2. SITE 5851

Shipboard Scientific Party²

HOLE 585

Date occupied: 1122Z, 18 October 1982

Date departed: 1805Z, 26 October 1982

Time on hole: 8 days, 6 hr., 43 min.

Position: 13°29.00'N; 156°48.91'E

Water depth (sea level; corrected m, echo-sounding): 6109

Water depth (rig floor; corrected m, echo-sounding): 6119

Bottom felt (m, drill pipe): 6122.3

Penetration (m): 763.7

Number of cores: 55

Total length of cored section (m): 514.6

Total core recovered (m): 164.5

Core recovery (%): 32

Oldest sediment cored: Depth sub-bottom (m): 763.7 Nature: Volcanogenic turbidites Age: late Aptian Measured velocity (km/s): 2.5

Basement: Not reached

HOLE 585A

Date occupied: 1805Z, 26 October 1982

Date departed: 1709Z, 2 November 1982

Time on hole: 6 days, 23 hr., 4 min.

Position: 13°29.00'N; 156°48.91'E

Water depth (sea level; corrected m, echo-sounding): 6109

Water depth (rig floor; corrected m, echo-sounding): 6119

Bottom felt (m, drill pipe): 6122.3

Penetration (m): 892.8

Number of cores: 22

¹ Moberly, R., Schlanger, S. O., et al., *Init. Repts. DSDP*, 89: Washington (U.S. Govt. Printing Office).

² Ralph Moberly (Co-Chief Scientist), Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HI; Seymour O. Schlanger (Co-Chief Scientist), Department of Geological Sciences, Northwestern University, Evanston, IL; Miriam Baltuck, Deep Sea Drilling Project, Scripps Institution of Oceanography, La Jolla, CA (present address: Geology Department, Tulane University, New Orleans, LA); James A. Bergen, Department of Geology, Florida State University, New Orleans, LA); James A. Bergen, Department of Geology, Florida State University, Tallahassee, FL (present address: UNOCAL, PO. Box 76, Brea, CA 29631); Walter Dean, U.S. Geological Survey, Denver Federal Center, Denver, CO; Peter A. Floyd, Department of Geology, University of Keele, Keele, Staffordshire, United Kingdom; Naoyuki Fujii, Department of Geologia, University of Tulsa, Tulsa, OK; James G. Ogg, Department of Geology and Geophysics, University of Wyoming, Laramie, WY; Isabella Premoli Silva, Istituti di Paleontologia, Milan, Italy (present address: Dipartiment of Geologia, Strasbourg, France (present address: University to Hilano, Milan, Italy); André Schaaf, Institut de Geologie, Strasbourg, France (Present address: University to Keeler, Katol University of Vandre Schaologie et Géodynamique, 29287 Brest Cedex France); Rainer G. Schaefer, Institut für Erdöl und Organische Geochemie, KFA Jülich, Federal Republic of Germany; William V. Sliter, Branch of Paleontology and Stratigraphy, U.S. Geological Survey, Reston, VA (present address: U.S. Geological Survey, Menlo Park, CA); Jill M. Whitman, Geological Research Division, Scripps Institution of Oceanography at Solida Complexity.

Total length of cored section (m): 208.8

Total core recovered (m): 101.5

Core recovery (%): 48.6

Oldest sediment cored: Depth sub-bottom (m): 892.8 Nature: Volcanogenic turbidites Age: late Aptian Measured velocity (km/s): 3.2-3.5

Basement: Not reached

Principal results (Hole 585): Hole 585 (13°29.00'N, 156°48.91'E) was drilled as a single-bit attempt to reach the Jurassic basalt crust that presumably underlies the East Mariana Basin. Drilling extended from 18 to 26 October 1982, in a water depth of 6109 corrected meters. The total thickness of the section penetrated was 763.7 m. Fifty-five cores were taken from a total cored section of 514.6 m. Total core recovered was 164.5 m, giving a recovery rate of 32%. Core 1 was taken from 0.0 to 6.8 m and Wash Core H1 was taken from 6.8 to 255.9 m; thereafter the hole was continuously cored. Six lithologic units were recognized.

Unit I. From 0.0 to 6.8 m, this unit consists of Recent to lower Pleistocene brown clay and nannofossil ooze. Next is the unknown interval that was washed.

Unit II. From 256 to 399 m, middle Eocene to upper Campanian nannofossil chalk, silicified limestone, chert, and zeolitic claystone were recovered. A lower Eocene altered ash bed was cored in this unit.

Unit III. From 399 to 426 m, Maestrichtian to upper Campanian zeolitic claystone and nannofossil-bearing clayey chalk and chert were recovered.

Unit IV. Poor recovery occurred from 426 to 485 m, but apparently this unit consists of abundant chert in Campanian zeolitic claystone.

Unit V consists of three subunits: Subunit VA extends from 485 to 504 m and is made up of Campanian zeolitic claystone, moderately bioturbated with silty laminae marking turbidite layers. Subunit VB ranges from 504 to 550 m and is dark gray claystone with variable amounts of radiolarians in sandy laminae. This subunit spans the middle Cenomanian to Santonian. Subunit VC: extends from 550 to 590 m; it is made up of interbedded claystone, nannofossil-bearing claystone, radiolarian-rich limestone and siltstone; laminated and graded intervals are common. The subunit is middle Albian to middle Cenomanian.

Unit VI. This unit extends from 590 to 763.7 m and is composed of graded sequences of volcanogenic siltstones, sandstones, and breccias made up largely of hyaloclastite debris; reworked ooids and skeletal carbonate debris of echinoids and mollusks are common. The unit is upper Aptian to middle Albian.

The fossil assemblages and sedimentary structures indicate that almost the entire section is the product of the redeposition of sediment through the action of turbidity currents directed into the East Mariana Basin. The presence of abyssal benthic foraminifers shows that the Basin was deep as early as the late Aptian; bathyal and particularly neritic foraminifers, the latter of which are common in the Albian and Aptian strata, point to the presence of neighboring shallower slopes. Aptian and Albian volcaniclastic debris accumulated at a rate of at least 40 m/m.y.: this high rate and the abundance of carbonate debris derived from shallow-water platforms indicate that a major volcanic edifice building phase, during which islands formed, took place around the Basin during the Aptian and perhaps the Albian; these edifices have been subsiding since the Late Cretaceous. In the latest Cenomanian to earliest Turonian the Basin was the site of deposition of organic carbon-rich sediments resulting from a marked oxygen deficiency in the water column. This oxygen deficiency is taken to be a manifestation of the global Cenomanian-Turonian "oceanic anoxic event." Paleomagnetic measurements show that the site was at about 5.1°S during the Turonian and about 8.2° during deposition of middle and early Albian volcaniclastic turbidites.

Principal results (Hole 585A): Hole 585A (13°29.00'N, 156°48.91'E) was drilled in a second single-bit attempt to reach basalt basement below the East Mariana Basin from 26 October to 2 November 1982, in a water depth of 6109 m. Twenty-two cores were taken, but the largest part of the section was washed to a depth of 772 m to save the bit and exceed the penetration achieved in Hole 585. The cores taken above that depth, however, did indicate that the sedimentary section was indeed highly resedimented in nature. The total length of the cored section was 208.8 m; total core recovery was 101.5 m, 48.6% of the cored section. The lithologic units in Hole 585A are identical to those in Hole 585. A series of continuous cores-585A-5 through -10-were taken between 502.6 and 561.8 m in Coniacian to Cenomanian strata in an attempt to recore the organic carbon-rich sediments found in Core 585-32. The attempt was successful and a thin sediment layer rich in organic carbon was recovered in Sample 585A-8,CC at or a few centimeters above the Cenomanian/Turonian boundary. The sediments in 585A from 772.1 to 892.8 m are graded sequences of hyaloclastite-rich volcaniclastic breccias, sandstones, and siltstones; the coarser portions contain basalt fragments of cobble size. Ooids and skeletal debris of algae, bryozoans, gastropods, and rudists are abundant; orbitolinid foraminifers are also common, as are fragments of calcite-cemented, sorted, ooid- and orbitolinid-bearing grainstone. This shallow-water carbonate debris is more diverse in nature than the debris in Hole 585. The deepest part of the section is upper Aptian. The section of 585A below the total depth of 763.7 m of Hole 585 thus records redeposition of coarser and more diverse volcanic and biogenic carbonate debris than that seen in the upper Aptian and lower Albian in Hole 585.

Acoustic velocity measurements show an increase in V_p from an average of 2.18 to 3.2 km/s at a depth of 800 m in the volcaniclastic section; perhaps this level is the "9-second" reflector of the site survey, which was believed to be the top of the Jurassic strata.

BACKGROUND AND OBJECTIVES

Introduction

As of October 1982 deep-sea drilling carried out by the JOIDES-IPOD program had not succeeded in sampling Jurassic sediments that could reveal paleoenvironmental conditions in the Pacific Mesozoic superocean. Remnants of sediment deposited on Jurassic crust presumably remain buried in the western Pacific between the northern Marshall Islands and the Mariana Trench. Leg 89 was designed to recover such sediments of probable Bathonian-Callovian age (150-160 Ma), which would enable us to compare Mesozoic superocean strata to Atlantic and Tethyan sediments of similar age deposited along continental margins. One result of drilling in the Pacific basin has been the discovery that the area between the Line Islands and the western bordering trench system was the site of intensive volcanic activity in middle to Late Cretaceous. Therefore a second objective of Leg 89 was to attempt to investigate further the timing and extent of Cretaceous midplate volcanism.

Paleoenvironmental Objectives

Major paleoceanographic changes are thought to have occurred when the configuration of the continents and oceans evolved from a pattern dominated by a single supercontinent and a single superocean to one of fragmented continents and several oceans.

The Middle Jurassic pelagic sediment record comes primarily from sections outcropping in the Tertiary fold belts where they correspond to Tethyan continental margins in various stages of evolution; sediments that contain this record have never been sampled from any deep oceanic basin. A major controversy centers on whether or not these sections can be regarded as truly representative of the early Mesozoic world ocean. A consequence of this enormous gap in our knowledge is that all biostratigraphic data from the early Mesozoic remain biased toward fossil assemblages from nearshore and marginal areas of ocean basins in the early stages of their evolution.

There is ample evidence from magnetic data (Fig. 1) that portions of the oceanic crust in the western Pacific are at least as old as Middle to possibly Early Jurassic, but no complete record of the sediment sequence overlying oceanic crust in this area has been obtained so far. Geophysical data and Deep Sea Drilling Project cores also suggest that these portions of the seafloor were actually generated at moderate to low latitudes in the Southern Hemisphere away from any large continental landmass. We expected that this Mesozoic sediment record could be recovered at Site MZP-6 in the deep East Mariana Basin (Fig. 2).

The specific paleoenvironmental questions to be addressed on Leg 89 included the following:

1. How did the early evolution and radiation of the oceanic plankton (coccoliths, radiolarians, benthic and planktonic foraminifers) influence the composition of pelagic sediments and how do these fauna and flora reflect Mesozoic ocean chemistry?

2. Did the opening of the North Atlantic Ocean affect the circulation and chemistry of the world ocean in a manner similar to that which has been proposed for the opening of the South Atlantic?

3. Are "pelagic" sediments exposed in Tertiary fold belts (ribbon radiolarites, ammonitico rosso, etc.) characteristic of open ocean environments?

4. Can we establish an early Mesozoic pelagic bioand magnetochronology?

5. Were the mid-Cretaceous sedimentary environments in the deep Pacific better oxygenated than those in the Atlantic and Indian oceans?

Although numerous outstanding Mesozoic paleoenvironmental objectives, such as the nature of the Tertiary/Cretaceous boundary, the mechanisms behind mid-Cretaceous oceanic anoxic events, the occurrence of water exchange with partially or completely isolated basins, the structure and stability of deep water masses, and the chemical fractionation between major ocean basins, remain important problems in other oceanic basins, the basic paleoenvironmental objective of Leg 89 was the recovery of a truly oceanic Jurassic sediment record, which could only have been preserved in the western Pacific.

Midplate Volcanism

One of the major results of DSDP drilling has been the discovery in the central and western Pacific basin of

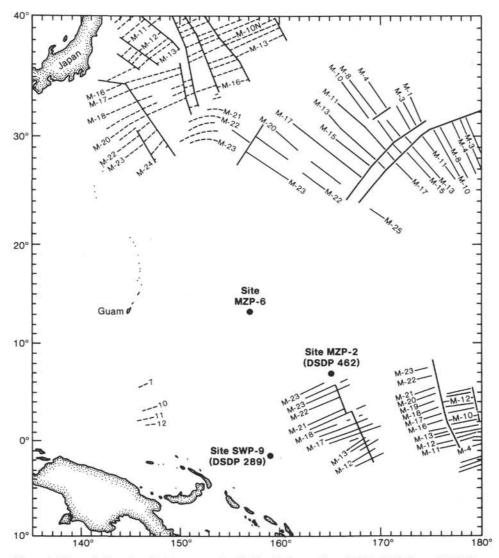


Figure 1. Magnetic lineations in the western Pacific in relation to Sites MZP-2, MZP-6, and SWP-9.

large amounts of volcanic rock that were emplaced on the lithospheric plate in an off-ridge, intraplate setting. Off-ridge volcanism, referred to as midplate volcanism here, resulted in the formation not only of linear island chains but also clusters of seamounts and deep-water sill-flow complexes. Dating of this midplate volcanism by isotopic and biostratigraphic methods indicates that in the western Pacific, widespread volcanism took place between about 110 or 115 and 70 Ma. The widespread nature of this midplate volcanism (Watts et al., 1980; Schlanger and Premoli Silva, 1981) and its apparent restriction to the middle and Late Cretaceous, although evidence from Enewetak (Ladd et al., 1953; Kulp, 1963) and the Line Islands (Haggerty et al., 1982) indicates that Eocene volcanism also took place, has made it difficult to reconcile hot spot theory with such volcanic activity.

Until quite recently the vertical component of plate motion was considered largely in terms of lithospheric cooling, thickening, and subsidence as a function of the age of the oceanic lithosphere. It has now been suggested by a number of workers that the subsidence path of a large portion of the Pacific oceanic lithosphere has diverged significantly over long periods of time from an ideal Parsons-Sclater curve because of reheating of the lithosphere subsequent to its formation at a ridge crest. We need to quantify the vertical component of plate motion resulting from this reheating effect and to determine the temporal and spatial extent of thermally induced bathymetric highs. In order to address the problem of midplate volcanism in the Mariana Basin, we proposed to collect biostratigraphic and petrologic information in the mid-Cretaceous turbidite section expected at MZP-6 above the principal Jurassic sedimentary objectives. Fossil indicators of ages and of depths of water and of surrounding seamounts, and the types and products of volcanism could be used to interpret the history of volcanism and subsidence.

Secondary Objectives at MZP-6

Leg 89 had a number of scientific objectives subordinate to the primary one of retrieving a section of Jurassic midocean sedimentary rocks at MZP-6, and the lesser one of obtaining a mid-Cretaceous record of volcanism

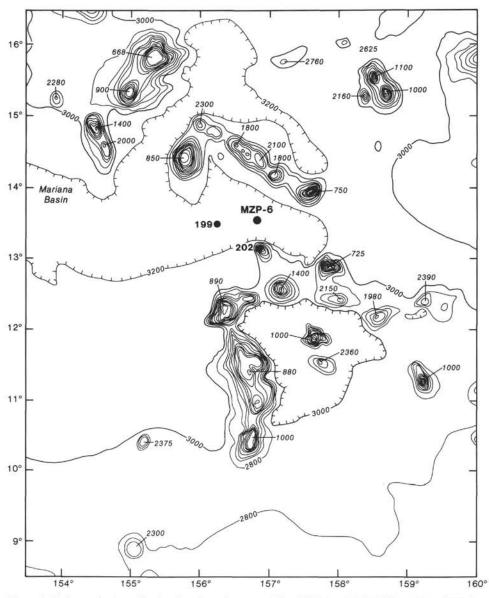


Figure 2. Bathymetric chart showing location of proposed Site MZP-6 and DSDP Sites 199 and 202 (bathymetry in fathoms) (after Chase et al., 1970).

there. Planning of the leg had to take into account those additional objectives. At MZP-6, as at most sites planned by JOIDES, we intended to penetrate into basement and log the hole. The petrology and physical properties of such old midoceanic crust are unknown, and good logs of midocean sites are rare. Committees planning for the leg also recommended continuous coring in the Paleogene and Cretaceous in the hope of extending the available biostratigraphic and geochemical sample of those rocks. Certain engineering studies of the behavior of the drill string were also planned for MZP-6.

Selection of Site MZP-6

As stated earlier, the search for Jurassic strata in the western Pacific has been largely guided by magnetic anomaly patterns (Figs. 1 and 3). Orthogonals (large arrows in Fig. 3) to Anomaly M-29, considered to be about 146 m.y. old, indicate that the plate age in the East Mar-

iana Basin should be about 150 or 160 m.y. Drilling at Site 199 (Heezen, MacGregor, et al., 1973a) showed that Campanian and Maestrichtian chalks were present at a depth of 460 m sub-bottom in the Basin. Deeper reflectors were not reached at Site 199 but a significant sediment section, presumably Early Cretaceous and Jurassic, appeared to be present. Drilling at Site 462 in the Nauru Basin (Larson, Schlanger, et al., 1981) penetrated an Aptian basalt sill and flow complex interbedded with Aptian sediments. The Nauru Basin was known to be shallow with a depth of 5190 m, instead of a depth of 6120 m predicted by a Parsons-Sclater curve for the ca. 150-m.y. age of the crust at Site 462, which was between Anomalies M-26 and M-27. This depth anomaly was, after the discovery of the mid-Cretaceous sill and flow volcanism, interpreted to be the result of thermal rejuvenation and uplift of the Jurassic plate in the Marshalls area (Schlanger and Premoli Silva, 1981; Larson and

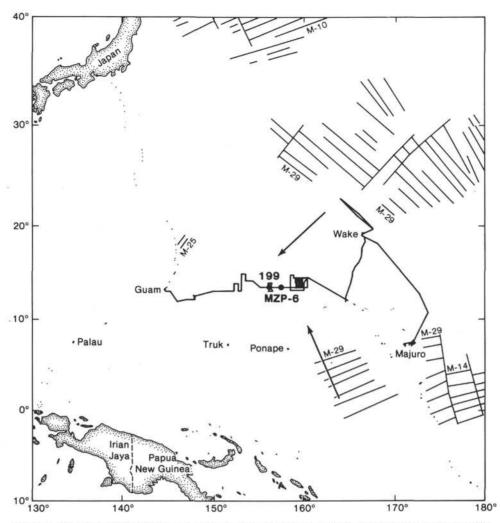


Figure 3. *Kana Keoki* KK810626 Leg 4 cruise track and some magnetic lineations in the western Pacific. Large arrows point to the location of probably the oldest crust in the Pacific basin. MZP-6 was selected because it lies near the center of the basin (from Duennebier and Petersen, 1982).

Schlanger, 1981) as deduced by Detrick and Crough (1978) from their study of subsidence rates at Enewetak Atoll. Therefore we believed that the search for a suitable basin should center on one that has the "correct" depth, about 6100 m, for its age. The Mariana Basin fulfilled this requirement.

A site survey of the Mariana Basin (Duennebier and Petersen, 1982; Duennebier et al., this volume; Shipley et al., 1983) was carried out for JOIDES by the Hawaii Institute of Geophysics and the Scripps Institution of Oceanography in 1981 (Fig. 3). A new type of sourcea water gun-was used and the data were digitally recorded for processing ashore. MZP-6 was selected to be drilled into a presumed sedimentary section between 8.1 and 9.1 s two-way traveltime (Fig. 4). An interpretation of the section is shown on Figure 5. Based on this and earlier interpretations, a minimum sub-bottom depth of 1000 m was proposed, with appropriate basement drilling to 200-m penetration or bit destruction, as set forth by the Planning Committee. In view of the Mesozoic objectives the requirement to continuously core the upper section was waived for Leg 89 in order to conserve time. Reentry and logging were planned.

OPERATIONS

After its dry-docking and port call in Yokohama, Japan, the *Glomar Challenger* left for Leg 89 at 0055 hr. local time on 11 October 1982.

En route to Site MZP-6, which was to become Site 585, we deployed a magnetometer, a 12-kHz echo sounder for bathymetry, a 3.5-kHz reflection profiler for discrimination of shallow sub-bottom sediment reflectors, and an air-gun system for reflection profiling with deeper penetration. The system normally used two simultaneously triggered air guns of 60- and 120-in.³ (983 and 1966 cm³) capacity, and two recorders operating at different scales and with various delays but with identical filter settings of 40 to 320 Hz. Approximately 8 hr. before reaching the proposed site the filter settings were changed to 20 to 160 Hz in order that our records might better match those obtained during the precruise site survey. Our track carried us across the Bonin Trench and the Magellan Seamounts en route to the Mariana Basin.

Moderate headwinds and swells retarded our progress during the first part of the transit. After 16 October, when tropical storm Owen passed about 300 mi. south-

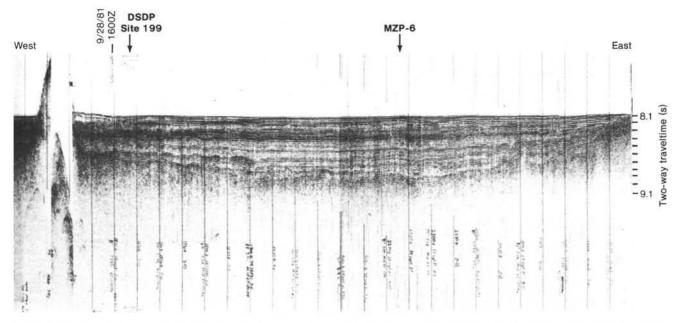
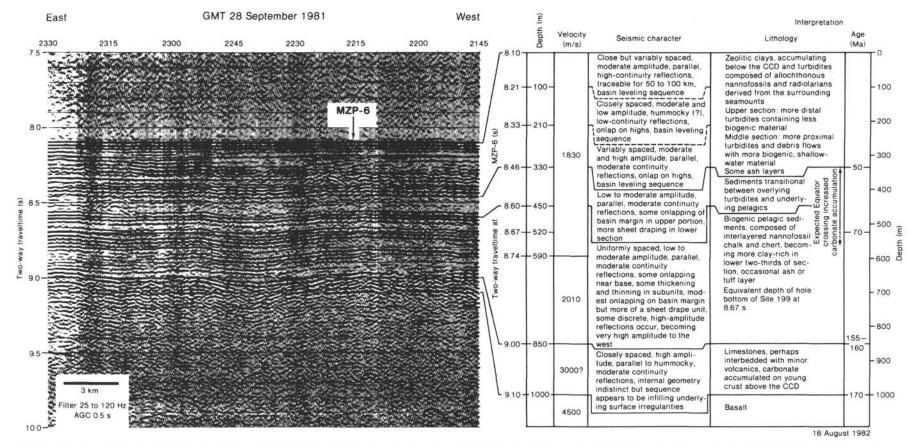


Figure 4. Seismic profile across the East Mariana Basin made using an 80-in.³ water gun with a 65-130 Hz bandpass filter. DSDP Site 199 and proposed Site MZP-6 are shown. Water depth at MZP-6 is 6077 m uncorrected (*Kana Keoki*, 28 September 1982). MZP-6 was drilled into a presumed sedimentary section between 8.1 and 9.1 s two-way traveltime (from Shipley et al., 1983).

west of us en route to becoming typhoon Owen, seas and winds moderated and an unexpected following current aided our progress. At 1534 hr. (0534Z) on 18 October we turned south, crossing a guyot of the Magellan Seamounts to approach the Mariana Basin site at right angles to the reflection profile from which the site had been selected.


On our approach to MZP-6 (Fig. 6), we made moderate adjustments of heading based on three satellite navigation fixes. We reduced speed to about 7 knots at 1936 hr. (0936Z) to improve the quality of our reflection profile across the flat-floored Mariana Basin. The record (Fig. 7) resembled the one on the site survey, and, as no small seamounts or other undesirable features appeared, we launched the 16-kHz transducer beacon as we crossed Site MZP-6 at 2122 hr. (1122Z) on 18 October. Depth of water from the 12-kHz transducer was recorded as 6049 m corrected to 6112 m, and our hydrophone depth to 6109, or 6119 m at the drill floor. Site 585 is at 13°29.00'N, 156°48.91'E; our transit was 1642 n. mi. at an average speed of 9.0 knots.

JOIDES planning for MZP-6 had always been in terms of reentry, and the plan by the scientific party had been to set a reentry cone after a short wash-in test and not waste time with a long pilot hole. As a result of drill string losses within the past year off Central America and Japan, however, DSDP engineers were loathe to lower the weight of a reentry cone to the depth of the Mariana Basin. Their proposal, announced to the scientific party only after our arrival in Yokohama, was to make a single-bit attempt, followed by additional single-bit attempts until success was achieved or leg time expired. That program jeopardized not only the MZP-6 Jurassic objectives but also all secondary leg objectives. The controversy between the scientific party and DSDP both on board and with La Jolla before departing Yokohama resulted in the compromise drilling program that called for a reasonable attempt at drilling an extended pilot hole. At bit destruction or earlier, if in the pilot hole the drilling rate or apparent bit condition should indicate probable bit failure before penetrating Jurassic, we would terminate the pilot hole and start reentry.

The drilling crews commenced rigging the piccolo upper drill string support as we maneuvered back over the beacon. A Smith type-F93CK four-cone bit of 9 and 7/8-in. diameter was chosen to strike the balance between a bit that could perform rapid drilling in friable sedimentary rock and one that could penetrate and maintain tooth life in harder rock. The standard DSDP bottom-hole assembly of drill collars, bumper subs, and heavy drill pipe included a sub for hydraulic release of the bit to allow logging through the drill string.

We expected that running the drill string would consume more than the normal time for such depths, because the drill string would be made up mainly of new pipe that had been purchased and loaded in Japan. Each length had to be measured and recorded to insure accuracy in depth, and each joint made, broken, and made a second time to insure tight connections. Malfunctioning air tongs and pipe stabber added to the time. As the drill string reached the approximate depth of the seafloor, two attempts to obtain a mudline or seafloor core failed because of a faulty new design of the flapper valve at the top of the core barrel. It was not until 0716 hr. on 20 October that our first core arrived on deck. Its length of sediment compared to drill string length established the depth of the seafloor from the drill floor to be 6122.3 m (Table 1).

After a wash-in or jetting test, to determine bearing conditions should a reentry cone be set, we drilled and washed to 255.9 m, and recovered a modest amount of sediment in Wash Core 585-H1. The time constraints

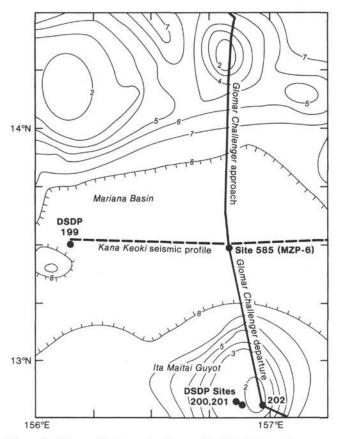


Figure 6. Glomar Challenger track near Site 585. Bathymetry, contoured in seconds of two-way traveltime, from Duennebier and Petersen (1982), Chase et al., (1970), Heezen, MacGregor, et al., (1973a), and Figure 3 (this chapter). One second is about 750 m depth; therefore the abyssal plain of the Mariana Basin is slightly deeper than 6000 m.

and the small chance of obtaining useful stratigraphic information from the uppermost section had caused JOIDES to forgo its standing policy of continuously coring in all holes. We were to core continuously only from the Eocene downward. Firmness of the sediment, including porcellaneous chert fragments recovered in Core 2, forced us to core continuously below 255.9 m. Detailed descriptions of the cores recovered at this site as well as their scientific interpretation are reported elsewhere in this chapter and volume.

The Neogene section of claystones and cherty nannofossil chalk between about 256 and 399 m (Cores 2 through 17) was cored in about 41 hr. Drilling times were as slow as 5.1 to 9.8 min. m^{-1} (11.8–6.1 m hr.⁻¹ rates) in the cherty section from 275 to 294 m depth, but generally were faster from there to about 358 m depth, averaging about 2 min. m^{-1} (30 m hr.⁻¹). Between 358 and 399 m, drilling times increased from 2.7 to 4.8 min. m^{-1} (22.2–12.5 m hr.⁻¹). Recovery of Neogene cores was fair to poor (32 to 2%), and probably can be attributed to the alternation of harder porcellanites, cherts, and silicified limestones with softer oozes and clays. Pump pressures sufficient to clear chert chips from the bottom of the hole presumably blew away the friable sediment. On seven instances 20 to 30 barrels of drilling mud was pumped to help in cleaning out the hole.

Comparable drilling times prevailed in the Maestrichtian and Campanian section from about 399 to 494 m depth, ranging from 1.1 to 8.1 min. m^{-1} (55–7.4 m hr.⁻¹), but except for fair recoveries in Cores 18, 20, and 27 (21, 44, and 60%), we obtained a very poor sampling of the rocks (0–9% in other cores; 14% overall average for the interval). During this 27-hr. period the heave compensator was removed because its maximum air pressure had been set so low, as a result of a new safety regulation, that it would not operate. Seas remained calm. Except for the recovery, and for periodic shifting of the heavy walled "knobby" joints at the top of the string to keep that pipe in the piccolo, we made good, even progress in these zeolitic claystones and cherty chalks.

That progress of about 100 m day⁻¹ continued into the middle Cretaceous claystones and other sediments, with 590 m reached by 1117 hr. on 24 October. Typhoon Owen, which had continued to curve clockwise, north toward Japan, than east, and finally and uncharacteristically southeast, was once again within a few hundred miles of the ship. Owen, northeast of us at about 25°N, 164°E, caused a few gusty squalls, which with the current rendered the vessel unable to maintain its heading into the swell, estimated at about 3 to 5 ft. Maximum isolated rolls of 7° resulted; according to the driller, maximum weight fluctuations of 70,000 lb., in addition to the drill string weight, occurred once or twice near 0400 on 24 October. Unfortunately, the TOTCO recording is blank for that period. In general for the site, 5-ft swells gave 50,000-lb. maximum weight fluctuations. For the interval, recoveries were poor to good, ranging from 9 to 70% and averaging 34%. Drilling times were longest for Core 35 and shortest for Core 32, of 5.6 and 3.1 min. m⁻¹, or rates of 11 to 19 m hr.⁻¹, respectively. By noon on 24 October the bit had been used only 20 hr., torquing of the drill string had been minimal, one episode of bit plugging had been cleared relatively easily, and seas were again calm. We began to be optimistic that our objectives below 800 m might be obtained by this single-bit hole.

Below 590 m are middle Cretaceous volcanogenic sediments, mainly hyaloclastites redeposited as turbidites. For the most part these were cored quickly (2–3 min. m^{-1} , or 30–20 m hr.⁻¹). Three cores between 668 and 695 m depth were cored more slowly at 4.5 to 4.9 min. m^{-1} (about 13 m hr.⁻¹), and the lowest two cores were cut even more slowly at 7.9 and 7.4 min. m^{-1} (about 8 m hr.⁻¹).

After retrieving Core 55 at 0840 hr. on 26 October, the next core barrel dropped into the drill string wedged into the liner of the landing subassembly. It was impossible to circulate, and although four runs of the sand line were attempted to pull the barrel from the liner, we were unsuccessful. Pull on the sand line was limited because of the weight of the line itself at these depths.

Modification of the landing subs to allow for the hydraulic piston core, extended core barrel, and hydraulic bit release reduced the area of shoulder that contacts

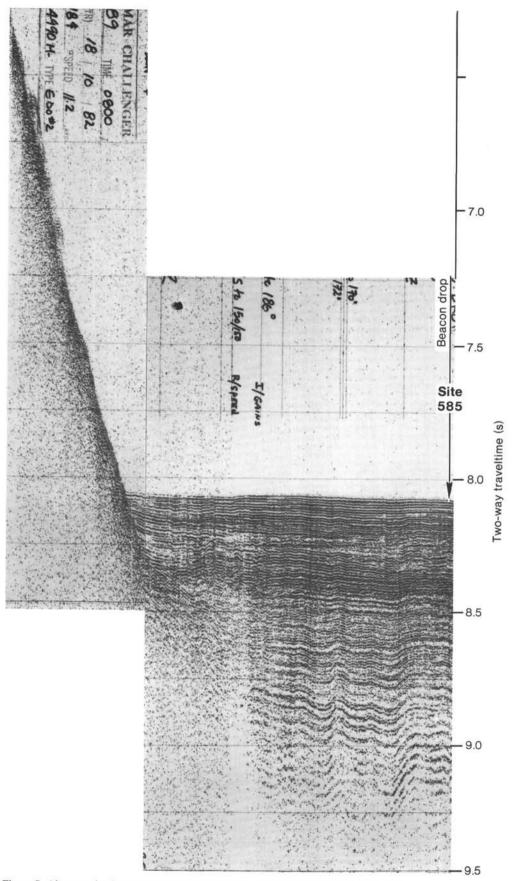


Figure 7. Air gun seismic profile approaching MZP-6, which is Site 585, Mariana Basin.

Table 1. Coring summary, Site 585.

Core	Date (Oct.,			oth from 11 floor (m)	se	th below afloor (m)	Length	Length recovered	Percent
no.	1982)	Time	top	bottom		bottom	(m)	(m)	recovered
Iole 585									
1	20	0716		.3-6129.1		0-6.8	6.8	6.60	97.0
H1 2	20 20	1410 1621		.1-6378.2		8-255.9 9-265.5	Was 9.6	th core 0.35	3.6
3	20	1838		.8-6397.4		5-275.1	9.6	1.05	10.9
4	20	2150		.4-6401.4		1-279.1	4.0	0.40	10.0
5	21 21	0118 0431		.4-6406.9		1-284.6	5.5	0.35 2.38	6.4 26.2
7	21	0644		.0-6425.2	293.	7-302.9	9.2	0.19	2.1
8	21	0912		.2-6434.3		9-312.0	9.1	3.11	34.2
9 10	21 21	1120		.3-6443.5		0-321.2	9.2 9.1	0.84	9.1
11	21	1540		.6-6461.8		3-339.5	9.2	2.76	30.0
12	21	1740		.8-6470.9		5-348.6	9.1	2.26	24.8
13 14	21 21	1952 2212		.9-6480.1		6-357.8 8-366.9	9.2 9.1	2.01 2.89	21.8
15	22	0155		.2-6502.7		9-380.4	13.5	1.85	13.7
16	22	0430		.7-6511.8	380.	4-389.5	9.1	1.46	16.0
17	22	0730		.8-6521.0		5-398.7	9.2	2.54	27.6
18 19	22 22	0934 1200		.0-6530.1		7-407.8 8-417.0	9.1 9.2	1.88	20.7
20	22	1410		.3-6548.4		0-426.1	9.1	3.96	43.5
21	22	1701		.4-6557.6		1-435.3	9.2	0.56	6.1
22 23	22 22	2020		.6-6566.7		5-444.4	9.1	0.00	0.0
23	22	2240 0055		.7-6575.9		4-453.6	9.2 9.1	0.17 0.16	1.8
25	23	0511		.0-6598.6		7-476.3	13.6	0.15	1.1
26	23	0745		.6-6607.7		3-485.4	9.1	0.70	7.7
27 28	23 23	1005 1215		.7-6616.9		4-494.6	9.2 9.1	5.57 6.44	60.5 70.8
29	23	1412		.0-6635.2		7-512.9	9.2	3.03	32.9
30	23	1631	6635	.2-6644.3	512	9-522.0	9.1	1.65	18.1
31	23	1849		.3-6653.5		.0-531.2	9.2	5.72	62.2
32 33	23 23	2053 2313		.5-6662.6		.2-540.3	9.1 9.2	6.31 1.00	69.3 10.9
34	24	0144		.8-6680.9		5-558.6	9.1	3.59	39.5
35	24	0614	6680	.9-6694.4	558	6-572.1	13.5	2.51	18.6
36	24	0858		.4-6703.5		1-581.2	9.1	0.85	9.3
37 38	24 24	1117 1329		.5-6712.7		.2-590.4	9.2 9.1	1.24	13.5
39	24	1550		.8-6731.0		5-608.7	9.2	2.33	25.3
40	24	1745		.0-6740.1		7-617.8	9.1	0.65	7.1
41 42	24 24	2001 2205		.1-6749.3		8-627.0	9.2 9.1	0.32 4.71	3.5
42	24	0016		.3-6758.4		.0-636.1	9.1	6.98	75.9
44	25	0239		.6-6776.7		3-654.4	9.1	7.42	81.5
45	25	0647		.7-6790.1		4-667.8	13.4	4.82	36.0
46 47	25 25	0912 1148		.1-6799.2		.8-676.9	9.1 9.2	5.79 6.62	63.6 72.0
48	25	1418		.4-6817.5		1-695.2	9.1	3.20	35.2
49	25	1620		.5-6826.7		.2-704.4	9.2	8.63	93.8
50 51	25 25	1817		.7-6835.8		4-713.5	9.1 9.2	5.35	58.8 79.3
52	25	2034 2239		.8-6845.0		.5-722.7	9.2	7.30 6.62	72.7
53	26	0051		.1-6863.3	731	8-741.0	9.2	2.88	31.3
54	26	0351		.3-6872.4		.0-750.1	9.1	3.65	40.1
55	26	0840	6872	.4-6886.0	750	.1-763.7	13.6	8.30	61.0
							514.6	164.50	32.0
lole 585A									
HI	28	0313	6122	.3-6486.0	0	.0-363.7	Wa	sh core	-
1	28	0526	6486	.0-6495.6		.7-373.3	9.6	1.79	18.6
2	28	0800		.6-6505.1		3-382.8	9.5	1.28	13.5
3 H2	28 28	1022 1329		.1-6514.6		.8-392.3 .3-438.2	9.5 Wa	1.98 sh core	20.8
4	28	1543		.5-6570.0	438	2-447.7	9.5	0.18	1.9
H3	28	2031	6570	.0-6624.9		.7-502.6		sh core	-
5	28 29	2236 0051		.9-6634.1		.6-511.8 .8-520.9	9.2 9.1	3.58	38.9
7	29	0558		.1-6654.7		.9-532.4	11.5	4.71	41.0
8	29	0930	6654	.7-6665.8	532	4-543.5	11.1	4.11	37.0
9	29	1156		.8-6674.9		.5-552.6	9.1	1.73	19.0
10 H4	29 29	1400 2345		.9-6684.1		.6-561.8	9.2 Wa	1.28 sh core	13.9
H5	30	1028		.1-6780.3		.0-772.1		sh core	-
11	30	1307	6894	.4-6903.6	772	.1-781.3	9.2	6.90	75.0
12	30	1545		.6-6912.7		.3-790.4	9.1	9.99 ashed	+ 100.0
13	30	1946		.7-6921.9		.4-799.6	9.1	ashed 6.40	70.3
14	30	2256		.0-6940.2		.7-817.9	9.2	7.07	76.8
15	31	0205	6940	.2-6949.3	817	.9-827.0	9.1	7.59	83.4
16	31	0805		.3-6960.9		.0-838.6	11.6	6.91	59.6
17	31	1122 0956		.9-6970.0		.6-847.7	9.1 10.0	8.27 9.93	90.9 99.3
19	1	1333		.0-6989.1		7-866.8	9.1	5.89	64.
20	1	1648	6989	.1-6998.3	866	.8-876.0	9.2	3.83	41.6
	1	1934	6998	.3-7007.4	876	.0-885.1	9.1	3.06	33.6
21 22	2	0254	7007	.4-7015.1	205	.1-892.8	7.7	2.41	31.3

Note: Material recovered in washed intervals is listed as H1, H2, and so on.

and supports the core barrel, and so those contact surfacings had been deforming. They had been built back by beads of welding rod and machined round, but the final dimensions had not been checked on a second batch and the oversized landing sub wedged.

As there was no reentry cone set, the hole had to be abandoned at a total depth of 6886 m of drill string, 763.7 m below the seafloor. The drilling crews tripped out of the hole, having the last of the bottom-hole assembly on board at 0410 hr. on 27 October. Thus, 8 days, 6 hr., 43 min. were expended in this hole. The core barrel was cut from the assembly and examined, confirming the cause of wedging.

The bit was also examined closely. It had been in use 29 hr., 53 min. No teeth had broken, and few teeth showed more than modest wear. Seals of two sets of bearings were still good, one seal was leaking, but the fourth seal and bearings had failed. The cone using those bearings was wobbly and was estimated to have only 10 to 15 more hours of useful life. If the wedged barrel had not occurred the bit may have gotten us into the upper part of the section of interest.

During the time of tripping the drill string out of the water we received DSDP message 89D21 that reentry must not be attempted at this site. More than two weeks had elapsed since we had been assured before leaving Yokohama that reentry could be attempted if a single-bit hole failed. The highest priority of Leg 89 was to reach Jurassic sediment and crust. After weighing the likelihood of reaching this objective in another single-bit attempt at this site against achieving the other leg objectives of lesser priority, and in consideration of the interests of the scientific party, we decided to try again here.

Hole 585A was therefore planned to be similar to 585 in the rigging of bit type, bottom-hole assembly, new drill string, knobby pipe, and piccolo. We planned to wash and drill to the old total depth as rapidly as possible, with strong pumping, removing core barrels with the sand line wherever drilling characteristics indicated they may be full. Spot cores near 380 to 400 and 500 to 540 m would be taken, as those represented the probable intervals of most scientific value.

During the trip into the hole on 27 October the seas and weather remained excellent, with light airs to 6-knot winds, 3-ft. swells, and rolls and pitch of 2° . By 0313 hr. on 28 October we had washed to 363.7 m and pulled the first wash core, a rubble of broken pieces of mudstone with some short cored pieces of gray mudstone and chalk.

Three cores between 364 and 392 m drilled somewhat faster than they had in the first hole, and recovery was slightly improved through this uppermost Mesozoic-lowermost Cenozoic interval. After washing to about 438 m, an attempt to spot core at a level where drilling was slow and recovery was poor in Hole 585 met with little success. Core 585A-5 was drilled rapidly, but less than 2% of the interval was recovered (compared to none in 585). Next we washed to about 503 m.

Our purpose in taking six cores between 503 and 562 m in 585A was to improve our sedimentological and paleontological control in the lower Upper Cretaceous section that showed evidence of an oceanic anoxic event in Hole 585, and in many other locations. In the section of greatest interest we slowed our drilling rates somewhat in an attempt to optimize recovery, but our percentage of recovery actually was less than in the first hole. We next washed to 772 m, one joint of pipe beyond the total depth of Hole 585. At that point near noon on 30 October, the bit had rotated 20 hr., 20 min. From that point, except for one washed interval of 9 m, we cored continuously to the total depth of Hole 585A.

Cores 585A-11 through -22 remained in a dominantly volcaniclastic section that generally resembled the lower part of 585. These firm sandstones, mudstones, and breccias were cored slowly, especially below 800 m depth, but gave good recovery, compared to most of Hole 585 and the upper part of 585A. Our average recovery was 70.2% but that was obtained only at an average of 8.3 min. m⁻¹ (7.2 m hr.⁻¹). For the section below 800 m (top of Core 585A-13 at 799.6 m), the average penetration was 9.6 min. m⁻¹ (only 6.3 m hr.⁻¹). Possibly the drilling rate below 800 m may identify that depth as being equal to the 9.0-s reflector in the site survey seismic reflection profile. Further petrographic work ashore, of cements or composition or other aspects of these rocks, can test that possible explanation. Alternatively, perhaps 800 m is the depth at which the bit began to fail to cut well.

During 31 October the ship's motion increased in a rising wind and swell. Occasional excursions of the drill string weight to the operating limits named for this site resulted from the 6970 m of drill string and the ship's motion. After Core 585A-17 was recovered at 1122 hr. on 31 October, the drill string was raised from 848 to about 243 m, to remove sufficient weight for the safety of the drill string. By the early morning of 1 November the swell and wind diminished sufficiently so that we could lower the drill string and commence coring again. We cut the final six cores on 1 November.

Two events took place simultaneously late on 1 November. Penetration while cutting Core 585A-22 stopped at 7.7 of the planned 9.2 m and the drilling crew reported that the torquing or rotational behavior of the drill string indicated to them that the bit had failed. Meanwhile the swell and wind had increased, and because it was night the ship's officers could not observe the direction of the swell to attempt to improve the heave by trying a better ship's heading. Loss of the bit meant that Hole 585A would have to be abandoned, but we could not at that moment ready ourselves for logging by dropping the bit at the total depth of 892.8 m, because the core barrel with Core 585A-22 was still within the lower subassembly of the bottom-hole assembly. The increased ship's motion, which exposed the drill string to its posted limit, would not allow the drilling crew the time to run the sand line to recover the barrel. Rather, the ship's motion resulted again in a decision to pull the drill string up several hundred meters to 280 m, to relieve its weight. Core 585A-22 was retrieved only after the string had been shortened. The decreased diameter of the core in 585A-22 was additional evidence that the bit had failed. Compared to a normal diameter of about 61 mm at the maximum diameter, the diameters of the three thickest pieces of core were 53, 48, and 45 mm, and the three thinnest cores had diameters of 36, 33, and 31 mm.

We intended to wait until the weather improved in order to rerun pipe to drop the bit at the bottom of the hole so we could then pull up and log. We could not pull out to drop the bit on the seafloor because there was no cone to allow reentry, nor could we leave for a nearby site of low priority, such as Ita Maitai Guyot, and drill there until the weather cleared and return and reenter 585A to deepen or log the hole.

We did not believe that dropping the bit while high in the hole would be successful. Almost certainly the bit and its release sub would wedge at one of the harder ledges part way down and thus block the logging runs. By noon on 2 November we reviewed the forecasts for sea state and weather. No significant change except possibly a worsening could be expected in the 5-ft swells and 20-knot winds for the next 48 hr. The oceanographic atlases gave scant hope for any general improvement in November. Without such a limit as was imposed on our string length, which reached 7015.1 m at total depth, one might have characterized the weather and sea as mild. A current estimated by the Master as up to 2 knots was now running from the southeast, and as the 5-ft. swell was now from the northeast, maintenance of position in the current would put the swell on the beam. That configuration, in fact, caused us to pull up an additional 115 m closer to the seafloor shortly before noon. Faced with a delay of at least 48 hr. and no good chance of improvement even after that, we reluctantly decided to leave the site without logging. Also, we could not waste additional JOIDES time waiting to attempt yet another futile single-bit hole at this site. Thus we accomplished neither our primary leg objective of penetrating Lower Cretaceous and Jurassic sedimentary rocks and oceanic crust in the Mariana Basin, nor one of our lesser objectives-of logging there.

By 0025 hr. on 3 November the last of the bottomhole assembly was on board. The bit had lost all four cones, showing battered bearing races and their mounts where the cones had been. The bit had operated 33 hr., 47 min. At Hole 585A it had drilled and washed 684 m and cored 208.8 m, of which we recovered 101.5 m (48.6% overall recovery).

After securing the bottom-hole assembly components and the piccolo, we got under way at 0211 hr. on a northern course while streaming the underway geophysical gear. Initially the larger air gun failed but soon was repaired. We then turned south, crossing within 50 m of the beacon at 0309 hr. on 3 November (1709Z, 2 November), and headed on course 165° for Ita Maitai Guyot at the south edge of the Mariana Basin. From there we turned southeast for MZP-2 in the Naura Basin (DSDP Site 462). We expended 15 days, 5 hr., 47 min. at Site 585 (Fig. 8). Figure 9 is our air gun record as we departed Site 585.

LITHOLOGIC SUMMARY

Lithologic Subdivision

Site 585 is located in the East Mariana Basin at a water depth of 6112 m. A 6.8-m surface core was collected in Hole 585, which was then washed to 256 m; from 256 m coring was continuous to a total sub-bottom depth

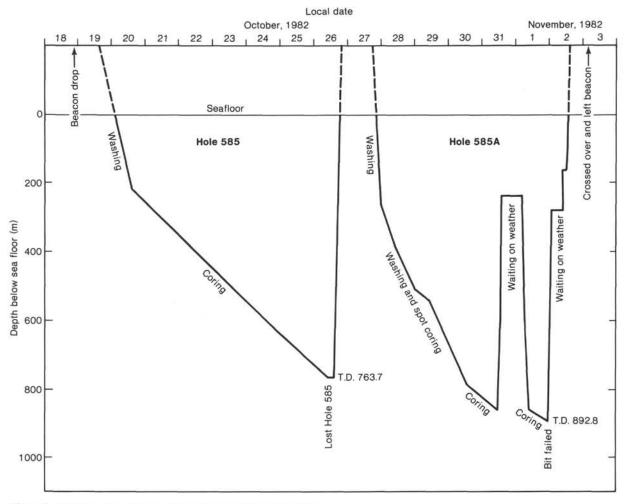


Figure 8. Schematic presentation of drilling operations at Site 585.

of 764 m, with poor to moderate recovery. Hole 585A was spot cored to 772.7 m sub-bottom in order to obtain better recovery of certain key intervals, particularly the Cretaceous/Tertiary boundary and Cenomanian-Turonian claystone containing organic carbon-rich layers. Hole 585A was then cored continuously to a total depth of 893 m. We subdivided the sedimentary section recovered at Site 585 into six lithologic units (I through VI) on the basis of composition and degree of diagenesis and lithification (Fig. 10; Table 2). The lithologic classification used is given in the Introduction and Explanatory Notes chapter (this volume).

Lithologic Unit I (0–6.8 m) consists of 1.5 m of brown clay overlying 5.3 m of nannofossil ooze at the top of Hole 585A. Unit II (256–399 m) was poorly recovered but appears to consist mainly of nannofossil chalk, silicified limestone, chert, and zeolitic claystone. Unit III (399–426 m) contains about equal proportions of zeolitic claystone and nannofossil-bearing claystone, and minor amounts of nannofossil chalk and chert. Recovery of Unit IV (426–485 m) also was very poor because of abundant chert, but the dominant lithology interbedded with the chert appears to be brown zeolite-bearing claystone. Unit V (485–590 m) consists mainly of claystone with varying amounts of zeolites, carbonate, and radiolarians; we subdivided the unit into three subunits based on relative proportions of these latter three components. Unit VI (590-893 m) consists of a thick section of graded volcanogenic sandstones, siltstones, and claystones deposited from turbidity currents and debris flows.

Unit I is composed of nannofossil ooze, clay-bearing nannofossil ooze, and clay (Core 585-1; 0-6.8 m; lower Pleistocene to Recent). The top of Unit I consists of a 1.5-m-thick bed of brown (5YR 3/4) homogeneous clay. Other very minor components observed in smear slides include zeolites and nannofossils (see Appendix to this chapter). Most of the unit, however, consists of about 5 m of light yellowish brown to brown (10YR 8/2-10YR 3/2) nannofossil ooze and clay-bearing nannofossil ooze. Concentrations of CaCO₃ in two samples from this part of the unit are 51 and 83% (Table 3).

Unit II consists of nannofossil chalk, silicified limestone, chert, and zeolitic claystone (Cores 585-2 to -17, and 585A-1 to -3; 256-399 m; middle Eocene to Upper Cretaceous [Maestrichtian]). Because of abundant chert and silicified limestone in this unit, recovery was poor, particularly in the upper part of the unit, and knowledge of interbedded softer units in most cores of this unit is based only on a few recovered fragments. Most material recovered from the Unit II interval consists of

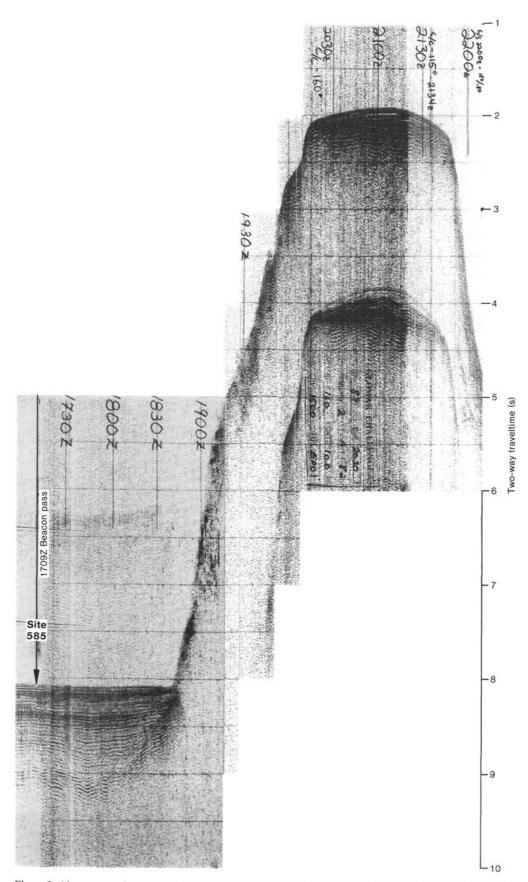


Figure 9. Air-gun-record upon leaving Site 585, showing Mariana Basin at left and the northern slope of Ita Maitai Guyot at right (south); c/s = change of scale; c/c = change of course.

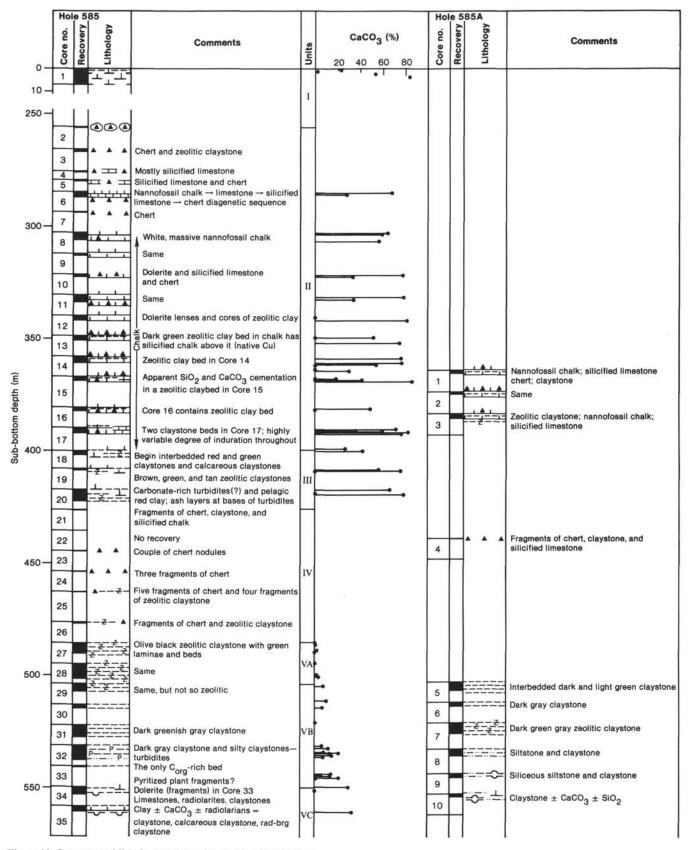


Figure 10. Summary of lithologic column for Holes 585 and 585A.

1	Hole	58	5					-			Hol	e 5	85A	
	Core no.	Recovery	Lithology	Comments	Units	20			(%) 60	80	Core no.	Recovery	Lithology	Comments
600 – 650 – 700 – 800 – 800 –	e.o. 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55			Calcareous claystone ± radiolarians Claystone ± CaCO ₃ ± radiolarians Calcareous claystone (begin graded sequences with volcaniclastics) Some excellent examples of fining-upward sequences with shallow-water debris Same Same, with conglomeratic volcaniclastic bed at top More volcaniclastic turbidites (fine-grained) Fine-grained volcaniclastic turbidites (but getting coarser) Fine-grained volcaniclastic turbidites More volcaniclastic turbidites More volcaniclastic turbidites Coarser volcaniclastic turbidites Coarser volcaniclastic turbidites Graded sequences of volcaniclastics Graded sequences of coarse volcaniclastics Same Same Same Same T.D. = 763.7 m	IA Units		<u> 4(</u>		60 T	80 T	11 12 Drill 13 14 15 16 17 18 19 20 21 22 22	ed		Graded sequences of volcaniclastics and carbonates (minor) Same (Cores 585A-11 and -12 are finer than Cores 585A-11 and -12 are finer than Cores 585-50ff.) and brown pelagic claystone Same, but very little brown claystone Same, but very little brown claystone Same, but very little brown claystone Same and siltstone Cores 17 and 18 seem to be one big cores 18 and 19 look more like a edebris-flow; Cores 17 and 18 may be graded up of a debris-flow deposit Common shallow-water carbonate debris throughout Cores 17 and 18 but less common in Cores 19 and 20 and gone by Core 21 Black volcaniclastic sandstone
900	_					L	1		I.					T.D. = 892.8 m

Figure 10 (continued).

Table 2. Lithologic uni	its at Site 585.
-------------------------	------------------

Unit	Lithology	Cores	Sub-bottom depth (m)	Thickness (m)	Age
I	Nannofossil ooze, clay-bearing nanno- fossil ooze, and clay	585-1	0-6.8	6.8	Recent to early Pleistocene
п	Nannofossil chalk, silicified limestone, chert, and zeolitic claystone	585-2 to 17 585A-1 to 3	256-399	143	Middle Miocene to Maestrichtian
ш	Zeolitic claystone, nannofossil claystone, and clayey nannofossil chalk and chert	585-18 to 20	399-426	27	Maestrichtian to late Campanian
IV	Chert and claystone	585-21 to 26 585A-4	426-485	59	Campanian
VA	Brown and olive black claystone	585-27 to 28	485-504	19	Campanian
VB	Dark gray claystone	585-29 to 33 585A-5 to 9	504-550	46	Coniacian to late Ceno- manian
VC	Calcareous claystone, radiolarian claystone, and clayey limestone	585-34 to 37 585A-9,CC to 10	550-590	40	Cenomanian to middle Albian
VI	Graded sequences of volcanogenic sandstones, siltstones, and clay- stones	585-38 to 55 585A-11 to 22	590-893	303	Middle Albian to late Aptian

white to light gray (N9–10YR 8/2) nannofossil chalk with varying degrees of CaCO₃ and SiO₂ diagenesis between chalk, limestone, silicified limestone, and chert. Interbeds of brown zeolite-bearing claystone are common and increase in abundance below about 360 m (Core 585-13). Above 360 m, zeolite-bearing claystone apparently occurs mainly in thin beds, but also occurs as lenses subparallel to stratification in chalk and as subrounded cores of many fragments of chert and silicified limestone.

Diagenetic silicification of carbonate ooze has resulted in a highly variable percentage of CaCO₃, which ranges from less than 20% in silicified limestones to at least 85% in chalks. X-ray diffraction (XRD) results from samples of zeolitic claystones from Cores 585-13 and -14 (Table 4) show that the most abundant minerals identified on XRD diffractograms are smectite, clinoptilolite, quartz, and calcite; less abundant minerals identified are celadonite, siderite, and nontronite(?). Within the zeolitic claystone bed in Core 585-13 there is a thin (ca. 0.5 mm) layer of black material with a light green reduction "halo" around the layer (Fig. 11). Small pieces of native copper were observed in a sample from this layer in preparing the sample for XRD analysis. The black layer is not rich in organic carbon; the black color is probably due to fine-grained iron sulfides. Dendritic black veins having similar green halos also were observed in Core 585-14.

Unit III comprises zeolitic claystone, nannofossil claystone, and minor clayey nannofossil chalk and chert (Cores 585-18 to -20; 399–426 m; Maestrichtian to upper Campanian). The dominant lithology of Unit III is dark brown (7.5YR 4/4) zeolite-bearing to zeolitic claystone with variable amounts of CaCO₃ as nannofossils and unspecified carbonate that is presumably present as cement. As a result, the recovered section contains about 50% zeolitic claystone, 42% calcareous (nannofossil-bearing) claystone, and 8% clayey nannofossil chalk with a few pieces of chert appearing in each core of Unit III. Grading is apparent in many of the units, but it is usually very subtle. The bases of several carbonate-rich layers have thin laminae of silty, redeposited hyaloclastic material (see smear slide from Sample 585-20-3, 60 cm), which usually are accompanied by thin, light green reduction halos around the laminae. XRD results from samples of brown claystone from Core 585-18 (Table 4) show that the most abundant minerals on diffractograms are quartz, clinoptilolite, smectite, celadonite, calcite, and siderite.

Unit IV contains chert and claystone (Cores 585-21 to -26 and 585A-4; 426-485 m; Campanian). Recovery of Unit IV was very poor because of abundant chert, but on the basis of a few sediment fragments in Cores 585-21, -25, and -26, it appears that the most common material interbedded with the chert is brown (7.5YR 3/2-4/2) zeolite-bearing claystone. The dominant colors of chert fragments recovered are dark brown (7.5YR 3/2 and 10YR 3/2), very dark brown (7.5YR 5/2), brown (10YR 4/3), and yellowish brown (10YR 5/4). Textures and fabrics observed in the larger chert fragments suggest that the chert formed by silicification of carbonate grainstones that were graded, both in terms of number of sand-size grains and in terms of fining upward of grain size.

Chert and silicified limestone were recovered in lithologic Units II and IV. The texture and fabric of these silicified sediments and of their host lithology are indicators of the sequence of postdepositional processes and are the subject of a special study (see Baltuck, this volume).

Unit V consists of claystone with minor limestone and radiolarian sandstone (Cores 585-27 to -37 and 585A-5 to -10; 485-590 m; Campanian to middle Albian). The dominant lithology of Unit V is claystone, with varying amounts of zeolites, $CaCO_3$, and radiolarians; we subdivided Unit V into three subunits on the basis of color and the relative abundances of these three components.

Subunit VA is composed of brown and olive black claystone (Cores 585-27 and -28; 485-504 m; Campanian). This subunit consists of dark reddish brown (5YR 2.5/2) and olive black (5Y 2/1) zeolite-bearing claystone that is very low in carbonate; analyses of four samples of claystone from Cores 585-27 and -28 for CaCO₃ range from 0 to 2% CaCO₃ (Table 3). Other minor components observed in smear slides include feldspar, altered volcanic glass, and iron oxides (see Appendix). Plant fragTable 3. Carbonate bomb results, Site 585.

Sample (core-section, cm interval)	Sub-bottom depth (m)	% CaCO ₃	Lithology
Hole 585			
1-1, 21	0.21	1	Brown clay
1-2, 61	2.11	51	Nannofossil ooze
1-3, 61	3.61	83	Nannofossil ooze
6-1, 28-32	284.88	63	Nannofossil chalk
6-1, 119-120	285.79	27	Laminae from nannofossil limestone
8-1, 16-17 8-2, 12-14	303.06 303.52	64 57	Nannofossil chalk Nannofossil chalk
8,CC	306.50	56	Nannofossil ooze
10-1, 39-42	321.59	77	Nannofossil chalk
10,CC (3-5)	322.00	32	Nannofossil chalk
11-1, 98-100	331.30	78	Nannofossil chalk
11-2, 110-112	332.90	34	Silicified limestone
12-2, 57-58	341.57	83	Nannofossil chalk
13-1, 94-95	349.54	0	Zeolitic clay
13,CC (3-7) 13-1, 53-56	351.50 349.10	74 52	Nannofossil chalk
14-1, 64-67	358.44	76	Silicified limestone Nannofossil chalk
14-2, 75-79	360.05	77	Nannofossil chalk
14-2, 92-94	360.97	53	Silicified nannofossil limestone
14-2, 105-108	361.10	0	Zeolitic claystone
15-1, 34-36	367.24	18	Silicified limestone
15-1, 61-62	367.51	0	Claystone
15-1, 86-88	367.76	0	Claystone
15-1, 98-100	367.90	0	Zeolitic claystone
15-1, 113-114	368.03	41	Silicified limestone
15-1, 129-130 16-1, 22-23	368.19 380.62	85 49	Nannofossil chalk
16-1, 69-70	381.09	49	Clayey nannofossil chalk Zeolite-bearing claystone
17-1, 67-73	390.17	72	Nannofossil chalk
17-1, 104-105	390.54	36	Silicified limestone
17-1, 140-141	390.90	60	Nannofossil chalk
17-2, 18-23	391.18	51	Chalk
17-2, 7-9	391.07	83	Chaik
17-2, 52-53	391.52	0	Claystone
17-2, 75-79	391.75	77	Chert(?)
18-1, 13-15 18-1, 53-56	398.83 399.23	27 43	Claystone
19-1, 38-40	408.18	43	Calcareous claystone Nannofossil chalk
19-1, 48-49	408.28	76	Nannofossil chalk
19-1, 56-57	408.36	0	Claystone
20-1, 8-16	417.08	66	Nannofossil-bearing clay
20-2, 12-18	418.62	0	Claystone
20-3, 20-26	418.70	79	Nannofossil-bearing claystone
27-1, 13-19	485.53	1	Zeolitic claystone
27-3, 20-24	488.60	2	Claystone
28-1, 38-40 28-4, 76-78	494.98 499.86	0 2	Zeolite-bearing claystone
30,CC (19-21)	514.59	6	Claystone Claystone
32-1, 57-59	531.77	6	Claystone
32-2, 35-39	533.00	12	Claystone
32-3, 41-48	534.61	7	Claystone
32-3, 13-18	534.33	11	Silty claystone
32-3, 72-73	534.92	2	Silty claystone
32-3, 73-74	534.93	0	Black gritty layer
34-1, 11-12	549.61	29	Nannofossil-bearing clayey limestone
34-2, 92-93	551.92 559.51	0	Clayey radiolarite
34-1, 91-92 34,CC (3-5)	560.76	6 32	Claystone Clayey limestone
38-1, 24-28	590.64	25	Calcareous claystone
38-1, 32-38	590.72	9	Calcareous claystone
39-1, 25-27	599.75	3	Clay-bearing radiolarite
39-1, 42-44	599.92	0	Silty claystone
42-3, 140-142	631.40	34	Claystone
44-2, 84-85	647.64	5	Claystone
44-5, 50-51	651.80	3	Claystone
45-1, 54-55	654.94	3	Claystone
45-3, 18-19 46-1, 82-83	657.58 668.62	0 5	Claystone
46-3, 24-25	671.04	3	Claystone
50-1, 128-130	705.68	3	Claystone
50-3, 31-32	707.71	3	Claystone
51-3, 87-88	717.37	5	Claystone
51-4, 37-38	718.37	4	Silty claystone
53-2, 105-106	734.35	7	Claystone
54-1, 119-120	742.19	5	Sand
55-2, 36-37	751.86	6	Clayey volcanic siltstone
55-4, 119-120 Iole 585A	755.79	18	Silty claystone
3-1, 21-26	363.91	0	Zeolitic clay
3-1, 40-43	364.10	29	Clayey nannofossil chalk
5-1, 80-81	503.40	3	Clayey nannorossii chaik Claystone-gray
5-2, 59-60	504.69	7	Claystone-green
6-1, 54-57	512.34	10	Red-bearing silty claystone

Table 3 (con	(tinued)
--------------	----------

Sample (core-section, cm interval)	Sub-bottom depth (m)	% CaCO3	Lithology
Hole 585A (Cont.)			
8-2, 75-76	534.65	21	Slightly calcareous silty claystone
8-2, 95-96	534.85	13	Slightly calcareous silty claystone
8-3, 32-33	535.72	15	Slightly calcareous silty claystone
8-3, 80-81	536.20	8	Slightly calcareous silty claystone
8,CC (19-20)	536.46	1	Organic-bearing radiolarite
9-1, 27-29	543.77	14	Slightly calcareous siliceous claystone
9-1, 82-83	544.32	0	Chert
9-1, 93-94	544.43	4	Siltstone
9-1, 140-141	544.90	14	Siltstone
9,CC (17-19)	545.17	21	Claystone
11-4, 84-85	772.94	1	Claystone
12-3, 68-74	784.98	13	Claystone
12-4, 27-28	786.07	8	Volcanogenic siltstone
12,CC (3-4)	791.07	3	Claystone
15-5, 135-137	825.25	14	Calcareous claystone
16-1, 8-9	827.08	15	Calcareous-rich claystone
16-2, 31-34	828.81	7	Claystone
18-4, 79-80	852.99	21	Volcanogenic sandstone
18-2, 81-82	850.01	16	Volcanogenic sandstone
19-4, 71-72	862.91	6	Volcanogenic sandstone
20-2, 102-103	870.47	3	Volcaniclastic debris
20-3, 67-68	869.32	3	Volcaniclastic debris
21.CC (10-11)	878.97	0	Volcanogenic sandstone

ments were found in a foraminifer preparation of a sample of a 0.5-cm dark band in Sample 585-27-3, 138 cm. The claystone is mostly massive-appearing, but some parts of it are moderately bioturbated, with most burrows flattened by compaction so that they are subparallel to stratification. Burrows commonly are filled with chemically more reduced claystone (usually green or black). Laminations and thin beds of light green (5G 7/4) occur at several horizons and appear to be reduction halos around coarser, silty laminae that form the bases of graded sequences.

Subunit VB contains dark gray claystone with variable calcareous, siliceous, and organic components (Cores 585-29- to -33 and 585A-5 to -9; 504-550 m; Coniacian to upper Cenomanian). Consisting mainly of dark gray (5Y 4/1 to N4) claystone, this subunit also has variable concentrations of recrystallized radiolarians, CaCO₃, and silica. As a result, most of the rocks are somewhat calcareous and contain at least some siliceous cement, and, therefore, are well indurated. The recrystallized radiolarians usually are concentrated in sandy layers, lenses, or stringers. Some fining-upward graded sequences are evident, one being over 3 m thick. Pale green reduction halos are common throughout the subunit as laminae, thin beds, and mottles around silt laminae and burrows that probably contained slightly more organic matter. Common components observed on smear slides (Appendix) include radiolarians (most recrystallized), nannofossils, recrystallized calcite, and zeolites. Twenty samples of claystone from Subunit VB range from 0 to 21% CaCO₃ (Table 3). An XRD analysis of a sample of black claystone from Sample 585-32-2, 140 cm shows that the most abundant minerals that can be recognized on the diffractogram are cristobalite, calcite, and smectite, with lower abundances of quartz, celadonite, and clinoptilolite (Table 4).

In Cores 585-32 and 585A-8 the dark gray claystone contains common black flakes of organic-rich material

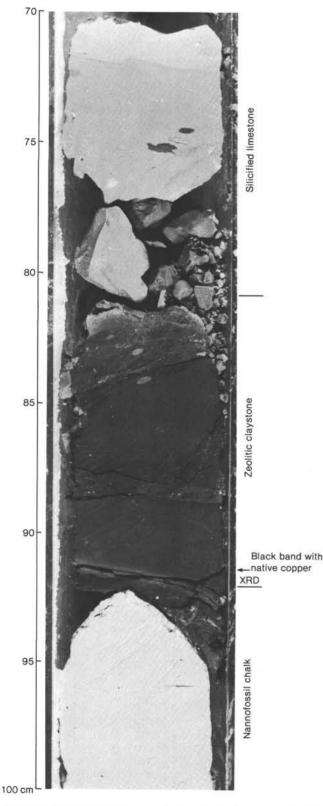

Sample (core-section, interval in cm)	Main lithology	Abundant minerals	Less common minerals
Hole 585			
13-1, 91-92	Olive gray zeolitic clay	Smectite, clinoptilolite, celadonite	Quartz, siderite, nontronite(?)
13-1, 93	Green band with black organic layer	Calcite, clinoptilolite, quartz, smectite	Celadonite, siderite, native coppe
14-2, 10	Chalk (nannofossil)	Calcite	Quartz
14-2, 109	Zeolitic claystone	Smectite, clinoptilolite, calcite, quartz	Siderite, celadonite(?), hydrous iron sulfide(?)
18-1, 77	Light brown clay	Calcite, quartz, smectite	Clinoptilolite
18-1, 130	Dark brown clay	Quartz, clinoptilolite, cela- donite	Smectite, siderite, phillipsite(?)
18-2, 37	Dark brown clay	Quartz, clinoptilolite, smectite	Celadonite
30,CC	Granular vein in clay	Calcite	Quartz
31-2, 20	White vein in clay	Calcite	Quartz
32-2, 140	Claystone with black flakes	Cristobalite, calcite, smectite	Quartz, celadonite, clinoptilo- lite(?)
36-1, 54	Chert with green band	Quartz	Calcite, celadonite, clinoptilolite
39-1, 57	Bright yellow "clay" band	Quartz, smectites (nontron- ite?)	
46-1, 26	White vein in clay	Barite	
47-2, 108	White vein in hyaloclastite	Calcite, quartz	
47-4, 13	White "vein" in turbidite	Quartz, calcite, cristobalite plus unknown (about 2.94 Å)	Phillipsite
48 (paleo residue)	Light and dark green grains	Augite	
48-2, 132	Dark platy vein in turbidite	Natrolite, analcite	Calcite
54-1, 113-115	Pale green material) In	Analcite, saponite	Calcite, hematite
54-2, 123-140	Reddish material { volcanic	Hematite, pyroxene (augite?)	
54-2, 60	White vesicle infilling) graywacke	Analcite, calcite, saponite	
Hole 585A			
3-1, 18-19	Black zone in brown clay	Quartz, cristobalite, smectite (saponite and nontron- ite?)	Palygorskite, celadonite, clinoptil olite, todorokite (= black coloration)
15-2, 25	White and colorless crystals in vug surrounded by green clay matrix	Analcite, phillipsite	Smectite (saponite)
16-4, 66	Pink crystalline fragments in green clay matrix	Analcite, calcite	Cristobalite, smectite, palygor- skite (all in matrix)
18-7, 56	White and pale yellow crystalline material in vug	Heulandite	
19-2, 41	White crystalline material in vug	Heulandite	Analcite
20-2, 109	White crystalline material in vug	Heulandite	

Table 4. Site 585: summary of XRD shipboard data.

(plant debris?) that are oriented parallel to stratification (Fig. 12). Three thin (several mm to 1 cm) black bands were observed that seemed likely to contain organic matter. Each of the three bands has a different lithologic association (Fig. 13). A 2-cm-thick black pyritic silty claystone containing abundant organic carbon in Sample 585-32-3, 72-74 cm (see section on Organic Geochemistry) occurs at the top of a fining-upward graded sequence, just above bioturbated claystone, and just below parallel- and cross-laminated silty claystone of the overlying graded sequence (Figs. 13A and 14). The concentration of black flecks of organic matter in dark gray siltstone in the core catcher of Core 585A-8 increases downward over an interval of about 1 cm into a 3-mmthick band of black sandstone consisting mainly of coated recrystallized radiolarians and flecks of black organic matter (Figs. 13B and 15). An analysis of a sample of this black layer showed that it contains 1.4% organic carbon. This band clearly represents a single pulse or influx of both radiolarians and organic debris. The influx of organic debris then continued but at a much reduced

rate, manifested as black flecks mixed with the overlying siltstone that decrease in abundance upward (Fig. 15).

A very different occurrence of what we thought was organic matter was observed in Section 585A-9-1 (Figs. 13C and 16). Here, a 4-mm-thick black band occurs within a fragment of laminated radiolarian-bearing siltstone. The siltstone fragment is overlain by fragments of brightly colored yellow, red, and black chert, each of which contain abundant pyrite in blebs and small lenses up to 1 mm in maximum dimension. The stratigraphic sequence here has been badly disturbed by drilling through the chert and subsequently by cutting the core in half in the liner, but the stratigraphic sequence appears to be as illustrated diagrammatically in Figure 13C. An analysis of a sample from the black band showed that it contains only 0.1% organic carbon, therefore it is not particularly rich in organic matter. Unlike the other two black bands, the one in Core 585A-9 is not obviously associated with graded sequences but appears to be associated with chertification. The chert associated with the black band is very different from other cherts recovered at Site

585 in that it has a higher specific gravity, contains abundant pyrite (and possibly other sulfides to give it the high specific gravity), and is more brightly colored relative to the other cherts recovered. All three black bands occur between 535 and 545 m sub-bottom depth (upper Cenomanian to lower Turonian) and the two organic carbon-rich bands both occur at about 535 m.

Subunit VC is composed of calcareous claystone, radiolarian claystone, and clayev limestone (Cores 585-34 to -37 and 585A-9,CC to -10; 550-590 m; Cenomanian to middle Albian). This subunit consists of claystone with abundant but highly variable concentrations of radiolarians and CaCO₃, which has resulted in interbedding of dark gray claystone, red (5R 6/2) nannofossilbearing claystone and clayey limestone, radiolarian-bearing limestone and clayey limestone of varying colors but mostly shades of brown, and in the extreme, gravish brown (10YR 5/2-4/2) radiolarian-sandy siltstone (Fig. 17). Parallel laminations are common, and several graded units are apparent. Some thin beds and laminae of pale green (10GY 7/2) occur in some clay-rich units, and these appear to be reduction halos in red claystone around coarser silty layers and laminae.

Unit VI comprises graded sequences of volcanogenic sandstones, siltstones, claystones, and breccias with variable concentrations of CaCO₃ and SiO₂ (Cores 585-38 to -55 and 585A-11 to -22; 590-893 m; middle Albian to upper Aptian). Unit VI consists of a thick section of coarse volcaniclastic sediments in fining-upward graded sequences that may be more than several meters thick, and commonly have bases of coarse sandstone or breccia (Fig. 18). The bases of a few of the graded sequences consist of sand-size carbonate clasts or interlaminated or mixed carbonate and volcanogenic clasts (Figs. 19-22). Most of these sequences grade upward into finegrained tops of claystone or silty claystone. Except for the light gray carbonate bases of some sequences, most lithologies usually are some shade of dark greenish gray, olive black, or dark gray. The tops of some sequences that contain more pelagic components are lighter greenish gray or reddish brown claystone.

Unit VI contains variable amounts of CaCO₃ and diagenetic SiO₂. The CaCO₃ is derived from both pelagic microfossils and shallow-water carbonate debris. The proportions of these materials vary considerably throughout the unit and they are not always present in every core. Analyses of 32 samples from Unit VI for Ca-CO₃ range from 0 to 34%, but most samples contain less than 10% CaCO₃. No shallow-water debris were seen in the two deepest cores at the site (585A-21 and -22). Recognizable shallow-water carbonate components include ooids, benthic foraminifers, algae, bryozoans, and rudist fragments (Fig. 19; for details see Haggerty and Premoli Silva, this volume). SiO₂ is present both as microcrystalline quartz and as spherical masses that are recognizable as recrystallized radiolarians. Other common components recognized in smear slides include altered volcanic glass, zeolites, celadonite, clay minerals, and volcanic lithic and crystal fragments. Additional details about the composition of volcanogenic materials are presented in the following discussion.

Figure 11. Bed of zeolitic claystone between beds of nannofossil chalk and silicified nannofossil chalk, Sample 585-13-1, 70-100 cm. A black band with a green reduction "halo" around it in the basal part of the claystone bed contains native copper.

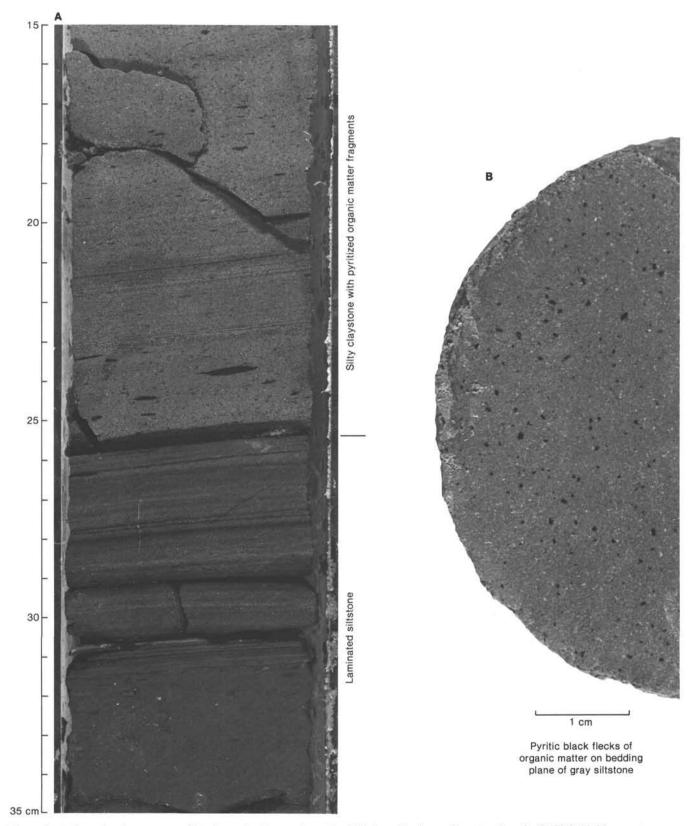
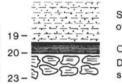



Figure 12. A. Gray silty claystone containing lenses, laminae, and streaks of black pyritized organic matter, Sample 585-32-3, 15-35 cm, cut perpendicular to bedding. B. Sample 585-32-1, 104 cm, along a bedding plane.


A. ~535.0 m sub-bottom

Black flecks of organic matter in massive siltstone Cross- and parallel-laminated siltstone Black, pyritic silty claystone

with >5% C_{org} Bioturbated claystone

B. 536.4, minimum, to 543.5, maximum, m sub-bottom

Silty claystone with black flecks of organic matter Organic radiolarian sandstone

Drilling breccia of calcareous silty claystone

C. 544.4 m sub-bottom

centimeters

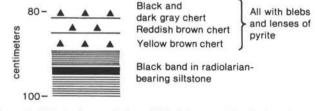
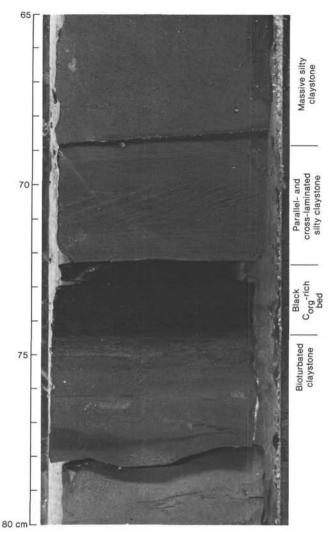
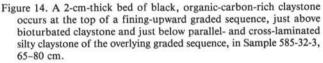


Figure 13. Lithologic associations of black layers originally thought to contain organic matter from (A) Sample 585-32-3, 69-74 cm, (B) Sample 585A-8,CC (19-23 cm), and (C) Sample 585A-9-1, 80-100 cm. Only the black bands in A and B were subsequently found to be rich in organic carbon (i.e., contained more than 1% C_{ore}).


Discussion


Graded Volcaniclastic Sequences

Many of the graded sequences in Unit IV show welldeveloped and relatively complete Bouma turbidite sequences (Figs. 18, 20–25; Bouma, 1962). Many of the graded sequences, particularly in the lower half of the unit, have coarse sandstone bases. The bases of many of the coarser beds at the bottom of the graded sequences have load casts or have scoured the underlying bed (Fig. 26).

We conclude that the graded sequences of Unit VI, at least into Core 585A-16, are turbidites. Below Core 585A-16 the unsorted nature of the clasts, the extreme size range of clasts, ranging up to boulder-size clasts that have been truncated by the core, and the heterogeneity of clast composition, ranging from volcanic fragments, shallow-water carbonate debris, and subrounded fragments of siltstone and claystone suggest that this material is part of one or more debris flow deposits.

In a complete Bouma turbidite sequence at Site 585, a massive graded basal sandstone (Bouma Unit A; Figs. 18, and 20 through 26), which may be conglomeratic and may extend for several sections, is overlain by a lower unit of laminated sandstone or siltstone (Bouma Unit B), a cross-laminated sandstone or siltstone (Bouma C or ripple-laminated unit), and an upper laminated siltstone or sandstone (Bouma Unit D) (Figs. 21, 23–25)

The lower and upper laminated units usually are an interlayering of darker, coarser material (usually olive black sandstone) and slightly lighter, finer material (usually dark greenish gray siltstone or fine sandstone). If the coarse basal layer contains clastic carbonate, the laminated units, particularly the lower unit, may be an intercalation of volcaniclastic material and clastic carbonate material (Figs. 20 through 22). In most of the graded sequences at Site 585, the upper unit is a dark (olive black or dark greenish gray) massive volcaniclastic claystone or silty claystone that probably is mostly fine-grained turbiditic material (Unit Et of Kuenen, 1964) (Figs. 20, 22, and 26). The upper unit in some graded sequences appears to be more pelagic (Unit Ep of Kuenen); it contains more clay minerals and less obvious volcanogenic material, is generally finer-grained, and is lighter and redder in color (usually lighter olive gray or even reddish brown). In addition, the more pelagic appearing upper units commonly are bioturbated in contrast to the dark-

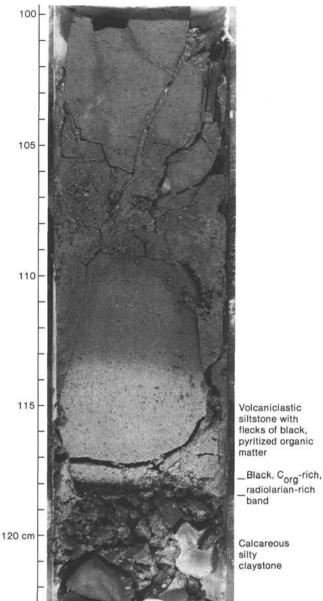


Figure 15. Black organic-carbon-rich band at the base of a gray silt-

Figure 15. Black organic-carbon-rich band at the base of a gray siltstone bed containing flecks and lenses of pyritized organic matter, Core 585A-8,CC.

er, massive, more volcaniclastic E_t units (Figs. 21, 23, and 24). Some of these graded sequences are more than 1 m thick, and it is not uncommon to have a graded sequence split between two successive cores.

Description of Volcaniclastic Components

Igneous material recovered from Site 585 was restricted to volcaniclastic sediments containing a variety of crystal fragments, altered glass, and basaltic clasts. Because of the polymictic nature of the coarser units and their deposition via turbidity currents, interpretation of the volcanic activity in the source areas can only be tentative.

Table 5 lists occurrences of volcanic material in terms of the relative proportions and types of glass, crystals, and lithic fragments.

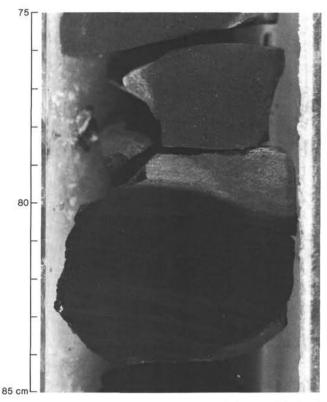


Figure 16. Black band in laminated siltstone underlying multicolored chert, Sample 585A-9-1, 75-85 cm.

Table 6 is a summary of the main clasts in the coarser parts of the volcaniclastic turbidites and reworked hyaloclastite horizons. Microphotographs illustrating some of the main features of glass and basaltic clasts are shown in Figures 27 and 28, respectively.

All the volcanogenic material is pervasively altered and the ubiquitous presence of clinoptilolite, together with other zeolites and analcite, indicate zeolite facies metamorphic grade. Clinoptilolite and phillipsite are generally characteristic of the lower grades of the zeolite facies and probably represent alteration temperatures of well below about 60°C or low-grade submarine weathering of oceanic crust. Other secondary minerals, such as smectites, celadonite, and analcite are stable over the full range of zeolite facies metamorphism.

Alteration minerals found in the volcaniclastic material include: smectites (only saponite identified by XRD), zeolites (clinoptilolite, heulandite, phillipsite, natrolite), analcite, celadonite, calcite, siderite, barite, quartz, and hematite. Natrolite with analcite, barite, and quartz with calcite occur as vein material (2–4 mm wide and generally sparse).

Olivine and glass are nearly always replaced by brown or pale to dark green smectites that appear to be the earliest alteration products. Glass fragments may be white and green zoned with alteration products or totally replaced by dark red smectites with or without hematite. Plagioclase may be fresh or partly replaced by a gray smectite (montmorillonite—not XRD confirmed) or analcite or both. Carbonate replacement is patchy in the matrix of clasts and later in development relative to other

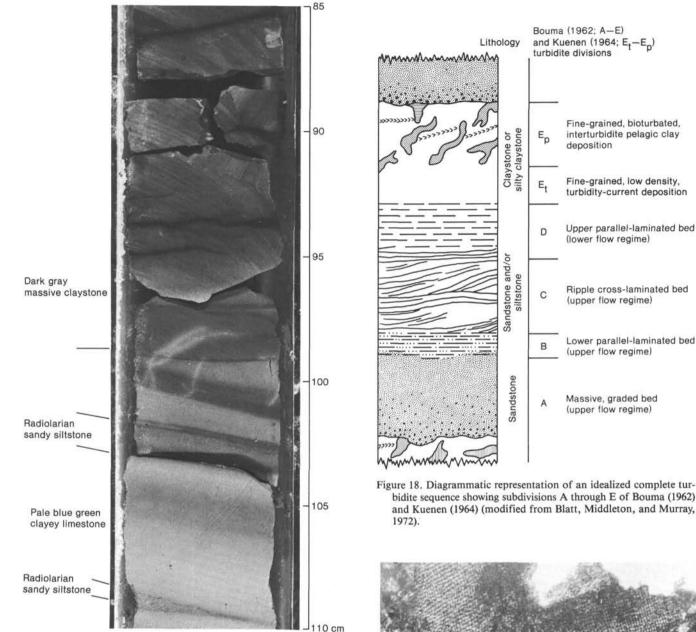


Figure 17. Interbedded radiolarian siltstone, clayey limestone, and massive claystone typical of lithologic Subunit VC, Sample 585-35-1, 85-110 cm.

secondary products. Clinopyroxene is the only primary phase not altered.

Vesicles may be partly or totally filled with radially oriented smectites colored in various shades of green to bright green blue celadonite. A bright red smectite(?) may occupy the center of some vesicles.

Volcanogenic material was assigned an "alteration rating" (Fig. 29) that was utilized in Table 5. Further details appear in Floyd (this volume).

Interpretation of Sedimentary History at Site 585

The single most striking feature of the entire sedimentary section recovered at Site 585 is that most of

Massive, graded bed (upper flow regime) Figure 18. Diagrammatic representation of an idealized complete turbidite sequence showing subdivisions A through E of Bouma (1962) and Kuenen (1964) (modified from Blatt, Middleton, and Murray,

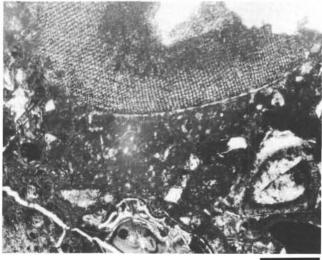


Figure 19. Photomicrograph of an echinoid fragment displaying a reticulate pattern in a volcanogenic sandstone. A poorly preserved ooid is located between two altered glass fragments. Plane-polarized light. Scale is 0.5 mm. Sample 585A-20-3, 62-65 cm.

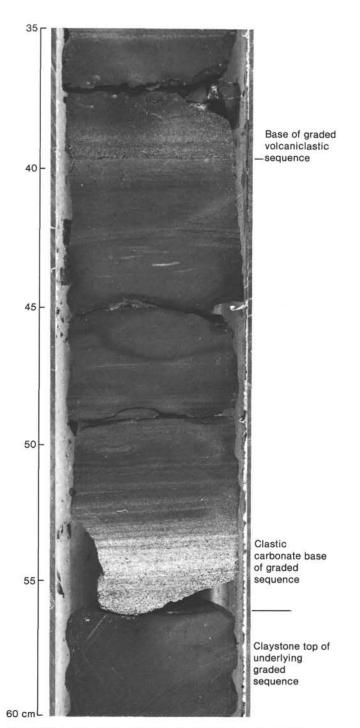
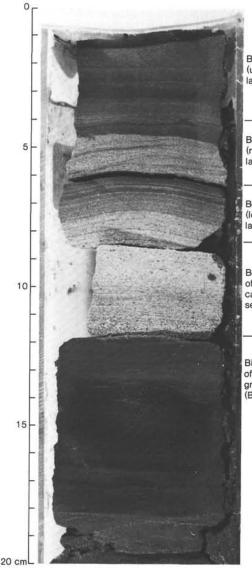



Figure 20. A graded sequence with a coarse clastic carbonate base and claystone top, Sample 585-49-6, 35-60 cm. Also shown are the claystone top of the underlying volcaniclastic graded sequence and the sandstone base of the overlying volcaniclastic graded sequence.

the biogenic and volcanogenic components have been reworked, transported, and redeposited from shallower sources. This is most obvious for the volcaniclastic sandstones, siltstones, and claystones at the base of the section that were deposited by turbidity currents and debris flows. The Upper Cretaceous and Tertiary carbonates in the upper part of the section also have been extensively reworked and redeposited, as evidenced first by the fact

Bouma D unit (upper parallellaminated)

Bouma C unit (ripple crosslaminated)

Bouma B unit (lower parallellaminated)

Bouma A unit of clastic carbonate graded sequence

Bioturbated top of underlying graded sequence (Bouma E)

Figure 21. Top of a volcaniclastic graded sequence and bottom of a clastic carbonate graded sequence showing well-developed Bouma turbidite divisions A-E, Sample 585-49-3, 0-20 cm.

that they accumulated below the CCD, and second by the winnowed size fractionation and discordant ages of the enclosed microfossils (see Biostratigraphy section). Because of its location in the East Mariana Basin surrounded on three sides by numerous seamounts, it is not surprising that the sediments at Site 585 should contain abundant reworked material. However, we did not anticipate that reworking and redeposition would be so extensive. The section recovered at Site 585 provides an excellent record of the formation, erosion, and subsidence histories of volcanic edifices.

The building of these volcanic edifices during the late Aptian and early Albian is recorded in the coarse volcaniclastic sediments that are the erosional products of differentiated volcanoes. The clasts dominantly are reworked hyaloclastite debris, mixed with clasts that probably were derived from basalt and previously deposited tephra. That the volcanoes were at or near sea level by

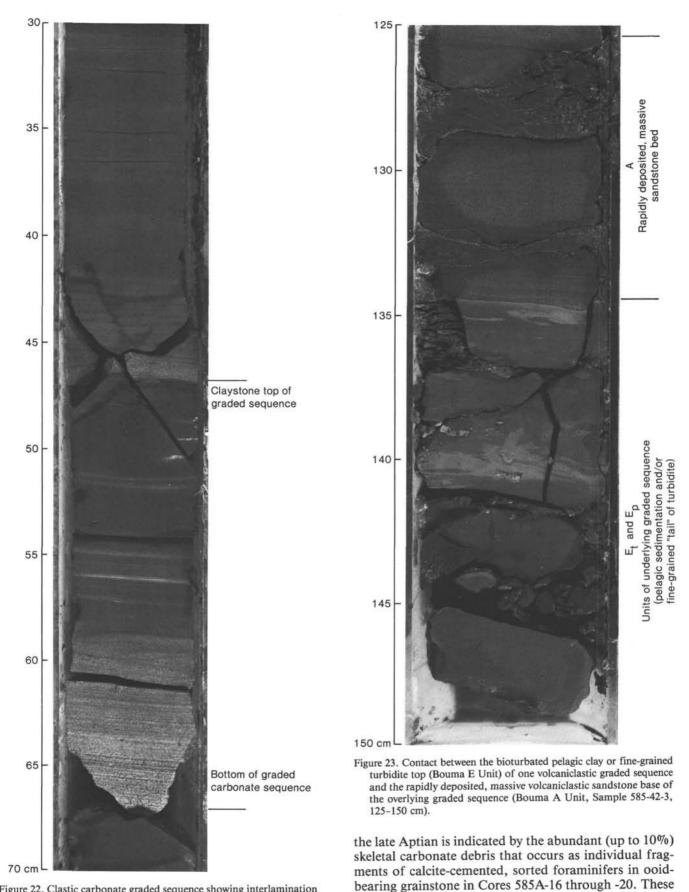


Figure 22. Clastic carbonate graded sequence showing interlamination of volcaniclastics (dark) and carbonate clastics (light), Sample 585-44-1, 30-70 cm.

volcanoes apparently remained at or near sea level dur-

ing later stages of edifice building, as indicated by the



Figure 24. The upper part of the Bouma sequence overlying the sample shown in Figure 23; the graded sequence contains well-developed lower parallel-laminated, ripple cross-laminated, and upper parallel-laminated (Bouma B, C, and D) units, Sample 585-42-3, 100-125 cm.

interbedding or mixing of coarse shallow-water carbonate debris at the bases of many of the middle Albian graded sequences (Cores 585-38 to -45).

The claystones of Unit V were mainly deposited as fine-grained distal turbidites during the middle Albian to Campanian. The variable abundances of zeolites and calcareous and siliceous microfossils most likely reflect variations in influx of allochthonous volcanic and bio-

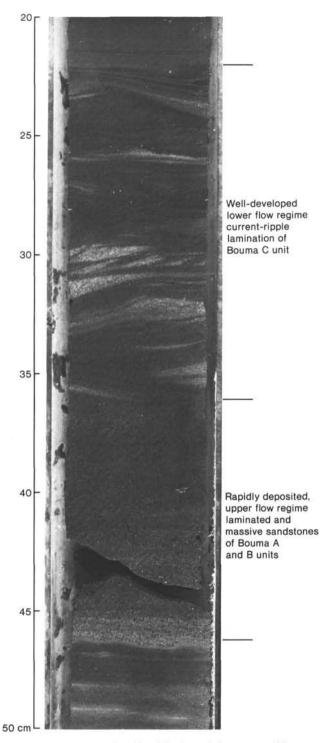


Figure 25. Lower part of a volcaniclastic graded sequence with a massive and laminated sandstone base (Bouma A and B units) and well-developed current-ripple laminations (Bouma C unit), Sample 585A-H5-5, 20-50 cm.

genic components, but may also reflect variations in surface water productivity. A thin layer of sediment rich in organic carbon of algal origin (see Organic Geochemistry section) was found in latest Cenomanian fine-grained turbidites of Unit V. The presence of this carbon-rich layer can be interpreted as indicating that the submarine

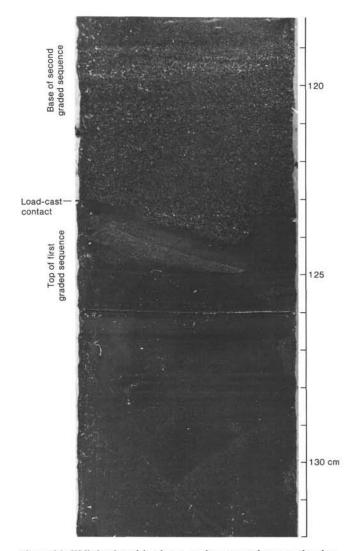


Figure 26. Well-developed load cast at the contact between the claystone top of one volcaniclastic graded sequence and the coarse sandstone base of the overlying graded sequence, Sample 585A-13-1, 120-130 cm.

Table 5. Description of volcanogenic material in Units III, V, and VI, Site 585.

Core	Main lithology	Volcanic components	Alteration rating
585-18 to -20 585-26 to -28	Zeolitic claystones and siltstones	Crystal fragments; altered glass (smectites and zeolite)	C, D
85-38 to -46 Zeolitic and carbonate turbidites		Crystal fragments (plagioclase, clinopyroxene, olivine); altered vesicular glass abundant; basaltic clasts at depth	С
585-47 to -48 Reworked hyaloclast- ites in turbidite sequence		Mainly altered vesicular clinopyroxene-phyric glass; rare, large basaltic clasts are poorly vesicular	B, C, D
585-49 to -55 and 585A-11 to -17	Volcaniclastic turbi- dite	Crystal content highly varia- ble; highly vesicular glass common; greater variation in basaltic type of large angular clasts	В, С
585A-18 to -22	Debris flows and reworked hyalo- clastites	Poorly vesicular, palagonitized and smectite-replaced glass fragments; various nonve- sicular basaltic clasts	B, C, (D)

Note: Alteration ratings are defined in Figure 29.

slopes of the surrounding seamounts were within an oxygen minimum zone. The unoxidized organic matter that accumulated in the slope sediments was subsequently transported to the deep Mariana Basin by turbidity currents. A second interpretation is that the carbon-rich layer is autochthonous, and this demands that the deep basin itself was occupied by oxygen deficient water. Organic carbon-rich strata of the same general mid-Cretaceous age (although they are not synchronous) have been reported from the flanks of a number of other volcanic seamounts and plateaus in the central and western Pacific (Schlanger and Jenkyns, 1976; Thiede, Dean, and Claypool, 1982).

The Late Cretaceous to Tertiary carbonates (and possibly carbonates from the Pleistocene) record the submarine erosion and downslope transport of the pelagic "cap" that had accumulated on the volcanic edifices as they subsided but remained well above the carbonate compensation depth (CCD). These redeposited carbonates are interbedded with brown zeolitic claystones that probably record background pelagic-clay sedimentation below the CCD mixed with some remaining volcanogenic sediments. Several additional minor pulses of volcanic activity are suggested by thin beds and laminae of zeolite-rich material and are found in Cores 585-26 to -38, and in -20. Much of the Late Cretaceous and early Tertiary sedimentary record was not recovered because of abundant chert. However, the abundance of chert, reaching a maximum between Campanian and Eocene, may itself be significant and may reflect increased surface water productivity of radiolarians as the site passed under the equatorial zone of high organic productivity between about 90 and 50 Ma (see Paleomagnetic section).

No record of post-Eocene sedimentation was recovered at Site 585 except for a single core taken at the seafloor. This core is composed of 5.3 m of reworked nannofossil ooze that contains early Pleistocene to Miocene microfossils (see Biostratigraphy section) overlain by 1.5 m of Recent brown clay. The reworked ooze suggests that downslope transport of carbonate sediment from the pelagic "cap" of surrounding seamounts continued at least into the Recent. The Recent brown pelagic clay at the top of the section indicates either that redeposition of carbonate debris has ceased, or, more likely, that Site 585 is awaiting its next influx of reworked carbonate debris.

BIOSTRATIGRAPHY

Summary

Recent sediments at Site 585, deposited at 6109 m and recovered in the uppermost 150 cm of Core 585-1, consist of brown clay rich in manganese nodules and associated commonly with fish remains. Noticeably, they do not contain any abyssal benthic foraminifers. Below that layer, the sediments recovered contain a considerable amount of carbonates, the presence of which is not consistent with the abyssal depth of the East Mariana Basin, where sediments have been deposited well below the CCD since the Early Cretaceous and particularly during the Tertiary. Table 6. Summary of clast types in the coarser parts of volcaniclastic turbidites, Site 585.

		C	Cores		
Clast types	585-38 to -46	585-47 to -48	585-49 to -55 585A-11 to -17	585A-18 to -22	Comments
Glass					Glass generally palagonitized or replaced by smectite;
					often highly vesicular (up to 40% vesicles), but
Aphyric	C	C		A	also many non- or poorly vesicular fragments;
Plag-phyric	A	A		C	quenched plag microlites may be abundant in
Cpx-ol-phyric	—	-	C	R	some cases
Cpx-plag-phyric	С	С		_	
Basalts					Invariably fine-grained with granular or intersertal textures; some are alkali basalts with titanaugite
Aphyric basalt	R		_	C	in groundmass or rarely as microphenocrysts;
Plag-phyric ol basalt	_	R	Α	č	generally poorly vesicular, with vesicles infilled
Ol-phyric alkali basalt		_	A		with smectite
Ol-plag phyric basalt	—	—	C	С	
Differentiates					
Trachyte	_	R	С	R	Good flow orientation of plag laths; abundant Fe
Ferrobasalt	—	<u> </u>	C R	R	ore granules throughout
Amphibolite		-	R	(<u></u>)	Nonfoliated, low-pressure amphibolite facies
Clinopyroxene					Often broken, but generally very fresh; released from glassy clasts on transportation
"Megacrysts"	_	R	R	-	Grand, there are resurbly the second

Note: A = abundant; C = common; R = rare; plag = plagiolcase, cpx = clinopyroxene, ol = olivine; -- = not present.

The majority of sediments recovered from Site 585 are characteristic of transported and reworked deposits. Indeed, few autochthonous intervals of pelagic clay were recovered throughout the cored sequence. Fossil assemblages recovered reflect the turbiditic nature of the sediments. Younger-aged material typically is masked by the influx of older, often better-preserved fossil material, thus the biostratigraphic signal is commonly obscured. Consequently, the ages reported must be considered maximum ages, and many may in fact be considerably younger. Shape and size sorting are characteristic attributes of the foraminiferal and radiolarian assemblages. The recovered specimens are small-sized adults and juveniles that range in size from 45 to 149 μ m. Deposition below the CCD also has strongly altered the character of the calcareous and siliceous fossils as a result of dissolution and recrystallization.

Biostratigraphic schemes for the three fossil groups are based on the following references: Calcareous nannofossils—Martini, 1971; Okada and Bukry, 1980; Perch-Nielsen, 1979; Romein, 1979; Thierstein, 1976; Verbeek, 1977. Foraminifers—Hardenbol and Berggren, 1978; van Hinte, 1976; Sigal, 1977; Premoli Silva and Sliter, 1981. Radiolarians—Riedel, 1974; Foreman, 1973, 1975; Schaaf, 1981.

A synthesis of the biostratigraphic events in Hole 585 based on the three fossil groups, namely, calcareous nannoplankton, foraminifers (both planktonics and benthics), and radiolarians (Fig. 30) shows that some stratigraphic intervals could not be identified. That does not imply that the succession is not continuous. The generally poor recovery, the fact that the autochthonous sediments are devoid of age-diagnostic species, and the turbiditic character of the other sediments that contain index species prevent further biostratigraphic refinement. In particular, most of the Paleocene is not evident: the few nannofossil and planktonic foraminiferal zonal assemblages recorded were either reworked into the Eocene sequence or mixed with younger zones within the Paleocene. Moreover, upper and middle Maestrichtian assemblages occur only mixed within the Tertiary sequence. The Cretaceous/Tertiary boundary is placed within Core 585-16. Cores 585-26 and -30 seem to span the interval from Santonian through upper Turonian. The Cenomanian/ Turonian boundary is placed within Core 585-32.

The lower Cenomanian and upper Albian interval may be located between Cores 585-35 and -36, but the poor recovery prevents further resolution. The most complete intervals recorded are from: lower middle Eocene to uppermost Paleocene; Santonian; lower upper Albian to upper Aptian.

A similar synthesis of biostratigraphic events in Hole 585A is shown in Figure 31. Stratigraphic intervals recovered include the lower Eocene, upper Paleocene, and a portion of the Maestrichtian. The Cretaceous/Tertiary boundary is placed in Core 585A-3. Cores 585A-5 to -9 span the Santonian to lower Turonian. The Cenomanian/ Turonian boundary appears to occur in Core 9. Portions of the upper Cenomanian and upper Albian were found in Cores 585A-9 and -10, whereas 585A-11 to -22 are identified as upper Aptian.

Nannofossils

Hole 585

Smear slides were prepared for each of the samples taken from cores recovered at Site 585. Although nannofossils are present in samples throughout the section,

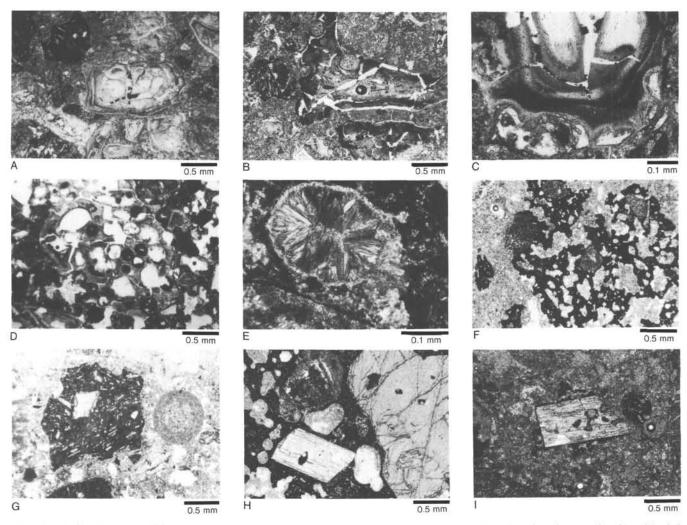


Figure 27. Various features exhibited by glassy fragments in volcaniclastic sediments, Site 585. (A) Subangular, alteration zoned, palagonitized sideromelane fragment (plane polarized light); Sample 585A-18, CC. (B) Vesicular, cuspate palagonite shard with dark smectite-replaced border (plane polarized light); Sample 585-48-1, 81-84 cm. (C) Microfractured and alteration zoned palagonite fragment (plane polarized light); Sample 585-48-1, 81-84 cm. (C) Microfractured and alteration zoned palagonite fragment (plane polarized light); Sample 585A-18, CC. (D) Highly vesicular, subrounded palagonite fragment; vesicles infilled with dark smectite and white zeolite (plane polarized light); Sample 585-14-2, 23-26 cm. (E) Vesicle rimmed by a thin zone of yellow smectite and infilled by radiate fibers of pleochroid green smectite (plane polarized light); Sample 585-54-2, 65-67 cm. (F) Highly vesicular, olivine- (dark and granular, now totally replaced) phyric tachylyte fragment (plane polarized light); Sample 585-48-1, 81-84 cm. (G) Angular, plagioclase-phyric tachylyte fragment and concentrically zoned ooid (plane polarized light); Sample 585-44-3, 65-67 cm. (H) Large clinopyroxene and (altered) olivine phenocrysts in vesicular tachylyte (plane polarized light); Sample 585-54-2, 65-67 cm. (H) Large clinopyroxene "megacryst" with a thin dark rim of adhering tachylyte (plane polarized light); Sample 585-54-2, 65-67 cm. (I) Subhedral clinopyroxene "megacryst" with a thin dark rim of adhering tachylyte (plane polarized light); Sample 585-54-2, 65-67 cm.

assemblages were often difficult to date because of extensive reworking in the top part of the section (Cores 585-1 through -20) and the generally sparse assemblages that were recovered from samples below that.

The occurrence of nannofossil-rich sediments in Cores 585-1 through -20 is suspicious, given that Site 585 is at 6109 m depth. Such evidence as grading observed in thin section, and the absence of larger-sized planktonic foraminifers and abyssal benthic foraminifers in most samples, presented by other members of the scientific party, demonstrates that these sediments have been redeposited. The extreme amount of reworking observed in many of the nannofossil assemblages and the mixing of sediments of apparently different ages support this interpretation. The sparse assemblages recovered from Cores 585-28 through -55 are also out of place, as they occur in sediments that show visible signs of grading. Problems with reworking were not detected in these assemblages.

Shipboard examination of the smear slides yielded the following results: Abundant and moderately well preserved nannofossils occur in samples from the bottom of Core 585-1 and contain *Discoaster quinqueramus*, a species restricted to the upper Miocene. This assemblage is reworked, however, because *Ceratolithus rugosus*, which is very rare in this core, indicates an early Pliocene or younger age.

Cores 585-2 through -14 are dated as early to middle Eocene. All samples from these cores contain reworked upper Campanian to Paleocene species. *Discoaster diastypus, Marthasterites bramlettei*, and *Discoaster kuepperi* are rare in sediments at the base of Core 585-14 and

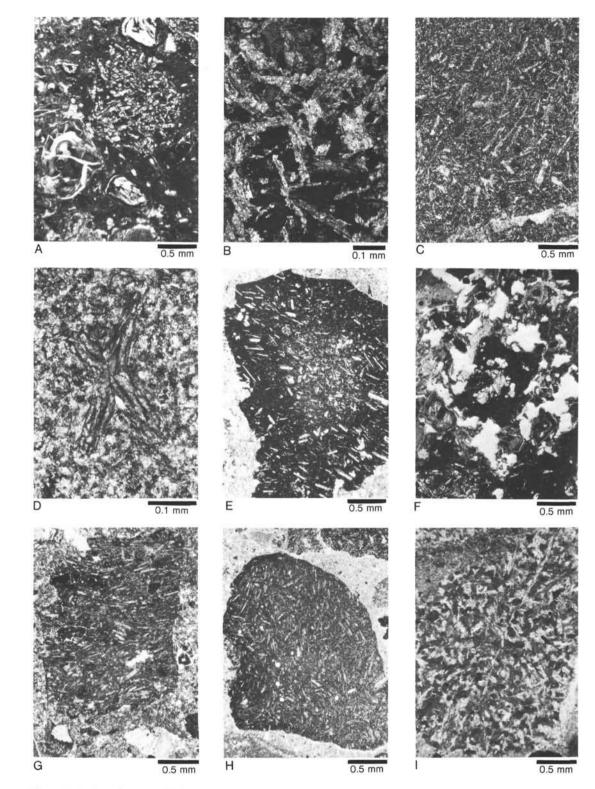


Figure 28. Various features exhibited by basaltic fragments in volcaniclastic sediments, Site 585. (A) Rounded plagioclase-rich basalt clast and palagonitized glass fragments (plane polarized light); Sample 585A-18, CC. (B) Smectite-replaced plagioclase laths in granular-textured alkali basalt (plane polarized light); Sample 585-54-2, 65-67 cm. (C) Close-textured, fine-grained, aphyric basalt; some replacement by carbonate (plane polarized light); Sample 585-48-1, 134-137 cm. (D) Microphenocryst of cruciform-twinned titanaugite in olivine basalt (plane polarized light); Sample 585-48-1, 134-137 cm. (E) Hypocrystalline plagioclase-phyric basalt fragment with dark tachylyte rim. (plane polarized light); Sample 585-48-1, 81-84 cm. (F) Clinopyroxene-glomerophyric hypocrystalline basalt clast (plane polarized light); Sample 585A-14-2, 23-26 cm. (G) Angular, poorly vesicular basalt clast with flow-oriented plagioclase laths (plane polarized light); Sample 585-54-2, 65-67 cm. (I) Nonfoliated epidote amphibolite clast (plane polarized light); Sample 585-54-2, 65-67 cm.

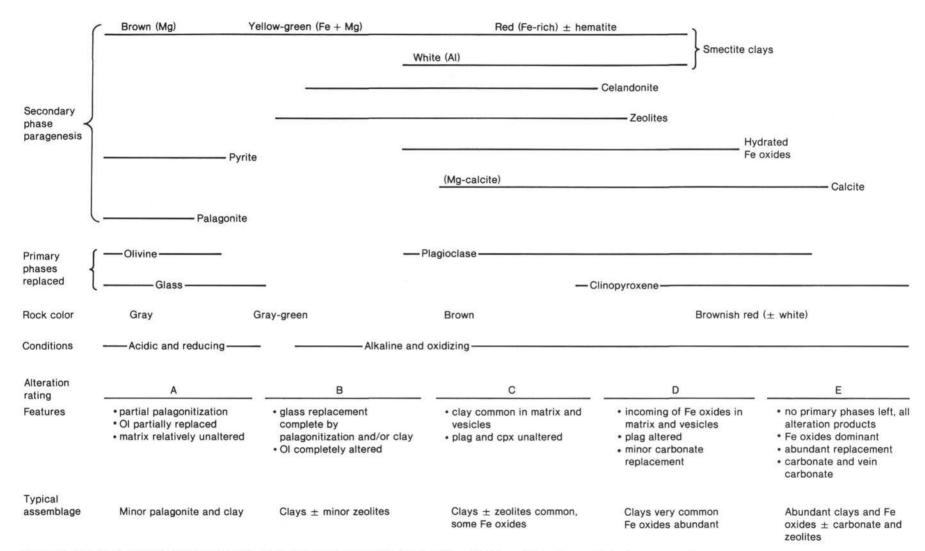


Figure 29. Visual estimate and alteration rating (A-E) in glass and basaltic rocks (fresh rocks = 0). Ol = olivine, plag = plagioclase; cpx = clinopyroxene.

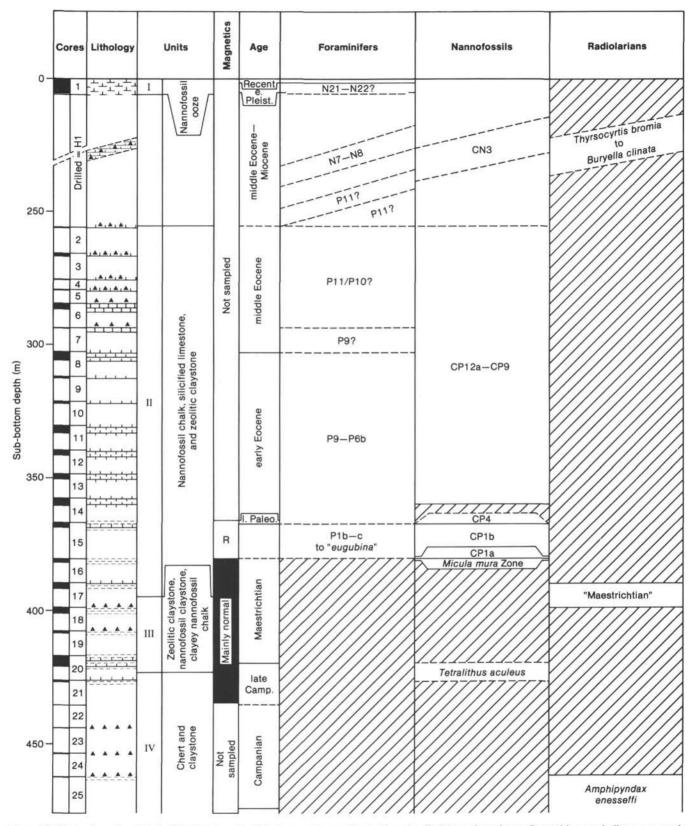


Figure 30. Biostratigraphy of Hole 585 plotted against lithology and magnetic stratigraphy. (In Magnetics column, R or white area indicates reversed polarity, and black area, normal polarity. FAD = first appearance datum.)

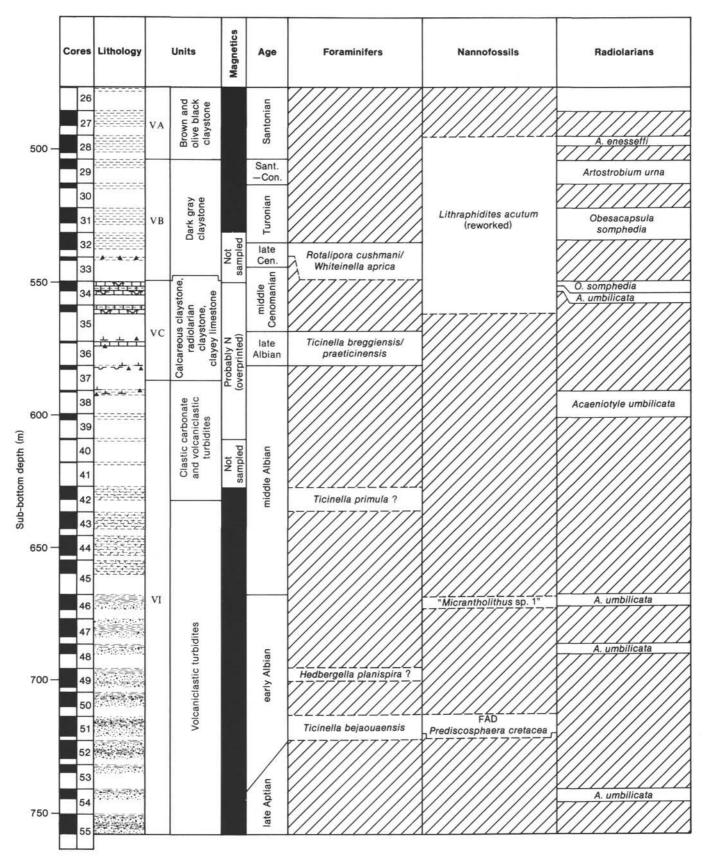


Figure 30 (continued).

Figure 31. Biostratigraphy of Hole 585A plotted against lithology and magnetic stratigraphy. (In Magnetics column, R or white space indicates reversed polarity, and black space or N, normal polarity. Hachured areas indicate areas for which no fossil zones were assigned.)

indicate an age of earliest Eocene. *Discoaster sublodo*ensis and *Discoaster lodoensis* are present in a sample from the top of Core 585-3, and the youngest Eocene sediments are dated in the *Discoaster sublodoensis* Zone. The first occurrences of *Discoaster sublodoensis* and *Discoaster lodoensis* appear to be in Cores 585-7 and -9, respectively, but their rare and inconsistent occurrences make these datums somewhat tentative. These two species commonly are heavily calcified, whereas reworked species in the same sample are more common and moderately well preserved. In addition, some samples above the *Discoaster lodoensis* and *Discoaster sublodoensis* datums appear older. They contain a well-preserved basal Eocene assemblage that includes *Marthasterites contor*-

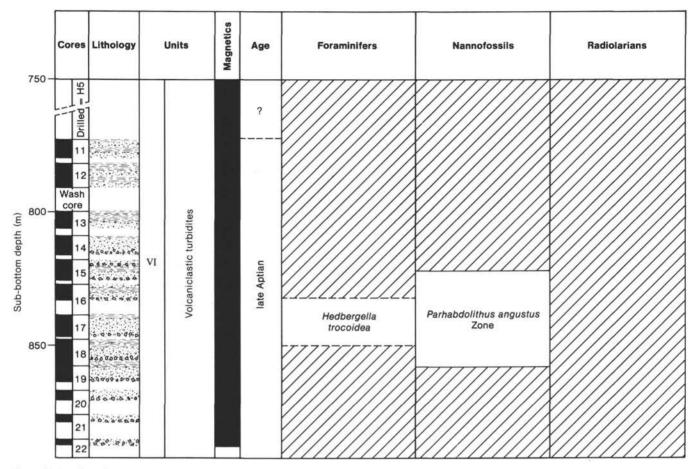


Figure 31 (continued).

tus, Marthasterites bramlettei, Discoaster diastypus, and Discoaster multiradiatus, but not Discoaster lodoensis and Discoaster sublodoensis. Thus it is possible that the sediments in Cores 585-2 through -14 are either a mixture of different age sediments that were redeposited after the middle Eocene (Discoaster sublodoensis Zone) or that the poorly preserved specimens of Discoaster lodoensis and Discoaster sublodoensis are in place and preserved only at a few horizons.

Part of the upper Paleocene is missing between Cores 585-14 and -15, as the top of Core 585-15-1 contains species that date this interval in the Fasciculithus tympaniformis Zone. Reworked Cretaceous species make up 10 to 25% of the assemblages in these samples. The remainder of Core 585-15 and the top of Core 585-16 (585-16-1, 8-10 cm) are identified with the lower Paleocene Cruciplacolithus tenuis Subzone and contain the eponymous species. Sample 585-16-1, 49-50 cm contains Thoracosphaera saxea, but not Cruciplacolithus tenuis, and is placed in the Cruciplacolithus primus Subzone. Reworked Cretaceous species dominate assemblages from these lower Paleocene sediments (more than 99% of specimens observed) and make it impossible to recognize the mass extinction of flora at the Cretaceous/Tertiary boundary. The flood of Thoracosphaera seen at the base of the Tertiary in many parts of the world was also overwhelmed by this reworking, and the boundary had to be placed at the first occurrence of Thoracosphaera.

Sample 585-16-1, 88-90 cm contains *Micula mura*, with no Tertiary species, and so appears to be upper Maestrichtian. *Tetralithus trifidus, Tetralithus gothicus*, and *Ceratolithoides aculeus* are in Samples 585-16-1, 101-103 cm through 585-20-1, 52-53 cm. The total range of *Tetralithus trifidus* is upper Campanian to lower Maestrichtian, but this species is reworked into Tertiary sediments in this section and its last occurrence cannot be used as a datum. The sample from Section 585-20-3 contains *Tetralithus gothicus*, but not *Tetralithus trifidus*, and may indicate the uppermost Campanian. Core 585-21 has *Ceratolithoides aculeus* but not *Tetralithus gothicus* or *Tetralithus trifidus* and is dated as early late Campanian.

Nannofossils were not observed in samples from Cores 585-22 through -27. *Eiffellithus turriseiffeli* and *Microstaurus chiastius* occur in samples from Cores 585-28 through -35 and date this interval from late Albian to late Cenomanian. A few specimens of *Lithraphidites acutum* were observed in Samples 585-31-4, 46-47 cm and 585-35-2, 46-47 cm and suggest that Cores 585-28 through -35 may be middle to late Cenomanian. Data from radiolarians indicate a younger age for most of this interval and suggest that these assemblages are reworked.

Nannofossil assemblages in Cores 585-36 to -42 are characterized by low species diversities and poor preservation, and these cores could not be dated. Cores 585-45 through -51 contain Albian assemblages. The lowest dated sample was Sample 585-51-3, 16–18 cm. It contains *Prediscosphaera cretacea*, which has its first occurrence in the lower Albian.

Hole 585A

Several cores in Hole 585A were taken at intervals cored during Hole 585; thus it is no surprise that many of the nannofossil assemblages in samples from this hole are identical to those seen in Hole 585. In Core 585A-1, sediments dated in the basal Eocene Tribrachiatus contortus Zone (CP9a) unconformably overlie those of the Fasciculithus tympaniformis Zone (CP4). The same hiatus was detected between Cores 585-14 and -15 in Hole 585. Lower Paleocene sediments dated from the Cruciplacolithus primus Subzone (CP1a) through the Chiasmolithus danicus Zone (CP2) occupy the top of Core 585A-3 and all of Core 585A-2. Although the Chiasmolithus danicus Zone was not sampled in Hole 585, the gap in the age of the sediments between Cores 585A-1 and -2 in this hole is similar to that observed in the top of Core 585-15 in Hole 585. The Cretaceous/Tertiary boundary is tentatively placed between Samples 585A-3-1, 73-75 cm and 585A-3-1, 128-130 cm, as the former sample contains Thoracosphaera and the latter one does not. This boundary was again hard to recognize because of the large number of reworked Cretaceous species in these cores.

All samples taken below Core 585A-3 are barren or contain few, poorly preserved species. Accurate age determinations could not be obtained for many of these assemblages. Such was the case for all the samples from Cores 585A-4 and -5. Several samples from Cores 585A-6 through -10 contain both Eiffellithus turriseiffeli and Microstaurus chiastius, which dates these cores between late Albian and late Cenomanian. Lithraphidites acutum was found in Sample 585A-8-2, 18-19 cm and indicates an age of middle to late Cenomanian for this sample and those above it through Core 6. These assemblages, as in Hole 585, may be reworked. No ages were determined for Cores 585A-11 through -14. Cores 585-15 through -18 appear to be upper Aptian to Albian. Lithastrinus floralis and Parhabdolithus angustus, which have their first occurrences in the upper Aptian, are present in samples throughout this interval. Tranolithus gabalus and Rucinolithus irregularis have not been reported in sediments younger than Albian and are present in Sample 585A-15-3, 24-26 cm. Samples examined from Cores 585A-19 through -21 are barren, except for Sample 585A-21-1, 84-85 cm, which contains only Watznaueria barnesae.

Foraminifers

Hole 585

Below the brown clay that represents the Recent and sub-Recent sediments at Site 585, planktonic and calcareous benthic foraminifers occur only as displaced, frequently reworked, assemblages from various water depths, but predominantly from a bathyal setting. The foraminifers occur typically as size-sorted clasts in graded turbidites. In particular, during the Tertiary, the largest fractions recovered never exceeded 250 μ m in size and frequently have an average size of about 100 μ m. Consequently, most age-diagnostic forms are missing in the recovered sequence, which prevents an accurate dating on the basis of planktonic foraminifers.

In Hole 585, the lower part of Core 585-1 (below 150 cm) is attributed to the lower Pleistocene on the basis of the occurrence of *Streptochilus tokelauae*. Planktonic foraminifers are common to abundant, but (1) they never exceed 150 μ m in size, being strongly size sorted, and (2) faunas are strongly mixed with reworked upper Miocene forms dominating the assemblages.

Core 585-H1, from 6.8 to 255.9 m sub-bottom, yielded some planktonic foraminifers attributable to lower Miocene Zone N7-N8 mixed with some Oligocene and middle Eocene faunas.

Core 585-2 (recovery about 5%) contains only very recrystallized radiolarians. Cores 585-3 to -6 consist of a succession of pelagic turbidites, the basal units of which are represented by silicified limestone or chert or both, such as 585-3-1, at 31-33, 63-65, and 83-85 cm. Those layers yielded Turborotalia boweri, Subbotina yeguaensis, and Pseudohastigerina micra, which suggest the middle Eocene, possibly Zones P11 to P10. Associated with the rare middle Eocene forms are large amounts of reworked lower Eocene, upper Paleocene, and more rarely upper Maestrichtian faunas. Reworked assemblages can constitute up to 98% of the total assemblages in the finer layers within the turbiditic sequence (Core 585-3-1, 7-8 cm). The topmost part of the turbiditic sequence yielded only rare, very poorly preserved radiolarians and nannofloras. The interval from Core 585-7 to Sample 585-14-1, 64-67 cm appears to represent the entire lower Eocene and possibly its lower boundary. As in the interval above, layers with rare, poorly preserved radiolarians alternate with layers rich in planktonic foraminifers. The lack of adult forms prevents the identification of zonal boundaries within this interval. Reworked planktonic foraminiferal faunas include assemblages of late and early Paleocene and late Maestrichtian age.

The ash layer in Sample 585-13-1, 84-87 cm yielded abundant fish remains, and it is bioturbated.

The remaining part of Cores 585-14 and -15 yielded only rare specimens of planktonic foraminifers, also frequently broken. Wall structures of some fragments suggest that Sample 585-15-1, 34-37 cm is late Paleocene in age, possibly Zone P4 (= *Planorotalites pseudomenardii* Zone).

The youngest abyssal agglutinated foraminifers, the only autochthonous fauna, were recovered in Sample 585-15-1, 146-148 cm (see the later text).

Common planktonic foraminifers occur in several layers of Core 585-16, the top of which (585-16-1, 8-10 cm) is attributed to early Paleocene Zone P1b-c (= Subbotina pseudobulloides Zone). Common species are Globoconusa daubjergensis, Subbotina triloculinoides, Planorotalites aff. compressus, and the index species. They are associated with a minor amount of reworked lowest Tertiary "eugubina" and Maestrichtian assemblages. Paleocene species decrease rapidly in abundance in Section 585-16-1 and are replaced by Maestrichtian faunas, which make up 100% of the planktonic foraminiferal assemblage in Sample 585-16-1, 110-116 cm. The decrease of Paleocene forms through Core 585-16 is associated with an increase in sorting: the average size of planktonic foraminifers in 585-16-1, 110-116 cm does not exceed 80 to 90 μ m. The lowermost Tertiary fauna recovered in Sample 585-16-1, 88-90 cm belongs to the "eugubina" Zone. Thus the Cretaceous/Paleocene boundary is placed between Samples 585-16-1, 88-90 cm and 90-110 cm.

The recovery of foraminifers from the Mesozoic sequence of turbiditic claystones, radiolarian claystones, clayey limestones, and volcaniclastic sandstones is particularly sporadic, with the majority of samples being devoid of foraminifers or containing only very rare, poorly preserved specimens. Several samples, however, are useful for biostratigraphic purposes.

Only one layer in Sample 585-17-1, 4–7 cm yielded very rare Maestrichtian forms, whereas abyssal agglutinated benthic foraminifers, fish remains, and radiolarians become more prominent as more autochthonous sediments were recovered.

Fine calcareous turbidites occur once more in Core 585-18. Planktonic foraminifers are strongly size sorted. and assemblages, sometimes rich (Section 585-18-1, 76-79 cm), display an average size of 80 µm. Faunas are dominated by Heterohelix and Globigerinelloides along with rare representatives of Globotruncanella, Rugoglobigerina, and Globotruncana. The occurrence of forms attributable to Globotruncanella havanensis, Globotruncana plummerae, and Heterohelix glabrans suggests the Maestrichtian, but no upper Maestrichtian species could be found. Autochthonous sediments rich in fish debris, abyssal agglutinated benthic forms, and some radiolarians occur in layers interbedded within the turbidites. Those autochthonous sediments become prominent in Core 585-19, which, however, cannot be dated on the basis of planktonic foraminifers. Core 585-20 contains rare, poorly preserved planktonic species of Hedbergella, Globigerinelloides, and Heterohelix that suggest a possible Maestrichtian age. Cores 585-29, -30, and the upper part of -32 contain species of Rotalipora, Praeglobotruncana, Whiteinela, and Hedbergella that indicate a possible Turonian assemblage mixed with Cenomanian species. This mixed association is followed in Section 585-32-4 by a moderately diverse and well-preserved planktonic fauna indicative of the upper Cenomanian Whiteinella aprica Subzone of the Rotalipora cushmani Zone. Species present include Rotalipora cushmani, R. greenhornensis, Whiteinella aprica, W. baltica, and W. brittonensis, in association with Praeglobotruncana stephani, P. delrioensis, and P. gibba.

Core 585-36 is assigned to the upper Albian Ticinella breggiensis/Ticinella praeticinensis Zone by the occurrence of rare specimens of Ticinella primula, Hedbergella delrioensis, and forms that appear to be Ticinella praeticinensis and T. breggiensis. An upper Aptian-lower Albian benthic foraminiferal association appears in Sample 585-41,CC with forms such as Osangularia utaturensis, Spiroplectinata complanata, Conorotalites aptiensis, Gaudryina dividens, and Dorothia oxycona among others. A similar assemblage occurs in Sample 585-42,CC with the addition of *Ticinella primula*, *Gavelinella intermedia*, and *Pleurostomella subnodosa* that indicate the middle to upper Albian. Elements of this assemblage are present in Cores 585-43, -44, and -49. Core 585-49, however, also contains *Favusella washitensis* and *Globigerinelloides* cf. *G. cheniourensis* indicative of lower Albian reworked with Aptian material. The last agediagnostic sample based on foraminifers from Hole 585 comes from Core 585-51 where an association of *Favusella washitensis*, *Ticinella bejaouaensis*, and *Gavelinel-la barremiana bizouardae* indicate the early Albian *Ticinella bejaouaensis* Zone.

Hole 585A

In Hole 585A, the upper 500 m were spot cored and some washed cores were recovered. Among them H1, washed from the seafloor to 363.7 m sub-bottom, recovered dusky green and green siltstone and claystone that yielded few moderately well preserved planktonic foraminifers. The dominant forms suggest the upper Miocene or lower Pliocene mixed with somewhat differently preserved middle Miocene and possibly upper Oligocene faunas. However, a much younger age cannot be ruled out, as the important index species were not recovered.

Three cores (585A-1 to -3) from 363.7 to 392.3 m subbottom were recovered in succession. The top of Core 585A-1 yielded a very poorly preserved planktonic foraminiferal fauna composed of rare acarininids and morozovellids, suggesting the lowest Eocene to uppermost Paleocene.

In Core 585A-2, only one sample (585A-2-1, 51-53 cm) contained a relatively rich planktonic foraminiferal assemblage. The species encountered are *Subbotina triloculinoides*, *Morozovella inconstans*, and *Subbotina pseudobulloides*. On the basis of the evolutionary stage of these species, the assemblage possibly represents the topmost part of the lower Paleocene P1c Zone (= *S. pseudobulloides* Zone). Reworked assemblages of both the "*eugubina*" Zone of the lowermost Tertiary and the Maestrichtian occur in the same sample. Silicified limestone and clayey chalk lithologies in Core 585A-2 are devoid of planktonic foraminifers and contain only size-sorted, poorly to very poorly preserved radiolarians.

Core 585A-3 appears to contain the Paleocene/Cretaceous boundary located within Section 1. The strongly size-sorted planktonic faunule from Sample 585A-3-1, 73-75 cm is dominated by Maestrichtian species but also includes small subbotinids, possibly Subbotina eobulloides, and unnamed forms transitional between Guembelitria and Globoconusa daubjergensis that are characteristic of the lowermost Tertiary "eugubina" Zone. The lowermost Tertiary forms are apparently missing in 585A-3-1, 128-130 cm, which yielded only very small Maestrichtian planktonic foraminifers. A few small-sized bathyal benthic foraminifers also occur in the same layers as the planktonic faunules. The chert and zeolitic clay of Core 585A-3 contain only poorly preserved radiolarians, whereas abundant radiolarians were found associated with abyssal benthic foraminifers.

Washed Cores 585A-H2 and -H3 and the intermediate Core 585A-4 do not yield any foraminifers. Only poorly to very poorly preserved, rare to common radiolarians occur in those cores.

Most of Core 585A-5 contains slightly size-selected ghosts of radiolarians, whereas the core-catcher sample at 19-21 cm yielded few poorly preserved planktonic foraminifers, smaller in size than 150 μ m. The faunule consists of forms of various ages, specifically late Aptian (*Hedbergella trocoidea*), late Cenomanian (a possible *Whiteinella* and *Heterohelix moremani*), and Turonian to Santonian (*Heterohelix reussi*). No foraminifers were recovered from Cores 585A-6 through -8, which contain only radiolarians and fish debris.

The calcareous siltstones of Core 585A-9 yielded three of the best preserved and abundant planktonic assemblages recovered from both holes at Site 585. The Whiteinella archaeocretacea Zone was identified in the upper 50 cm of Section 1 on the basis of the occurrence of the index species associated with Dicarinella hagni in the uppermost 10 cm. This zone is equated to the Cenomanian/Turonian boundary. The latest Cenomanian Whiteinella aprica Subzone of the Rotalipora cushmani Zone occurs below 50 cm in Section 1. All three planktonic assemblages are rich in Whiteinella aprica, W. baltica, Praeglobotruncana stephani, P. aumalensis, and Dicarinella algeriana. Rotalipora brotzeni, R. greenhornensis, and Praeglobotruncana delrioensis are present commonly in the W. archaeocretacea zonal assemblages, but their occurrence in that zone is interpreted to be the result of reworking from older layers belonging to the Rotalipora cushmani Zone. Rotalipora greenhornensis and R. cushmani associated with the above species characterize the fauna of the W. aprica Subzone. Remarkably, Whiteinella paradubia, W. brittonensis, and Praeglobotruncana gibba are rare or missing, possibly because of size sorting. Rare Aptian to Albian planktonic foraminifers are reworked in the lower sample. Rare bathyal benthic foraminifers occur associated with the planktonic faunas in all three samples.

Foraminifers are absent in the siliceous claystone recorded in the lower part of Core 585A-9, in -10, and in the washed -H4 and -H5, where poorly preserved radiolarians are abundant.

From Core 585A-11 to total depth (Core 585A-22), planktonic foraminifers are very rare. Nevertheless, a late Aptian age is indicated for this interval by the occurrence of a few specimens of *Hedbergella trocoidea* in Samples 585A-11-5, 43-45 cm and 585A-18-2, 90-93 cm plus the addition of *Globigerinelloides ferreolensis* in Sample 585A-16,CC (22-24 cm). Bathyal benthic foraminiferal assemblages that occur along with the rare planktonic foraminifers further support an Aptian age for the mentioned interval.

The last age-diagnostic foraminifers in Hole 585A were recovered in Cores 585A-18 through -20. A few specimens of the larger foraminifer Orbitolina aff. O. texana, whose range is upper Aptian-lower Albian, were found scattered throughout this interval. Their occurrence is in agreement with a late Aptian age inferred from the other small foraminifers.

Orbitolinids have been reported from other localities in the western Pacific, but they have never been identified at a specific level. Among the localities, it is worth mentioning the Isakov Guyot (Heezen et al., 1973a), the Nauru Basin at Site 462 where a single specimen was recovered reworked in upper Oligocene layers (Premoli Silva and Brusa, 1981), and some of the Japanese guyots.

Cores 585A-12 through -15 and -17 apparently contain only ooids and mollusk fragments from a shallowwater environment as carbonate components. No foraminifers were found in those cores. Cores 585A-21 and -22 at the bottom of the hole are devoid of any biogenic components.

Paleoecology

Benthic foraminifers recovered from Site 585 sediments consist of three groups: (1) autochthonous abyssal species, (2) transported bathyal species, and (3) transported neritic and shallow-water species (Figs. 32 and 33).

The autochthonous group consists of agglutinated species of Glomospira, Glomospirella, Ammodiscus, Hyperammina, Bathysiphon, Paratrochamminoides, Saccammina, Haplophragmoides, and Trochamminoides among others that are interpreted to be most characteristic of your water depths between 5000 and 6000 m or closely analogous to the present water depth of the East Mariana Basin. This assemblage is found in the reddish brown zeolitic claystones that represent pelagic sedimentation between turbiditic episodes. Characteristically, the agglutinated fauna is associated solely with fish debris and recrystallized radiolarians, but occasionally rare specimens are found in turbiditic sequences. In Hole 585, the abyssal assemblage is found in Cores 585-15 to -54, which indicates that the entire sequence from the upper Aptian to the Recent was deposited at abyssal water depths (Fig. 32). Below Core 585-54 the assemblage was not recovered because of the heavy influx of volcaniclastic debris in the Aptian to Albian sequence. Above Core 585-15, samples consisted of the planktonic foraminifer- and nannofossil-rich sediments of the Cenozoic sequence. In Hole 585A, the abyssal assemblage is restricted to samples from Core 585A-3. Previously, the elements of this assemblage were recovered from the Pacific Ocean on Legs 20 and 61, from the Indian Ocean on Leg 27, and from the North Atlantic Ocean on Legs 41 and 47B.

The bathyal foraminiferal assemblage consists of small, size-sorted specimens of Praebulimina, Gavelinella, Gyroidinoides, Stilostomella, Allomorphina, Pleurostomella, Aragonia, Osangularia, and Dentalina among others that are characteristic of water depths above 2500 m. The assemblage is found predominantly in the laminated intervals and coarse basal units of graded sequences that represent distal, gravity-flow deposits. In intervals devoid of shallow-water material, the assemblage is associated with size-sorted radiolarians, planktonic foraminifers, and sponge spicules. In Hole 585, the bathyal assemblage is found in Cores 585-1 to -54. Of special interest are the occurrences of transported bathyal species in Sections 585-32-2 and 585-32-4 that flank the organic layer in Section 3. In the latter case, however, foraminifers are lacking, and the residue larger than 42 μ m consists solely of recrystallized radiolarians. In Hole 585A, the bathyal assemblage was found in Cores 585A-3, -9, -11 and -16.

The third group consists of species characteristic of neritic or shallow-water environments. Included are neritic species of genera such as Patellina, Textularia, and species of miliolids, polymorphinids, and nodosariids. These smaller forms are listed in Figures 32 and 33 under the neritic column. Also included in this group are specimens of larger, shallower-water foraminifers such as Orbitolina, complex agglutinated forms such as Cuneolina, and attached agglutinated species among others shown as larger foraminifers in Figures 32 and 33. The neritic or shallow-water forms occur typically in the coarser basal layers of turbiditic sequences that also contain bioclastic debris of shallow-water origin such as echinoid fragments and spines, ostracodes, bivalve fragments, sponge spicules, fecal pellets, and very rare algal fragments in addition to ooids. In Hole 585, the neritic assemblage is found in Cores 585-36 to -51, whereas the larger forms are restricted to cores 585-36, -49, and -51. Neritic species and bioclastic debris are particularly noticeable in the middle Albian sequence of clastic carbonates and volcaniclastic turbidites (Fig. 32). Noticeably lacking, however, are Inoceramus prisms, thickshelled bivalve and rudist fragments, and shallow-water algal debris typical of reefal environments and recovered from both Cenozoic and Mesozoic sediments of Leg 61 in the Nauru Basin. In Hole 585A, Cores 11 to 20 do contain rudist fragments in association with neritic and shallow-water foraminifers, algal fragments, bryozoans, bivalve fragments, echinoid debris, and ooids.

In summary, the upper Aptian Cores 585A-18 to -20 contain the greatest abundance of shallow-water material in association with volcaniclastic debris flows. This material decreases in abundance, diversity, and coarseness through the upper Aptian-lower Albian section of Hole 585 from total depth up to Core 585-48. In middle and upper Albian Cores 585-36 to -44 the transported material is predominantly neritic in nature, small-sized including the rare bioclastic material, and indicative of distal turbidite deposits. Cenomanian to Santonian Cores 585-29 to -34 contain transported foraminifers that are bathyal in nature. Abyssal foraminifers are particularly in evidence in the Maestrichtian to Paleocene Cores 585-15 to -20 characterized by zeolitic claystones and chert.

Radiolarians

Hole 585

From the 140 samples studied from Hole 585 only 24 (17%) provided stratigraphically useful assemblages, whereas 73 (52%) were barren and 43 (31%) were too poorly preserved to be useful (see Table 7).

In the Cenozoic section only Wash Core H1 provided a well-preserved radiolarian fauna. This fauna extends from the uppermost Eocene to the middle part of the lower Eocene and can be interpreted as a mixing of two Eocene assemblages: *Buryella clinata* (middle part of lower Eocene) and *Thyrsocyrtis bromia* (upper part of upper Eocene). The two assemblages represent 95% of the specimens mixed into a lower Miocene assemblage (*Calocycletta virginis* Zone).

Mesozoic radiolarian assemblages are characterized by two main features: (1) The tests are always recrystallized, usually to quartz, but also sometimes replaced by zeolites; and (2) most of the assemblages are oligospecific.

Based on the specific diversity and on the variable size of tests, only five levels (Samples 585-17-2, 35-36 cm; 585-26-1, 23-25 cm; 585-34-2, 27-29 cm; 585-36-1, 73-74 cm, and 585-48, CC) seem to be autochthonous.

If we consider the morphology and the size of the tests, all other samples seem to be allochthonous. The samples show spherical radiolarian morphology (Spumellarians and essentially cryptocephalic Nassellarians) and very good size sorting (the smallest specimens in clays, larger specimens in silts, and the largest in the coarse fractions).

The Amphipyndax enesseffi Zone, however, can be recognized in Cores 585-25, -26, and -28; the Artostrobium urna Zone in Core 585-29; the Obesacapsula somphedia Zone in Cores 585-31 and -32, and as deep as 585-34-2, 52 cm; and the Acaeniotyle umbilicata Zone below 585-34-2, 77 cm.

Actually the calibration of the Upper Cretaceous radiolarian zonation is not very precise. The Amphipyndax enesseffi Zone is approximately Campanian and the Artostrobium urna Zone corresponds to an interval between the Coniacian and Campanian. The limit between the Obesacapsula somphedia Zone and the Acaeniotyle umbilicata Zone is very close to the boundary between middle and upper Albian.

Hole 585A

From Hole 585A, 20 samples (42%) were barren, 17 samples (36%) provided faunas too poorly preserved to be useful, and 10 samples (21%) can be used for stratigraphic resolution (see Table 8).

Three intervals can be defined on the basis of radiolarian occurrences and preservation: (1) in Cores 585A-H1 to Sample 585A-3-1, 40-41 cm (Cenozoic), radiolarians are nearly absent; (2) in Samples 585A-3-1, 2-3 cm to 585A-H4-1, 79-80 cm (Upper Cretaceous), radiolarians are confined to sandy layers and the tests are always recrystallized; and (3) in Cores 585A-11 to -22, radiolarians are absent except in Cores 585A-18 and -20, which yielded a fauna too sparse and poorly preserved to be stratigraphically useful.

Three assemblages can be recognized in the second interval: (1) the *Theocapsomma comys* Zone (Maestrichtian) in Core 585A-3; (2) the *Artostrobium urna* to *Amphipyndax enesseffi* Zones (Campanian to Turonian) in core 585A-5; and (3) the *Obesacapsula somphedia* Zone in Cores 585a-7 to -H4.

Correlation, Holes 585 and 585A

Biostratigraphic correlation between Holes 585 and 585A is shown in Figure 34. The key tie points are lim-

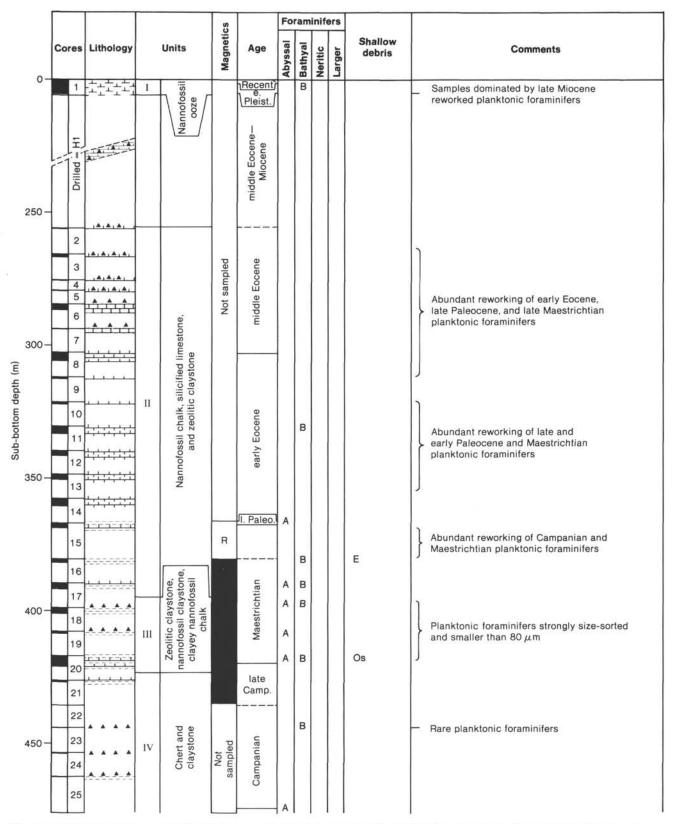


Figure 32. Paleoecologic summary of Hole 585. A = autochthonous abyssal foraminifers; B = transported bathyal foraminifers; N = transported neritic foraminifers; L = transported larger foraminifers; O = ooids; E = echinoid debris; M = bivalve fragments; and Os = ostracodes. (In Magnetics column, R or white area indicates reversed polarity, black area, normal polarity.)

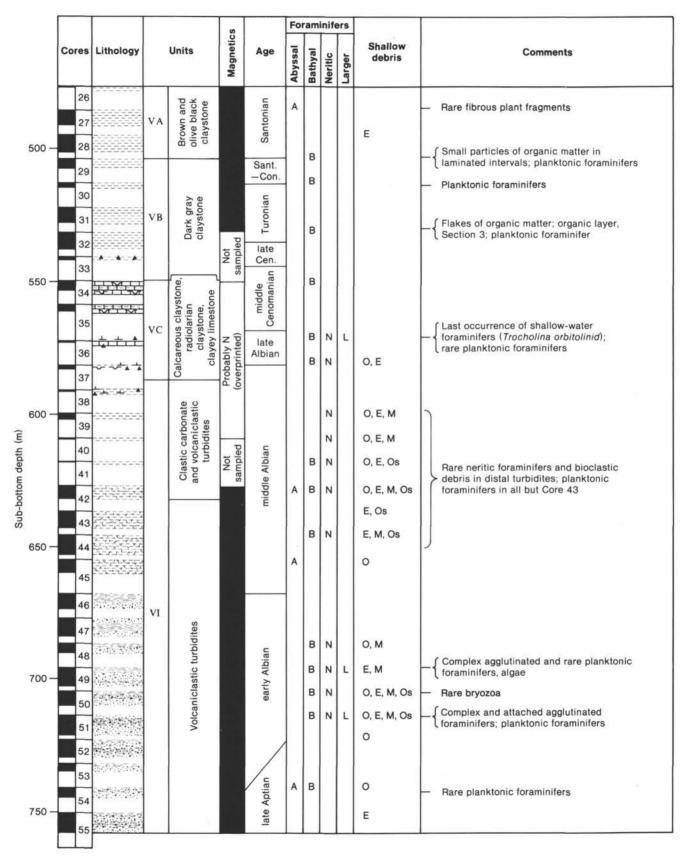


Figure 32 (continued).

69

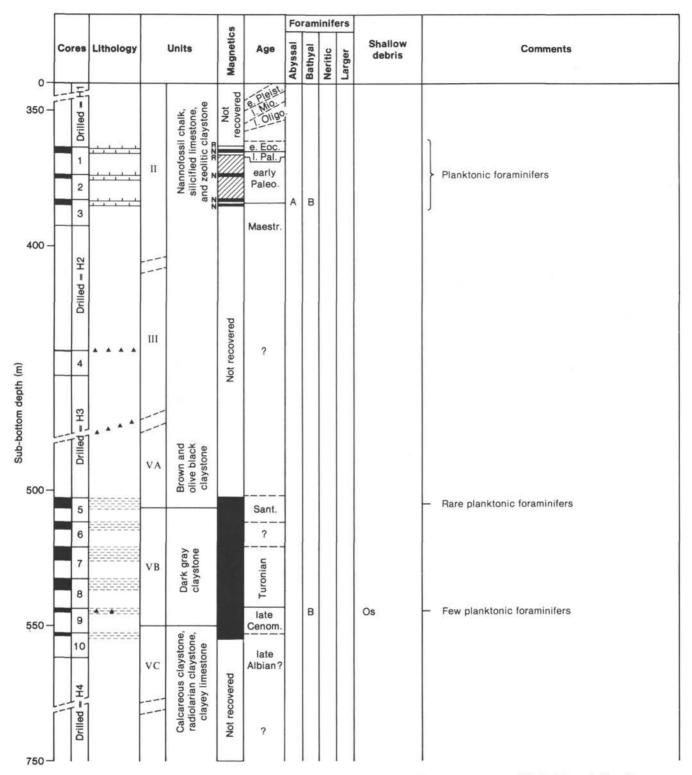


Figure 33. Paleoecologic summary of Hole 585A. A = autochthonous abyssal foraminifers; B = transported bathyal foraminifers; N = transported neritic foraminifers; L = transported larger foraminifers; O = ooids; E = echinoid debris; M = bivalve fragments; and Os = ostracodes. (In the Magnetics column, R or white area indicates reversed polarity, black area or N, normal polarity. Hachured areas indicate intervals without paleomagnetic information.)

ited to a few cores because of the washing and spot coring techniques and the sporadic paleontologic recovery in general. Of particular importance are the Cenomanian/Turonian boundary, the Cretaceous/Tertiary boundary, and the Paleocene and Eocene boundaries. The subbottom depths of these tie points are very close but not identical. This difference in depths is believed to have resulted from poor recovery and the different inclination of the two holes as determined from the magnetic measurements.

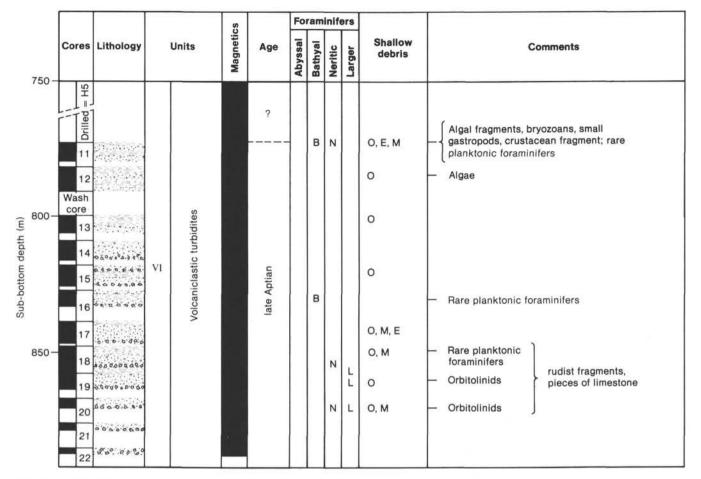


Figure 33 (continued).

SEDIMENTATION RATES

Sedimentation rates for Site 585 are shown in Figure 35. Four pulses of sedimentation are recorded in Hole 585 that are separated by apparent unconformities or reductions in sedimentation. The four pulses occur in the late Aptian to late Albian, middle Cenomanian to Turonian, Santonian to early Paleocene, and latest Paleocene to middle Eocene. Sedimentation rates for the Cenomanian to Eocene pulses range from about 5 to 10 m/m.y. The rate for the initial Aptian to Albian pulse characterized by volcaniclastic debris flows is about 20 m/m.v. Unconformities or much reduced rates of sedimentation were apparently the case during the late Albian to early Cenomanian, the Coniacian to Santonian, and the middle and late Paleocene. Cores 585A-11 to -22 extended the drilled section by nearly 130 m but remain within the late Aptian. The new rate for the volcaniclastic debris flows is about 40 m/m.y.

ORGANIC GEOCHEMISTRY

Introduction

The main objectives of the on-board geochemical studies were: (1) to provide analytical data that would enable the co-chief scientists and the cruise operations manager to make proper safety-oriented decisions regarding the possibility of approaching significant gas and/or crude oil accumulations during the drilling operations; (2) to contribute relevant data to characterize the sedimentary organic matter in terms of amount, type, and maturity by applying various analytical techniques, such as organic carbon determination, pyrolysis measurements, and gas analyses; (3) to take different sample sets for the Organic Geochemistry Advisory Panel, our own detailed shore-based organic geochemical studies, and approved research programs submitted by other geoscientists.

ANALYTICAL METHODS

On-board organic geochemical studies comprise the following analytical techniques.

Gas Chromatography

Initially, two gas chromatographic systems were available for gas and gasoline range hydrocarbon analysis: the Carle Gas Chromatograph, Model 800, equipped with an 1/8-in. O.D., 5-ft.-long packed column with 8% Carbowax 1540 as the stationary phase on Anakrom ABS (90-100 mesh) for the analysis of the light gases (methane, ethane, carbon dioxide, and eventually hydrogen sulfide) using a thermal conductivity detector; and the Hewlett-Packard Gas Chromatograph, Model 5710A, equipped with two sets of two combined 1/8-in. O.D. packed columns (4 ft. packed with Spherosil porous silica beads and 12 ft. packed with 20% methyl silicone OV-101 as the stationary phase on Anakrom AS [100–110 mesh]) for the quantitative analysis of the C_2 to C_6 hydrocarbon fraction. Flame ionization detectors are used for this analysis, usually run in the compensation mode. Sample introduction is performed via a Carle 6-port valve into a gas loop cooled at

Radiolarians	were not found		vere too poorly biostratigraphy
1-1, 4-5 1-1, 140-141 1-2, 40-41 1-2, 144-145 1-3, 70-71 1-4, 60-61 1-5, 30-31 1,CC 3-1, 108-111 6-1, 86-87 6-2, 79-80 7-1, 17-18 8-1, 75-76 8-2, 106-107 12-2, 34-35 14-2, 94-95 15-1, 22-23 15-1, 74-75 15-2, 4-5 16-1, 35-36 17-2, 47-48 17-2, 69-70 18-1, 119-120 18-1, 143-144 18-2, 28-32 19-1, 12-14 19-1, 53-55 20-3, 73-74 20-4, 34-35 27-1, 82-83 27-4, 59-60 27,CC 28-1, 16-17 28-2, 29-30 28-4, 8-9	$\begin{array}{c} 30, CC\\ 31-3, 146-147\\ 31-4, 5-6\\ 32-1, 100-103\\ 32-2, 135-137\\ 32-1, 108-109\\ 39-2, 39-41\\ 40-1, 3-4\\ 41, CC\\ 42-2, 63-64\\ 43-2, 57-59\\ 43-4, 61-62\\ 44-2, 100-102\\ 44-3, 140-142\\ 44-4, 108-110\\ 45-1, 73-75\\ 45-2, 40-42\\ 45-2, 130-132\\ 45-4, 9-11\\ 45, CC\\ 46-1, 44-46\\ 47-2, 31-33\\ 48-1, 146-147\\ 48-2, 90-91\\ 49-3, 19-21\\ 49-4, 43-45\\ 50-1, 113-114\\ 50-2, 6-7\\ 50-3, 30-32\\ 50-4, 30-31\\ 51-3, 28-30\\ 51-4, 62-64\\ 51-1, 147-148\\ 53-2, 102-103\\ 55-2, 82-83\\ \end{array}$	3-1, 27-28 12-1, 65-66 13-1, 22-23 13-1, 88-89 17-1, 13-14 20-1, 39-40 20-2, 108-109 27-3, 22-23 27-3, 126-127 28-3, 16-17 28-3, 138-139 28,CC 29-1, 34-35 29-2, 5-6 30-1, 1-2 31-1, 108-109 32-3, 72-74 34-1, 140-142 34-2, 84-96 35-1, 30-32 36-1, 36-38	38-1, 42-44 39-1, 10-12 42-3, 30-32 44-1, 89-91 45-3, 50-52 46-2, 96-98 46-3, 7-9 46-3, 15-17 49-1, 118-120 49-2, 146-148 49-5, 40-42 49-6, 14-15 49-6, 14-15 49-6, 14-15 49-6, 49-51 51-2, 37-38 52-1, 128-130 52-2, 116-118 54-2, 62-64 54-3, 6-7 55-1, 82-83 55-2, 34-35 55-4, 44-45
28-4, 121-122	55-4, 109-110		

Table 7. Absence of or poorly preserved radiolarian fauna from Hole 585 samples (core-section, cm interval).

Table 8. Absence of	or poorly preserved radiolarian fauna
from Hole 585A	samples (core-section, cm interval).

Radiolarians were not found		Radiolarians were too poorly preserved for biostratigraphy				
H1-1, 4-6	2-1, 76-78	3-1, 38-39	9-1, 45-47			
H1-1, 51-52	2-1, 111-117	3-1, 40-41	9-1, 140-141			
H1-2, 6-7	H2-1, 12-14	3-2, 2-3	10-1, 36-38			
H1-2, 96-98	11-2, 56-57	3,CC (4-5)	H4-1, 3-4			
H1,CC (12-13)	11-4, 126-127	5,CC (1-2)	H4-1, 18-20			
1-1, 14-16	13-3, 72-73	6-1, 113-115	H4-1, 118-120			
1-1, 124-126	13-3, 100-102	7-1, 48-49	11-1, 9-11			
1-2, 8-10	16,CC (9-11)	7-3, 127-128	18-6, 17-18			
1,CC (10-11)	18-2, 81-82	8-1, 129-131	20-1, 58-59			
2-1, 7-9	18-4, 80-81	8,CC (4-6)				

 -70° C. First test measurements showed, however, that the compensation (or differential) mode did not work properly: the baseline drift by column bleeding was exactly the same without the second column.

Installation of a Capillary Gas Chromatography System

Owing to the long steaming time from port to Site 585, there was time available to replace the packed column of channel B in the Hewlett-Packard GC 5710A with a 25-m-long, 0.32-mm-I.D. fused silica capillary coated with cross-linked methyl silicone of 0.52μ m film thickness. The initial 5 m of this capillary was coiled to about 5 cm diameter and used as a cold trap in the same cooling bath as for the packed columns. Gas samples were introduced with a syringe via a capillary injection system (Gerstel, Mulheim/Ruhr, F.R.G.) run in the split mode (split ratio 1:10). Inlet pressure was 0.75 bar or 0.50 bar, respectively, and helium was used as the carrier gas. Carrier gas flow was 2 ml/ min. at 0.75 bar. The capillary chromatograms were run isothermally

Hole 585 (core or core-section, cm interval)	Hole 585A (core or core-section, cm interval)	Ages			
Core 14	1-1, 1-100	earliest Eocene			
Core 15	1-1, 132-133	late Paleocene			
15-1, 33—34	Core 1				
15-1, 146-148	Core 2	early Paleocene			
16-1, 88-90	3-1, 73-75	_ Cretaceous/Tertiary			
16-1, 90-110	3-1, 128-130	boundary			
Core 28	Core 5	Santonian			
32-2	9-1, 1-50	Cenomanian/Turonian			
32-3	9-1, 50-150	 boundary 			

Figure 34. Biostratigraphic correlation between Holes 585 and 585A.

(except for the cooling period in the cold trap) at ambient temperature and gave excellent results if thermal focusing was optimal. See the discussion that follows.

Both gas chromatographs are connected to a laboratory integrator (Supergrator 1). Calibration was performed with appropriate gas standards before Hole 585 was spudded in.

Carbon, Hydrogen, and Nitrogen Analysis

A model 185B Hewlett-Packard CHN analyzer linked to digital Mini-Lab Integrator Model CSI 38 was calibrated for the analysis of both (1) carbon in sediment samples, and (2) CO_2 and H_2O^+ (wt.%) in igneous rock samples. Nitrogen was not determined except for two samples. The carbon determined in the sediments was on the residue of an acidified sample (e.g., after Carbonate Bomb analyses) and gave a value for organic carbon content. In addition, one basalt clast extracted from lithologic Unit VI (Core 585-48) was analyzed.

Sample Preparation

Samples were crushed (either by mortar and pestle or shatterbox if very hard) to a powder, heated to 110°C for 2 hr. to remove H_2O^- if igneous and allowed to cool in a desiccator. Twenty milligrams were weighed out on a Cahn Electrobalance and introduced into the CHN analyzer furnace at 1100°C. Blanks were composed of silica powder and oxidizing agent ("catalyst").

Results

1. Organic geochemical data for the sediments are summarized in Tables 9 through 13.

2. CO_2 and H_2O^+ data for the one basalt clast (585-48-1, 141-144 cm) was 0.3 wt.% and about 0.8 wt.%, respectively.

Pyrolysis Measurements

Pyrolysis measurements on whole rock samples were carried out using the Rock-Eval instrument (IFP-LABO-FINA process) introduced by Espitalié et al. (1977). Briefly, a small portion of ground sediment (usually about 100 mg, utilizing the Cahn Electrobalance) is placed into a steel crucible and pyrolyzed in a flow of helium by heating the sample from 250 to 550°C at a rate of 25°/ min. The Rock-Eval analysis generates a signal from which four types of information can be obtained: (1) The area of peak S₁ (calculated in mg hydrocarbons/g dry sediment weight) related to the quantity of free hy-

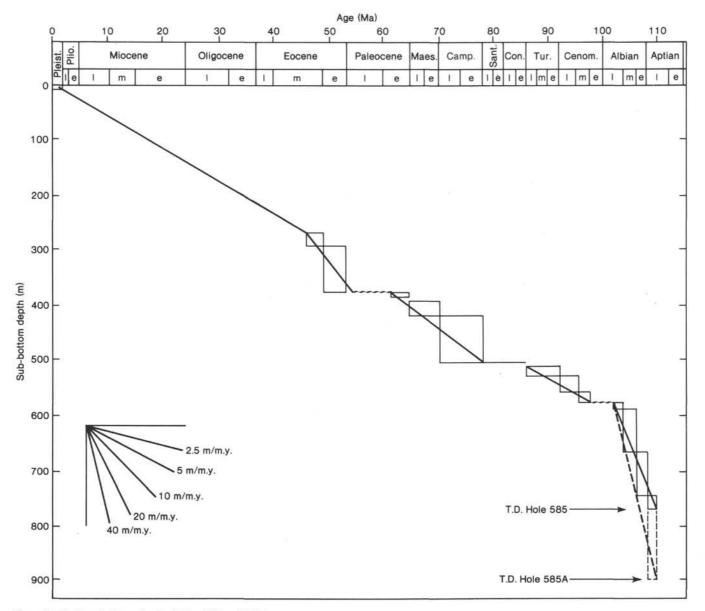


Figure 35. Sedimentation rates for Holes 585 and 585A.

drocarbons present in the sediment; (2) The area of peak S_2 (in mg hydrocarbons/g dry sediment weight) related to the quantity of hydrocarbon-type compounds released by thermal degradation of the kerogen up to 550°C; (3) The temperature T_{max} associated with the maximum of peak S_2 (i.e., where the rate of hydrocarbon formation reaches its maximum at the experimental conditions); (4) The area of peak S_3 (in mg CO₂/g dry sediment weight) related to the CO₂ released by the cracking of the kerogen.

By normalizing S_2 and S_3 to the amount of organic matter present in the sediment, the so-called hydrogen index (I_H in mg hydrocarbons/g of organic carbon) and oxygen index (I_O in mg CO₂/g of organic carbon) can be calculated. These are known to correspond to the elemental composition of the kerogen (H/C and O/C atomic ratios) and can therefore be plotted into a van Krevelen-type diagram. Finally T_{max} and the ratio $S_1/(S_1 + S_2)$, called production index I_p or transformation ratio, are measures of the maturity of the organic matter (both increasing with increasing maturity). I_p , however, also indicates intervals that are enriched by migrated hydrocarbons and can successfully be used for safety considerations (e.g., as proximity indicators for oil and gas accumulations).

The instrument, which is linked to the Supergrator-1 laboratory integrator, was calibrated with the IFP standard sediment from the Toarcian of the Paris Basin regularly with each sample series (at least once per day). This standard has the following characteristic values:

 $S_1 = 0$ (immature sediment)

 $S_2 = 8.2 \text{ mg hydrocarbons/g of rock}$

- $S_3 = 0.85 \text{ mg CO}_2/\text{g of rock}$
- $I_{\rm H} = 330 \text{ mg hydrocarbons/g } C_{\rm org}$

$$\begin{array}{ll} I_{O} &= 34.3 \mbox{ mg } CO_{2}/g \ C_{org} \\ T_{max} &= 428^{\circ}C \\ I_{n} &= 0 \end{array}$$

The response factors R.F. (in mg hydrocarbons/area count and mg CO₂/area count, respectively) and the observed T_{max} values are summarized in Table 9. Whereas the response factors for the hydrocarbon peaks reveal relatively small variations over the time period considered, the corresponding values for CO₂ show a significant scatter, which is possibly due to the variations in the CO₂ blank values. T_{max} also shows quite a variation (between 412 and 428°C), exceeding those limits usually accepted for the Rock-Eval method (±3°C according to Espitalié, personal communication, 1982). On the average, the T_{max} values measured on board appear to be some 4°C too low.

Two additional sediment standards used at KFA Jülich were brought on board ship and were adequately used for calibration. Their analytical data are as follows:

Parameter	E 38	#320038				
Corg	8.2%	2.16%				
SI	0.07	0.05 (immature)				
S ₂ S ₃	61.5	12.73				
Sa	2.05	0.54				
IH	750	589				
IO	25	25				
Ip						
Tmax	429°C	424°C				

E 38 represents the Toarcian from southern Germany (Posidonia shale) and may be classified as an oil shale type sediment. Number 320038 represents the same sample, however, it was diluted with bentonite to obtain a lower C_{org} content. This artificial "sediment" was used as a replacement for the IFP Standard #27251, which was nearly used up.

The Rock-Eval data for 40 Site 585 sediment samples are summarized in Tables 10, 11, 12, and 13.

In many cases the peak areas given by the Supergrator turned out to be inaccurate and, therefore, had to be

Table 9. Measured response factors (R.F.) for Rock-Eval instrument.

	R.				
Date (day/month/year)	Hydrocarbon (mg/count)	CO ₂ (mg/count)	T _{max} (°C)	Standard sample	
22/10/82	5.0×10^{-7}	1.0×10^{-6}	422	#27251	
23/10/82	5.1×10^{-7}	6.2×10^{-7}	426	#27251	
23/10/82	6.3×10^{-7}	7.6×10^{-7}	428	#27251	
24/10/82	4.0×10^{-7}	4.1×10^{-7}	422	#27251	
25/10/82	4.8×10^{-7}	9.0×10^{-7}	420	#27251	
27/10/82	4.8×10^{-7}	8.7×10^{-7}	424	#27251	
30/10/82	4.1×10^{-7}	7.4×10^{-7}	426	#27251	
30/10/82	5.0×10^{-7}	5.7×10^{-7}	419	#320038	
31/10/82	3.8×10^{-7}	9.9×10^{-7}	419	#320038	
1/11/82	4.5×10^{-7}	9.6×10^{-7}	420	#27251	
1/11/82	4.8×10^{-7}	1.1×10^{-6}	420	#320038	
2/11/82	4.3×10^{-7}	8.4×10^{-7}	412	#320038	

corrected by looking at the individual pyrograms and by manual peak area integration.

Discussion of Results

Performance of Capillary Gas Chromatographic System

As shown in a test chromatogram (Fig. 36) of a C1 to C₆ hydrocarbon mixture, the separation efficiency of the system is satisfactory, particularly in the medium and in the higher molecular range (as obvious from, for example, n-butane/2,2-dimethylpropane and 2-methylhexane/3-methylhexane separations, respectively). An improvement of the separation efficiency in the low-molecular-range section of the chromatogram appears possible, as exemplified for methane, ethane, and propane mixtures in Figure 37. The gas chromatogram on the left in Figure 37 was obtained by injecting 100 µl of 1.7% ethane (v/v, volume for volume) in methane (methane/ ethane ratio = 60). The chromatogram shows clearly that gases with methane/ethane ratios up to about 1800 (v/v) could be analyzed without problems. The lowest detectable quantity for methane in a 100-µl gas sample is about 2 ppm by volume. The gas chromatogram (GC)

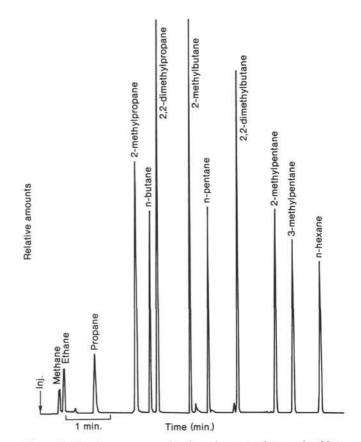


Figure 36. Gas chromatogram of hydrocarbon test mixture using 25 m fused silica capillary (0.32 mm I.D., 0.52μ m film thickness, crosslinked methyl silicone as stationary phase, 60 s trapping time). See text for analytic details.

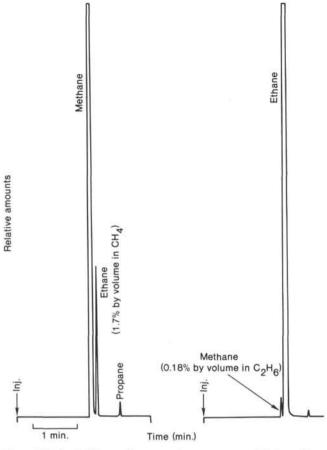


Figure 37. Fused silica capillary gas chromatograms of hydrocarbon mixtures showing separation efficiency and sensitivity of gas chromatographic system (60 s trapping time, helium inlet pressure 0.5 bar).

on the right shows, just for comparison, traces of methane (0.18%) by volume) in ethane.

For future Deep Sea Drilling Project applications, it might be advisable to replace the packed columns of the Hewlett-Packard GC by a capillary system, however, with even increased capillary length and film thickness (preferably greater than 1 μ m) to achieve a better methaneethane separation. If successful the Carle GC could then be withdrawn from the gas laboratory. CO₂ analysis could be performed gas chromatographically by a microthermal conductivity detector.

Some capillary GC runs (injection volume 2.5 ml) of Vacutainer blanks (different batches tried) revealed severe contaminations even in the molecular range C_4 and lower (see also Kagami, Karig, Coulbourn, et al., Site 583 report, Leg 87, in press). Butadiene (123 ppm by volume) appears to be a major contaminant in the C_4 range (outgassed from butyl rubber stoppers?), as shown in Figure 38. Gas analyses based on Vacutainer sampling should be considered with great care and perhaps be discontinued.

Organic Geochemistry

No gas occurrences or indications of liquid hydrocarbons or asphalts were observed in sediments from Holes 585 and 585A. Hence, the discussion of the analytical data focuses on the amount and type of organic matter encountered in these sediments.

Hole 585

Organic Carbon Content

The organic carbon content was measured on 79 samples that make up the depth interval 0 to 764 m (Cores 585-1 to -55). The data are summarized in Table 10. On the basis of these data, the following observations can be made. The organic carbon contents measured aboard ship are very low throughout the sampled interval except for one sample (585-32-3, 72-73 cm) in which 5.4% (average of 2 analyses) is reached. The following mean values are measured in the various lithologic units as defined by the shipboard sedimentologists:

Lithologic unit	Core	C _{org} (%)
I	1	0.10
II	2-17	0.06
III	18-20	0.07
IV	21-26	Not determined
v	27-37	0.49
VI	(38-41	0.05
V L	42-55	0.08

The lowest organic carbon values are found in Lithologic Units II and the upper part of VI (0.06 and 0.05%, respectively). They are somewhat higher in lithologic Units III and the lower portion of VI, but still below 0.1%. The value of 0.49% for Lithologic Unit V is biased, insofar as it contains the most organic-carbon-rich sample found (585-32-3, 72-73 cm). However, the layers adjacent to this sample reveal values that are significantly higher (0.2 to 0.3% in parts of Core 585-32) than in all other cores analyzed.

Type of Organic Matter

Pyrolysis data of the 27 samples shown in Table 11 indicate that, in accordance with their low organic carbon values, the hydrocarbon potential of all samples except for Sample 585-32-3, 72-73 cm is very low. Whereas the latter reveals an S2 value of 51.5 mg hydrocarbons/g dry sediment weight, all other samples remain below 0.6 mg/g, the majority even below 0.2 mg/g. Samples from Lithologic Units II and III and two samples from Unit V and the lower part of VI (one) from Core 585-28 and Core 585-55, respectively) were below the detection limit. Likewise, S1 peak areas were low throughout the whole sample series, corresponding to 0.02 to 0.27 mg hydrocarbons/g dry sediment weight. The S₃ values appear to be influenced by the carbonate content of the rock samples, a fact that has frequently been observed. Hence the S3 peaks represent both the CO2 released by the degradation of the kerogen and a certain fraction due to decomposition of carbonate minerals below 390°C. Only where the carbonate content is low

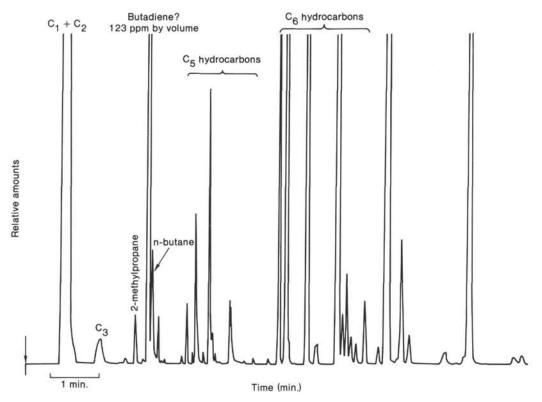


Figure 38. Capillary gas chromatogram of representative Vacutainer blanks (injection volume 2.5 ml, inlet pressure 0.5 bar, $T_s = 25^{\circ}$ C, split ratio 1:10, 60 s trapping time).

(i.e., about a few percent) does the S_3 value represent the true oxygen content of the organic matter.

From these shipboard measurements the appropriate hydrogen and oxygen indexes were calculated and summarized in Table 10. However, only those data are given where Corg values below Core 20 reached a minimum threshold value of 0.1%, above which more or less reliable index values could be expected. As pointed out in the "Shipboard Organic Geochemistry Guide/Handbook" (Deep Sea Drilling Project, 1982), the Rock-Eval results from organic carbon lean samples should not be overinterpreted. Therefore this discussion is focused only on a few selected Hole 585 samples with elevated organic carbon contents. The most interesting one is Sample 585-32-3, 72-73 cm, which has a hydrogen index of 954 mg hydrocarbons/g C_{org} and an oxygen index of 33 mg $CO_2/g C_{org}$. This sample, if plotted into the van Krevelen-type I_H/I_O diagram (Fig. 39), falls exactly on the initial part of the Type-I kerogen evolution path, suggesting that this sample represents a typical sapropelic oil-shale-type kerogen (i.e., mainly derived from algae). Both the high hydrogen index and the low T_{max} value of 404° (408° if adjusted by comparison with IFP standard) demonstrate the very low maturity of the black shale encountered in Core 585-32. This is also confirmed by the high nitrogen contents of the organic matter (0.33 and 0.20% duplicate measurements).

Also included in Table 10 are, for comparison, organic carbon (measured by a LECO IR 112 carbon determinator) and Rock-Eval pyrolysis data for selected samples determined onshore at the KFA Jülich (F.R.G.) laboratories. Whereas there is no systematic deviation discernible between on-board and onshore measurements for samples containing less than 0.3% Corg, the remeasured value for the black shale (585-32-3, 72-73 cm) was 9.9% Corg. Accordingly, the hydrogen index was lowered to 383 mg hydrocarbons/g C_{org} . If plotted into the van Krevelen-type diagram (Fig. 39), this sample is then located very close to the Type-II kerogen evolution path. Preliminary microscopic studies by R. Mukhopadhyay (personal communication, 1983, KFA Jülich) on these samples gave the following results. On the basis of transmitted and reflected light (normal and fluorescence mode) microscopy, the organic matter of this sample consists of mostly degraded products of dinoflagellates and small unicellular algae. These macerals are called sapropelinite II or bituminite II, representing an excellent petroleum source rock. The sample in transmitted light shows a fluffy biodegraded mass of brownish yellow color. In normal reflected light it is gray and granular with much framboidal pyrite. The fluorescent light is brownish yellow in color.

A question arises about the origin of this black shale that was deposited at the Cenomanian/Turonian boundary at a water depth of at least 4000 m. We suggest that the deposition of this organic carbon-rich layer is associated with global oxygen deficiency situations in the world ocean (e.g., by an expanded oxygen minimum layer) during the so-called Cenomanian-Turonian "oceanic anoxic event" (Schlanger and Jenkyns, 1976).

Such a high hydrogen index value as in this black shale is not reached or even approached by any other

Sample			Measurement onboard				Measurement at KFA				
(interval in cm)	CaCO3 (%)	Corg (%)	IH	IO	Iр	T _{max}	Corg (%)	$\mathbf{I}_{\mathbf{H}}$	IO	Ip	T _{max}
585-1-1, 21	1	0.12									
585-1-2, 61	53	0.11									
585-1-3, 61 585-6-1, 28-32	82 63	0.07									
585-6-1, 119-120	27	0.03									
585-8-1, 16-17	64	0.04									
585-8-2, 12-14 585-8,CC	57 56	0.01 0.02									
585-10-1, 39-42	77	0.02									
585-10,CC (3-5)	32	0.01									
585-11-1, 98-100	78	0.02									
585-11-2, 110-112 585-12-1, 138-139	34 73	0.06 n.d.									
585-12-2, 57-58	83	0.18									
585-13-1, 53-56	52	0.09									
585-13-1, 94-95	0 74	0.10									
585-13,CC (3-7) 585-14-1, 64-67	76	0.07									
585-14-2, 75-79	77	0.12									
585-14-2, 92-94	53	0.10									
585-14-2, 105-108 585-15-1, 34-36	0 18	0.12 0.06									
585-15-1, 61-62	0	0.09									
585-15-1, 86-88	0	0.08									
585-15-1, 98-100	0	0.11									
585-15-1, 113-114 585-15-1, 129-130	41 85	0.04 0.03									
585-16-1, 22-23	49	0.04									
585-16-1, 69-70	0	0.16									
585-17-1, 67-73	72 36	0.07									
585-17-1, 104-105 585-17-1, 140-141	60	0.10 0.06									
585-17-2, 7-9	83	0.04									
585-17-2, 18-23	51	0.07									
585-17-2, 52-53 585-18-1, 13-15	0 27	0.12 0.06									
585-18-1, 53-56	43	0.07									
585-19-1, 38-40	57	0.15									
585-19-1, 48-49	76	0.01									
585-19-1, 56-57 585-20-1, 8-16	0 66	0.10 0.02					0.08				
585-20-2, 12-18	0	0.02					0.10	34	181	0.51	534
585-20-3, 20-26	79	0.03					0.04				
585-27-1, 13-19	1	0.09	2.2		1.2	12	0.06	247	135	0.15	478
585-27-3, 20-24 585-28-1, 38-40	2 82	0.14 0.02	14	221		+	0.08	173	465	0.16	528
585-28-4, 76-78	2	0.15	31	273		+	0.12	84	349	0.40	349
585-30,CC (19-21)	6	0.07					0.08				
585-32-1, 57-59	6	0.13	22	392	•	+	0.10	102	817	0.20	428
585-32-2, 35-39 585-32-3, 13-18	12	0.33 0.24	221	675	0.1	416	0.29	56	371	0.13	428
585-32-3, 41-48	7	0.22	41	291	*	+	0.31	53	366	0.11	425
585-32-3, 72-73	2	5.6	954	33	< 0.1	404	9.9	383	38	0.03	414
585-32-3, 72-73	2 0	5.1	65	115			0.20	85	47	0.13	406
585-32-3, 73-74 585-34-1, 11-12	29	0.13 0.06	65	115		+	0.20	62	4/	0.13	400
585-34-2, 92-93	0	0.05									
585-35-1, 6-7	5	0.19	89	236	0.1	+	0.07	45	514	0.41	+
585-35-1, 83-84 585-35-1, 91-92	5	0.11 0.05	145	464	0.1	+	0.07	44	528	0.39	+
585-35,CC (3-5)	32	0.04					0.07				
585-38-1, 24-28	25	0.04									
585-38-1, 32-38	9	0.03									
585-39-1, 25-27 585-39-1, 42-44	3	0.05									
585-42-3, 140-142	34	0.06									
85-44-2, 84-85	5	0.08					0.08				
585-44-5, 50-51	3	0.06					0.07			0.00	0
585-45-1, 54-55 585-45-3, 18-19	3 0	0.08					0.10 0.07	39	230	0.38	*
585-46-1, 82-83	5	0.07	133	492		+	0.07	96	823	0.23	409
585-46-3, 24-25	3	0.10						1.1	0.000	2022	
585-50-1, 128-130	3	0.10	199								
585-50-3, 31-32	3 5	0.10	44	720		+	0.08	109	570	0.26	546
95 51 2 97 00		0.09					0.08				
	4	0.08									
585-51-4, 37-38	4 7	0.08									
585-51-3, 87-88 585-51-4, 37-38 585-53-2, 105-106 585-54-1, 119-120 585-55-2, 36-37							0.06				

Table 10. Calcium carbonate and organic carbon contents as well as pyrolysis data (Rock-Eval method) for Hole 585 sediment samples measured on board during DSDP Leg 89.

Note: Included for comparison are organic carbon and Rock-Eval pyrolysis data obtained for selected samples in the laboratories at KFA Jülich, F.R.G.; I_H = hydrogen index (mg hydrocarbons/g organic carbon); I_O = oxygen index (mg CO₂/g organic carbon); and I_p = transformation ratio; also, * indicates I_p was insignificant; and + indicates that no clear maximum was discernible. Blank space indicates data were unavailable or unattainable.

Table 1	11.	Rock-Eval	data	from	Hole	585,	Leg 89.
---------	-----	-----------	------	------	------	------	---------

Sample (core-section, cm interval)	s ₁	S ₂	S3	T _{max}	Corg
				IIIuA	ULE
13-1, 91	0.096	\sim	2.26	+	n.d.
20-1, 8-16	0.065	_	0.91	+	0.02
20-2, 12-18	0.27		0.20	+	0.09
20-3, 20-26	0.21	—	1.41	+	0.03
27-1, 13-19	0.10	0.020	0.20	+	0.09
27-3, 20-24	0.058	0.019	0.31	+	0.14
28-1, 38-40	0.025	-	0.12	+	0.02
28-4, 76-78	0.060	0.047	0.41	+	0.15
30,CC	0.042	0.010	0.42	+	0.07
32-1, 57-59	0.014	0.028	0.51	+	0.13
32-3, 13-18	0.061	0.53	1.62	416	0.24
32-3, 41-48	0.14	0.091	0.64	+	0.22
32-3, 72-73	0.042	51.5	1.78	404	5.4
32-3, 73-74	0.042	0.084	0.15	+	0.13
35-1, 6-7	0.058	0.17	0.45	+	0.19
35-1, 83-84	0.058	0.16	0.51	+	0.11
35-1, 91-92	0.042	0.15	0.48	+	0.05
44-2, 84-85	0.12	0.19	0.75	+	0.08
44-5, 50-51	0.044	0.060	1.13	+	0.06
45-1, 54-55	0.063	0.10	0.17	+	0.08
45-3, 18-19	0.29	0.18	0.56	+	0.07
46-1, 82-83	0.015	0.16	0.59	+	0.12
50-3, 31-32	0.047	0.044	0.72	+	0.10
51-3, 87-88	0.035	0.031	1.33	+	0.09
54-1, 119-120	0.021	0.029	1.19	+	0.05
55-2, 36-37	0.048	0.016	1.96	+	0.04
55-4, 119-120	0.024	_	0.65	+	0.04

Note: — = below detection limit; + = no clear temperature maximum; n.d. = not determined.

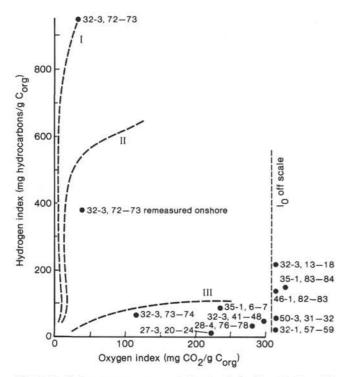


Figure 39. Hydrogen versus oxygen index trends for Type-I to Type-III kerogens showing data for sediment samples from Hole 585 (coresection, cm interval). Included is Sample 585-32-3, 72-73 cm remeasured onshore.

sample analyzed from Hole 585. The next highest hydrogen index is found about 60 cm above the black shale layer (221 mg hydrocarbons/g C_{org}). The kerogen quality in terms of hydrogen content has to be rated fairly low, however. This sample is classified as an immature Type II/III kerogen. The hydrogen index is even lower, on the basis of the shore-based data ($C_{org} = 0.31\%$, $I_H = 53$ mg hydrocarbons/g C_{org}), indicating a Type-III kerogen. All other kerogens analyzed by the Rock-Eval method have lower hydrogen contents in terms of their I_H values and appear to be more or less oxidized. The fact that these samples plot on or in the vicinity of the Type-III kerogen evolution path does not necessarily mean that they consist of higher terrestrial plant debris.

Hole 585A

Organic Carbon Content

Thirty rock samples were selected from this hole for the determination of organic carbon: 2 from Core 585A-3; and 14 from Cores 585A-7 to -9 (both these sections represent stratigraphic equivalents of Hole 585, Cores 585-16, and -29 to -33, respectively) as well as 14 samples (Cores 585A-11 to -21) from the extended Lithologic Unit VI.

The organic carbon and the CaCO₃ contents for the samples are summarized in Table 12. From these data, average values were calculated:

Core	Lithologic unit	Corg (%)
3	II	0.08
5-9	v	0.27
11-21	VI	0.19

The highest organic carbon content in Hole 585A (1.45% dry wt., 2.6% according to shore-based analysis) was measured for Sample 585A-8,CC (19-20 cm). Stratigraphically, this organic-rich layer was encountered very close to the black shale from Core 32 of Hole 585. Unfortunately, however, the latter was not recovered in Hole 585A. Nevertheless, the occurrence of the sample with about 2% organic carbon content represents another example of organic carbon-rich sediments deposited at the Cenomanian/Turonian boundary.

The organic carbon values of all other samples are significantly lower. Only in Cores 585A-6, -7, -8, and -12, contents of 0.4 to 0.5% are observed. These values are just below the minimum level commonly required for a clastic petroleum source rock. These relatively high organic carbon contents for deep-sea sediments, however, do not coincide with a corresponding hydrocarbon potential, as shown by pyrolysis data (see the discussion that follows).

Finally, the organic carbon contents for all samples analyzed at Site 585 are plotted against depth in Figures 40 and 41. It is obvious from these figures that there is a strong increase of organic carbon contents from 775 m downward, if compared to the upper part of Lithologic Unit VI penetrated by Hole 585. It is not yet clear if this

Sample		Measurement onboard						leasure	ment a	t KFA	
(interval in cm)	CaCO ₃ (%)	C_{org} (%)	IH	IO	Ip	T _{max}	C _{org} (%)	$\mathbf{I}_{\mathbf{H}}$	IO	Ip	T _{max}
585A-3-1, 21-26	0	0.11									
585A-3-1, 40-43	29	0.05									
585A-5-1, 80-81	3	0.01									
585A-5-2, 59-60	7	0.07									
585A-6-1, 54-57	10	0.48	9	204		+	0.09	27	679	0.41	+
585A-7-1, 94-100	0	0.41	12	85		+	0.09	137	225	0.29	455
585A-8-2, 75-76	21	0.33	33	482		430	0.23	63	428	0.20	424
585A-8-2, 95-96	13	0.04	1263.02	194920		100000					
585A-8-3, 32-33	15	0.43	40	653		425	0.29	86	415	0.15	426
585A-8-3, 80-81	8	0.09				413	0.33	71	50	0.22	418
585A-8,CC (19-20)	1	1.45	807	57	< 0.1	419	2.60	423	37	0.04	420
585A-9-1, 27-29	14	0.04	030717			1.06300					
585A-9-1, 82-83	0	0.01					0.06				
585A-9-1, 93-94	4	0.22	33	123		+	0.10	21	79	0.68	+
585A-9-1, 140-141	14	0.10									
585A-9,CC (17-19)	21	0.06									
585A-11-4, 84-85	1	0.25									
585A-12-3, 68-74	13	0.09									
585A-12-4, 27-28	9	0.11	37	945		+	0.08	56	895	0.47	+
585A-12-6, 42-43	3	0.25	8549.	5.15		10	0.002.00	42430	1.40.4		10.
585A-12,CC (3-4)	3	0.44	12	230		+	0.08	105	767	0.30	537
585A-15-5, 135-137	14	0.10		2.4.45			78777	0.000			
585A-16-1, 8-9	15	0.16									
585A-16-2, 31-34	7	0.16									
585A-18-2, 81-82	16	0.21	15	495		+	0.08	60	779	0.28	413
585A-18-4, 79-80	21	0.23						(* *)	1. A. 1995 (J.	(1000) (1000)	
585A-19-4, 71-72	6	0.26	12	581	*	+	0.06	60		0.28	383
585A-20-2, 102-103	3	0.19					0.00				
585A-20-3, 67-68	3	0.18									
585A-21,CC (10-11)	0	0.10	23	1460		+	0.06	52	971	0.31	417

Table 12. Calcium carbonate and organic carbon contents as well as pyrolysis data (Rock-Eval method) for Hole 585A sediment samples measured on board during DSDP Leg 89.

Note: Included for comparison are organic carbon contents and Rock-Eval pyrolysis data obtained for selected samples in the laboratories at KFA Jülich, F.R.G. I_H = hydrogen index in mg hydrocarbons/g organic carbon; I_O = oxygen index (mg CO₂/g organic carbon; I_p = transformation ratio; also, * indicates I_p was insignificant, and + indicates no clear maximum was discernible. Blank space indicates data unavailable or unattainable.

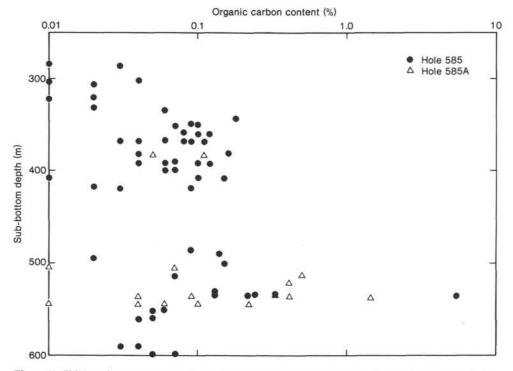


Figure 40. Shipboard measurements of organic carbon contents of Site 585 sediments (285-600 m sub-bottom depth).

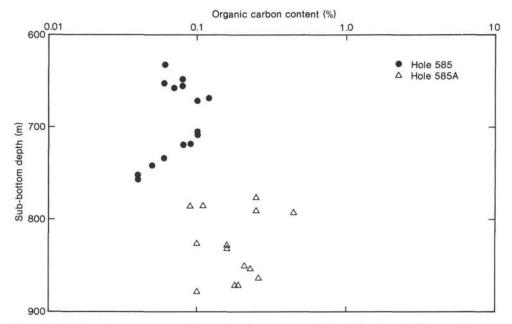


Figure 41. Shipboard measurements of organic carbon contents of Site 585 sediments (600 m sub-bottom depth to T.D.).

difference is geochemically significant or if it is, at least partly, due to a systematic error in the analytical procedure (e.g., by acid resistant carbonates), which could yield too high values for "organic" carbon. All other C_{org} values from Hole 585A fit well into the Hole 585 data.

Type of Organic Matter

Pyrolysis data of 13 selected samples shown in Tables 12 and 13 reveal that the hydrocarbon potential of all samples except for 585A-8,CC (19-20 cm) is very low. Whereas the latter reaches an S_2 value of 11.7 mg hydrocarbons/g dry sediment weight, all other samples remain below 0.3 mg/g, the majority even below 0.1 mg/g. Likewise, the S_1 signals are extremely low, and S_3 peaks reflect more the decomposition of carbonates than the degradation of the kerogen.

For 11 samples (C_{org} exceeding 0.1%), the appropriate I_{H} and I_{O} values are plotted in Figure 42. In terms of

Table 13. Rock-Eval data from Hole 585A, Leg 89.

Sample (core-section, cm interval)	S ₁	S ₂	S ₂	T _{max}	Corg
6-1, 54-57	< 0.001	0.045	0.98	+	0.48
7-1, 94-100	0.005	0.051	0.35	+	0.41
8-2, 75-76	0.003	0.11	1.59	430	0.33
8-3, 32-33	0.014	0.17	2.81	425	0.43
8-3, 80-81	0.019	0.29	1.13	413	0.09
8,CC (19-20)	0.018	11.7	0.83	419	1.45
9-1, 82-83	0.010	0.024	0.37	+	0.01
9-1, 93-94	0.010	0.073	0.27	+	0.22
12-4, 27-28	0.013	0.041	1.04	+	0.11
12,CC (3-4)	—	0.051	1.01	+	0.44
18-2, 81-82	0.022	0.031	1.04	+	0.21
19-4, 71-72	0.032	0.032	1.51	+	0.26
21,CC (10-11)	0.023	0.023	1.46	+	0.10

Note: -- = below detection limit; + = no clear maximum.

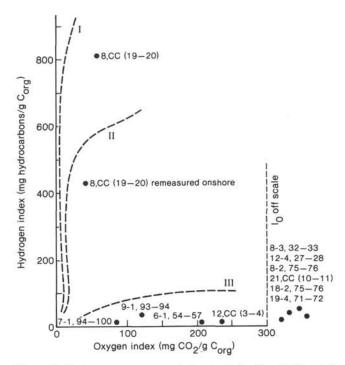


Figure 42. Hydrogen versus oxygen index trends for Type-I to Type-III kerogens showing data for sediments from Hole 585A (core-section, cm interval). Included is Sample 585A-8,CC (19-20 cm), remeasured onshore.

its hydrocarbon potential, organic-matter-rich Sample 585A-8, CC (19–20 cm) is very similar to the black shale of Core 585-32 ($I_H = 807$ vs. 954, respectively). Its organic matter is therefore an immature Type-I kerogen (i.e., mainly derived from algae). Using the shore-based data, however, the hydrogen index of Sample 585A-8, CC (19–20 cm) is lowered to 423 mg hydrocarbons/g C_{org} , which, again, plots close to the Type-II kerogen evolu-

tion path. All other samples analyzed from Hole 585A have very low hydrogen indexes (not exceeding 40 mg hydrocarbons/g C_{org} for the on-board measurements or 140 mg hydrocarbons/g C_{org} for the shore-based data). Provided that the organic carbon measurements are accurate, several samples with elevated organic carbon contents (e.g., from 585A-6-1, 585A-12,CC, and 585A-19-4) give such very low hydrogen indexes that their organic matter appears to consist mainly of so-called "dead carbon" (i.e., organic matter that has been entirely deprived of its effective hydrogen content).

Summary and Conclusions

On-site organic geochemical studies of Site 585 sediments were focused on amount and type of organic matter. Organic carbon contents were generally low, as expected for deep-sea sediments. On the basis of the selected samples the following averaged C_{org} values were obtained for the lithologic units (as defined by the shipboard sedimentologists):

Lithologic unit	C _{org} (%)				
I	0.10				
II	0.06				
III	0.07				
IV	Not determined				
v	0.37				
VI	(0.05				
VI.	0.13				

Only very few samples with elevated organic richness were recovered: one black shale sample from Core 585-32 and another relatively organic-rich sample from Core 585A-8 with 5.4 (average of two analyses) and 1.45% organic carbon contents, respectively. The corresponding values for the shore-based measurements were 9.9 and 2.6%, respectively. Both samples were encountered close to the Cenomanian/Turonian boundary. It is assumed that their formation is associated with global oxygen deficiency situations in the world ocean caused by an expanded oxygen minimum layer (i.e., the Cenomanian-Turonian oceanic anoxic event).

Sediments with organic carbon contents ranging from 0.3 to almost 0.5% were found in Core 585-32 as well as in Cores 585A-6, -7, -8, and -12. Whereas the organic matter of the two organic carbon-rich samples mentioned previously consists of an immature, algal-derived, Type-I kerogen (hydrogen indexes of 954 and 807 mg hydrocarbons/g of organic carbon, respectively), all other samples are classified to represent Type-III kerogens, but with strong variations in their hydrogen contents. On the basis of shore-based organic geochemical and microscopic data (determined at KFA Jülich), however, the conclusions are somewhat different. The hydrogen indexes for the two samples were 383 and 423 mg hydrocarbons/g Corg, respectively, which are indicative of a Type-II kerogen. The main maceral type of the kerogen was classified to be sapropelinite II and bituminite II. Provided that the organic carbon measurements are correct, several samples with elevated organic carbon contents (e.g., from 585A-6-1, 585A-12,CC, 585A-19-4) reveal such extremely low hydrogen indexes that their organic matter appears to consist mainly of so called "dead carbon" or "residual carbon." "Dead carbon" contents are usually high in those sediments that have been intensely reworked (or oxidized) or that are in the metagenetic stage of hydrocarbon evolution.

Relatively hydrogen-rich Type-III kerogens are observed in Sections 585-32-3, 585-35-1, and 585-46-1. This does not necessarily mean that they consist of organic matter derived from higher land plants. Their occurrence on the Type-III kerogen evolution path in the van Krevelentype diagrams can also be explained by partial oxidation of their organic matter.

INORGANIC GEOCHEMISTRY

Table 14 constitutes this report; there is no text.

IGNEOUS PETROLOGY

Igneous rocks were not recovered at this site. Petrology of volcaniclastic clasts is included in the Sediment Lithology section.

PALEOMAGNETICS

The main research objective of the paleomagnetic sampling at Site 585 was to determine the northward motion of the Pacific Plate through the Mesozoic. The application of magnetostratigraphy as a dating tool was limited by the poor recovery and condensed sedimentation during the early Tertiary and Late Cretaceous and the lack of magnetic reversals during most of the mid-Cretaceous (Cretaceous long normal interval). A summary of the shipboard and early shore-based analyses at the University of Wyoming is given here; full details and results are reported by Ogg (this volume).

Minicores oriented with respect to the axis of the drill core were drilled in nearly all cores that contained large blocks of sediment. Measurements of NRM (natural remanent magnetization) were performed on board using a Digico fluxgate magnetometer. The samples were remeasured at the University of Wyoming on either a ScT cryogenic magnetometer or Schoenstedt spinner magnetometer, depending on the intensity of magnetization. Progressive thermal and alternating field demagnetization curves were examined for stable intervals. The mean inclination of each sample was determined by line fitting most stable regions (generally three to five measurements at increasing demagnetization levels). The method of Kono (1980a and b) was used to compute the mean inclination and alpha-95 (95% confidence level) for each lithology or age interval. These mean inclinations were adjusted for the deviation of the drill string from vertical as measured by the downhole Kuster tool and apparent dip of laminae in the cores; the direction of this drill string deviation was determined by measuring the apparent magnetic declination on cores with welldeveloped tilted lamination within the mid-Cretaceous long normal interval (the declination was therefore assumed to be 0°N, and the tilt direction of the drill string computed). The preliminary results are presented in Table 15.

Laboratory sample no.	Sample ^a (core-section, cm interval)	pH	Alkalinity (meq/l)	Salinity (‰)	Calcium (mmoles/l)	Magnesium (mmoles/l)	Chlorinity (‰)
	IAPSO	7.91	2.376	34.1	10.55	64.54	19.375
	SSW	8.13	2.565	32.4	10.42	52.28	18.68
Hole 585							
1	28-2, 140-150	7.61	0.640	34.6	39.92	29.97	17.48
1 2	47-3, 140-150	8.05	0.278	42.4	131.32	202.30	16.41
	SSW	8.23	2.456	34.6	10.57	51.07	18.51
Hole 585A							
1	13-3, 143-150				-		

Table 14. Summary of shipboard inorganic geochemical data, Site 585.

^a SSW = surface seawater; IAPSO = International Association for the Physical Sciences of the Ocean seawater standard; no data available for Sample 585A-13-3, 143-150 cm.

Table 15. Northward motion of Site 585 (preliminary results).

Cores			Inclination Statistics ^a					Drift		Relative
	Age	Lithology (dominant)	Demagnetization	N	Mean K incl.		α95	corrected mean ^b	Paleolatitude (^α 95)	present site
585A-H1	early Miocene	Gray siltstone	Thermal	4	800	10.1°	2.7°	8.1°	4.1°N (1.4°)	9.5°
585A-1 to 585A-3	Eocene and Paleocene	Tan chalk	Thermal	6	70	-6.1°	7.5°	-8.1°	4.1°S (3.8°)	17.7°
585-17 to 585-21	Maestrichtian-late Campanian	Brown claystone	Thermal	17	37	-5.7°	5.8°	- 3.7°	1.9°S (2.9°)	15.5°
585A-5 to 585A10	late Cenomanian- Santonian	Dark gray claystone	Thermal	17	45	-15.1°	5.2°	-16.6°	8.5°S (2.7°)	22.1°
585-30 to 585-32	Turonian	Dark gray claystone	Thermal	15	85	-13.1°	4.0°	-10.1°	5.1°S (2.0°)	18.7°
585-34 to 585-39	middle Albian- middle Cenoma- nian	Brown calcareous claystone	Thermal	15	65	-15.6°	4.6°	-12.6°	6.4°S (2.4°)	20.0°
585-42 to 585-55	early to middle Albian	Volcaniclastics	NRM	49	45	- 18.9°	3.0°	-16.0°	8.2°S (1.6°)	21.8°
585A-H5 to 585A-15	late Aptian	Volcaniclastics	NRM	27	80	-21.5°	3.1°	-22.5°	11.7°S (1.7°)	25.3°
585A-16 to 585A-22	late Aptian	Volcaniclastics	Thermal	13	130	- 37.9°	3.5°	- 38.9°	22.0°S (2.5°)	35.6°

^a Method of Kono (1980a and b); N = number of samples; K = dispersion parameter, α 95 = 95% confidence interval.

^b Drift corrected mean = inclination corrected for apparent deviation of drill string from vertical.

The polarity interpretation of the samples is diagramed in Figures 30 through 32. Nearly all of the samples in the Cretaceous are of normal polarity. An exception is a short reversed or mixed polarity zone in the upper Aptian section. Coeval(?) short reversed intervals occurring within the late Aptian or early Albian have been observed in other DSDP and land sections (Keating and Helsley, 1978a, b; Lowrie et al., 1980; Vandenberg and Wonders, 1980; Pechersky and Khramov, 1973) and seem to have caused a small marine magnetic anomaly (Hilde, Isezaki, et al., 1976; Vogt and Einwich, 1979). It is younger than M0, which suggested M "-1" as a possible name, for lack of a better nomenclature system. However, shore-based demagnification steps removed the reversed or mixed-magnetic component, and the entire section is now recognized as being of normal polarity.

In the lower part of Core 585A-17, an enigmatic vertical contact between greenish black volcaniclastic sandstone (the dominant lithology of the core) and dark greenish gray, clayey siltstone was recovered (Fig. 43). Three minicores were taken from a single block to determine whether this was a part of a very large clast, slump block, or other sedimentary feature; these were from the "host" sandstone, from a similar sandstone below a contact or fault that terminates the fine-grained vertical feature, and from the fine-grained siltstone feature (Samples 585A-17-4, 27, 47, and 43 cm, respectively). The NRM directions are within 10°-declination and 7°-inclination ranges, hence are nearly identical within orientation and analysis precision. This implies that the structure is not a large clast (the very remote possibility of rotation around an axis near the magnetic field direction is eliminated because the inclination relative to the siltstone "bedding" is only -3° , therefore inconsistent with the -15° to -30° range of the other Aptian samples). Therefore, the possibility that this is a sedimentary or neptunian dike was proposed. Recovery of definite sedimentary dikes and filled fractures in later cores supports this interpretation.

The computed paleolatitudes of Site 585 are plotted in Figure 44. During the late Aptian, the site was about 20 to 25° south of the Equator. Rapid northward motion occurred during the Late Cretaceous and the site crossed the Equator near the end of the Cretaceous. The

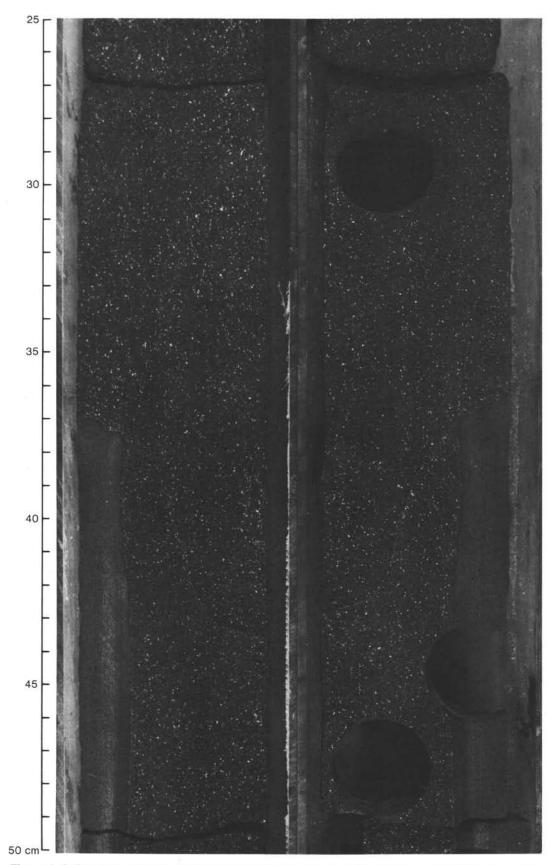


Figure 43. Sedimentary dike in Core 585A-17 (upper Aptian). Paleomagnetic minicores—taken from the greenish black volcaniclastic sandstone above and below the small fault that truncates the fine-grained siltstone dike and from the dike itself—all had similar magnetic directions, indicating that this vertical siltstone feature is probably a sedimentary dike rather than a large rotated block in the debris flow.

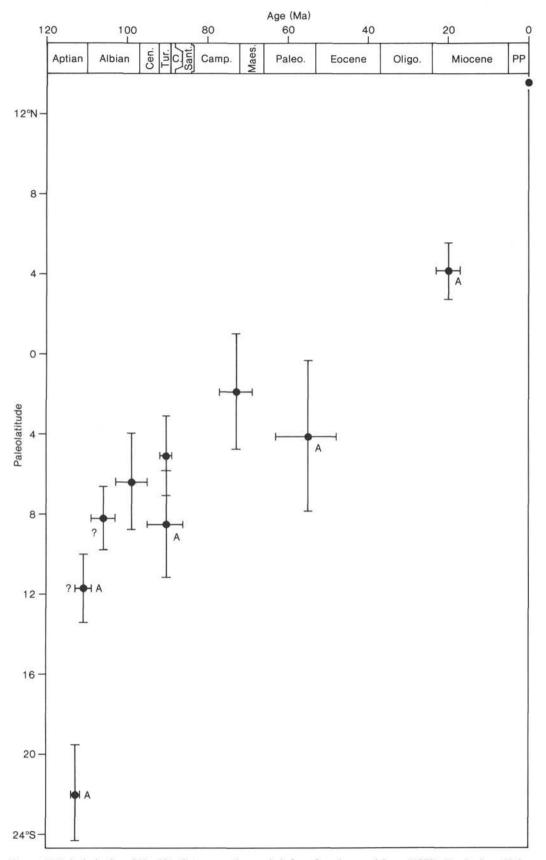


Figure 44. Paleolatitudes of Site 585. Cretaceous time scale is from Lanphere and Jones (1978). Results from Hole 585A are labeled by "A," NRM results, by "?"; error bars are 95% confidence levels.

present location is 13.6°N. This motion is compatible with the paleolatitudes and rate of northward drift of other Pacific sites (Ogg, this volume).

PHYSICAL PROPERTIES

Physical properties measured at Site 585 include wet bulk density, water content, porosity, and compressional sonic velocity. Sampling frequency in each of the holes was basically one minicore per core. However, two or more minicore samples were occasionally taken, depending on recovery rate and homogeneity of the recovered sample. The technique used has been generally described by Boyce (1976). Sonic velocities were measured both in the vertical (V_V) and horizontal (V_H) directions. Wet bulk densities were measured by means of the 2-min. GRAPE and the gravimetric methods. All measured values of sound velocity, wet bulk density, water content, porosity, and impedance are listed in Table 16, and shown in Figure 45.

The wet bulk density values of Cores 585-3 to -32 are very uniform except those measured for limestones (Samples 585-13-1, 38-40 cm; 585-34-1, 91-93 cm; and 585-35-2, 27-29 cm). The scattered values of the sonic velocity in Cores 585-3 to -32 and 585A-5 to -10 result from the variations of hardness among claystones, for example, calcareous or "radiolarian sand" -bearing claystones (Samples 585-18-1, 30-32 cm; 585-29-1, 30-32 cm) and siliceous claystones (Samples 585A-9-1, 106-108 cm and 585A-10-1, 52-54 cm), as indicated by arrows in Figure 45 (see also Sediment Lithology section and the Appendix). However, the scattered values both in the sonic velocity and in the wet bulk density of Cores 585-39 to -55 and 585A-H5 to -22 are caused by the variations in physical properties through the claystone to sandstone transition within a single turbidite layer. Figure 46A and B illustrate the variation of sonic velocities and wet bulk densities with respect to depth for 3-m-thick (Core 585A-H5) and 30-m-thick (Cores 585A-17 to -20) volcanogenic turbidite layers, respectively. Cementing by zeolitic or siliceous minerals considerably increases the sonic velocity. The values of more than 3.5 km/s in compressional sonic velocities are observed in the bottom of a volcanogenic turbidite layer (Cores 585A-18 to -20).

Anisotropy of sonic velocities defined as 2 ($V_H - V_V$)/($V_H + V_V$) (Carlson and Christensen, 1977) is about 4.8%, a value that is nearly equal to that of Albian to Barremian limestones at the Hess Rise (Fujii, 1981; Bachman, 1983).

The sedimentary column penetrated at Site 585 has been divided into five acoustic units (Table 17), which are related to the lithologic units and seismic-reflection data. The scarcity of sampled data makes it impossible to distinguish the differences among Lithologic Units II, III, and IV. The boundary between Acoustic Units 2 and 3 is less clear than those of 3, 4, and 5.

The averaged values of the compressional sonic velocity in the vertical direction, wet bulk density, and impedance for each acoustic unit are listed in Table 17. As the limestones were seldom recovered, the averaged values excluding those of limestones can be responsible for the representative values of each unit.

LOGGING AND DOWNHOLE MEASUREMENTS

There were no logging and downhole measurements at this site.

SEISMIC STRATIGRAPHY

The seismic profiles across the Mariana Basin run by T. Shipley of the Scripps Institution of Oceanography and F. Duennebier of the Hawaii Institute of Geophysics aboard the *Kana Keoki* during September 1981 appear in Figures 4 and 5 (see the section on Background and Objectives). These profiles were made using an 80in.³ water gun, which does not produce pronounced bubble pulses, and the returns were digitally recorded. Figure 4 is an analog record across the basin, and Figure 5 is a processed record made from the digital data. This was interpreted in terms of the expected lithologic column (see Fig. 5; and Petersen et al., this volume).

Site MZP-6 (Site 585) was selected along the track at 13°30.5' N latitude, 156°48.8' E longitude. The final location of Site 585 is 13°29.00' N latitude, 156°48.91' E longitude. Therefore Site 585 is about 1 mile south of the profile shown on Figure 47. Our approach was from the north and our departure was to the south (Figs. 6, 7, and 9). The reflection stratigraphy on the approach and departure very closely matched that shown on Figure 47 (see also Fig. 7).

Figure 47 represents the postdrilling geologic interpretation of the seismic data. The interpretation is based on (1) the lithology of the cores recovered, (2) acoustic velocities (\overline{V}) , both vertical and horizontal, rock densities determines by both GRAPE and gravimetric methods as well as the derived impedances (\overline{I}) as listed on Table 16, (3) drilling rates, and (4) general geological considerations.

Regional acoustic reflectors in the Basin are shown in Figure 4. The section between 8.1 and 8.4 s (two-way traveltime) extends across the Basin. At Sites 199 and 585, coring and recovery in this section were sparse; it is apparently made up of distal turbidites of middle Eocene to Recent age. The cherts recovered and the continuity of the moderately coherent set of reflectors at about 8.4 s indicate that there are widespread cherts present in the Basin. Cherts of Eocene age are a common occurrence at most western Pacific drill sites. A set of laterally extensive, coherent reflectors at approximately 8.6 s may represent a cherty section at Site 585 of Late Cretaceous age. The Late Cretaceous section at Site 199 is also chert-rich.

The next deeper significant reflector at Site 585 is taken to be the high-amplitude, very coherent one at 8.74 s. Impedances calculated aboard ship suggest that this reflector has a reflection coefficient of 0.125. This is interpreted to be the top, or upper part, of the volcaniclastic section penetrated at Site 585 at 590 m. Within the volcaniclastic section at about 800 m a velocity increase from approximately 2.2 to approximately 3.2 km/s was noted according to shipboard velocity measurements. The reflection coefficient of the 800-m level is calculated at 0.142. Drilling rates showed a marked decrease at about 750 m in Hole 585A. Drilling rates being difficult

Table 16. Physical properties of sediments, Site 585.

Sample	Sub-bottom		Compression velocity	nal	Wet b dens (g/cr	ity	Wet water			
(core-section, interval in cm)	depth (m)	Vertical (km/s)	Horizontal (km/s)	Anisotropy (%)	GRAPE	Grav.	content Porosity (%) (%)	Impedance ^a (10 ⁵ g/cm ² s)	Remarks	
fole 585										
1-3, 50-52	0-6.8		1.49							Nannofossil ooze
1-3, 100-102			1.49							Nannofossil ooze
1-4, 50-52			1.49							Nannofossil ooze
1-4, 100-102 3-1, 30-35	265.5-275.1	1.87	1.50 2.01	7.5		1.88	27.3	51.3	3.52	Clay-bearing nannofossil ooze Nannofossil chalk
6-1, 22-24	284.6-293.7	1.90	2.06	8.4	1.82	1.78	26.9	47.7	3.42	Nannofossil chalk
8-1, 67-69	302.9-312.0	1.86	1.87	0.6	1.90	1.81	26.0	46.9	3.44	Nannofossil chalk
8-2, 49-51	502.5 512.0	1.89	1.86	-1.7	1.82	1.76	28.3	49.6	3.38	Nannofossil limestone
9-1, 24-26	312.0-321.2	1.90	1.92	0.8	1.79	1.77	27.0	47.8	3.38	Nannofossil chalk
11-1, 57-59	330.3-339.5	1.90	1.93	1.4	1.77	1.82	27.2	49.4	3.40	Nannofossil chalk
12-1, 16-18	339.5-348.6	1.82	1.85	-1.2	1.78	1.83	27.3	49.8	3.29	Nannofossil chalk
13-1, 38-40	348.6-357.8	2.33	2.52	7.7	1.88	1.95	19.2	37.5	4.45	Silicified nannofossil limestone
14-2, 58-60	357.8-366.9	1.90	1.91	0.6	1.79	1.84	26.6	48.8	3.44	Nannofossil chalk
15-1, 136-138	366.9-380.4	2.03	2.11	3.9	1.77	1.88	24.5	46.6	3.71	Nannofossil chalk
17-1, 131-133	389.5-398.7	1.86	1.88	1.0		1.90	23.8	45.2	3.53	Nannofossil chalk
18-1, 30-32	398.7-307.8	2.17	2.38	9.1	1.78	1.86	23.3	43.3	3.93	Calcareous claystone
20-2, 56-58	417.0-426.1	1.76	1.84	4.5	1.90	1.91	23.4	44.7	3.36	Zeolite-bearing calcareous claysto
21-1, 37-39 27-3, 63-65	426.1-435.3	1.76	1.87	5.7 2.7	1.93	1.92	23.3	44.6 49.9	3.38 3.26	Silicified chalk
28-5, 15-16	485.4-494.6 494.6-503.7	1.81	1.82	4.0	1.84	1.84	27.2 27.8	50.2	3.26	Claystone Claystone
29-1, 30-32	503.7-512.9	2.35	2.46	4.0	1.86	1.81	21.5	40.0	4.37	"Red-sand"-bearing claystone
30-1, 32-34	512.9-522.0	1.84	1.96	6.1	1.80	1.85	26.9	49.7	3.42	Claystone
32-1, 46-49	531.2-540.3	1.97	2.14	8.2	1.84	1.84	24.9	45.9	3.62	Claystone
32-4, 29-31	55116 51015	1.95	2.01	3.4	1.86	1.86	24.8	46.0	3.63	Silty claystone
34-1, 91-93	549.5-558.6	2.61	2.79	6.4	2.07	2.06	17.2	35.5	5.40	Limestone
35-2, 27-29	5586572.1	2.69	2.86	6.0	2.16	2.15	14.4	31.0	5.81	Limestone
39-2, 28-30	599.5-608.7	2.13	2.28	6.8	1.92	1.95	22.3	43.4	4.11	Volcanic-bearing calcareous siltste
42-1, 14-16	627.0-636.1	2.41	2.45	2.0	2.07	2.06	21.3	43.8	4.96	Siltstone
43-2, 139-141	636.1-645.3	1.90	2.02	6.5	1.89	1.91	26.4	50.3	3.61	Claystone
44-4, 132-134	645.3-654.4	1.95	2.07	6.3	1.92	1.90	26.3	50.0	3.72	Claystone
45-3, 107-109	654.4-667.8	1.93	2.07	6.8	1.87	1.87	27.0	50.5	3.61	Siltstone
46-2, 100-102	667.8-676.9	1.93	2.11	8.7	1.93	2.05	20.4	41.8	3.84	Claystone
47-1, 91-93	676.9-686.1	2.31	2.46	6.5	1.92	1.94	24.9	48.1	4.46	Coarse sandstone
47-4, 131-133	(0() (0()	2.57	2.57	0.3	1.87	1.92	24.0	46.2	4.88	Coarse sandstone
48-2, 62-64	686.1-695.2	2.43	2.57	5.7	2.01	2.00	20.1	40.1	4.86	Volcanic silty sandstone
49-2, 88-90 50-1, 68-70	695.2-704.4	2.37 2.54	2.60	9.6	1.98	1.96	23.5	46.0	4.67 5.11	Volcanic silty sandstone
50-3, 72-74	704.4-713.5	2.03	2.66 2.11	4.4	2.02	2.01 2.05	21.3 20.4	42.8 42.0	4.14	Volcanic silty sandstone Silty claystone
51-3, 43-45	713.5-722.7	2.51	2.84	12.4	2.11	2.03	16.3	34.4	5.30	Sandy siltstone
52-3, 88-90	722.7-731.8	2.34	2.51	6.7	2.11	2.10	18.8	39.5	4.94	Sandy siltstone
53-1, 98-100	731.8-741.0	2.57	2.69	4.3	1.85	1.88	26.0	49.0	4.81	Coarse volcaniclastic sandstone
54-2, 119-121	741.0-750.1	2.95	3.09	4.8	2.20	2.22	15.8	35.1	6.52	Volcaniclastic sandstone
55-3, 52-54	750.1-763.7	2.79	2.82	1.0	2.17	2.17	16.7	36.3	6.05	Volcanic sandstone
ole 575A										
5-1, 133-135	502.6-511.8	1.78	1.81	1.8	1.54	1.67	37.8	60.7	2.86	Claystone
7-1, 32-34	520.9-532.4	1.80	1.92	6.0	1.75	1.83	28.6	52.5	3.22	Claystone
8-2, 89-91	532.4-543.5	1.81	1.86	2.6	1.64	1.74	33.3	58.0	3.06	Slightly calcareous claystone
9-1, 106-108	543.5-552.6	2.56	2.86	11.1	1.98	2.06	18.6	38.3	5.17	Siliceous claystone
10-1, 52-54	552.6-561.8	2.50	2.73	8.7	1.97	2.05	19.1	39.1	5.03	Siliceous claystone
H5-1, 50-52	658.0-772.1	1.87	2.01	7.6	1.82	1.84	28.4	52.2	3.42	Claystone
H5-1, 56-58		1.86	2.04	9.3	1.85	1.88	26.5	49.8	3.47	Claystone
H5-1, 92-94		1.93	2.09	8.0	1.84	1.87	26.7	50.0	3.58	Interlayer claystone and silty clay stone
H5-1, 100-102		2.01	2.16	7.6	1.92	1.88	26.6	49.9	3.82	Interlayer claystone and silty clay stone
H5-1, 107-109		1.97	2.17	9.6	1.90	1.94	23.7	45.9	3.78	Interlayer claystone and silty clay stone
		1.87	2.04	8.9	1.86	1.88	26.4	49.6	3.50	Claystone
H5-1, 117-119		1.88	2.04	8.1	1.84	1.89	26.9	50.3	3.51	Claystone
H5-1, 117-119 H5-1, 132-134					1.82	1.82	29.2	53.2	3.46	Claystone
H5-1, 132-134			2.03	6.9				52.9	3.49	Silty claystone
		1.90 1.93	2.03 2.08	6.9 7.6	1.79	1.83	29.0			Shif chaptone
H5-1, 132-134 H5-1, 141-143		1.90					29.0 28.1	51.8	3.59	Silty claystone (cross bedding)
H5-1, 132-134 H5-1, 141-143 H5-1, 147-149 H5-2, 3-5 H5-2, 14-16		1.90 1.93 1.95 1.89	2.08 2.13 2.04	7.6	1.79	1.83				Silty claystone (cross bedding) Silty claystone
H5-1, 132-134 H5-1, 141-143 H5-1, 147-149 H5-2, 3-5 H5-2, 14-16 H5-2, 25-27		1.90 1.93 1.95 1.89 1.91	2.08 2.13 2.04 2.06	7.6 8.8	1.79 1.84	1.83 1.84	28.1	51.8	3.59	Silty claystone (cross bedding) Silty claystone Silty claystone
H5-1, 132-134 H5-1, 141-143 H5-1, 147-149 H5-2, 3-5 H5-2, 14-16 H5-2, 25-27 H5-2, 35-37		1.90 1.93 1.95 1.89 1.91 1.91	2.08 2.13 2.04 2.06 2.01	7.6 8.8 7.4 7.4 5.4	1.79 1.84 1.74 1.80 1.79	1.83 1.84 1.82	28.1 29.3 28.0 30.1	51.8 53.3	3.59 3.36 3.49 3.43	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone
H5-1, 132-134 H5-1, 141-143 H5-1, 147-149 H5-2, 3-5 H5-2, 14-16 H5-2, 25-27 H5-2, 35-37 H5-2, 49-51		1.90 1.93 1.95 1.89 1.91 1.91 1.97	2.08 2.13 2.04 2.06 2.01 2.05	7.6 8.8 7.4 7.4 5.4 3.8	1.79 1.84 1.74 1.80 1.79 1.79	1.83 1.84 1.82 1.85 1.80 1.77	28.1 29.3 28.0 30.1 32.0	51.8 53.3 51.7 54.3 56.5	3.59 3.36 3.49 3.43 3.52	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone
H5-1, 132-134 H5-1, 141-143 H5-1, 147-149 H5-2, 3-5 H5-2, 14-16 H5-2, 25-27 H5-2, 35-37 H5-2, 49-51 H5-2, 60-62		1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98	2.08 2.13 2.04 2.06 2.01 2.05 2.08	7.6 8.8 7.4 7.4 5.4 3.8 5.0	1.79 1.84 1.74 1.80 1.79 1.79 1.80	1.83 1.84 1.82 1.85 1.80 1.77 1.72	28.1 29.3 28.0 30.1 32.0 29.4	51.8 53.3 51.7 54.3 56.5 53.5	3.59 3.36 3.49 3.43 3.52 3.58	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone
$\begin{array}{c} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 14-16} \\ \text{H5-2, 25-27} \\ \text{H5-2, 25-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \end{array}$		1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02	7.6 8.8 7.4 7.4 5.4 3.8 5.0 1.9	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80	28.1 29.3 28.0 30.1 32.0 29.4 30.3	51.8 53.3 51.7 54.3 56.5 53.5 54.5	3.59 3.36 3.49 3.43 3.52 3.58 3.56	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 25-27} \\ \text{H5-2, 25-27} \\ \text{H5-2, 35-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 84-86} \end{array}$		1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05	7.6 8.8 7.4 7.4 5.4 3.8 5.0 1.9 4.2	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.74	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4	51.8 53.3 51.7 54.3 56.5 53.5 54.5 54.5 55.8	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 14-16} \\ \text{H5-2, 25-27} \\ \text{H5-2, 35-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 95-97} \end{array}$		1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96 1.95	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05 2.04	7.6 8.8 7.4 7.4 5.4 3.8 5.0 1.9 4.2 4.7	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.74 1.74	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80 1.80 1.79	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4 31.0	51.8 53.3 51.7 54.3 56.5 53.5 54.5 55.8 55.8 55.4	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47 3.45	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 14-16} \\ \text{H5-2, 25-27} \\ \text{H5-2, 35-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 84-86} \\ \text{H5-2, 95-97} \\ \text{H5-2, 104-106} \end{array}$		1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96 1.95 2.04	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05 2.04 2.22	7.6 8.8 7.4 5.4 3.8 5.0 1.9 4.2 4.7 8.2	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.78 1.74 1.75 1.76	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80 1.79 1.80	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4 31.0 30.5	51.8 53.3 51.7 54.3 56.5 53.5 54.5 55.8 55.8 55.4 55.4 54.8	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47 3.45 3.63	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 25-27} \\ \text{H5-2, 25-27} \\ \text{H5-2, 35-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 84-86} \\ \text{H5-2, 95-97} \\ \text{H5-2, 104-106} \\ \text{H5-2, 114-116} \end{array}$	660 0 770 -	1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96 1.95 2.04 2.12	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05 2.04 2.22 2.21	7.6 8.8 7.4 5.4 5.4 5.0 1.9 4.2 4.7 8.2 4.2	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.78 1.74 1.75 1.76 1.81	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80 1.79 1.80 1.83	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4 31.0 30.5 28.8	51.8 53.3 51.7 54.3 56.5 53.5 54.5 55.8 55.4 55.4 54.8 52.7	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47 3.45 3.63 3.86	Silty claystone (cross bedding) Silty claystone Silty claystone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 14-16} \\ \text{H5-2, 25-27} \\ \text{H5-2, 25-27} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 44-86} \\ \text{H5-2, 95-97} \\ \text{H5-2, 104-106} \\ \text{H5-2, 126-128} \end{array}$	658.0-772.1	1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96 1.95 2.04 2.12 2.11	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05 2.04 2.22 2.21 2.19	7.6 8.8 7.4 7.4 5.4 3.8 5.0 1.9 4.2 4.7 8.2 4.2 4.2 3.4	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.74 1.75 1.76 1.81 1.82	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80 1.79 1.80 1.83 1.84	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4 31.0 30.5 28.8 28.4	51.8 53.3 51.7 54.3 56.5 53.5 54.5 55.8 55.4 55.4 55.4 52.7 52.1	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47 3.45 3.63 3.86 3.86 3.86	Silty claystone (cross bedding) Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Silty claystone Volcaniclastic sandstone
$\begin{array}{r} \text{H5-1, 132-134} \\ \text{H5-1, 141-143} \\ \text{H5-1, 147-149} \\ \text{H5-2, 3-5} \\ \text{H5-2, 25-27} \\ \text{H5-2, 25-27} \\ \text{H5-2, 35-37} \\ \text{H5-2, 49-51} \\ \text{H5-2, 60-62} \\ \text{H5-2, 69-71} \\ \text{H5-2, 84-86} \\ \text{H5-2, 95-97} \\ \text{H5-2, 104-106} \\ \text{H5-2, 114-116} \end{array}$	658.0-772.1	1.90 1.93 1.95 1.89 1.91 1.91 1.97 1.98 1.99 1.96 1.95 2.04 2.12	2.08 2.13 2.04 2.06 2.01 2.05 2.08 2.02 2.05 2.04 2.22 2.21	7.6 8.8 7.4 5.4 5.4 5.0 1.9 4.2 4.7 8.2 4.2	1.79 1.84 1.74 1.80 1.79 1.79 1.80 1.78 1.78 1.74 1.75 1.76 1.81	1.83 1.84 1.82 1.85 1.80 1.77 1.72 1.80 1.80 1.79 1.80 1.83	28.1 29.3 28.0 30.1 32.0 29.4 30.3 31.4 31.0 30.5 28.8	51.8 53.3 51.7 54.3 56.5 53.5 54.5 55.8 55.4 55.4 54.8 52.7	3.59 3.36 3.49 3.43 3.52 3.58 3.56 3.47 3.45 3.63 3.86	Silty claystone (cross bedding) Silty claystone Silty claystone

Table 16 (continued).

Sample Sub-bottom		Compressional velocity		Wet bulk density (g/cm ³		Wet water					
(core-section, depth interval in cm) (m)	depth	Vertical (km/s)	Horizontal (km/s)	Anisotropy (%)	GRAPE	Grav.	content (%)	Porosity (%)	Impedance ^a $(10^5 \text{ g/cm}^2\text{s})$	Remarks	
Hole 575A (Cont.)											
H5-3, 20-22		2.73	2.75	0.9	2.02	2.03	19.9	40.4	5.53	Volcaniclastic sandstone	
H5-3, 25-27	20233922473	2.62	2.66	1.5	1.88	2.00	20.9	41.9	5.08	Volcaniclastic sandstone	
11-1, 60-62	772.1-781.3	2.84	2.91	2.3	2.03	2.12	16.5	34.9	5.89	Sandy siltstone	
12-1, 78-80	781.3-790.4	2.59	2.72	4.8	2.06	2.05	19.2	39.3	5.32	Sandy siltstone	
12-5, 102-104		2.07	2.21	6.5	1.99	2.02	20.4	41.1	4.15	Sandy siltstone	
12-6, 73-75		2.10	2.21	5.1	2.03	2.03	20.0	40.5	4.26	Sandy siltstone	
13-3, 135-137	799.6-808.7	2.83	3.02	6.7	2.09	2.09	17.4	36.4	5.91	Volcanogenic sandstone	
14-1, 146-148	808.7-817.9	3.31	3.53	6.3	1.98	2.11	16.6	35.1	6.77	Volcanogenic sandstone	
14-5, 80-82		2.81	2.97	5.6	1.99	2.04	19.6	39.9	5.66	Volcanogenic sandstone	
15-1, 63-65	817.9-827.0	3.11	3.16	1.7	2.10	1.84	28.4	52.1	6.13	Volcanogenic sandstone	
16-3, 106-108	827.0-838.6	2.87	3.10	7.8	1.96	2.06	18.8	38.7	5.77	Siliceous siltstone	
17-1, 8-10	838.6-847.7	2.90	3.02	4.0	1.97	2.08	18.1	37.5	5.87	Volcanogenic sandstone	
17-1, 77-79		2.80	2.94	4.9	1.93	2.06	18.6	38.4	5.59	Volcanogenic sandstone	
17-1, 107-109		2.88	3.00	4.2	1.95	2.06	18.5	38.1	5.77	Volcanogenic sandstone	
17-2, 22-24		2.89	3.00	3.8	1.94	2.07	18.4	38.0	5.79	Volcanogenic sandstone	
17-2, 116-118		2.95	3.09	4.6	1.95	2.08	17.9	37.2	5.94	Volcanogenic sandstone	
17-3, 23-25		2.91	3.02	3.5	1.97	2.06	18.7	38.5	5.86	Volcanogenic sandstone	
17-3, 119-121		2.98	3.00	0.8	1.99	2.04	19.5	39.8	6.00	Volcanogenic sandstone	
17-4, 21-23		2.83	2.89	2.2	2.00	2.05	18.9	38.8	5.73	Volcanogenic sandstone	
17-4, 86-88		2.82	2.96	5.1	2.02	2.04	19.6	40.0	5.72	Volcanogenic sandstone	
17-5, 120-122		2.98	3.02	1.2	2.02	2.10	17.3	36.2	6.14	Volcanogenic sandstone	
17-6, 53-55	838.6-847.7	3.16	3.17	0.5	2.02	2.14	15.8	33.8	6.57	Volcanogenic sandstone	
18-1, 13-15	847.7-857.7	2.98	3.06	2.7	2.03	2.08	18.0	37.4	6.12	Volcanogenic sandstone	
18-1, 93-95		3.12	3.18	2.0	2.00	2.11	16.9	35.6	6.41	Volcanogenic sandstone	
18-2, 23-25		3.11	3.12	0.4	2.02	2.09	17.4	36.5	6.39	Volcanogenic sandstone	
18-2, 106-108		3.05	3.10	1.7	2.03	2.08	17.8	37.0	6.27	Volcanogenic sandstone	
18-3, 48-50		3.18	3.21	1.1	2.02	2.11	16.9	35.6	6.57	Volcanogenic sandstone	
18-3, 128-130		3.10	3.26	5.0	2.06	2.11	16.7	35.3	6.46	Volcanogenic sandstone	
18-4, 53-55		3.23	3.31	2.4	2.03	2.15	15.1	32.6	6.75	Volcanogenic sandstone	
18-4, 136-138		3.13	3.09	-1.6	1.93	2.10	17.3	36.2	6.31	Volcanogenic sandstone	
18-5, 45-47		3.28	3.38	3.2	2.01	2.12	16.3	34.6	6.77	Volcanogenic sandstone	
18-5, 125-127		3.46	3.55	2.5	2.11	2.22	12.9	28.7	7.49	Volcanogenic sandstone	Clasts up
18-6, 13-15		3.36	3.46	2.7	2.13				7.16	Volcanogenic sandstone	to 3 cm)
18-6, 119-121		3.55	3.57	0.4	2.05	2.15	15.3	32.9	7.46	Volcanogenic sandstone	
18-7, 30-32		3.67	3.77	2.6	2.08	2.17	14.7	31.8	7.80	Volcanogenic sandstone	
19-1, 6-8	857.7-866.8	3.59	3.70	3.1	2.01	2.15	15.4	33.1	7.47	Volcanogenic sandstone	
19-2, 14-16		3.39	3.51	3.3	2.08	2.14	15.7	33.5	7.15	Volcanogenic sandstone	(Grains
19-3, 6-8		3.65	3.70	1.5	2.15	2.14	15.7	33.6	7.83	Volcanogenic sandstone	up to
19-4, 11-13		3.47	3.54	2.0	2.13	2.13	16.1	34.2	7.36	Volcanogenic sandstone	2-3 mm)
20-1, 15-17	866.8-876.0	3.90	3.89	-0.3	2.22	2.24	12.3	27.6	8.70	Volcanogenic sandstone	(Silica
20-2, 13-15		4.03	4.10	1.7	2.26	2.24	12.2	27.3	9.07	Volcanogenic sandstone	cemented
20-2, 116-118		4.92	4.86	-1.2	2.55	2.43	6.5	15.8	12.25	Basalt (vesicles filled with smectite)	contentou
21-1, 113-115	876.0-885.1	3.08	3.16	2.7	2.03	2.08	17.7	36.9	6.36	Volcaniclastic sandstone	
21-2, 116-118	570.0-005.1	2.98	3.10	4.2	1.97	2.08	19.4	30.9	5.97	Volcaniclastic sandstone	
22-1, 101-103	885.1-892.8	3.17	3.30	4.2	2.10	2.04	19.4	39.0	6.74	Volcaniclastic sandstone	
22-1, 101-103	003.1-072.0	5.17	3.30	4.0	2.10	2.15	15.4	33.1	0.74	voicamenastic sandstone	

^a Impedance is calculated from the vertical compressional wave (V_V) and the average of wet bulk densities (GRAPE and Grav.).

to interpret, however, we consider the "9.0-s" reflector of the site surveys (8.9-s reflector on Fig. 4) to be the result of the high velocity section of dense, well lithified volcaniclastic rocks present in Hole 585A from 800 m to the total depth of 892.8 m. Thus the "9.0-s" reflector at Site 585 is neither Jurassic limestone nor basement.

SUMMARY AND CONCLUSIONS

Introduction

Site 585, one of several MZP sites considered for the Mesozoic Pacific program of the JOIDES Ocean Paleoenvironment Panel, was selected on the basis of site surveys carried out by the Hawaii Institute of Geophysics and the Scripps Institution of Oceanography. The general area occupied by the East Mariana Basin was considered a favorable one in which to reach Jurassic strata, because the water depth and magnetic anomaly patterns indicated that the Basin was underlain by 150 to 160 m.y. old lithosphere. DSDP Site 199 had been drilled 40 n.mi. to the west of proposed MZP-6 (now 585); Campanian limestone, underlain by lithified tuff, was cored there. Forty nautical miles south of MZP-6, DSDP Sites 200, 201, and 202 were drilled atop Ita Maitai Guyot (for details of Sites 199 through 202 see Heezen, McGregor, et al., 1973a). On Ita Maitai Guyot, lower Eocene to Recent foraminiferal ooze overlies hard oolitic limestone and lagoonal coraliferous mud of indeterminate age. In August 1981 dredge hauls taken from Ita Maitai Guyot by the *Kana Keoki* recovered *Inoceramus*-bearing limestones, which indicated that Ita Maitai Guyot accumulated shallow-water sediment in, probably, the Late Cretaceous (S. Schlanger, unpublished Hawaii Institute of Geophysics data).

The Campanian tuffs found at Site 199 were believed to be the product of Late Cretaceous edifice building volcanism that formed, among other seamounts that lie around the perimeter of the East Mariana Basin, Ita

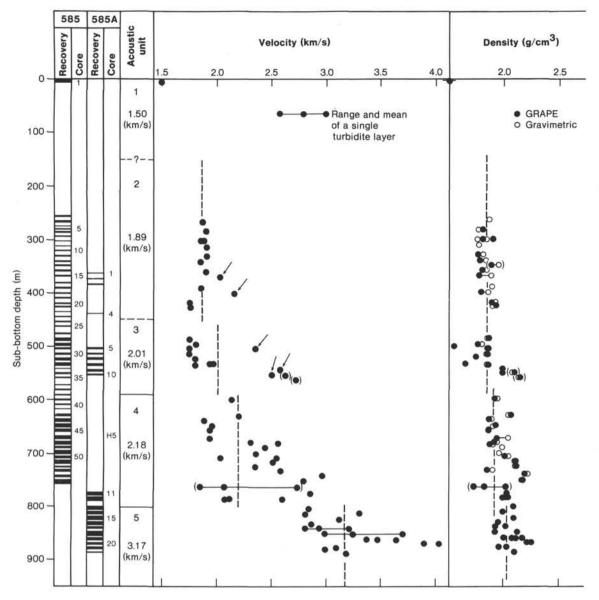


Figure 45. Variations of physical properties with depth at Site 585. Vertical dashed lines indicate average value for that parameter within the particular acoustic unit. Parentheses indicate limestone. See text for an explanation of small arrows.

Maitai Guyot (Heezen, MacGregor, et al., 1973b). The ubiquitous character of Cretaceous midplate volcanism in the western Pacific prepared us for encounters with volcanogenic sediments, but the East Mariana Basin was, it seemed, the best bet for reaching the Jurassic objectives.

Drilling Holes 585 and 585A resulted in a maximum penetration of 763.7 m in 585; a misfit core barrel sub resulted in loss of Hole 585. Hole 585A was terminated at 892.8 m because of complete bit failure. Fifty-five cores were taken from Hole 585, and 22 from 585A. Figure 48 shows the salient data from Site 585 in generalized form.

The sedimentary section that was recovered is dominated by redeposited volcanogenic material in mid-Cretaceous strata and redeposited fossils in Upper Cretaceous and Neogene strata. Compared to most open ocean sites the rocks are relatively unfossiliferous, and the faunal and floral diversity is low. The intensive reworking and general paucity of the autochthonous fossils made the task of assigning a precise zone to each core difficult. Many biostratigraphic zones were recognized, however, and it appears that the section is largely complete from middle Eocene to upper Aptian, with minor hiatuses, although evidence for the presence of most of the Paleocene is lacking and late and middle Maestrichtian assemblages occur only redeposited within Tertiary strata.

Although the Jurassic objectives were not reached, information derived from Holes 585 and 585A revealed the following: (1) Benthic foraminiferal faunas indicate that the East Mariana Basin was at abyssal depths from the Aptian to the present. (2) Intense edifice building volcanism took place in the area during the Aptian through

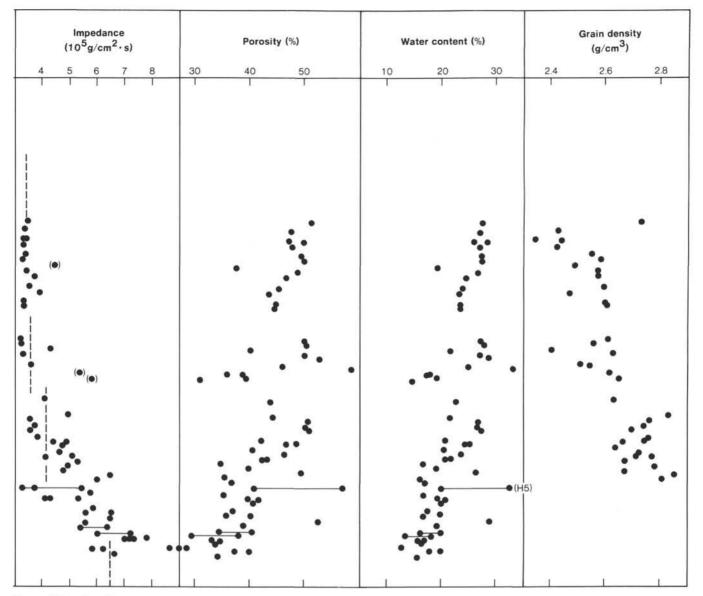


Figure 45 (continued).

middle Albian. The timing of the onset of volcanism is not known. (3) Volcanic edifices around the Basin reached to or above sea level and were capped or fringed by carbonate reefs and banks in the Aptian-Albian. (4) The growth of these edifices provided the bathymetric relief needed for the delivery to the abyssal Mariana Basin of the numerous and thick turbidite sequences that dominate the sedimentary section. (5) Organic carbon-rich sediments formed in the Basin at, or very close to, the Cenomanian/Turonian boundary; these carbonaceous sediments are the local record of a global oceanic anoxic event. (6) The Pacific Plate moved from a paleolatitude of 22.0°S in the late Aptian, through 8.2°S in the Albian, and 5.1°S in the Turonian before reaching its present latitude of 13.5°N at Site 585. (7) The "acoustic basement" in the East Mariana Basin is composed of Aptian midplate volcaniclastic strata-this state of affairs may hold true for much of the western Pacific.

Sedimentology

The sedimentary section recovered at Site 585 was divided into six lithologic units (I through VI) based on composition and degree of diagenesis and lithification (Fig. 10; Table 2). The lithologic classification used is presented in the Introduction and Explanatory Notes chapter (this volume).

Unit I is nannofossil ooze, clay-bearing nannofossil ooze, and clay (Core 585-1, 0–6.8 m sub-bottom depth; lower Pleistocene to Recent). The top of Unit I consists of a 1.5-m-thick bed of brown homogeneous clay. Other very minor components observed in smear slides include zeolites and nannofossils (Appendix). Most of the unit, however, consists of about 5 m of light yellowish brown to brown nannofossil ooze and clay-bearing nannofossil ooze. Concentrations of CaCO₃ in two samples from this part of the unit are 51 and 83% (Table 3).

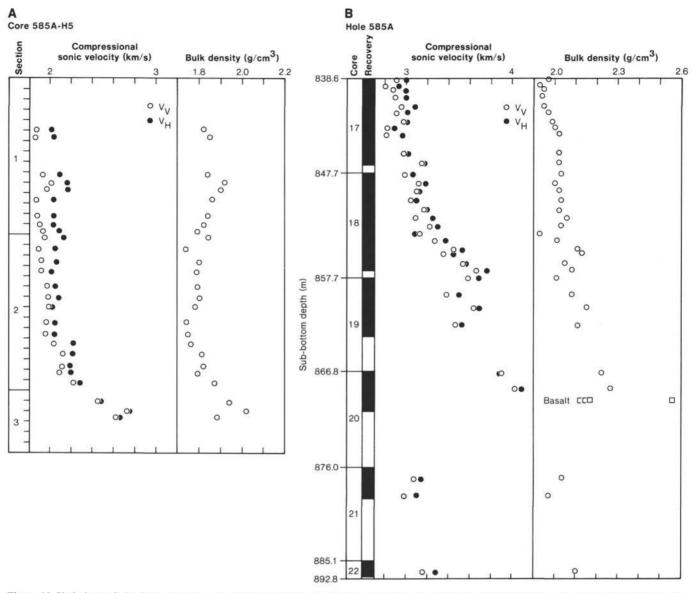


Figure 46. Variations of physical properties with depth for (A) 3-m-thick (Core 585A-H5) and (B) 30-m-thick (Cores 585A-17 to -20) volcanogenic turbidite layers (black areas indicate core recovery).

lable	17	Acoustic	unite
laule	1/-	Acoustic	units.

Acoustic unit	Core	Sub-bottom depth (m)	Sonic velocity (vertical) (km/s)	Wet-bulk density (g/cm ³)	Impedance (10 ⁵ g/cm ² · s)
1	1	0-150	1.50	1.40 ^a	2.10 ^a
2	2 to 21	150-450	1.89	1.84	3.48
	$(1 \text{ to } 5)^{b}$		(1.93) ^c	$(1.84)^{c}$	(3.55) ^C
3	27 to 35	450-590	2.01	1.84	3.59
	(6 to 10) ^b		$(2.12)^{c}$	(1.91) ^c	(4.09) ^c
4	39 to 55	590-800	2.18	1.91	4.16
	(H5 to 12) ^b				
5	(13 to 22) ^b	800-893	3.17	2.03	6.47

^a Estimated from the data at Site 199 (Heezen, MacGregor, et al., 1973a). ^b Core numbers in parentheses are from Hole 585A.

^c Values in parentheses are obtained by including those of limestones.

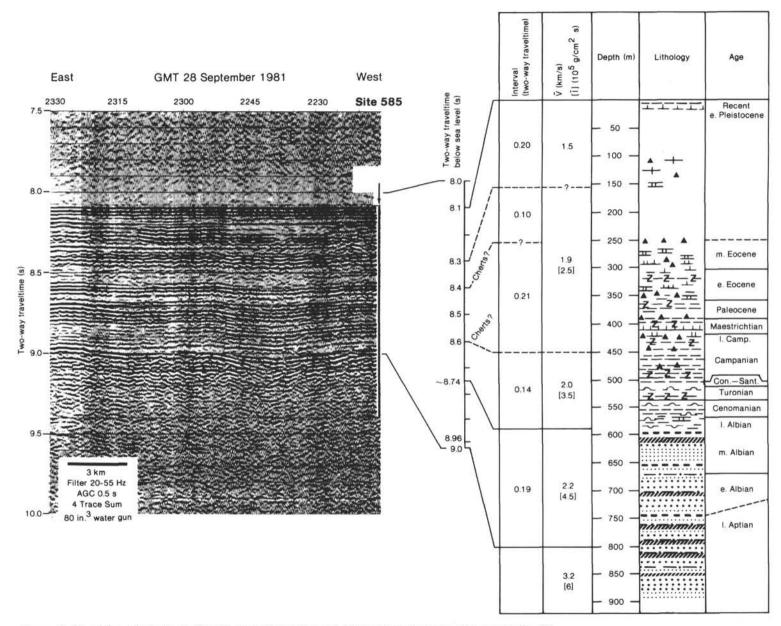


Figure 47. Correlation of seismic profile with the drilled section and shipboard physical properties data at Site 585.

Unit II comprises nannofossil chalk, silicified limestone, chert, and zeolitic claystone (Cores 585-2 to -17, and 585A-1 to -3, 256-399 m sub-bottom depth; middle Eocene to Upper Cretaceous [Maestrichtian]). Most material recovered from Unit II consists of white to light gray nannofossil chalk showing varying degrees of diagenesis by CaCO₃ and SiO₂ toward chalk, limestone, silicified limestone, and chert. Interbeds of brown zeolitebearing claystone are common and increase in abundance below about 360 m (Core 585-13). Above 360 m, zeolitebearing claystone apparently occurs mainly in thin beds, but also occurs as lenses subparallel to stratification in chalk and as subrounded cores of many fragments of chert and silicified limestone.

Diagenetic silicification of carbonate ooze has resulted in a highly variable percentage of CaCO₃, which ranges from less than 20% in silicified limestones to at least 85% in chalks. X-ray diffraction (XRD) results from samples of zeolitic claystones from Cores 585-13 and -14 (Table 4) show that the most abundant minerals identified on XRF diffractograms are smectite, clinoptilolite, quartz, and calcite; less abundant minerals identified are celadonite, siderite, and nontronite(?). Small pieces of native copper were observed in a sample of claystone from Core 585-13. This thin zeolitic claystone may be the product of an Eocene ash fall.

Unit III contains zeolitic claystone, nannofossil claystone, and minor clayey nannofossil chalk and chert (Cores 585-18 to -20, 399–426 m sub-bottom depth; Maestrichtian to upper Campanian). The dominant lithology of Unit III is dark brown zeolite-bearing to zeolitic claystone with variable amounts of CaCO₃ as nannofossils and as unspecified carbonate that presumably is present as cement. Grading is apparent in many of the units but it is usually very subtle. The bases of several carbonaterich layers have thin laminae of silty, redeposited hyaloclastic material. XRD results from samples of brown claystone from Core 18 (Table 4) show that the most abundant minerals are quartz, clinoptilolite, smectite, celadonite, calcite, and siderite.

Unit IV is made up of chert and claystone (Cores 585-21 to -26 and 585A-4, 426-485 m sub-bottom depth; Campanian). The most common material interbedded with the chert is brown zeolite-bearing claystone. Textures and fabrics observed in the larger chert fragments suggest that some chert formed by silicification of graded carbonate grainstones. In some of the silicified limestones undeformed clay-filled burrows are present. In contrast, burrows in the nannofossil chalk surrounding the silicified limestone are flattened. This contrast in burrow preservation is taken as evidence that silicification of the limestone took place before the host chalks were significantly compacted. Further, microfossils in the silicified limestone appear to be less crushed than the fossils in the chalk. The percentage of CaCO₃ in the silicified limestones ranges from 20 to 85%; petrographic observations of these CaCO3-rich silicified limestones suggest that silica is added to the limestone as a pore filling rather than as a pervasive replacement. In some specimens pore spaces remain open. Paragenesis of the silica phases is complex. Replacement of silicified limestone by microcrystalline quartz is, in places, controlled by the presence of chalcedony veins; locally the contact between microcrystalline quartz is sharply marked against insoluble clay or Fe-oxides. Silicification and chertification are commonly associated with current-worked laminae or with the basal parts of graded sequences, probably because the greater permeability of these coarser sediments allows easier access to pore-fluid circulation.

Unit V comprises claystone with minor limestone and radiolarian sandstone (Cores 585-27 to -37 and 585A-5 to -10, 485-590 m sub-bottom depth; Campanian to middle Albian). The dominant lithology of Unit V is claystone, with varying amounts of zeolites, $CaCO_3$, and radiolarians. Unit V was subdivided into three subunits based on color and the relative abundances of these three components.

Subunit VA contains brown and olive black claystone (Cores 585-27 and -28, 485-504 m sub-bottom depth; Campanian). Specifically, Subunit VA consists of dark reddish brown and olive black zeolite-bearing claystone that is very low in carbonate content. Other minor components include feldspar, altered volcanic glass, and iron oxides (Appendix). Plant fragments were found in a foraminifer preparation of a sample of a 0.5-cm dark band in Sample 585-27-3, 138 cm. The claystone is mostly massive appearing, but some is moderately bioturbated, with most burrows flattened by compaction so that they are subparallel to stratification. Burrows commonly are filled with green or black claystone, presumably more reduced chemically. Silty laminae form the bases of graded sequences.

Subunit VB is dark gray claystone with variable amounts of calcareous, siliceous, and organic components (Cores 585-29 to -33 and 585A-5 to -9, 504–550 m sub-bottom depth; Coniacian to upper Cenomanian). Subunit VB consists mainly of dark gray claystone with variable concentrations of recrystallized radiolarians, CaCO₃, and silica. The recrystallized radiolarians usually are concentrated in sandy layers, lenses, or stringers. Some fining-upward graded sequences are evident, one being over 3 m thick. Common components include radiolarians (most recrystallized), nannofossils, recrystallized calcite, and zeolites.

In Cores 585-32 and 585A-8, dark gray claystone contains common black flakes of organic-rich material (plant debris?) that are oriented parallel to stratification (Fig. 12). A 2-cm-thick black pyritic silty claystone containing organic carbon in Sample 585-32-3, 72-74 cm (see section on Organic Geochemistry) occurs at the top of a fining-upward graded sequence, just above bioturbated claystone, and just below parallel- and cross-laminated siltstone of the overlying graded sequence (Figs. 13A and 14). The concentration of black flecks of organic matter in dark gray siltstone in the core catcher of Core 585A-8 increases downward over an interval of about 1 cm into a 3-mm-thick band of black sandstone consisting mainly of coated recrystallized radiolarians and flecks of black organic matter (Figs. 13B and 15). This band clearly represents a single pulse or influx of both radiolarians and organic debris. The influx of organic debris then continued but at a much reduced rate, manifested as

black flecks mixed with the overlying siltstone that decrease in abundance upward (Fig. 15). The nature and origin of these organic carbon-rich layers are discussed later in the section on the Cenomanian–Turonian oceanic anoxic event that follows the section on Biostratigraphy and Paleoecology.

Subunit VC, composed of calcareous claystone, radiolarian claystone, and clayey limestone (Cores 585-34 to -37 and 585A-9,CC to -10, 550-590 m sub-bottom depth; Cenomanian to middle Albian), consists of claystone with abundant but highly variable concentrations of radiolarians and CaCO₃. This has resulted in interbedding of dark gray claystone, red nannofossil-bearing claystone and clayey limestone, radiolarian-bearing limestone and clayey limestone of varying colors but mostly shades of brown, and, in extreme, grayish brown radiolarian sandy siltstone (Fig. 17). Parallel laminations are common, and several graded units are apparent. These structures are interpreted as indicating that these rocks are distal turbidites.

Unit VI comprises graded sequences of volcanogenic sandstones, siltstones, claystones, and breccias with variable concentrations of CaCO₃ and SiO₂ (Cores 585-38 to -55 and 585A-11 to -22, 590-893 m sub-bottom depth; middle Albian to upper Aptian). Unit VI consists of a thick section of coarse volcaniclastic sediments in fining-upward graded sequences that may be more than several meters thick, and commonly have bases of coarse sandstone or breccia. The bases of a few of the graded sequences consist of sand-size carbonate clasts or interlaminated or mixed carbonate and volcanogenic clasts (Figs. 20 through 22). Most of the graded sequences grade upward into fine-grained tops of claystone or silty claystone. The Albian section in Hole 585 contains scattered skeletal debris of echinoids, mollusks, and ostracodes in addition to individual ooids. The Aptian section in Hole 585A, in contrast, contains an abundance of ooids in association with fragments of calcareous algae, rudists, bryozoans, small gastropods, and tests of orbitolinid foraminifers. In addition to the individual ooids and skeletal fragments, the coarse volcaniclastic units contain fragments of calcite-cemented, sorted, ooidand orbitolinid-bearing limestone. Although many of the ooids are severely micritized, some can be seen to have cores of volcanic rock fragments suggesting that a subaerial volcanic edifice was being eroded when the ooids were forming (see later section on the Geological History of the East Mariana Basin). Other common components include altered volcanic glass, zeolites, celadonite, clay minerals, and volcanic lithic and crystal fragments. Additional details on the composition of volcanogenic materials are described in following sections.

Many of the graded sequences in Unit VI show well developed and relatively complete Bouma turbidite sequences (Figs. 20–24). Many of the graded sequences, particularly in the lower half of the unit, have coarse sandstone bases. The bases of many of the coarser beds at the bottom of graded sequences are scoured into the underlying bed or have load casts (Fig. 26).

We conclude that the graded sequences of Unit VI, at least as deep as Hole 585A, Core 16, are turbidites. Below Core 585A-16, the unsorted nature of the clasts, the extreme size range of clasts (ranging up to boulder-size clasts that have been truncated by the core), and the heterogeneity of clast composition (ranging from volcanic fragments, shallow-water carbonate debris, and subround-ed fragments of siltstone and claystone) suggest that this material is part of one or more debris flow deposits.

Because so much of the sedimentary section at Site 585 is made up of material that originated as volcanic effusive rocks, the igneous petrography and petrology were studied in some detail (see Tables 5 and 6 and Figs. 27-29).

The volcaniclastic sediments in lithologic Units III, V, and VI were described (Table 5) in terms of the nature of lithic clasts in coarse layers and relative proportions of glass, crystals, and lithic clasts.

The volcaniclastic sediments represent reworked debris derived from previously deposited tuffaceous material mixed with the glassy products of submarine volcanism. The two sources are distinct in terms of the degree of erosion and nature of the clasts. Rounded and angular basalt and trachyte clasts probably were derived from differentiated alkaline volcanics. At the base of Hole 585A a debris flow rich in basalt clasts rests on a reworked hyaloclastite deposit. The largest clasts documented at Site 585 are found in the lowest part of the volcaniclastic sequence (below about 850 m depth). Zeolite veining and zeolite-rimmed vugs are relatively common below 820 m depth. Analcite and phillipsite have been found in the upper layers, and heulandite at greater depth.

Biostratigraphy and Paleoecology

Recent sediments at Site 585, deposited at 6109 m and recovered in the uppermost 150 cm of Core 585-1, consist of brown clay rich in manganese nodules and associated commonly with fish remains. Noticeably they do not contain any abyssal benthic foraminifers. Below that depth, the sediments recovered contain considerable carbonate, whose presence is not consistent with the abyssal depth of the East Mariana Basin, where sediments must have been deposited well below the carbonate compensation depth (CCD) since the Early Cretaceous and particularly during the Tertiary.

The majority of sediments recovered from Site 585 are transported and reworked deposits. Indeed, few intervals of autochthonous pelagic clay were recovered throughout the cored sequence. Fossil assemblages recovered reflect the turbiditic nature of the sediments. Youngeraged material typically is masked by the influx of older, often better-preserved fossil material, thus commonly obscuring the biostratigraphic signal. Consequently, the ages reported must be considered maximum ages, and many may in fact be considerably younger. Sorting by shape and size are characteristic attributes of the foraminiferal and radiolarian assemblages. The recovered specimens are small-sized adults and juveniles that range in size from 45 to 149 μ m. Deposition below the CCD also has strongly altered the character of the calcareous and siliceous fossils due to dissolution and recrystallization.

Biostratigraphic assignments for the cored sections are shown on Figure 30 (see the Introduction and Explanatory Notes chapter for the biostratigraphic framework used on Leg 89).

A synthesis of the biostratigraphic events in Hole 585 based on the three fossil groups, namely calcareous nannoplankton, foraminifers (both planktonic and benthic), and radiolarians (Fig. 30) shows that some stratigraphic intervals could not be identified. That does not imply that the succession is not continuous. The generally poor recovery, the fact that the autochthonous sediments are devoid of age diagnostic species, and the turbiditic character of the other sediments that contain index species prevent any sort of biostratigraphic refinement. In particular, most of the Paleocene is not evident: the few nannofossil and planktonic foraminiferal zonal assemblages recorded were either reworked into the Eocene sequence or mixed with younger zones within the Paleocene. Moreover, late and middle Maestrichtian assemblages occur only mixed within the Tertiary sequence. The Cretaceous/Tertiary boundary is tentatively placed within Core 585-16-1. Cores 585-26 and -30 seem to span the interval from Santonian through upper Turonian. The Cenomanian/Turonian boundary is placed within Core 585-32 (see the later section on the Cenomanian-Turonian oceanic anoxic event).

The early Cenomanian and late Albian interval may be located between Cores 585-35 and -36, but the poor recovery prevents further resolution. The most complete intervals recorded are from: early middle Eocene to latest Paleocene; Santonian; and early late Albian to late Aptian.

A similar synthesis of biostratigraphic events in Hole 585A is shown in Figure 31. Stratigraphic intervals recovered include the lower Eocene, upper Paleocene, and a portion of the Maestrichtian. The Cretaceous/Tertiary boundary is placed in Core 585A-3. Cores 585A-5 to -9 span the Santonian to lower Turonian. The Cenomanian/ Turonian boundary appears to occur in Core 9. Portions of the upper Cenomanian and upper Albian were found in Cores 585A-9 and -10, whereas -11 to -22 are dated as late Aptian.

Benthic foraminifers recovered from sediments of Site 585 consist of three groups: (1) autochthonous abyssal species, (2) transported bathyal species, and (3) transported neritic and shallow-water species (Figs. 32 and 33).

The autochthonous abyssal group consists of agglutinated species that are interpreted to be most characteristic of water depths between 5000 and 6000 m or closely analogous to the present water depth of the East Mariana Basin. This assemblage is found in the reddish brown zeolitic claystones that represent pelagic sedimentation between turbiditic episodes. Characteristically, the agglutinated fauna is associated solely with fish debris and recrystallized radiolarians, but occasionally rare specimens are found in turbiditic sequences. In Hole 585, the abyssal assemblage is found in Cores 585-15 to -54, which indicates that the entire sequence from the upper Aptian to the Recent was deposited at abyssal water depths (Fig. 32). Below Core 585-54 the assemblage was not recovered because of the heavy influx of volcaniclastic debris in the Aptian to Albian sequence. Above Core 585-15, samples consisted of the planktonic foraminiferand nannofossil-rich sediments of the Cenozoic sequence. In Hole 585A, the abyssal assemblage is restricted to samples from Core 585A-3. Previously, elements of this assemblage were recovered from the Pacific Ocean on Legs 20 and 61, from the Indian Ocean on Legs 41 and 47B.

The bathyal foraminiferal assemblage consists of small, size-sorted specimens that are characteristic of water depths above 2500 m. The assemblage is found predominantly in the laminated intervals and coarse basal units of graded sequences that represent distal, gravity flow deposits. In intervals devoid of shallow-water material, the assemblage is associated with size-sorted radiolarians, planktonic foraminifers, and sponge spicules. In Hole 585, the bathyal assemblage is found in Cores 585-1 to -54. Of special interest are the occurrences of transported bathyal species in Sections 585-32-2 and 585-32-4 that flank the organic-carbon-rich layer in Section 585-32-3. In the latter case, however, foraminifers are lacking and the residue larger than 42 μ m consists solely of recrystallized radiolarians. In Hole 585A, the bathyal assemblage was found in Cores 585A-3, -9, -11, and -16.

The third group consists of species characteristic of neritic or shallow-water environments. Included are neritic species of genera such as Patellina, Textularia, and species of miliolids, polymorphinids, and nodosariids. These smaller forms are listed in Figures 32 and 33 under transported neritic foraminifers. Also included in this group are specimens of larger, shallow-water foraminifers such as Orbitolina, complex agglutinated forms such as Cunelina, and attached agglutinated species among others shown as larger foraminifers in Figures 32 and 33. The neritic or shallow-water forms occur typically in the coarser basal layers of turbiditic sequences that also contain debris of shallow-water origin such as echinoid fragments and spines, ostracodes, bivalve fragments, sponge spicules, fecal pellets, and very rare algal fragments in addition to ooids. In Hole 585, the neritic assemblage is found in Cores 585-36 to -51, whereas the larger forms are restricted to Cores 585-36, -49, and -51. Neritic species and shallow-water fossil debris are particularly noticeable in the middle Albian sequence of clastic carbonates and volcaniclastic turbidites (Fig. 32). Noticeably lacking however, are Inoceramus prisms, thickshelled bivalve and rudist fragments, and shallow-water algal debris typical of reefal environments and recovered from both Cenozoic and Mesozoic sediments of Leg 61 in the Nauru Basin. Cores 585A-11 to -20 do contain rudist fragments in association with neritic and shallowwater foraminifers, algal fragments, bryozoans, bivalve fragments, echinoid debris, and ooids.

In summary, the late Aptian Cores 585A-18 to -20 contain the greatest abundance of shallow-water material in association with volcaniclastic debris flows. This material decreases in abundance, diversity, and coarseness through the upper Aptian-lower Albian section of Hole 585 from total depth up to Core 585-48. In middle and upper Albian Cores 585-36 to -44, the transported

material is predominantly neritic in nature, small-sized (including the rare macrofossil fragmented material), and indicative of distal turbidite deposits. Cenomanian to Santonian Cores 585-29 to -34 contain transported foraminifers that are bathyal in nature. Abyssal foraminifers are particularly in evidence in the Maestrichtian to Paleocene Cores 585-15 to -20 characterized by zeolitic claystones and chert.

Sedimentation Rates

Four pulses of sedimentation separated by apparent unconformities or reductions in sedimentation are recorded in the sedimentary section at Site 585. These four are from late Aptian to late Albian, from middle Cenomanian to Turonian, from Santonian to early Paleocene, and from latest Paleocene to middle Eocene. Sedimentation rates for the Cenomanian to Eocene pulses range from about 5 to 10 m/m.y. and apparently reflect the lessening of volcanogenic sediment transported into the basin or the waning of major edifice building volcanism. Unconformities or much reduced rates of sedimentation are apparent during the late Albian or early Cenomanian, the Coniacian to Santonian, and the middle and late Paleocene. The rapidly deposited section represented by the 303 m of volcaniclastic turbidites and debris flows of Unit VI accumulated at a rate of approximately 40 m/m.y. during late Aptian to late Albian. This is a minimum rate, because the base of the late Aptian was not reached.

Paleomagnetics

Preliminary NRM measurements aboard the *Glomar Challenger* were performed on several lithologic units in the lower Tertiary and Cretaceous of Site 585. The Paleocene-Maestrichtian chalks and zeolitic claystones have mixed polarity with a strong normal overprint. Turonian claystones in both holes yield an average paleolatitude of 5.1°S; middle and lower Albian volcaniclastic turbidites yield a paleolatitude of 8.2°S; the lowest upper Aptian volcaniclastic turbidites yield a paleolatitude of 22.0°S. Compilation of Cretaceous paleomagnetic data from DSDP Sites 289, 462, and 585 indicates that the western Central Pacific had a 4.5-cm/yr. northward component of motion (relative to the magnetic dipole or spin axis) between the Aptian and Campanian (Ogg, this volume).

Physical Properties

Measurements made on cores from Holes 585 and 585A include wet bulk density, water content, porosity, and compressional sonic velocity. A somewhat systematic variation in velocity and density with depth allowed the division of the drilled section into acoustic units (see Acoustic velocity column, Fig. 48), which made it possible to correlate the seismic profiles and the lithology of the section (Fig. 47). Of note are the results of closely spaced velocity and density measurements made throughout a single, thick volcaniclastic turbidite unit that spanned Cores 585A-17 through -20; velocities at the top of the unit are approximately 3.0 km/s, whereas those at the base of the unit approach 4.0 km/s. At 800 m sub-bottom depth in Hole 585A a marked increase in velocity and density results in a calculated reflection coefficient of 0.142 at 8.96 s two-way traveltime. We therefore interpret the "9-s" reflector of the site survey to be a high-velocity layer in the Aptian volcaniclastic section rather than a reflection produced by the predicted Mesozoic pelagic sediment section.

The Cenomanian-Turonian Oceanic Anoxic Event

A combination of paleontologic, lithologic, and organic geochemical data indicates that the Cenomanian-Turonian oceanic anoxic event (Schlanger and Jenkyns, 1976) left its record in the sediments cored at Site 585.

In Section 585-32-3, a 2 cm-thick band of black, pyritic silty claystone lies within a turbidite sequence. The sediments directly below the black band are bioturbated claystone; directly above the black band, in very sharp contact (assuming no missing section), are 1 cm of plane-laminated silt overlain by a 2-cm-thick bed of cross-laminated siltstone. Organic carbon percentages from samples studied in Hole 585 are all well below 1.0% except for two replicate analyses of the black band at 72 to 73 cm in Section 585-32-3, which yielded C_{org} values of 5.6 and 5.1%. Rock-Eval data from this interval showed the following: $S_1 = 0.042$ mg hydrocarbon/g, $S_2 = 51.5$ mg hydrocarbon/g, $S_3 = 1.78$ mg CO₂/g, $I_H = 954$ mg hydrocarbon/g C_{org} , and $I_O = 33$ mg CO₂/g C_{org} .

 C_{org} . The I_H (hydrogen index) and I_O (oxygen index) values plotted on a van Krevelen-type diagram show that this sample falls exactly on the initial part of the Type-I kerogen evolution path; the rock is a typical sapropelic oil shale. The organic carbon in the black band is of marine algal origin. Shore-based measurements of this sample, carried out at KFA Jülich, revealed an organic carbon content of 9.9% and a hydrogen index of 383 mg hydrocarbon/g Corg. Based on these data the sample should be classified as a Type-II kerogen, which was also supported by microscopic studies. According to R. Mukhopadhyay (personal communication, 1982), the kerogen consists of mostly degraded dinoflagellates and unicellular algae. The minerals were classified as sapropelinite II and bituminite II, which would make an excellent petroleum source bed. Paleontological data show that in Sections 585-32-2 and 585-32-4, which lie directly above and below Section 585-32-3, transported bathyal species are found. In 585-32-3, however, foraminifers are lacking and the more than 42 μ m fraction consists of recrystallized radiolarians. Section 585-32-4 contains a planktonic fauna indicative of the late Cenomanian W. aprica Subzone of the R. cushmani Zone. The Cenomanian/Turonian boundary is placed between Sections 585-32-2 and 585-32-3. In Sample 585A-8, CC a thin layer (1 cm thick) of a black sediment composed of recrystallized radiolarians coated and encased in a matrix of dark material lies at the base of a light gray section of radiolarian-rich sediment marked by flecks of black, presumably organic, matter. The black lamina in Sample 585A-8,CC contains 1.45% C_{org} . Rock-Eval data for this sample showed the following: $S_1 = 0.018$ mg hydrocarbon/g, $S_2 = 11.7 \text{ mg hydrocarbon/g}$, $S_3 = 0.83 \text{ mg}$

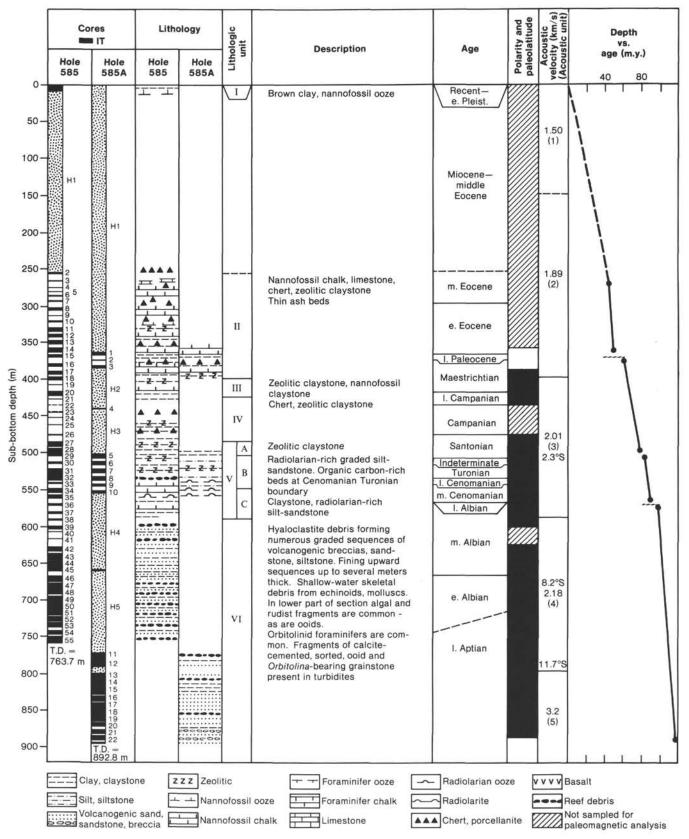


Figure 48. Summary log of Site 585. (Stippled areas in Core Recovery column indicate washed intervals; hachured patterns in Polarity column indicate intervals without paleomagnetic information.

 $\rm CO_2/g$, $\rm I_H$ = 807 mg hydrocarbon/g $\rm C_{org}$, and $\rm I_O$ = 57 mg $\rm CO_2/g$ $\rm C_{org}$. The $\rm C_{org}$ in Core 585A-8, CC is also an immature, marine algal-derived Type-I kerogen. The corresponding shore-based data for this sample, however, were 2.6% organic carbon and $\rm I_H$ = 423 mg hydrocarbon/g $\rm C_{org}$, classifying it also as a Type-II kerogen. This layer, being composed largely of radiolarians, may represent a reworked deposit that was originally similar to the black band in Section 585-32-3 or it may represent a second manifestation of preservation of algal kerogen. In Hole 585A the Cenomanian/Turonian boundary is placed at the level of Sample 585A-9-1, 50 cm (i.e., 50 cm below the $\rm C_{org}$ -rich radiolarian lamina). The occurrence of these algal kerogen-rich layers at

The occurrence of these algal kerogen-rich layers at or very close to the Cenomanian/Turonian boundary indicates that they are a product of the preservation of organic carbon during the short-lived but global Cenomanian-Turonian oceanic anoxic event now known to have left its record in sections from the Atlantic basin, the Tethys, the U.S. Western Interior Basin, the northern European shelf, and west African marginal basins as well as the Pacific basin (Schlanger and Jenkyns, 1976; Arthur and Schlanger, 1979; Jenkyns, 1980; Schlanger and Cita, 1982; de Graciansky et al., 1982; Schlanger et al., in press).

Geologic History of the East Mariana Basin

The Mariana Basin is a relatively featureless deep basin bordered on the north by the Magellan Seamounts, on the west by a group of large seamounts along the outer edge of the Mariana Trench, and on the east by a group of seamounts that include Ita Maitai Guyot. Dredge hauls taken from several of these bounding seamounts indicate that they are Cretaceous and have undergone subsidence of approximately 1500 m since the Late Cretaceous. To the south the Mariana Basin is bordered by the Caroline Ridge as well as the Caroline Islands, a chain of volcanic islands that show an age progression from the youngest, Kusaie, which formed 3.5 Ma, through Ponape, which is apparently 12 m.y. old, and Truk, which formed in the early to middle Miocene.

The Mariana Basin (Fig. 2) is enclosed by the 3000-fm contour line (5490 m), with several areas within the Basin lying deeper than the 3200 fm line (5870 m). The flat floor of the East Mariana Basin lies at a depth of 6100 m. This depth corresponds, on the Parsons-Sclater subsidence curve, to a plate age of approximately 150 m.y. The mapped magnetic lineations in the western Pacific (Fig. 1), if projected into the Mariana Basin, predict an age for the Pacific Plate there consistent with the age predicted by the Parsons-Sclater curve. Paleomagnetic data based on cores recovered at several DSDP sites in the area, including Sites 289, 462, and 585, support the idea that the lithosphere underlying the Mariana Basin has been moving to the north since the Aptian at a rate of 4.5 cm/yr.

The following discussions of the geological history of the East Mariana Basin initially assume that the geophysical data can be interpreted as demonstrating that the Basin does indeed have as its basement a segment of lithospheric plate 150 m.y. old. In the interests of objec-

tivity we must point out that not all geologists would accept this assumption; Hilde, Uyeda, and Kroenke (1976) present a scheme in which Cretaceous "intraplate spreading" in the western Pacific produced Late Cretaceous lithosphere in the area of the Mariana Basin. Because well defined magnetic anomaly patterns are not seen in the critical area and because Jurassic sediments have not been drilled in the Mariana Basin, arguments similar to those of Hilde et al. cannot be lightly dismissed. Time limitations aboard Glomar Challenger, however, did not allow exhaustive analyses of regional Pacific Mesozoic geology. If our initial assumption is correct, the East Mariana Basin was somewhat south of 11.7°S latitude and was at a depth of 5800 to 5900 m by the late Aptian. By then many of the surrounding edifices had built to sea level and perhaps formed subaerial mountains. Great volumes of hvaloclastic basalt and other fragments were transported by turbidity currents and debris flows for tens of kilometers and deposited on the Basin floor. The volcanic rocks are of normal edifice-basalt types. The carbonate skeletal fragments must have formed on banks or reefs in the photic zone atop the volcanic edifices. Shallow depths would also have provided the water agitation and supersaturation with respect to calcium carbonate necessary to form ooids. As pointed out previously, DSDP Site 202 on Ita Maitai Guyot penetrated lagoonal sediments and hard oolitic limestone of the pre-Eocene. The abundant ooids found on Ita Maitai and in the volcanogenic turbidites at Site 585 pose an intriguing question relating to carbonate petrology. True ooids are unknown in modern atoll environments and were not seen in any of the atolls drilled in the Pacific basin. Nor have any been observed in uplifted reef and associated limestones in the Mariana arc or other arcs bounding the western edge of the Pacific basin. The only Pacific occurrence of oolitic limestone younger than Cretaceous known to us is within the now emergent lagoon of Malden Island (S. O. Schlanger, unpublished U.S. Geological Survey data). These appear to have formed in a hypersaline lagoon environment. The lack of recognizable coral debris and the paucity of algal fragments in Holes 585 and 585A suggest that the ooids formed in an environment less than optimum for vigorous reef growth. Ooids were also found in Cretaceous strata in the Mid-Pacific Mountains (Thiede, Vallier, et al., 1981). The development of these ooid-producing carbonate banks needs to be investigated further. The presence of abyssal benthic foraminifers in strata of late Aptian through Paleocene age shows that the floor of the Mariana Basin was deep throughout this time span and indeed to the present day. The Aptian volcanism that formed the seamounts around the East Mariana Basin correlates with recorded Aptian volcanism in the Mid-Pacific Mountains (Thiede, Vallier, et al., 1981) and the Nauru Basin (Larson, Schlanger, et al., 1981). The undisputed occurrence of Cretaceous midplate volcanism between about 115 and 70 Ma on lithospheric plate segments ranging in age from approximately 100 to 160 m.y. (Haggerty et al., 1982) makes it difficult to reconcile this massive Cretaceous volcanism with simple hot-spot models such as can account for the Hawaiian-Emperor Chain (see Larson and Schlanger, 1981; Schlanger and Premoli Silva, 1981). Further, the fact that volcanism persisted in particular locations for long periods of time argues against the hot-spot model. In the Nauru Basin, volcanism took place from about 110 to about 70 Ma; with reference to the Mid-Pacific Mountains, Thiede et al. (1982) state that volcanic events built the edifice and platforms there over a period of 40 to 50 m.y.

The next phase in the history of the East Mariana Basin is marked by the rather abrupt change in lithology in Holes 585 and 585A from coarse-grained volcanogenic turbidites rich in shallow-water debris of late Aptian through middle Albian age to finer-grained zeolitic claystones and siltstones rich in radiolarians from late Albian through Cenomanian and Turonian time. These sediments are turbidites and contain bathyal and neritic foraminifers but lack coarse-grained shallow-water carbonate debris. The seamounts around the East Mariana Basin had by this time probably subsided well below sea level but their tops and upper slopes probably lay within a few hundreds of meters of the sea surface.

During latest Cenomanian or earliest Turonian, the water column in the Basin was characterized by a thick and intense midwater O_2 minimum zone or the bottom waters of the Basin were essentially anoxic. These conditions allowed the accumulation of significant amounts of marine algal organic carbon in thin laminae in turbidite sequences. The precise correlation of these organic-rich layers with others described from the Tethys, European shelf sequences, and the Atlantic Basin, as well as the U.S. Western Interior Basin, attest to the globality of the Cenomanian-Turonian oceanic anoxic event, during which time the O_2 minimum layers expanded in many, widespread basins (Schlanger et al., in press).

By Latest Cretaceous and throughout the Tertiary, the East Mariana Basin was receiving turbiditic sediments from the tops and slopes of subsiding seamounts.

A thin ash bed in strata of early Eocene age (about 52 Ma) may be interpreted to be the result of renewed volcanism in the area; the volcanic basement at Enewe-tak, for example, formed 50 to 59 Ma (Kulp, 1963).

REFERENCES

- Arthur, M. A., and Schlanger, S. O., 1979. Cretaceous "Oceanic Anoxic Events" as casual factors in development of reef-reservoired giant oil fields. Am. Assoc. Pet. Geol. Bull., 63:870-885.
- Bachman, R. J., 1983. Elastic anisotropy in marine sedimentary rocks. J. Geophys. Res., 88:539-545.
- Blatt, H., Middleton, G., and Murray, R., 1972. Origin of Sedimentary Rocks: Englewood Cliffs, N.J. (Prentice Hall).
- Bouma, A. H., 1962. Sedimentology of Some Flysch Deposits: Amsterdam (Elsevier).
- Boyce, R. E., 1976. I. Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, wetbulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. *In* Schlanger, S. O., Jackson, E. D., et al., *Init. Repts. DSDP*, 33: Washington (U.S. Govt. Printing Office), 931-958.
- Carlson, R. L., and Christensen, N. I., 1977. Velocity anisotropy and physical properties of deep-sea sediments from the western South Atlantic. *In* Supko, P. R., Perch-Nielsen, K., et al., *Init. Repts. DSDP*, 39: Washington (U.S. Govt. Printing Office), 555–559.
- Chase, T. E., Menard, H. W., and Mammerickx, J., 1970. Bathymetry of the North Pacific. Scripps Inst. Oceanogr. IMR Tech. Rept. Ser., TR-12, Chart 6.

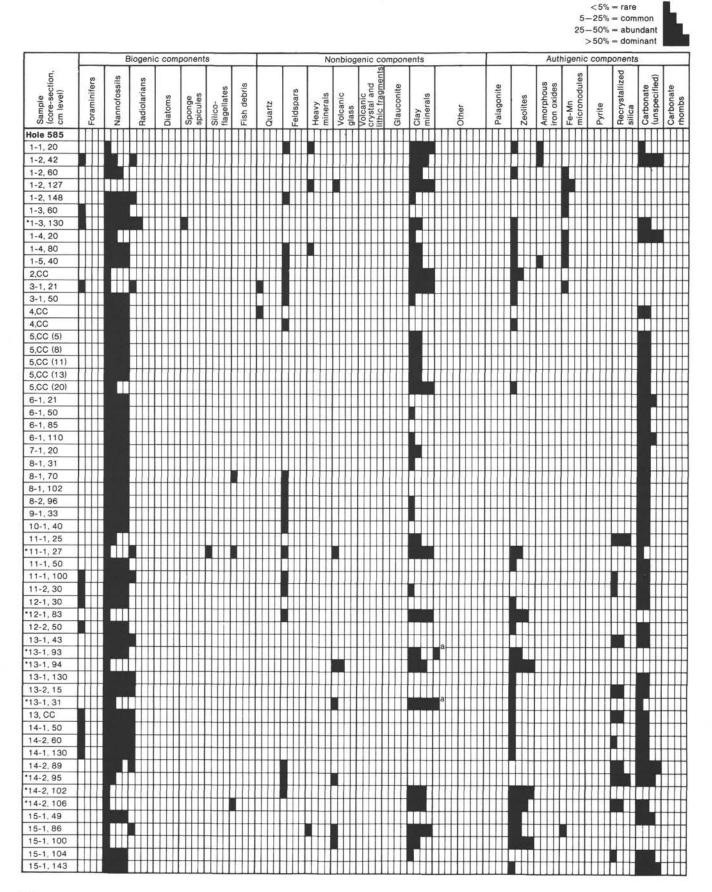
- Deep Sea Drilling Project, 1982. Shipboard Organic Geochemistry Guide/Handbook, (B. R. T. Simoneit, ed.). Xeroxed, in-house publication.
- de Graciansky, P. C., Brosse, E., Deroo, G., Herbin, J.-P., Montadert, L., Müller, C., Sigal, J., and Schaaf, A., 1982. Les formations d'age Crétacé de l'Atlantique Nord et leur matiène organique: paleogéographie et milieus de dépot. *Rev. Inst. Fr. Petrol.*, 37:275-337.
- Detrick, R. S., and Crough, S. T., 1978. Island subsidence, hot-spots, and lithospheric thinning. J. Geophys. Res., 83:1236-1244.
- Douglass, R. C., 1960. Revision of the Family Orbitolinidae. Micropaleontology, 6(3):249-270.
- Duennebier, F. K., and Petersen, L. D., 1982. Summary report of IPOD site surveys in the western Pacific conducted by R/V Kana Keoki, Crusie KK810626 Leg 4, Guam to Majuro, 20 Sept.-25 Oct. 1981, Hawaii Institute of Geophysics.
- Ellis, B. F., and Messina, A. R., 1967. Catalogue of Index Foraminifera: New York (The American Museum of Natural History), Spec. Publ. Vol. 2.
- Espitalié, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P., Paulet, J., and Boutefeu, A., 1977. Méthode rapide de caractérisation des roches mères, de leur potential pétrolier et de leur degré d'évolution. *Rev. Inst. Fr. petrol.*, 32:23-42.
- Foreman, H. P., 1973. Radiolaria from DSDP Leg 20. In Heezen, B. C., MacGregor, I. D., et al., Init. Repts. DSDP, 20: Washington (U.S. Govt. Printing Office), 249-305.
- _____, 1975. Radiolaria from the North Pacific, Deep Sea Drilling Project, Leg 32. In Larson, R. L., Moberly, R., et al., Init. Repts. DSDP, 32: Washington (U.S. Govt. Printing Office), 579-676.
- Fujii, N., 1981. Anisotropy in compressional-wave velocities and wetbulk densities of calcareous sedimentary rocks. Deep Sea Drilling Project Leg 62. In Thiede, J., Vallier, T. L., et al., Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office), 995-997.
- Haggerty, J. A., Schlanger, S. O., and Premoli Silva, I., 1982. Late Cretaceous and Eocene volcanism in the southern Line Islands and implications for hot-spot theory. *Geology*, 10:433-437.
- Hardenbol, J., and Berggren, W. A., 1978. A new Paleogene numerical time scale. Am. Assoc. Petrol. Geol. Studies Geol., 6:213-234.
- Heezen, B. C., MacGregor, I. D., et al., 1973a. Init. Repts. DSDP, 20: Washington (U.S. Govt. Printing Office).
- _____, 1973b. Mesozoic chalks beneath the Caroline abyssal plain: DSDP Site 199. In Heezen, B. C., MacGregor, I. D., et al., Init. Repts. DSDP, 20: Washington (U.S. Govt. Printing Office), 65– 74.
- Hilde, T. W. C., Isezaki, N., and Wageman, J. M., 1976. Mesozoic seafloor spreading in the North Pacific. In Sutton, G. H., Manghnani, M. H., and Moberly, R. (Eds.), Geophysical Monograph 19, The Geophysics of the Pacific Ocean Basin and Its Margins (Woodard Vol.): Washington (Am. Geophys. Union), pp. 205-226.
- Hilde, T. W. C., Uyeda, S., and Kroenke, L., 1976. Tectonic history of the western Pacific. *In Drake*, C. L. (Ed.), *Geodynamics: Progress* and Prospects: Washington (Am. Geophys. Union), pp. 1–15.
- Jenkyns, H. C., 1980. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London, 137:171-188.
- Kagami, H., Karig, D. E., Coulbourn, W. T., et al., in press. Init. Repts. DSDP, 87: Washington (U.S. Govt. Printing Office).
- Keating, B. H., and Helsley, C. E., 1978a. Magnetostratigraphic studies of Cretaceous sediments from DSDP Site 369. In Lancelot, Y., Seibold, E., et al., Init. Repts. DSDP, 41 (Supplement to Vol. 41): Washington (U.S. Govt. Printing Office), 983–986.
- ______, 1978b. Paleomagnetic results from DSDP Hole 391C and the magnetostratigraphy of Cretaceous sediments from the Atlantic Ocean floor. *In* Benson, W. E., Sheridan, R. E., et al., *Init. Repts. DSDP*, 44: Washington (U.S. Govt. Printing Office), 523-528.
- Kono, M., 1980a. Paleomagnetism of DSDP Leg 55 basalts and implications for the tectonics of the Pacific Plate. In Jackson, E. D., Koizumi, I., et al., Init. Repts. DSDP, 55: Washington (U.S. Govt. Printing Office), 737-752.
- _____, 1980b. Statistics of paleomagnetic inclination data. J. Geophys. Res., 85:3878-3882.
- Kuenen, P. H., 1964. The shell pavement below oceanic turbidites. Mar. Geol., 2:236-246.
- Kulp, J. L., 1963. Potassium-argon dating of volcanic rocks. Bull. Volcanologique, 26:247–258.

- Ladd, H. S., Ingerson, E., Townsend, R. C., Russel, M., and Stephenson, H. K., 1953. Drilling on Eniwetok Atoll, Marshall Islands. Am. Assoc. Pet. Geol. Bull., 37:2257-2280.
- Lanphere, M. A., and Jones, D. L., 1978. Cretaceous time scale from North America. In Cohee, G. V., Glaessner, M. F., and Hedberg, H. D. (Eds.), Contributions to the Geologic Time Scale. Am. Assoc. Pet. Geol. Studies in Geology, 6:259-268.
- Larson, R. L., Schlanger, S. O., 1981. Cretaceous volcanism and Jurassic magnetic anomalies in the Nauru Basin, western Pacific Ocean. Geology, 9:480-484.
- Larson, R. L., Schlanger, S. O., et al., 1981. Init. Repts. DSDP, 61: Washington (U.S. Govt. Printing Office).
- Lowrie, W., Alvarez, W., Premoli Silva, I., and Monechi, S., 1980. Lower Cretaceous magnetic stratigraphy in Umbrian pelagic carbonate rocks. *Geophys. J. Roy. Astron. Soc.*, 60:263-281.

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Second Plankt. Conf., Rome, pp. 739-785.

- Okada, H., and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973, 1975). *Mar. Micropaleontol.*, 5: 321-325.
- Pechersky, D. M., Khramov, A. N., 1973. Mesozoic paleomagnetic scale of the U.S.S.R. *Nature*, 244:499-501.
- Perch-Nielsen, K., 1979. Calcareous nannofossils from the Cretaceous between the North Sea and the Mediterranean. Aspekte der Kreide Europas. *IUGS Series A*, 6:223–272.

Pessagno, E. A., Jr., 1967. Upper Cretaceous planktonic foraminifera from the western Gulf coastal plain. *Paleontogr. Am.*, 37:1-445.


- Premoli Silva, I., and Brusa, C., 1981. Shallow-water skeletal debris and larger foraminifers from Deep Sea Drilling Project Site 462, Nauru Basin, western equatorial Pacific. *In Larson*, R. L., Schlanger, S. O., et al., *Init. Repts. DSDP*, 61: Washington (U.S. Govt. Printing Office), 439-473.
- Premoli Silva, I., and Sliter, W. V., 1981. Cretaceous planktonic foraminifers from the Nauru Basin, Leg 61, Site 462, western equatorial Pacific. In Larson, R. L., Schlanger, S. O., et al., Init. Repts. DSDP, 61: Washington (U.S. Govt. Printing Office), 423-437.
- Riedel, W. R., 1974. Radiolaria from the southern Indian Ocean, DSDP Leg 26. In Davies, T. A., Luyendyk, B. P., et al., Init. Repts. DSDP, 26: Washington (U.S. Govt. Printing Office), 771-814.

Romein, A. J. T., 1979. Lineages in early Paleogene calcareous nannoplankton. Utrecht Micropaleon. Bull., 22:1–231.

- Schaaf, A., 1981. Late Early Cretaceous Radiolaria from Deep Sea Drilling Project Leg 62. In Thiede, J., Vallier, T. L., et al., Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office), 419– 470.
- Schlanger, S. O., and Cita, M. B. (Eds.), 1982. Nature and Origin of Cretaceous Organic Carbon-Rich Facies: London (Academic Press).
- Schlanger, S. O., and Jenkyns, H. C., 1976. Cretaceous oceanic anoxic events—causes and consequences. *Geologie en Mijnbouw*, 55: 179-184.
- Schlanger, S. O., Jenkyns, H. C., and Premoli Silva, I., 1981. Volcanism and vertical tectonics in the Pacific basin related to the global Cretaceous transgressions. *Earth Planet. Sci. Lett.*, 52:435-449.

- Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., and Scholle, P. A., in press. The Cenomanian-Turonian oceanic anoxic event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ^{13} C excursion. *In* Brooks, J., and Fleet, A. (Eds.), *Marine Petroleum Source Rocks:* Geol. Soc. London.
- Schlanger, S. O., and Premoli Silva, I., 1981. Tectonic, volcanic, and paleogeographic implications of redeposited reef faunas of Late Cretaceous and Tertiary age from the Nauru Basin and the Line Islands. *In* Larson, R. L., Schlanger, S. O., et al., *Init. Repts. DSDP*, 61: Washington (U.S. Govt. Printing Office), 817-828.
- Shipley, T. H., Whitman, J. M., Duennebier, F. K., and Peterson, L. D., 1983. Seismic stratigraphy and sedimentation history of the East Mariana Basin, western Pacific. *Earth Planet. Sci. Lett.*, 64: 257-275.
- Sigal, J., 1977. Essai de zonation du Cretace Mediterranéen a l'aide des foraminiferes planctoniques. Geol. Mediterranéene, 4:99-108.
- Steiner, M. B., 1981a. Paleomagnetism of the Cretaceous section, Site 462. In Larson, R. L., Schlanger, S. O., et al., Init. Repts. DSDP, 61: Washington (U.S. Govt. Printing Office), 711-716.
- _____, 1981b. Paleomagnetism of the igneous complex, Site 462. In Larson, R. L., Schlanger, S. O., et al., Init. Repts. DSDP, 61: Washington (U.S. Govt. Printing Office), 717-729.
- Thiede, J., Dean, W. E., and Claypool, G. E., 1982. Oxygen-deficient depositional paleoenvironments in the mid-Cretaceous tropical and subtropical Pacific Ocean. In Schlanger, S. O., and Cita, M. B. (Eds.), Nature and Origin of Cretaceous Organic Carbon-Rich Facies: London (Academic Press).
- Thiede, J., Vallier, T. L., et al., 1981. Init. Repts. DSDP, 62: Washington (U.S. Govt. Printing Office).
- Thierstein, H., 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Mar. Micropaleontol., 1:325–362.
- Vandenberg, J., and Wonders, A. A. H., 1980. Paleomagnetism of late Mesozoic pelagic limestones from the Southern Alps. J. Geophys. Res., 85:3623-3627.
- van Hinte, J. E., 1976. A Cretaceous time scale. Bull. Am. Assoc. Pet. Geol., 60:498-516.
- Verbeek, J. W., 1977. Calcareous nannoplankton biostratigraphy of middle and Upper Cretaceous deposits in Tunisia, southern Spain, and France. Utrecht Micropaleont. Bull., 16:1-157.
- Vogt, P. R., and Einwich, A. M., 1979. Magnetic anomalies and seafloor spreading in the western North Atlantic, and a revised calibration of the Keathly (*M*) geomagnetic reversal chronology. *In* Tucholke, B. E., Vogt, P. R., et al., *Init. Repts. DSDP*, 43: Washington (U.S. Govt. Printing Office), 857–876.
- Watts, A. B., Bodine, J. H., and Riber, N. M., 1980. Observations of flexure and the geologic evolution of the Pacific Ocean basin. *Nature*, 283:532-537.
- Whitman, J. M., 1981. Tectonic and bathymetric evolution of the Pacific Ocean basin since 74 Ma (Master's thesis). University of Miami, Florida.
- Winterer, E. L., 1976. Bathymetry and regional tectonic setting of the Line Island Chain. In Schlanger, S. O., Jackson, E. D., et al., Init. Repts. DSDP, 33: Washington (U.S. Govt. Printing Office), 731– 748.

APPENDIX Smear Slide Summary for Holes 585 and 585A

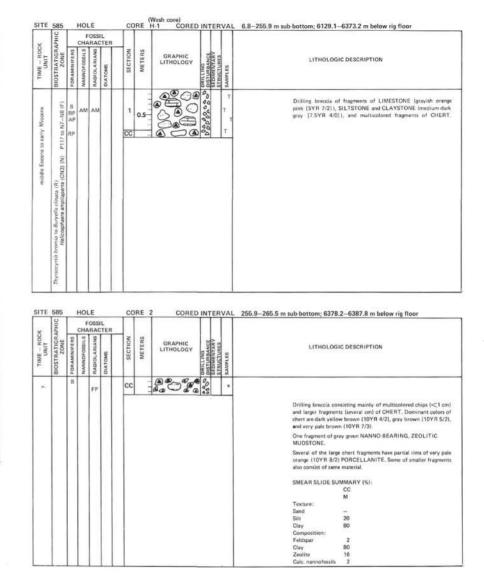
		-	В	ioger	nic (comp	oone	nts	-				-		No	nbi	oge	nic	cor	npon	ents		_				Aut	hig	enic	com	pon	ents			-
ć	-	T	s		T			T				Γ			Τ		Τ	3	nts									T	ŝ		T	pa	1.5		
Sample (core-section, cm level)	Foraminiters		Nannofossils	Radiolarians		Diatoms	Sponge	spicules	Silico- flagellates	Fish debris	Quartz		Feldspars	Heavy	minerals	Volcanic	glass	Volcanic crystal and	ithic fragme	Glauconite	Clay minerals		Other		Palagonite	Zeolites	Amorphous iron ovides		Fe-Mn micronodules	Pyrite		Recrystallized silica	Carbonate	(unspecified)	Carbonate rhombs
16-1, 24	Π	Γ			T	Π	Π	T	Ш	Ш	tTTT	T	Π	П	T	T	T	ĨĬ	T	Ш		T	Ш	Ш	TIT		Π	I	Π	ITT	T	Ш	Ш	Π	Π
16-1,63																	Π											Π							
16-1,73							Ш					Π							П									Ш							
16-1,98					11	44	Ш	11	111		1111			111	11	1	11	11	11	111		11	Ш	111	1111		4	1	111	111	11	111		Ц	111
17-1,8		-			11		111	#	+++-		++++		11.		4	Н	44		4	111-	Ш		111	+++	++++-			4	+++	+++	#			-	+++
17-1, 22				-			111	++	++++		++++	Н	++-	111	+	H	11	++	#		ł		111	+++				#	+++		#			₩	+++
17-1, 31					++-	$\left \right \right $	₩	₩	+++-	$\left\{ + + + + + + + + + + + + + + + + + + +$	++++	₩			₽	44	++	++	₩	++++				+++				₽	+++	+++	₽	+++		╈	+++
17-1, 141		H		+++	H	+++	₩	₩	+++-		++++	H	₩	$\left \right $	₩	╫	╢	╫	₩	$\left \right $		+++	Hł	+++			++-	₩	+++		╓	₩			
17-2, 16		H		H		Ht	$^{++}$	Ħ	+++			۲	Ħ	H	Ħ	++	Ħ	$^{++}$	Ħ	ĦŦ			H	111				Ħ	111		Ħ	Ħ		Π	111
17-2, 34		H			Ħ		ttt	Ħ	111		****	T	tt	H	Ħ	Ħ	Ħ	tt	Ħ	ttt			Ht	+++			11	Ħ	ttt	ttt	t	m	П	11	111
17-2, 41							Ħ	T				T	tt	Ħ	T	11	Ħ	Ħ	tt	III	ΠΠ							Π							
17-2, 69												Π																						Π	
18-1, 30	1						Ш	1	111	Ш	Ш	П			\square		П	I					Ш	\prod				1	111	11	H	111		H	111
18-1,60					11			11	111		1111	11		11	1	1	11	1	1	111			11					1	111	111	11	111		H	111
*18-1,84		H	+		11	111	111	++	+++-		++++	11	11	111	11	11	11	11	11	111		1	111	111	++++-			11	+++	+++	11	+++		+	+++
*18-1, 104		-						-			++++	H			++	++	++	++	#	+++-	ŧ		11	+++				11	+++	+++	₩	+++		-	₩
*18-1, 116 *18-1, 120		+		++	++-	$\left \right $	+++	+			++++	H	++-	$\left \right $	+	+	+	++	₩	+++			H	+++	++++-		+++	+	+++	$\left \right +$	++	+++		+	+++
*18-1, 124	++	H		Ht	H		₩	H	+++			H	₩	HH	₩	₩	H	++	₩	Hł			Hł	+++			++	H	+++	H	₩	₩		H	+++
*18-1, 128	\mathbb{H}			\mathbb{H}^{+}	H	\mathbb{H}	\mathbb{H}	++	+++		++++	H	++-	\mathbb{H}	Ħ		H	++	₩	+++		H	Hł	+++			++-	H	+++	+++	Ħ	+++		Ħ	+++
*18-2,6	Ht	Ħ			Ħ	Ht	Ħ	Ħ		++++		Ħ	Ħ	H	Н		Ħ	Ħ	Ħ	ĦŦ	1	H	Ht	+++	++++			Ħ	ttt	ttt	Ħ	ttt		Ħ	111
*18-2,8	Ht	T.			tt	Ht	ĦI	11			1111	Ħ	Ħ		Ħ	H	Ħ	Ħ	Ħ	ttt			Ħt	$^{++}$			Ħ	Ħ	ttt	ttt	Ħ	ttt	T	1	111
*18-2, 21							ĦI	Ħ				Ħ	tt		Π	H	Ħ	Ħ	Ħ	ttt	1		Ħ	111				IT					L	1	
*18-2, 23												Π	T						T				Ш											Π	
18-2, 34																							Ш					Ц			Щ.	Ш		Ш	111
*19-1, 3					11	Ш	111	11	111	1111	1111		4		4		Ц	11	11	111		11	Ш	111	1111		11	11	111	111-	#	111			+++
19-1, 12		11					111	++	++++	╘┙┼┼	++++	٠	++-	111	+	L	11	++	#	++++			Ш	+++	++++			4	+++	+++	₩			++	+++
*19-1, 18		H						++	+++	┍┥┼┼	++++		++-		+		++	+++	#	++++		++-		+++	++++			H	+++	₩	₽	+++		4	+++
*19-1, 23 *19-1, 40		H		\mathbb{H}		\mathbb{H}	+++	+	++++	+++	++++	٠	++-		+	++	+	++	₩	++++	++++	++-	₩	+++		++++		H	+++	+++	₩	₩		ł	+++
*19-1, 50	\mathbb{H}	H			++	+++	+++	+	+++		++++	₽	++-		+	+	+	++	₩	+++	++++	++-	\mathbb{H}	+++			+++	H	+++	+++	₩	+++		ľ	+++
20-1, 11	H	H	T.		Ħ		+++	Ħ	+++	++++	++++	Ħ	Ħ		Ħ	Ħ	Ħ	++	Ħ	+++			\mathbb{H}	+++				Ħ	111	ĦĦ	Ħ	Ħt		Π	111
*20-2, 13		tΓ			tt	Ht	111	Ħ		1111	1111	Ħ	tt		t		Ħ	Ħ	Ħ	ttt		H	ttt	111				Ħ	111	ttt	Ħ	ttt		Ħ	111
*20-2, 23	HT	Ħ	HT	Ħt	Ħ	HT	Ħ	Ħ		1111	1111	T	tt	H	П	T	1	Ħ	Ħ	ttt			Ħ	111				Ħ	ttt	ttt	Ħ			T	
*20-2, 50												Π																Π							
*20-3, 23																												Ц		Ш	Щ	Ш		Щ	111
*20-3, 57	111				11	111	111	11	111		1111	Ш	11		4			11	11	111		44	Ш	111				Щ	111	111-	4	111		#	111
*20-3, 60	-	1			11	111	111	++	++++	++++	++++	#	++-		Н			++	++	++++			Ш	+++	++++		-	H	+++	+++	н	Ш		4	+++
21-1, 20 21,CC (5)	\mathbb{H}	١P			++-	$\left \right $	$\left\{ + \right\}$	+	+++	++++	++++	H	++-		++	+	++	++	++	+++			+++	+++	++++			₩	+++	+++	H			-	+++
25,CC		₩	$\left \right $		++-	$\left \right $	+++	+	+++	$\left\{ + + \right\}$	++++	₽	₩	$\left \right $	+	+	+	₩	₩	+++		+	$\left \right $	+++				H	+++	+++	H	•++	\mathbb{H}	₩	
*26-1, 20		H	Ht		Ħ		HI	Ħ	+++	++++	++++	H	Ħ	H	Н		H	₩	Ħ	+++		H	H	+++	┍┥┼┼		Ht	H	$^{+++}$	ttt	Ħ	Ht	\mathbb{H}	Ħ	+++
*26-1, 23		1 h	++		Ħ			++	+++	++++	++++	Ħ	Ħ		Ħ		t.	++	Ħ	+++			\mathbb{H}	+++	++++			Ħ	+++	111	Ħ	111		Ħ	111
*26-1, 36	ITT	tΓ	ĦT		Ħ	ĦŦ	111	Ħ	111	1111	1111	Π	tt		Τ	П	Π	Ħ	Ħ	ĦŦ	1		Ħ	TH				Ħ	111	III	Π	Ш	Π	Π	
*26-1, 39						III		T	111			Ħ	tt		Τ		T	Ħ	tt	ttt	1		Ħ					IT			Π			Π	
*26-1, 44		Π										Π		Π			Π																		
*26-1, 61												Ш																Щ	Ш	111	Щ	Ш	Ш	Щ	111
*26-1, 64	111	Щ	Ш	Ш	11	111	111	1	111	1111	1111	Ц	11		4		Ц	11	11	111		4	Ш	444	1111			4	111	111	4	Ш	111	4	111
27-1, 15		11	111-	111	#	111		++	+++		++++		11		4	H	11	#	11	111		-	111	+++	++++			#	+++	$\left \right \right $	1	$\left \right \right $		++	+++
*27-1, 27		#	-		#		+++	++	+++	++++	++++	H			+	++	++	++	++					+++	++++			₽	+++	+++	₩		$\left \right $	+	+++
*27-1,67 *27-1,82	+++	++	+++	H	+	+++	+++	++	+++	++++	++++	μ	++-	$\left \right $	+	+	+	++	+	$\left \right $			$\left \right \right $	+++	++++		$\left \right \right $	++	+++	+++	╢	+++	$\left \right $	╢	
*27-1,82	\mathbb{H}	₩	+++	H	₩	\mathbb{H}	+++	++	+++	++++	+++		++		+		╢	+	+	+++		+	H	+++	++++			H	+++	+++	H		H	+	
*27-1, 109	\mathbb{H}	+		\mathbb{H}	₩	$\left \right \right $	+++	+	+++	++++	++++		++-		+		+	+	+	+++		+	H	+++	++++			Ħ	$^{++}$	$^{++}$	t			$^{++}$	
*27-2, 39		Ħ			Ħ	$^{++}$		+	+++			f	tt		+	H	$^{++}$	+	Ħ	$^{+++}$		+	H	+++	++++			tt	††	††	Ħ	††		†	
*27-2, 42	111	tt	111		tt			+		1111	1111	f	11	tH			$^{\dagger \dagger}$	†	tt	ttt			III	111				tt	111	111	IT			\dagger	
27-2, 79		Ħ										Ī	IT		T		Ħ	T										Π		Ш	Π	Ш		II	
27-3, 16																												Π			Π			Ш	
• = minor lith	alagu										a	-				b.				1 100				-Lucari	stalline		nata	-		CC.		Innit	, d,		

^aPlant debris? ^bLath-shaped (20-100 µm) polycrystalline carbonate mineral ^cCeladonite ^dGypsum?

		8	Biogen	ic con	pone	nts				N	onbiog	genic co	mpon	ents			Aut	higenic	comp	onents		-
Sample (core-section, cm level)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge spicules		flagellates Fish debris	Quartz	Feldspars	Heavy minerals	Volcanic glass	Volcanic crystal and lithic fragments	Glauconite	Clay minerals	Other	Palagonite Zeolites	Amorphous iron oxides	Fe-Mn micronodules	Pyrite	Recrystallized silica	Carbonate (unspecified)	Carbonate rhombs
*27-3, 20			Ш			TT	TITT					TIT	Ш							TTT	TTT	
27-3, 85																						
27-3, 123																						
*27-4, 53																						
*28-1, 18																						
*28-1, 82																						
*28-1,85																						
28-3, 80						Ш								1								
*28-4, 62						111		1111	1111			1111	111				1111					
*29-2, 56						111	+++++	+++++	++++-			1111	-111-		++++++++		++++					
29-2, 62						111									++++++++		++++					
*29-2, 101	++++					111	++++	++++				+++++	-+++-		+++++++		++++	$\left\{ \right\}$				
29,CC (5)	+++					+++		++++					+++				++++	$\left \right \left \right $				
30-1, 30	+++-					+++	++++	++++	++++		+++		+++			++++-	++++				+++-	
*30-1, 124	+++-					$\left\{ \right\}$	++++	++++	++++			++++	+++-	e .				++++			+++-	++++
30,CC	+++					$\left\{ \right\}$	++++	++++		+++-	+++	++++	+++		b		++++	++++		+++	+++	++++
30,CC 31-1, 40	+++-		-			+++	++++			+++-		++++	+++			┝┿┽┿╸╺╈┥	++++				++++	++++
and the second se	+++				+++	+++	+++++						+++		+++++++		++++	++++				
31-1, 89 31-1, 94	+++					+++	++++	++++		+++-		++++	+++-	á i	+++++++		++++	++++				
*31-2,76	+++					+++	+++++	++++	A ++-	+++-		++++	+++		+++++++		++++	++++				
31-2, 101	+++			+++	$\left + + + \right $	+++	+++++					++++	+++		+++++++		++++	++++		+++		
31-2, 130						+++	+++++	┍╸┼┼			++	++++	+++		+++++++			++++			+++	
31-3, 75	++++		-+++	+++-		+++	+++++	++++				++++	+++	ŧ,	++++++++		++++	++++			+++	
31-3, 147						HH						++++	+++		++++++++							
31,CC (15)				++++	$\left + + \right $	+++	+++++	++++		+++	+++	++++	+++	e ;	+++++++		++++					
32-1, 12						+++					+++				+++++++		++++	++++				
*32-1, 129						$^{++}$	+++++						+++				++++	++++				
32-2, 100						ttt											1111	++++				
32-3, 17						$^{++}$	+++++								+++++++						111	
32-3, 100						ttt		<u>++++</u>				1111	+++									
32-4, 130						ttt																
32-3, 73						Ħ								Î I								
34-1, 21																						
34-1, 44																						
34-2, 17																						
*34-2, 71																						
34-3, 43																						
35-1, 4																						
35-1, 45	111				111	111	1111	1111		111	11	1111	111				1111	1111		1111		1111
35-1, 103		44			111	111		1111				1111	111		+++++++		1111			111	44	444
35-2, 6				++++		111	+++++	1111	+++++			+++++	+++		++++++++	╎┼┼┼╘┛┼┼	++++	++++				++++
35-2, 45						111		1111					+++-				++++					++++
*36-1,67	+++-			+++-		$\parallel \mid$	+	++++	++++-	++++	-+++	++++	++++		+++++++		++++		++++			++++
*36-1,72						$\left \right \right $	+- ++	++++	+++++			+++++	++++		+++++++		++++				++++	++++
*36-1,81	++++	++++	++++	+++	+++	$\left\{ \right\}$	┼┦┩┼┼	++++		++++			+++		+++++++		++++		++++		++++	++++
*37-1, 19	+++	++++	++++			$\left\{ \right\}$	+++++	++++		++++			++++		+++++++	┝┼┼┼╸╸┼┼	++++		++++	++++	++++	++++
*37-1, 35	+++-	++++				+++	┼┦┩┼┼	++++		+++	+++	++++	+++		+++++++		++++				++++	++++
*37-1, 42	+++	++++		++++	+ +	+++	++++	++++			-+++	++++	+++		+++++++						++++	++++
*38-1,9	+++-	++++		++++	++++	+++	++++	++++				++++	+++		++++++++						111	++++
*38-1,62	++++	++++		++++	+ +	+++		╉╫╫┼		++++		++++	+++		┽┽┼╂┼┼┼		++++					++++
*39-1, 57		++++			+++	+++	┼┍┑┼┼	++++		++++			+++		+++++++		++++					++++
*39-2, 17	+++-	++++	++++	+++	++++	+++	++++	++++	++++	++++		++++	+++		+++++++	┢╅┼┼╘┪┼┼						++++
*39-1, 2		++++			+++	+++	+++++						+++				++++				+++	
*39-2, 43	+++	++++		+++	++++	+++	++++	++++		+++	+++		+++		++++++++	++++	++++				++++	
*40-1,64					+++	+++							+++		+++++++						+++	
*41,CC (22)				+++	++++	+++	+++++					++++	+++		+++++++		┍╸┼┼					++++
*41,CC (32)						$^{++}$	++++								+++++++		++++					
41,00 (02)		шШ				ш	шш	1111	ш			шЦ	111				1111			шш	1111	

			_	Bi	oge	nic	co	mp	on	en	ts			Т		_)	No	nbi	oge	enic	co	mpon	ents	_	_	-	_	Т				10	Aut	hige	enic	co	mp	one	ents			_	_
ç		Τ	60	T		Т					Γ			1		Т		Т		Τ							Т		-		T										_	_		<u>_</u>		-
Sample (core-section, cm level)	Foraminifers		Nannofossils		Radiolarians							BS	ris				S				0		Volcanic crystal and	lithic fragments	ite							ite			SNC	iron oxides		micronodules			Recrystallized		te	(unspecified)	Carbonate	
Sample (core-sec cm level)	, in		ofor		olar		Diatoms		age	spicules	6	flagellates	Fish debris		먹		Feldspars		2	minerais	Volcanic		ala	frag	Glauconite	Clay minerals			-			Palagonite		tes	ha	oxid	Ę	ouo		5	yste	_	Carbonate	bec	ona	sys
Sample (core-se cm leve	oral		anr		adi		iato		Sponge	pict	Silico-	age	4s		Quartz		elds		Heavy	aui	olca	glass	olca	hic	lau	lay			Other			alag	1	Zeolites	IOL	uo	Fe-Mn	licre		- yrite	lecr	silica	arb	Isun	arb	non
*41,CC (6)	L.	+	π		ñ	╉	П	П	S T	0	0) =	I II	H	TTT		Ť			E	>	6	20	三	0		+	πŕ	ñ	Π	╀				Ŧ	Ť	14	Ē	-	È	Ť	σ Π		Ŧ	П	ň
*42-1, 10		Ħ	Ħ	H	H	Ħ	Ħ	t		Ħ	Ħ	Ħ	\mathbb{H}	Ħ		h	H	П		Η	Π	H		H				++	Ħ	$^{++}$	t	\mathbb{H}		Ħ	H	Ħ	H	H	H	H	H			Ħ	H	П
42-1,80	Ħ	Ħ	tt	t	H	Ħ	tt	Ħ	Ħ	Ħ	Ħ	tt	Ħ	Ħ		1	Ħ	T	t	Ħ	T	T		Ħ		in the	H		Ħ	Ħ	t	ttt	T	tt	Ħ	Ħ	Ħ	Ħ		T	Ħ		Π	Ħ	IT	Π
*42-1, 99		T		I		Ħ	Ħ			Ħ	T	Ħ		11		Γ	T			Ħ	T	T	H	T					Ħ	Ħ	T	ttt				T	Π	IT					1014			Π
*42-2, 41		Π				Π	Π			Π		Π																								Π										
*42,2 70		Ц			4	Ц	1			ŀ		1		Ц																	1														Ш	
43-4, 140		Ц	Ц	Ц	4	Ц	Щ			Щ	11	Щ.	Ш	1			Ш			Ц			Ш	Ц	111			11	Ц	11	1	111		11	Ц	Щ	Щ	Ц.	4	1	Ш	Ш		4	Ш	μ
*43-2, 33	11	4		H	H	11	#	+		11	++	#		-		1	1		4	Н	+	+	111				Н		11	++	+	-			\parallel	#	\parallel	4	μ.			Ш			+++	Н
43-2, 68		H	H	11	4	#	#	+	-	11	#	#	111	4		+		Ц		11	11	+	Ш		-111		Н	+++	++	++	+	##			H	#	11	44			11			+	HH	H
*43-3, 66 *43-3, 94		₩	₩	H	┞┼	H	╢	+	-	₩	₩	₩	$\left \right $	H		ł	++			₩	+	+	\mathbb{H}	+	+++				+	+	+	₩			H	₩	+	++-	-		H			+	H	Η
*44-1, 16	\mathbb{H}	H	H	Н	H	H	₩	+	+	H	₩	₩	\mathbb{H}	+	+++	+	++	Н	+	H		+	$\left \right $	+	+++		+		+	₩	+	₩			H	₩	+	╟		+	+	+	+	+	HH	Η
*44-1, 48	$\left \right $	Ħ	Ħ	H	H	H	$^{++}$	t	H	H	╂┼	₩	$\left \right $	+	+++	h	+	П	+	H		+	H	+	+++			+++	H	₩	t		T		H	Ħ	\mathbb{H}	H	+	+	\mathbb{H}				H	Η
*44-1,55	H	t	H	H	H	Ħ	Ħ	t	H	Ħ	Ħ	₩		Η		2	++	Ħ	H	H	Ħ	+	H	+	+++				Ħ	++	Т		T	++	H	Ħ	Ħ	Ħ	H	H	H	H		Ħ	Ht	Η
44-3, 25	H	Ħ	Ħ	١ſ	Π	Ħ	tt	t	H	Ħ	tt	Ħ	nt	Ħ		Г		Ħ	H	Ħ	Ħ	t			+++			Ħ	Ħ	Ħ	t	ttt	h		H	Ħ	Ħ	Ħ	H	H	H	H	П	Ħ	H	Г
44-4, 72						Ħ	T	T		Ħ	IT			Ħ		T			T	Π													Π				Π									Γ
44-5, 115											Π									Π											T					Π	Π									
45-1,9	11		ļ	11	1	1	1	ſ	1	H	1	1	11	1	111		П		I	\square				-	11	III		1	1	1	ſ	III			H	11	11	1	11	11	11	Ш			Ш	4
45-1, 46	111	11	Ш	Ц	11	11	44	+	4	11	11	4	111	4			4		4	Ц		-			111				1	11	+	111	L	11	4	11	#	4		1	1	4			111	-
45-2, 49		Н	Н	H	Ч	Н	++		4	Н	++	#	111					L	4	Н		+			+++				++	++	+				H	#	ų.	4			1		Н	+	H	-
45-2,77	$\left \right $	₽	₩	H		H	╢	+		++	₩	₩		+		ł		-	+	Н				+	+++	1.5	Н		++	++	+				H	₩	ł	++	-					+	H	-
45-3, 9 45-3, 128	\mathbb{H}	╢	₩	₩	₩	H	╫	+	H	H	₩	₩	$\left \right $	+					+	₽		+	\mathbb{H}	+				\mathbb{H}	+	╫	+	+++	H		H	₩		++-	H	++-	\vdash	++	+	+	HH	ł
45-3, 120	\mathbb{H}	╢	₩	₩	₩	H	₩	+	H	H	₩	++-		+		┝	++	+	+	H				+	+++		+	++	+	+	+	+++	H	++	H	₩	H	H	-	+	\vdash	+		+	H	F
*46-1,2	\mathbb{H}	H	H	H	₩	H	+	+	H	H	$^{++}$	₩	\mathbb{H}	+	+++	t		+	H	H				H	+++			++	H	++	+	+++	4		H	₩	H	$^{+}$	H	+	$\left \right $	+		+	H	t
46-2, 32		Ħ	Ħ	tt	Ħ	Ħ	Ħ	t	H	Ħ	Ħ	Ħ		Ħ		t		T	H	Ħ	Ħ	+		H	+++			¢-	Ħ	++	t	Ht	Π		Ľ.	Ħ	Ħ	Ħ	H	Ħ	H	H		Ħ	H	T
46-4, 85	H	Ħ	Ħ	Ħ	tt	Ħ	tt	t	IT	tt	Ħ	tt	111	T		Ì	Ħ	1	T	Ħ	11	T	Πί	T	111			Ħ	Ħ	11	t	ttt	1		Π	Ħ	Ħ	IT		Π	\square	Т		П	Ш	Π
*47-1, 10		Π	Π	Π		Π				T																							Π					Π								
47-1,50																																	Ш				Ц								Ш	
47-3, 120	Ш	Ц	Ц	Щ	44	1	1		Щ	Ц	11	11	Ш						4	Ц								_				Ш	Ц	1	Щ	Ш	Щ	Щ	Ц.						11	L
*48-1, 49	Ш	Ц	H	Ш	4	11	44	+	Ц	11	11	11	111	4	111		1		4	4	1	-	Ш		111				11	11	+	111		11	Ш	11	#	4	4	1		4			111	L
48-2,70		++	++	н	4	++	++	+	ų.	#	++	#		+	+++	+		-8	H	++	++	+	1						+	++	+	+++	H	++-	H	₩	#	#	-						+++	-
*48-2, 149	\mathbb{H}	╢	₩	Н	H	+	╢	+		H	₩	₩	$\left \right \right $	+	++				H	Н		+		+	+++				\mathbb{H}	++	+	+++	₽	++-	₩	₩	H	₩	+	+	\vdash	+			H	H
49-1, 53 49-1, 81	H	+	H	Н	+	+	+	+	\mathbb{H}	\mathbb{H}	₩	╂	\mathbb{H}	+			H	-	+	H	į i			+					+	+	+	\mathbb{H}	H	++-	H	₩	+	H	+	+	\mathbb{H}	\mathbb{H}		+	H	H
*49-1,88	H	H	H	Η	H	H	Ħ	+	H	H	$^{++}$	H		+		ľ	++	-1	H	Η				+				++	+	+	+	+++	∎	+	H	Ħ	H	H	H	H	H	H		+	H	Η
49-3, 143	H	Ħ	Ħ	t	H	Ħ	Ħ	t		Ħ	Ħ	tt	H	H		t		Ť	H	Η		+	H	Η	111		H	H	Ħ	++	t	ĦĦ	t	Ħ	H	Ħ	Ħ	Ħ	H	Ħ	H		Ħ		H	F
49-5, 46	Ht	Ħ	Ħ	t٢	Ħ	Ħ	tt	t		Ħ	Ħ	tt		Ħ		1	Ħ	1	H	t				T			H	Ħ	Ħ	Ħ	t	ttt	Π	tt	H	tt	Ħ	Ħ	H	Ħ	H				H	T
50-1, 142		Ħ	Ħ	T	I	Ħ	Ħ	T	IT	Ħ	tt	tt		Π		1		1	Ħ	T	Π	T	Π						Ħ		t	ĦŤ				Ħ	Ħ	Ħ	IT	IT	\square					
*50-2, 62							Π				T	Π								Π						-																				
*50-2, 99																L																	П			Ш	Ш		Ц	Ц					Ш	
50-3, 65	111	11	Щ	μ	Ц	11	11	1	Ц	Ш	11	44	111							Ц				5				11	1	1	+	111	Ц	11	1	Ш	Щ.	1	1	Ц.	1			1	111	
51-1,7		44	#	Ц	11	Н	++		μ	H	11	#	111	+	ЦH	L	Ш		4	Н			Ш	1				11	11	++	+	$\downarrow\downarrow\downarrow\downarrow$		#	μ	Н	#	#	Η.	#	11	1			Ш	Ļ
51-3, 61			#		H	44	#	-	4	#	++	#	111	+				+	4	μ		+		-					++	++	+		H	++-	4	₽	₽	++			#				+++	┝
51,CC (21)	\mathbb{H}	+	H	+	H	H	₩	+	H	₩	₩	₩	+++	+	$\left \right $	H		+	+	н		+		+		1		+++	+	++	+	$\left \right \right $	H	++-	\mathbb{H}	₩	₩	₩	+		\mathbb{H}	\mathbb{H}	+	+	H	+
52-1, 112 52-3, 88	$\left \right $	+	H	H	H	₩	++	+	H	₩	₩	₩		+	++++	h		+	+	Н		+			+++	10.14		+++	+	++	+	+++	H	++-	+	₩	H	₩	H	╟	\mathbb{H}	+		+	HH	┝
54-1, 44	$\left \right $	Η	Н	H	┞┼	$^{++}$	₩	+	H	H	++	₩	$\left \right $	+	+++	ľ		+	+	H		+	1.3				-		С	+	+	\mathbb{H}		11	H	H	H	H	H	H	H	H	Г		H	t
*54-1, 114	H	Ħ	Η	Ħ	₩	Ħ	Ħ	+	H	Ħ	Ħ	Ħ	H	Η		t		t	H	Ħ	Ħ	+		+	+++				H	++	t	+++		H	H	Ħ	Ħ	Ħ	H	H	H	H			H	F
*54-3, 35		\dagger	†	Ħ	Ħ	†	††	\dagger	H	††	Ħ	Ħ		+		t		\dagger	H	†	+	+								++	t		Π		H	tt	tt	tt	H	IT	H	H				Г
*54-3, 48		Ħ	Ħ	Ħ	11	Ħ	\dagger	t	IT	Ħ		tt		Ħ		T		T		Ħ		T				III											Π	IT								Γ
*54,CC (2)					T	11	11	1		11										11										T																ſ
*54,CC (10)		T				T	T			Π										Π											I		Π				Π									ſ
*55-1,5	Ш	Π	Π		Π	Π	Π				Π		\square							Π					III			c	Π	Π						Π	\prod	I		\prod	\prod				Ш	Ĺ
*55-1, 59		П	П			Π	Π	T												П								Ĩ			ſ	11		\prod	1	11	H	1							11	
	• I T	11	TT	11		T	TT	T	ΓT	T	IT	IT	ГП	T		1			Гľ	T								ШÍ		11	1					11	1 I I	1 E		L L I		11			111	£
*55-2, 107	111	11	++	H.	-	++	++	+	11	11	++	++	+++	+	+++	+-		- 12	++	++	++	++		++	+++	1000		+++	++	++	+	+++			ч.	++	++	++-	++	++		H		++	+++	⊢
			#		П	Ħ		t		Ħ	Ħ	Ħ				t						1							0		t		þ			#	Ħ	Ħ	t						Ш	

* - minor lithology


^aPlant debris? ^bLath-shaped (20-100 µm) polycrystalline carbonate mineral ^cCeladonite ^dGypsum?

Hole 886A H11-1,5 H1-1,20 M1-1,86 H1-2,20 1-1,57 1-1,120 1-2,12 2-1,64 3-1,10 '3-1,70 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,90 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,101 '3-1,20 -1.120 -1.28 '1-1,120 -1.132 '7-1,36 '7-1,36 '7-1,36 '7-1,30 '7-1,30 '7-1,104 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>25</th><th>5-2 5-5 >5</th><th>5% = 0% = 0% =</th><th>= ab = do</th><th>mmon undant minant</th><th>Ŀ</th></tr<>																									25	5-2 5-5 >5	5% = 0% = 0% =	= ab = do	mmon undant minant	Ŀ
Hole 886A H11.1, 5 H11.2, 0 H11.6 H11.6 H12.29 11.1, 57 11.1, 57 11.1, 57 11.1, 70 12.12 21.64 3-1, 10 '3-1, 70 '3-1, 90 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '5-1, 98 '5-1, 98 '5-1, 98 '5-1, 102 '5-1, 102 '7-1, 132 '7-1, 135 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 <t< th=""><th></th><th></th><th></th><th>Biogeni</th><th>ic com</th><th>ponen</th><th>ts</th><th></th><th></th><th></th><th></th><th>N</th><th>lont</th><th>log</th><th>enic</th><th>con</th><th>npor</th><th>nents</th><th></th><th></th><th></th><th></th><th></th><th>Aut</th><th>higer</th><th>nic c</th><th>omp</th><th>oone</th><th>nts</th><th></th></t<>				Biogeni	ic com	ponen	ts					N	lont	log	enic	con	npor	nents						Aut	higer	nic c	omp	oone	nts	
Hole 886A H11.1, 5 H11.2, 0 H11.6 H11.6 H12.29 11.1, 57 11.1, 57 11.1, 57 11.1, 70 12.12 21.64 3-1, 10 '3-1, 70 '3-1, 90 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '3-1, 101 '5-1, 98 '5-1, 98 '5-1, 98 '5-1, 102 '5-1, 102 '7-1, 132 '7-1, 135 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 '7-1, 136 <t< th=""><th>Sample (core-section, cm level)</th><th>Foraminifers</th><th>Nannofossils</th><th>Radiolarians</th><th>Diatoms</th><th>Sponge spicules</th><th>Silico- flagellates</th><th>Fish debris</th><th>Quartz</th><th>Feldspars</th><th>Hoow</th><th>minerals</th><th>Volcanic</th><th>glass</th><th>Volcanic crystal and</th><th>lithic fragments</th><th>Glauconite</th><th>Clay minerals</th><th></th><th>Other</th><th>Palagonite</th><th>Zeolites</th><th>Amorphous</th><th>iron oxides</th><th>Fe-Mn micronodules</th><th></th><th>Pyrite</th><th>Recrystallized</th><th>Carbonate (unspecified)</th><th>Carbonate rhombs</th></t<>	Sample (core-section, cm level)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge spicules	Silico- flagellates	Fish debris	Quartz	Feldspars	Hoow	minerals	Volcanic	glass	Volcanic crystal and	lithic fragments	Glauconite	Clay minerals		Other	Palagonite	Zeolites	Amorphous	iron oxides	Fe-Mn micronodules		Pyrite	Recrystallized	Carbonate (unspecified)	Carbonate rhombs
H1-1, 20 H1-1, 26 11-1, 57 11-1, 57 11-1, 57 11-1, 126 12, 12 2-1, 64 3-1, 10 '3-1, 70 '3-1, 80 5-1, 38 5-1, 38 '6-1, 120 6-1, 25 '6-1, 114 '6-1, 114 '6-1, 114 '7-1, 36 '7-1, 38 '7-1, 130 '7-1, 140 '7-1, 132 '7-1, 140 '7-1, 132 '7-1, 132 '7-1, 136 '7-1, 138 '7-1, 140 '7-1, 132 '7-1, 132 '7-1, 132 '7-1, 132 '7-1, 132 '7-1, 132 '7-1, 135 '7-1, 136 '7-1, 137 '7-1, 138 '7-1, 140 '7-1, 140 '7-1, 140 '7-1, 140 '7-1, 140 '7-1, 140 '7-1, 140 '7-1, 140 <th>Hole 585A</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ш</th> <th>Ш</th> <th>Π</th> <th></th> <th>T</th> <th></th> <th>Ш</th> <th>П</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ш</th> <th></th> <th></th> <th>Π</th> <th>Π</th> <th></th> <th></th>	Hole 585A									Ш	Ш	Π		T		Ш	П							Ш			Π	Π		
H1-1, 86 'H1-2, 29 1-1, 17 '1-1, 126 1-2, 12 2-1, 64 3-1, 10 '3-1, 20 '3-1, 20 '3-1, 20 '3-1, 20 '3-1, 20 '3-1, 20 '3-1, 20 '5-1, 35 5-1, 35 5-1, 36 (5-1, 28 '6-1, 28 '6-1, 28 '6-1, 120 '6-1, 132 '7-1, 186 '7-1, 135 '7-1, 135 '7-1, 140 '6-1, 132 '7-1, 140 '6-1, 132 '7-1, 140 '6-1, 132 '7-1, 140 '7-1, 140 '7																								Ш			Ш			
H1-2.29 11-1,57 1-1,126 1-2.12 2-1.64 3-1.10 ''3-1,70 ''3-1,90 ''3-1,111 ''5-1,85 ''5-1,86 ''6-1,114 ''7-1,83 ''7-1,165 </td <td></td> <td>Ш</td> <td></td> <td></td> <td></td>																											Ш			
1-1.57 *1-1.126 1-2.12 2-1.64 3-1.10 *3-1.70 *3-1.80 *5-1.48 *5-1.49 *5-1.88 *5-1.98 *5-1.120 -6-1.114 *6-1.120 *6-1.132 *7-1.38 *7-1.38 *7-1.160 *7-1.140 *7-1.38 *1.120 *8-1.126 *8-1.126 *9-1.10 *9-1.79	and and an owner of the lot of th											11			1		Ш		Ш				11	Ш	111	1	Ш	11		1111
11-1, 126 12-1, 12 21-1, 64 3-1, 10 "3-1, 70 "3-1, 90 3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "3-1, 101 "5-1, 35 5-1, 35 5-1, 25 6-1, 150 6-1, 114 6-1, 114 6-1, 115 6-1, 114 6-1, 115 6-1, 114 6-1, 115 6-1, 114 6-1, 115 6-1, 114 6-1, 115 6-1, 114 6-1, 114 6-1, 115 6-1, 114 6-1, 114 6-1, 114 6-1, 114 6-1, 114 6-1, 114 6-1, 114 6-1, 114 7-1, 105		111			1111	1111	1111-	1111	1111	111		11		11	11	111	11			1111	1111		11	Ш	111	4	111	11		1111
1-2, 12 2-1, 64 3-1, 10 '3-1, 70 '3-1, 90 3-1, 10 '3-1, 90 3-1, 10 '3-1, 18 S-1, 35 S-1, 38 '5-1, 18 '5-1, 120 6-1, 25 '6-1, 14 '6-1, 15 '6-1, 132 '7-1, 138 '7-1, 138 '7-1, 140 '7-3, 95 '7-3, 95 '7-3, 95 '*3.0 '*1, 125 '*8-1, 78 *9-1, 120				ш	1111	1111	++++-			$\downarrow \downarrow \downarrow$	Ш	11.			1	Ш	11		Ш		+++++		#	111		++	Ш			+++++
2-1.64 3-1.10 (3-1.10 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.101 (3-1.105 (3-1.120 (3-1.120 (3-1.120 (3-1.120 (3-1.114 (3-1.115 (3-1.114 (3-1.115 (3-1.114 (3-1.115 (3-1.114 (3-1.115 (3-1.114 (3-1.115 (3-1.114 (3-1.115 (3-1.114 (3-1.115) (3-1.115) (3-1.115 (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (3-1.115) (++++-			111				11	11-	111	11		11		++++		11		111	++	111			+++++
3-1.10 *3.1.70 *3.1.90 3-1.101 *3.1.90 3-1.101 *3.1.90 *3.1.18 5-1.35 5-1.49 *5.1,38 *5.1,38 *5.1,39 *5.1,39 *5.1,39 *5.1,39 *5.1,39 *5.1,39 *5.1,100 *6.1,120 *6.1,25 *6.1,114 *7.1,105 *7.1,105 *7.1,105 *7.1,105	the second se	$\left \right \left \right $			++++	++++	++++	$\left \right \left \right $		+++	Ш		\square		++-	111	++		111		++++-		++	111		++		++-		++++
13-1, 70 "3-1, 90 "3-1, 101 "3-1, 118 5-1, 36 5-1, 49 "5-1, 98 "5-1, 120 "6-1, 120 "6-1, 120 "6-1, 114 "6-1, 132 "7-1, 36 "7-1, 156 "7-1, 166 "7-2, 83 "7-1, 140 "7-3, 96 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120 "7-1, 120		++++			$\left\{ \left \right\rangle \right\}$		++++-			+++		++-			++-			-	+++	+++++	++++		++-		+++	++		++-		++++
'3-1. 90 '3-1. 101 '3-1. 18 '5-1. 38 '5-1. 98 '5-1. 98 '6-1. 125 '7-1. 18 '7-1. 18 '7-1. 106 '7-2. 58 '7-2. 58 '7-1. 105 '7-1. 105 '7-1. 105 '7-1. 105 '7-2. 58 '7-2. 58 '7-2. 58 '7-1. 105 '7-1. 105 '7-2. 58 '7-2. 58 '7-2. 58 '7-2. 58 '7-1. 105 '7-1. 105 '7-2. 58 '7-2. 58 '7-2. 58 '7-2. 58 '7-1. 105 '7-1. 104 '7-2. 58 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105 '7. 1. 105					++++	++++	++++-	++++	++++	+++		++-	$\left \right $	++	++-	+++	++		+++	+++++	++++		₩		+++	₩	+++	++-		++++
3-1, 101 *3-1, 18 5-1, 36 5-1, 38 *5-1, 98 *5-1, 120 6-1, 25 *6-1, 50 *6-1, 50 *6-1, 114 *6-1, 115 *6-1, 114 *6-1, 114 *6-1, 115 *6-1, 115 *6-1, 115 *6-1, 115 *6-1, 114 *6-1, 115 *6-1, 115 *6-1, 116 *6-1, 116 *6-1, 117 *6-1, 118 *6-1, 118 *6-1, 118 *6-1, 118 *6-1, 118 *7.7, 136 *7.7, 166 *7.8 *7.1, 140 *7.8 *7.8 *6.1, 128 *8.0 *8.1, 128 *8.0 *8.1, 128 *9.1, 120				•+++	++++		++++-	+++	++++	+++		++-	$\left \right $	++	++-	+++	++-		H	+++++			₩	$\left \right $	+++	₩	+++	++-		++++
'3.1.18 5.1.35 5.1.49 '5.1,96 '5.1,120 6-1,25 '6.1,26 '6.1,114 '6.1,114 '6.1,114 '6.1,115 '7.1,35 '7.1,35 '7.1,56 '7.1,106 '7.1,140 '7.1,105 '7.1,140 '7.1,120 '8.1,3 8.1,8 8.1,125 '8.0C (19) '9.1,6 '9.1,79 9.1,120			++++		++++	++++	++++	+++	++++	+++		++-	H	++	++-		₩		H		++++		++-	H	+++	+	H	++		++++
5-1, 36 5-1, 49 15-1, 98 15-1, 98 15-1, 98 15-1, 98 15-1, 120 6-1, 25 16-1, 150 16-1, 114 16-1, 114 16-1, 132 16-1, 132 17-1, 35 17-1, 36 17-1, 105 17-1, 105 17-1, 105 17-1, 105 17-2, 365 17-2, 365 17-2, 365 17-2, 125 18-1, 125 18-1, 125 19-1, 79 19-1, 120		++++		++++	 	++++	++++-		++++	+++		++	\mathbb{H}	++	++-	+++	++		H	+++++	++++		*	$\left \right $	+++	++	H	++		++++
5-1,49 *5-1,98 *5-1,120 6-1,25 *6-1,50 *6-1,114 *6-1,114 *6-1,115 *6-1,116 *6-1,118 *6-1,132 *7-1,56 *7-1,56 *7-1,105 *7-1,105 *7-1,105 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *7-1,110 *8-1,3 8-1,8 8-1,8 8-1,125 *8-1,125 *9-1,6 *9-1,10 *9-1,120	and the second se									+++		++		Ħ	++-	H	Ħ		H				T.		+++	$^{++}$	H			++++
'5-1, 98 '5-1, 120 6-1, 25 '6-1, 114 '6-1, 114 '6-1, 115 '6-1, 116 '6-1, 132 '7-1, 35 '7-1, 36 '7-1, 83 '7-1, 105 '7-2, 140 '7-3, 95 '7-2, 120					++++	++++	++++-		++++	+++		Ħ		++	Ħ	H	++		H	+++++			+			$^{++}$	H			
6-1.25 *6-1.50 *6-1.114 *6-1.132 *6-1.132 7-1.35 *7.1.56 *7.1.83 *7.1.10 *8.1.3 8.1.125 *8.1.125 *9.1.6 *9.1.79 9.1.120					1111		++++-					tt	H	Ħ	Ħ	Ħt	tt		Ħ					H		Ħ	Ħſ			1111
*6-1, 50 *6-1, 114 *6-1, 115 *6-1, 132 *6-1, 132 7-1, 35 *7.1, 56 *7.1, 83 7-1, 105 *7.1, 83 *7.1, 83 7.1, 140 *7.3, 95 *7.6, C (31) *8.1, 3 8-1, 125 *8.0, 10 *9.1, 10 *9-1, 10 *9-1, 10 *9-1, 120	*5-1, 120								ΠΠ			tt		11	tt	III	11						T	Ш		T	Ш	T		
*6-1, 114 *6-1, 115 *6-1, 132 7-1, 35 *7-1, 56 *7-1, 105 *7-1, 105 *7-1, 104 *7-3, 95 *7,CC (31) *8-1, 3 8-1, 8 8-1, 125 *8-1, 125 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10 *0-1	6-1, 25									ĦT		tt		T	11	III	T						T			T	\square			
*6-1, 115 *6-1, 132 7-1, 35 *7-1, 56 *7-1, 83 7-1, 105 *7-1, 140 *7-3, 95 *7,CC (31) *8-1, 3 8-1, 8 8-1, 125 *8-1, 10 *9-1, 6 *9-1, 10 *9-1, 10 *9-1, 10 *9-1, 10														T																
*6-1, 132 7-1, 35 *7-1, 56 *7-1, 83 7-1, 105 *7-1, 140 *7-3, 95 *7, CC (31) *8-1, 3 8-1, 8 8-1, 125 *8, CC (19) *9-1, 6 *9-1, 10 9-1, 120	*6-1, 114																													
7-1, 35 C d *7-1, 56 *																														
*7-1,56 *7-1,83 7-1,105 *7-1,140 *7-3,95 *7.CC (31) *8-1,3 8-1,8 8-1,8 8-1,8 8-1,8 9-1,10 *9-1,6 *9-1,79 9-1,120																				d							Ш			
*7-1, 83 7-1, 105 *7-1, 140 *7-3, 95 *7.0C (31) *8-1, 3 8-1, 8 8-1, 125 *8,CC (19) *9-1, 6 *9-1, 10 *9-1, 120	-			Ш			111							\square		Ш									111	11	Ш	11		
7-1, 105 *7-1, 140 *7-3, 95 *7, CC (31) *8-1, 3 8-1, 8 8-1, 125 *8, CC (19) *9-1, 6 *9-1, 79 9-1, 120	and the second s		1111		$\downarrow \downarrow \downarrow \downarrow$	$\downarrow\downarrow\downarrow\downarrow\downarrow$	1111-		Ш	111	Ш	11		11	1	Ш	11		Ш		1111-			Ш	111	#	Ш		Ľ.,,,,,,	1111
*7-1, 140 *7-3, 95 *7,CC (31) *8-1, 3 8-1, 8 8-1, 125 *8,CC (19) *9-1, 6 *9-1, 10 9-1, 120	-									111		11		11	1	Ш	1		111	-	++++-		11		+++	++-	111			+++++
*7.3, 95 c *7.CC (31) c *8-1, 3 c 8-1, 8 c 8-1, 125 c *8,CC (19) c *9-1, 6 c *9-1, 10 c *9-1, 120 c	the second se	++++		++++	++++	++++	++++-			+++-		111		11	11-	111	11-			+	++++-				++++	#	111			++++
*7.CC (31) *8-1, 3 8-1, 8 8-1, 125 *8.CC (19) *9-1, 6 *9-1, 10 9-1, 120					++++	++++	++++-			+++		+++		++			++-			+			++-		+++	++				++++
*8-1, 3 8-1, 8 8-1, 125 *8,CC (19) *9-1, 6 *9-1, 10 9-1, 79 9-1, 120	the second se	++++	++++		++++	++++	++++-		++++	+++		+++		++	++-	111	++-		Ш	c	++++		++-		+++	₩		H		++++
8-1, 8 8-1, 125 *8,CC (19) *9-1, 6 *9-1, 10 9-1, 79 9-1, 120		$\left \right \left \right $	$\left\{ + + + + + + + + + + + + + + + + + + +$	++++	++++	++++	++++	++++	++++	+++		+++		++	++-		++-			+ + + + + + + + + + + + + + + + + +	++++		++-		+++	₩	┼┼┦			++++
8-1, 125 *8,CC (19) *9-1, 6 *9-1, 10 *9-1, 79 9-1, 120		$\left \right \left \right $	╉┼┼┼	++++	++++	++++	++++-	+++	+++	+++		+++	H	++	++-		++-		-c	d			4	Hł	+++	₩				++++
*8,CC (19) *9-1, 6 *9-1, 10 *9-1, 79 9-1, 120		$\left + + \right $		╉╫╫┼	++++	++++	++++		++++	╉╋╋		+++		₩	++-	+++	++	i he	-	┼┍┑┼┼	₽	$\left + + + \right $		+++	+++	₩	┼┼┦			++++
*9-1, 6 *9-1, 10 *9-1, 79 9-1, 120		$\left \right $								+++		++		++	++-	H	++								+++	++	+++			++++
*9-1, 10 *9-1, 79 9-1, 120	a reaction required to recommend	++++	++++		•+++			++++	++++					++	++		++		$\left \right $	b				+++	+++	++				++++
*9-1, 79 9-1, 120	and the second se								++++	+++			H	+			++		c	+			++	\mathbb{H}	+++	$^{++}$	++			++++
9-1, 120			n +++		t+++	++++			++++					$^{++}$	11		++		01		t++++					tt				++++
					****	t+++	++++-		++++	$^{++}$	H	tti	H	††	11		11				1111			Ht	111	Ħ	ttt	11		*****
	*9-1, 130				1111						H			Ħ	11		11									tt		111		11111

SITE 585

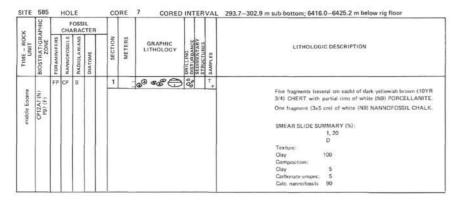
		_	В	iogen	ic c	omp	one	ints		_	Τ		_	_	Non	bic	gen	ic c		oner	its					_	Au	thig	enic	comp	pone	ents	_		
Sample (core-section, cm level)	Foraminifers		Nannofossils	Radiolarians		Diatoms	Sponge	spicules	Silico- flagellates	Fish debris		Quartz	Feldspars		Heavy minerals	Volcanic	glass	Volcanic	lithic fragments	Glauconite	Clay minerals		Other	Palagonite		Zeolites	Amorphous iron oxides	Eo Mo	micronodules	Pyrite	Recrystallized	silica	Carbonate (unspecified)	Carbonate	rhombs
*9-1, 137				Ш				Π	Ш	Ш	Π	Π	Ш	Π		Π	Π	Π	Ш	Ш				IIII	Π	TT	T				T	Π			Т
9-1, 147																									I										
9,CC (1)														Π		П				Ш															
9,CC (6)												Π		Π		Π	Π						d												
10-1,3																									Π										
*10-1,9																Π					1 				Π										
*10-1, 12										Ш		П				Π			Π						Π										
*10-1,55												Π		Π		Π									Π										
*10-1,82												T	Π	Π		Π	Π	\square	П	Ш					Π										
*10-1,89												Π		Π		Π			П						Π										П
*10-1,97							Π			TT		T	Π	Π		Π		\square		Ш	ПП				Π				11						Π
*11-1, 13				Ш			Π			TT		Π		Π		T	T		Ш	Ш					П	П			П						П
11-1,80							Π					T	Ш	Π		T	T			III	Π														Т
*11-1, 102			Π	Ш	Π		Π							Π		Π	T	Π		III					Π			П			Π	Π			П
*11-1, 124				Ш			Π	Ш		Ш		Π		П					ПТ		Π				П	П		Π			Т	Π			П
11-2, 20												T		Π		Π		Π		Ш					Π	П		Π							Т
11-4, 92			П	Π	Π		Π					T		Π		Π				III					T	TT									Т
11-5,76				\square	Π		Π	Ш				T		П		Π	T		Ш	III	1							П			Π	Ш			Т
12-6, 49		Г		TT	Π		П					11	Ш	Π		Ħ	tt	Π			1				Π	11					TT	Ш			T
12-7, 57		Π	Π	Ш	T		П	Ш				T	m	Π		Ħ	T	T		$^{++}$	1				Ħ	TT		Ш			T	Ħ			
12,CC (20)			П	Ш								T	Ш	Π		Ħ	T			III	1			ΠΠ	Ħ	III					T				Т
13-1, 38		П	III	TT	Π		Ш					T	Ħ	Ħ		T		T	H	ĦŦ					T	TT					T				
13-1,60		Π		TT			Ш					T	Ħ	Ħ		T				ttt					T	111					T	TT			
13-3, 69		Π	Ш	Ħ	T		Ш	П					m	Ħ		T	Ħ	Ħ	Ħ	111					T	Ħ					T	TT			
14-3, 31			m	ĦT	IT		П			111		T	Ħ	Ħ		T	tt			111					T	Ħ					11	Ħ			
14-3, 49		Γ.	H	ĦT	IT	III				111		tt	ttt	Ħ	111	î	tt		H	ttt					T	111					tt	ttt		Ħ	
14-5, 54		Г	ITT		Π		Π	Ш					Ш	Ħ		1	T		III	ĦŦ					T	Ш					T	Ш			
*15-4, 43		Π	ITT	$\Pi!$	IT	III	Ħ			111		tt		Π		T	Ħ	Π	H	ttt	1							H			tt	Ħ		111	
*15-5, 50		IT	ITT	ĦT	Ħ		Ħ			111		Ħ		Ħ		1	Ħ	Ħ	Ht	ĦŦ		c			Г	111		H			Ħ	Ħ		111	T
*16-1,20		IT	Ħ	Ħt	H		Ħ		111	111		tt		h		Π	tt		Ht	ttt	1 - 1				Π	Ħ		H	111	111	Ħ	Ħ		111	
*16-1,65		I	III		T	ITT	tt					tt		Ħ		tt				ttt				1111	Ť	111				111				111	+
16-1, 120			III		H		††					tt		Ħ		Ħ	11								f	11					Π			111	Ħ
16-2, 140		Г	$^{++}$		Ħ	Ht	H				H	tt	nt	Ħ	111	Ħ	11	H	Ht	111				++++	f	111				111	1				+
16-3, 116										+++		++		Ħ		Ħ				111					P					+++		Cart			+
*20-1,60			ĦŦ	t++	tH		Ħ	H			H	++	Ħ	Ħ		Ħ									ſ		11				П	TT		$^{++}$	H
*20-3, 30		It	ttt	111			\square		+++	111		++		Ħ	+++	h			\square	+++					۲	111				+++	++			H	+
• = minor lithe	ology											aF	Plant	de	bris?	b	Lath	1-sh	ape	d (20	-100	μm)	polycry	stalline	e ca	arbo	nate	min	eral	Cel	lado	nite	d _{Gy}	psur	m?

	585 L	—	HOL	OSS		TI	RE	1 CORED	INTER	T	0.0-6.8 m sub-bott	um, 0122.0-0	1.0.1	in Date	in the t		
	APHI	L	CHA	RAC	TER												
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGI	C DES	CRIPTI	ON		
Recent		в	в	8		1	0.5		**********	••	O M ST	ANNOFOSSIL O OZE (>150 cm) lostly shades of iff to tott CLAY weral thin beds MEAR SLIDE SU	light y brown in nar	elsowish n to mi motossi	brown oderate	to brow	wn interbedded (0–150 cm and
							1						1,20		2,60	2, 127	2, 148
_				B			1	000000000					D	D	D	D	D
1							1.1					exture:					
							1	L_L_L_			Si	and	2	3		-	5
				в			-	+			10YR 8/3 Si	lt lav	10 88	5 92	2 98	25	1
							1.5	L				amposition:	00	0.4	90	10	84
		(II)			([2		1	1 11			etdspar	1	-	-	-	2
							-	L				eavy minerals	2	-	-	3	-
							-				CI	lay	88	43	10	63	-
							-	+ + + +		1.2		olcanic glass	-	-	-	<1	-
				8			1.5			. 1		icronodules	-	-	<1	8	-
		11		~						*	20	eolite	4	-	1	13	-
							12					arbonate unspec.	1	50		-	-
		1 1					-	+				oraminiters	-	2	~1	-	1.1
							1.1	L				elc. nannofossils	3	5	88	5	98
		CM	AM	в			1	1		••		adiolarlans emutite	5	≤ 1	-1		~ 1
						3	-	1, 1, 1,				empire	10	50	- · ·	176	- C
CELIN PRISTOCETE	-	1.1					1.0		131		ST	MEAR SLIDE SU	MMAR	Y (%)			
Š.	N21-N227 (F)						12				and the second se		3,60		0 4, 20	4,80	5,40
i	53						1				10YR 7/2		D	D	D	D	D
2	z							L				exture:					
	5						_	1			10YR 8/3 Si	and	-		2	-	-
۳.	z	FM					1.6	4.4.4.		. *	Si		5	35	8	1	1
							1	1. + 1.				lay	95	65	90	99	99
				в			-	L. L. L.				omposition:				÷.	14
						4	1	L				eldspar eavy minerals	5	50	2	-	1
						1	1					eavy minerals	<1	10	2	10	10
							1.4					licronodules	21		2	2	2
								1				eolite	2	3	- i -	2	2
							1.4	<u>ــ ــ _</u> ــ				arbonate unspec.	-	20	85	-	
							-	1				oraminifers	2	2	22.0	-	÷
							-	L	13		6	alc. nannofossils	98	55	10	88	84
				B		5			1 3 1		10YR 4/3 R	adiolariam	-	8	221	-	2.2
						1	1.04				S	ponge spicules	2	<1	_	-	-
							-				н	ematite	-	-		-	1
		RM		8		CC		10710		L	o	RGANIC CARBO				(%):	
												manufacture and the second		2,61			
		1															
												rganic carbon arbonate (bomb)		0.11 52	0.07 83		

Information on core description sheets, for ALL sites, represents field notes taken aboard ship under time pressure. Some of this information has been refined in accord with postcruise findings, but production schedules prohibit definitive correlation of these sheets with subsequent findings. Thus the reader should be alerted to the occasional ambiguity or discrepancy.

106

×	APHIC			OSS	L TER						
TIME - HOCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
middle Eocene	CP12A7 (N) P117 (F)	RP RP CP RP	CP	RP		1	0.5		00	*	Drilling brecola consisting mainly of multicolored chips (< 0; cm) and larger fragments (several cm) of CHERT, Dominan colors of chert are redditib brown (SYR 5/3-444), (jght reddis brown (SYR 5/6), and grayn, browng (SYR 7/3-444), color harger (chert fragments have partial rims of white porcellanits which also comprises about 25% of smaller chips.
	9					CC	-	@ @ @	000	4	About 15% of smäller chips and several larger fragments are o ZEOLITE-BEARING CLAYSTONE (dusky blue green [586 3/2]).
											One large fragment (\sim 5 cm) and about 10% of smaller chip consist of NANNOFOSSIL CHALK.
											SMEAR SLIDE SUMMARY (%):
											1, 21 1, 50
											D D
										- 1	Texture:
											Sand
											Silt 15 2 Clay 85 98
											Composition: Quartz 1 -
											Feldspar 2 1
					1.1						Clay 85 -
	1										Glauconite? 1 -
											Micronodules 2 -
						11					Zeolite 4 <1
											Foraminifers 1 -
										- 1	Calc. nannofossils 4 98
										_	Radiolarians <1 -


×	APHIC	Ĩ		OSSI							275.1-279.1 m sub-bottom; 6397.4-		
TIME ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC	DES	CRIPTION
middle Eocene	P107 (F)	B	CP			cc	1111	00000 00000000000000000000000000000000	0000	T AT T	Several fragments of	chert	ind chips (< 0.5 cm) of CHERT ¹ , t have partial rims of white (N9) POR- color is light gray ¹ (10YR 8/1) with 3/2).
middl												and-si	clearly SILICIFIED LIMESTONE and ze silicified foraminifers "porcellanites" silicified limestone.
											One fragment of whit	te NA	NNOFOSSIL CHALK.
											SMEAR SLIDE SUM	AMA	RY (%):
												CC	cc
												M	M
											Texture:		
											Sand	-	-
				10						- 1	Silt	-	1
											Clay	-	99
											Composition:		
											Quartz	1	-
											Feldspar	-	<1
											Zeolite	-	<1
										- 1	Carbonate unspec.		-
											Calc. nannofossils	75	99

¥	APHIC	1		DSSI	L TER					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
middle? Eocene			AM			cc		8 0 0 8 0 0	000 **** 900	0-15 cm: 1 piece white (10YR 9/1) namofoasil limestons with 0.5-1 cm cap of dark yellowish brown (10YR 3/4) CHERT 1 piece of white (N9) NANNOFOSSIL CHALK; 1 piece of ven pale yellowish brown (10YR 7/2) CLAY.BEARING NANNO FOSSIL LIMESTONE.
mid										15–35 cm: drilling brecka of chips (< 0.5 cm) of yellow brown (10YR 7/2) to dark yellowish brown (10YR 4/2) CHERT, white (N9) to very pale yellowish brown (10YR 7/2) LIMESTONE dark yellowish brown (10YR 4/4) CALCAREOUS CLAYSTONE dark green gray (10G 3/2) CLAYSTONE.
										SMEAR SLIDE SUMMARY (%):
										CC, 5 CC, 8 CC, 11 CC, 13 CC, 20
- 1				. 1						D D D D Texture:
										Sand
		- 1	- 1							Silt 60 50 65 50 15
				11						Clay 40 50 36 50 85
										Composition:
										Clay 5 10 20 10 80
										Zeolite 1
										Carbonate unspec. 20 10 15 25 5
- 1			- 1							Calc. nannofossils 75 80 65 65 8

SITE 585 HOLE CORE 6 CORED INTERVAL 284.6-293.7 m sub-bottom; 6406.9-6416.0 m below rig floor FOSSIL TIME - ROCK UNIT SECTION METERS GRAPHIC LITHOLOGY DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES LITHOLOGIC DESCRIPTION **UOSTRAT** 3 ١. NANNOFOSSIL CHALK AND LIMESTONE; SILICIFIED LIME-STONE AND CHERT Dominantly white (10YR 8/1) limestone with varying degree of diagenesis chalk to limestone to silicified limestone. Some faint -----0.5 laminations. taminitions. Numerous chips (<1 cm) of multicolored CHERT (\sim 58%), dark vellowish brown (10 YR 3/4) and brown (7.5 YR 5/6); NANNOFOSSL LIMESTONE (25%), white; and PORCEL-LANTE (7%), light gay (10 YR 7/2) chips mostly in intervals 135–150 cm, Section 1 and 0–50 cm. Section 2; 50–83 cm, Section 2; consists of larger (>2 cm) fragments of brown chert ene P107 (F) 1.0die? Eor and white limestone and chalk. 2 CP SMEAR SLIDE SUMMARY (%): 1, 50 1, 85 1, 110 1, 21 Texture: 100 100 100 100 Clay Composition:
 Carbonate umper.
 3
 2

 Carbonate umper.
 20
 15
 43
 35

 Calc. nannofossils
 77
 85
 55
 65
 ORGANIC CARBON AND CARBONATE (%): 1, 28–32 1, 119–120 Organic carbon 0.01 0.03 0.03 29 Carbonate 63

SITE 585 HOLE CORE 8 CORED INTERVAL 302.9-312.0 m sub-bottom; 6425.2-6434.3 m below rig floor

*	APHIC			OSSI RAC	L						
TIME - ROCK.	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
				B		1	0.5			•••••••••••••••••••••••••••••••••••••••	NANNOFOSSIL CHALK White (N9): massive below 85 cm, Section 2, Recovery consist of fragments mostly >2 cm.
	(H						1.0			•	SMEAR SLIDE SUMMARY (%): 1, 31 1, 70 1, 102 2, 96 D D D D D
ocene	66d			в		\vdash					Texture: Clay 100 100 100 100 Composition:
rarly Eocene							- 4				Feldspar 3 2 2 1 Clay 4 Carbonate unspec. 10 8 13 10
						2			404		Carbonate unspec. 10 8 13 10 Calc. nannofossits 87 90 85 85 Fish remains - <1
							1		00	1	ORGANIC CARBON AND CARBONATE (%):
		FP							OA		1, 16–17 2, 12–14 CC Oreanic carbon 0.04 0.01 0.02
		RP				CC	-		00	•	Carbonate 64 57 56

×	UPHIC			OSSI	L TER					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
early Eccene.	CP11 (N) PB-P9 (F)	CP	CP CP			1	0.5			NANNOFOSSIL CHALK White (NB): massive below 45 cm, Section 1, recovery consists of fragments, mostly>2 cm.
										SMEAR SLIDE SUMMARY (%): 1, 33 D Texture: Clay 100 Composition: Feldsar 1 Casponate unspec. 8 Cate, canofosalia. 88

SITE 585 HOLE CORE 10 CORED INTERVAL 321.2-330.3 m sub-bottom; 6443.5-6452.6 m below rig floor

¥	APHIC			OSSI							
TIME - ROCK UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
early Eccene	P8-P9? (F)	CP				1 CC	0.5			••	0-40 cm = chips (< 0.5 cm) of: 1) white (NB) to light gray (57 7/1) SILICIFIED LIMESTONE (~35%), 2) brown (107R 5/6 and 10YR 3/4) CHERT (~63%), and 3) green CLAYSTONE (2%). These chips also are packed around larger fragments below 40 cm.
											40 cm through Core-Catcher = larger fragments (several cm) of white (N9) NANNOFOSSIL CHALK and 2 fragments of light gray (5Y 7/1) SILICIFIED LIMESTONE.
											SMEAR SLIDE SUMMARY (%): 1, 40 D Texture: Sand Sit 1 Clary 99 Composition:
											Feldspar Carbonate unspec. 10 Calc. nannofossila 89 ORGANIC CARBON AND CARBONATE (%): 1, 39-42 CC, 3-5 Organic cerbon 0.02 0.01
											Carbonate 77 32

100	58			OSS	L		1				T	330.3-339.5 m sub-bottom; 6452					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	-	SECTION	METERS	GRAPHIC	DISTURBANCE DISTURBANCE SEDIMENTARV STRUCTURES	SAMPLES	LITHOLOG	IC DES	CRIPTI	ON		
10		RP RP					1	0.5			• T	NANNOFOSSIL C Masive: white (NB Several Tragments (25–28 cm, Section SMEAR SLIDE SU) of SILI(n 1) con JMMAR	sists of Y (%);	zeolite	bearing	slay,
early Eocene	2 (F)							1.1.1	06			Texture:	1, 25 D	1, 27 M	1, 50	1, 100	2, 30
es.	P87					ΙΓ		1.1				Sand	2	-	8	-	÷
								1.1		1		Silt	Ξ.	5	1	3	2
								111				Clay Composition: Feldspar	100	95	99	97	98
							2					Clay	10	<1 80	3	2	1
							1	1.12				Volcanic glass	-	<1	_	2	
								1.5				Zeolite	2	10	<1	-	2
- 10	1.0		. 1					1.1	1 4 1 1			Carbonate unspec.	15	-	10	25	10
							- 1				1	Foraminifers	200	-	-	2	1
												Calc. nannotossils	25	6	90	65	
											- 11	Radiolarians	-	<1	-	2	85
	0.13		8.1	1.1							- 1	Silicoflagellates	-	<1	-		-
												Fish remains	-	<1	-	-	
												Silica unspec.	50	-	1	2	1
												ORGANIC CARBO					
											- 11	2007 (State State)	1, 98-	-100	2, 110	-112	
- 0												Organic carbon	0.02		0.06		
			0.1								- 1	Carbonate	78		34		

×	APHIC			OSSI	L TER					
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STAUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
				RP			0.5		*	NANNOFOSSIL CHALK Very light gray (SY 7.5/1); massive with thin whisps and lenses o ZEOLITIC CLAY.
scene				RP		ा	1.0			Forams present throughout mostly concentrated in zone (up to 10% estimated on core surface), but no distinct grading is notice able.
early Eccene	P7? (F)	RP RP				-				Light gray (5Y 7/1) SILICIFIED LIMESTONE in several zone some pieces contain subspherical cores of zeolific day, implyin that silicification preceded compaction (which resulted in lense of zeolific day in chalk).
				8		2	01100		I •*	SMEAR SLIDE SUMMARY (%): 1, 30 2, 50 1, 83 D D M
										Texture: Sand
										Silt 2 2 2 Clay 98 98 98 Composition:
										Feldspar – – 1 Clav – – 57
										Zeolite <1 <1 40
										Carbonate unspec. 10 10 -
										Foraminifers 1 2 – Calc. nannofossils 89 88 2
										Gale, nannorossas dar da 2
										ORGANIC CARBON AND CARBONATE (%):
										2, 57-58
										Organic carbon 0.18 Carbonate 83

×	DIHA	13		OSS	TER													
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		j.	ITHOL	DGIC D	ESCRII	PTION		
early Encene	P77 (F)	RP B V RF B		RP RP		1	0.5			т. 		Massive white (ZEOL/ taining	i with N9). TIC CL black, eduction	a few AY ber organic	thin, si 5 (82– 7-rich c 7 for 0.	mall te 94 cm) Jayey r	nses o ; otive sannofe en eithe	NNOFOSSIL CH 4 ZEOLITIC C 9 gray (5Y 4/2) 0xsil chalk band er side of black i + XRD
e		RP				2 CC			\$8		bi	reen red valo" Xi	Juction	H	White	Zeolit,	13/2	SS, 1-93 SS, 1-94
												Chalk silicfied chert n	above z l limesto odule at	eolitic ine (0-	clay b 82 cm);	ed has		silicified and is (6/1); massive b
												Chalk silicfied obert no	above z l limesto odule at IY (%):	eolitic ine (0- 16-21	clay b 82 cm); cm,	ed has ; light g	ray (51	f 6/1); massive b
												Chalk silicfied ohert no JMMAR 1, 43	above a l limesto odule at IY (%): 1, 93	eolitic ine (0- 16-21	clay b 82 cm); cm, 1, 138	ed has ; light g 0 2, 15	ray (5) CC	(6/1); massive b
											SMEAR SLIDE SU	Chalk silicfied obert no	above z l limesto odule at IY (%):	eolitic ine (0- 16-21	clay b 82 cm); cm,	ed has ; light g	ray (51	f 6/1); massive b
											SMEAR SLIDE SL Texture:	Chalk silicfied ohert no JMMAR 1, 43	above a l limesto odule at IY (%): 1, 93	eolitic ine (0- 16-21	clay b 82 cm); cm, 1, 138	ed has ; light g 0 2, 15	ray (51 CC	(6/1); massive b
											SMEAR SLIDE SU Texture: Sand	Chalk silicfied chert no IMMAR 1, 43 D	above z l limesto odule at IY (%): 1, 93 M -	eolitic ine (0- 16-21 1, 94 M	clay b 82 cm); cm, 1, 130 D	ed has ; light g 0 2, 15	ray (51 CC	(6/1); massive b
											SMEAR SLIDE SL Texture: Sand Silt	Chulk silicfied dhert no 1,43 D - 2	above a l limesto odule at IY (%): 1, 93 M 20	eolitic ine (0 16-21 1, 94 M 70	clay b 82 cm); cm, 1, 130 D - 2	ed has ; light g 0 2, 15	ray (51 CC	(6/1); massive b
											SMEAR SLIDE SU Texture: Sand Silt Clay	Chalk silicfied chert no IMMAR 1, 43 D	above z l limesto odule at IY (%): 1, 93 M	eolitic ine (0- 16-21 1, 94 M	clay b 82 cm); cm, 1, 130 D	ed has ; light g 0 2, 15	ray (51 CC	(6/1); massive b
											SMEAR SLIDE SU Texture: Sand Silt Clay Composition:	Chulk silicfied dhert no 1,43 D - 2	above a l limesto odule at IY (%): 1, 93 M 20 80	eolitic ine (0 16-21 1, 94 M 70 30	clay b 82 cm); cm 1, 131 D 2 98	ed has ; light g 0 2, 15 D -	ray (51 CC	 6/1); massive b 1, 31 M – – –
											SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Clay	Chulk silicfied dhert no 1,43 D - 2	above a l limesto odule at IY (%): 1, 93 M 20	eolitic ine (0 16-21 1, 94 M 70 30 28	clay b 82 cm); cm, 1, 130 D - 2	ed has ; light g 0 2, 15	ray (51 CC	 6/1); massive b 1, 31
											SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Clay Volcanic glass	Chulk silicfied dhert no 1,43 D - 2	above a l limesto odule at 1, 93 M - 20 80 5	eolitic ine (0 16-21 1, 94 M 70 30	clay b 82 cm); cm 1, 131 D 2 98 	ed has ; light g 0 2, 15 D -	ray (51 CC	7 6/1]; massive b 1, 31 M - - - 77 1
											SMEAR SLIDE SU Texture: Sand Silt Cary Composition: Clay Volcanic glass Zeolite	Chalk silicfied chert no 1,43 D - 2 98 - -	above a l limesto odule at 1, 93 M 20 80 5 	eolitic ine (0 16-21 1, 94 M 70 30 28 20	clay b 82 cm); cm. 1, 13/ D 2 98 -	ed has ; light g 0 2, 15 D 	сс D - - -	<pre>/ 6/1]: massive b 1, 31</pre>
											SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Clay Volcanic glass	Chalk silicfied chert ni 1,43 D - 2 98 - - -	above a f limeste odule at 1Y (%): 1, 93 M 20 80 5 15	eolitie ine (0 16-21 1, 94 M - 70 30 28 20 50	clay b 82 cm); err. 1, 13/ D 2 98 1	ed has ; light g 0 2, 15 0 - - - 1	CC D 	7 6/1]; massive b 1, 31 M - - - 77 1
											SMEAR SLIDE SL Texture: Sand Sitt Clay Volcanic glass Zeolite Carbonate unspec.	Chalk silicfied chert ni IMMAR 1, 43 D - 2 98 - - - 10	above a f limeste odule at 1Y (%): 1, 93 M 20 80 5 15	eolitie ine (0 16-21 1, 94 M - 70 30 28 20 50	clay b 82 cm); err. 1, 13/ D 2 98 1	ed has ; light g 0 2, 15 0 - - - 1 10	CC D 	<pre>/ 6/1]: massive b 1, 31</pre>
											SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Clay Volcanic glass Zeolite Carbonate umpec. Foraminifes	Chalk i silicfied chert no MMAR 1, 43 D - 2 98 - - - 10 -	above 2 f limeste odule at 1, 93 M - 20 80 5 - 15 - - 15 - -	eolitic ine (0 16-21 1, 94 M 70 30 28 20 50 -	clay b 82 cm); cm. 1, 131 D - 2 98 - 1 10 -	ed has ; light g 0 2, 15 D - - - 1 10 1	CC D 	<pre></pre>
											SMEAR SLIDE SL Texture: Sand Silt Clay Composition: Clay Volcanic glass Zeolite Carbonate umpec. Foraminifers Calc. nannotosilis	Chalk i silicfied chert no MMAR 1, 43 D - 2 98 - - - 10 - 80	above 2 f limeste odule at 1, 93 M - 20 80 5 - 15 - - 15 - -	eolitic ine (0 16-21 1, 94 M 70 30 28 20 50 -	clay b 82 cm); cm 1, 131 D - 2 98 - 1 10 - 88	ed has ; light g 0 2, 15 D - 1 10 1 82	CC D 	<pre></pre>
											SMEAR SLIDE SU Texture: Sand Sitt Cary Composition: Cary Carbonats unspec. Foraminiters Catonats unspec.	Chalk silicitied chert no MMAR 1,43 D - 2 98 - - 10 - 80 <1	above 2 f limesto odule at 1Y (%): 1, 93 M - 20 80 5 - 5 - 15 - 70 - 70 -	eolitic ine (0 16-21 1, 94 M 70 30 28 20 50 -	clay b 82 cm); cm 1, 131 D - 2 98 - 1 10 - 88	ed has ; light g 0 2, 15 D - 1 10 1 82	CC D 	1, 31 1, 31 M - - - 77 1 2 5 - 10 -
											SMEAR SLIDE SL Texture: Sand Silt Cary Cargo Cary Carbonate unspec. Foraminifers Calconanotosilis Radiolarians Plant debria?	Chalk silicfied chert no 1,43 D - 2 88 - 10 - 80 <1 - 10	above a f limesto odule at 1,93 M - 20 80 5 - 15 - 70 - 10 -	eolitic ine (0- 16-21 1, 94 M - 70 30 28 20 50 - 2 2 2 2 - 2 - 2 -	clay b 82 cm); cm. 1, 131 D 2 98 1 10 88 1 1 1 	ed has ; light g 0 2, 15 D - 1 10 1 82 1 -	CC D 	1, 31 1, 31 M - - - 77 1 2 5 - 10 -
											SMEAR SLIDE SL Texture: Sand Silt Clay Composition: Clay Clay Composition: Clay Clay Clay Clay Composition: Clay Clay Clay Clay Clay Clay Clay Clay	Chalk silicfied chert no 1,43 D - 2 88 - 10 - 80 <1 - 10	above a l limesto odule at 1Y (%): 1, 93 M - 20 80 5 - 15 - 70 - 10 - 10 - 0 CARB	eolitic ine (0- 16-21 1, 94 M - 70 30 28 20 50 - 2 2 2 2 - 2 - 2 -	clay b 82 cm); cm, 1, 131 D 2 98 1 10 88 1 (%);	ed has ; light g 0 2, 15 D - 1 10 1 82 1 -	CC D 	1, 31 1, 31 M - - - 77 1 2 5 - 10 -
											SMEAR SLIDE SL Texture: Sand Silt Clay Composition: Clay Clay Composition: Clay Clay Clay Clay Composition: Clay Clay Clay Clay Clay Clay Clay Clay	Chalk	above a state of the state of t	volitic ine (0- 16-21 1, 94 M - 70 30 28 20 50 - 2 2 2 2 - 2 - - - - - - - -	clay b 82 cm); cm, 1, 131 D 2 98 1 10 88 1 (%);	ed has bight g 0 2, 16 D - 1 1 1 82 1 - 5	CC D 	1, 31 1, 31 M - - - 77 1 2 5 - 10 -

4	APHIC			OSSI	L TER													
UNIT UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		L	THOLO	IGIC D	ESCRI	PTION		
rarly Eocene	N) PGb (F1	FP B	AM			1	0.5		12° 14		SMEAR SLIDE SU	coarser Minor lit 1, SILIO 7/1-7 2, ZEO 3/2); some	ht gray grains (thologie CIFED 7/21 (79 LITIC (modera burrow	(5Y 7. = roci NANN - 102 r CLAYS tely b	5/1) m nystalliz OFOSS m, Sect TONE	ed radio IL LIM ion 2); – very ted wit	olarians ESTON bioturb dark g h redu	g but peppiered with ? and foraminifers?) E – light gray (51 ared at base, ravish brown (2.51 etion halos around
re L	CP9 (N)			в		2	1015			чТ. •Т.	Texture		1, 130 D	2, 60 D	2, 89 D	2, 95 M	2, 102 M	2 2, 106 M
- 11		VRP		P.				T T T T	1 3	11.	Sand	-	-	1	-	-		S. 1
		VRF	5 I				1.7	22222		T.	Silt	5	3	5	20	5	55	25
		- 1					- 33				Clay	95	97	95	80	95	45	75
							_	1 1 1 1	1 1		Composition:				<1			
						1					Feldspar	-	-	-	-1	2	44	48
											Clay Volcanic glass			5	24	38		48
											Zeolite	1	1	1		4	50	40
			1	0.1							Carbonate unspec.	5	5	5	60	25	50	5
		- 1	- 1	11							Foraminifers	2	2	2	00	20		-
- 1			- 1								Cale, nannofossils	90	91	88	25	10	1	2
- 1											Radiolarians	2	1	2		10	4	
- /4	1					ð -					Fish remains	-			2	2	2	<1
											Recry. silica	100	-	2	10	-	-	-
											ORGANIC CARBO							
	- 1	- 1									Organic carbon	1,64-	67	2,75-0.12	-79	2, 92-	-94	2, 105-108
																0.10		

×	APHIC			OSSI RAC	L													
TIME ~ ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	MANNOFOSSILS	RADIOLARIANS	DIATOMS		METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUMENTARY	SAMPLES			пно	.0G1C 0	DESCRI	PTION		
1	1	FP	FP	8						т.				IL CHA			ICIFED LI	MESTONE AN
nocerte -	CP5 (N) -			в			1 0.5	2 2			1	STONE	most	y light	gray (1(YR 6.	5/11, pale b	LICIFIED LIME rown (10YR 6/3 several horizon)
late Paleocene Ine	0	RP	CP				1.0	1 *1 *1 · · · *						OLITIC than at		STON	E (dark bro	wn [10YR 4/3]
00	-	RP				2		- to 1, 1		8		95-10	1 cm: i	EOLIT	IC CLA	YSTON	E soft; bro	own (7.5YR 4/4)
tat cariy Paleocene	CP1b (N) P1b-c (F)	FP		B		10	с	2000	8	1		FIED I	IMEST		pinkish	white		LK AND SILIC i/21; some biotu
											1	STONE	and t		HERT,			ish white LIMI clasts of pinkis
											SMEAR SLIDE SU	MMAF	Y (%)					
												1, 49 D	1, 88 D	5 1, 10 D	D 1, 10	4 1, 14 D	3	
				- 0							Texture:	0	U	U.		0		
					11						Sand	-	-	-		-		
											Silt	20	10	5	-	10		
											Clay	80	90	95	100	90		
											Composition:				22			
											Feldspar Heavy minerals	- 21	<1		3	5		
				- 3							Clay	1	-84	20		-		
											Volcanic glass	-	<1	<1	-	-		
											Micronodules	-	<1	-	-	÷.,		
											Zeolite	в	15	80	100	4		
											Carbonete unspec.			- 11	34	66		
											Caic. nannofossils	6D	<1	<1	55	30		
											Radiolarians Other	2	<1	1	4			
											ORGANIC CARBO	ON AN	D CAR	BONAT	E (%):			
														1,61-8			1,98-100	D
											Organic carbon Carbonate	0.06		0.09 0	0.0	8	0,11	
													3-114		29-130	1		
											Organic carbon	0.04	× 114	0.0				
					1 I						Carbonate	41		85				

ITE	585	<u> </u>	HOI			T	DRE	T CONCO	I I I I	380.4-389.5 m sub-bottom; 6502.7-6511.8 m below rig floor
2	PHIC	2		OSS	TER					
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
y Paleocene	CP1a /	CP CP	CP	в			0.5		= 	Dominant lithologies: 0-54 cm: NANNOFOSSIL CHALK AND CLAYEY NANNO
Maestrichtian aarly Paleocene	Micula mura P1a to P1b (F)	CP FP	AM	в		1	1.0		0.55 1 9.55 1 9.55 1	FOSSLL CHALK (mostly white [N9] to light brown [5YR 6/4]); some faint, indistinct laminations; some coarser layers with foraminifer[7] and radiolarians(?); some indication of bioturbation.
unae	4 id	_	-	-		+				54-78 cm: ZEOLITIC CLAYSTONE; brown (7.5YR 5/4) some bioturbation.
										78-90 cm; drilling breccia with mixed lithologies - mostly zeolitic claystone and nannofossil chalk.
										90-108 cm: NANNOFOSSIL OOZE; white (10YR 8/2); som bioturbation with burrows filled with brown zeolitic clay.
										109-113 cm; dark brown (10YR 4/3) chert.
										113-144 cm: NANNOFOSSIL CHALK; mostly light brown to very pale brown (5YR 6/4-10YR 7/4) clayey at base; some bioturbation.
										SMEAR SLIDE SUMMARY (%)
										1, 24 1, 63 1, 73 1, 98
						1				DDD
										Texture: Clay 100 100 100 100
										Composition: Feldspar 2 1 – 3
										Feldspar 2 1 – 3 Clay 30 60 69 4
										Volcanic glass – 3 3 –
										Zeolite 4 3 20 6
- 1										Carbonate unspec. 30 2 2 47
										Calc. nannofossils 25 1 5 40
										Radiolarians 3
										Recrystal, SiO ₂ B
										ORGANIC CARBON AND CARBONATE (%):
										1, 22-23 1, 69-70
										Organic carbon 0.04 0.16
										Carbonate 49 0

×	PHIC			OSS	TER															
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES			LITH	DLOGIC	DESC	RIPTIO	NC			
Maestrichtian	~	RP CP	-	RP FM		2	1.0			*	10YR 8/3 10YR 8/3 10YR 8/3 10YR 8/3 10YR 8/3 10YR 7/3 5YR 5/2	Sect whi Sect Sect SEC Sect Sect CH/ Sect Sect CH/ Sect Con	tion 1, spy lami tion 1, hard. tion 1, DNE (sill p contact tion 1, 94 ALK and tion 2, ral green	-12 cm 12-27 nations 27-42 42-75 icified?) ct with c 75-98 base. 5-150 c (silicified) 30-80 ish gray r: drilli	: NANN em: d through em: p em: n ; highly overlying em: pa em and ed?) LII em: CL bands; ng bree	ark broot. ale bro ANNO y varia g and to le bro MESTI .AYST some ocia o	SSIL CHA rown Zel FOSSIL ible degr anderlyir wm CLA in 2, 0–3 ONE; fair ONE; fair ONE; m bioturba onaisting	CHAL CHAL mer of ng clays YSTO 0 cm: nt hints iostly p tion.	CLA LK AN indurat itones. NE; sof NANNO sof biot pale bro	D LIM ion; ve ft at to DFOSS urbatic
											SMEAR SLIDE SL Texture: Sand Silt	MMAF 1, 8 D -	TY (%): 1, 22 D - - 100	1, 31 D 	1, 71 D 2 88	1, 14 D - 1 99	11 2, 16 D 	2, 34 D - 1 99	2, 41 D -	2, 61 D - 8 92
											Clay Composition: Feldspar Clay Volcanic glass Palagonite Micronodules Zeolite Carbonate unspec.	1 - - 2 72	- 66 2 - 30 1	81 3 1 15	- - <1 50	2 4 - - 3 54	2 7 1 - 5 48	2 50 3 	1 + - - 2 60	- 85 1 - 1 - 5
											Foraminifers Calc. narmotossils Radiolarians Sponge spicules Fish remains Recrystal. SiO ₂	- 25 √ -	<1		2 45 - -	- 35 - -	37 - - -	3 	35 <1 1	2 - 1 < 1 < 1 - 1
											ORGANIC CARBI Organic carbon Carbonate Organic carbon	1, 6 0.07 72	7-73 8-23		4-105	1, 14 0.06 60	40141	2, 7- 0.04 83		

SITE 585 HOLE CORE 17 CORED INTERVAL 389.5-398.7 m sub-bottom; 6511.8-6521.0 m below rig floor

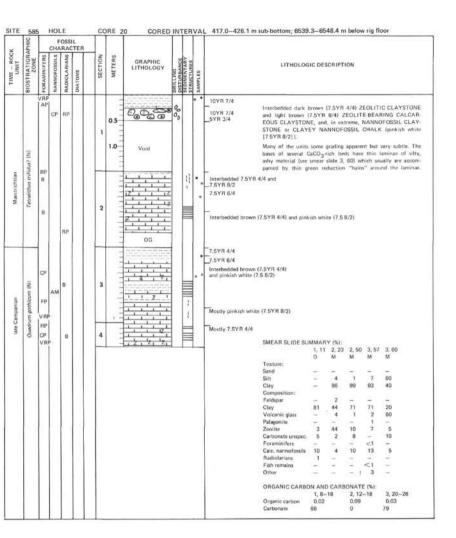
	=		5	OSSI	6																-	_	
2	Hd		CHA																				
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	G LI	BRAPHIC THOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES			1.07	HOLOG	IIC DE	SCRIP	TION				
Maextrichtiun	2	AP CP RP FP	FP	B 8		2	0.5	H		000000		••••••	Pair green (SG 7/2 Drill breccia 10G 8/2 beds and in 10YR 7/3 (don 10G 4/2) CLAYE Brown (5YR 3/4) Interbedded brow and paie green CA	mottlir ninant c dark br EY CHA CHER rt (10Y	olor) own (10 L.K F nodule R 4/2; 1	CL ST CH YR 3/3	AYST ONE (ALK) ZEO 2: 10Y	INE ward	dith min CLAYI CLAYS	2) ZEO	ITIC ANNOF	CLAY OSSIL	TON
													SMEAR SLIDE SU	IMMAR	Y (%)-								
													omerin octor in		1,60 D	1, 84 M	1, 10 M	1, 11 M	16 1, 1 M	20 1, 1 M	24 1, 1 M	28 2,6 M	2, D
													Texture: Sand										
													Silt	ä.,	S .	ä.,	-	10	-		-	.E.	
													Clay	100	100	100	100	90	100	100	100	100	100
													Composition: Feldspar		-	-		<1	-	-	-	-	19
													Heavy minerals		-	8	-	-	-	Carbon Sector	-	-	3
													Clay	65	60	55	70	71	25	52	92	87 3	78
													Volcanic glass Zeolite	<1	-	1	-	15	-	3	5	_	1
													Carbonate unspec.	30	35	25	25	2	15	15	- 6	10	1
													Cale: nannofossils Radiolarians	5	5	20	5	3 <1	60	30	-	-	1
													Silicoflagellates	<1	-	2	2	21	-	-	-	-	-
													Fish remains	-	-	1		<1	-	-	-	-	-
															10400	ONATE	1925						
													ORGANIC CARBO	1, 13		1, 53-							
												23	ORGANIC CARBO Organic carbon Carbonate										
ITE	585		ног	.E		C	ORE	19	CORED	INT	TER	VAI	Organic carbon	1, 13 0.06 27	-15	1, 53- 0.07 43	-56	539,3	m bel	ow rig	floor		_
				ossi		c	ORE	19	CORED		TER	VAI	Organic carbon Carbonate	1, 13 0.06 27	-15	1, 53- 0.07 43	-56	539,3	m bel	ow rig	floor		
TIME - ROCK HI			F	ossi		SECTION	Γ						Organic carbon Carbonate	1, 13 0.06 27	-15	1, 53- 0.07 43	-56).1-6			ow rig	floor		
	BIOSTRATIGRAPHIC CONE		F CHA	OSS	TER		Γ	C Li	SRAPHIC THOLOGY	DRILLING		* SAMPLES	Organic carbon Carbonate	1, 13 0.06 27 m sub-	-15	1, 53- 0.07 43 1; 6530	-56).1-6			ow rig	floor		
		FORAMINIFERS	NANNOFOSSILS D	BADIOLARIANS	TER	SECTION	METERS	C Li	SRAPHIC THOLOGY			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub-	-15	1, 53- 0.07 43 1; 6530	-56).1-6			ow rig	floor		
TIME - ROCK UNIT		FORAMINIFERS	NANNOFOSSILS D	BADIOLARIANS	TER		METERS					** SAMPLES	Organic carbon Carbonate 407.8417.0	1, 13 0.06 27 m sub-	LIT	1, 53- 0.07 43 1; 6530 HOLOG	-56).1-6 sic de terbed TIC (Ided bi	TION own, 1	ow rig green, a and N CHER	and tar	FOSSIL	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.08 27 m sub- /2 m and g 3 7/2) c	15 botton LIT	1, 53- 0.07 43 5; 6530 HOLOG	-56).1-6 sic de terbed TIC (HALK	Ided bi CLAYS , A few	TION TONE brown	green, a	and tar	FOSSIL	
		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.08 27 m sub- /2 m and g 3 7/2) c	15 botton LIT	1, 53- 0.07 43 1; 6530 HOLOG	-56 0.1-6 HC DE terbed TTIC (HALK 1,	ided bi CLAYS , A few ARY (% 3 1,	TION own, 1 TONE brown 0: 12 1,	green, and N CHER 18 1,	ind tar ANNOF F noduli 23 1,	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub 7/2 n and g 3 7/2) o	LIT	1, 53- 0.07 43 5; 6530 HOLOG	-56 0.1-6 HC DE	ided bi CLAYS , A few	TION own, t TONE brown	green, and N CHER	ind tar ANNOF F noduli	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 //2 //2 m and g 3 7/2) c S T	15 botton LIT	1, 53- 0.07 43 5; 6530 HOLOG	-56 0.1-6 HC DE terbed TTIC (HALK 1,	ided bi CLAYS , A few ARY (% 3 1,	TION own, 1 TONE brown 0: 12 1,	green, and N CHER 18 1,	ind tar ANNOF F noduli 23 1,	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- /2 /2 /2 s 5 5 7/21 c S S S S	LIT LIT MEAR S exture: and It	1, 53- 0.07 43 5; 6530 HOLOG	-56 iic DE terbed TIC 0 HALK 1, M	ided bi LLAYS , A few ARY (% D - 1	TION TONE brown i): 12 1, M 	green, and N CHER 1B 1, M	ind tar ANNOF nodul 23 1, M 	FOSSIL es. 60	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- 72 3 7/21 c S S S C	LIT LIT Reen laystone exture: and lit lay	1, 53- 0.07 43 1; 6530 HOLOO	-56 0.1-6 HC DE terbed TTIC (HALK 1,	ided bi LLAYS , A few ARY (% D - 1	TION TONE brown, 1 12 1, M 	green, and N CHER 1B 1, M	ind tar ANNOF nodul 23 1, M 	FOSSIL es. 60	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- 72 72 72 S S S S C C C	LIT LIT MEAR S exture: and It	1, 53- 0.07 43 1; 6530 HOLOO	-56 iic DE terbed TIC 0 HALK 1, M	ided bi LLAYS , A few ARY (% D - 1	TION TONE brown 12 1, M - 100	green, ; and N CHER 18 1, M - 0 100	and tar ANNOP 7 nodul 23 1, M 	FOSSIL es. 60	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- /2 /2 S 5 7/21 o S S S C C C F F C C	LIT LIT LIT MEAR S exture: and it lay ormposit eldspar	1, 53- 0.07 43 1; 6530 HOLOG In 5 LLIDE S LLIDE S	-56 sic de terbed TIC (HALK 1, M - 100	ided bi CLAYS CLAYS A few ARY (% D - 1 99 1 78	TION TONE 12 1, M 	areen, ; and N CHER1 18 1, M - - - - 0 100 3 1	ind tar ANNOF nodul 23 1, M - - - - -	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- 72 x s S S S S S S S S S S S S S S S S S S	LIT LIT LIT MEAR S exture: and It lay omposit eldspar lay ofcanic	1, 53- 0.07 43 1; 6530 HOLOG In 5 LLIDE S LLIDE S	-56 .1	ided bo LLAYS , A few ARY (%) D - 1 99 1 78 8 99 5	TION TONE brown 12 1, M 	green, . and N CHER 1B 1, M 0 100 8 1 2 2 3 2	and tar ANNOJ F nodul 23 1, M - - - - - - -	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 7 7 7 8 3 7/2) c 8 5 5 5 5 5 6 7 7 2 6 7 7 2 7 7 7 7 7 7 7 7 7 7 7 7	LIT LIT LIT Reen faystone wKture: and it lay omposit eldspar lay olcanic: coolite	1, 53- 0.07 43 7; 6530 HOLOG	-56 iic de terbed HALK M - 100 1 4 - 3	ided bb CLAYS , A few ARY (% - 1 99 1 78 5 5 15	TION TONE brown 12 1, M 	green, . and N CHER 1B 1, M 0 100 8 1 2 2 3 2	and tar ANNOF F nodul 23 1, M 	FOSS1L es. 50	
TIME - ROCK UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 77 72 72 8 5 7721 c 5 5 5 7721 c 6 7 7 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 7	LIT LIT LIT Reen laystone exture: and it lay ormposit eldspar lay olcanic colirie arbonatic	1, 53.3 0.07 1; 6530 HOLOC INTERNATION	-56 iic de terbed TTIC (HALK M 100 14 4 - 3 5 5 10	ided b CLAYS , A few ARY (M 99 1 78 5 5 15 15 - - -	TION TONE Drown, 1 TONE Drown 12 1, M 42 10 100 100 100 100 100 100 100 100 100	green, : and N CHER1 1B 1, M - - 0 100 3 1 2 2 3 2 1 - 56	and tar ANNOF nodul 23 1, M 	FOSS1L es. 50	
UNIT UNIT		Ø FORAMINIFERS	NANNOFOSSILS D	B RADIOLARIANS	TER	SECTION	METERS		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			* * SAMPLES	Organic carbon Carbonate 407.8-417.0	1, 13 0.06 27 m sub- 72 72 72 5 5 5 5 5 5 5 5 7 7 7 5 5 5 7 7 7 5 5 7 7 7 7 5 5 7 7 7 7 5 7	LIT LIT LIT Reen laystone exture: and it lay ormposit eldspar lay olcanic colirie arbonatic	1, 53 0,07 43 1; 6530 HOLOG HOLOG S LLIDE S LLIDE S CH LLIDE S CH LLIDE S	-56 iic de terbed TTIC (HALK M 100 14 4 - 3 5 5 10	ided b CLAYS , A few ARY (M 99 1 78 5 5 15 15 - - -	TION TOWN, 1 TONE brown 12 1, M - - - - - - - - - - - - - - - - - -	green, i and N CHER 1B 1, M - 0 100 3 1 2 2 5 1 5 5 1 5 1 4 4	and tar ANNOF noduk 23 1, M 	FOSS1L es. 50 7 3	

ORGANIC CARBON AND CARBONATE (%): 1, 38-40 1, 48-49

0.15

57

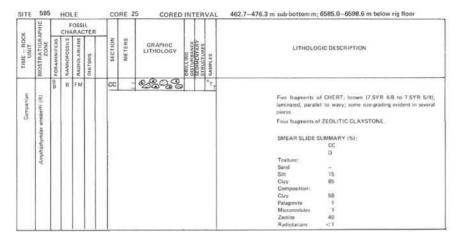
0.01


76

Organic carbon

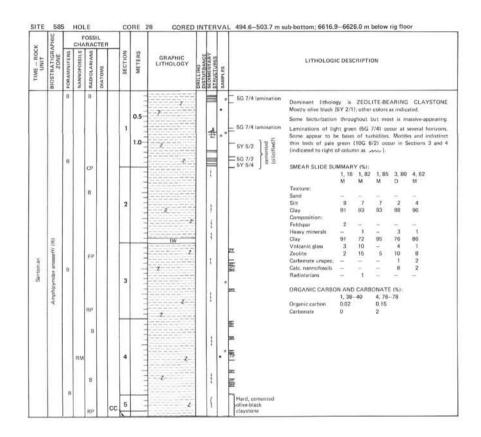
Carbonate

1,56-57

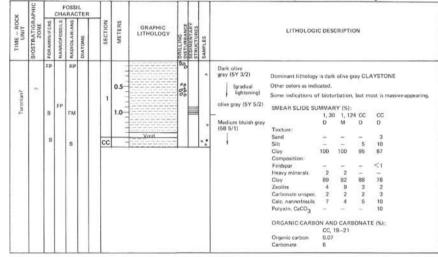

0,10

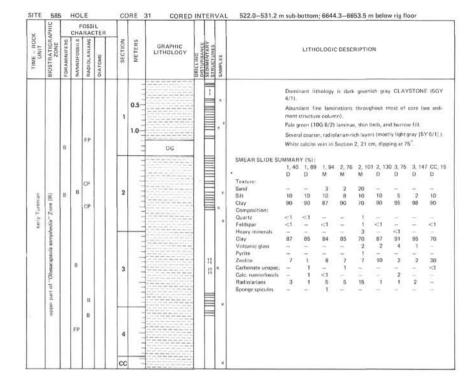
×	APHIC 282			OSS	IL		RE		Π	Τ	426.1-435.8 m sub-bôttom; 6548.4-6557.6 m below rig floor
TIME - ROCK UNIT	BIOSTRATIGR	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
u	(N) sna	в	FP			1 cc	0.5		000 000		Fragments of dark brown (7.5YR 4/4) CLAYSTONE, light brown (7.5YR 4/4) SILICIFIED(?) CHALK, and pale green (5G 8/2) CHERT.
late Campanian	ides acuieus									1	SMEAR SLIDE SUMMARY (%): 1, 20 CC
late !	Ceratolithoides										D D Texture: Sand
	3										Silt 2 2 Clay 98 98 Composition:
											Clay - 92 Zeolite 1 <1 Carbonate unspec, 54 -
											Cale, nannofossils 5 -
- 9											Radiolarians - 1 Sponge spicules - 1
- 1		23	6								Recrystal, S/O ₂ 40 5
											Core 22: 435.3-444,4 m sub-bottom (6557.6-6566.7 mbrl): No recovery.

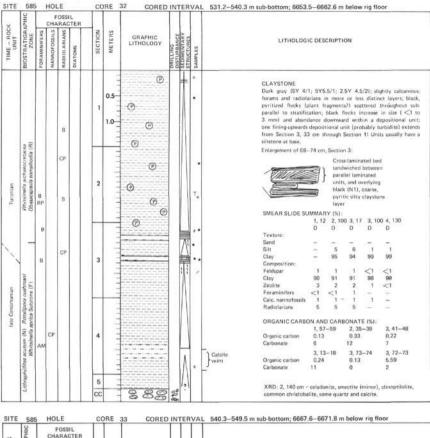
SITE	585	HOLE	CORE 23	CORED INITERVAL	444.4-453.6 m sub-bottom; 6566.7-6575.9 m below rig floor


×	APHIC			RAC	L								
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	NOLLOSO.		METERS	GRAP	HICLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
6		RP	8			C	c	~	•	90	2	ΤŢ	Three fragments of CHERT (silicified bioclastic limestone).

SITE 585 HOLE CORE 26 CORED INTERVAL 476.3-485.4 m sub-bottom; 6598.6-6607.7 m below rig floor


2	DIHA			RAC												
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLO	GIC DE	SCRIPTI	ON		
	enessetti (R)	BBBBPB	в	CM AM RM		1	0.5				Fragments of dar 5/2) CHERT.	k brown	1 (7,5Y)	R 4/4}	and ligh	nt olive gray (SY
Santonian	Amphipyndax ar							6 6 6			ZEOLITIC AND dark brown (7.5Y			RING	CLAY	STONE: mostly
3	duga										SMEAR SLIDE S	JMMAR	Y (%):			
	Amp												1, 23			
	8										2010-001 (MARK)	M	M	M	м	M
											Texture:					
											Sand Silt	3	-	2	1	-
		L		U 1							Clay	97	65 35	98	2 98	-
											Composition:	97	35	90	90	~
											Feldsoar		4			
											Heavy minerals		2	5	4	2
											Clay	50	10	71	68	50
											Volcanic glass	2	65	3		25
	1.1										Zeolite	_	15	30	25	25
											Carbonate unspec		2	_	-	-
											Calc. nannofossils		5	-	1	-
											Badiolarians		<1	-	-	-
											Other	1	-	1	-	-


TE	585		HOL			- 1	ORE	27 CORE	DINTE	H	VAL	485.4-494.6 m sul	b-bottom; 6607.7—E	616,9 n	n belov	w rig ti	001	
	THIC	_8		RAC	L													
DNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIPT	ION			
		8	В				0.5	z			:-	A	forminant lithology fostly dark reddish b nd olive black (5Y 2/1)	own (5)	R 2.5			
			в	в			1						ones of fine lamination broughout.	ns of ligh	t green	(5G 7/4	I) clays	tone occu
		В					1.0	z	40	1	*		tant fragments appear ~0.5 cm) at Section 3,		prepar	ations	from a	dark band
ue						F		2	(HIT)			(a	laystone is moderately re flattened and subpa illed with more-reduc	rattel to t	tedding	Burro	ws are	commonly
Santonian				FP			1.5			2	1		SMEAR SLIDE S				10102	
ñ			8			1	2							1, 15 D	1, 27 M	1,67 M	1,82 M	1, 109 M
							1	7-					Texture: Sand					12
								the set of the last in the	9	1			Silt	12	11	1	20	1
		11						06					Clay	88	89	99	80	99
									-	:	:	5Y 2/1 (dominant)	Composition:		1.00	T	11	1
				RP					3	1	11	214002000000000000000000000000000000000	Feldspar	2	2	1	2	1
				ne				2		1	1	- 10G 4/2	Heavy minerals	88	89	99	80	99
							1.5		-	11	1		Clay	3	4	90	10	<1
									3 0	2	1.1		Volcanic glass					
			В			1		the last and the last the	-	٤.			Zeolite	3	2	<1	3	<1
							1			3	1		Fe-oxides	4	2	-	2	
		в		RP			1	Z				(5G 7/4)		2, 42 M	2,79 D	3, 16 D	3, 85 D	3, 123 D
						L			-				Texture:					
							1 0		-	14			Sand	1.00	-	-	÷.	
				8			1.3		-	1			Silt	7	5	3	5	14
		1.1						- 7	- F	-			-	93	95	97	95	86
		RP				4	9 8		-			Interbedded moderate brown (5YR 3/4) and	Composition:					
			в		1.	cc	1 3		7			grayish green (5G 5/2)		2	1	2	2	4
		8	1000	в	L I'		-		1000			CLAYSTONE	Heavy minerals			- î	1	- ⁻
		1		1		P	-	the second secon	100	_	-		Clay	93	91	92	91	86
													Volcanic glass	2	2	3	2	2
														3	5	2	3	5
													Zeolite Fe-oxidet	-	1	-	2	2
																		1.00
													ORGANIC CARE	ON AND 1, 13-		3, 20		
													Oversite each re-		-18	0.14	-24	
													Organic carbon Carbonate	0.09		2		
		1			1								Carbonate	- 11. C		- # -		



SITE 585 HOLE CORE 29 CORED INTERVAL 503.7-512.9 m sub-bottom; 6626.0-6635.2 m below rig floor FOSSIL CHARACTER TIME - ROCK UNIT RS BS DISTURBANCE SEDIMENTARY STRUCTURE® ZONE GRAPHIC LITHOLOGIC DESCRIPTION METE LITHOLOGY 5Y 2/1 ÷ Dominant lithology is olive black (5Y 2/1) CLAYSTONE CP Some faint laminations; minor bioturbation; several intervals Rad sand 0.5 of radiolarian "sandstone" (indicated as "rad sand"). Pale green (10G 6/2) beds throughout indicated at Rad sand 1.0-SMEAR SLIDE SUMMARY (%): 2, 56 2, 62 2, 101 CC, 5 (B) M D M M antes. Rad sand Rad sand Texture: 100 100 100 CP Clay Composition 1 2 2 Heavy minerals 14 86 93 88 82 Clav Volcanic glass 2 1 2 5 Zeolite 3 9 6 23 Rad sand Carbonate unsner -3 Calc. nannofossiis 1 Radiolarians <1 1 00 cc

~	PHIC			OSSI RAC	TER							
TIME - ROCK UNIT	BIDSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
late Cenomanian?				в		1	0.5					Fragments of gray (SY 5/1) CLAYSTONE with drilling breaci (chips <1 cm) in between composed of grav (SY 5/1) claystone very dark grayith brown (10YR 3/2) chert, dark brown (10YF 3/3) claystone, binkish gray (7.5YR 8/2) calcareous claystone and dark gray (SY 4/1) claystone.

116

	APHIC		F	RAC							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	HADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
	tia (R)						0.5		0000	•	Interbedded CLAY-RADIOLARIAN, and NANNOFOSSIL BEARING LIMESTONE, CLAYEY RADIOLARITE, and NANNOFOSSIL-BEARING CLAYSTONE – multicolored.
	somphedia	8				1				1	Section 1, 0-57 cm: pale red (10R 6/2-5R 6/2) NANNO FOSSIL-BEARING CLAYEY LIMESTONE.
mian	Obesscapsula p			AP		L	1.0				Section 1, 57–100 cm: pale red (5R 6/2) NANNOFOSSIL BEARING CLAYSTONE with continuous, parallel laminations several light greenish gray (5G 8/1) bands very rich in radio larians.
middle Cenomanian	OF								9.00	т	Section 1, 100–150 cm: NANNOFOSSIL-BEARING CLAYEY LIMESTONE – reddish purple (5RP 6/2) and gray (N5–N7 with highly variable content of radiolarians.
midd	(B)			CP		2	13				Section 2, 0–38 cm: light gray (N7) CLAY-, RAD-, and NANNO BEARING LIMESTONE with thin continuous laminations
	Acaeniotyle umbilicata	В		AP CP			100		SD.	•	Section 2, 38-150 cm: gravish brown (10YR 5/2, 4/2, 4/1 CLAYEY RADIOLARITE; some zone very rich in radiolari (see smear slide 2, 71). Several thin beds burrow fillings, on reduction halos slown fractures of light greenish grav (56 8/1).
	Acaemioty	8 8		CP		3		0.00	\$7		Section 3, 0–45 cm: CLAYEY RADIOLARITE AND RADIO LARIAN-BEARING LIMESTONE with nome fine, paralle laminations; multicolored but mostly haded of brown (10YR) zones with highly varying degrees of richness in rads.
- 1										1	SMEAR SLIDE SUMMARY (%):
- 1						1					1, 21 1, 41 2, 17 2, 71 3, 43
										- 1	D D D M M
						1				- 1	Texture:
					1.1	1				- 1	Sand - 5 10
					0.10					- 1	Silt 5 55 80 - 50
											Clay 95 40 20 - 40
											Composition:
						1					Quartz 3
	[]		1			1					Clay 88 28 10 30 30
											Volcanic glass 2
	1					1					Pyrite 1
											Zeolite 2 2
											Carbonate unspec. 3 40 45 2 20 Ecomposition
						1				- 1	
											Plant debris 1 - Recrystal, SiOn 18 -
						1					Recrystal. SiO ₂ 18 -
											ORGANIC CARBON AND CARBONATE (%):
											1, 11-12 2, 92-93
			1 I								Organic carbon 0.06 0.05

×	15	1	CHA	RAC	TER				11							
TIME - ROCK UNIT	BIOSTRATIGRAPI	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURIS	SAMPLES	LITHOLO	GIC DI	SCRIP	TION		
		в	FP	CP				~ ~ ~			Mostly interbedde LIMESTONE and					E and CLAY
		в				1	0.5-				Section 1, 0-12 appearing.	cm: C	AYSTO	ONE, d	lark gra	y (N4), mass
	ŝ	в									Section 1, 12-1	7 cm:	CHERT	, yello	w brow	wi (10YR F
uian	acutum?			FP			1.0	マーニュー ニューティー 			Section 1, 1765 green (58G 7/2) v 6/2) rad-rich SAND	with se	veral int	erbeds		
Cenomanian	hidites								1,	•	Section 1, 65-80 stone.	cm: y	ellow b	rown (10YR 6	i/2) clayey li
-	L.ithraphidites	в	RP			2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Section 1, 80-10 massive-appearing.	0 cm:	CLAYS	TONE,	dark g	gray (N3), h
		в				cc		~~~~	1 1	•	Section 1, 100-1 EOUS CLAYSTON		CLAY	EY LIN	MESTON	E or CALC
						F	-	1			Section 1, 130-1 rad-rich in some zo		CALC	AREOL	IS SAN	DY SILTST
											Section 2 and Core STONE, pale yello ing with only sligh	w bro	vn (10Y	R 6/2)	, mostly	r massive-ap
											Several beds of CI 8/1}.					
			1								SMEAR SLIDE SU	IMMA	IY (%):			
												1, 4	1, 45	1, 10	3 2,6	2, 45
												Ð	D		D	D
										- 1	Texture: Sand		3	50	10	
	1 (11						Silt	5	3	10	5	2
											Clay	95	94	40	85	98
											Composition:	222.7	222			
											Feldspar	<1 87	<1 43	1	85	48
											Clay Volcanic glass	2	43	-	<1	48
											Glauconite	-	-	<1	2	-
											Pyrite	• 3	1	3	1	-
											Zeolite	2	-	-	-	Б
					11						Carbonate unspec.	-	25	3	2	25
											Foraminifers	-	-	-	1	- C
					11						Calc. nennofossils Radiolarians	3	25	2	10	-
					11						recipitariaria			00	10	5 C
											ORGANIC CARB					
													-92	CC, S	3-5	
											Organic carbon	0.05		0.04		
											Carbonate					

SITE 585 HOLE CORE 35 CORED INTERVAL 568.6-572.1 m sub-bottom; 6680.9-6694.4 m below rig floor

SITE 585

×	VPHIC	-		OSSI RAC	L					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
ate Albian	icinensit (F)	RP		CP CP		1	Q.5			Most of material recovered is CALCAREOUS CLAYSTONI ± radiolarians. Most colors are various shades of yellow brown (2.5Y) with some thin bods of pale yellowing green (100Y 7/2) laminations are common throughout.
late	breggiensit/praeticinensit (F)	в				cc	10	00000000	, « ⁻	Note: recovery from Core 36 consisted of a jumbled series o poker-chip-like fragments in liner so there is no real or implies sequence or continuity of lithologies.
	ş					1				SMEAR SLIDE SUMMARY (%):
	The. I									1, 67 1, 72 1, 81
	15									M M M
										Texture:
										Clay 100 - 100
- 1										Composition:
										Clay - 10 100
- 1	- 1	11	1.1			1				Zeolite <1
										Carbonate unspec, 25 <1 -
										Radiolarians 10 30 -
										Sponge spicules <1
- 1										Fish remains <1
						1				Recrystal, SiO ₂ 65 60 -

 SITE 585
 HOLE
 CORE 37
 CORED INTERVAL
 581.2−590.4 sub-bottom; 6703.5−6712.7 m below rig floor

 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

6 5		F	RAC										
BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOG	GIC DES	CRIPTI	ON
middle Albian Acaeniotyle umbilicata (R) B	-	2	CP CP		1	0.5	L		*.	sition. Most colors are thin beds, and re (10G 8/2). Variable carbonat	shades o eduction e and rad n stratig impletely UMMAR	f yelloi halos fiolarian raphic s / jumble (Y (%):	equence or continuity because ad in liner.
										Zeolite Radiolarians Sponge spicules	1 - <1	- <1	- 25

Image: Possilit Character Possilit Character Possilit Character Possilit State Possilit StatePossilit State Possilit State Possilit State Possilit S	LITHOLOGIC DESCRIPTION CALCAREOUS CLAYSTONE in smaller fragments in upper and lower parts of recovered section. Dominant color is grayish brown (2.5Y 5/2). 22-47 cm CALCAREOUS CLAYSTONE and SANDY CAL CAREOUS CLAYSTONE with shallow water debris in graded sequences (coarser debris includes solites, benthic and plank)
	lower parts of recovered section. Dominant color is gravish brown (2.5Y 5/2). 22-47 cm = CALCAREOUS CLAYSTONE and SANDY CAL CAREOUS CLAYSTONE with shallow water dobins in graded sequences (coarser dobins includes ooilize, bothtic and plank-
	tonic forams, radiotarians, volcanoganic sand, and glauconite), fine-grained maritix contains volcanic glass attraced to callado nite(?) or glauconite(?). Dominant color is grayish brown (2,5Y 5/2). SMEAR SLIDE SUMMARY (%): 1,9 1,82 M M Texture: Sand Sand - Sand - Salt 3 Clay 97 Composition: Feidapar Feidapar 2 Clay 97 Yolanic glass - Zoinite unspec - Zadiolarian: - Volcanic glass - Zaloitte unspec: - Teadiolarian: - ORGANIC CARBON AND CARBONATE (%): 1,24–28 ORGANIC CARBON OLD 0.03

	2		100	OSS	1		RE		INTER	TT							
6	H				TER					11							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATONS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOG	IC DES	SCRIPT	TION			
sian ?			RP	CP			0.5		80	÷	Fining-upward sequ 7/3) CLAY-BEARI dark brown (7,5YR	ING R	RADIO	LARIT	very E gr	pale	e brown (10 g upward i
middle Albian				AP		1	1.0		2008		Other lithologies: dark gray (10YR 4 also form the bases	(1) = 5	SILTY	CLAY	STO	NE;	S SILTSTO these litholo
E		RP					-	Void	00 (1) (1)		Sequence contains coarse and fine mat particularly in Section	terial at	t the b	ases of	finin		
						2	1.5		-		SMEAR SLIDE SU	MMAD	V (K)				
- 1		в		В			-	J. I.T			amenti actor au	1, 2	1,5		7 2	4	2,43
		в				cc		12.221	鞌		Texture:	м	м	м	N		м
						-				-	Sand	÷	-	-	1	13	÷
											Silt	80	60	85	-		60
				0							Clay	20	40	15	10	0	40
											Composition:						
											Heavy minerals Clay	16	16	2	9	1	40
											Volcanic fragments		10	- 20		1	35
											Palagonite	-	20	-	<		÷
											Zeolite	4	-	-		3	5
											Carbonate unspec.	-	-	80	1	÷.	1
											Radiolarians Fish remains	80	60 4	-			-
														2			
											ORGANIC CARBO	N AND	D CAR	BONA	TE (%	6):	
- 11											Organic carbon	1,25		1, 4	2-44	*C -	
											Carbonate	3		0		-	
SITE			HOL	OSS	IL		RE	40 CORED	INTER	IVAL 608.7-	Carbonate 617.8 m sub-bottom; 6731.		40.1		w ri	g flo	bor
TIME - ROCK THE	BIOSTRATIGRAPHIC 8		F	OSS	L SWOLVIG	SECTION	METERS	40 CORED GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY			.0-67		m belo	w ri	g flo	DOT
			F	OSS	TER			GRAPHIC		a mor timea SamPLES	-617.8 m sub-bottom; 6731.	.0-67 IC DES LEOUS frequer	consist siltsto	m belo FION	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor timea SamPLES	-617.8 m sub-bottom; 6731. LITHOLOGI Fining-upward sepu CLAYEY CALCAR which decrears in a ment gest darker	0-67 IC DES tences teous frequer rd fine	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor timea SamPLES	–617.8 m sub-bottom; 6731. LITHOLOGI Eining-upward sept CLAYEY CALCAR white decrease in ment gets darker a STONE.	0-67 IC DES Jences IEOUS frequent ind fine	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOG Fining-upward sequ CLAYEY CALCAR which decrease in ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand	.0-67 IC DES Dences IEOUS frequee Ind fine MMAF 1, 40	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOGI Fining-upward sepu CLAYEY CALCAR which decrease in ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand Sit	0-67 IC DES Pences IEOUS frequent ind find	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOG Fining-upward sepu CLAYEY CALCAR which decrease in ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand Sit Clay	.0-67 IC DES Dences IEOUS frequee Ind fine MMAF 1, 40	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOGI Fining-upward sepu CLAYEY CALCAR which decrease in ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand Sit	0-67 IC DES Pences IEOUS frequent ind find	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOGI CLAYEY CALCAR Which decrease in 1 ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand Sitt Clay Composition: Heav minerals Clay	0-67 IC DES Dences IEOUS Ind fine MMAAF 1, 40 - 12 88 1 86	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami
TIME - ROCK UNIT		FORAMINIFERS	F	RADIOLARIANS 250	TER	SECTION	METERS	GRAPHIC		a mor type SamPLES	-617.8 m sub-bottom; 6731. LITHOLOG CLAYEY CALCAR which decrean in ment gets darker a STONE. SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Haav minerak	IC DES Dences IEOUS frequences 1, 40 - 12 88 1	consist siltsto ncy an er. Gro RY (%)	m belo FION ting ma ne base d thick iding in	inly of swith	of w h ma	hite (N9) co ory this lami

	VHIC		F	DSSI						Π	
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS		DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
middle Albian		8 RP		в		cc	3	999 30-0 2009 		.	Graded sequences consisting of interlayered dark gray [2,5Y 4/0 CLAYSTONE, light gray (2,5Y 7/0) SILTY CLAYSTONE, dark greenish gray (5G 4/1) CLAYSTONE, and coarse basal beds of white (2,5Y 8/0) CARBONATE GRAINSTONE and CONCLOMERATIC VOLCANICLASTIC SANDSTONE with clasts up to 6 mm,
						L					SMEAR SLIDE SUMMARY (%):
				- 1							CC, 8 CC, 22 CC, 32
										- 1	M M M
				- 1						- L	Texture:
			- 1	- 1							Sand 70 20 -
			- 1	. 1		1					Silt 15 70 -
											Clay 15 10 -
			- 1	- 1							Composition:
											Feldspar 3 — — Heavy minerals — 1 1
			- 1							- 1	Clay – 96
			. 1	- 1							Volcanic glass 60
11			. 1								Glauconite 4 – –
			- I								Zeolite 2 - <1
			11								Carbonate unspec. 4 B9 -
				- 1						- 1	Foraminifers 5
			6 I.	- 1		1					Radiolarians 2 - 1

SITE 585 HOLE CORE 42 CORED INTERVAL 627.0-636.1 m sub-bottom; 6749.3-6758.4 m below rig floor

RADIOLARIANS DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	IRES	LITH	OLOG					
			DISTURBA	STRUCTU			IC DES	CRIPTI	ON		
B	2 3 CCC				dak grey (h into biotumb or CALCAR batal layer of an interla 4/11, sitten SMEAR SLI Texture: Sand Sitt Clay Composition Feldapar Heavy miner Clay Voteanic gla Zeolite Carbonate u Foraminiter Cala, namo Radiolariama Radiolariama Radiolariama Radiolariama	YSTO/ Icanogu (4) CLL ated gr EOUS are be minatic a. Mo a forw DE SU DE SU at as as as as as as as as	NE or nnic man evenish CLAYSTO CLAYSTO MMAR' MMAR' 1,10 M MMAR' 1,10 M 88 1 1,10 M 88 1 3 3 86 3 2 2 - - - 3 2 2 N ANE	CLAYE turnal., NE, and pray (5) STONE or larm to (N9) y (%): 1,80 D D 	EY SIL As basa d, final G 6/1; or LIN G 6/1; or LN I I I 99	ISTON L units 5 y 61/1 AESTOU coarser ded sec ne. 2,41 D - 10 90 90 1 2 888 1 3 1 - - - <1 4 4 -	E that conta grading up in veral sequence) CLAYSTO NE. The coas laminae cons eenish gray (! quences are !
		B 2	B 2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 2 3 3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		B CC	B B C C C C C C C C C C C C C C C C C C	B B C C C C C C C C C C C C C C C C C C	B CC CC CC CC A A A A A A A A A A A A A	B B C C C C C C C C C C C C C C C C C C	B B C C C C C C C C C C C C C C C C C C

SITE 585			COF	RE 4	3 CORED	INTERV	L 636.1-645.3 m sub-bottom; 6758.4-6767.6 m below rig floor	SITE	585				CORE	44 CORED I	TERVA	L 645.3-654.4 m sub-bottom; 6767.6-6776.7 m below rig floor
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS	NANNDFDSSILS HADIOLARIANS	SWO	SECTION	METERS	GRAPHIC LITHOLOGY	DRULLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		FOSSIL HARACT	Π	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
nuclean Albian all			1		Void		Numerous graded sequences of olive black (5V 2/1) to dark olive grav (5Y 3/1), CLAYEY SILTSTONE to CLAYSTONE. Base of graded sequences commonly are bioturbated, calcaroous, and olive grav (5Y 1). As in the previous 10 ± corex, all laminue have an apparent dip of about 4-8°. SMEAR SLIDE SUMMARY (5): 2.33 2.68 6.94 Texture: 3.10 D M M M Texture: 3.11 25 20 22 - Clay 75 80 78 - Composition: 0.22 1 - 2 - Mica - 1 1 Haay minerals 3 7 9 9 Clay 66 78 - Volqanic glass - 8 - 2 Zeolite 2 10 6 - Carbonate sumpse. 3.1 2 1 - 2 Calonate sumpse. 3.1 2 1 - 2 Calonate sumpse. 3.2 10 6 - Carbonate sumpse. 3.2 1 - 3 3	Sintial Absorb		B	RP B B		2 3 4 5 CCC	00000		Graded sequences of dark greenish gray (BG 4/1) SILTSTONE and Guky brown (5YR 2/2), reddish black (IDR 2,5/1), or black (2,5YR 2,5/0) CLAYSTONE tops. SMEAR SLIDE SUMMARY (%): 1, 16 1, 48 1, 55 3, 25 4, 72 5, 115 M M D D D SMEAR SLIDE SUMMARY (%): 1, 16 1, 48 1, 55 3, 25 4, 72 5, 115 Smad - - - - - - 100 Sint - - 25 - - 500 Cary 100 100 75 100 40 Quartr - 2 - - - - - - 1 Quartr - 5 68 18 26 30 Volcanic glas 3 - - 2 -

120

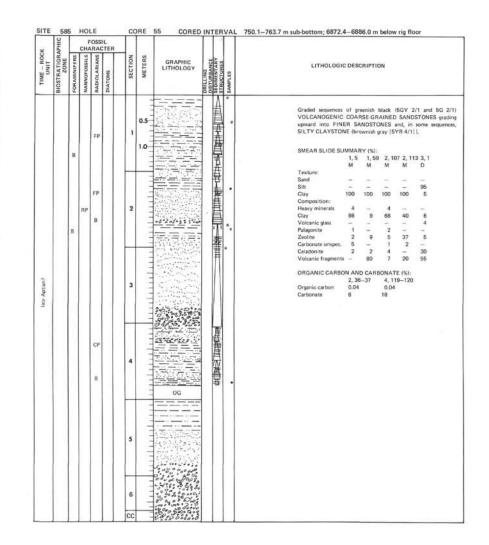
	HC			oss						П								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLAHIANS	TER	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		u	THOLO	GIC DE	SCRIP	TION		
		RP B B		8		3	0.5	Void		•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ew cart nostly rading (5) nit (Bi equence C) unit ich wit CLAYE	sonate-ri SILTY upward 4/1), i auma "1 es, partie s of an th COA	ich grad CLAYS into CLi n the up C''). Sen cularly I ideal se RSE C NTIC L	ed unit TONE AYSTO per, us veral un aminate quence LASTIG	ns. Base or CL NE (N- ually bi nits sho ad (B a Sever C LIM	s of gri AYEY 4 or, in r oturbati ow well nd D) a al grade ESTONE	e-claystone with a ided sequences are SLLTSTONE (N4) intertmenceases, olivies ed, part of a gradec developed Baumi are pole laminates d units are CaCO ₃ E grading up into e of one unit is a
a Moian C		в		В		2	of secol		臻入	-	SMEAR SLIDE SU	JMMAR 1, 9 D	(¥ (%): 1,48 D	2, 49 D	2, 77 D	3, 9 D	3, 128 D	1 4, 12 D
arbouts		~		в		-	1				Texture: Sand Silt Clay	- 5 95	75 15 10	5 5 90	2	5 50 45	35 45 20	100
			FP	FP		3	- Line	•	\$ 7		Composition: Quartz Feldspar Mica Heavy minerals	<1 -	<1 1 -	<1	<1 2 1	1	1 3 8	1
				8			1000			*	Clay Volcanic glass Glauconite Micronodules	76 7 1	10 3 1	75 9 2	50 14 1 2	50 15 2	20 20 2 2	86
		8		8		4 CC	-	중요공		*	Zeolite Carbonate unspec. Foraminifers Calc. nannofossils	7	2 80 	10 2 	7	9 	7 20 2	7
											Radiolarians Sponge spicules Volcanic fragments		100	1	15 1 -	15 -	15	-
											ORGANIC CARBO	0N ANI 1, 54 0.08		ONATE 3, 18- 0.07				
											Carbonate	3		0				

×	APHIC			RAC	TER				Π	Π	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENYARY STRUCTUDES	SAMPLES	LITHOLOGIC DESCRIPTION
				B		ï	0.5	Void		· · ·	Graded sequences with bases mostly of dark greenish gray (SG 4/1) or greenish black (SGY 2/1) volcanogenic SILTSTONE & SANDSTONE grading up into vary dark gray (N4 or 5Y 4.5/1 brownih-gray (SYR 4/1), or dark greenish gray (SGY 4/1) MUDSTONE. Several sequences are complete Bauma (A–E sequences. Fine to coars penallel - and current inple-lamination are common. Biorurbation of uppermost fine top of a sequence is rare. Base of several sequences have poble-size clast (up of 6 orn) rounded and flattened. Several water secape structure also are prevent. Volcanogenic components in units include or
early Albian?	umbilicata (R)	В		СР		2	Forefree				canic lithic and crystal fragments, celluionite, and altered volcan glass. SMEAR SLIDE SUMMARY (%): 1, 2 1, 35 2, 30 4, 85 M M D D
nariy	Acceniotyle umbilicata			FP				OG	4		Texture: Sand — — — — Silt — 85 3 — Clay 100 15 97 100
	Ac		FP	FP		3	are breat an	3810 Z		•	$\begin{array}{c} \text{Composition:} \\ \text{Feldspar} & - & - & - & 1 \\ \text{Heavy minerals} & - & <1 & 2 & 1 \\ \text{Clay minerals} & - & <1 & 2 & 1 \\ \text{Clay minerals} & - & <1 & 2 & 1 \\ \text{Volcanic glass} & <1 & - & - & 2 \\ \text{Zeolite} & 5 & 7 & - & 5 \\ \text{Carbonats unspec.} & 1 & 1 & 9 & 4 \\ \text{Calc nannofossils} & <1 & - & - & - \\ \text{Volcanic fragments} & 3 & - & 3 & 5 \\ \text{Celadonice} & - & 85 & 4 & 2 \\ \end{array}$
						4	Tree Tree			*	DRGANIC CARBON AND CARBONATE (%): 1, 82–83 3, 24–25 Organic carbon 0.12 0.10 Carbonate 5 3

SITE 585 HOLE CORE 46 CORED INTERVAL 667.8-676.9 m sub-bottom; 6790.1-6799.2 m below rig floor

×	APHIC			OSSI RAC	TER						~	PHIC		FO	SSIL
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY SNITLING	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NAMNOFOSSILS	RADIOLARIANS
1		в		в		9	0.5			VERY COARSE VOLCANICLASTICS in graded sequences grading from CDARSE SANDSTONE lossally conglomeratic, with fragments up to several on but most are several mult to SiLTSTONE Larger class are angular to rounded, but most are subrounded to rounded. Volcanic debris comorties most of all lithologies, and includes volcanic lithic and evytal fragments, cetadonite, and highly altered volcanic glass. Dominant colon of coarsers bases of graded sequences are grayish green (10G-4/2) and dusky green (5G-3/2), and of finer tops are grayish green 10G-4/2) very dark gray (5Y 3/1), and dark grayish brown (10YR 3/2).	aarty Albian	otyle umbilicata (R)	8	RP	B
						2			4	Veins of white (NB) culctle occur at several horizons. SMEAR SLIDE SUMMARY (%): 1, 10, 1, 50, 3, 120 M D D Texture: Saind		Acaeniotyle	в		B
						3		Void	<u> </u>	Clay - - Composition: - - Feldspar 1 - Clay - 10 9 Volcanic glast 2 1 - Palagonite - 1 - Carbonate unpec. 6 2 - Fuh remains 1 - - Volcanic fragments 3 35 20 Celadonite 5 62 -					
						4		<u></u>							
						5 CC		Ginta main	$\left \right $						

	TIGRAPHIC DNE		F	OSSI RAC							
UNIT - NUCH	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
							0.5				Thick graded sequences of volcanciastics grading from co- glomeratic sandstone bases, grading up into very coarse sand stone, sandstore, siltstone, and claystone.
	umbilicata (R)	8	RP			3	1.0				Dominant colors are dusky green (5G 3/2) (= moti), dark green in gray (6G 4/1), gray in green (10G 4/2), orive gray (5Y 4/2) and gray ish olive (GY 3/2) (= tiner upper parts of graded sequen- ces).
aarty Albian	cyle umb			в			-0,				Larger clasts (up to 5 cm) at bases of units are subrounded tangular.
4	Acaenioryle						-	11	I L		SMEAR SLIDE SUMMARY (%):
	Ac					2					1, 149 2, 70 2, 149 M D M
			RP.			1.1					M D m
				B						1 1	Sand
							122			11	Sitt 15 - 10
							-0/	0,000	18.	1.1	Clav 85 - 90
							- 6	0000	000000		Composition
		8		CP		CC	-C	2.00	000		Heavy minerals 1 2 5
		1				-			the state of the s	-	Clay 50
				1.2						- 1	Zeolite 2 3 -
										- 1	Carbonate unspec. 45 9 81
										- 1	Cale, nannofossils <1
											Radiolarians – – <1 Scorpe spicules – – 3
											Sponge spicules – – 3 Volcanic fragments – 50 10
											Celadonite 3 5 -


	HIC	2	F	OSS	TER					
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
		в		CP		1	0.5	\$ i, 2 i a i a i a		Graded sequences of volcanicitatics consisting of greenish black (5GY 2/1) SANDSTONE grading upward into SILTSTONE, and finally (but not in all sequences) into dark gravish brown (2.5 4/2) CLAYSTONE. Some sequences have CLASTIC LIME STONE bases (white, N9) that grade upward into dark gravist brown (2.5Y 4/2) CLAYSTONE.
			- 4				-		17	SMEAR SLIDE SUMMARY (%): 1, 49 1, 81 1, 88 3, 143 5, 46
						2	coffeee			Texture: Sand – 20 – 5 Sitt 10 50 10 20 20 City P0 30 90 75 75
				СР			- Laboration		Road	Composition: Feldspar 2 1 1 1 Heavy minerals 2 2 2 3 2 Clay 8 30 88 75 75 Volcanic glass 8 30 4 10 10
		СМ		B		3	- collector			Giauconite 3 - 1 - Zeolite - 5 -
early Albian	lanispira? (F)		RP				a free trans		.	Sponge spicules – – – – <1 – Volcanic fragments – 24 – – 11
	Hodbergella planispira? (F)			в		4	and confirmation	<u>~</u>		
		в		CP		5	seatone level		* 素 二 一	
		RP		CP CP		6				

×	APHIC			OSS RAC	TER												
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES		LITHOLC	GIC D	ESCRIPT	TION	
						1	1	0.5	-0-°-0-				STONES and C ward into SILTS LIMESTONES	ONGLI TONES trading less cor	omeran and fina upward mmon), (Ily CLA into Claysto	with COARSE SAND NDSTONES grading up VYSTONES; or CLASTIC CALCAREOUS CLAY nes at the tops of graded
		RP		в						ADJAHL TUTTUNT	HINHIN .		(5Y 2/1) for cos	rse bas s; white	al layers,	dark s	GY 2/1) anti olive black rayish brown (2.5Y 4/2) light gray (2,5Y 7/2) for
				.8				-		E	Ŧ		SMEAR SLIDE S	I IMMA	BY PET		
			- 1			- 1		1			2		OWEPSH DEFDE S		42 2, 65		3.65
			- 1			- 1		-	1	- 17	-			D	M	M	D
			- 1			- 1	2			1 1/	11		Texture:	754	141	- 222	100
2		0.1		. 1		- 1		-		1 1/	И.,		Sand	10	-	<u>_</u>	20
		1	- 1			- 1	- 1	-		1 14	1	•	Silt	30	15	50	40
early Albian?			- 1			- 1	1	1	**************************************		1	1	Clay	60	85	50	40
2			. 1			- 1	- 1	-	OG		L.	1	Composition:	00	00	00	.40
in a			- 1			- L	_		Uu				Feldspar	3	<1	1	1
- C.						- F			William Street			1	Heavy minerals	5	3	1	2
			- 1			- L	- 1		Andres a wood?	4	ί.		Clay		85	- 824	40
		1	- 1	B		- 1	- 1	1		1 13	타고	•	Volcanic glass	25	5	÷.	15
						- 1	1	-	THE REAL PROPERTY OF	44011	È		Glauconite	<1	<1	<1	<1
		RP	- 1	- 1		- 1		-	manth in some 11 manual 12 mil	1 3	E	-	Zeolite	< 1	7	5	2
		1	- I			- 1	3			1 1	£1	1	Carbonate unsper		1	96	-
		в	. 1			- 1	11	-		1 11	1	1			_		-
			- 1			- 1		1	1 4	4 1/		1	Calc. nannofossil:			<1	
		11	- 1			- 1	- 1	-		1 1/			Radiolarians	<1	< 1	-	<1
			- 1			- 1			1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1/	11	1	Volcanic tragmer	15 -	-	-	40
		11	_			- H	-+	_	01 1 An	4 1/	11		0001000000				at 10.1
			1	в		- 1		-		1 15	-1		ORGANIC CARE				
			1			- 1	1	1		1 11		1	2000 100 100 100 100 100 100 100 100 100		28-130		
- 0						- 1	4	-					Organic carbon	0.1	0	0.10	
		- 1	- 1			- 1			6.30 Acres 155	1 1/			Carbonate	3		3	
			- 1			Ŀ	c		Witten Bacht		1	This uni					
						- P	10	-	- Stanball Contra	a_1L	11	continue					
		- I	_ 1	- 1		- 1						into top					

SITE 585

Ę		OSSIL								APHIC			SSIL					
BIOSTRATIGRAPI ZONE	SILS	RADIOLARIANS	BIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME - ROCK	1 CC	ZONE FORAMINIFERS	SILS	PIADIOLARIANS	SECTION		GRAPHIC LITHOLOGY	DEILLING DISTURDANCE SEDIMENTARV STRUCTURES	LITHOLOGIC DESCRIPTION
Tic. Experiments (F) ===================================	P FP	B		2	1.0			 Graded sequences of VOLCANICLASTICS with COARSE SAND-STONES and CONGLOMERATIC SANDSTONES grading upward into calcerous deputes and finally CLAYSTONES. Bases of a few graded tequences are clastic limeatones that grade upward into calcerous deputes. Dominant color are: SANDSTONES AND SILTSTONES - greenish black (SGY 2/1) and greenish gray (GGY 4/1), and CANBONATES - white (25Y 8/2). Conglomeratic sandstone at top of core probably is base of graded sequence at bottom of Core 50. SMEAR SLIDE SUMMARY (%): 1,7 3,61 CC, 21 D D D C Texture: D D Texture: Congonistic Out 35 Composition: O 3 Sitt 5 O 30 Clay 708 A 35 Composition: Out 35 Texture: Congonistic: O 3 Clay 76 A 35 Composition: Out 35 Texture: Congonistic: Out 35 Texture: Congonistic: Out 35 Composition: Out 35 Clay 78 A 35 Context 4, 35 Context 4, 36 Clay 78 A 3 Clay 78 A 3 Context 4, 36 Clay 78 A 3 Context 4, 36 Clay 78 Clay 78 Clay 78 Clay 78 Clay 79 <li< td=""><td>Aprian/Athian?</td><td></td><td>8</td><td></td><td>FP B</td><td>1 2 3 4 5 CC</td><td>0.5</td><td></td><td></td><td>Texture: D D Texture: Sand – 20 Sitt 5 40 Cary 95 40 Composition: Feltspar – <1 Clay 50 40 Volcanic glass 1 10 Glauconite <1 <1 Zenite – 3</td></li<>	Aprian/Athian?		8		FP B	1 2 3 4 5 CC	0.5			Texture: D D Texture: Sand – 20 Sitt 5 40 Cary 95 40 Composition: Feltspar – <1 Clay 50 40 Volcanic glass 1 10 Glauconite <1 <1 Zenite – 3

	2	Г		OSS	11		Ľ	RE		TT		ΓT	731.8-741.0 m sub-bottom; 6854.1-6863.3 m below rig floor
×	APH	L	CH	RAG		R		100					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
Aptian/Albian?				в			1	0.5				•	Graded sequences of VOLCANICLASTICS. COARSE SAND STONE in Core 53, Section 1 to Section 2, 65 cm is the base o a graded sequence that started in Core 52, Section 2, 120 cm Rest of recovered section consists of CLASTIC LIMESTONI (light olive gray [5Y 7/1]), VOLCANICLASTIC SILTSTONI and SANDSTONE (greenish black [5Y 2/1]) and CLASTON (dark greenish gray [5G 4/1] and olive black [5Y 4/1]). ORGANIC CARBON AND CARBONATE (%): 2, 105–106 Organic carbon 0,06 Carbonate 7
							CC				m		
ITE	585		HOL			_	co	RE E	4 CORED	INT	ER	VAL	741.0-750.1 m sub-bottom; 6863.3-6872.4 m below rig floor
~	PHIC			RAC						11			
8	E B	ERS	11.5	ANS			S	32					
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANC	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	BIOSTRATIC	FORAMINIFI	NANNOFOSS	RADIOLARI	DIATOMS		SECTH	C METER	LITHOLOGY	DISTURDANCE	STRUCTURES	SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones.
	(R)	FORAMINE	NANNOFOSS	RADIOLARI	DIATOMS		L SECTION	1111	LITHOLOGY	DISTURDANCE	STRUCTURES	SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fregment conglomerates that grade up into
	(R)	FORAMINE	NANNOFOSS	RADIOLARI	DIATOMS			1111	LITHOLOGY	DISTURDANC	STRUCTURES	SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silitatome. Dominant colors are greenish black (SGY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%):
UNIT	(R)	FORAMINE	NANNOFOSS	RADIOLARI	DIATOMS			0.5	LITHOLOGY	DRILLING	STRUCTURES	* SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silitatones. Dominant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC,2 D M M M M
	umbilicata" (R)	FORAMINIE	NANNOFOSS	RADIOLARI	DIATOMS			0.5	LITHOLOGY	DRILLING	STRUCTURES	SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1, 144 1, 114 3, 35 3, 48 CC, 2
	umbilicata" (R)	FORAMINIF	NANNDFOSS	RADIOLARI	DIATOMS			0.5	LITHOLOGY	DRILLING	STRUCTURES	samples	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors are greenish black (5GY 2/1 and 5G 2/1), SMEAR SLIDE SUMMARY (%): 1, 144 1, 114 3, 35 3, 48 CC, 2 D M M M M Texture: Sand 00 15 Silt 40 85
	umbilicata" (R)	FORAMINIE	NANNOFOSS	RADIOLARI	DIATOMS			0.5	LITHOLOGY	DRILLING	STRUCTURES	samples	Graded sequences of volcaniclattics, mostly coarse tandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Deminant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1, 144 1, 114 3, 35 3, 48 CC, 2 D M M M M Texture: Sand 00 15 Silt 40 85 Clay - 100 100 100 Composition:
	of "Acaeniotyle umbilicata" (R)	FORAMINIE	A NANNOFOSS	4 RADIOLARI	DIATOMS			0.5	LITHOLOGY	DRILLING	STRUCTURES	* * SAMPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUIMMARY (%): 1,144 1,114 3,35 3,48 CC,2 D M M M M Texture: Sand 00 15 Silt 40 85 Clay - 100 100 100 Composition: Heavy mineral 1
	part of "Acauniotyle umblicata" (R)	FORAMINIE			DIATOMS		1	0.5	LITHOLOGY	DRILLING	STRUCTURES	* * SAMPLES	Graded sequences of volcaniclattics, mostly coarse tandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Deminant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1, 144 1, 114 3, 35 3, 48 CC, 2 D M M M M Texture: Sand 00 15 Silt 40 85 Clay - 100 100 100 Composition:
	part of "Acauniotyle umblicata" (R)	FORAMINIE			DIATOMS		1	0.5	LITHOLOGY	DRILLING DRILLING DRILLING	STRUCTURES	* * SAMPLES	Graded sequences of volcaniclatics, mostly coarse standstone and volcanic-rock-fragment conglomerates that grade up into Dominant colors are grade up into SMEAR SLIDE SUMMARY (%): 1,144 114 3,35 3,48 CC, 2 D M M M M M M Texture: D M <t< td=""></t<>
	of "Acaeniotyle umbilicata" (R)	FORAMINIE			DIATOMS		1	0.5	LITHOLOGY	DRILLING DRILLING SEDING DAAC	STRUCTURES	* * SAMPLES	Graded sequences of volcanicitatics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors: are greenish black (5GY 2/1 and 5G 2/1). Dominant colors: are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUIMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M M S Sand: 00 15 - - Sitt 40 85 - - Clay - 100 100 100 Composition: - - 1 22 Palagonite - - 1 3 1 Zooliter 9 9 - 8 7
	part of "Acauniotyle umblicata" (R)			FP	DIATOMS		1	0.5	LITHOLOGY	DRILLING DRILLING SEDENTED	STRUCTURES	* * SAMPLES	Graded sequences of volcaniclattics, mostly coarse tandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M M Texture: D M M M M Texture: O M M M M Send 60 15 Silt 40 85 Clay 100 100 100 Composition: Heavy mineralt 1 Clay - 91 - 22 Patagonite 1 3 1 Zeolite 9 9 - 8 7 Carbonate unspec: 2 11 5
	part of "Acauniotyle umblicata" (R)	RP			DIATOMS		1	0.5	LITHOLOGY			* * SAMPLES	Graded sequences of volcaniclatics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colors are greenish black (ISGY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M Texture: Sand 60 15 - - - Silt 40 85 - - Clay - - 100 100 100 - Carbonate unspect - - 1 - Zeolitre 9 - 8 7 Carbonate unspect - - 11 5 Calc, nanofossils <1
	part of "Acauniotyle umblicata" (R)	RP		FP	DIATOMS	CC	1	0.5	LITHOLOGY			samples	Graded sequences of vocaniclattics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silistones. Dominant colons are greenish black (5GY 2/1 and 5G 2/1). Dominant colons are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M M M SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M M Dominant colons are M M M M Texture: Sand 60 15 Clay - 100 100 100 Composition: Heavy minerals 1 Clay - 91 - 22 Palagonite 91 - 22 Palagonite 1 3 1 Zoolite 9 9 - 6 7 Carbonate unspec: 2 11 5 Calc. nanofossils <1 <1 Volcanic fragments 24 15 8 6 63
late Aptian UNIT	part of "Acauniotyle umblicata" (R)	RP		FP	DIATONS	cc	1	0.5	LITHOLOGY			* * 54MPLES	Graded sequences of volcaniclastics, mostly coarse sandstone and volcanic-rock-fragment conglomerates that grade up into silitotone. Dominant colors are greenish black (5GY 2/1 and 5G 2/1). SMEAR SLIDE SUMMARY (%): 1,144 1,114 3,35 3,48 CC, 2 D M M M Texture: 0 Sit 40 40 85 Carposition: - Carposition: - Carposition: - Zeolite 9 Zalaponite - Startorostis 1 Zalaponite - Volcanic fragments - Carbonatis 2 Palaponite 9 Solario 63 Carbonatis 2 State - Ordenic fragments 2 Recrystallized SiO2 - ORGANIC CARBON AND CARBONATE (%):
	part of "Acauniotyle umblicata" (R)	RP		FP	DIATOMS	cc	1	0.5	LITHOLOGY			sANDLES	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

SITE 585

SITE 585 HOLE A CORE H-1 CORED INTER	VAL 0.0-363.7 m sub-bottom; 6122.3-6486.0 m below rig floor	SITE 585 HOLE A	CORE 2 CORED INTERVAL	373.3-382.8 m sub-bottom; 6495.6-6505.1 m below rig floor
THE CHARACTER CH	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT - ROCK BIOSTRATIGRAPHIC 2006 MANNOFOSHLER MANNOFOSHLE	SECTION BETERS REAL ARANDER BETERS REAL ARANDER ARANDER ARANDER ARANDER ARANDER ARANDER ARANDER	LITHOLOGIC DESCRIPTION
B	 Mostly drilling breccia, but recovered fragments from Saction 1, 5-150 cm appear to be from the same graded sequence, grading from dusky green (SG 3/2) SLITSTONE to dusky green nanoo- fosil, radiolarian, and zeolite bearing CLAYSTONE et top. Recovered fragments from 13-50 cm appear to be from the same graded unit, grading from a CONGLOMERATE with pebbles of ZSQLITESEARING CLAYSTONE to 3 cm in diameter at base to 1 mm in diameter at top of unit. A similar graded unit occurs from 60-69 cm. 95-110 cm consist of SILICIFIED NANNOFOSSIL LIMESTONE. The Core Catcher contains fragments of SULICIFIED NANNOFOSSIL LIMESTONE STONE and CHERT. SMEAR SLIDE SUMMARY (%): 1,5 1,20 1,66 2,29 M D D M Texture: Sand 5 	early Partocente PTC(F) CP 0 0 0 0 8 8 8	1 0.5 1 0.5	Pinkish gray (SYR 8/1), massive, micritic CHALK, moderate orange pink (SYR 8/4) SILICIFIED LIMESTONE, light brown (SYR 6/4) CLAYEY CHALK and CHERT. SMEAR SLIDE SUMMARY (%): 1, 64 Texture: Sand – Siti 60 Clay 40 Composition: Clay 40 Composition: Clay 30 Zeolite: 10 Carbonate ungec. 15 Calc, namedositis 42 Radiolarians 3
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SITE 5885 HOLE A FOSSIL UNIT BCC TURE BIOST FOSSIL UNIT BCC FOSSIL UNIT BCC FOSSIL FO	CORE 3 CORED INTERVAL	382.8–392.3 m sub-bottom; 6505.1–6514.6 m below rig floor LITHOLOGIC DESCRIPTION Interbedded light moderate brown (5YR 5/4) ZEOLITIC CLAY and very pale orange (10YR 8/2) CLAYEY NANNOFOSSIL CHALK. Some intervals of chalk have been silicited, one frag ment of moderate brown (5YR 3/4) CHERT was received and
		Ajzea Ajzea Ajzea	1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	ment of moderate brown (5YK 3/4) CHERI was recovered in the Core Catcher, and at several horizons in Section 1.
TIME – ROCK LIME – ROCK ZOTICE CHARAULE CHARAULE CHARAULE CHARAULE MANNOFORSILE MANNOFORSILE MANNOFORSILE MANNOFORSILE SECTION METERS MANNOFORSILE SECTION METERS MANNOFORSILE DIATORIS MANNOFORSILE MAN	VAL 363.7-373.3 m sub-bottom; 6486.0-6495.6 m below rig floor LITHOLOGIC DESCRIPTION	neitrithiumean Compa (H) Compa (H) C		SMEAR SLIDE SUMMARY (%): 1, 10 1, 70 1, 90 1, 101 Texture: D M M D Clay 100 100 - - - Clay 100 100 - - - Heavy minerals 3 - 1 <1
B B C C C C C C C C C C C C C	White (N9) NANNOFOSSIL CHALK, pinkish gray (5YR 7/2) SILICIFIED LIMESTONE, brown (5YR 4/1) RADIOLARIAN CLAYSTONE, and pinkish gray (5YR 7/2) SILICIFIED LIMESTONE, brown (5YR 4/1) RADIOLARIAN CLAYSTONE, and pinkish gray (5YR 7/2) SILICIFIED LIMESTONE, brown (5YR 7/2) SILICIFIED LIMESTONE, brown (5YR 7/2) SILICIFIED LIMESTONE and, ch yes, the ever-present pale yellow- ish forown (10YR 6/2) CHERT. NEAR SLIDE SUMMARY (%): 1,57 1,126 2,12 D M Texture: Sind - Sit 95 50 50 Carbonate unipre. <1			Zeolite 50 47 1 49 50 Carbonite unspec - 3 - - Foraminities - - 61 - Calc. nemotosili - 96 - Hematin' 3 - - ORGANIC CARBON AND CARBONATE (%): 1,40-43 1,21-28 Organic carbon .05 .11 Carbonate 29 0

×	APHIC			DSSI	L TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCR	RIPTION
~				B		1	4	*	, .		of fragments of bioturbated NANNO- ED LIMESTONE, CLAYEY NANNO- DNE, and CHERT.
										SMEAR SLIDE SUMMARY	(%L)-
											1, 14
											M
										Texture:	
										Clay 100 1 Composition:	00
										Heavy minerals <1	-
			- 1							Clay 25	50
											15
										Calc. nannofossils 5	-

. 1	HOL	E	A) -	C	ORE 4	CORED	INTERVAL	438.2-447.7 m sub-bottom; 6560.5-6570.0 m below rig floor
FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
				1		D. Q. C. Q	00	Four lovely fragments of dark brown (10YR 4/3) chert set in a matrix of chips (<1 cm) of chert, silicified limestone, and clay-
	AMINIFERS	AMINIFERS	AMINIFERS NOFOSSILS HOLARIANS	RAMINIFERS MNOFOSSILS DIOLARIANS ATOMS	FOSSIL CHARACTER NUNOLOSII SING CHORANAS SUSTION	RAMINIFERS CHOWN ATOMS SECTION METERS METERS	FOSSIL CHARACTER STISSOUCH STUDIES STATUTO STORE STATUTO CHARACTER SUBJECT STATUTO SUBJECT STATUTO SUBJECT STATUTO SUBJECT SUB	FOSSIL CHARACTER New Work of the Character Stress of t

ITE	585	ł	IOL	E	A	co	RE	ash core H-3 CORED	INT	ER	VAL	447.7-502.6 m sub-bottom; 6570.0-6624.9 m below rig floor
×	APHIC			OSSI RAC	L TER							
TIME - ROCK	BIOSTRATIGRI	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
4		B				cc	11.1				•	Drilling breccia consisting mainly of CHERT fragment in various shades of dark brown, with one interval of clay (brownish gray and dark vellowish brown). Chert is taminated, graded, biotur bated, and cut by veins of drusy quartz crystals growing into vogs.
												SMEAR SLIDE SUMMARY (%):
											- 1	CC, 17
											- 1	M
											- 1	Texture:
											- 1	Sitt 4
						10.0					- 1	Clay 96
											- 1	Composition:
											- 1	Heavy minerals 2 Clay 95 Zeoline 1
											- 1	Clay 95
											- 1	Zeolite 1 Radiolarians 2
	h					. I				-	-	nacioianani Z

	PHIC			OSS	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		80	• .	Interbedded greenith grav (SG 5/2) and greenish black (SGY 2/ (> "light and dark" green) CLAYSTONE with minor beds of ye lowish brown (10YR 2/2) and light olive grav (SY 8/1) CLAY STONE.
		B				ľ	1.0			•	All units are hard and massive with only slight hints of bioru bation. Contacts between different-colored lithologies are fair sharp.
	(H)			CP		\vdash	-				SMEAR SLIDE SUMMARY (%):
	141						1				1, 35 1, 49 1, 98 1, 120 D D M M
5	enessetti						-				Texture:
Santonian						1.1	-			•	Sand 10 -
ti.	0.4					2					Silt 1 1 60 1
10	urna to						-				Clay 99 99 30 99
- 1	um						-		1 1		Composition:
	4						1				Quartz – – 60 –
	100										Heavy minerals 1 1 - <1
											Clay 94 95 30 96 Volcanic plass <1
			RP				-				Volcanic glass <1 Zeolite 2 3 2 2
		I				3	1		20		Carbonate unspec. 1 - 4 <1
		FP		CP				the set of the set of the set of the	0880		Calc, nannofotsils 1 1 <1 1
									-	-	Radiolarians 1 1 2 -
											Sponge spicules <1 -
											ORGANIC CARBON AND CARBONATE (%):
											1, 80-81 2, 59-60
- 1											Organic carbon ,01 ,07
											Carbonate 3 7

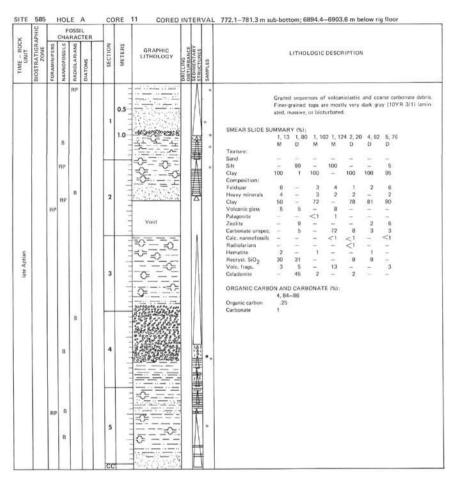
SITE 585 HOLE A CORE 6 CORED INTERVAL 511.8-520.9 m sub-bottom; 6634,1-6643.2 m below rig floor

4	APHIC		F CHA	RAC							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
							0.5			•	Dominant lithology is dark gray CLAYSTONE (2.5YB 3/0) with numerous mottles and several beds of grayish green (5G 5/2) CLAYSTONE.
						1	1	EEE			One layer of olive gray (5Y 4/1) radiotarian-bearing.
			в				1.0		1		SMEAR SLIDE SUMMARY (%):
				FP			- 6	~~			1, 25 1, 50 1, 114 1, 115 1, 132
5			FP			1.1	- 5			1° 1	Texture: D M
									1	1.1	Sand – 2 – 2 <1
						1.1	1.5		4 1	11	Silt 2 10 1 12 3 Clay 98 88 99 86 97
						2	-				Composition:
						14	-				Heavy minerals 1 1 ≤1 <1 1 Clav 93 85 97 83 90 Zealite 3 2 2 2 Carbonate unspec. 1 <1
							1.1		11	1 1	Clay 93 85 97 83 90 Zeolite 3 2 2 2 2 Carbonate unpec. 1 <1
							1 2				Zeolite 3 2 2 2 2
						\rightarrow	-				Carbonate unspec. 1 <1 1
						CC	1 3				Cale, nannofossils 1 <1 - <1 3
						-	-				Radiolarians - 12 <1 15 -
										- 1	Fish remains <1 < 1 -
										- 1	Recryst. SiO ₂ 1
											ORGANIC CARBON AND CARBONATE (%): 1, 54-57
											Organic carbon .48
						1					Carbonate 10

	585 9	1		ossi	L	Π									
5	AP	-			TER		-								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESC	RIPTIO	N		
	elbedqinos elusq	в		FP CP CP		1	0.5			••••	Dominant lithology is me STONE, with a RADIOLA medium gray (N5) SILT 6/1) series of graded seq 1 (probably correspond 31-2, 73-104 cm). A 2 SILTSTONE occurs at ti smeas side 1, 833.	RIAN CLAY Y CLAY uences b to green cm bed	AYEY STON otween ish lan of gyp	SILTS E (ligh 58 an ninated siferou	TONE-laminated it olive gray [5Y of 85 cm, Section Linterval in 585- is(?) SILICEOUS
	Obesecaptula					\vdash	-			1	Graded sequences of gray are well developed in Sect		ty clay	stone	and N5 claystone
	G							2-2-2							
							- 10	~~~~			SMEAR SLIDE SUMMAR				
						2	- 2	1			1,35 D	1,56 M	1,83 M	1, 11 D	95 1, 86 M
							- 2	\sim			Texture:				
Turonian							1.05				Sand -	-	100		-
8							1 - 1		1		Silt 2	50	93		
+							1 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Clay 98	50	7	100	-
							-	$h \rightarrow h$	1 1.	11	Composition: Heavy minerals	-	-	1	4
				CP			1 3				Clay 72	55	-	60	85
				× .			- 9	~~~	庸		Palagonite -	-	-	-	11
							1	~ ~~			Zeolite 13	-	-	35	-
						3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 17	11	Carbonate unspec. 9	5	-	-	-
						1	1 3		1 1/\		Calc. nannofossils <1	38	30	-	2
							1.5	~~~~		1.1	Radiolarians - Recryst. silica -	38	50	-	-
			RP	CP			- 2		*		Fish remains -	-	<1	1	
						\vdash	-				Gypsum? <1	1	20	2	2
			в			CC		====			Barite? 2	-	-	-	H
	1		P			00	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Celadonite 2	-	-	1	-
											Hematite 2	1		-	
											1.1	40 3, 95	CC,	31	
											M	м	M		
											Texture:				
											Sand -	-	-		
	1										Silt - Clay 100	65 45	100		
											Clay Tou Composition:	40	100		
											Heavy minerals 2	1	÷		
	1				11						Clay 61	36	64		
	L										Volcanic glass -	-	1		
	1										Zealite 10	2	1		
	1										Carbonate unspec. 20	36 18	~		
				1	11						Radiolarians - Recryst. SiO ₂ 7	18	20		
	1	1	1	1							Gypsum <1	3	1		
	1		1	F.							Celadonite -	-	13		
	1										ORGANIC CARBON A	D CAR	BONAT	TE (%)	
	1									- 1	1, 5	4-100			
				1	11					- 1	Organic carbon .4	1			
	1		1	11	1					- 1	Carbonate 0				

Г	1	FOSS	1L	T	T	GONED		T	ML 032.4	543.5 m sub-bottom; 6654	/-000	5.8 m	Deloy	w rig flo	or
FORAMINIFERS	-	RADIOLARIANS	SWOIVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOG	IC DES	CRIPTI	ON		
		FP		1	0.5		0000			STONE grading in STONE or CLAY flecks or flakes th bases of some grac larians and foram but most of the m Top 50 cm of con	to a SLI STONE at are or fed sequ inifera. atorial is a consis	GHTLY most iented ences o Some massiv ts of dr	CALI of the paralle contain paralle e-appe illing b	CAREOU materia to strat concern laminar aring.	IS SILTY CLA al contains bla ification. Coars trations of radi tions are prese
		24		2 3 CC						Textures Sand Silt Clay Compositions: Feidapar Heary minarals Clay Volcanic glass Palagonite Zeoloite Carbonate unspec, Calc, nanofossils Radiolariam Fish remains Celadonite Cypum? Recryst. SiO ₂ ORGANIC CARBO Organic carbon Carbonate Organic carbon Carbonate	1,3 M 100 - 150 - - 49 - - - - - - - - - - - - - - - -	1, 8 D 	D - 10 90 2 - 88 2 - 10 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	M 	3, 32–33 43 15 colc. nt. with ganic ration of facks ⁹ as
	L	CH STREAM	FOSS CHARAI SHEENWEWOOD SHEENW	FOSSIL CHARACTER SNOLVDOWNY FP FP CP	FOSSIL (HARACTER SINGUPUNOUS) WOLDSIG CP 1 FP 2 CP 3	FOSSIL CHARACTER SI 11 STOLARACTER SI 11 STOLARAC	CONCE CONCE	FOSSIL CHARACTER OUT OF END INTERCENT OUT OF END IN	FOSSIL CHARACTER OUTED INTEL CHARACTER NO SI SI SI SI SI SI <t< td=""><td>FOSSIL CHARACTER NO SI SI</td><td>POSSIL CHARACTER HARAC</td><td>POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER COULD OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT</td><td>FORSEL CHARACTER OUTCOME INTERVACE 032, 4-043,5 In Sub DOUTION, 0634,7-8665,8 In CHARACTER IN ARACTER INTERVACE INTERVACE 032, 4-043,5 In Sub DOUTION, 0634,7-8665,8 In Sub DOU</td><td>FOSSIL CHARACTER State (HARACTER) State (HARACTER)<</td><td>POSSIL CHARACTER OUTLO INTETIVE 002.4-943.011 MID DUIUTIN, 0054,7-6000.6 III BBIOW rig III CHARACTER 10</td></t<>	FOSSIL CHARACTER NO SI SI	POSSIL CHARACTER HARAC	POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER POSSIL CHARACTER COULD OUT	FORSEL CHARACTER OUTCOME INTERVACE 032, 4-043,5 In Sub DOUTION, 0634,7-8665,8 In CHARACTER IN ARACTER INTERVACE INTERVACE 032, 4-043,5 In Sub DOUTION, 0634,7-8665,8 In Sub DOU	FOSSIL CHARACTER State (HARACTER) State (HARACTER)<	POSSIL CHARACTER OUTLO INTETIVE 002.4-943.011 MID DUIUTIN, 0054,7-6000.6 III BBIOW rig III CHARACTER 10

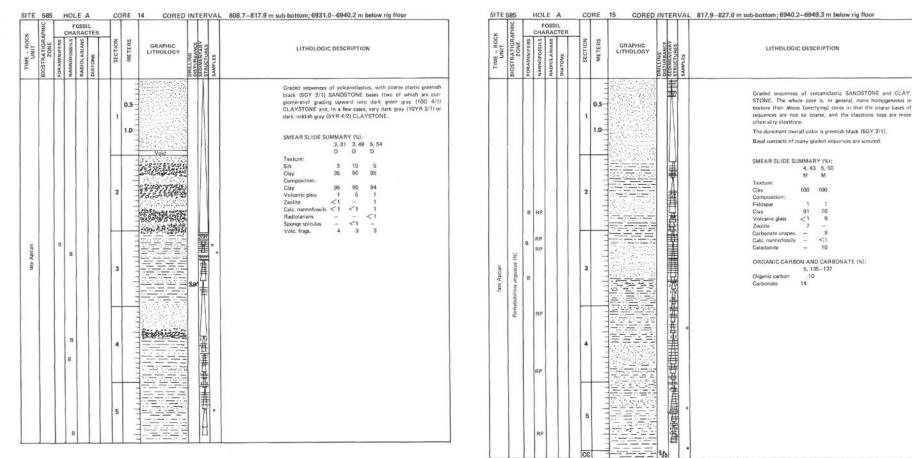
128


	Ę			ossi				CORED	П	П						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWD1VIG	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOG	IC DES	SCRIPTI	ON		
recentport communicational aprica (F1 +	Obesacapsula somphedia Mhiteinella archaeoretaces (F)	FM FM FP B	RP FP	CP CP AP		1 CC	0.5		22 22 22 22	•	Dominant lithole SILTSTONE and STONE, mostly in in which the coa- fining graded sec finer lithologies The coarser mats ians. Overall, the range, i.e. CLA''y coment and are qu	SILIC shade ser ma uence, especia rial co domir STONE ite har	EOUS C s of gree derial oc or as fe illy in the ntains a nant lith d.	LAYST mish gro curs at enses, t he upper bundan ology i hologies	ONE of the bar eds, or or 15 of t recryst s towar contain	r SILTY CLA 7 5/1-5GY 4/ se of an upwar stringers with m of Section rtallized radiol d the finer sin abundant sil
	Rotalipora cushmani/Mhiteinella aprica										An interesting as radiolarian-bearing 1. Three chert fi of red, brown, an lenses of pyrite, the chert contain which is overlain and tan siltstone.	siltsto agment d yello The lan a thir	ine occur ts recover w. They minated a (about	red are all con rad-bea 2 mm)	ten 80- bright tain abu ing silt band o	-100 cm, Secti y-colored shac indant blebs a stone underlyi f organic matt
I uroman	ora cush										The Core Catcher and light greenish					brown (5YR 5)
	Rotalip										SMEAR SLIDE SI	JMMA 1,6 M	RY (%): 1, 10 M	1, 79 M	1, 12 D	0 1, 130 M
											Texture:			5		
						1.				- 1	Sand	3	15	10	1	-
											Clay	-	85	85	99	100
										- 1	Composition:					
						1					Feldspar	<1	9	-	-	-
	6									- 1	Heavy minerals Clay	14	10	83	99	100
										- 1	Zeolite	1	-	5	1	<1
											Carbonete unspec	5	6	-	<1	-
											Foraminifers	-	1	-	-	-
											Calc. nannofossils	<1	-1	7.1		
						1				- 1	Radiolarians	-		12	1	-
											Fish remains Gypsum	<1	<1	_		
											Recryst. SiO ₂	80	72	-	Q.,	-
											Celadonite	1	1	+	=	-
										- 1		1, 13	37 1, 14	7 CC, 1	CC, 6	
	1					1				- 1		D	D	D	D	
											Texture:		1201			
											Sand Silt	1	5 50			
											Clay	99	45	100	100	
											Composition:	0576	100	3763	140018	
											Heavy minerals	-	1	17.5	2	
						1					Clay	50	44	100	100	
						Ť.					Volcanic glass	-	2	-	<u> </u>	
											Zeolite Carbonate unspec	50	<1	<1	<1	
		01				1					Calc, nannofossils	- 00	1	1	0	
		ľ í									Recryst. SiO2	-	50	-	1	
											ORGANIC CARB	ON AN	DCAR	ONAT	E (%):	
				11							UTUANIC VAND		7-29	1, 82	-83	1,93-94
	1		E 1								Organic carbon	.0		.01		.22
	1			1.0						- 21	Carbonate	14		0		4
	1												40-141	CC, 1	7-19	
	1										Organic carbon	.1		.06		
	1	1	L	1	11						Carbonate	14		21		

_

	HC			oss		T	RE 1	- Sone	TT	TT	552.6-561.8 m sut							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES			LITHOLO	DGIC D	ESCRIP	TION		
late Albian?	O. somphedia (R)	B	FP RP	CP FP		1	0.5			12		light to SILICE CAREC ing to One de	OUS CLO OUS AND CLAYEY	AYSTO SILIC SILTS	n (10YI ONE, lig CEOUS (STONE ward set	R 6/2- ht gree CLAYS and SI quence	5/2) C/ mish gr TONE, LTSTOI	DUS CLAYSTONE, ALCITE-BEARING ay (5G 7/1) CAL- with some coarsen- NE in some layers, arent, but most of quences.
											SMEAR SLIDE SU	DAMA	DV INA					
											SMEAN SLIDE SU	1, 3		1, 12	1, 55	1,82	1, 89	1, 97
												D	м	M	м	м	м	M
											Texture: Sand	_	_	_	-	-	_	-
										- 1	Silt	-	-	5	-	2	-	40
											Clay	100	100	95	100	98	100	60
- 0											Composition: Feldspar		<1	_	<1	-		-
	1.1										Heavy minerals	1	1	<1	2	-	-	-
	С I		Ľ.,	<u> </u>						1	Clay	69	79	-	-	-	-	-
- 4											Carbonate unspec. Foraminiters	-	2	20	24 <1	49	27	-
											Calc. nannofossils	-	-	1	<1	1	-	-
- 1											Radiolarians	-		<1	2	2	-	10
	8.9									- 1	Fish remains Gypsum	<1	≤ 1	-		-	24	5
											Recryst. SiO ₂	29	20	79	76	48	60	60
SITE	585			LE		C	W RE H	ash core I-4 COREI		RVAL	561.8–658.0 m s	ub-bo	ttom; 66	84.1-	-6780.3	3 m be	low rig	g floor
SITE			CHA	OSS		cc	W RE F	ash core I-4 COREI		RVAL	561.8–658.0 m s	ub-bo	ttom; 66	84.1-	-6780.3	3 m be	łow rig	g floor
	BIOSTRATIGRAPHIC GI	FORAMINIFERS	F	oss	IL.	SECTION	METERS #	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY		561.8–658.0 m s		ttom; 66				łow rig	g floor
- ROCK NIT			CHA	OSS	TER		METERS	GRAPHIC	OP OS DISTURANCE			Fragm Sectio	LITHOLC	9GIC D	ESCRIP	TION	uish gr	ay (58 8/1) clayes
- ROCK NIT	BIOSTRATIGRAPHIC ZONE		CHA	SADIOLARIANS C	TER	SECTION	REH	GRAPHIC	0 0 0 0 DISTURBANCE	* SAMPLES		Fragm Sectio SILIC	ents of: n 1, 0-4 EOUS LIN	OGIC D 40 cm: MESTO	ESCRIP very I NE; sorr	TION ight bl	uish gri Iaminati	ay (58 8/1) clayey ions.
TIME - ROCK UNIT	(R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER		METERS	GRAPHIC	OP OS DISTURANCE	STANDLES SAMPLES		Fragm Sectio SILICI Sectio 6/1) S	ents of: n 1, 0-4 EOUS LIM n 1, 40-	10 cm MESTO 150 cm S SILT	ESCRIP very I NE; som	TION ight bl gray (E	uish gri Iaminati 57 4/1)	ay (58 8/1) clayes
TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RADIOLARIANS C. C.	TER	SECTION	WELEKS	GRAPHIC	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	* samples		Fragm Sectio SILICI Sectio 6/1) S (5YR Sectio	LITHOLC ents of: n 1, 0-4 EOUS LIM n 1, 40- ILLCEOU 4/1) CHE n 2: gree	40 cm MESTO 150 cm S SILT RT, nish bl	ESCRIP Very J NE; son n: alive TY CLA	ight bl ne fine I gray (E YSTON Y 2/1)	uish gra laminati 5Y 4/1) IE and r VOLC/	ay (58 8/1) clayey ions. to bluish gray (58
- ROCK NIT	(R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILICI Sectio 6/1) S (5YR Sectio STON Core I gray	ents of: n 1, 0→ EOUS LIM n 1, 40→ ILICEOU 4/1) CHE n 2: gree E and lig Catcher:	10 cm MESTO 150 cm SSILT RT. nish bl pht grav mediun SILIC	ESCRIP NE; som n: olive TY CLA ack (5G y (N7.5 n brown	TION ight bl gray (5 YSTON Y 2/1)) coars nish gra	uish gr larninati 5Y 4/1) IE and r VOLC/ e CLA ay (5Y)	ay (58 8/1) clayey ions, to bluish gray (58 minor brownish gray ANICLASTIC SILT
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC	11111111111111111111111111111111111111	* samples		Fragm Sectio SILIC Sectio 6/1) S (5YR Sectio STON Core I gray (5YR	ents of: n 1, 0-4 EOUS LIM n 1, 40- ILICEOU 4/1) CHE n 2: gree E and lig Catcher: (SY 8/1)	10 cm: MESTO 150 cm 150 cm 150 cm S SILT RT, SILIC RT, SUMM 1,	escrip very 1 r olive ry CLA ack (5G y (N7.5 n brown EOUS IARY (5 ,26 1,	ight bl ne fine I gray (E YSTON Y 2/1)) coars nish gra LIMES (): 61 1,	uish gr laminati SY 4/1) E and r VOLC/. e CLA TONE 62 1,	ay (58 8/1) clayey ions. to bluish gray (58 inor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILICI Sectio (5YR Sectio STON Core I gray (5YR SMEA	ents of: n 1, 0-4 EOUS LIM n 1, 40 ILLCEOU 4/1) CHE n 2: gree E and lig Catcher: (5Y 8/1) 4/1) CHE (5Y 8/1) 4/1) CHE	10 cm: MESTO 150 cm S SILT RT, nish bl sht grav median SILIC RT, SUMM	escrip very 1 r olive ry CLA ack (5G y (N7.5 n brown EOUS IARY (5 ,26 1,	ight bl gray (E YSTON Y 2/1)) coars nish gra LIMES	uish gr laminati SY 4/1) E and r VOLC/. e CLA TONE 62 1,	ay (58 8/1) clayey ions. to bluish gray (58 inor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC Sectio 6/1) S (5YR Sectio STON Core I gray (5YR	ents of: n 1, 0-4 EOUS LIM n 1, 40 ILLCEOU 4/1) CHE n 2: gree E and lig Catcher: (5Y 8/1) 4/1) CHE (5Y 8/1) 4/1) CHE	10 cm: MESTO 150 cm 150 cm 150 cm S SILT RT, SILIC RT, SUMM 1,	: very 1 NE; som n: olive Y CLA' Y (N7.5 n brown EOUS IARY (5 20 1, 1 M	ight bl gray (E YSTON Y 2/1)) coars LIMES (): 61 1, M	uish gr laminati SY 4/1) E and r VOLC/. e CLA TONE 62 1,	ay (58 8/1) clayey ions. to bluish gray (58 inor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC Sectio 6/1) S STON Core (gray (5YR STON Core (gray (5YR STON Core (ston) STON STON Core (ston) STON STON STON STON STON STON STON STON	ents of: n 1, 0-4 EOUS LIM n 1, 40 ILLCEOU 4/1) CHE n 2: gree E and lig Catcher: (5Y 8/1) 4/1) CHE (5Y 8/1) 4/1) CHE	40 cm: 40 cm: 40 testo 5 SiLT 81 testo 81 testo	ESCRIP : very I INE; son r: olive Y CLA' Y CLA' Y CLA' Y (N7.5 EOUS IARY (9 , 1 M 5 5 5	ight bl gray (E yrstON Y 2/1)) coars nish gra LIMES (): (): (): (): (): (): (): (): (): ():	uish grt Iaminati SY 4/1) VOLC/ W CLA W (SYI TONE 62 1, M - 22	ay (58 8/1) clayey ions. to bluish gray (58 innor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC (5YR Sectio STON Core (5YR SMEA Textu Sadd Silt Clay	ents of: n 1, 0-4 EDUS LI ILICEOUS E and lig Catcher: R SLIDE R SLIDE re:	10 cm: MESTO S SILT RT, ninh bl ht grav medium SILIC RT, SUMM 1, M	ESCRIP : very I INE; son r: olive Y CLA' Y CLA' Y CLA' Y (N7.5 EOUS IARY (9 , 1 M 5 5 5	ight bl gray (E yrstON Y 2/1)) coars nish gra LIMES (): (): (): (): (): (): (): (): (): ():	uish grt Iaminati SY 4/1) VOLC/ W CLA W (SYI TONE 62 1, M - 22	ay (58 8/1) clayey ions. to bluish gray (58 innor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC Sectio G/1) S (5YR Sectio STON Core (gray (5YR SMEA Textu Sand Silt Clay Comp	LITHOLC ents of: DE DUS LIN n 1, 0 UILICEOU JILICEOU JILICEOU JILICEOU Catcher: (SY 8/1) CHE (SY 8/1) CHE (40 cm: 40 cm: 40 testo 5 SiLT 81 testo 81 testo	ESCRIP : very I INE; son r: olive Y CLA' Y CLA' Y CLA' Y (N7.5 EOUS IARY (9 , 1 M 5 5 5	ight bl gray (E yrstON Y 2/1)) coars nish gra LIMES (): (): (): (): (): (): (): (): (): ():	uish grt Iaminati SY 4/1) VOLC/ W CLA W (SYI TONE 62 1, M - 22	ay (58 8/1) clayey ions. to bluish gray (58 innor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/13 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC Sectio SITON Core (gray (5YR SMEA Textu Sand Ciay Comp Quart Heavy	LITHOLC ents of: DE DUS LIN n 1, 0 UILICEOU JILICEOU JILICEOU JILICEOU Catcher: (SY 8/1) CHE (SY 8/1) CHE (10 cm: MESTO 150 cm S SILT RT. SUMM 1, th gray medium SILIC RT. SUMM 1, M 6 6 6 6 3 3 3 1 2 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1	: very 1 : v	ight bl ne fine l gray (E gray (E YSTON YSTON Jointh gray (E LIMES' 61: 1	uish gr laminati 5Y 4/11 IE and r VOLC2 w CLA3 my (5Y) TONE 62 1, M 62 1, M 0 25 1 - 3 1	ay (58 8/1) clayey lont. to bluish gray (58 innor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/11 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio StLIC Sectio STON Core i gray (5YR SMEA Textu Sand City Comp Cuart Heavy Clay	LITHOLC ents of: EOUS LIL EOUS	10 cm: MESTO 150 cm S SILT S SILT S SILT RT, mish bl sht grav mediun SILIC RT, SUMM N 8 SUMM 1, M 9 6 6 30 30 2 30 2 30 2 30 30 30 30 30 30 30 30 30 30 30 30 30	ESCRIP : very 1 NE; son : clive Y CLA : Y CLA : Y CLA : Y CLA : Y CLA : Y CLA : Y CLA : SG : O : S : S : S : S : S : S : S : S	rTION ight bi ight provide ight provide	uish gri 5Y 4/1) IE and r VOLC/. e CLA TONE 62 1, M 62 1, M 0 22 0 75 1 - 1 0 75	ay (58 8/1) clayey lonk. to bluish gray (58 minor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/1) to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC: Sectio G(1) S Sectio STON Core (gray (5) SMEA Textu Comp Comp Comp Comp Comp Comp Comp Clay Comp Clay Comp Clay Comp Clay Comp Clay Clay Comp Clay Clay Clay Clay Clay Clay Clay Clay	LITHOLC ents of: n 1, 0 COUS LIN CICCOU (1) CHEC E and lip Catcher: n 2: gree E and lip Catcher: K 8/11 CHE R SLIDE re: v v v v	10 cm: MESTO 150 cm S SILT RT, nish bl SILIC RT, SUMM 1, M 8 Bi 8 Bi 9 Bi 9 Bi 9 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	: very 1 : very	ight bl gray [E yrstON Y 2/1]) . coars hish gray [E G]: 	uish gr. laminati SY 4/1) JE and r VOLC/ w (SY1 TONE 62 1, M 52 5 7 5 7 5 7 1 - 3 1 5 7 5 2 (ay (58 8/1) clayey lont. to bluish gray (58 innor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/11 to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio SILIC Sectio (5/T) S (5/TR Section STON (5/TR SMEA Textu Sand Silt Comp Quart Heavy Clay Zeolit Carbo	LITHOLC ents of: EOUS LIL EOUS	10 cm: MESTO 150 cm 150 cm 150 cm SILIC SILIC RT. SUMM 1, M 6 6 6 6 6 6 1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ESCRIP : very 1 INE; son ack (56 y (N7.5 EOUS IARY (9 26 1, M 5 1 5 66 0 30 - - 5 25 5 25 0 5	rtion ight bl gray (E YSTON Y 2/1)) coars (): (): (): (): (): (): (): ():	uiah gri laminati SY 4/1) E and r VOLC: e CLA3 or CLA3	ay (58 8/1) clayey ions. to bluish gray (58 minor brownish gray ANICLASTIC SILT STIC LIMESTONE R 5/1) to yellowish and brownish gray 107
Albian? TIME - ROCK UNIT	somphedia (R) BIOSTRATIGRAPHIC ZONE		CHA	OSS RAC SNEILE TO	TER	2 SECTION	SHEE H	GRAPHIC		* samples		Fragm Sectio StLIC (5/T) S (5/TR Sectio STON STON Core gray (5/TR SMEA Textu Sand Care Comp Care Comp Care Comp Care Comp Care Comp Care Comp Care Care Com Care Com Silt (5/T) SMEA Com Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA Sitt (5/T) SMEA SITT (5/T) SMEA SITT (5/T) SMEA SITT (5/T) SMEA SITT (5/T) SMEA SITT (5/T) SMEA SITT (5/T) SMEA SITTT (5/T) SMEA SITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	LITHOLC ents of: n 1, 0 EOUS LIN ECOUS LIN ECOUS LIN CEOUS LIN C	10 cm: MESTO 150 cm 150 cm 150 cm SILIC SILIC RT. SUMM 1, M 6 6 6 6 6 6 1 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ESCRIP : very 1 INE; son ack (56 r) Y CLA' Y (N7.5 5 1 MARY (9) (1 1 M 5 1 5 5 2 2 2 1 0 5 5 2 2 2 1 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5	ight bit ight bit <t< td=""><td>uish gri laminati 5Y 4/1) E and r VOLC/ & CLA M M 62 1, M M 62 1, M 1 - - - - - - - - - - - - - - - - - - -</td><td>ay (58 8/1) clayer ons. to blidsh gray (55 minor brownish gray ANICLASTIC SILT STIC LIMESTONE 8 6/1) to yellowish and brownish gray 107</td></t<>	uish gri laminati 5Y 4/1) E and r VOLC/ & CLA M M 62 1, M M 62 1, M 1 - - - - - - - - - - - - - - - - - - -	ay (58 8/1) clayer ons. to blidsh gray (55 minor brownish gray ANICLASTIC SILT STIC LIMESTONE 8 6/1) to yellowish and brownish gray 107

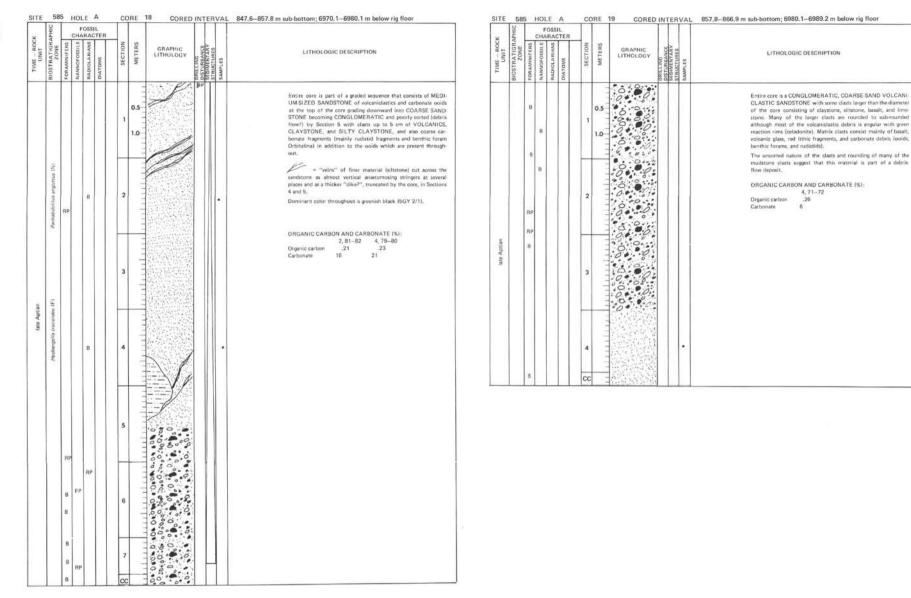
SITE 585


2	APHIC			OSSI	L TER														
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES			LITHO	LOGIC	DESC	RIPTIO	N		
						1	0.5			•.		tops mass gradi clast black	of sequ live, lami ed seque s up to ' k (5GY	nated, nated, nce are I cm, u 2/1], or	re most or som mainty watty d dark (dy mod etimes i very co tark gree gray (N3	ium gra bioturbi arse vol mish gri 3). Som	y (N4) ated, Co lcaniclar ay (5GY e coarse	Finer-grainer CLAYSTONE arser bases o tic debris with '4/1], greenist r units consis bonate debris
							1	<u> </u>	栗		SMEAR SLIDE SU	MMA	RY (%) 1, 38	1, 46	2,70	3, 25	3, 126	5 4, 50	5,40
								1000000 00000	Ħ	1	Texture	м	м	м	M	м	м		
							1	202 23133			Sand	\subseteq		ž.	20		-	-	-
						2	1.3	807.40.33.3		r I	Silt Clay	100	100	10 90	80	100	2 98	55 45	95 5
							1	25 22 29 289 000			Composition: Feldspar	1		1	Б	5		3	7
							1	Solp in the			Heavy minerals	2	3	. 1	-	3	2	-	3
						-					Clay Volcanic glass	53	65	5	8	5	40	30 6	43
							1 3	139.9 0 POPOS			Zeolite	7	_	-	9	.4	-	9	9
- 0							1	2-2-0	T		Carbonate unspec.	-	1	78	8	9	1	3	1
						1.0	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I IA		Calc. nannofossils Radiolarians	<1	<1 3		-	_	5	-	<1
						3	1.3	Brow as con a ges			Sponge spicules	5	7	-	-	-	-	<1	-
							-	52-2-1-	1		Fish remains Celadonite	2	-	2	9	54	2	2.	- C
								X=50-	à		Hematite	-	-	-	-	-	1	-	<1
						_					Gypsum Recryst. SiO ₂	1 33	20	15	34	20	50	9	2
						4	the second s		出业主本王公王 二		Vole. xl. fr.	-	20	-	-		-	-	5
						5				<u> </u>									
						6		800 S 17	000 F	r,									
						co	+		3	1									

130

	585 2	_	HOI	oss		-		RE		TT	TT	781.3-790.4 m sub-bottom; 6903.6-6912.7 m below rig floor
×	Hd		СНА			R						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
							ı	0.5				Graded sequences of very dark brown (5YR 3/1) CLAYSTONE at top, coarsening downward to greenish gray (5GY 2/1) VOL CANICLASTIC FINE SANDSTONE and SILTSTONE, and occasionally coarsening downward into an interfamination of dark volcaniclastic sandatone and light gray CLASTIC CARBON ATE. The sandatone base of one graded sequence, that includes all of Section 1 and 110 cm of Section 2, is conglomeratic with clasts up to 2 cm.
							2	111111111111				SMEAR SLIDE SUMMARY (%): 6,49,4,57 CC, 12,6,31 D D M Texture: Silt 2 5 Clay 96 95 100 100 Composition: Heavy minetals 3 5 - - Clay 93 87 96 99 Volgening class - -
late Aptian		в	RP RP				3	Tan Inter			•	
		8	в				4	a hard that have				ORGANIC CARBON AND CARBONATE (%): 3; 68-74 4; 27-28 4; 84-85 6; 42-43 CC, 3-4 Organic carbon .09 .11 .25 .44 Carbonate 13 8 1 .3 3
			RP				5	the first been been	06			
			RF				6					
							7		DY 55.08 9 40000			

APHIC	L		OSS	AL CTER					П	
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
tate Aptian	B	В	8		1 2 3 4 5 CC	1.0				Graded sequences of olive black (SY 2/1) VOLCANICLASTI SILTSTONE and FINE- to MEDIUMGRAINED SANDSTON grading up into dark reddin trown (FYR 3/2) SILIGHT CALCAREDUS CLAYSTONE that is variously laminated, oron bedded, scourd, and sometimes biourbated. Basil contacts coverse bed often contain consentrations of corse caladonin Several paded sequences with conglomeratic sandston bes at the bottom of the core (Sections 4, 5, and Core Catcher) SMEAR SLIDE SUMMARY (%): 1,38 1,60 1,69 D D D Texture: Sand $ -$ Silt $ 5$ Clay $ -$ 95 Composition: Clay 83 95 93 Volcanic glass 12 1 2 Zoolite 3 3 3 Carbonate ungers, 1 1 2 Fish remains $ <$ 1 $-$ Caladonite 1 $ -$

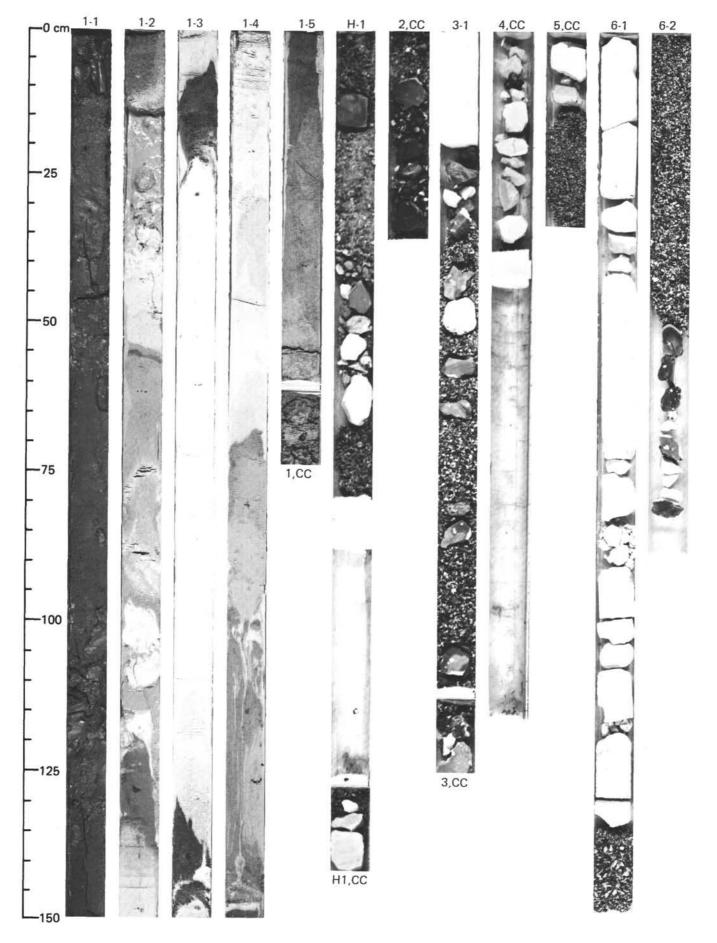


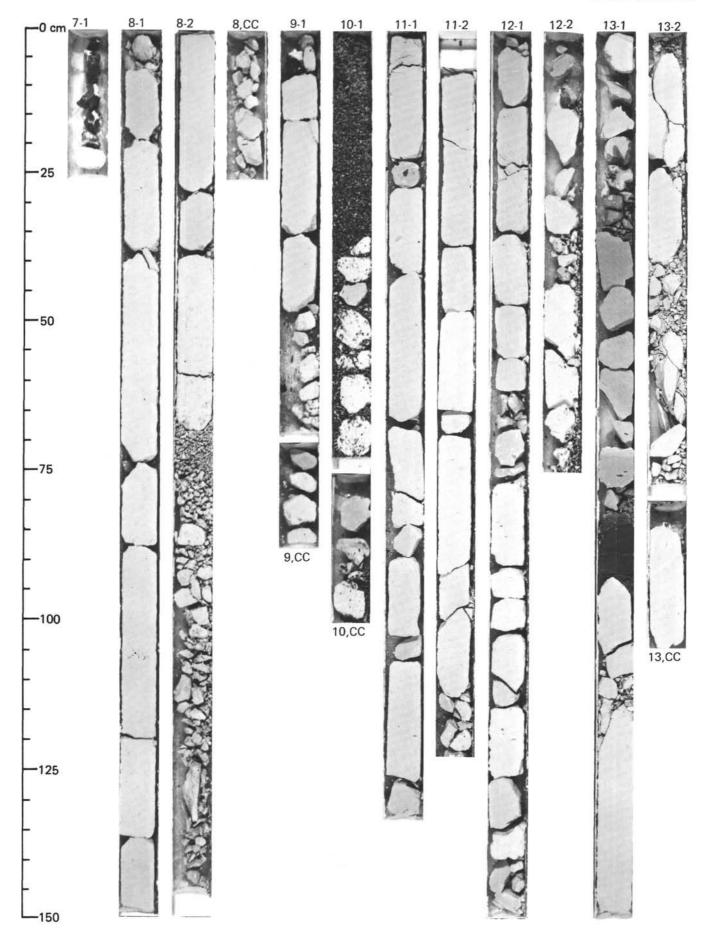
NIT	VPHIC			RAC	TER						
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARV	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
		в	в				1111		Ž	ľ.	Graded sequences of volcaniclastics, mainly fine-grained sand stone, sittstone, and sitty, calcareous claystone.
						1	0.5				Silicitied burrows are common throughout, but especially in Section 2.
							1.0				Layer, lenses, and stringers rich in celadonite are common in th lower part of the recovered section.
			в								Many, of the units are quite hard and appear to be well cemente with silica cement.
	(N)						1		5	1	There appear to be several fining-downward graded sequences particularly in Section 4.
	entention	8					1.5				Calcareous material seems to be mostly from carbonate gold in with volcanigenic debris,
	Parhabdolitus a					2	1	=			SMEAR SLIDE SUMMARY (%): 1,20 1,65 1,120 2,140 3,116
	nbak		1.1		11		-		I		1,20 1,65 1,120 2,140 3,116 M M D D D
	schi		ß				1.2		ΙË	=	Texture:
5	<i>a</i> .		100				1.4		1 🗄		Sit - 15 1 5 85
ate. Aptian									I E	-	Clay 100 85 99 95 15
8		8	в						1 12	Ă	Composition:
5 M L		•	8				1.5		1	7	Feldspar <1 <1 <1 1 -
							-				Mica 1
							1 2	2 + 1			Heavy minerals 1 - <1 1 3
						3	1 1 4				Clay 69 50 80 50 10
							1.1				Glauconite 5
							1.17				Zeolite - 1 1 5 10
							1.10			1	Carbonate unspec. 30 9 18 - 5
	0.0		0.1				1.12			1	Calc. nannofossils 1 <1 <1
						1	-				Radiolarians 1 <1 -
						1	-		1		Sponge spicules
							1 2	+-			Fish remains <1
			в				-	** **			Recryst. SiO ₂ - 40 - 43 56
		н				4		38.0	1	7	ORGANIC CARBON AND CARBONATE (%):
							-		1		1,8-9 2,31-34
	E.						-				Organic carbon .16 .16
					1.1		1 3	Section 2.			Carbonate 15 7
	Pice 1						1 3	1		3	
	000					-	-		1 1	× .	
	5								1		
	Hedbergelia trocoidea						1 -	5-854 -AAVE			
	NGA				1 1	5		001110.15-110	1.1		
	db					1	1	00 000 000000	1		
	Hen					-			11		
	1.75	RP		8	1 I.	CC	4	213 805 31 5612	N 1.	A	

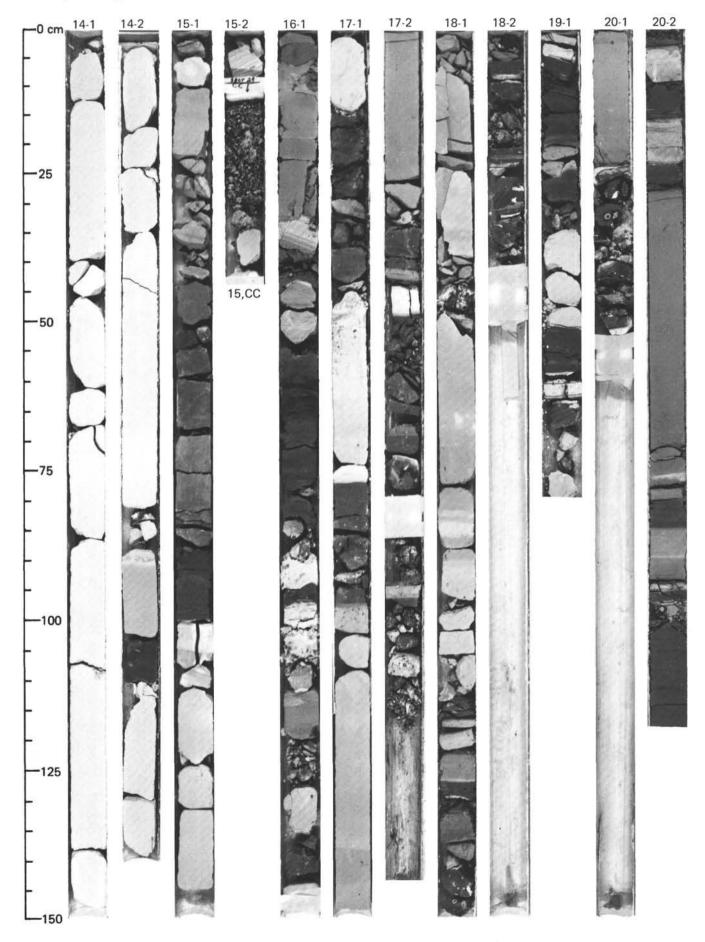
×	DIHO			RAG	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GR APHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	argustus (N)					4	0.5				A single very gradually fining-upward sequence of volcanidias sandatone, grading from medium-size sand at the base to f sand at the top. What appears to be a slice of a vertical "wi of slistone that cuts across andicates in Sections 4 and 5. Thin calcite veries out core in Section 3 (Indicated " co on graphic column). Dominant coloc is dark greenish gray (5G 4/1).
	Parhabololitus angustus		EM			2	rdan drammer				Carbonate oxids observed along with volcaniclastics on o surface of core.
late Aptian	es (F)					3	and and an and an	E			
	Hethorgella trocoldes IF)	VR	2			4	areiteata a	06			
						5	erectored been				
		в				6 CC					

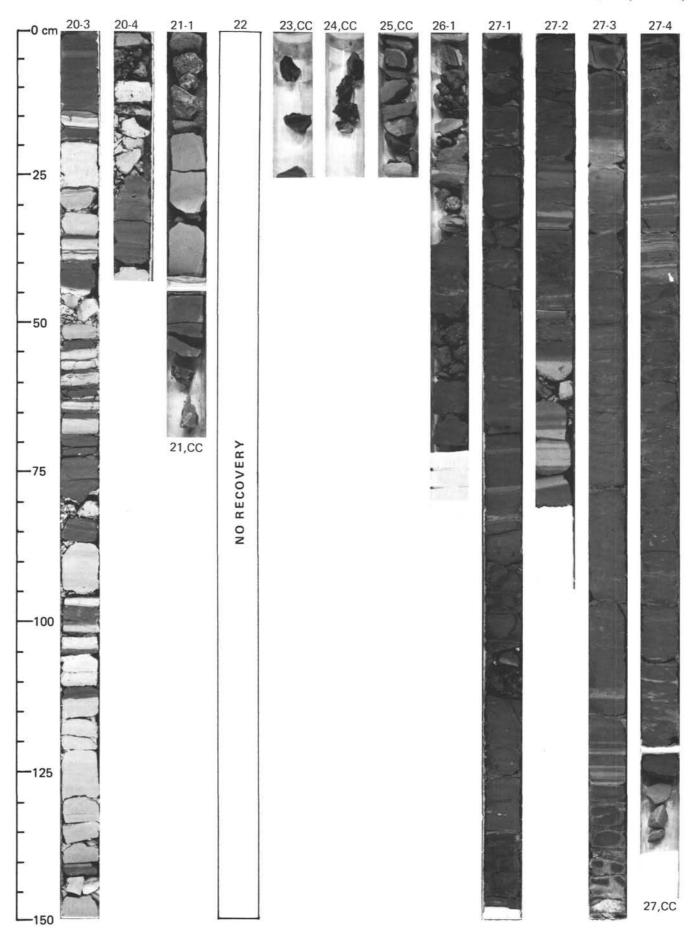
 SITE
 585
 HOLE
 A
 CORE
 17
 CORED INTERVAL
 838.6–847.6 m sub-bottom; 6960.9–6970.1 m below rig floor

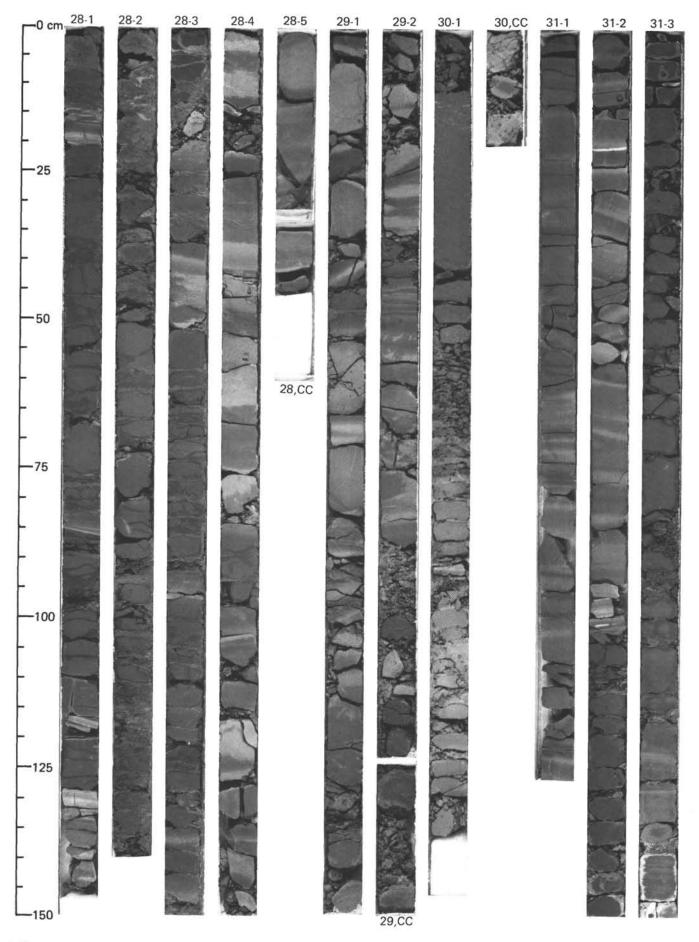
 Image: Site of the sub-bottom
 Image: Site of the sub-bottom</t

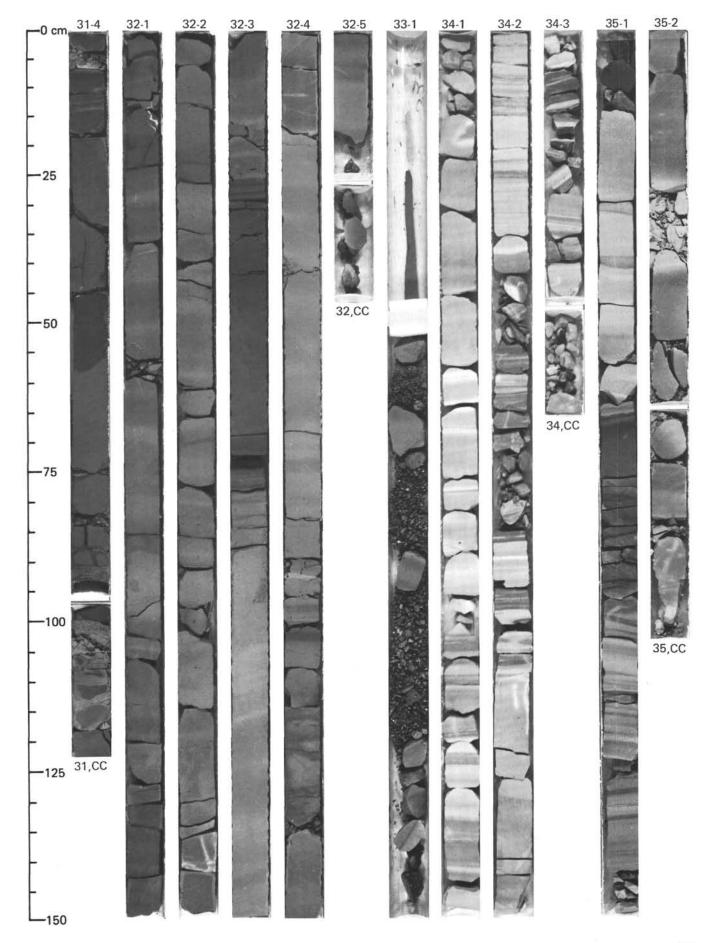

134

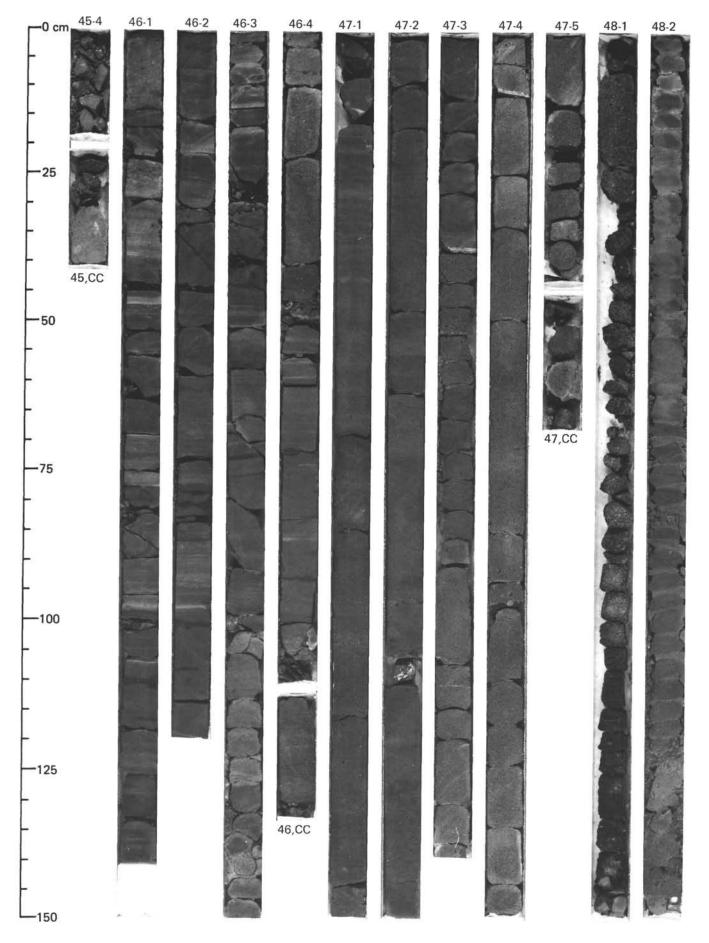

×	APHIC			RAC	TER						
UNIT - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIDLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
		B B RP B	B	RP		1	0.5				Entire core consists of a VOLCANICLASTIC SANDSTON matrix with larger clasts (up to at least ³ 5 cm) of SILTSTONE CLAYSTONE, BASALT, VOLCANIC GLASS and LITHI FRAGMENTS, and SHALLOWWATER CAREDNATE DEERI (benthic forams, oolds, rudistid fragments). Many of the large clasts, especially claystone and siltstone, are sub-rounded t rounded.
	P 1						2				Overall color of sandstone matrix is greenish black (5GY 2/1
un		в						0.00.00			Vugs in clasts at base of Section 2 lined with zeolites (henlandite? One 15-cm piece? clast? of emigoaloidel baselt.
ate Aptian								0.0		11	Most volcanic fragments are rimmed by celadonite.
ate							-				
		RP				2	12	0.000			^a Some clasts are truncated by core but are probably boulde
		RP	в				the	000		•	SMEAR SLIDE SUMMARY (%): 1,60 3,30 M M
		в					-	0.0			Texture:
							-				Silt 15 10
		в	8				1	090.00			Clay 85 90
		B				3	1.5				Composition;
		B				J J	-	Sin:			Clay 83 90
										1	Volcanic glass 15 2
						-				-	Zeolite 2 -
											Carbonate unspec. 1 -
											Volc. frags. 4 Celadonite 1
			1								ORGANIC CARBON AND CARBONATE (%):
											2, 102-103 3, 67-68
											Organic carbon .19 .18
											Carbonate 3 3

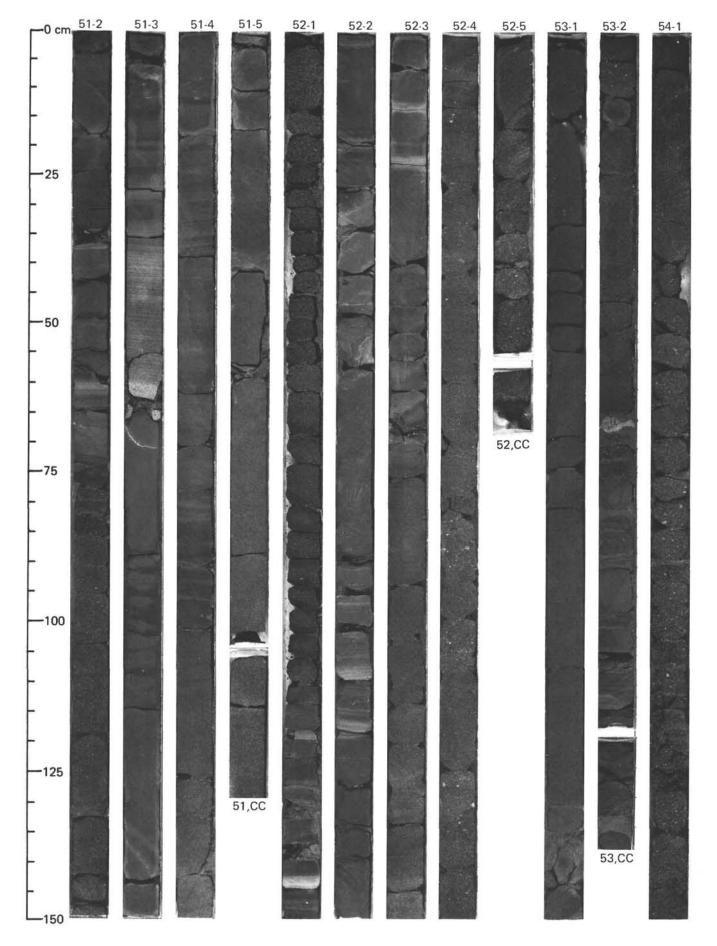

TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FOSSIL											
		FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION		
late Aptian		в	B			1	0.5				Debrie-flow deposit consisting mainly of a coarse greeniab blac (EGY 2/1) SANDSTONE matrix with poorly sorted, angular t subrounded fragments of SILTSTONE, CLAYSTONE, an BASALT, Matrix contains grains or fed thic fragments, volcani glass, and basalt. No carbonate grains, Some clasts are actual boulders		
						cc		G			SMEAR SLIDE SUMMARY (%): 1,82 1,87 M M Texture: Silt 15 5 Clay 85 95 Composition: Heavy minerals 1 1 Clay 85 99 Volcanic glass <1 8 Zeolite 7 2 Carbonate runge, 1 1 Pyrosere 3 – Caladonite 3 – Caladonite 3 – Caladonite 3 – Caladonite 3 – Caladonite 3 –		
										- 1	Organic carbon 0.1 Carbonate 0		

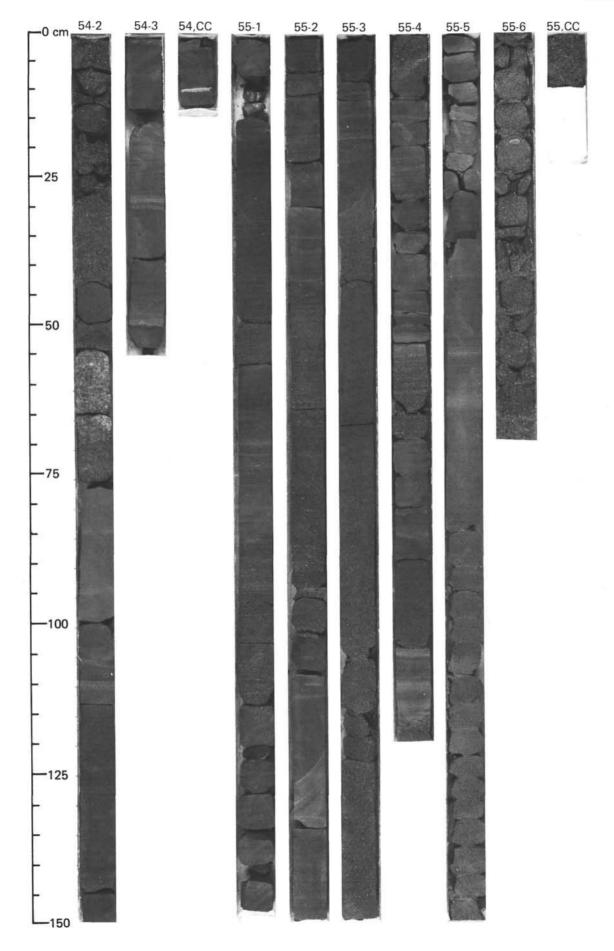

SITE 585 HOLE A CORE 22 CORED INTERVAL 885.2-892.9 m sub-bottom; 7007.5-7015.2 m below rig floor

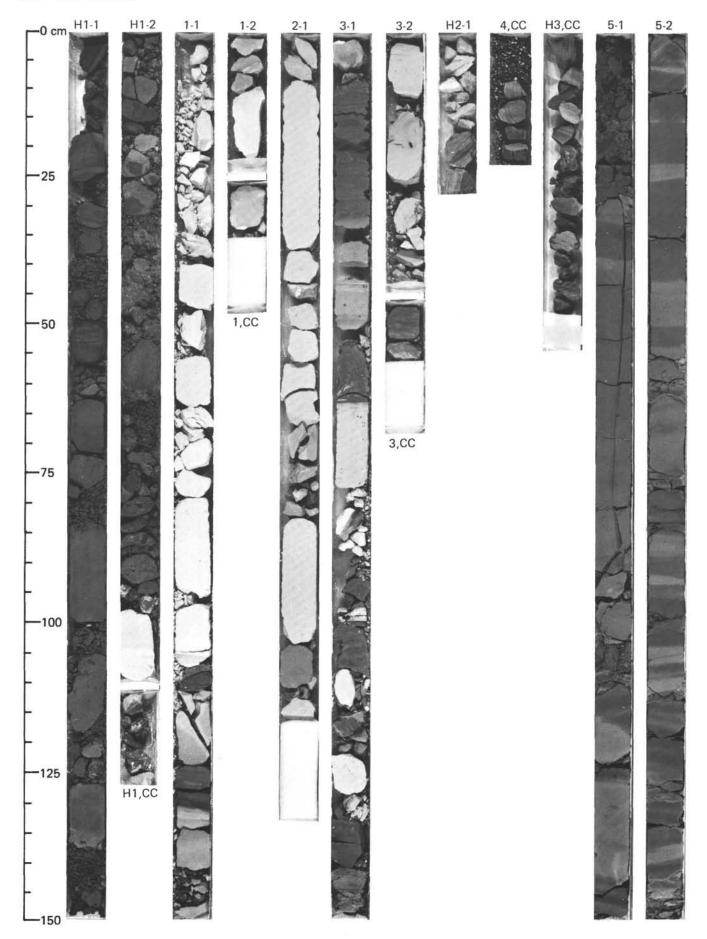

TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		FOSSIL					- CONE	Π			
		FORAMINIFERS	NANNOFOSSILS.	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
late Aptian						1	0.5		0 00 00 00 00 00 00 00 00			Section 1, 0–95 cm: fine drill cuttings, mostly of chert, clay- stone, and chalk. Section 1, 95–150 cm: greenish black (5GY 2/1 to 5GY 3/1) course VOLCANTICANTIC SANDSTONE: poorly sorted with peble-sized clasts in samd matrix. Core Catcher: 62 cm of greenish black (5GY 2/1) volcaniclastic silty sandstone and coarst sandstone.
						2 CC	trich and the		000 00 00 00 00 00 00 00 00 00 00 00 00			

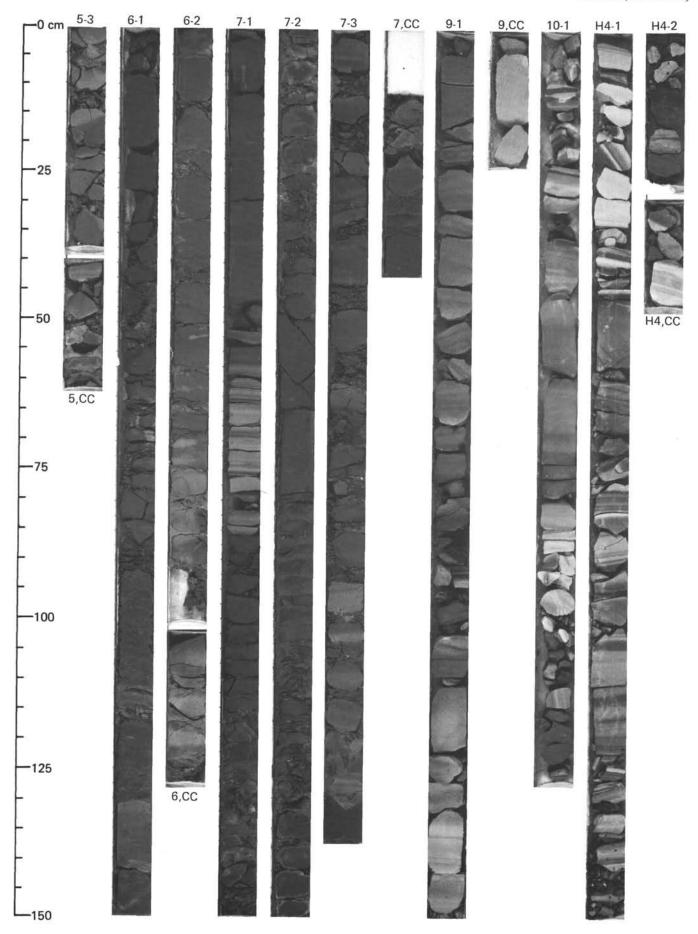


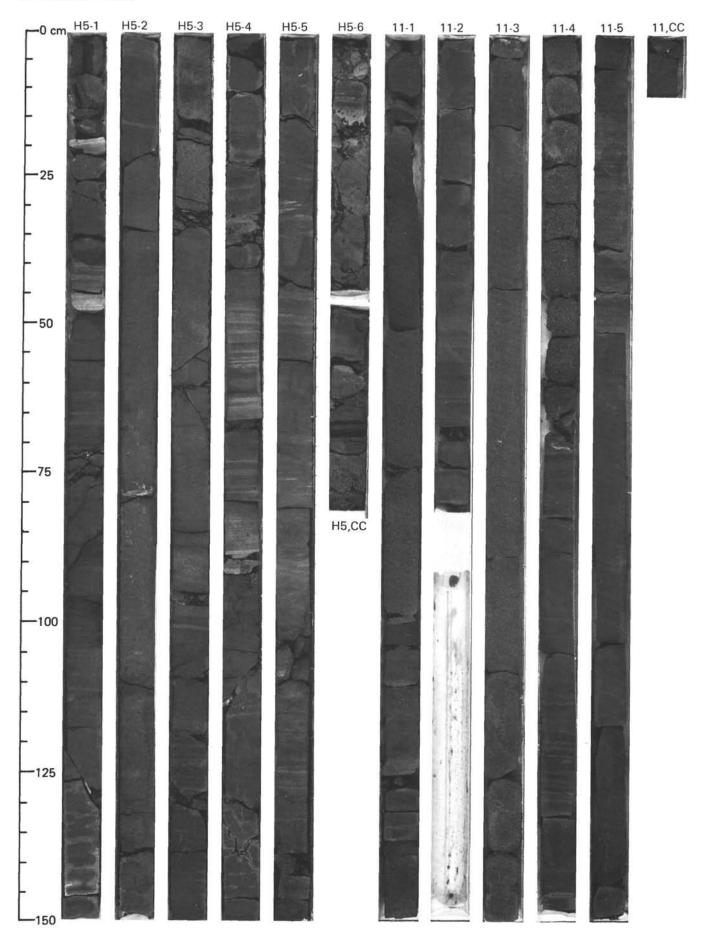


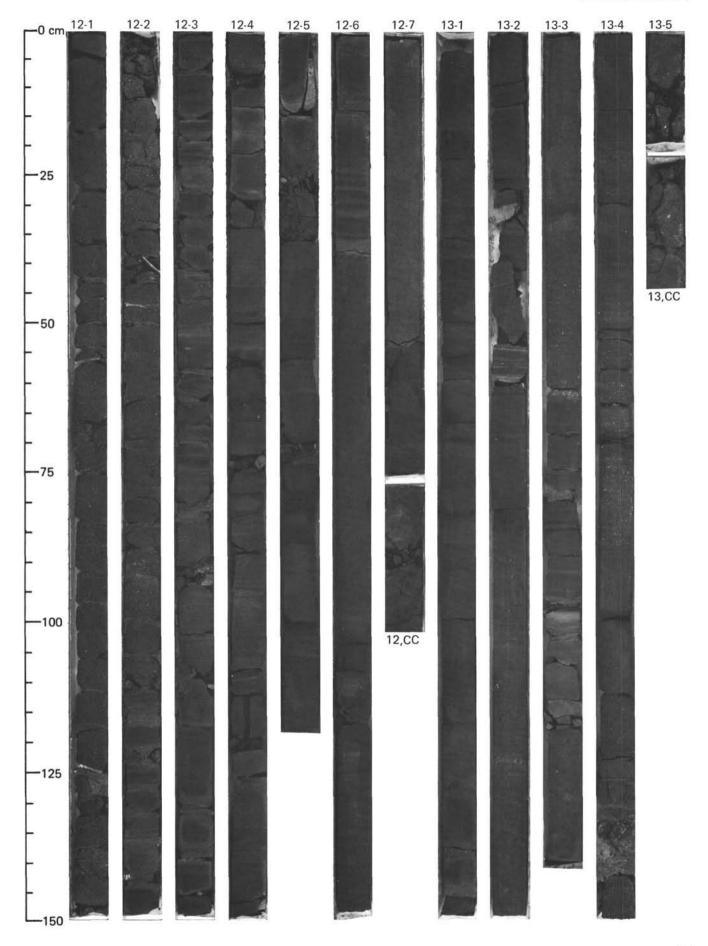

141

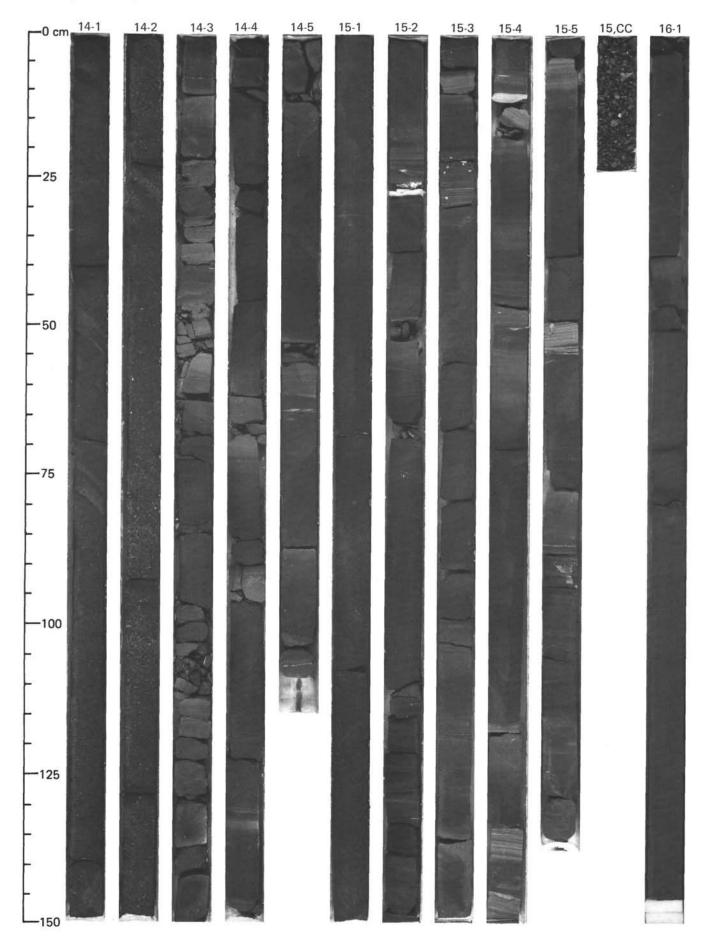

36-1	37-1	38-1	39-1	39-2	40-1	41,CC	42-1	42-2	42-3	42,CC	43-1
A A A A A A A A A A A A A A A A A A A	STREET STREET		LON NUMBER OF ALL ALL ON A REAL AND A R	39,CC			LA LES & PURKENING I LANDEL		NUCLUS AND		

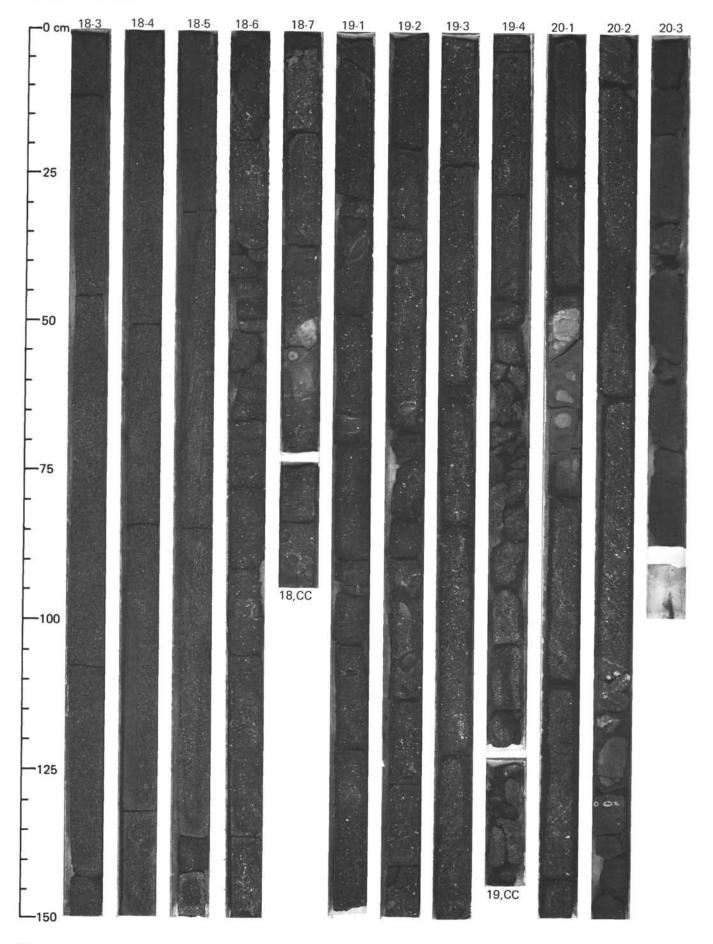

-0 cm 43-2	43-3	43-4	43-5	44-1	44-2	44-3	44-4	44-5	45-1	45-2	45-3
- 23					in a				1		
-				1					8		
		T				R					OK C
- 25		2		-		-			Ser.		
-	-								5	1000	1
-							in the second				1
		1						-		and and a second	
		1		X		and a					
- 50				Z							
-	3	220			100			D			
- Andrews	-									120	- 2
-	10 set	en			18		-	and a second			
-75											
_					1				C.		
-				5		0		E			
-		A			IN			1			
-100		T				-					
											-
-					1						
-											
-125						-					
	1			E	5						5
	-			a.		/	- Cal				
-				1	- AL			44,CC		A	A
					1						

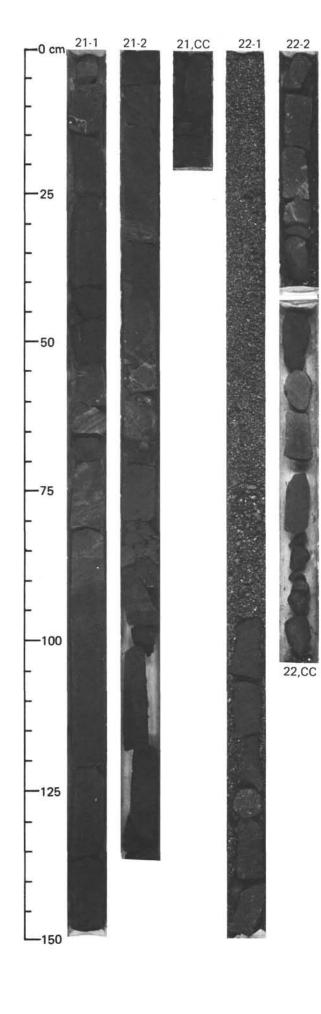



-0 cm 48,CC	49-1	49-2	49-3	49-4	49-5	49-6	50-1	50-2	50-3	50-4	51-1
-		4					0			32	C.
-		-		S	H						
-					5				X	-	
-			Puest		T	-		ALC: NO			
-25									M		Frank
F		5	1							and the second	
		24	2	-						-	
[-		r h						\$
-50				5						2	P
_				5							4
Ļ					AL AL				× ·		
-			- 2							1	1
-			-								7
-75											
-					200			-	X		5
-					-					1	
-			P	T						-	123
-				-					Perso	50,CC	
								1	-		Sel
ſ	Luma										-
Ľ	31			1712	and the second						-
	and the second second										
		-		1			2				
-	-	-	2.5	C'					X		
-	r 4			E_							
-	2		R	1 and							A ST
-	0	1	\bigcirc	5			-		Contraction of the		7
L_150	1.37	and a	5	1	Some &		-		and the second		






150



152

-0 cm 16-2	16-3	16-4	16-5	17-1	17-2	17-3	17-4	17-5	17-6	18-1	18-2
						2.2					
		1								1	
	-						61.6				
						1					
-25											
-						1	and the second				
-	1000								1.0		
-				CO.		1 1	1.25				
-							1.5.5*				
-50								-			
-			12.5					N.			
		1.5									
			-			CIDE					
					100						
							5		1000		
-75	- 07							1			
-								1	2 34		
											ST
-											-
-			16,CC	-		-			17,CC		
-100							130				
-											12 ti
- 12						Sec. 1					
-										341	
							and the second second				
105											
		h									
											The second
		16									
-150											

