi, Geological Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Institute of Oceanography, La Jolla, CA 92093 (present address: Chiparis, Institute of Oceanographi, Science, Surrey GU8 5UB, United Kingdom; Audrey A. Wright, Deep Sca Drilling Projext, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Coen Science, Science, Science), Na 10964; Peter Schultheiss, Institute of Oceanographi, Sciences, Surrey GU8 5UB, United Kingdom; Audrey A. Wright, Deep Sca Drilling Projext, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Coen Drilling Projext, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Coen Drilling Projext, Scripps Institution of Oceanography, La Jolla, CA 92093

centage of foraminifers, radiolarians, and diatoms. The lower subunit carries only a few percent foraminifers and traces of radiolarians and diatoms.

Unit II is a white to pale brown nannofossil ooze. This unit is characterized by high percentages (60–90%) of coccoliths. It is further divided into two subunits, with the upper one being pale brown in color and the lower one characterized by alternating white and pale brown colors.

The deepest lithologic unit (Unit III) is a calcareous nannofossil ooze, white in color, and Latest Cretaceous in age. It is found in the lower 20 m of the hole. Penetration was stopped by a hard layer, presumably chert.

Sediment accumulation rates were highest in the late Cenozoic (11.6 m/m.y.) and markedly less below the late Miocene/middle Eocene unconformity (3 m/m.y.). Late Cretaceous rates were on the order of 10 m/m.y.

Both the measurements of physical properties and heat flow seemed to "sense" the late Miocene/middle Eocene unconformity at approximately 60 m. There is a sudden increase in bulk density just below this boundary as well as a rapid increase in compressional wave velocity at this level (1.48 to 1.53 km/s). The heat-flow data show a linear increase with depth until the level of the unconformity at which point there is an apparent temperature reversal.

All in all, this was a highly successful site, highlighted by three separate holes in which we recovered undisturbed and complete Cretaceous/Tertiary boundary sequences.

BACKGROUND AND OBJECTIVES

Site 577 (target Site NW-8B) is the middle member of the suite of three sites taken along an east-west track between 32°N, 164°E and the west side of the Shatsky Rise. It is located as near as possible to Site 47 on the flank of the Shatsky Rise. Its proximity to the western edge of the subtropical gyre and the water depth (<3000 m) permit the preservation of calcareous microfossils. In addition to standard biostratigraphic treatment of this site, we expected to establish good stratigraphic control using stable isotopes (oxygen and carbon). At the same time, at least marginal preservation of siliceous microfossils allows us to correlate the Neogene sequences in this site with the more siliceous sequences to the north (Sites 578-581). Such a strategy will result in high resolution stratigraphic control for Neogene sediments from the equatorial Pacific to the northwest Pacific and is a natural prelude to any broad, regional paleoceanographic or paleoenvironmental study.

The location of this site is an excellent complement to Site 576 and LL44-GPC3 in that it reflects input of eolian sediments from the Asian mainland.

Our specific scientific objectives were

1. To obtain a detailed paleoceanographic record for the western edge of the subtropical gyre during the late Neogene, principally using foraminifers and calcareous nannofossils.

2. To recover a late Neogene carbon and oxygen isotope record for comparison with the noncalcareous (siliceous) sites to the north.

Heath, G. R., Burckle, L. H., et al., *Init. Repts. DSDP*, 86: Washington (U.S. Govt. Printing Office).
 Addresses: G. Ross Heath (Co-Chief Scientist) School of Oceanography, Oregon State

3. To establish a high-resolution stratigraphy for the late Neogene and Quaternary, using paleomagnetics, stable isotopes, tephrachronology, and biostratigraphy (chiefly foraminifers and calcareous nannofossils, but also siliceous microfossils).

4. To determine the late Neogene history of eolian sedimentation for comparison with other sites along the east-west track.

5. To recover the Cretaceous/Tertiary boundary for midlatitude calcareous biostratigraphy and for paleomagnetic and geochemical studies.

OPERATIONS

We arrived at Site 577 after approximately 1 1/2 days steaming from Site 576. Air-gun, 3.5, and 12-kHz records were taken en route. We passed over the proposed site at 1534 hr., after which the gear was retrieved and the ship was positioned over the beacon. After a 1-hr. delay (slips did not hold) we began running pipe at 2400 hr. and, by 0400 hr., 24 May, were ready to take the first hydraulic piston core (HPC) at Site 577. This went off without a hitch, with the first core coming up at 0500 hr. and then at 1 hr., 15 min. to 1 hr., 30 min. intervals after that (Table 1). At 2335 hr. (24 May), Hole 577A was spudded in and the first core came up at 2400 hr. This operation also went off without a hitch (Table 1). However, when Site 577 cores were opened, we discovered considerable coring disturbance in some parts of the section, particularly the Paleogene. An effort was made to rectify this by modifying the shear pin assembly to allow the equivalent of one additional shear pin. It was be-

Table 1. Site 577 coring summary.

Core	Date (May 1982)	Local time	Depth from drill floor (m)	Depth below seafloor (m)	Length cored (m)	Length recovered (m)	Percent
Hole 577	24						
1	23	0505	2678.2-2685.0	0.0-6.8	6.8	6.81	100
2	23	0615	2685.0-2694.5	6.8-16.3	9.5	8.84	93
3	23	0730	2694.5-2704.0	16.3-25.8	9.5	8.15	86
4	23	0845	2704.0-2713.5	25.8-35.3	9.5	8.62	91
5	23	0958	2713.5-2723.0	35.3-44.8	9.5	7.99	84
6	23	1110	2723.0-2732.5	44.8-54.3	9.5	9.69	102
7	23	1225	2732.5-2742.0	54.3-63.8	9.5	8.24	87
8	23	1350	2742.0-2751.5	63.8-73.3	9.5	9.33	98
9	23	1505	2751.5-2761.0	73.3-82.8	9.5	8.80	93
10	23	1610	2761.0-2770.5	82.8-92.3	9.5	9.61	101
11	23	1800	2770.5-2780.0	92.3-101.8	9.5	9.21	97
12	23	1910	2780.0-2789.5	101.8-111.3	9.5	9.39	99
13	23	2020	2789.5-2797.0	111.3-118.8	7.5	6.39	85
					118.8	111.07	93
					(total)	(total)	(avg.)
Hole 577A							
1	24	0001	2677.6-2687.0	0.0-9.4	9.4	9.39	100
2	24	0119	2687.0-2696.5	9.4-18.9	9.5	8.70	92
3	24	0245	2696.5-2706.0	18.9-28.4	9.5	7.08	75
4	24	0356	2706.0-2715.5	28.4-37.9	9.5	9.72	102
5	24	0705	2715.5-2725.0	37.9-47.4	9.5	8.78	92
6	24	0815	2725.0-2734.5	47.4-56.9	9.5	9.85	104
7	24	1120	2734.5-2744.0	56.9-66.4	9.5	8.90	94
8	24	1230	2744.0-2753.5	66.4-75.9	9.5	8.13	86
9	24	1520	2753.5-2763.0	75.9-85.4	9.5	3.80	40
10	24	1650	2763.0-2772.5	85.4-94.9	9.5	8.15	86
11	24	1802	2772.5-2782.0	94.9-104.4	9.5	9.26	97
12	24	1938	2782.0-2791.5	104.4-113.9	9.5	9.62	101
13	24	2058	2791.5-2801.0	113.9-123.4	9.5	9.26	97
					123.4	110.64	90
					(total)	(total)	(avg.)
Hole 577B							
1	25	0035	2782.0-2791.5	104.4-113.9	9.5	9.63	101
					9.5	9.63	101
					(total)	(total)	(avg.)

lieved that the shallow water depth at this site coupled with premature yielding of shear pins resulted in slow penetration rates on some cores, resulting in increased disturbance. The character of the sediments (a clay-poor nannofossil ooze) may have contributed to this problem. At Hole 577B (0035 hr., 25 May), we washed down to just above the approximate level of the Cretaceous/ Tertiary boundary and recovered one core of the boundary (Table 1).

While coring Holes 577A and 577B, it was noticed that several connections were breaking with a torque of 8000/ft. lbs. or less. This problem has occurred on previous legs and, since no rotation is imparted to drill pipe during HPC coring, it was decided to retorque all connections on new pipe while coming out of Hole 577B.

The heat flow shoe was deployed nine times, six of which were successful. However, the three unsuccessful runs were not due to any inadequacies of the unit. Two failures were due to an undiscovered broken wire; the third occurred when the unit was plugged into the computer before the recording cycle was completed and the data were dumped.

LITHOSTRATIGRAPHY

The sediments in Holes 577, 577A, and 577B at Site 577 are nannofossil oozes that can be divided into three units based on color variations: (I) a white to light gray unit, (II) a white to pale brown unit, (III) a white unit. The upper two units can be further subdivided on the basis of color variation (Fig. 1, Table 2). Carbonate contents of these sediments, determined by the shipboard Carbonate Bomb, are included in Figure 1.

Unit I: White to Light Gray Nannofossil Ooze

This unit is characterized by high percentages (60-97%) of nannofossils and is further divided into two subunits as follows.

Subunit IA

Subunit IA is an alternating white to light gray (2.5Y and 5Y), lightly mottled nannofossil ooze that extends from the top of Cores 1 through 5 in both Holes 577 and 577A. This subunit contains 60-95% nannofossils with subordinate amounts of foraminifers (0-20%), radiolarians (0-7%), and diatoms (0-3%). Sponge spicules are present in trace amounts. With the exception of Cores 577-1 and 577A-1, terrigenous material generally accounts for less than 15% of the sediment; in Cores 577-1 and 577A-1, terrigenous concentrations of up to 35% occur. The dominant terrigenous components are quartz (0-10%), feldspar (0-5%) and clay (0-15%). Volcanic ash is generally present in concentrations of 2% or less.

Hole 577 contains three ash layers in Subunit IA (ash greater than 50%), one in Sample 577-2-5, 60 cm; one in Sample 577-2-6, 103 cm; and one in Sample 577-3-1, 39 cm. Hole 577A contains two ash layers, one in Sample 577A-2-3, 105 cm and another in Sample 577A-2-4, 136 cm. An ash-rich horizon (ash concentrations 20–30%) is also found in Sample 577A-4-4, 76–80 cm. The ash layer in Sample 577A-2-3, 105 cm is likely correlated with the one in Sample 577A-2-3, 105 cm. The ash layer in

Figure 1. Site summary diagram showing Site 577 core numbers, core recovery, lithologic units, graphic lithology, carbonate percentages (generalized), compressional wave velocities (m/s), magnetostratigraphy, and age. Symbols used in graphic lithology column are defined in Introduction and Explanatory Notes (this volume).

Table 2. Site 577 lithostratigraphic units.

			Core interval		Sul	b-bottom depth	(m)
	Lithologic unit	Hole 577	Hole 577A	Hole 577B	Hole 577	Hole 577A	Hole 577B
I	White to light gray nan- nofossil ooze						
	Subunit IA (2.5Y to 5Y color)	1-1, 0 cm to 5,CC	1-1, 0 cm to 5,CC		0-44.8	0-47.4	
	Subunit IB (10YR color)	6-1, 0 cm to 6,CC	6-1, 0 cm to 6-5, 150 cm		44.8-54.3	47.4-53.5	
п	White to pale brown nan- nofossil ooze						
	Subunit IIA (pale brown)	7-1, 0 cm to 9,CC	6-6, 0 cm to 10-2, 150 cm		54.3-82.8	53.5-88.4	
	Subunit IIB (white to pale brown)	10-1, 0 cm to 12-7, 50 cm	10-3, 0 cm to 12-6, 150 cm	1-1, 0 cm to 1-5, 150 cm	82.8-111.1	88.4-111.9	104.4-111.9
ш	White nannofossil ooze	12,CC to 13,CC	12-7, 0 cm to 13,CC	1-6, 150 cm to 1,CC	111.1-118.8	111.9-123.4	111.9-113.9

Sample 577A-2-4, 136 cm may be correlative with either the layer in Sample 577-2-6, 103 cm or Sample 577-3-1, 39 cm. Hole 577 does not contain an ash-rich horizon correlative to that found in Sample 577A-4-4, 76-80 cm.

Subunit IB

Subunit IB is an alternating white to light gray (10YR) nannofossil ooze that extends from the top of Core 577-6 to the top of Core 577-7 and from the top of Core 577A-6 through Section 577A-6-5. This subunit contains 90–97% nannofossils with only a few percent foraminifers. Siliceous microfossils are present in trace amounts. Combined quartz, feldspar, and clay concentrations are less than 5%. Volcanic ash generally constitutes less than 2% of the sediment. An ash layer in Sample 577A-6-4, 60 cm does not appear to have a correlative layer in Hole 577.

Unit II: White to Pale Brown Nannofossil Ooze

This nannofossil ooze unit is characterized by high percentages (60–90%) of nannofossils and is divided into two subunits as follows.

Subunit IIA

Subunit IIA is a pale brown (10YR) nannofossil ooze that extends from the top of Cores 577-7 through 577-9 and from the top of Sections 577-6-6 through 577A-10-2. This subunit contains 80–90% nannofossils with only trace amounts of foraminifers and siliceous microfossils. Quartz (0–5%), feldspar (0–2%), clay (0–10%), and volcanic ash (0–2%) constitute the remaining sediment.

Subunit IIB

Subunit IIB is characterized by alternating white and pale brown (10YR) nannofossil oozes found in Sections 577-10-1 through 577-12-7, 577A-10-3 through 577A-12-6, and 577B-1-1 through 577B-1-5. Nannofossils comprise 65–95% of the sediment; foraminifer concentrations range up to 35%. Combined quartz, feldspar, clay, and ash concentrations are generally less than 10%.

Unit III: White Nannofossil Ooze Unit

This white (10YR) nannofossil unit extends from Sections 577-12,CC through 577-13,CC, 577A-12-7 through 577A-13,CC, and 577B-1-6 through 577B-1,CC. Core 577-13 struck a hard layer, presumably chert, and coring in that hole was discontinued. Holes 577A and 577B did not reach this layer. Unit III is comprised of 80-90%nannofossils with foraminifers and siliceous microfossils present in trace amounts. Quartz and clay concentrations each comprise 0-5% of the sediment; feldspar and ash are present in abundances of less than 2%.

SEISMIC CORRELATIONS

High-resolution seismic reflection profiles (3.5 and 12 kHz) and about 100-Hz reflection profiles were recorded at Site 577. Both hull-mounted and near-bottom sound sources were utilized. The near-bottom transducer (3.5 and 5.25 kHz) was mounted on the drill string 253 m above the face of the drill bit.

The 3.5-kHz echograms over Site 577 reveal a fourpart seismic section (Fig. 2, Table 3). Seismic Unit 1 extends to 0.032 s (23.8 m below seafloor, assuming a velocity of 1485 m/s) and consists of strong, multiple, parallel sub-bottom reflectors at 0.008 s (5.9 m, Reflector 1a), 0.011 s (7.9 m, Reflector 1b), 0.015 s (11.4 m, Reflector 1c), 0.019 s (14.4 m, Reflector 1d), and 0.023 s (16.8 m, Reflector 1e) below the seafloor. The strongest reflectors are 1b, 1c, and especially 1e; Reflectors 1a and 1d are somewhat intermittent. A relatively thin transparent layer separates Reflector 1e from the underlying seismic Unit 2. The source of these reflectors is unclear, but the interval thickness between Reflectors 1d and 1e (2.4 m) and the depth below seafloor of these reflectors (1d = 14.4 m, 1e = 16.8 m) are similar to those of the ash layers encountered in Core 2 of Holes 577 and 577A (577: 2.0 cm thickness, 13.5 and 15.5 m depth; 577A: 1.5 cm thickness, 13.5 and 15 m depth). The shallower depths recorded between the cored ashes and seafloor suggests that the HPC did not retrieve the uppermost 1 to 1.5 m of sediment.

Seismic Unit 2 is composed of two parallel reflectors of medium strength overlying a transparent section. The uppermost reflector (2a) occurs at 0.032 s (23.8 m) below seafloor; the lowest reflector (2b) occurs at 0.039 s (29.2 m) below seafloor. The source of these reflectors is unknown.

Seismic Unit 3 consists of a transparent section with its top defined by a weak, generally continuous reflector (Reflector 3a at 0.059 s, 43.5 m below seafloor assuming

Figure 2. 3.5-kHz echogram over Site 577 showing the four-part seismic section described in the text. Sub-bottom depths to seismic reflectors are given in Table 3.

Table 3. 3.5-kHz seismic correlations, Site 577.

Reflector	Relative strength ^a	Sub-bottom depth (s)	Sub-bottom depth (m) ^b
la	I	0.00795	5.9
1b	S	0.0106	7.9
1c	S	0.0153	11.4
1d	I	0.0194	14.4
1e	S	0.0226	16.8
2a	М	0.0320	23.8
2b	М	0.0393	29.2
3a	w	0.0587	43.5
3b	W, 1	0.0694	51.4
3c	W, I	0.0733	54.3
3d	W, I	0.0932	69.3
3e	W, I	0.102	76.3
4	W-M, I	0.140	104.8

^a I = intermittent, M = medium, S = strong, W = weak. b Assuming 0-30 m = 1485 m/s, 30-60 m = 1475 1475 m/s below 30 m depth). The transparent section is punctuated by weak, intermittent reflectors at 0.069 s (51.4 m, Reflector 3b), 0.073 s (54.3 m, Reflector 3c), 0.093 s (69.3 m, Reflector 3d), and 0.102 s (76.4 m, assuming a velocity of 1520 cm/s below 60 m, Reflector 3e). The generally transparent section between Reflectors 3a and 3e reflects the homogenous nature of the nannofossil oozes. The transparent intervals below Reflector 3e correlate with the uncored clay(?) section.

The sources for the sparse reflectors are unclear. An angular unconformity is observed on both the 3.5-kHz echograms and 100-Hz seismic reflection profiles on the ship's departure track between 0300Z and 0330Z (Figs. 3 and 4). This unconformity is observed around a seamount on top of the Shatsky Rise and on the margins of the top of the Rise. The unconformity separates parallel reflectors with relatively little local relief above the unconformity from parallel reflectors with relatively high local relief below the unconformity (e.g., Reflectors 3e and 4). The weak, intermittent reflector that marks the unconformity is about 8 m below Reflector 3a and probably is Reflector 3b/3c at Site 577. This unconformity is

m/s, 60 + m = 1520 m.

Figure 3. 3.5-kHz echogram collected on ship's departure track from Site 577 (0300Z to 0330Z on 25 May 1982) showing angular unconformity discussed in the text.

Figure 4. 100-Hz reflection profile near Site 577 showing the five-part seismic section described in the text.

the upper Miocene/middle Eocene unconformity observed in the upper part of Core 7 of Hole 577A. However, Reflectors 3b and 3c are 51.4 and 54.3 m below the seafloor, respectively, at Site 577, while the cored unconformity occurs at about 57.5 and 61 m below seafloor. This discrepancy suggests that (1) the assumed velocities deduced from shipboard velocity measurements are too low, or (2) the cores were actually retrieved from shallower depths. If Reflector 3c marks the unconformity, then Reflector 3a is probably the ash layer cored at about 53 m below seafloor in Hole 577A.

Reflector 4 of seismic Unit 4 is a weak, generally continuous reflector at 0.140 s (104.8 m) below the seafloor. Before coring, this reflector was thought to be a chert horizon, but its depth below seafloor is more consistent with the top of sedimentary Unit III at 111–114 m or the Cretaceous/Tertiary boundary at about 110 m. In either proposed correlation, velocities deduced from shipboard measurements appear to low. The doubt concerning the velocity structure and core depths does not allow a more precise correlation.

The 100-Hz seismic reflection profiles reveal a fivepart seismic section (Fig. 4). The uppermost unit (Unit 1) in the seismic section is a packet of strong, parallel reflectors. On the relatively flat areas at the top of the Shatsky Rise, Unit 1 consists of conformable reflectors down to a relatively transparent zone at approximately 0.16 to 0.17 s (about 120 m) below seafloor. The interval thickness suggests that Unit 1 includes all the sediment above the Cretaceous chert layer. However, along the margins of the top of Shatsky Rise and near seamounts at the top, Unit 1 consists of two sections: an upper section of strong reflectors parallel to the seafloor and a lower section that has strong reflectors with dips divergent from those of the upper section. On both the site approach and departure tracks, it is clear that the upper section cuts downsection, thinning the lower section to a "0" isopach. This angular unconformity at about 0.085 s below seafloor is the upper Miocene/middle Eocene unconformity cored in Holes 577 and 577A. Because of the interference of the "bubble pulse," it is not possible to identify precisely the reflector that marks this unconformity.

Each of the succeeding three lower seismic units (Units 2, 3, and 4) consists of weak reflectors forming a relatively semitransparent zone that grades downward into strong parallel reflectors. At the maximum sediment thickness near Site 577, Unit 2 occurs from 0.17 to 0.38 s below seafloor, Unit 3 extends to about 0.52 s below seafloor, and Unit 4 extends to about 0.68 s below seafloor. Unit 5 consists of only a semitransparent section and extends to about 0.88 s below seafloor. The deepest reflector (the base of Unit 5) is probably basement. A minor unconformity is observed near seamounts on the Shatsky Rise where Unit 2 crosscuts Unit 3 and possibly Unit 4.

BIOSTRATIGRAPHY

A total thickness of 251.7 m of nannofossil ooze was recovered from three holes at Site 577. The sediment is rich in calcareous microfossils throughout and provides a high-resolution biostratigraphy (Fig. 5).

A late Miocene through Quaternary sequence was recovered down to Section 577A-7-3. There is a major hiatus at approximately 61 m representing the late Eocene, the Oligocene, and the early and middle Miocene. Below this, a Late Cretaceous through middle Eocene sequence was recovered. Foraminifers and nannofossils indicate two minor hiatuses in the Paleogene. The Cretaceous/Tertiary boundary was recovered intact in Sections 577-12-5, 577A-12-4, and 577B-1-4.

Preservation and Abundance

Radiolarians are abundant and moderately to well preserved through Core 577A-6, below which the samples

are barren. Diatoms are rare to few and their preservation is poor to moderate through Cores 577-5 and 577A-5, below which the samples are barren. In general, calcareous nannofossils are common to abundant and moderately to well-preserved throughout. Near the Cretaceous/ Tertiary boundary, nannofossils are abundant but preservation is poor to moderate. Nannofossils in Cores 577-5 through 577-8 also show poor to moderate preservation. Foraminifers are abundant throughout. In the upper Tertiary intervals, effects of dissolution are light to moderate and moderate test breakage is common. In the middle Eocene interval (Cores 577-7 and 577A-7), test breakage is heavy, the samples are flooded with fragments, but dissolution effects on the survivors are light. The assemblage is limited to the subspherical forms Globigerinatheca index index and G. barri, which make their outlines more spherical and abrasion resistant by adding bullae over their sutural apertures. The Paleocene and Upper Cretaceous samples contain moderately to wellpreserved foraminiferal faunas.

Stratigraphic Record and Hiatuses

The biostratigraphic record is summarized in Figure 5. An upper Miocene to lower Pleistocene sequence was defined by all four fossil groups. Calcareous nannofossils and foraminifers define an Upper Cretaceous through middle Eocene sequence. There is a lengthy middle Tertiary hiatus between Cores 577-6, -7 and 577A-6 and -7. Cores 577-7 and 577A-7 contain middle Eocene sediments which were not reported at nearby Site 47. Calcareous nannofossils suggest additional hiatuses in the middle Eocene and the middle Paleocene. The foraminifers also suggest the possibility of an earliest Eocene-latest Paleocene hiatus and a hiatus in the middle Paleocene.

Three core sections (577-12-5, 577A-12-4, and 577B-1-4) contain an undisturbed Cretaceous/Tertiary boundary. There is no significant lithologic change at the boundary. The most distinctive feature is a color change from white below the boundary to pale brown above. Mottling attributed to bioturbation is visible in the pale brown earliest Paleocene ooze.

Calcareous Nannofossils

The stratigraphic sequence of this site ranges from Quaternary to Late Cretaceous (Maestrichtian). The calcareous nannofossil assemblages are abundant and diversified. Their preservation ranges from poor to moderate. Calcareous nannofossils are significantly overgrown near the Cretaceous/Tertiary boundary and in the lowermiddle Eocene. A significant hiatus is noted from the late Eocene to the late Miocene.

Diverse and well-preserved Pleistocene nannofossil assemblages were found in Core 577-1 through Section 577-3-4, and in Core 577A-1 through Section 577A-3-2. They represent the *Emiliania huxleyi* (CN15), *Gephyrocapsa oceanica* (CN14), and *Crenalithus doronicoides* (CN13) Zones (Bukry, 1973, 1975; Okada and Bukry, 1980). Abundant and generally well preserved Pliocene nannofossil assemblages occur between Samples 577-3-5, 44 cm and 577-5-4, 60 cm and between Samples 577A-3-3, 60 cm and 577A-5-5, 15 cm. All the subzones of the *Dis*-

Figure 5. Site 577 biostratigraphic and magnetostratigraphic summary.

coaster brouweri Zone (CN12) are recognized. In Cores 577-5, -6 and 577A-5, -6 a moderately well preserved assemblage belongs to the Amaurolithus tricorniculatus (CN10) Zone. The absence of Triquetrorhabdulus rugosus indicates that the lower part of the A. tricorniculatus Zone is missing. An important hiatus is found in Cores 577-7 and 577A-7 separating assemblages of the A. primus (CN9b) Subzone from the D. barbadiensis (CP15) Zone. Most of the lower Eocene and Paleocene zonal markers were found with these exceptions: Tribrachiatus contortus was not found and D. mohleri and Heliolithus kleinpellii have the lowest occurrence in the same samples.

The Cretaceous/Tertiary boundary is located in Samples 577-12-5, 130 cm, 577A-12-4, 72 cm, and 577B-1-4, 72 cm. The boundary is recognized by the appearance of common *Thorascosphaera* and *Biscutum* sp. The oldest assemblage recovered from Hole 577 is moderately well preserved and belongs to the *Micula murus* Zone of latest Maestrichtian age. Holes 577A and 577B extend just below the appearance level of *M. murus*.

Planktonic Foraminifers

Abundant foraminifers were recovered from all cores taken at Site 577. Preliminary examination of core-catcher samples has revealed an upper Miocene-Pliocene-lower Pleistocene sequence, a long hiatus in the middle Tertiary and an Upper Cretaceous through middle Eocene sequence. Preliminary zonations are shown in Figure 5.

Samples 577-1,CC and -2,CC and 577A-1,CC and -2, CC contain an abundant early Pleistocene fauna typical of the Globorotalia truncatulinoides Zone (Stainforth et al., 1975) or N22 (Blow, 1969). Representative taxa include: Globorotalia acostaensis, G. hirsuta, G. humerosa, G. inflata, G. menardii (ex. gr., sinistral), G. ronda, G. tosaensis, G. triangula, Globigerina dutertrei, and Globigerinoides conglobatus. Core catchers from 577-3, -4 and 577A-3, -4 contain an upper Pliocene fauna of the G. tosaensis Zone (N21). This diverse fauna includes: Globorotalia praehirsuta, G. menardii (ex. gr., dextral), G. crassaformis, Globigerina venezuelana, Globigerinoides conglobatus, and many of the long-ranging taxa found in Zone N22. Samples 577-5,CC, -6,CC, 577A-5,CC, and -6,CC contain a mixed assemblage that spans the upper Miocene and lower Pliocene Globorotalia continuosa Zone to G. margaritae Zone or N15-N19. The assemblage includes: G. acostaensis, G. humerosa, G. obesa, G. multicamerata, G. tosaensis, G. margaritae, G. scitula, Globigerinoides obliquus, G. quadrilobatus trilobus, and G. sacculifer. Sample 577-7, CC contains a middle Eocene fauna of the Globigerinatheka subconglobata Zone (P11). The fauna is composed entirely of G. barri and G. index index. A fauna found in Samples 577-8,CC -9,CC and 577A-7,CC and -8,CC characterizes the Globorotalia aragonensis Zone to the Hantkenina aragonensis Zone (P8-P10). Taxa comprising this fauna include: Globigerina primitiva, G. soldadoensis soldadoensis, G. soldadoensis angulosa, Globorotalia pseudotopilensis, G. wilcoxensis, G. subbotinae, G. formosa formosa, G. formosa gracilis, and G. aragonensis. Sample 577A-9,CC contains taxa characteristic

of the earliest Eocene, G. subbotinae Zone or P6B. This fauna is similar to the younger P7 fauna, but excludes G. soldadoensis angulosa and includes G. velascoensis.

The upper Paleocene is identified in Sample 577-10,CC by the combined Globorotalia velascoensis Zone and G. velascoensis/G. subbotinae Zone or P5 to P6A. The characteristic taxa are Globorotalia subbotinae, G. aequa, G. pusilla pusilla, G. velascoensis, G. angulata, and Globigerina mckannai. Samples 577A-10,CC and 577-11,CC represent the middle Paleocene. They contain species found in the Globorotalia angulata Zone through G. pusilla pusilla Zone or P3. These are G. aegua, G. pusilla pusilla, G. angulata, G. occlusa, G. pseudobulloides, G. compressa, Globigerina mckannai, G. nitida, G. triloculinoides, and G. velascoensis. The Globorotalia pseudobulloides Zone or the middle portion of P1 was recognized in Sample 577A-11,CC. The earliest Paleocene, Globigerina eugubina Zone (P1) was identified in Samples 577-12,CC and 577A-12,CC. This fauna is typified by Globorotalia pseudobulloides, Globigerina eugubina, G. sabina, G. trinidadensis, and Chiloguembelina taurica. The next sample downhole is problematic and will require further detailed study because of proximity to the Cretaceous/Tertiary boundary. Sample 577A-12,CC contains G. eugubing and G. sabing and other primitive globigerinids in roughly equal abundance with many Cretaceous taxa. The samples are below the boundary (Samples 577-12-5, 130 cm and 577A-12-4, 72 cm) as identified by nannofossils, the extinction of Cretaceous forms, and a change in maximum diameter of G. eugubina. We hope that close-spaced sampling in Core 12 will explain this occurrence. Samples 577-13, CC and 577A-13, CC contain a distinctive Upper Cretaceous fauna of the Globotruncana mayaroensis Zone including: Globotruncana mayaroensis, G. stuarti, G. contusa, Globotruncanella petaloides, Rugoglobigerina rotundata, R. rugosa, Pseudotextularia varians, and P. carseyae.

Radiolarians

Holes 577 and 577A contain abundant radiolarians from the top of Sections 1-1 through 6,CC. Radiolaria are not found in Sections 7-4 through 13,CC. The results of the preliminary biostratigraphic survey of the sediments recovered at Site 577 are summarized in Figure 5.

The species in the uppermost samples from Holes 577 and 577A are representative of the Botryostrobus aquilonaris Zone (Hays, 1970), indicating that sediment younger than 400,000 yrs. was recovered at this site. The sediment sequence from the lower half of Cores 577-1 and 577A-1 is assigned to the Stylatractus universus Zone (Hays, 1970) based on the presence of S. universus and Druppatractus acquilonius and the absence of Eucyrtidium matuyamai. Based on the presence of the radiolarian species E. matuyamai, the E. matuyamai Zone (Hays, 1970; Foreman, 1973) extends from Core 2 through the upper half of Core 3. This zone was somewhat difficult to define since the southern limit of E. matuyamai's habitat nearly coincides with this site's position. The absence of E. matuyamai and Stichocorys peregrina from the lower half of Core 577-3 through the upper half of Core 577-4 indicates that this sequence belongs to the *Lamprocyrtis heteroporos* Zone (Hays, 1970; Foreman, 1975). The top of the *Sphaeropyle langii* Zone (Foreman, 1975), based on the presence of *Stichocorys peregrina*, is located in a core-catcher sample of Core 577-4 and in Section 577A-4-5. The fauna in Core 577-5 and 577A-5 is representative of the *Sphaeropyle langii* Zone. The oldest radiolarian-bearing sediment at this site belongs to the *Stichocorys peregrina* Zone (Riedel and Sanfilippo, 1970; Foreman, 1975) and is confined to Cores 577-6 and 577-A-6.

Diatoms

Cores 577-1 through 577-6 contain few to rare diatoms with moderate preservation, but diatoms are absent below Core 7. Core 1 belongs to the *Pseudoeunotia doliolus* Zone. Core 2 is placed in the *Nitzschia reinholdii* Zone by the presence of *N. reinholdii*. Core 3 is correlated with the *Rhizosolenia praebergonii* Zone by the presence of *R. praebergonii* and the absence of *P. doliolus*. Cores 4 and 5 correlate with the middle Pliocene *N. jouseae* Zone, which ranges from the lower part of the Gauss Epoch to the Sidufjall Event of the Gilbert Epoch, by the presence of *N. jouseae* and *Thalassiosira convexa*, and the absence of *R. praebergonii* (Burckle and Opdyke, 1977; Burckle, 1978).

Diatoms are few to rare and preservation is moderate above Core 577A-6. Core 1 belongs to the *P. doliolus* Zone, Core 2 to the *N. reinholdii* Zone, and Core 3 to the *R. praebergonii* Zone. Cores 4 and 5 belong to the *N. jouseae* Zone. In Core 6, no age-diagnostic species were found.

Diatoms are completely absent from Core 577B-1.

PALEOMAGNETICS

Paleomagnetic analyses were performed on 475 samples from the sedimentary sequences recovered in Holes 577 and 577A at this site. The details of this study are given in a separate chapter (see Bleil, this volume).

The intensity of the natural remanent magnetization (NRM) in both holes decreases systematically from about 1.5×10^{-5} Gauss near the top to about 1×10^{-6} Gauss in the lower parts. The variability of the NRM intensities, both between and within cores, is less at this site than at the more northern sites drilled during Leg 86. The magnetic stability displays just the opposite characteristic. In the upper 60 m of both holes median destructive field (MDF) determinations yielded extremely variable results, with an average high level of about 400 Oe. At greater depths, consistently lower MDF values, mostly in the range of about 200 Oe, were observed. Over several zones, MDF values of less than 100 Oe indicate poor magnetic stability.

Alternating field (AF) demagnetization resulted in large changes in magnetization directions not only for the majority of samples from lower parts of both holes, but also for many samples from the upper 60 m. The relatively large scatter in directional data likely indicates that the stable directions defined are not always true primary single component magnetizations, but also include some secondary components that could not be erased completely by AF demagnetization.

The downhole pattern of stable magnetization directions at a number of levels is further complicated by large amounts of physical disturbances introduced during the coring operation. All samples from below about 60 m sub-bottom in both holes show clear evidence of a strong artificial magnetic overprinting. A discussion of the complex results from these sections is given elsewhere (see Bleil, this volume).

In the upper part of the cored sections, the downhole sequence of stable magnetization directions yields an unequivocal reversal stratigraphy for the last 5.5 m.y. that includes all major reversals of the Earth's magnetic field since the beginning of the Gilbert Epoch (Fig. 5). However, because of the limited recovery or badly disturbed sediment in some cores of both holes, exact subbottom depths are difficult to define for a number of the reversals. For the same reason, some short polarity events (such as the Jaramillo in Hole 577A and the Cochiti in Hole 577A) are missing in one hole but could be recognized in the other. A comparison of the depth data for several well-defined reversals in both holes reveals variable degrees of mutual offsets amounting to at least ± 1 m downhole.

Down to about 60 m sub-bottom, the inclination data scatter around the axial dipole value for the present latitude of the site (51.8°). A hiatus of about 35 m.y. is revealed by the biostratigraphy at this level. Below the hiatus, the range of stable inclinations abruptly changes to about 20–30°, a reflection of the northward motion of the Pacific Plate. Using the most recent polarity time scale of Berggren et al. (in press) the sedimentary column above the hiatus accumulated at a remarkably average rate of about 11 m/m.y.

SEDIMENT ACCUMULATION RATES

The average sediment accumulation rate through the Neogene portion of Holes 577 and 577A was 11.6 m/m.y. The rate in the Paleogene portion averaged 3.0 m/m.y. This is in stark contrast to the rate of accumulation in the Late Cretaceous, which was 10.0 m/m.y. An age versus depth plot is given in Figure 6. Age determinations are based on nannofossil correlations calibrated according to Berggren et al. (in press) below the hiatus at a sub-bottom depth of 60 m. Age determinations for the first 5 m.y. are based on magnetostratigraphy according to Berggren et al. (in press).

PHYSICAL PROPERTIES

Physical properties measurements at Site 577 were performed using mainly standard Deep Sea Drilling Project (DSDP) methods (Boyce, 1976a, b; see Introduction and Explanatory Notes, this volume). Table 4 summarizes the properties that were measured in sediments from Holes 577 and 577A. Measurements were taken at approximately 3-m intervals throughout Hole 577. Measurements were taken at approximately 4.5-m intervals in Hole 577A. Figures 7, 8, and 9 show profiles for Holes 577 and 577A of shear strength, compressional and shear wave veloci-

Figure 6. Site 577 sediment accumulation rates.

ty, and saturated bulk density and water content, respectively. A full discussion of the physical properties of the recovered sediment, including tables of the data, is given by Schultheiss (this volume). However, some of the more interesting features of the data are highlighted here. 1. There are wide variations in the shear strength measurements down to 50 m, below which there is a rapid decrease in strength which remains consistently low (Fig. 7). The reduction in shear strength correlates with the boundary of lithologic Units I and II, and is thought to occur

Table 4. Physical properties measurements made at Site 577.

	Hole 577	Hole 577A
Shear strength:		
Hand-operated vane	х	х
Motorized vane	x	x
Wave velocity:		
Shear wave	x	x
Compressional wave	x	x
Water content/bulk density:		
Shipboard analysis	х	-
Shore-based analysis	х	x
Bulk density by 2-min. GRAPE	x	_

as a result of the changing carbonate content (Fig. 1). It is postulated that, at carbonate contents in excess of 90 to 95%, the sediment strength is drastically reduced by the coring process (the interparticulate bonding may be more brittle).

2. The shear wave velocity data show no distinct trends throughout the two holes, the velocity varies between 20 and 70 m/s (Fig. 8). Poor signal quality in most of these cores limits the accuracy of these measurements to ± 10 m/s.

3. A sudden increase in bulk density (and decrease in water content) at about 60 m is the major feature that occurs just below the lithologic boundary between Units 1 and II (Fig. 9). This corresponds to a possible 30-m.y. missing section in the mid-Tertiary (see Biostratigraphic summary), which at sedimentation rates of 3.0 m/m.y. would represent 90 m of missing sediment. The rapid change in water content suggests that this may have been an erosional event because the material may be overconsolidated. Laboratory consolidation data from Hole 577A may be able to indicate whether this was a nondepositional or an erosional hiatus.

4. The compressional wave velocity profile (Fig. 8) also shows a major discontinuity at 60 m. The velocity increases rapidly from around 1480 to 1530 m/s. The corresponding impedance changes using bulk density values of 1590 and 1720 kg/m³, respectively, are 2.35×10^{6} and 2.63×10^{6} kg m⁻²S⁻¹ (a change of more than 10%). However, this depth does not correspond to any distinct reflector on the 3.5-kHz seismic record.

INORGANIC GEOCHEMISTRY

Six squeezed core samples, three from Hole 577 and three from 577A, were analyzed for the standard suite of components: pH, alkalinity, salinity, calcium, magnesium, and chlorinity (Table 5). The two data sets agree well (Fig. 10) and show a slight downcore increase in alkalinity and an overall drop in Mg, but otherwise little variation with depth.

No in situ samples were taken.

HEAT FLOW

Downhole temperature measurements were made with the new WHOI heat flow instrument. Of 15 runs (6 in Hole 577 and 9 in Hole 577A), 10 (4 in Hole 577 and 6 in Hole 577A) were successful. Of the unsuccessful runs, the cause of failure could be more specifically diagnosed than for the previous runs at Site 576. For example, the first run at this site appeared to fail because of a loose interface connection in the shipboard Apple computer that was used for loading the program into, and recovering data from, the heat flow instrument's temperature recorder. The recorder was designed to be capable of delaying the starting time of data collection by an amount specified by the program. It appeared, however, that the delay time circuit of all the recorders was not functioning properly. Recorder WHOI-4A connected to battery pack NTLT-3, which had functioned correctly on nine previous deployments, failed on its fifth run at this site when the delay time was set to 30 min., as well as on the eleventh run at Site 576, when the delay time also had been set to a nonzero value (60 min.). A check of the log book revealed that all successful runs at Sites 576 and 577 were made with zero delay times. Use of a nonzero delay time always resulted in failure or an unsatisfactory record. All measurements in subsequent sites of this cruise were made by setting the delay time equal to zero. It was also found that measurement results from recorder WHOI-2A were not satisfactory.

For the first time during this cruise, the new WHOI heat flow instrument was compared with the conventional ERI-type heat flow instrument. In Hole 577A, a combined run was made by attaching the shoe containing the WHOI instrument to the ERI-type heat flow rig. Unfortunately, only one out of three such runs was successful. The result of that successful run showed, however, that the ERI-type instrument recorded a temperature 3.5°C higher than the WHOI instrument. The difference appears to be too large to be accounted for by the measurement error at a single downhole depth. A detailed comparison of the two measurements is in progress at the time of this writing.

Thermal conductivity data were taken on 240 samples selected from the cores of Holes 577 and 577A (see Horai and Von Herzen, this volume).

SUMMARY AND CONCLUSIONS

Site 577 is located at $32^{\circ}26.51'$ N and $157^{\circ}43.40'$ E in 2678 m of water on the flank of the Shatsky Rise. Over this part of the Rise sediments reach a thickness of 0.88 s.

The objective at this site—to obtain an expanded late Miocene to Quaternary record for detailed paleoceanographic and isotopic analyses, to determine the late Cenozoic history of eolian sedimentation, and to recover the Cretaceous/Tertiary boundary for mid-latitude calcareous biostratigraphy and for paleomagnetic and geochemical analysis—was achieved in two holes. In an additional hole (577B), we washed down to basal Paleocene sediments and took one core to recover a third Cretaceous/Tertiary boundary sequence. Hole 577 (HPC) penetrated to a maximum depth of 118.8 m sub-bottom depth and terminated in a hard layer.

The sediments recovered in Holes 577, 577A, and 577B are nannofossil oozes that can be divided into three units based upon color changes. Lithologic Unit I is a white to light gray nannofossil ooze characterized by high percentages of nannofossils. It is further divided into two subunits: an alternating white to light gray lightly mot-

Figure 7. Plot of shear strength versus sub-bottom depth for Site 577.

Figure 8. Plot of compressional and shear wave velocities versus sub-bottom depth for Site 577.

tled nannofossil ooze (Subunit IA) and a white nannofossil ooze (Subunit IB) that contains up to 97% calcareous nannofossils.

Lithologic Unit II is a white to pale brown nannofossil ooze that is divided into two subunits: Subunits IIA is a pale brown nannofossil ooze; Subunit IIB is characterized by alternating white and pale brown nannofossil ooze layers and contains the Cretaceous/Tertiary boundary. Lithologic Unit III is a white nannofossil ooze unit.

An apparently complete Miocene to Quaternary section was recovered in Holes 577 and 577A. Late Cenozoic sediments are primarily nannofossil ooze, but foraminifers are also present. Well-preserved and diverse radiolarian assemblages occur in the late Cenozoic sediments but tend to drop off, both in abundance and in degree of preservation, in the latest Miocene. Diatoms are present in Pliocene–Pleistocene sediments but are never abundant or well preserved. They are essentially absent below the Pliocene

A major unconformity at approximately 60 m subbottom depth separates late Miocene from middle Eocene sediments. This unconformity was previously reported in Site 47 and was expected. Paleogene sediments are also nannofossil oozes with minor (but diverse and moderately well preserved) foraminifers. No diatoms or radiolarians were found from this part of the section. Part of this Paleogene section was disturbed, mostly by flow-in and/or disturbed bedding. This disturbance was likely due to a number of factors: (1) the absence or near absence of clay in this part of the section resulting in a less cohesive lithology, and (2) premature yielding of the HPC shear pins causing reduced penetration rates and, thus, increased disturbance. The increased disturbance in the Paleogene section means that one of our objectives—to recover an expanded Paleogene section for paleoenvironment analysis—was not entirely met. This, however, can be more properly assessed by shore-based studies.

The Cretaceous/Tertiary boundary was recovered in Sections 577-12-5; 577A-12-4, and 577B-1-4 and at a sub-bottom depth of approximately 109.6 m. Lithologically, the basal Paleocene-Upper Cretaceous sequence is an undisturbed white to light brown nannofossil ooze. Moderate to well-preserved foraminifers are present, but diatoms and radiolarians are absent. Except for a minor color change just below it, the Cretaceous/Tertiary boundary is essentially featureless with no obvious signs of sediment disruption or nondeposition. The biostratigraphic data yield sedimentation rates of 11.6 m/m.y. (for the Neogene), 3 m/m.y. (for the Paleogene), and 10 m/m.y. (for the Cretaceous).

Physical properties were measured on the entire section (Quaternary to Cretaceous). However, some sections were skipped because obvious coring disturbance and/

Figure 9. Profiles of saturated bulk density and water content versus sub-bottom depth for Site 577.

pН	Alkalinity (mEq/l)	Salinity (‰)	Calcium (mM)	Magnesium (mM)	Chlorinity (‰)
8.00	2.45	35.2	10.55	53.99	19.38
8.08	2.37	35.2	10.34	52.98	19.14
7.39	2.64	35.2	10.32	51.16	19.51
7.31	2.89	35.5	10.51	51.95	19.58
7.42	3.17	35.5	11.14	51.99	19.44
7.35	2.60	35.2	9.88	52.09	19.54
7.16	3.27	35.5	10.78	52.35	19.48
7.29	3.15	35.5	10.57	52.32	19.38
	pH 8.00 8.08 7.39 7.31 7.42 7.35 7.16 7.29	Alkalinity pH (mEq/l) 8.00 2.45 8.08 2.37 7.39 2.64 7.31 2.89 7.42 3.17 7.35 2.60 7.16 3.27 7.29 3.15	Alkalinity (mEq/l) Salinity (%e) 8.00 2.45 35.2 8.08 2.37 35.2 7.39 2.64 35.2 7.31 2.89 35.5 7.42 3.17 35.5 7.35 2.60 35.2 7.16 3.27 35.5 7.29 3.15 35.5	Alkalinity pH Salinity (mEq/l) Calcium (%e) Calcium (mM) 8.00 2.45 35.2 10.55 8.08 2.37 35.2 10.34 7.39 2.64 35.2 10.32 7.31 2.89 35.5 10.51 7.42 3.17 35.5 11.14 7.35 2.60 35.2 9.88 7.16 3.27 35.5 10.78 7.29 3.15 35.5 10.57	Alkalinity (mEq/l) Salinity (%e) Calcium (mM) Magnesium (mM) 8.00 2.45 35.2 10.55 53.99 8.08 2.37 35.2 10.34 52.98 7.39 2.64 35.2 10.32 51.16 7.31 2.89 35.5 10.51 51.95 7.42 3.17 35.5 11.14 51.99 7.35 2.60 35.2 9.88 52.09 7.16 3.27 35.5 10.78 52.35 7.29 3.15 35.5 10.78 52.35

	Table 5. In	norganic	geochemical	measurements	from	Site :	577
--	-------------	----------	-------------	--------------	------	--------	-----

or excess water at these levels made measurements unreliable. Shear strength, water content, bulk density, and compressional wave velocity data all show a major discontinuity at about 60 m sub-bottom depth. This is the approximate boundary between lithologic Units I and II and represents a major unconformity in which late Eocene to early Miocene sediments are missing. Bulk density data suggest that, given the measured 3.9 m/m.y. sedimentation rate for this hole, this unconformity may represent as much as 156 m of missing sediments. Further studies on shore (laboratory consolidations tests) may be useful in indicating whether this is an erosional or a nondepositional hiatus.

The 3.5-kHz echograms reveal a four-part seismic section. The uppermost unit consists of strong, multiple, parallel reflections that are tentatively correlated with volcanic ash layers. The second unit is composed of three parallel reflectors of medium strength which overlie a transparent section. The source of these reflectors is not immediately obvious from the lithology. The third seismic unit is a transparent section with its top defined by a weak, although generally continuous, reflector. Within this unit are several weak, discontinuous reflectors. The source of these weaker reflectors is unclear, but the transparent section reflects the homogeneous nature of the nannofossil ooze. The lowermost unit and its source lithology is uncertain. Because of uncertainty concerning velocity structure and core depth, this reflector may be a chert layer or may be within the sediment sequence.

Downhole temperature measurements were made with the new WHOI heat flow instrument. Of 15 runs, 10 were successful. The data show a linear increase with depth to the level of the Eocene/Miocene unconformity. Below the unconformity, the data indicate a temperature reversal.

Samples for paleomagnetic studies were taken throughout Holes 577 and 577A, with particularly dense sampling across the Cretaceous/Tertiary boundary. Because magnetic intensities were usually close to or within the noise level of the shipboard instrument, no attempt was made to identify specific magnetic reversals below the

Figure 10. Profiles of pH, alkalinity, salinity (‰), chlorinity (‰), calcium (mM), and magnesium (mM), versus subbottom depth from interstitial water samples analyzed at Site 577. Symbols are as follows: \triangle = IAPSO and SSW standards; \bigcirc = samples from Hole 577; \Box = samples from Hole 577A.

Eocene/Miocene unconformity. Study of this part of the section requires shore-based AF demagnetization experiments.

REFERENCES

- Berggren, W. A., Kent, D. V., and Flynn, J. J., in press. Paleogene geochronology and chronostratigraphy. In Snelling, N. J. (Ed.), Geochronology and the Geological Record. Geol. Soc. London Spec. Paper.
- Blow, W. H., 1969. Late middle Eocene to Recent planktonic foraminiferal biostratigraphy. In Bronnimann, P. and Renz, H. H. (Eds.), Proc. F.st Int'l. Conf. Planktonic Microfossils (Vol. 6): Leiden (Brill), 199-421.
- Boyce, R. E., 1976a. Definitions and laboratory techniques of compressional and sound velocity parameters and wet-water content, wet-bulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. *In Schlanger, S. O., Jackson, E. D., et al., Init. Repts. DSDP*, 33: Washington (U.S. Govt. Printing Office), 931-958.
- ______, 1976b. Deep Sea Drilling Project procedures for snear strength measurements of clayey sediment using modified Wykeham Farrance Laboratory Vane Apparatus. In Barker, P., Dalziel, I. W. D., et al., Init. Repts. DSDP, 36: Washington (U.S. Govt. Printing Office), 1059-1068.
- Bukry, D., 1973. Low latitude coccolith biostratigraphic zonation. In Edgar, N. T., Saunders, J. B., et al., Init. Repts. DSDP, 15: Washington (U.S. Govt. Printing Office), 685-703.

- _____, 1975. Coccolith and silicoflagellate stratigraphy, northern Pacific Ocean, DSDP Leg 32. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 677-701.
- Burckle, L. H., 1978. Early Miocene to Pliocene diatom datum levels for the equatorial Pacific. Geol. Res. and Dev. Centre, Repub. of Indonesia, Spec. Publ., 1:25-44.
- Burckle, L. H., and Opdyke, N. D., 1977. Late Neogene diatom correlations in the circum-Pacific. Proc. 1st Int'l. Congr. Pac. Neogene Strat.: Tokyo (Kaiyo Shuppan), pp. 255-284.
- Foreman, H. P., 1973. Radiolaria from DSDP Leg 20. In Heezen, B. C., MacGregor, I. D., et al., Init. Repts. DSDP, 20: Washington (U.S. Govt. Printing Office), 249-305.
- _____, 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 578-701.
- Hays, J. D., 1970. Stratigraphy and evolutionary trends of Radiolaria in North Pacific deep-sea sediments. *In Hays*, J. D. (Ed.), *Geological Investigations of the North Pacific*. Mem. Geol. Soc. Am., 126:185-218.
- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973, 1975). *Mar. Micropaleontol.*, 5: 321-325.
- Riedel, W. R., and Sanfilippo, A., 1970. Radiolaria, Leg 4, Deep Sea Drilling Project. In Bader, R. G., Gerard, R. D., et al., Init. Repts. DSDP, 4: Washington (U.S. Govt. Printing Office), 503-575.
- Stainforth, R. M., et al., 1975. Cenozoic planktonic foraminiferal zonations and characteristics of index forms. Univ. Kans. Paleontol. Contrib. Pap., 62:1-425.

SITE	577	HOL	E	 CORE	1	COREL	DINT	ERVA	AL 2678.2-2685.0 mbsl; 0.0-6.8 mbsf	SITE	577	1	HOLE		C	ORE	2 CORE	DINT	ERVA	L 2685.0-2694.5 mbsl; 6.8-16.3 mbsf
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	NANNOFOSSILS H	NADIOLARIANS BUSIC	SECTION	MEICOS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	LITHOLOGIC DESCRIPTION	TIME ~ ROCK UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	FOR HAR	ACTER SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Outerrary Its Plantoons	D: P. dotiolar zone F: N22 N; C. dovoricoldes (CN13)-E. huziky/ (CN15) zones R: S. antiversus zone R: S. automoria zone E. tumidation	GAG	AG FM	1 0. 1 1. 2 3 3 4 5 5 6 6					NANNOFOSSIL OOZE* Dominant colors: gravits brown (25Y 5/2) and tight prist (25Y 6/2) in Section 1; olive grav (55 6/2) in Section 2; grav (55Y 5/7), and grav (556 6/2), aminations in Section 2; grav (557 5/7), and grav (556 6/2), aminations in Section 2; 20-40 cm.This core contains motified and homogeneous names nosel core layer, with thin laminations location provides of 20-40 cm.This core contains motified and homogeneous names to section 4, 85 cmCMEAR SULDE SUMMARY (SEE DDODODOTexture:000<	late Plocene-exity Pleistocme	F. N22 Nr. C. dhronicolder zone R. E. matryamai zone D. M. radholdili zune	-		2 D	3					NANNOFOSSIL DOZE WITH ASH LAYERS • Dominant colors: white (2.5Y 8/0), white (5Y 8/1), light gray (25Y 7) ight gray (25Y 7)

577 HOL	E	 ORE	3 COF	RED I	NTERV	AL.	2694.5-2704.0 mbsl; 16.3-25.8 mbsf	SITE	57		HOL	E		COF	RE 4	CORED	INTER	AL 2704.0-271	3.5 mbsl; 25.835.3 mbsf
OHA CHA	SSIL								PHIC		FO	SSIL	R						
BIOSTRATIGRA ZONE FORAMINIFERS MAMNOFOSSILE	RADIOLARIANS DIATOMS	METERS	GRAPHIC	DRILLING	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLAHIANS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
F: N21 N: C. frouwer/ zon-C. doraticitet zont R. L. heterospoots zone B. L. heterospoots zone B. L. heterospoots zone	AG CM RP	4 5 6 7		u IDET ERERERERERERERERERERERERERERERERERERE		· · · · · · · · · · · · · · · · · · ·	 DANNOFOSSIL DOZE Pobrainant colors: medium grav, BY 6/17, light grav, fy 7/17, light grav (Z-SY NZ), and white (Z-SY NG) and colors: this layers of medium grav (SY 6/17). Grav, colors: this layers of medium grav (SY 6/17). Grav, colors: this layers of medium grav (SY 6/17). Grav, color: this layers of medium grav (SY 6/17). Grav, color: this color: color: this decrement portions of Section 2 and the core is slightly. The core consists of nannofossil doze. This (G-IZ) (G-IZ)	tas Priocene	F-1421 Nr. D. Exerverit zure (DN13) R. S. Langel zone-L. heterosoriet zone D. N. Jouzale zone					2 2 3 3 5 5 6 6				Void Void	NANNOFOSSIL OOZE *Dominant colons: light gray NB, modium gray (BY 6/1), graduality changing to light gr (7,5/18, NB) below Section 5, of light green (65, 7/1) and *Core is very deformed in 5, D-112 cm, Rest of the core is *This core consists of homog Section 1 and Section 2, 0-1 resulting from flow-in, Secti (0,2 cm), distinct layers of light All downcore color changes an D D D Texture: 5 and 7 55 Sift 3 2 Clay 90 93 Composition: 0 and 7 5 Sign 7 5 Calchonate lampet. Tr Tr Carbonate lampet. Tr 1 Radiolariams Tr 1 Radiolariams Tr 1 Radiolariams Tr 1 Sincoflageflates - Sift 1 8 Calc, and not 15 Sift 3 8 Composition: 0 and 7 Sift 1 Carbonate lampet. Carbo

NANNOFOSSIL OOZE Dominant colors: light gray (2.5Y N7), white (2.5Y N8), medium gray (5Y 6/1), and light gray (5Y 5/1) gradually changing to light gray (7.5YR N7) and white (7.5YR N8) below Section 5. Mions colors: thin layers of light green (5G 7/1) and light green (5GY 7/1)

* Core is very deformed in Section 1 and Section 2, 0-112 cm. Rist of the core is slightly deformed. *This core consists of homogeneous nannofossil ooze. This core consists of homogeneous hannorossi oute, Section 1 and Section 2, 0–112 cm are very difformed, resulting from flow in, Sections 5 and 6 contain thin (0.2 cm), distinct layers of light green nannofossil oute. All downcore color changes are gradational.

3,30 5,52 5,92 D D D

	PHIC		CHA	OSS	L						
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5				NANNOFOSSIL OOZE *Dominant colors: alternating intervals of white (2.5Y N8), white (7.5YR N8), and light grav (5Y 77), Mino colors: gravith brown (2X 57) 27) ebble. *Core is slightly deformed throughout. *This core consists of fairly homogeneous nannofosal coze. Sections 3 and 4 are lightly purrowed and mottled
						2	ŭnenĝion.				SMEAR SLIDE SUMMARY (%): 1, 100 3, 53 4, 7 5, 47 5, 66 5, 78 0 0 0 0 0 0 Texture: Sand 2 1 10 15 4 0
									1 1 1		Silt 3 2 6 7 1 1 Clay 96 97 84 78 95 99 Composition: Quartz 12 Tr Tr Feldpar Tr - Tr Tr Mice - Tr - Tr - 1
iooene	azone (CN12s) puseae zone					3	and much			**	Clay 5 2 7 2 1 3 Volcanic glass Tr 1 - 2 Tr - Glauconite - - Tr - - Tr - Micronodules Tr Tr - 2 - - Carbonate unspec - - Tr - - - Foraminifers - 4 3 - 5 -
te Miccene-early PI	onelD. tama/is sut D: N. jo						a tranta			••	Calc. namofossits 96 93 77 80 94 96 Diatoms Tr - 2 - - Tr Radiotariants Tr 1 2 - - Sponge spicules - - Tr - - Silicottagellates - - Tr - - Opaques - - 10 - -
2	ne (C. rugosus subz						internet in				CaCO ₃ data: 1, 96 cm = 87% 3, 53 cm = 93% 4, 8 cm = 90%
	N. C. tricomiculatus zo					5	and and no				
	to N19 R: S. langif zone					6			1		
	F1 N15					7	-				
		AG	AN	CM	RP	cc	1	1 1 1			

V H			F	RAC	L						
TIME - ROCI UNIT BIOSTRATIGRA	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
I ate Miscene -erity Pilocine United I and	4 (LN38) - C. 27(contruction (CV U)	FORAMIN	NANNOFO	BADROLAN	DIATOWS	3	9.5 1.0			* STRUGTU	NANNOFOSSIL COZE Orminant colors: alternating layers of light grav (10V) 7/1) and white 10YR 8/1, Section 7 and the Con Catcher contain intervals of white 10YR 8/21. Core is slightly deformed throughout. This core consists of very homogeneous nannofosis occ. Section 4 is lightly motified, All downcore color changes are gradiational. SMEAR SLIDE SUMMARY (%): 1,70 - 4,70 D D Texture: Sind 3 1 Sit 6 3 Clay 91 96 Composition: Ouertr 1 1 Mica - 1 Foraminiters 2 1 Calc. nannofositis 95 97 Diatoms 2 Tr Radiolariam Tr Tr Hematite - Tr CaCO ₃ date: 1,64 cm = 91%, 6,82 cm = 94%.
0. A	N: A primi					6	Tree terrest				
N15 to N						7					

_		
-	_	
⊢		
-	-	
-	-	

SITE 577 HOLE	CORE 7 CORED INTERVAL	2732.5-2742.0 mbsl; 54.3-63.8 mbsf	SITE 57	7 1	HOLE		COR	E 8 CORE	DINTERVA	L 2742.0-2751.5 mbsl; 63.8-73.3 mbsf
TIME – ROCK EVANUE CHARACTER BIOSTRATIORALITER BIOSTRATION ANNOFORMATION ANNOFORATION ANNOFORMATION ANNOFORMATION ANNOFORMATION ANNOFORMATION	SECTION BECTION AMETERS AMETERS AMETERS AMETERS SAMETERS	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FOR SULARIANS	SW01VIO	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
F. P11 Nr. O. bartoudionus (CP15)A. primor (CNBb) W U Q U B U	1 1 1 1 1 1 <td>NANNOFOSSIL OOZE • Dominant colors: while IIOYR 8/23, very paid brown (10YR 7/3)-10YR 8/23, and paid brown (10YR 4/3). Minor colors: Section 5 action 5 action is modurately deformed, enhances resulting from flow in. The rest of the core is slightly deformed. • This core consists of slightly mottled namorousil coze. All domicor color changes are graduational. SMEAR SLIDE SUMMARY (%): 1.00 3, 70 5, 30 6, 30 D D D D D Texture: 1.00 3, 70 5, 30 6, 30 Composition: 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 0.00 60 60 60 0.00 60</td> <td>early-middle Ecosme F : P8P10 Nr.D. Ackennis Ione (CP11)R. umbility Zoone (CP14)</td> <td>AM</td> <td>CM 8</td> <td>в</td> <td>2 2 3 4 5 6 7 CC</td> <td></td> <td></td> <td>NANNOFOSSIL OOZE Dominant color: pale brown (10YR 8/3) and very pale brown (10YR 7/3-10YR 8/2) with white (10YR 8/2) intravals in Section 2.This core is slightly deformed throughout.This core is slightly deformed throughout.SMEAR SLIDE SUMMARY (%): </td>	NANNOFOSSIL OOZE • Dominant colors: while IIOYR 8/23, very paid brown (10YR 7/3)-10YR 8/23, and paid brown (10YR 4/3). Minor colors: Section 5 action 5 action is modurately deformed, enhances resulting from flow in. The rest of the core is slightly deformed. • This core consists of slightly mottled namorousil coze. All domicor color changes are graduational. SMEAR SLIDE SUMMARY (%): 1.00 3, 70 5, 30 6, 30 D D D D D Texture: 1.00 3, 70 5, 30 6, 30 Composition: 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 60 60 60 0.00 60 0.00 60 60 60 0.00 60	early-middle Ecosme F : P8P10 Nr.D. Ackennis Ione (CP11)R. umbility Zoone (CP14)	AM	CM 8	в	2 2 3 4 5 6 7 CC			NANNOFOSSIL OOZE Dominant color: pale brown (10YR 8/3) and very pale brown (10YR 7/3-10YR 8/2) with white (10YR 8/2) intravals in Section 2.This core is slightly deformed throughout.This core is slightly deformed throughout.SMEAR SLIDE SUMMARY (%):

SITE	577	HOLE		CO	RE	9 CO	RED I	NTERV	AL 2751.5-2761.0 mbsl; 73.3-82.8 mbsf	SITE	577	HC	LE	(COR	E 10 CORED	NTEF	RVAL 2761.0-2770.5	mbsl; 82.8-92.3 mbsf
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS NAMNOFOSSILS RADIOLARIANS RADIOLARIANS	DIATOMS	SECTION	METERS	GR APHI LITHOLO	C GY	DESTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	FOSSIL ARACTE SWEIJANS SWEIJANG SWEIJAN	R	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STANPLES SAMPLES	LITHOLOGIC DESCRIPTION
late Páleocene-early Ecome	F. P68-P7 F. D. multirediatus (CP8)-T, activaty/us (CP10)	AG AM B	в	1 2 3 4 5 6 7 CC	0.5		Interpreted to the second sec second second sec		Punnopossi Dozzi Pinnipari Colors picity derivan black mottles. -0- is nightly derivan dutak mottles. -0- is nis	late Polocene	F. PS-PEA N: CJ. moNter-CJ. adolfit (CP6-CP7)	AGA			0 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			* • •	NANNOFOSSIL OOZE *Dominant color: white HUYF 8/21 with minor very for the very disturbed zone in Section 2, 0–40 for a single pay (75-YR 7/0), and pake brown (110 YR 6/3) come and mottle. *Eccept for the very disturbed zone in Section 2, 0–40 for a single pay (75-YR 7/0), and pake brown (100 YR 6/3) come and mottle. *This core is light pay (75-YR 7/0), and pake brown (100 YR 6/3) come and mottle. *This core consists of homogeneous white nanofosit core was split. *This core consists of homogeneous white nanofosit core was split. *This core is light pay (75-YR 7/0), pay (75-YR 7/0)

SITE 577

SITE 577 HOLE	CORE 11 CORED INTERVAL 27	70.5-2780.0 mbsl; 92.3-101.8 mbsf	SITE 577 HOLE	CORE 12 CORED INTERVA	L 2780.0-2789.5 mbsl; 101.8-111.3 mbsf
TIME - ROCK INIT BIOSTIA.TICA BIOSTIA.TICA. ZONE FORAMINEERS MANNOFOSSILS RADIOLATIANS	NOILDBS RAPPHIC BRAPH	LITHOLOGIC DESCRIPTION	TIME – ROOK DINIT ZONE RANAURTER MANIORIER MANIOLATIANA MADIOLATIANA MADIOLATIANA	RECTION METERS METERS METERS ACTION METERS M	LITHOLOGIC DESCRIPTION
F; P3 N: D, realitier tone F; P3 N: D, realitier tone B B	10 <	 NUNNOFOSSIL COZE ⁹ Orminant colors: while (10YR 8/2), very pale brown (10YR 7/2)—10YR 6/3), and very pale brown (10YR 7/2)—10YR 6/3) patches and motile. ⁹ Section 2, 80 cm to Section 3, 62 cm and Section 4 due to sightly deformed. ⁹ Orminant colors: Several thin taminations are presented in the tame of Section 4. ⁹ The tame of Section	Metrificitum Metrificitum F. G. engloding zone N. Micula muna zone-C. denicul (CP2) W N B	$ \begin{array}{c} $	DANNOFOSSIL OOZE * Dominant colors: very pake brown (10YR 8/2)-01YR 8/2), velovish brown (10YR 8/2), velovish brown (1

TE 57	7	HO	LE		C	ORE	13 COREC	INTE	RVA	789.5-2797.0 mbsl; 111.3-118.8 mbsf	SITE	577		HOL	.E	A	CO	RE 1
PHIC		CH	FOSS	IL								PHIC		F	OSSI	TER		
UNIT	ZONE	FORAMINIFERS NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCI	BIOSTRATIGRA	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS
					1	0.5		0-00		NANNOFOSSIL DOZE * Dominant colors: white (10YR 8/2). Minor colors: white 10YR 8/1) and very pale brown (10YR 8/3) mottles. * Core is slightly deformed throughout, * This core consists of uniform, white nannofossil ooze. Sections 1 through 3 are slightly mottled.		stuilovevir tone		/	AG		ï	0.5
Second and particular a					2					SMEAR SLIDE SUMMARY (%): 1,70 Texture: Sand 0 Sitt 5 Clay 95 Composition: Duartz 5 Feldspar 2 Heavy minerals T		R: S. universus-R B. J					2	
100 A 100 A 100 A 100 A 100 A					3					Clay 2 Volcanic glass 1 Carbonate umpec. 3 Cate, nannofosilis 87 CaCO ₃ data 3, 70 cm = 94%	cane	F N22			AM		3	
					4	6					late Plaisto						4	بتبيا يتبايل يتايد
N: M. murus zone					5			- 2				huxley/ ICN15/ zones					5	11,11,11,11,11,11
F: G. mayaroantit zona	5				6		Empty					C, daronicoldes (CN13)-E.					6	
		AM	8	в	7					noty		Z	AG	AG	AG	в	7 CC	1

Open Partic Open Partic Open Partic NANNOFOSSIL OOZ Introduced of the second seco	-	HIC		СН	FOSS	TER						
AC AC AC AC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>TIME - ROCK UNIT</th> <th>BIOSTRATIGRA</th> <th>FORAMINIFERS</th> <th>NANNOFOSSILS</th> <th>RADIOLARIANS</th> <th>DIATOMS</th> <th>SECTION</th> <th>METERS</th> <th>GRAPHIC LITHOLOGY</th> <th>DRILLING DISTURBANCE SEDIMENYARY STRUCTURES</th> <th>SAMPLES</th> <th>LITHOLOGIC DESCRIPTION</th>	TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
and and bit is a present a		B. Aquilanavis zone	V		AG		ï	0.5				NANNDFOSSIL OOZE Dominant colors: gray/ah trown (2,5Y 5/2), paik bro (10YR 6/3) grading to light gray (15Y 7/1), medi gray (15Y 6/1), and light gray (10YR 7/1) at the bas Section 1. Core contains white (2,5Y NB) intervals Section 3, 4, and 5. Minor colors: Thin (lest man many at to 0.1-0.2 cm) distinct layers of olive gray 4/21 in Section 2, and light green (5G 7/1) to gr (5GY 5/1-5GY 6/1) hesciencis 3 and 4. * This core is slightly deformed throughout.
Str SMEAR SLIDE SUMMARY (%): 1 1 <		universus-R					2	1111				*This core contains mottled and burrowed nannot ooze, with thin layers of greenish coze in Section and 4.
South of the second		R: S.						11111				SMEAR SLIDE SUMMARY (%): 1, 10 1, 50 1, 140 4, 66 5, 12 D D D D D Texture:
Store AM 3								1111				Sand 7 20 15 7 7 5 3 3 3 3 3 3 3 15 3 3 3 2 20 90 75 82 90 90 2 82 90 90 2 82 90 90 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30 2 30
4.		N22			AM		3	Trues.				Quartz - 1 3 1 1 Feldspar - Tr 1 Tr T
Signed out Signed to the second sec	ocene	÷.						1111				Micronodulet Tr Tr – Tr – Carbonate unspec. 1 Tr 1 – 1 Poraminifers 7 20 14 7 5 Calc. namofosiis 83 09 74 73 87
Second 1910 Second 1910 Secon	into Pleist							11122			;	Diatoms 1 1 2 2 1 Radiofarians 3 1 Tr 1 1 Sponge spicules Tr Tr - Tr Stricoffagellates Tr Tr - Tr -
Second (15) (16)								11111		1		CaCO ₃ data: 1, 50 cm = 59% 4, 55 cm = 78% 6, 111 cm = 87%
$ \begin{array}{c} -\frac{1}{2} -1$								1111			•	
		N151 zones					5	1 trul		F		
		C. huxley! IC					_					
		des (CN131-É					6	and and				
		ž					7					

FOSSIL CHARACTER			HIC	FOSSIL			
BIOSTRATIGRAI BIOSTRATIGRAI ZONE FORAMINIFERS MANNOFOSSILS RADIGLARIANS DIATOMS	GRAPHIC SHAPHIC LITHOLOGY LITHOLOGY UNITURE	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGEAP	FORAMINIFERS MANNOFOSSILS RADIOLARIANS DIATOMS	SECTION	GRAPHIC JONEBRITING LITHOLOGY DUILING	LITHOLOGIC
top N21 R. E. mitrojemial zone N. C. disonicolde (CN13) zone		NANNOFOSSIL OOZE* Ordininant colors: medium gray (SY 6/1), light gav (SY 7/1), while (LSY N8), and while (LSY R3) in all vections. Minor colors: the digitant layers of light gray (SY 4/1) ash; gray (LSY N8) priviterous name ooze crust . This core is slightly deformed in Section 2 to 6, and . Section 3 to 6. An ash layer was recovered in Section 3, to 5 cm. Pumice fragments and publies up to 3 cm in diameter nocur at 5 Section 3, 226–23 cm, base of Section 4 and Section 4.	lute Pinonene -exity Plestooteni N. C. mucheznei (CN12d) subcene -C. Aborationides (CN13) R. E. mucheznei Love		2 2 3 4		Void Sile Void Sile Void Clay Carbonate Sand Sand Sand Sand Sand Sand Sand Sand

LITHOLOGIC DESCRIPTION NANNOFOSSIL OOZE * Dominant colors: white (2.5Y N8), white (7.5YR N8), hight gray (2.5Y N7), light gray (5Y 7/1), medium gray (5Y 6/1), gray (5Y 8/1), gray (2.5Y N5), and gray (2.5Y N6). *This core is very disturbed in Sections 1 to 4 65 cm. Section 2, 95–150 cm is soupy. Section 4, 65 cm to the and of the core is slightly deformed. This core contains nannofossil ooze. The upper portions of Sections 1 and 2, Section 3, 49–150 cm, and Section 4, 0–65 cm are very disturbed to soupy, resulting from flow-in. SMEAR SLIDE SUMMARY (%): 2, 85 2, 132 4, 82 D D D Texture: Sand Silt Clay Composition: Quartz 5 5 7 6 10 4 89 85 89
 Clay
 89
 85
 89

 Composition:
 Tr

 Quartz

 Clay
 15
 10
 25

 Volcenic glass
 Tr
 Tr
 Tr

 Pyrite
 7

 Carbonate unspec.
 1

 Compositie 7
 5
 10
 Calc. nanofossitis
 74
 76
 64

 Diatoms
 1
 Tr
 Tr
 Tr
 Sponge spicules
 2
 Tr

 Silicofflogidiates
 Tr
 1
 Opaques
 1
 CaCO₃ data: 1, 53 cm = 73% 5, 53 cm = 86% F: N21 R: L. hete

7

cc

G AM AG RP

Base

Empty

7

cc

SITE 577 HOLE	A	COF	RE 4 CORED	INTER	VAL	2706.0-2715.5 mbsl; 28.4-37.9 mbst	SITE	577	<u>.</u>	HOL	E A	ί	cc	RE 5	CORED IN	TERVA	L 2715.5-2725.0 mbsl; 37.9-47.4 mbsf
FOS	SIL							HIC	T	FC	SSIL		1				
TIME - ROCK UNIT BIOSTRATIGRAP ZONE FORAMINITERS	DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAP	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
F: M21 I are Pilocone F: M21 N. D. brouver/ zon (CM12) R. S. (mg// zone W V V V V V V V V V V V V V V V V V V		2 3 4 5 6 7 7				NANNOFOSSIL COZE • Dominant colors: while (J.SYR NB), while (10YR 8/1), indy mating indy tay 5/611. Minor colors: gray (75/9R NB) pyrisis terous crust and gray (10YR 8/1) and madium gray (16YR 8/1) and madium provided for a scrapt for the very deformated to soury portion of Section 1. The wery deformated to soury portion of Section 1. The terver deformated to soury portion of Section 1. The terver deformate and soury portion of Section 1. The server deformate at 130 cm. Phonics publics are found as Section 3. 24 and 15 cm. and Section 5. 58 cm. Section 3. 24 and 15 cm. and Section 5. 58 cm. Section 4. 7. 20 df a gray any layer (section 5. 58 cm. 1. 59 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 20 df a 1. 5. 4. 5. 7. 7. 20 Texture: Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 50 cm. Section 4. 7. 80 cm consists of a gray any layer (section 5. 58 cm. Section 4. 7. 80 cm. Section 4. 7. 7. 1 cm. Section 4. 80 cm = 863 3. 20 cm = 85%	aariy Piloome	F.: N15-19 mixed assemblage Nr. CN10-CN12a C. mixemiolatura zone-D. tamalati subnomi Rt. S. langili zone		CM	4.0 × 6.0 ×	RP.	1 2 3 4 5 6 7 7 ccc	0.5			NANNOFOSSIL OQ2E *Dominant colors: white (5 1257 N7) with instructions: 1007R B/h, light gray (5) Core Catcher is white (57) burrow in Section 1 is gray (1) *Section 1 of this core is sould deformed and appears to b are moderately deformed. Catcher are slightly deformed *This core contains homo There is a single gray burre *This core contains homo There is a single gray burre *This core contains homo There is a single gray burre *This core contains homo There is a single gray burre *This core contains homo There is a single gray burre *This core contains homo There is a single gray burre *SMEAR SLIDE SUMMARY W 3, 146 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

(2.5Y N7) wi (10YR B/1), 1 Core Catcher burrow in Sect	th inter light gra is white ion 1 is e	vals of y (5Y 1 (5Y 8/1 ray (2.5	white (2.5Y N8), white 1/1), and gray (5Y 6/1), (-5Y 8/2). Minor colors: (Y N5).
* Section 1 of th deformed and are moderatel Catcher are slig	his core i appears y deform htly defo	s soupy to be f med. Se prmed,	; Section 2 is moderately low-in; Sections 3 and 4 actions 5, 6, and Core
*This core co	ntains h	omoger	eous nannofossil ooze.
There is a sing	le gray	burrow	in Section 1, 95-96 cm.
SMEAR SLIDE S	UMMAR	Y (%):	
	3, 14	5 5, 71	6,80
	D	D	D
Texture:			
Sand	2	3	4
Silt	2	10	7
Clay	96	87	89
Composition:			
Quartz.	1	Tr	\$
Mica	1	1	-
Clay	-	1	Tr
Volcanic glass		-	Tr
Pyrite	-	-	4
Foraminifers	2	3	5
Calc. nannofossils	96	95	90
Diatoms		Tr	-
CeCO ₂ data:	3, 145 c	m = 913	
	5, 70 cm	- 75%	
	6, 80 cm	= 51%	

×	APHIC		F CHA	OSSI RAC	IL TER					
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS.	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC D
						1	0.5			NANNOFOSSIL *Dominiant coil (5Y 8/2), with white (75/K) and light-gray 5 to call brice 7/3-10YR 7, light yethowist brownish gray
	N101 zones					2	PRINTER DATE			 Sections 1 to below Section flow-in. This core co below Section tional. Section slide summary

1-1.

그

-1-1 +

+. +. +

cc

CP CM AG RP

AG

-arty Pliccene

(CNB)

N: D. quinqueramut late Miocene

R. S. peregrina zone

F: N15-N19 mixed essemblage

 "Dominant colors, while 110YR 8/1–10YR 8/3), while (F) 8/321, while (25 YR NB), while (75 YR NB), and while (7.5YR 8/1) with intervals of light gray (5Y 7/1) and light gray (10YR 7/2); color dranges below Section 5 to add hown (10YR 6/3), wery pale brown (10YR 8/3), and light yellowish hown (10YR 6/3), wery pale brown into 20 6, 60 cm are slightly deformed. Core below Section 6, 60 cm are slightly deformed. Core blow Section 6, 60 cm are slightly deformed. Core blow Section 6, 60 cm is very deformed, resulting from flow-in. *This core contains fiannotoasil ooze lightly motified below Section 2. All downcore color changes are grada- tional. Section 3. All downcore color changes are grada- tional. Section 4, 64 cm are slightly deformed. Core below Section 6. 40 cm are slightly motified below Section 6. 40 cm are slightly deformed. SMEAR SLIDE SUMMARY (76); 1, 6 4, 68 6, 30 D M D Texture: Sand 5 40 0 Sitt 10 40 35 Clay 85 20 66 Composition: Datart 1 2 5 Mica Tr – Clay 1 3 10 Volcanic glas – 50 10 Palagonite – 5 – Carbonate unper: – 5 3 Poraminifers 7 – 10 Catc. namofosilia 65 55 50 Diatoms 1 – – Sponge spicules – 2 Discoasters – 10 CaCO₃ data: 1, 5 cm – 72%, 6, 28 cm = 56% 	NANNOFOSSIL 0	07E		
 Sactions 1 to 6, 60 cm are sliphtly deformed, resulting from flow-in. This core contains hannotosal ooze lightly motified balow Section 2, Al downcore color changes are gradestional. Section 4, 66–68 cm is an ash layer (see smear slide summary below). SMEAR SLIDE SUMMARY (%): 1, 6 4, 68 6, 30 0 M 0 Texture: Sarid 40 5 40 0 5 10 46.85 20 65 Composition: Quartz 1 2 5 Mice Te - Clay 3 10 Volganic glass 50 10 Palagonite 5 35 50 Diatoms 1 - 2 20 53 50 Diatoms - 2 Discoasters - 2 Discoasters - 10 CaCO₃ data: 1, 5 cm = 56% 	*Dominant color (5Y 8/2), whit white (7,5YR 8 and light grav (5 to cale brow 7/3-10YR 7/4 light vellowish brownish grav (s: whit te (2.5) (1) with 10YR 7 vi (10Y i), very brown 10YR 6	e (10YF Y N8), h interva (/2); coli R 6/3), pale b (10YR (/2) ash.	8 8/1-10YR 8/2), white white (7,5YR N8), and its of light gray (5Y 7/1) or changes below Section very pale brown (10YR rown (10YR 8/3), and 6/4). Minor colors: light
¹ This care contains name/ousel code lightly motified below Section 2, All downcousel color changes are grada- monal. Section 4, 66–68 cm is an abilityer (see smear alde summary below). SMEAR SLIDE SUMMARY [%); 1, 6, 4, 68, 6, 30 D M D Texture: Sarid 5 40 0 Sitt 10 40 35 Clay 85 20 65 Composition: Quartz 1 2 5 Mica 17 Clay 1 3 10 Volcanic glas - 50 10 Palagooite 5 Carbonate unpec - 5 3 Foraminifers 7 - 10 Calconate unpec - 5 50 Diatoms 1 Sponge spicules - 20 CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 55% 6, 28 cm = 65%	Sections 1 to below Section 6 flow-in.	6, 60), 60 cm	om are t is very	slightly deformed. Core deformed, resulting from
balow Section 3, All downcore color changes are grada- tional. Section 4, 68–68 cm is an ash layer (see smear stide kummary befow) SMEAR SLIDE SUMMARY [%) 1, 6 4, 68 6, 30 D M D Texture: Sand 5 40 0 Sait 10 40 35 Clay 85 20 65 Composition: Duartz 1 2 5 Mica Tr – – Clay 1 3 10 Volcanic glass – 50 10 Palagonite – 5 – Carbonate unspec. – 55 3 Foraminofrosita 85 35 50 Diatoms 7 – 10 Catc. namofosita 85 35 50 Diatoms 1 – – Sponge spicules – 50 Soing spicules – 50 Diatoms 1 – 2 Sponge spicules – 50 Diatoms 2 – 10 CatC. namofosita 85 35 50 Diatoms 1 – 2 Discoasters – 10 CaCO ₃ data: 1, 5 cm = 72%	"This core con	tains tu	anniotos	al ooze lightly motiled
sional. Section 4, 66–68 cm is an ash layer (see smear slide summary betow). SIMEAR SLIDE SUMMARY [%]. 1, 6 4, 88 6, 30 D M D Texture: Sarid 5 40 0 Siti 10 40 35 Clay 85 20 665 Composition: Ouartz 1 2 5 Micg Tr Clay 1 3 10 Volcanic glass - 50 10 Palagonite - 5 - Pyrite 5 - Cathonate umper 5 3 Foraministers 7 - 10 Catc. annotositi 85 550 Diatoms 1 - Spong spicules - 50 Spong spicules - 50 Discoasters - 10 CaCO ₃ data: 1, 5 cm = 72% 6, 28 cm = 65%	below Section 2	All de	WILCOM	color changes are grada-
stille summary below). SMEAR SLIDE SUMMARIY (%). D M B D M B D M B Texture: 0 0 Saird 5 40 0 Stit 10 40 35 Clay 85 20 66 Composition: 0 10 Ovaria: 1 2 5 Mica Tr - - Clay 1 3 10 Volcanic glasi - 5 - Catonariosuites 5 - - Catonariosuites 35 50 Diatoms Diatoms 1 - - 2 Discoasters - - 2 0 CatOcariosuites - - 2 0 Catocariosuites - - 2 0 Colog data: 1, 5 cm = 72% - 10 CatoCariosuites - - 10 <td>tional. Section</td> <td>4, 66-1</td> <td>68 cm i</td> <td>an ash layer (see smear</td>	tional. Section	4, 66-1	68 cm i	an ash layer (see smear
SMEAR SLIDE SUMMARY Pk) 1, 6 4, 68 6, 30 Texture: 0 M D Sand 5 40 0 Sand 5 40 0 Sand 5 20 65 Clay 1 2 5 Mica Tr - - Clay 1 3 10 Volcanic glass 50 10 Palagonite Pyrite 5 - - Catonator unpec 5 3 50 Diatoms 1 - - 2 Discoasters - - 10 CaCo3 data 1, 5 cm = 72%	slide summary b	elow)		
1, 6 4, 88 6, 30 D M D Suid 5 40 0 Suit 10 40 35 Clay 85 20 65 Composition: 0 31 10 Volcanic glas 50 10 Palagonite Pyrite 5 - - Catomannifers 7 10 10 Catomannifers 7 10 261 Catomannifers 7 10 262 Discoasters - 2 Discoasters - Sporte spiculate - 2 Discoasters - CaCO ₃ data: 1, 5 cm = 56% 4, 88 cm = 56% 6, 28 cm = 56%	SMEAR SLIDE SI	IMMAR	Y 1951-	
D M D Texture: 5 40 0 Sint 10 40 35 Clay 85 20 65 Composition: 0 31 1 Quartz 1 2 5 Mica Tr - - Clay 1 3 10 Volcanic glasi - 50 10 Palagonite - 5 - Carbonate unspec. - 5 3 Foraminifers 7 - 10 Calconatosuits 35 50 Diatoms Diatoms 1 - - Sporge spicules - - 2 Discasters - - 10 CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 56% 6, 28 cm = 56% 6, 28 cm = 56% 56%	differ in deliver of	1.6	4 88	6 30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		D	M	0
	Texture:			
Sitt 10 40 35 Clay 85 20 65 Composition: 1 2 5 Mica Tr 2 5 Mica Tr 3 10 Volcanic glins - 50 10 Palagonite - 5 - Carbonate unpect - 5 3 Foraminism 7 10 Cate. namotossiti 85 35 50 Diatoms 1 - 2 Discosters - 10 CaCO ₃ detat 1, 5 cm = 72% 4, 68 cm = 56% 4, 68 cm = 56% 6, 28 cm = 65%	Sarid	5	40	0
Clay 85 20 66 Composition: 1 2 5 Mica Tr - - Clay 1 3 10 Volcanic glass - 50 10 Palagonite - 5 3 Coroninisters 7 - 10 Catomatic unprec. - 5 3 Foraministers 7 - 10 Catomatic unprec. - 5 35 Diatoms 1 - - Spong spicules - - 2 Discoasters - - 10 CatCO ₃ data: 1, 6 cm = 72% 4, 68 cm = 65% 6, 28 cm = 65% 6, 28 cm = 65%	Silt	10	40	35
$\begin{array}{c} {\sf Composition:} \\ {\sf Outrar} & 1 & 2 & 5 \\ {\sf Mica} & {\sf Tr} & - & - \\ {\sf Clay} & 1 & 3 & 10 \\ {\sf Volcanic glass} & - & 50 & 10 \\ {\sf Palagonite} & - & 5 & - \\ {\sf Pyrite} & 5 & - & - \\ {\sf Carbonate unspec} & - & 5 & 3 \\ {\sf Foraminisen} & 7 & - & 10 \\ {\sf Calc-nanofossila} & 85 & 35 & 50 \\ {\sf Diatores} & 1 & - & - \\ {\sf Sponge spicules} & - & - & 2 \\ {\sf Discoasters} & - & - & 10 \\ \\ {\sf CalC0}_3 deta: & 1, 5 {\sf cm} = 57 {\sf m} \\ {\sf 4}, 68 {\sf cm} = 557 {\sf m} \\ {\sf 6}, 28 {\sf cm} = 657 {\sf m} \end{array}$	Clay	85	20	65
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Composition:			
	Quartz	23	2	5
Clay 1 3 10 Volcanic glass 50 10 Palagonite - 5 - Pyrite 5 - - Carbonate unspec. - 5 3 Foraminifers 7 - 10 Cato controlsails 85 35 50 Diatoms 1 - - Sporge spicules - - 2 Discoasters - - 10 CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 56% 6, 28 cm = 65% 6, 28 cm = 65% 6, 28 cm = 65%	Mica	Tr	-	2
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Clay	1	3	10
Palagonite - 5 - Pyrite 5 - - Carbonate unspec. - 5 3 Foraminifiers 7 10 - Calc. namotosilis 55 35 50 Diatoms 1 - - Sporing spicules - - 2 Discoasters - - 10 CaCO ₃ teta: 1, 5 cm = 72% - 10 CaCO ₃ teta: 1, 6 cm = 56% - -	Volcanic glass	-	50	10
Pyrite 5 - - Carbonate unspec. - 5 3 Foraministers 7 - 10 Catc. namofossils 85 35 50 Diatoms 1 - - Sponge spicules - - 2 Discoasters - - 10 CaCO ₃ stata 1.5 cm = 72% 4,88 cm = 56% 6,28 cm = 65% 6,28 cm = 65%	Palagonite		5	
Carbonate unspec - 5 3 Forsaminites 7 - 10 Catc. namofossita 85 35 50 Diatoms 1 - - Sponge spicules - - 2 Discoasters - - 10 CaCO ₃ data: 1, 5 cm = 72% - - 4, 68 cm = 56% 6, 28 cm = 56% - -	Pyrite	5	100	
Foraminifers 7 - 10 Calc, namofosila 85 35 50 Diatoms 1 - - Sponge spicules - - 2 Discoasters - - 10 CaCO ₃ data 1, 5 cm = 72% 4, 68 cm = 55% 6, 28 cm = 55% 5% 5%	Carbonate unspec	14	5	3
Cate namofossils 85 35 50 Diatoms Sponge spicules – – 2 Discoasters – – 10 CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 55% 6, 28 cm = 65%	Foraminiters	7		10
Diatoms 1 Sponge spicules 2 Discoasters 10 CaCO ₃ data: 1, 5 cm - 72% 4, 68 cm - 56% 6, 28 cm - 65%	Cale, nannofossila	85	35	50
	Diatoms	1	-	
Discoasters – – 10 CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 56% 6, 28 cm = 65%	Sponge spipules	- A	1	2
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Discoasters	1	221	10
CaCO ₃ data: 1, 5 cm = 72% 4, 68 cm = 56% 6, 28 cm = 65%				
4, 68 cm = 56% 6, 28 cm = 65%	CaCO ₂ data:	t.5 cm	- 72%	
6, 28 cm = 65%	anna a chuire	4 68 cm	a = 56%	
		5 28 cm	- 65%	

SITE	577	- 1	HOI	.E	A	 CO	RE 7	CORED	INTE	ER\	AL/	2734.5-2744.0 mbsl; 56.9-66.4 mbsf
	HIC		F	OSS	IL CTER							
TIME - ROCK UNIT	BIOSTRATIGRAF	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DELLING	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
			2	I	0	1	0.5		00000			NANNOFOSSIL OOZE *Dominant colors: Sections 1 to 4, 90 cm are whit (10YR B2), very pate brown (10YR 7/3-10YR B2); pate brown (10YR 6/3), and yellowish brown (10Y 5/4). Section 4, 90 cm through Section 5 is light gen (2.5Y 7/2). Section 6 and the Core Catcher are whit (10YR 82) and very pate brown (10Y 7/3). *Sections 1 to 4, 90 cm are very deformed or soup- resulting from flow in, The rest of the core is mode ately or slightly deformed, some or all of which ma have resulted from flow in, *This core contams nannofossil ooze with motified zone in Sections 1 and 5. SMEAR SLIDE SUMMARY (%): 1, 10 5, 100 6, 70 D D D
ate Milocene	us (CN9b) subzone					3	and and the		*****			Sand 0 0 1 Sit 30 10 15 Chay 70 90 84 Composition: 0 1 - Quartz 4 3 5 Feldspar Tr - - Clay Tr 7 5 Volcaning data Tr 10 2 Giauconita - Tr 7
early Epcene-J	iodoensis (CP12) zone-A. prun					4						Carbonate unspec. – 10 Foraminifers 5 – – Calic. nanofossis 70 75 65 Sponge spicules – – 2 Discoasters 20 5 10 CaCO ₃ dela: 1, 10 cm = 81% 5, 100 cm = 96% 6, 68 cm = 94%
	due : M					5	and the state					
	F1P8-P10					6	and real real				•••	- Void
		40		B		7	-	Empty				

SITE	577	H	IOLE	А		OR	E 8 COF	ED INTE	RVA	L 2744.0-2753.6	5 mbsl; 66.4-7	5.9 mbsf				SITE	577		IOLE	A	 CORE	9 CORED	INTE	RVA	2753
	HIC		FOS	TER													HIC		FOS	SIL					
TIME - ROCK	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS RADIOLARIANS	DIATOMS	an a	SECTION		DRILLING DISTURBANCE SEDIMENYARY	STRUCTURES SAMPLES		LITHOU	OGIC DE	SCRIPTION			TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS BADICH A BLANS	DIATOMS	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENYARY	STRUCTURES SAMPLES	
antly Econor	F. P8-P10 N. T. orthoscylus (CP10)-D. Iodoenaid (CP11) zones	AGA		В						- Vold	NANNO • Dom 8/3), (2.5' edu • This • This black SMEAR Texture Sand Silt Clay Compos Courts Clay Volcanic Catona Foramin Calcoa e	FOSSIL C nant colo Minor co 7/21 with mite (107 20 cm ha white (107 cm ha b 60 cm white in faint 1 core has b 60 cm white in faint 1 layers and 60 cm white in faint 1 layers and 51 JDE SL tion: : : : : : : : : : : : : : : : : : :	VOZE rst: very pale rst: very pale solar: Section very pale small black small black	brown (10YR 7/2, 10 1, 0-60 en is il w (10YR 7/2, 10 ted laminations School (10) test Sections 2 the interfect Sections 2 the black layers and formed and contrists all coze with comm	5-10YR grif gray Yrf 8/30 Jection 1, contains grough 5 d ranes. Section of flow- non thin	late Philoceneearly Econne	F. P68–7 N. O. diatryput 10791 zone	AG	AM	в	0.5- 1 1.0- 2 2 2 2 4 4 4 5 5 5 7 cc		and the structure st		Empty

10	2 1	<u> </u>	noi	LE OFF	-	T	I	J COREL	TI	TT	2753.3-2763.0 mbsi; 75.8-65.4 mbsi
Ha			CHA	RAC	TER						
UNIT BIOSTRATIGRA	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5				 NANNOFOSSIL OOZE Dominant colors: very pale brown (10YR 8/3), very pale brown (10YR 7/4), and white (10YR 8/2). Minor colors: white (25 Y6/10 pumice cobble. Sections 1 and 2 of this core are moderately deformed Section 3 is very deformed. This core consists of homogeneous namiofossil ooze with small, infrequent mottes in Section 2, Section 1 Development a single white a single white sumice cobble 3 cm in
ous (CP9) zone						2					diameter: SMEAR SLIDE SUMMARY (%): 7, 100 Texture: Sand 0 Siit 0 City 60 Composition:
N: D. diarryc						3	and the set of a set				Claver 2 Claver 3 Volcanic glass 3 Gilauconite 5 Carbonate unique. 3 Calc. namofosilis 81 Discoasters 3 CaCog data 1, 100 cm + 97%
						4	and a factory	Елірту			
						5					
F: P68-7						6	1				
						7					

	PHIC		F	OSS	TER							
TIME - HOCK	BIOSTRATIGRA	FORAMINIFERS	FORAMINIFERS NANNOFOSSILS RADIOLARIANS DIATOMS			SECTION	GRAPHIC LITHOLOGY	DRILLING	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
							1					NANNOFOSSIL GOZE * Dominant colors: white (10YR 8/2) with white (10YR 8/1) and very pale brown (10YR 7/3) mottlus. Very pale brown (10YR 7/3-10YR 8/3) with white (10YR 8/2) and light yellowish brown (10YR 6/4) mottles. Section 5 and 6 contain intervals of light yellowish brown (10YR 6/4) neurofossil loze.
									1	1		*This core is slightly deformed, except for Section 4 which is moderately deformed.
							+++	1		 This core consists of homogeneous nannofossil ooze with infrequent mottles. All downcore color changes have gradiational contacts. 		
							2		+	1		SMEAR SLIDE SUMMARY (%):
									1			T, 100 3, 80 6, 60 D D D Texture: Sand * 3 D 1
					ł	1			-	i li		Silt 37 30 39 Clay 60 70 60
									1	11		Composition: Quartz 5 3 5
	201								-	11:	•	Feldspar 2 – 2 Heavy minerals 1 – 1
	CP7						3		1	111	•	Clay 5 3 5
	14.0							++++++	1	11		Votcanic glass 2 2 2 2
	Non							+	I	1		Zeolite – 1 –
LOOK I	9		0.					- PP	-	1		Carbonate unspec. – 4 –
alex	1							++++	1	14		Foraminiters Tr
early 8	armie (C)								-			Care: narmoritosits ou ob 53 Discoasters 5
	N: F. tympanif						4			1		CaCD ₃ data: 3, 60 cm = 90% 6, 24 cm = 96%
									-	1		
							5		4.4.4.4.4			
							1		1	11		
							6		1.1.1	1		
	53							Empty				
							7					
	1	AN	A	4	В	1	CC					

	PHIC		F	OSS	TER						
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOF OSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		00000		NANNOFOSSIL OOZE *Dominant colors: white (10°M 8/2), and very pail brown (10°M 7/3-10°M 8/3) with interval of very pail brown (10°M 7/4) in Section 5. Sections 3 through 6 contain white (10°M 8/1) mottles.
							-	+ +			which is moderately deformed. Section 1 contains a soupy interval from 30–70 cm.
											 This core consists of homogeneous to slightly mothed manofosal ooze.
						2	Der Di		1	•	SMEAR SLIDE SUMMARY (%): 3, 75 D Texture:
									1		Sand 0 Silt 50 Clav 50
cene	(CP4) zones					3					Composition: Quartz 3 Clay 3 Volcenic glas 2 Glauconite 1 Carbonate unspec. 3 Calc. nannofossils 68 CaCCo. data. 2, 20 cm p. 92%
early Paleocer	. danicus (CP2)-F. tympaoiformus					4	and and and and				2, 70 cm = 97% 7, 3 cm = 92%
	S N					T	-				
						5					
						F					
	G. pseudobulloide.		8			6	of a contraction				
	E PI					-					
- 1		AN	AM		8	co		Empty			

10	577	1.1	HOL	Ε,	A	CC	DRE 12	CORED	INTER	VAL	2782.0-2791.5 mbsl; 104.4-113.9 mbsf						
	PHIC		F	RAC	L			and the second second									
UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION						
	zbina					1	0.5		1		NANNOFOSSIL OOZE *Dominant colors: very paie brown (10YR 7/3-10YR 7/4), very paie brown (10YR 8/3), white (10YR 8/1-10YR 8/2), and light valiowith brown (10YR 8/4). Sections 4 through the Core Catcher are domin antly white (10YR 8/1-10YR 8/2), *Core is slightly deformed throughout. * This core consists of homogeneous to slightly mottled						
early Paleocene F: P1 G, er	F: P1 G, eug					2	and and				namotopali dozz, Section 5 and 6 contain 5 in 0 contain 5 in 1 cont laminations of light yallowish brown namotopisi oza All downcore color changes are gradational contacts SMEAR SLIDE SUMMARY (%): 1, 107 4, 70 5, 105 6, 117 6, 132 D D D D D Texture:						
691							11111111				Sand 0 0 0 0 0 Sitt 20 20 30 30 Clay 80 80 80 70 70 Composition:						
						3	Indunt				Palagonite 1 - - - - - - - - - - - - - 1 Classifier 1 - 2 - 1 Classifier 5 5 7 7 3 3 Foraminifiers 1 - Tr - Tr - Tr - Tr Classifier 1 - Tr - - - - - - Tr - - - - - Tr - Tr - Tr - - - - - Tr - - -						
	ane					4					CaCO ₃ data: 2, 120 cm = 98%						
	zone-C. damous (CP2) re					5	Traditoria										
etaceous (Maestrichtia	N. M. murus						a far refire										
late Or						7	in motion			•							

SITE 577 HOLE A CORE 13 CORED INTERVAL 2791.5-2801.0 mbsl; 113.9-123.4 mbsf

119

SITE	577	_	HOL	EE	3	CC	RE	1 CORED	INTE	RV	AL	2782.0-2791.5 mbsl; 104.4-113.9 mbsf					
×	DHIC		F	OSSI	L												
TIME - ROC UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY SWITHOLOGY		STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION					
						3	0.5					NANNOFOSSIL OOZE *Dominant colors: very pale brown (10YR 7/4–10YR 8/4), very pale brown (10YR 7/3–10YR 8/3), and [diny yet]owish brown (10YR 6/4) changing to white (10YR 8/1–10YR 8/2) at bas of Section 3. Sections 4. through 6 contain thin intervals of very pale brown (10YR 7/4, yet]owish brown (10YR 5/4), and [ding targ v2.25 N7). *Section 2, 32–150 on is very deformed flow in, The rest					
							1.1.1					of the core is slightly deformed. "This care consists of homogeneous to slightly mattled nanofossil ooze. Downcore color changes are grade sloval.					
						2											
							1.0	1				SMEAR SLIDE SUMMARY (%):					
	Ŧ											0 D D D D					
	zou						1.6				1	Texture:					
ŝ.	(2d)						-	1				Sand 5 15 20 1 1 Silt 2 5 5 0 0					
	10											Clay 93 80 75 99 99					
	nicu						1.2	+++++++++++++++++++++++++++++++++++++++	TT.			Composition:					
	dar						-	L				Quartz Tr Tr Tr Tr Tr					
	Ý					2	1.12					Feldspar – – – Tr					
	11					1	1.2	[+_+_+				Clay 20 3 10 20 10 Volcanic class 1 3 Tr					
	moides (CF						-			-1		Carbonate unspec. 1 2 - 1 -					
							1.15					Foraminifers 7 15 25 Tr 1					
							1.15	1	911			Calc. nannofoesils 66 77 60 74 89					
	Sis								111	2		Sponge spicules – – – Tr					
	N						1.1			4	1						
							1.1	1-1-1-		1							
							1		11	1							
						4		FT-T-F		1							
-						100		1									
							1	1	11		- 1						
									111	1							
								1-1-1	11								
								1	111		-1						
								1									
								1-1-1									
14																	
1010						5		T-T-T-	11								
1						1.2		1	11								
							1	1									
10.00			K					1++++++									
2								F1		. 1							
2								++++++		11							
5								1 1 1 1		11							
20							1	+,+,+,		13							
1								+ + + + + +		۰.							
						6		+_+_+		:1							
							1	11-1-	1:1	1							
							1	1-1-1-	111	11							
								1		13							
								1	11	.1	- 1						
						1-		1-1-1-1		11							
						7	-		11	1							
			AM		8	cc		1-1	11	-1							

SITE 577 (HOLE 577)

-0 cm	4-5	4-6	4,CC	5-1	5-2	5-3	5-4	5-5	5-6	5,CC	6-1	6-2
			Par 1	Sant			and the second	65.2	100			1000
F									A COLOR			- LAND
-	12			1000			Litter -			2		
	- in	the street	2				Section of the	and the second				22
Γ	料 国		1	aller -			and the second	Charles March				
F		8 6		15 432					The second second			
L25						-A-		1 and	100			
-25		Sec. 2						121-1-3				16 14
F		1						the second				*****
L		The se					1 10				(AND A	print and
	Sale of		· l					- Hard				
	Sold and	学びしま	Sec. 1		STREET.	1		Charles .				and the second s
F	R.C.				and the second		The seal					
	and the second	1 star			and the second second	1.00	(Section)				「「「「「「」」」	
-50	and the second				and a		and the second	*** [125
F	Same St				1							E Start
		and the second			-			A CONTRACT				200
Γ	and the second	ALC: NO			1							
-	and the second							The state			一般である	Ser.
L	11000							11111-27			C. Martin	
							AN AN AN				2	
-75	100 A.M.					and a	Contraction of the				and and	
L	100 1	- Mar										
	Berth					(2. w)/ ***		10				Tool and
	-						1					
-	-											
								155			15 M	
Γ							M. C. C.					
-100	State of					-	30-20	1				and the second
	1.1.1						1000	1				
Γ	and the second							and the			1000	A STATE
-	The state				-	A STATE	Ser an				States and	A set
								and the second			A A A	State State
				Maria		A LEAD	S. Martin				A STATE	白豆 竹田
	and the second			N. A.				-were				
-125				1111		20 10					The second	
	-				1	The second se	- Bat	4.2.4.2 1.0.451				
F	-				and the second	1		1200			The second second	400
F 1	-			and a		1/2	the state				EX IN	
	and and				and and		and the	-				Ser and
F I	-						10.15	Cale of the second			Same in	State of
+	11-20				and the second	EL P	The second	and the second				and the second
L150	and a state						-				and the second	

-0 cm	1_7,CC	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8 00	9.1	0.2	0.2
- 0 cm	7,60	8-1	8-2	8-3	8-4	8-5	8-6	8-7	8,CC	9-1	9-2	9-3
-75				1 2 1	27					Sec.		and the second
											and and a second of the second	A REAL PROPERTY OF A REAL PROPER

-0 cm 11-1	11-2	11-3	11-4	11-5	11-6	11.CC	12-1	12-2	12-3	12-4	12-5
).Est	15 2	3			1				
	and a	A.	that 1			Salara a		1			
-		1 Con	11			- 2	制題	1 e/	and the second	-	-
-		125	The second	A.	一一書	a se			Table 13	165 A	
1 m	A CONTRACT			121		the state					
		A.	1ª	1	ale and	-		123/3		1015	11495
-25	A.					The second		1342	ALCONTRACT	Ser 1	-
-	1 miles			14-1	The second				and the second	See 3	
	and the second		- and	7-25					States.	a wat	
			SE					11 - T			
		12		the state	ALC: NO				A MARTIN		t N
-	Here .		- The	- THE					C.	General States	13
-50	ST.		Circle ¹		1						
			5.0	Series .				1- 15	STAL P	and the second	
				1-1-1	1000			E SE B			
-	Felin		Testa.	T-T-T				Mar &		-	-
-	52		1.5	A and	and the second s			. <u>14</u>	and the second	N. B. B.	
	る意		e or	1.	and the		1			1	-
	り会」		Cardon I	1 11					Salary.	-	1
75	+		-		1 IN						10.15
-				100	ALC: NO					1	
-	122	-	1		A second			Min- İ			
		the last	-		and the second sec						
	5+6	ALL A	1	STE.						1	-
-	and the	N-T-	E	and the second				北邊日	R. S.L.	1	
-100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	and the second	122				Let 1	And the second second		1
1 - 33	1		Ref. S	1200	NE PAR					1 areas	-
	1	12mm			1				and and		- 1
-	1			1000	-				14 12		· =
		101-10 101-10		The state	1				The state		
14 A 14	1		and the second	and the second se				and the second	17 19 19 19		Terry I
-125	1	1	a part of					- mail			3-4
-	Sec.	and the		the it				· 如金、花花			×
_	A state	State of the second			=						
	11.5				-				i de la		
	State of the second sec	は記載の							Seat		1
	30	A A A A A A A A A A A A A A A A A A A							- Ang		-
L_150			- 21-24	Sec. 1	-cale			2-0			

-0 cm	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1,CC	2-1	2-2	2-3	2-4
-	and the second		a second for the					And State			- ANKING	
25 				and a start with a								
50 	A second a	1 2 5 6 5 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	and the second			and the second						
75 			the second se		and the second se	the start -				次が一定の		A State of the sta
- 100 - -		and the second	The second second	14-14-1		A State of the second						1
	and the second se	Al Carlo A										AL AN

r —0 cm	2-5	2-6	2,CC	3-1	3-2	3-3	3-4	3-5	3,CC	4-1	4-2	4-3
					· · · · · · · · · · · · · · · · · · ·							

