10. SITE 594: CHATHAM RISE¹

Shipboard Scientific Party²

HOLE 594

Date occupied: 3 January 1983

Date departed: 5 January 1983

Time on hole: 52 hr.

Position: 45°31.41'S; 174°56.88'E

Water depth (sea level; corrected m, echo-sounding): 1204

Water depth (rig floor; corrected m, echo-sounding): 1214

Bottom felt (m, drill pipe): 1211

Penetration (m): 505.1

Number of cores: 53

Total length of cored section (m): 505.1

Total core recovered (m): 299.72

Core recovery (%): 59.3

Oldest sediment cored: Depth sub-bottom (m): 505.1 Nature: Nannofossil ooze Age: Late early Miocene Measured velocity (km/s): 1.646 at 487 m

Basement: Not reached

HOLE 594A

Date occupied: 6 January 1983

Date departed: 7 January 1983

Time on hole: 29 hr., 40 min.

Position: 45°31.41'S; 174°56.88'E

Water depth (sea level; corrected m, echo-sounding): 1204 Water depth (rig floor; corrected m, echo-sounding): 1214 Bottom felt (m, drill pipe): 1211 Penetration (m): 639.5 Number of cores: 26 Total length of cored section (m): 249.6 Total core recovered (m): 161.55 Core recovery (%): 64.7 Oldest sediment cored: Depth sub-bottom (m): 639.5 Nature: Siltstones (turbidites) Age: Miocene Measured velocity (km/s): 2.106 at 622 m

Basement: Not reached

HOLE 594B

Date occupied: 7 January 1983

Date departed: 7 January 1983

Time on hole: 8 hr., 8 min.

Position: 45°31.41'S; 174°56.88'E

Water depth (sea level; corrected m, echo-sounding): 1204

Water depth (rig floor; corrected m, echo-sounding): 1214

Bottom felt (m, drill pipe): 1212.2

Penetration (m): 42.9

Number of cores: 5

Total length of cored section (m): 42.9

Total core recovered (m): 34.18

Core recovery (%): 79.6

Oldest sediment cored: Depth sub-bottom (m): 42.9 Nature: Hemipelagic ooze Age: Quaternary Measured velocity (km/s): 2.106 at 622 m

Basement: Not reached

Principal results: Site 594 is located at the southern margin of the Chatham Rise east of the South Island of New Zealand, in a water depth of 1204 m at a position of 45°31.41′S, 174°56.88′E. The site lies in the subantarctic water mass immediately south of the Subtropical Convergence, and is the southernmost of the series of sites forming a north-south transect. It is situated in a transitional region between oceanic and terrigenous influences, thus differing from all other sites on the southwest Pacific transect.

Site 594 consists of three holes cored to a maximum sub-bottom depth of 639.5 m. Excellent core recovery was obtained from 0 to 207.5 m sub-bottom depth (Holocene to latest Miocene), using the HPC to about 130 m in Holes 594 and 594A. The remaining section was rather poorly recovered using the XCB.

The section from the latest early Miocene to the Holocene contains unconformities in the middle late Miocene, over the Miocene/Pliocene boundary, in the middle Pliocene, and in the latest

Kennett, J. P., von der Borch, C. C., et al., *Init. Repts. DSDP*, 90: Washington (U.S. Govt, Printing Office).
 ² James P. Kennett (Co-Chief Scientist), Graduate School of Oceanography, University

of Rhode Island, Narragansett, RI 02882; Christopher C. von der Borch (Co-Chief Scientist), School of Earth Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042; Paul A. Baker, Department of Geology, Duke University, Durham, NC 27708; Charles E. Barton, Graduate School of Oceanography, University of Rhode Island, Narra-gansett, RI 02882 (present address: Bureau of Mineral Resources, Geology, and Geophysics, P.O. Box 378, Canberra, A.C.T., Australia); Anne Boersma, Microclimates, Inc., 404 RR1, Stony Point, NY 10980; Jean-Pierre Caulet, Laboratoire de Géologie, Muséum National d'His-toire Naturelle, 43 Rue Buffon, 75005, Paris, France; Walter C. Dudley, Jr., Natural Sciences Division, College of Arts and Sciences, University of Hawaii at Hilo, Hilo, Hawaii 96720; James V. Gardner, Pacific-Arctic Branch of Marine Geology, U.S. Geological Survey, 345 Middlefield Rd., Menlo Park, CA 94025; D. Graham Jenkins, Department of Earth Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA, Buckinghamshire, United King-dom; William H. Lohman, Marathon Oil Co., Denver Research Center, P.O. Box 269, Littleton, CO 80160; Erlend Martini, Geologisch-Paläontologisches Institut, Johann-Wolfgang-Goethe Universität, Senckenberg-Anlage 32-34, D-6000 Frankfurt am Main, Federal Republic of Germany; Russell B. Merrill, Deep Sea Drilling Project A031, Scripps Institution of Oceanography, La Jolla, CA 92093 (present address: Ocean Drilling Project, Texas A&M University, College Station, TX 77843-3469); Roger Morin, Department of Earth and Planetary Sci-ences, Massachusetts Institute of Technology, Cambridge, MA 02139 (present address: U.S. Geological Survey, Denver Federal Center, Denver, CO 80225); Campbell S. Nelson, Department of Earth Sciences, University of Waikato, Private Bag, Hamilton, New Zealand; Chris-tian Robert, Laboratoire de Géologie Marine, Centre Universitaire de Luminy, Case 901, 13288 Marseille Cedex 09, France; M. S. Srinivasan, Department of Geology, Banaras Hindu University, Varanasi 221 005, India; Rüdiger Stein, Geologisch-Paläontologisches Institut, Universität Kiel, 2300 Kiel, Federal Republic of Germany (present address: Institute of Petroleum and Organic Geochemistry (ICH-5), Kernforschungslage Jülich GmbH, P.O. Box 1913, 5180 Jülich, Federal Republic of Germany); Akira Takeuchi, Department of Earth Sciences, Faculty of Science, Toyama University, Gohuku 3190, Toyama 930, Japan.

Pliocene. A paleomagnetic stratigraphy has been identified down to the late part of the Gauss Chron (about 2.5 m.y. ago).

The sequences are assigned to two lithostratigraphic units, the lower one of which is subdivided into two subunits.

Unit I, of earliest Pliocene to Quaternary age, consists of an alternating sequence of pelagic and hemipelagic lithofacies, generally defined by bluish gray and greenish gray sediment, respectively.

The pelagic lithofacies consists mainly of blue gray foraminifer-bearing nannofossil ooze, foraminifer- and clay-bearing nannofossil ooze, or foraminifer-bearing clayey nannofossil ooze.

The hemipelagic lithofacies consists of a variety of sediment intergrades between a clay- and silt-bearing nannofossil ooze and a nannofossil-bearing clayey silt; this greenish-gray lithofacies commonly diatom- and sponge spicule-bearing, rarely foraminifer-bearing.

The contact between Units I and II is gradational over several meters, but is recognized by the change from the interbedded pelagic and hemipelagic facies of Unit I to a pelagic facies of Unit II. Unit II, of late early Miocene to earliest Pliocene age, is mainly a foraminifer-bearing nannofossil ooze (chalk) to nannofossil ooze (chalk). The ooze/chalk transition occurs at about 66 m in Hole 594.

Subunit IIA, of middle Miocene to earliest Pliocene age, is a light gray foraminifer-bearing nannofossil ooze that grades down into a nannofossil ooze and continues to about 466 m sub-bottom depth in Hole 594.

Subunit IIB, of late early to middle Miocene age, is a light gray nannofossil chalk with occasional interbeds of olive gray silt-bearing clayey nannofossil chalk below 534 m sub-bottom in Hole 594A; these are interpreted as turbidite layers.

Site 594 was well located to monitor the changing influences of terrigenous and pelagic sequences through the Neogene. The first influx of hemipelagic sequences during the late Neogene occurred about 6 m.y. ago, replacing a completely calcareous pelagic facies containing no significant terrigenous components. This dates the beginning of the Kaikoura Orogeny, when the New Zealand (southern) Alps were uplifted along the Alpine Fault.

Dated much earlier, about 17 m.y. ago, was a tectonic episode evidenced by the deposition of the clay turbidites of Subunit IIB. The upper part of the turbidite sequence forms a distinctive reflector which shows at about 600 m sub-bottom in the seismic profiles. The deposition of the turbidite sequence possibly coincided with major strike-slip motion along the Alpine Fault sector of the Indian/Pacific plate boundary. The volcanic ash layer sequences at this and other sites are probably also related to the associated volcanic activity. The two tectonic episodes were separated by about 10 m.y. of vertical tectonic quiescence during which pelagic calcareous sediments (Subunit IIA) were deposited.

Site 594 has much paleoceanographic potential. There is a useful biostratigraphic sequence of subantarctic elements from the middle Miocene to the Holocene, although this is broken in places by unconformities. Both calcareous and siliceous microfossil groups are well represented. The calcareous nannoplankton are typical cold-water assemblages and largely lack the warm-water forms so useful in biostratigraphic zonation. Considerable microfossil reworking, particularly of foraminifers, was associated with the early middle Miocene turbidites.

The latest Miocene to Holocene sequence of oscillations between dark hemipelagic and lighter pelagic biogenic sediments is climatically related. The pelagic episodes mark climatic warmings and high sea levels (interglacials). These have little biosiliceous sediment, less calcareous dissolution, and warmer-water planktonic foraminifer faunas. The hemipelagics mark cooler (glacial) episodes when low stands of sea level led to major sediment bypassing over the continental shelves and to the deposition of terrigenous materials in the basins surrounding New Zealand. These episodes exhibit cold planktonic foraminiferal faunas, rich siliceous microfossil assemblages, and much carbonate dissolution. Intergrades occur between the two extremes. Twenty-five major hemipelagic depositional episodes are recorded in the upper 200 m (6 m.y. ago to ?), although unconformities represent part of this sequence. The oldest hemipelagic episode coincides with the well-known Kapitean (Messinian) regression.

A distinct increase in radiolarian abundances occurs during the late Miocene. This may have been in response to the important paleoceanographic changes which may have led to the development of the Subtropical Convergence.

BACKGROUND AND OBJECTIVES

Southern Chatham Rise

Site 594 is located at the southern margin of the Chatham Rise east of the South Island of New Zealand (Fig. 1). The site lies in the subantarctic water mass immediately south of the Subtropical Convergence, and is the southernmost of a series of sites forming a north-south transect. It is situated in a transitional region between oceanic and terrigenous influences, thus differing from all other sites on the transect. It is located on a relatively flat, smooth seafloor, underlain by what appears to be a simple seismic stratigraphy of parallel reflectors (Fig. 2).

The primary scientific objectives for Site 594 were to obtain a high-resolution stratigraphic sequence from the Quaternary to the late Paleogene using the hydraulic piston corer (HPC) and extended core barrel (XCB). Multidisciplinary studies on the cores were expected to assist in understanding middle to late Cenozoic paleoceanographic and paleoclimatic history, biogenic evolution, and diagenesis. In addition, the site lies downwind from New Zealand and was expected to contain a valuable record of volcanism in the form of tephra layers. The location of Site 594 in subantarctic waters provided an additional opportunity, not available in higher-latitude sites of the transect, to study what should be distinct oscillations between glacial and interglacial episodes. Griggs et al. (1983), in studies of the late Quaternary using conventional piston cores, demonstrated that such oscillations are well represented in the region. Interglacial episodes are marked by a rich planktonic foraminiferal assemblage of southern temperate character, glacial episodes by a planktonic foraminiferal assemblage of distinctly subantarctic character, accompanied by noticeable abun-

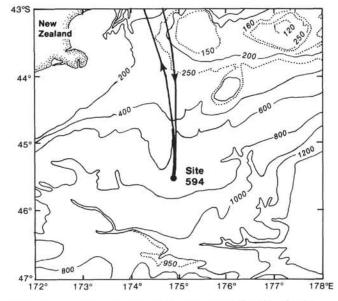


Figure 1. Regional bathymetry (fathoms) around Site 594, after Mammerickx et al. (1974). *Glomar Challenger* Leg 90 track shown; heavy portion locates water gun seismic profile illustrated in Fig. 2.

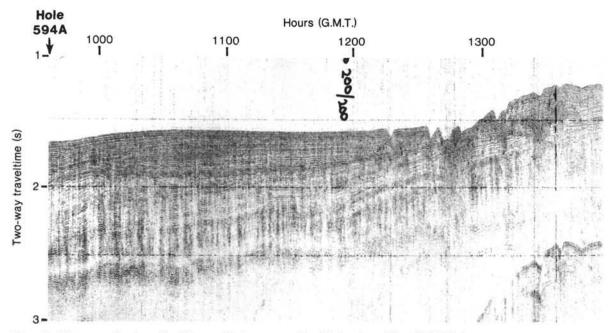


Figure 2. Water gun seismic profile (Glomar Challenger near Site 594; bandpass filter 40-160 Hz).

dances of mica and siliceous biogenic components including radiolarians, diatoms, and spicules, and showing clear evidence of dissolution. Site 594 was, therefore, expected to supply data on carbonate cycles and carbonate dissolution. The relative abundance of siliceous components was expected to allow studies of the biostratigraphy and paleoenvironments of these organisms, which occur only in minor amounts in the more northerly sites of the Leg 90 transect. Finally, it was hoped that the site would contain evidence of ice-rafting in the late Neogene, since ice-rafted erratics from Antarctica occur on the Chatham rise (Cullen, 1976).

OPERATIONS

Site 593 to Site 594

The transit between the final two sites provided some of the most pleasant weather and the finest scenery of the voyage. From Site 593 northwest of New Zealand the ship sailed through Cook Strait between New Zealand's North and South Islands and then south to Site 594 close to the Chatham Rise. The site was approached directly along the *Eltanin* 43 survey line and the beacon was dropped at 1449 hr., 3 January, on the basis of a good seismic profile. The 603.9-mi. trip was completed in 2 days, 12.6 hr., at an average speed of 10.0 knots.

Site 594 (SW-1): Chatham Rise and Bounty Trough

The PDR depth was questionable since the location of the site was almost exactly on the border between two adjacent watermass areas listed in Matthews's *Tables*. The combination variable length (VL) HPC/XCB bottom-hole assembly was made up and run to 1208.1 m for the first mudline attempt and a successful core with 5.95 m recovery was achieved (Table 1); thus the water depth was set at 1211.8 m. Later inspection of the first core showed it to be unusually firm and some suspicion was raised as to whether or not it contained the actual mudline.

In some upper sections of the piston coring sequence, recovery was poor because the core catcher failed, but the problem was rectified by Core 594-11. Piston coring quickly reached its limit with a mangled core liner and a barrel requiring to be washed over at Core 14. The XCB was then rigged and deployed and immediately cut a full core of exceptionally undisturbed quality. More XCB cores followed as the formation changed from firm blue gray hemipelagic sediment to primarily pelagic, with ooze beginning at about 210 m BSF. At 300 m a strong siliceous element began to emerge and core recovery fell off correspondingly.

Problems with the XCB latch continued to be a mild nuisance and resulted in little or no recovery in Cores 17, 22, 32, and 33.

As coring approached 500 m BSF, the weather began to deteriorate rapidly. Fifteen-foot swells and 40–50 knot winds plus a threatening weather prognosis left no choice but to pull the pipe in the interest of safety and terminate the hole. The pipe trip was completed successfully and the bit arrived on deck at 2035 hr., 5 January.

After a 9.5-hr. wait, the weather had improved noticeably. This and more recent weather charts showed that the severe prognosis chart received earlier had been badly in error. Therefore, starting at 0100 hr., 6 January, the pipe was again run in to take the repeat piston core sequence, to use the XCB to spot-core those intervals lost in the initial hole, and to attempt to continue from the termination point of Hole 594 to reach the scientific objectives somewhere between 500 and 800 m BSF.

Hole 594A

The same BHA was run and the hole was spudded at 0435 hr., 6 January. The bit was quickly washed to 41.3 m BSF to help bury the bumper subs as soon as possible,

Table 1. Coring summary, Site 594.

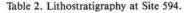
Core	Date (Jan.		Depth from drill floor (m)	Depth below seafloor (m)	Length cored	Length	Percentag
No.	1983)	Time	Top Bottom	Top Bottom	(m)	(m)	recovered
Hole 594							
	3	1950	1211.8-1217.7	0.0-5.9	5.9	5.95	100+
2	3	2130	1217.7-1227.3	5.9-15.5	9.6	8.87	92.3
4	3	2230 2330	1227.3-1236.9 1236.9-1246.5	25.1-34.7	9.6 9.6	9.34 8.84	97.3 92.0
5	4	0000	1246.5-1256.1	34.7-44.3	9.6	9.60	100
67	4	0045 0130	1256.1-1265.3 1265.7-1275.3	44.3-53.9 53.9-63.5	9.6 9.6	5.39 2.77	56.1 22.6
8	4	0205	1275.3-1284.9	63.5-73.1	9.6	1.77	18.4
9	4	0250	1284.9-1294.5	73.1-82.7	9.6	8.99	93.6
10 11	4 4	0315 0400	1294.5-1304.1 1304.1-1313.7	82.7-92.3 92.3-101.9	9.6 9.6	2.69 9.70	28.0 100 +
12	4	0445	1313.7-1323.3	101.9-111.5	9.6	7.40	77.0
13 14	4	0535	1323.3-1332.9	111.5-121.1	9.6	7.74	80.6
15	4	0630 0750	1332.9-1342.5 1342.5-1352.1	121.1-130.7 130.7-140.3	9.6 9.6	5.74 9.64	59.8 100 +
16	4	0830	1352.1-1361.7	140.3-149.9	9.6	9.54	99.3
17 18	4	0915 1010	1361.7-1371.3 1371.3-1380.9	149.9-159.5 159.5-169.1	9.6 9.6	0.0 8.56	0.0 89.1
19	4	1055	1380.9-1390.5	169.1-178.7	9.6	9.55	99.4
20	4	1145	1390.5-1400.1	178.7-188.3	9.6	7.41	77.2
21 22	4	1235	1400.1-1409.7	188.3-197.9	9.6	9.36	97
23	4	1330 1425	1409.7-1419.3 1419.3-1428.9	197.9-207.5 207.5-217.1	9.6 9.6	0.0 9.20	0 90
24	4	1525	1428.9-1438.5	217.1-226.7	9.6	8.79	91
25 26	4	1555	1438.5-1448.1 1448.1-1457.7	226.7-236.3 236.3-245.9	9.6	8.06 7.15	84 74
27	4	1745	1457.7-1467.3	245.9-255.5	9.6 9.6	7.62	79
28	4	1820	1467.3-1476.9	255.5-265.1	9.6	7.05	73
29 30	4	1930 2000	1476.9-1486.5 1486.5-1496.1	265.1-274.7 274.7-184.3	9.6 9.6	9.29 8.52	97 89
31	4	2035	1496.1-1505.7	284.3-293.9	9.6	8.90	93
32	4	2135	1505.7-1515.3	293.9-303.5	9.6	0.00	0
33 34	4	2235 2335	1515.3-1524.9 1524.9-1534.5	303.5-313.1	9.6	0.30 7.43	3 77
35	5	0010	1534.5-1544.1	313.1-322.7 322.7-332.3	9.6 9.6	7.88	82
36	5	0120	1544.1-1553.7	332.3-341.9	9.6	6.87	71
37 38	5	0225 0310	1553.7-1563.3	341.9-351.5 351.5-361.1	9.6	1.93	20 38
39	4	0400	1563.3-1572.9 1572.9-1582.5	361.1-370.7	9.6 9.6	3.64 3.16	33
40	4	0430	1582.5-1592.1	370.7-380.3	9.6	5.74	60
41 42	4 5	0500	1592.1-1601.7 1601.7-1611.3	380.3-389.9 389.9-399.5	9.6	6.55	68 60
43	5	0640	1611.3-1620.9	399.5-409.1	9.6 9.6	5.73 2.04	43
44	5	0730	1620.9-1630.5	409.1-418.7	9.6	1.99	21
45 46	5	0820	1630.5-1640.1	418.7-428.3	9.6	2.49	26 31
40	5	0915 1010	1640.1-1649.7 1649.7-1659.3	428.3-437.9 437.9-447.5	9.6 9.6	2.95	17
48	5	1040	1659.3-1668.9	447.5-457.1	9.6	3.19	33
49	5	1140	1168.9-1678.5	457.1-466.7	9.6	5.35	56
50 51	5 5	1250 1340	1678.5-1688.1 1688.1-1697.7	466.7-476.3 476.3-485.9	9.6 9.6	2.34	24 18
52	5	1410	1697.7-1707.3	485.9-495.5	9.6	2.79	29
53	5	1515	1707.3-1716.9	495.5-505.1	9.6	0.58	6
-la 604A					505.1	299.72	59.3
lole 594A							
	Wash	0000	1211.8-1253.1	0.0-41.3		0.00	100
1	6	0550 0625	1253.1-1262.7 1262.7-1272.3	41.3-50.9 50.9-60.5	9.6 9.6	9.80 9.02	100+ 93.5
3	6	0700	1272.3-1281.9	60.5-70.1	9.6	8.16	85.0
4	6	0750	1281.9-1291.5	70.1-79.7	9.6	9.21	95.9
5 6	6	0835 0915	1291.5-1301.1 1301.1-1310.7	79.7-89.3 89.3-98.9	9.6 9.6	9.35 8.84	97.4 92.0
7	6	0940	1310.7-1320.3	98.9-108.5	9.6	8.62	89.8
8	6	1045	1320.3-1329.9	108.5-118.1 118.1-127.7	9.6	8.43	87.8
	6 Wash	1140	1329.9-1339.5	110.1-12/./	9.6	9.43	96.0
10	6	1245	1361.7-1371.3	149.9-159.5	9.6	9.52	99.0
11	Wash 6	1355	1409.7-1419.3	197.9-207.5	9.6	7.57	79.0
HI	Wash						
12	6	1845	1707.3-1716.9	495.5-505.1	9.6	2.12	22.0
13 14	6	1930 2035	1716.9-1726.5 1726.5-1736.1	505.1-514.7 514.7-524.3	9.6 9.6	8.17	85.0 75.0
15	6	2120	1736.1-1745.7	524.3-533.9	9.6	4.55	47.0
16	6	2220	1745.7-1755.3	533.9-543.5	9.6	8.65	90.1
17	67	2305	1755.3-1764.9	543.5-553.1 553.1-562.7	9.6 9.6	6.35 4.98	66.1 51.8
19	7	0100	1774.5-1784.1	562.7-572.3	9.6	2.36	24.6
20	7 7 7 7 7 7 7 7 7	0200	1784.1-1793.7	572.3-581.9	9.6	3.87	40.3
21 22	7	0300	1793.7-1803.3 1803.3-1812.9	581.9-591.5 591.5-601.1	9.6 9.6	2.60	27.0
23	7	0515	1812.9-1822.5	601.1-610.7	9.6	2.86	29.7
24	7	0615	1822.5-1832.1	610.7-620.3	9.6	2.92	30.4
25 26	777	0720 0835	1832.1-1841.7 1841.7-1851.3	620.3-629.9 619.9-639.5	9.6 9.6	3.17 2.73	33.0 28.4
					249.60	161.55	64.7
lole 594B							
1	7	1110	1212.2-1216.7	0.0-4.5	4.5	4.50	100
2	7	1142 1230	1216.7-1226.3	4.5-14.1	9.6	8.36	87
3 4	777	1230	1226.3-1235.9 1235.9-1245.5	14.1-23.7 23.7-33.3	9.6 9.6	3.78 8.61	39 90
	7	1335	1245.5-1255.1	33.3-42.9	9.6	8.93	88
5	1	1333			10000		

because weather conditions were still questionable. The upper five piston cores taken in the first hole were very complete, so that missing the interval the second time was a reasonable expediency. Nine 9.5-m VLHPC cores were then taken, with excellent recovery on all. The bit was next washed to 149.9 m BSF and the

The bit was next washed to 149.9 m BSF and the XCB deployed to take a core which was missed in Hole 594. This procedure was repeated to recover the 9.6 m interval starting at 197.5 m BSF. The XCB was then used as a wash barrel and the bit was washed to 495.5 m BSF to commence continuous XCB coring to the Eocene objective.

XCB coring proceeded to 639.5 m BSF through carbonate chalk and interbedded turbidites. Cores were interesting but only the turbidite sequences were relatively undisturbed. The firm sediment tended to jam in the cutting shoe, keeping recovery totals low. The hole was terminated in Miocene sediments, when fossil preservation had decreased too far to be of further analytical value.

Hole 594B


The bit was pulled to the mudline and the 9.5-m VLHPC was again rigged. Time and weather conditions allowed the top five piston cores previously missed to be taken before leaving the site. The hole was spudded at 1052 hr., 7 January, with a mudline core which contained as a bonus one arm of an Ophiuoroid (brittle star). Water depth was established to be 1212.2 m. The five cores were taken with dispatch and the pipe was pulled for the final time on this voyage.

LITHOSTRATIGRAPHY

Site 594 consists of three holes (Fig. 3) cored to a maximum sub-bottom depth of 639.5 m. Hole 594 was continuously cored with the HPC from 0 to 130.7 m sub-bottom and continued to a total depth of 505.1 m with the XCB. HPC recovery was about 73%, and XCB recovery was 79% from 130.7 to 293.9 m sub-bottom, but only 36% from 293.9 to 505.1 m. Hole 594A was washed down to 41.3 m, continuously cored with the HPC from 41.3-127.7 m, and then washed with the XCB from 127.7-149.9 m and 159.5-197.9 m. Cores were taken from 149.9-159.5 and 197.9-207.5 m, thereby giving close to complete core recovery from 0-207.5 m sub-bottom depth (Holocene to latest Miocene). Below 207.5 m Hole 594A was washed to 495.5 m and thereafter continuously cored with the XCB to a total sub-bottom depth of 639.5 m (late early Miocene), but recovery over this last interval was generally low (44%). Hole 594B was continuously cored with the HPC from 0 to 42.9 m subbottom. These cores were not opened.

The recovered sequence at Site 594 is assigned to two lithostratigraphic units (I and II), the second of which is further subdivided into Subunits IIA and IIB (Fig. 3). Divisions are based primarily on differences in composition as reflected in color changes, as well as degree of lithification (Table 2).

Unit I consists of an alternating sequence of pelagic and hemipelagic lithofacies generally defined by bluish gray and greenish gray sediment, respectively. Pelagichemipelagic cycles range in thickness from 0.5 to 10 m.

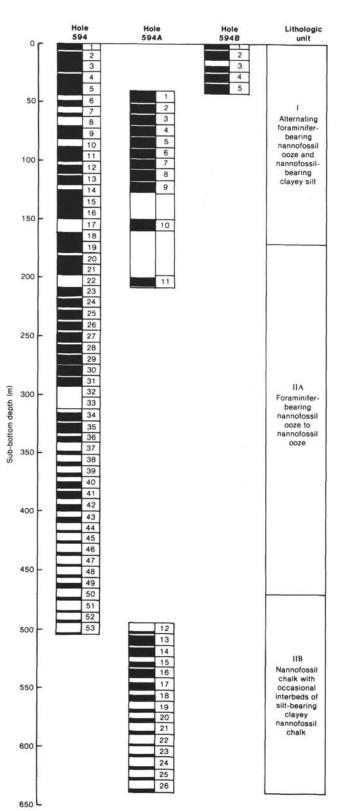


Figure 3. Summary of core recovery and lithostratigraphic units at Site 594 (recovery in black).

Lithologic unit	Cores	Sub-bottom depth (m)	General lithology	Age
1	1-18	0.0-169.1	Alternating bluish gray foraminifer-	late Quaternary to
	1A-10A 1B-5B	41.3-159.5 0.0-42.9	bearing nannofossil ooze and greenish gray nannofossil- bearing clayey silt	earliest Plio- cene
IIA	19-49	169.1-466.7	Light to very light gray foramini-	Earliest Pliocene
	11A	197.9-207.5	fer-bearing nannofossil ooze to nannofossil ooze.	to early middle Miocene
IIB	50-53	466.7-505.1	Very light gray nannofossil chalk	Early middle
	12A-26A	495.5-639.5	with occasional interbeds of olive gray silt-bearing clayey nannofossil chalk	Miocene to late early Miocene

Note: A, B indicate cores from Holes 594A, B, respectively.

Contacts between lithofacies are completely gradational, subtle color variations between the end-member bluish gray and greenish gray colors. Bioturbation is moderately intensive throughout the unit and color mottling by burrowing is especially well defined across and within the color gradation between lithofacies. Sediments are soft but stiff throughout.

The pelagic lithofacies consists mainly of foraminifer-bearing nannofossil ooze, foraminifer- and clay-bearing nannofossil ooze, or foraminifer-bearing clayey nannofossil ooze. It is light bluish gray (5B 7/1) to medium bluish gray (5B 5/1), less commonly light gray (N7). The intensity of blueness appears to increase with increased clay content. Sediments are massive, with common mottles and hues in pale olive (10Y 6/2) tones. Streaks and blebs of dark gray (N4) pyritized sediment are scattered throughout. The lithofacies is dominated by calcareous nannofossils, with rare to common foraminifers and clay minerals, and trace and rare amounts of quartz, feldspars, mica, and biogenic siliceous components that include sponge spicules, diatoms, and radiolarian fragments (Fig. 4). Other minor detrital grains include volcanic glass, ferromagnesium minerals, pyrite, and glauconite.

The hemipelagic lithofacies consists of a variety of sediment intergrades between a clay- and silt-bearing nannofossil ooze and a nannofossil-bearing clayev silt; the lithofacies is commonly diatom- and sponge-spicule-bearing, rarely foraminifer-bearing. It is greenish gray (5G 6/1) to dark greenish gray (5G 4/1), with common pale olive (10Y 6/2) to light gray (N7) burrow mottles and scattered dark gray (N4) pyritized spots. Dominant components are varying quantities of calcareous nannofossils, clay minerals, and silt-sized grains of quartz, feldspar, and mica (Fig. 4); occasionally the content of nannofossils drops to rare. Foraminifers and siliceous biogenic components are rare to common. Trace to rare quantities of volcanic glass, heavy minerals, and pyrite occur, and minor amounts of glauconite persist. Compared to the pelagic lithofacies, the sediment is relatively enriched in both terrigenous silt and clay and in biogenic siliceous components, notably sponge spicules and diatoms, and relatively depleted in both foraminifers and nannofossils (Fig. 4).

Distinctive, thin, light olive gray (5Y 6/1) vitric ash beds were observed in Unit I at 36.5, 103.8, and 121.0 m sub-bottom depth in Hole 594 and at 112.0 and 157.5 m sub-bottom depth in Hole 594A. A New Zealand source is most likely.

Dominant lithology, Hole 594

		Bio	genia	com	pone	nts			No	nbio	geni	c com	pone	nts			A	uthig	enic d	comp	onen	ts	
Core-Section (level in cm)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge spicules	Silicoflagellates	Fish debris	Quartz	Feldspars	Heavy minerals	Light volcanic class	Dark Volcanic glass	Glauconite	Clay minerals	Mica	Palagonite	Zeolites	Amorphous iron oxides	Fe-Mn micronodules	Pyrite	Recrystallized silica	Carbonate (unspecified)	Carbonate
1-1,20			t	IIII		TT	IIII		T			ПП	t		IT	ΠĪ	IIII	titt	TIT	IIII	titt	III	TIT
1-1, 120				t						t	t												
1-3, 60										t	t		t					Ш		t	Ш		
2-2,70			t	t									t							t			
2-4,70			t	t						t	t		t							t			
2-6, 70			t	t						t			t		Ш					t			
3-1, 49			t	t		111			Ш	t		1111	1111		111		111	Ш	Ш	t	1111		111
3-4,77			t	t			111		t	t		1111	t		1111	1111	111	1111	1111	t	1111	111	1111
3-6, 128			t	t		111	111		1111	t		4444	1111		1111	1111	1111	1111	1111	t	1111	111	1111
4-2, 114			t							t			t		$\left\{ + + + + + + + + + + + + + + + + + + +$			1111	++++		1111	44	++++
4-5, 84			t	t	t				t	t			++++					1111	++++-	t		111	++++
5-6, 102			t	t	t	++++	1111			t		++++	1111		++++		1111	++++	++++	t	++++	1111	++++
6-1, 112		1		t	T		$\left \right \left \right $		t		-							++++	++++	Ĭ.	++++		++++
6-2, 148 7-1, 39	+++	1	t	t	19	++++	++++		T			++++	π		-		++++	++++	++++			1111	++++
7-2, 54		-		t			+++			L.		++++	++++				HH	++++	++++	T	++++		++++
8-1,60			t	4	L.		++++		+	++++		++++	++++				+++	++++	++++	++++	++++		++++
9-4, 90			t			+++-		-+-	++++	++++		++++	++++				+++	++++	++++		++++	+++	++++
9-6, 90				t	t					++++		++++	++++		╘┙┼┼		++++	╉┼┼┼	╉╫╫╋	÷ H	++++	$\left + + \right $	++++
10-1,70				4						+++	++++	++++		++++				++++			++++		++++
11-3, 45			++++			++++-	++++	-+-		+++	+	++++	++++				++++	++++	╉╋╋╋	₽H	++++		++++
11-4, 142			+			++++				FH I	+	++++					+++	++++		++++		+	++++
11-5, 102			111							+++		++++	111					++++	+++	 	++++	111	++++
12-2,68			++++	++++						t		++++						++++	++++	t + + + +	****		++++
12-5, 57										t	++++	++++						1111	++++	t		HH	++++
13-3, 80			++++	++++				-			111	++++						 					****
13-5,68			t	t				+			t	1111						1111		++++			1111
14-2, 31		100	t	t				+		t		++++	t		t			****		****			****
14-3, 54			t	t						t	+++	1111	t							t		HH	++++
	t		HH	IIII						t		111	t					tttt		t			
15-2,70										t			t		t					IIII			
16-2,80	t	t	t					T		t	t		t							t			
16-4,80			t	t										t	t					t			
16-6, 80										t										t			
18-1, 124			t	t					t	t			t		t					t			
18-3, 80											t		t							t			
18-6, 25			t							t	t									t			

Figure 4. Smear slide summaries, Site 594. Asterisk indicates insoluble residue.

The contact between Units I and II is gradational over several meters but is recognized by the change from interbedded pelagic and hemipelagic facies of Unit I to a pelagic facies of Unit II. The major lithofacies of Unit II is a foraminifer-bearing nannofossil ooze (chalk) to nannofossil ooze (chalk). The ooze/chalk transition occurs at about 470 m sub-bottom depth and forms the basis for separating the two subunits of Unit II. The nannofossil chalk below 533.8 m sub-bottom depth includes conspicuous olive gray interbeds of silt-bearing clayey nannofossil chalk.

Subunit IIA is a very light to light gray (N8 to N7) foraminifer-bearing nannofossil ooze that grades down into a nannofossil ooze by 245 m sub-bottom depth. Occasional yellowish gray (5Y 8/1) hues and burrow mottles, rare pale purple (5P 6/2) pyritized blebs and streaks, and scattered dark gray (N4) pyrite specks are superim-

posed on the predominantly massive sediment. Calcareous nannofossils dominate the components and foraminifers are generally common above 245 m sub-bottom depth but they form only trace to rare amounts below this level. Biogenic siliceous remains persistently occur throughout in trace to rare abundances and several of the slightly darker gray (N6 to N7), thin interbeds are sufficiently enriched in these components to be diatomand sponge spicule-bearing nannofossil oozes. Terrigenous material, including quartz, feldspar, mica, and clay minerals, is present in only rare to trace abundances and generally decreases in content with depth. Small concretionary nodules and blebs of pyrite, chert, and possibly celestite occur in rare abundances and are sometimes associated with burrow structures. Bioturbation is moderate to very intensive throughout, but is difficult to evaluate in several sections composed of almost totally

25-50% abundant

>50% dominant

Dominant lithology, Hole 594

		Bio	genic	com	pone	nts			N	onb	iog	eni	c co	mp	one	nts			A	uthig	enic (comp	onen	ts		
Core-Section (level in cm)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge spicules	Silicoflagellates	Fish debris	Quartz	Feldsnars		Heavy minerals	Light volcanic glass	Dark	volcanic glass	Glauconite	Clay minerals	Mica	Palagonite	Zeolites	Amorphous iron oxides	Fe-Mn micronodules	Pyrite	Recrystallized silica	Carbonate	Carbonate	rhombs
19-1,70	T		t	TIT		ΤŤΓ	TTT	t	tn	t	Π	T	IT	П	TIT	hŤī	tIII	TIT	TTT	titt	tim	tIII	tm	TT	П	T
19-4, 26			t							t	Ш				t							Ш	Ш		Ш	\square
20-2, 24																ΠΠ	ПП					t		Ш	Ш	
20-2, 114									t	Ш		t					t					t	Ш			
20-5, 48			t							Ш					t			t					Ш			
21-1,80			t					t	t													t		Ш		
21-4, 15			t					t	t	Ш					t					1111	1111	t		Ш	Ш	1
23-3, 74			t t	t		444	HIL		t	Ш	11			Ш	t	Ш	t	1111	111	1111	$\downarrow\downarrow\downarrow\downarrow\downarrow$	t	1111	111	Ш	4
24-3, 99	444		t		t			t	111	Ш	Ш				111		t			1111	1111	1111	111	111	Ш	11
24-4, 105			t t t			444	1111	111	111	111	Ш		Ш	Ш	111	1111	t	1111	1111	1111	1111	++++	++++	###	Ш	
25-2, 110			t				1111		111	111	111	11	111	11	111	1111	t	1111	[]]]	1111	1111		1111	111	111	
26-2, 118			t				1111	t	+++	111	Ш		111	Ш	+++		t	++++	++++	++++	++++	τ	++++	###	111	+++
27-2, 127	++++		t t				1111	t	111	111	111	11	111	111	111	1111	t	++++	1111	++++	++++	T	++++	###	111	+++
28-2,80	-++-		τ			++++	++++	T.	+++	++++	+++		+++-	111	+++		++++	++++	++++	++++	++++		++++	+++	###	+++
29-2, 132 30-2, 80	-++-		t t	-++		++++	╉╫╫	t	+++	++++	+++		+++-	111	+++		t	++++		++++	++++	411	++++	₩	+++	+++
31-1,84	+++			t		++++	++++	t	+++	₩	+++	+	+++-	H	+++	┞┼┼┥		++++	++++	++++	++++		++++	₩	+++	+++
31-2,80	+++		t	++++			++++	t	+++	+++	+++	4	+++	H	+++		t	++++	$\left \right \left \right $	++++	++++	1411	++++	₩	H	+++
34-2, 80	-++-		4	+++	t	++++	╉╫┼┼	+	+++	+++	+++	++	+++-	H	+++	$\left\{ + + \right\}$	+	╉╫╫╋	++++	╉╫╫╫	++++	++++	++++	+++	+++	.+++
35-2,80	+++			+++	L.	++++	++++	+	+++	+++	+++	++-	+++	H	+++	++++	+	╉╫╫╋	$\left \right + \left \right $	++++	++++		++++	₩	HI	-+++
36-1,81	-+++			+	t	++++	++++	+	+++	+++	+++	++-	+++-	H	+++	$\left\{ + + \right\}$	t	╉╫╫╋	[]]]	++++	++++	t	++++	₩	H	+++
38-1,84	-++-			+++		++++	++++	+	+++	+++	₩	++-	+++-	H	+++	++++		++++		++++	++++		++++	╉┼┼	H	+++
39-2,70	+++			+++	+	++++	++++	11	+++	+++	+++	+	H	H	+++	++++	+ H	++++	++++	++++	++++	+	++++	 	H	+++
40-2,70				+++		++++	╉╫╫┼	t	+++	+++	+++	+	+++	$\left \right $	+++	++++	t	╉╫╂╋	╉╋╋╋	++++	++++	++++	++++	+++	H	
41-1,80				+++			+++	t	+++	+++	H	++	+++	H	+++	++++	+ H	+++	++++	++++	++++	t	++++	+++	Ħ	
42-2,70				+++	t		++++	+	+++	+++	+++	++-	+++	H	╉	<u>+++</u>	+		++++	++++	++++	t	++++	+++	Ħ	H
43-1,80							++++		+++	+++	111		H	H	t	1111	t		++++	1111	1111		1111	111	11	IT
44-1,70							 		+++	+++	+++		+++	H	+++	1111	t	++++	1111	1111	1111	t	1111	111	tt	
45-1,70				Htt			1111	t	111	ttt	tt	t	Ħt		+++	1111	1111	1111		1111	1111	\mathbf{H}	1111		T	T
46-2,80							1111	t	111	ttt	ttt		ĦŦ		t	1111	1111	1111	1111	1111	1111		1111	ttt		T
47-1,70				t				t		III	TT		HT		111	IIII	t						TH	Ш		T
48-1,70			t	t			IIII	t		III			Ш		t	Ш	IIII				IIII		Ш	\prod		Ш
49-1,70				t													t									
	t		t	t				t		\prod								1.					\prod	11		11
51-1,70								t				t										t	1111	Ш	11	11
52-1, 50								t									t	1111	1111	1111	1111	t	1111	111	111	11
53-1,78								t									t									Ш

Figure 4. (Continued).

featureless nannofossil ooze, from about 300 m subbottom depth down to the ooze/chalk transition marking the boundary with Subunit IIB at about 466 m subbottom.

Subunit IIB comprises very light gray (N8) nannofossil chalk which includes interbeds of olive gray (5Y 4/1), silt-bearing, clayey nannofossil chalk below 533.8 m subbottom. The nannofossil chalk is rarely foraminifer-bearing, and exhibits progressive recrystallization of its biogenic carbonate grains with depth, especially below about 550 m sub-bottom. Flaser-like bedding is first observed at about the same depth. The flasers become more pronounced and begin to resemble stylolites at about 600 m. Distinctive pale to dark green (5G 7/2 to 10G 4/1) laminae, often in composite sets, occur commonly in the subunit. The laminae may represent altered volcanic glass, although some clearly cross-cut burrow structures, and their exact origin is uncertain. Bioturbate structures are well preserved, with many examples of Zoophycos, Chondrites, and Planolites traces depicted in yellowish gray (5Y 8/1) to light gray (N7) tones. They are dominated by calcareous nannofossils with common micas and clay minerals, rare foraminifers, and occasional quartz and feldspar grains. Biogenic siliceous components are also more conspicuous than in the intervening light gray nannofossil chalks, and some olive gray beds are spongespicule- and silt-bearing clayey nannofossil chalks. Textures range from medium to very fine silt at the base of beds to clay-dominated at the top. Habitat stratification is pronounced in the infaunal burrow types in the thicker beds in the upper portion of units, with Planolites between 0 and about 5 cm, Chondrites below to depths of

Minor lithology, Hole 594

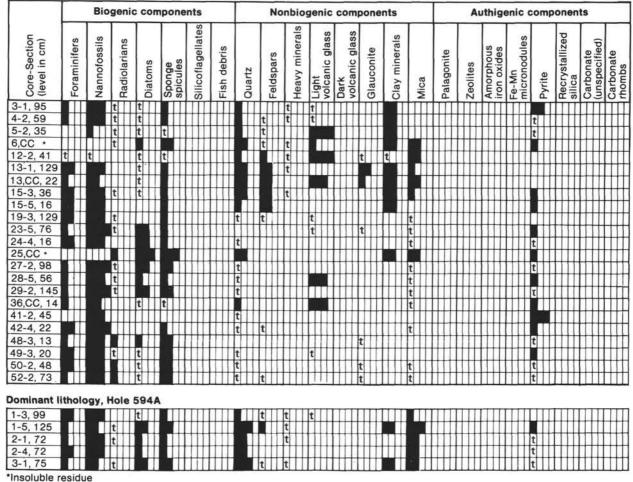


Figure 4. (Continued).

10 cm, and finally Zoophycos, to depths of 15 to 20 cm. The sedimentary structures indicate these sediments are turbidite deposits.

Discussion

Site 594 is a 640-m-thick sequence of pelagic nannofossil oozes (chalks) and hemipelagic silts and clays of late early Miocene through late Quaternary age. The upward stratigraphic succession (Table 2) from alternating pure and impure chalks (Subunit IIB) to alternating pelagic carbonate oozes and hemipelagic muds (Unit I) can be broadly interpreted in terms of changing tectonic tempo on the New Zealand landmass as well as paleoclimatic changes.

The nannofossil chalks in Subunit IIB are the sedimentary record of normal oceanic pelagic conditions in the late early to early middle Miocene. The interbedded clay- and silt-rich chalk-turbidites suggest that tectonism and erosion in the New Zealand region was sufficiently active to supply large volumes of fine terrigenous sediment to the area of Site 594. Accumulation rates for late early Miocene sediments at Site 594 probably exceeded 50 m/m.y. Significantly, major strike-slip motion was occurring along the Alpine Fault sector of the Indian/Pacific plate boundary at this time, and thick sequences of early Miocene flysch are characteristic of coeval sedimentary sequences in New Zealand (Carter and Norris, 1976; Nelson and Hume, 1978). The thin, pale green layers of probably altered ash in the chalk may have originated from explosive arc volcanism associated with the early Miocene inception of the Indian/Pacific plate boundary in its present form through New Zealand (Ballance, 1976). There is paleontological evidence for considerable reworking of microfaunas in the purer chalks of Subunit IIB.

The relatively homogeneous, pure nannofossil oozes of Subunit IIA record a period of less intensive uplift in the New Zealand region with virtually no terrigenous sediment influx at Site 594 for the remainder of most of the Miocene. Thin intervals within the subunit that are relatively enriched in diatoms, sponge spicules, and/or foraminifers may correspond to periods of accelerated

Trace t <5% rare 5-25% common 25-50% abundant

>50% dominant

Dominant lithology, Hole 594A

		Bio	genio	com	pone	nts				No	onbio	ger	ic	com	pon	en	ts				A	lut	hig	eni	c c	omp	oor	nen	ts	_	
Core-Section (level in cm)	Foraminifers	Nannofossils	Radiolarians	Diatoms	Sponge spicules	Silicoflagellates	Fish debris	-	Quartz	Feldspars	Heavy minerals	Light	volcanic glass	Dark volcanic glass	Glauconite		Clay minerals	Mixe	Mica	Palagonite	Zeolites	Amountaire	Amorphous iron oxides	Fe-Mn	micronodules	Pyrite	Recructallized	silica	Carbonate	(unspecified)	Carbonate
4-4, 78 6-1, 70 6-2, 70 7-1, 40 7-1, 130 7-4, 87 7-5, 40		t	t t	t t t						t t t	t t t				t			t													
9-3, 113 10-1, 79 10-3, 48 11-1, 80 11-3, 30 12-1, 80 13-1, 88			t	t t t				t t t		t	t	t			t t t			t t t													
14-1, 48 15-1, 75 16-4, 75 17-3, 95 18-1, 90			t	t t t				t		t		t						t t								t t					
Minor litho 8-3, 51 10-6, 8	logy,	Hold	e 594	t	t			t			Ŧ	P				Π		Ŧ	П		Ħ	Π		Ħ	Ħ			\square		\square	
13-2, 136 14-4, 31 15,CC 16-6, 7 16-5, 141 24,CC, 20			t	t	t			t		t					t			t t								t					

Figure 4. (Continued).

seafloor winnowing. These intervals increase in abundance within the upper levels of Subunit IIA at the same time as fine terrigenous material begins to reappear in more than trace amounts. Thin interbeds of clay-, silt-, and foraminifer-bearing nannofossil ooze occur below the transition into Unit I and may herald a fundamental change in both New Zealand tectonics and the global climatic regime about 5 to 6 m.y. ago.

The sudden increase in abundance of fine terrigenous sediment at the bottom of Unit I and its continued abundance throughout the unit are interpreted as indicating rapid uplift of the New Zealand Alps along the Alpine Fault Zone since about 6 m.y. ago. The inception of this orogenic phase, the Kaikoura Orogeny in New Zealand, coincides with the transition from Units II to I sediments. Unit I is characterized by a large number of oscillations between greenish gray hemipelagic and bluish gray calcareous biogenic facies. The former is enriched in terrigenous silt, clay, and fine sand, as well as biosiliceous components, whereas the latter is mainly a foraminifer-bearing nannofossil ooze. At least 25 major hemipelagic sediment episodes have occurred during the last 5 m.y. and numerous intermediate or lesser events are also recorded by color alternations. These sedimentary cycles are largely interpreted as resulting from sea level oscillations, the hemipelagic facies being deposited during glacial low stands of sea level.

PHYSICAL PROPERTIES

The initial 200 m consist of a hemipelagic sequence with gradually increasing bulk density, shear strength, and sonic velocity. Beyond this depth, alternating sequences of pelagic and hemipelagic sediments produce erratic physical properties records. Porosity results depict no consistent pattern until the 500-m level in Hole 594A, where this properly decreases sharply. Sonic velocity values increase beyond this depth and show large variations between measurements obtained through the light-colored chalk and those determined from the darker, irregular layers of turbidite deposits. Although the shear strength results are quite variable, it was possible to continue taking measurements down to a depth of 470 m before the sediment became too lithified and exceeded the capability of the miniature vane shear apparatus.

Physical properties data are shown in Figure 5.

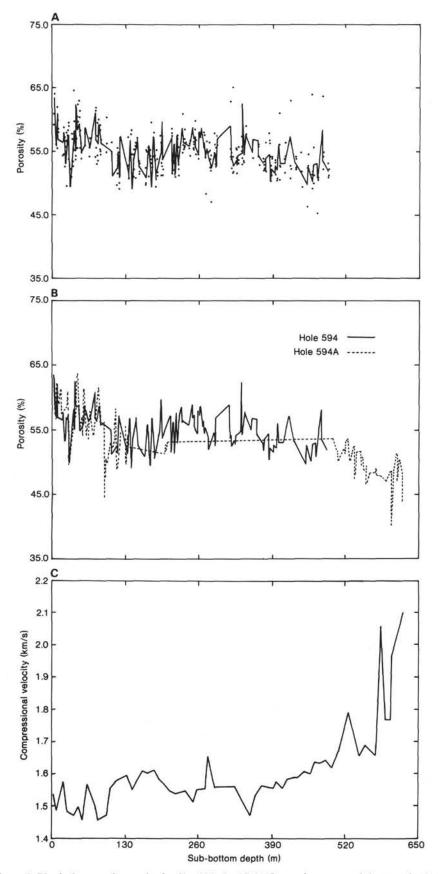


Figure 5. Physical properties results for Site 594. A. GRAPE porosity versus sub-bottom depth. B. GRAPE porosity versus sub-bottom depth (Holes 594 and 594A). C. Compressional velocity versus sub-bottom depth. D. Shear strength versus sub-bottom depth. E. Porosity versus compressional velocity. F. Porosity versus shear strength. G. Acoustic impedance versus sub-bottom depth.

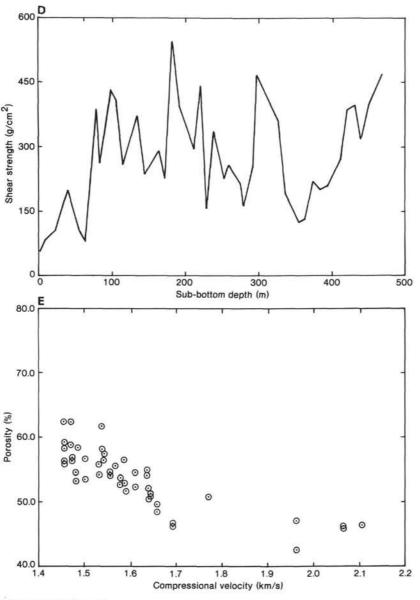


Figure 5. (Continued).

SEISMIC STRATIGRAPHY

Figure 6A illustrates part of the shipboard water gun seismic profile collected during the approach to Site 594. Figure 6B is an annotated line drawing of the profile, and Figure 7 is the *Eltanin* seismic Profile *E*-43 used for site selection. Site 594 lies immediately south and offstructure from a high region in the acoustic basement. This high region is draped by an anticlinal structure developed within the sediment blanket.

Unfortunately, because of the proximity of the high, acoustic horizons are somewhat confused immediately below the drill site. Only two acoustic Units, A and C, can be tentatively recognized there, overlying acoustic basement which is at about 1 s sub-bottom. However, a gently dipping regional reflector, Reflector X (Fig. 6B), can be seen to separate two zones of regional significance, and an additional acoustic unit, Unit B, forms a tongue above this reflector. Selection of acoustic units immediately below Site 594, therefore, has necessarily been influenced by the regional seismic profile.

Acoustic Unit A, about 0.32 s thick, comprises a series of relatively high amplitude, closely spaced, parallel reflectors. North of the northern limit of Figure 6, this unit thins out and appears to onlap Reflector A (Fig. 7).

Acoustic Unit B, best seen in Figure 6B, wedges out to the north near the northern limit of the figure. This unit is more transparent than A, but contains diffuse reflectors.

Acoustic Unit C at Site 594 encompasses a zone acoustically more transparent than Unit A. Like Unit B, it contains a series of coherent reflectors. However, the basal portion of C, immediately overlying basement, appears more transparent, with less coherent reflectors.

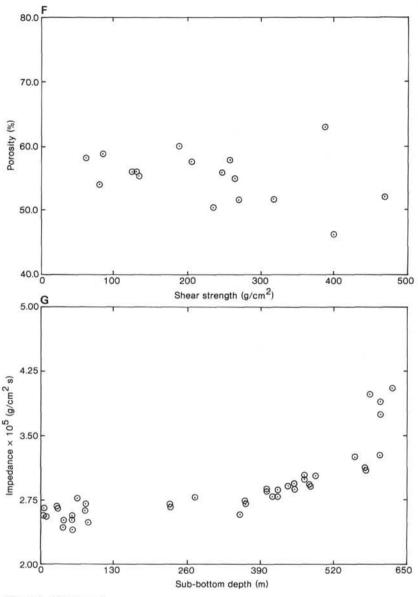


Figure 5. (Continued).

Site 594 was drilled to a total depth of 639.5 m. The sediments have been assigned to two lithologic units, Units I and II. Unit II is subdivided into Subunits IIA and IIB.

Unit I comprises an alternating sequence of pelagic and hemipelagic ooze of Pliocene to Quaternary age. Unit IIA is a foraminifer-bearing nannofossil ooze (chalk) to nannofossil ooze (chalk), and IIB is a nannofossil chalk with graded olive gray interbeds of silt-bearing clayey nannofossil chalk. The ooze/chalk boundary occurs at a sub-bottom depth of about 466 m in Hole 594.

An interval velocity of 1600 m/s is assumed for this site, based on averaged shipboard velocimeter measurements. Comparison of this lithologic sequence with the seismic profile is difficult in the immediate vicinity of Site 594 because of the problems mentioned earlier. However, if comparisons are made with the profile a few miles north of the site, it is apparent that acoustically stratified Unit A incorporates part of lithostratigraphic Unit I and the upper portion of IIA. The wedge-shaped acoustic Unit B presumably corresponds with part of the pelagic ooze lithologic Unit IIA. Reflector X, by this reasoning, may correspond with the top of lithostratigraphic Unit IIB, marking the upper level of the silty turbidite and chalk sequence cored toward the bottom of the hole.

BIOSTRATIGRAPHY

Site 594 is located on the southwestern side of the Chatham Rise in 1204 m of water; the Subtropical Convergence lies just to the north of the site. The nannofossil and planktonic foraminiferal zones are shown in Figures 8 and 9.

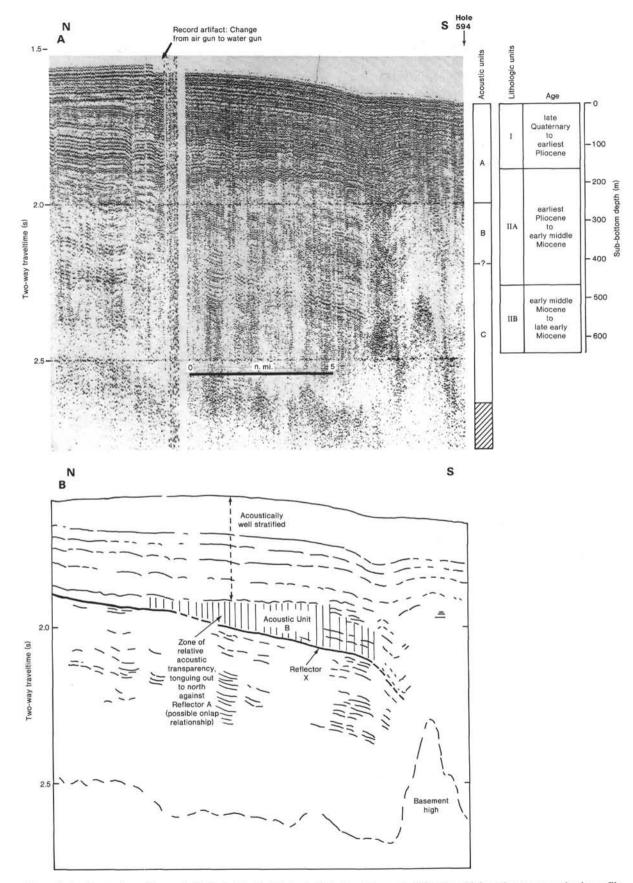


Figure 6. A. Comparison of acoustic Units A-C with lithologic Units I and II cored at Site 594; shipboard water gun seismic profile, collected during site approach; depths in meters estimated by assuming a sediment sound velocity of 1600 m/s. B. Line drawing of A.

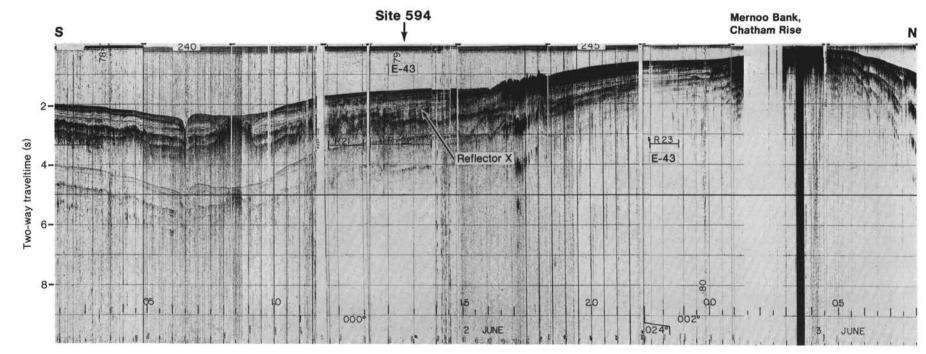


Figure 7. Eltanin E-43 seismic profile used for site selection.

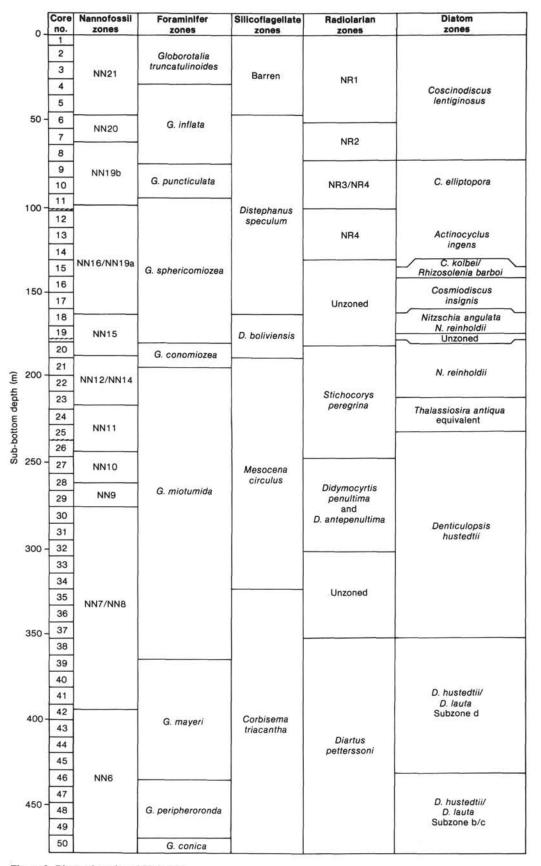


Figure 8. Biostratigraphy of Hole 594.

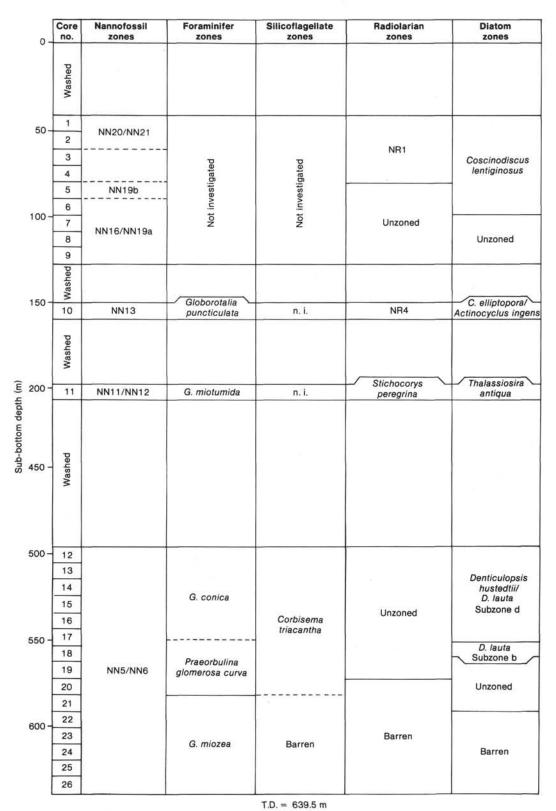


Figure 9. Biostratigraphy of Hole 594A.

The planktonic foraminifers exhibit low species diversity and at certain levels also low numbers of specimens. Preservation is generally good from Pleistocene to lower Miocene but deteriorates in the middle and lower Miocene. Calcareous nannoplankton exhibit low diversity throughout; preservation is moderate to good in the Pliocene-Pleistocene and moderate to poor in the Miocene. In the few well-preserved samples of the section, benthic foraminifers are abundant and generally well preserved; however, breakage is common throughout the section. Both benthic and planktonic foraminifers are recrystallized in the lower Miocene.

Radiolarians, diatoms, and silicoflagellates occur throughout the cored section; sponge spicules are very common in the coarse fractions.

Radiolarians are moderately well preserved, and because equatorial and high-latitude faunas are mixed the zonation uses zones from both regions. There is a significant change in Core 21 and above, where antarctic and subantarctic species become dominant.

Diatoms are best preserved in the middle to late Miocene and are present throughout in the sequence younger than the early Miocene. The diatom assemblages suggest that since the Miocene the site has been located below the subantarctic water mass. Diatom datums have been correlated with magnetostratigraphy established elsewhere.

Many planktonic foraminiferal markers are present in the Pleistocene to late middle Miocene, but in the early middle and late early Miocene there were some difficulties in recognizing established zones. The problems are due to (1) the sporadic occurrence of index species such as Orbulina suturalis and the lack of others, including Praeorbulina glomerosa and Globigerinoides trilobus; and (2) massive reworking of early Miocene faunas in Cores 594-50 to 594-53 and in 594A-12 to 594A-20. Another problem involved the late appearance of some zonal markers including Globorotalia truncatulinoides and G. inflata because of the position of the site in the subantarctic water mass.

Most zonal indicators of the calcareous nannoplankton are absent or extremely rare and the zones were partly determined by using auxiliary species.

Silicoflagellates were examined in all core-catcher samples; it was possible to place them within the zonation established during Leg 38 by Martini and Müller (1976).

Planktonic foraminiferal studies indicate alternations of cold and warm periods in the Pliocene-Pleistocene. These cold and warm faunas could be explained by assuming north-south fluctuations of the Subtropical Convergence over Site 594; currently the Convergence is situated north of the site.

Benthic faunas are depleted but indicate the presence of warmer bottom waters in the late early Miocene, and an episode of cool and corrosive waters in the early late Miocene.

Four unconformities were detected, mainly by diatom evidence, in the upper Miocene through Quaternary. In ascending order, they were located in (1) Core 24, (2) Core 20, (3) Core 16, and (4) Core 11.

Planktonic Foraminifers

Zones

The following zones were identified at Site 594; the zonal boundary markers are shown below:

Globorotalia truncatulinoides Zone I.A. G. truncatulinoides Globorotalia inflata Zone I.A. G. inflata Globorotalia puncticulata Zone L.A. G. sphericomiozea Globorotalia sphericomiozea Zone L.A. G. conomiozea Globorotalia conomiozea Zone I.A. G. conomiozea Globorotalia miotumida Zone L.A. G. mayeri Globorotalia mayeri Zone L.A. G. peripheroronda Globorotalia peripheroronda Zone L.A. G. conica Globorotalia conica Zone I.A. G. conica Praeorbulina glomerosa curva Zone I.A. P. glomerosa curva Globorotalia miozea Zone

The position of the site in subantarctic waters appears to have affected the faunas from the early Miocene to the Quaternary. Consequently, the zonal scheme is different from that at temperate-water Site 593; also, the boundaries of some zones at Site 594 could be higher and/or lower than at Site 593. For example, the initial appearance of *G. truncatulinoides* at Site 594 is within the late Pleistocene, as in other subantarctic areas.

Specimens of the evolutionary lineage of Orbulina are very rare at this site and it was not possible to identify properly the O. suturalis Zone. Similarly, because of the lack of Globigerinoides it was not possible to identify the G. trilobus Zone. Consequently, another set of zones, in ascending order, were established for Site 594: Globorotalia miozea, Praeorbulina glomerosa curva, G. conica, and G. peripheroronda.

Paleobiogeography

The planktonic foraminiferal faunas were reasonably well preserved from the Pleistocene through to the middle Miocene, where they deteriorated; they improved again in the lower Miocene. The species diversity is lower throughout, with low numbers of species; at certain horizons there is marked dissolution, as for example in the early Pliocene Sample 594-16, CC. In Samples 594-42, CC and 594-43, CC there was a low number of species and specimens which coincided with a massive influx of radiolarians.

The faunas of the Pleistocene through Pliocene appear to show alternating cold and warm episodes; the cold-water intervals are indicated by lower species diversity, whereas warmer waters supported such additional species as *Orbulina universa*, *Globorotalia crassaformis*, and *Globigerinatella aequilateralis*. One possible explanation is the latitudinal fluctuations of the Subtropical Convergence, which are probably associated with glacial-interglacial oscillations.

Benthic Foraminifers

Benthic foraminifers were examined from all core catchers from Hole 594 and in Samples 594A-12,CC to 594-26,CC. Throughout the entire section, only five to six samples are considered to contain undissolved benthic faunas. In the majority of the samples benthics are dissolved, broken, or have disappeared. In general, the larger the percentage of radiolarians or mica in a sample, the fewer the benthics and the worse their preservation.

In general the benthic faunas resemble those of Sites 592 and 593; cibicidids, uvigerinids, and Oridorsalis are common in most samples. Ehrenbergina, Osangularia, Bolivina, and, below the Pliocene, Bulimina are rarely found. In the best-preserved samples, specimens are very large, with the exception of a few species such as Pleurostomella alternans, which becomes both smaller and rarer at these southerly sites. Unlike at other sites, faunas at Site 594 often demonstrate unusually high dominance of one or two species at specific times. These include a pulse of Nuttalides umbonifera in the upper Miocene, of Cibicides wuellerstorfi in the lower Miocene, and of shallow-water angulogerinids and bolivinitids in the Quaternary and lower Pliocene.

Despite the poor preservation of the benthics through much of the Miocene, two important changes take place. The first, in the lower to middle Miocene (594A-16 to 594A-18,CC), involves a marked increase in the numbers of *C. wuellerstorfi*, accompanied by a loss of uvigerinids and the first and only appearance of *Osangularia bengalensis*, a species rare in the southern sites of this traverse. These faunal changes may reflect a late early Miocene warming and a decrease in nutrients at the bottom, or the positioning of the site near the Subtropical Convergence, which carries warmer, surface waters to greater depths.

In the upper Miocene (594-36 to 594-38,CC, lower Globorotalia miotumida Zone) there is a large increase in the abundance of N. umbonifera accompanied by important changes in the radiolarian assemblages. N. umbonifera is generally associated with Antarctic Bottom Water and corrosive bottom water. The benthic faunas suggest that there was an intense cooling pulse and/or an increase in the corrosiveness of the bottom-water environment at this site in the early late Miocene.

Because of poor preservation, the Miocene/Pliocene boundary could not be detected by changes in the benthic foraminifers. Varying faunas suggesting glacial-interglacial fluctuations began in the early Pliocene *G. puncticulata* Zone and intensified during the Pliocene and Pleistocene. Two general faunal assemblages are recognized. The first is associated with hemipelagic sediment and siliceous fossils, and contains opaque benthics, several of which are typical of shallow-water environments. Shallow-water costate to striate angulogerinids suggest anoxic conditions in the source areas. The second assemblage type, associated with decreased percentages of mica, sponge spicules, and radiolarians and an increase in planktonic foraminifers, contains clearer fossils. These tend to be transparent in the Quaternary. The faunal content resembles assemblages during the Pliocene and Pleistocene at Sites 592 and 593. However, there is a large influx of *Bulimina aculeata* in these faunas during the Pliocene *G. inflata* Zone (594-6 to 594-8,CC).

Calcareous Nannoplankton

Hole 594

Core-catcher samples from 53 cores were examined for calcareous nannoplankton. Species diversity is low throughout the section and preservation ranges from moderate to good in the Pleistocene and Pliocene and moderate to poor in the Miocene. Most zonal indicators are absent. Based upon a few auxiliary zone-determining species, the following zonation was established.

The occurrence of *Emiliania huxleyi* in Samples 594-1-1, 3-4 cm to 594-6-1, 25-26 cm places this interval in the late Quaternary *Emiliania huxleyi* Zone (NN21).

Samples 594-6-3, 3-4 cm to 594-7-1, 3-4 cm are above the last occurrence of E. ovata in Sample 594-7, CC and are placed in the late Quaternary Zone NN20. Samples 594-7, CC to 594-11-3, 3-4 cm, above the last occurrence of Calcidiscus macintyrei in 594-11-5, 3-4 cm, are placed in the upper subzone of the lower Pleistocene E. ovata Zone (NN19b). The next marker observed is Reticulofenestra pseudoumbilica, whose last occurrence is in Sample 594-18-3, 3-4 cm. Therefore, Samples 594-11-5, 3-4 cm to 594-18-1, 3-4 cm are in Zones NN16/19a. Zone NN15 includes Samples 594-18-3, 3-4 cm to 594-20-5, 3-4 cm, above the last occurrence of Amaurolithus tricorniculatus in Sample 594-20, CC. Samples 594-20, CC to 594-23-5, 3-4 cm are placed in the combined Zones NN12/NN14. The occurrence of Discoaster guingueramus in Samples 594-23, CC and 594-26-5, 3-4 cm places this interval in the late Miocene Discoaster quinqueramus Zone (NN11).

Samples 594-26,CC to 594-28-3, 3-4 cm, above the last occurrence of *D. hamatus* in Sample 594-28-5, 3-4 cm, are placed in the late Miocene *D. calcaris* Zone (NN10). *Discoaster hamatus* occurs in Samples 594-28-5, 3-4 cm to 594-29,CC, which places this interval in the middle Miocene *D. hamatus* Zone (NN9).

The interval from Sample 594-30-1, 3-4 cm to 594-42-3, 3-4 cm, the first occurrence of *D. kugleri*, is placed in the combined Zones NN7/NN8. The boundary between NN7 and NN8 is based upon the first occurrence of *Catinaster coalitus*, which is not present at Site 594. Samples 594-42, CC to 594-53, CC are placed in the middle Miocene *Discoaster exilis* Zone (NN6).

Hole 594A

Samples 594A-1,CC to 594A-12,CC are repeats of the section drilled at Hole 594. Samples 594A-13-3, 3-4 cm to 594-15-3, 3-4 cm, above the last occurrence of *Sphenolithus heteromorphus* in Sample 594A-15,CC, are placed in the middle Miocene *Discoaster exilis* Zone (NN6). Samples 594A-15,CC to 594-26,CC are placed in the middle Miocene *Sphenolithus heteromorphus* Zone (NN5). Reworked Oligocene and possibly early Miocene

species are present in many of the samples from this hole as well as Hole 594.

Silicoflagellates

Silicoflagellates occur throughout the Quaternary to Miocene sequence and are associated with sponge spicules and a few endoskeletal dinoflagellates. They form, however, only a minor component of the predominantly calcareous sediments.

Silicoflagellates only were investigated in detail in acidtreated core-catcher samples from Holes 594 and 594A. The assemblages found can be laced without difficulty in the northern high-latitude silicoflagellate zonation used during Leg 38 (Martini and Müller, 1976). Samples 594-6, CC to 594-16, CC belong to the Distephanus speculum Zone. Samples 594-18, CC to 594-20, CC seem to represent the early Pliocene Distephanus boliviensis Zone, although the nominate species was not found. In Samples 594-21,CC and 594-31,CC, Mesocena circulus was noted; consequently these samples are placed in the late middle to late Miocene Mesocena circulus Zone. In Sample 594-35, CC Corbisema triacantha was found, indicating the presence of the late early to early middle Miocene Corbisema triacantha Zone. The lowest sample of Hole 594 (594-53,CC) also contains C. triacantha, which in this sample is still associated with M. diodon. Thus these samples also belong in the C. triacantha Zone, as does Sample 594A-20,CC, because of the first occurrence of M. diodon. Samples 594A-21,CC to 594A-25,CC were barren of siliceous fossils.

Reworked Eocene silicoflagellates were found in most samples studied. In addition, in Sample 594-24,CC reworked Eocene diatoms (*Triceratium barbadense*) were noted.

Radiolarians

Radiolarians are rare throughout the cores recovered at Site 594, and moderately to well-preserved faunas are encountered in all cores.

Stratigraphic correlation of Neogene radiolarians at Site 594 is difficult because of the scarcity of siliceous material, the great dilution by terrigenous material, and changes of paleoenvironments. Because warm water and polar assemblages are mixed, zonations proposed for both regions have been employed.

Sections 594-1-1 to 594-6-4 contain a typical late Quaternary (less than 400,000 yr.) antarctic radiolarian assemblage that can be assigned to the Antarctissa denticulata Zone or Zone NR1. Common species include A. denticulata, A. strelkovi, Theocalyptra davisiana, and Rhizosphaera antarctica.

Sections 594-7-2 to 594-8-1, below the last appearance of *Stylatractus universus* in 594-7-2, are placed in Zone NR2 (Quaternary). The next marker observed was *Phormostichoartus pitomorphus*, whose last occurrence in Section 594-9-4 puts Sections 594-9-4 to 594-11-5 in Zone NR3/NR4 (early to middle Pleistocene) (the two zones are not distinguished because warmer-water species are missing).

Clathrocyclas bicornis (Hays) occurs sporadically between Sections 594-11-6 and 594-14-2. This occurrence is interpreted as reworking, because A. denticulata and *Theocalyptra bicornis* Popofsky were first found in Section 594-12-3. Thus Sections 594-11-6 to 594-14-4 are placed in Zone NR4.

The last consistent occurrence of *C. bicornis* (Hays) in Section 594-15-2 is used to mark the top of the Pliocene. Rare radiolarians occur in Section 594-15-2 to 594-20-3. Typical Pliocene species like *Pseudocubus vema* occur sporadically. Because of the poor preservation and scarcity of markers the interval between Sections 594-15-2 and 594-20-3 remains unzoned.

Sections 594-20-4 to 594-27-1, below the first occurrence of Antarctissa ewingii and above the first appearance of Stichocorys peregrina, are placed in the Stichocorys peregrina Zone (late Miocene). In the best preserved samples, forms like Anthocyrtidium ehrenbergii and Hexacontium hootsi indicate warmer conditions. Reworked specimens of Eocene to middle Miocene age occur in Sections 594-23-1 to 594-26-4.

The next markers observed were Didymocyrtis antepenultima and Diartus hughesi, whose first appearances are tabulated in Section 594-31-5. Thus, Sections 594-27-4 to 594-31-5 are placed in the Didymocyrtis antepenultima/D. penultima Zone. The D. penultima and D. antepenultima zones are amalgamated because the species D. penultima was not found in the radiolarian assemblages. Moreover, the base of the D. penultima Zone, which is also recognized in tropical areas at the top of the range of Diartus hughesi, cannot be located in Site 594 because the last occurrence of D. hughesi is tabulated in the S. peregrina Zone. It is possible that D. hughesi as well as Didymocyrtis laticonus and D. antepenultima have different ranges in the mid-latitude sediments. Close examinations of numerous specimens show distinct morphological differences from tropical forms (see Caulet, this volume).

Sections 594-31-6 to 594-37-1 contain poorly preserved and rare radiolarian assemblages. Barren levels occur sporadically throughout this interval, which cannot be related to a well-defined zone.

Most radiolarian species recognized in the samples below 594-37-1 are well known in the tropical assemblages of the *Diartus petterssoni* Zone (middle Miocene).

The most significant transition in the radiolarian fauna is observed between Cores 594-23 and 594-21. In Core 21 and above, most temperate or warm-water radiolarians have disappeared. Radiolarian abundances are greatly reduced and antarctic or subantarctic species become more dominant. Their occurrence suggests a northward migration of the Antarctic Convergence.

Diatoms

Diatoms are abundant to sparse in most processed samples from Site 594, except in Cores 594A-22 through 594A-26a, which are barren. In general, diatom preservation is best (fair to moderate) and diversity highest in the middle to upper Miocene. Although Pliocene-Quaternary preservation is fair and diversity low, the entire sequence contains sufficient marker species for reliable age determinations. Reworked Eocene and Oligocene diatoms are common throughout both holes.

Zonation and Sediment Age Determinations

No single zonal scheme could be employed for the entire middle Miocene-Quaternary. Migration of the Subtropical Convergence, which lies directly north of the site, has resulted in a shift in the predominance of subantarctic/antarctic to subtropical species through time. As a result, the zonal schemes employed herein are the antarctic/subantarctic zonations of Weaver and Gombos (1981) and Ciesielski (1983) and the mid-latitude zonations of Barron (1980, 1981).

The diatom assemblage suggests that the subantarctic water mass has prevailed at the site since the Miocene: therefore, the antarctic/subantarctic zonation of Ciesielski (1983) was used successfully in zonation of the entire Pliocene-Quaternary. The mixed occurrence of antarctic to mid-latitude index species in the middle to late Miocene precludes the use of a single zonal scheme for this interval. A new regional zonation is required for Site 594, utilizing the existing high to mid-latitude species, is given in Ciesielski (this volume). For the purpose of this site report, middle to late Miocene diatom zones are temporarily referred to as zonal equivalents of Barron's (1980, 1981) mid-latitude diatom zonation. It should be noted that correlations to Barron's zonation are tentative and incomplete because some index species are missing at Site 594.

In spite of difficulties in correlating with existing zonal schemes, Site 594 was reliably correlated to magnetostratigraphy by the identification of diatom datums which have been intercalibrated with magnetostratigraphy elsewhere or have been dated radiometrically. Table 3 lists these microfossil datums, their stratigraphic position, and their approximate age based upon direct correlation to magnetostratigraphy, citing diatom zones or zonal equivalents. The locations of major stratigraphic boundaries at Site 594, as determined by the application of all microfossil groups, are as follows (A indicates Hole 594A cores):

Core-Section
14,CC-15-2
16,CC-10A-2
20-5-20-2
38,CC-37,CC
21,CC-20,CC

Unconformities

Four unconformities were detected within the upper Miocene through Quaternary of Holes 594 and 594A. The interval represented by each is noted here, with the evidence from Table 3. It is important to note that the Miocene/Pliocene boundary and the early/late Pliocene boundary fall within disconformities.

1. Chronozone 8-Chronozone 7, \sim 8.3-6.5 m.y. ago: close proximity of FAD of *H. karstenii* s.l. (Chronozone 6) in Core 24 to LAD of *D. hughesii* (basal Chronozone 8 or upper Chronozone 9) in Core 26.

2. Upper Chronozone 5-lower Gilbert Chronozone below the Sidufjall Subchronozone, $\sim 5.4-4.5$ m.y. ago

672

Table 3. Major biostratigraphic and magnetostratigraphic datums observed in Holes 594 and 594A (diatoms and radiolarians).

Datum	Occurrence of datum in hole (Core-Section, interval in cm)	Age of datums (m.v.)
LAD Stylatractus universus	7-1 to 6-4	425.000 yr.
Brunhes/Matuyama boundary	11-5, 75-77	730,000 yr.
Matuyama Chronozone disconformity	~11-5	~1.6-~0.74
LAD Clathrocyclas bicornis (Hays)	11-6	
Last consistent C. bicornis	15-2 to 14-2	?1.8
LAD Coscinodiscus kolbei	15-2 to 13-5	1.89
LAD Cosmiodiscus insignis	16-2 to 15-5	2.50
FAD Theocalyptra davisiana	16-4	2.8-2.6
LAD Coscinodiscus vulnificus	16-2 to 15-5	2.22
LAD Nitzschia weaveri	10A-2 to 16-5	2.64
upper Gilbert-upper Gauss Chrono- zone disconformity	10A-2 to 16-5	~ 3.85-2.70
FAD Nitzschia weaveri	10A-5 to 10A-2	3.88
LAD Stichocorys peregrina	19-1	4.6-4.4
last consistent Mesocena diodon	20-2 to 19-5	4.45
Chronozone 5-lower Gilbert discon- formity	20-5 to 20-2	~5.4 to ~4.5
LAD Cosmiodiscus insignis f. trian- gula	20-5 to 20-2	5.4
LAD Asteromphalus sp. 1	21-5 to 21-2	~ 5.6
FAD C. insignis f. triangula	23-2 to 11A-5	late Chron 6 (~6.0)
FAD Nitzschia reinholdii	23-5 to 23-2	early Chron (~6.4)
Last consistent Mesocena circulus	23-5 to 23-2	early Chron 6 (~6.4)
FAD Hemidiscus karstenii f. 1	24-5 to 24-5	mid to early Chron 6
Chronozone 8-Chronozone 7	26-2 to 24-5	~ 8.5-6.5
disconformity		of hiatus not yet determined)
LAD Diartus hughesi	to 26-2	~ 8.5
FAD Stichocorys peregrina	to 27-1	-8.5
LAD Thalassionema hirosakensis	29 to 28-5	
LAD Lithodesmium reynoldsii	30 to 29	~ Chron 9/Chron 8 boundary
LAD Cyrtocapsella japonica	to 31-2	~ 8.7
FAD Asteromphalus sp. 1	31-5 to 31-2	~ 8.7
FAD D. hughesi	to 31-5	~ 8.7
FAD Didymocyrtis antepenultima	to 31-5	
Last consistent Denticulopsis lauta	35-5 to 35-2	late Chron 9 (~8.7-8.5)
Last common Denticulopsis dimor- pha	39-1 to 38-1	10.2
LAD Nitzschia denticuloides	44-1 to 43-1	early Chron 10
FAD Denticulopsis dimorpha	46-2 to 45-2	11.1
LAD Coscinodiscus lewisianus	52-2 to 51-1	late Chron 13 (~12.5-12.6)
LAD Denticulopsis nicobarica	18A-1 to 17A-2	late Chron 14 (~12.8)
FAD Denticulopsis praedimorpha	19A-2 to 18A-1	earliest Chron 14 (~13.3?)
FAD Denticulopsis hustedtii	19A-2 to 18A-1	mid Chron 15 (~14.3?)
FAD Brunia mirabilis	19A-2 to 18A-1	

Note: A indicates cores from Hole 594A.

(Miocene/Pliocene boundary disconformity): LAD of C. insignis f. triangula (mid to upper Chronozone 5) immediately below last constant M. diodon (~4.5 m.y.) in Core 20.

3. Upper Gilbert Chronozone above the Cochiti Subchronozone to upper Gauss Chronozone, $\sim 3.85-2.7$ m.y. ago: FAD of *N. weaveri* (~ 3.88 m.y.) immediately below LAD of *N. weaveri* (~ 2.64 m.y.).

4. Mid to upper Matuyama Chronozone, $\sim 1.6-0.74$ m.y. ago: occurs entirely within the *C. elliptopora/A. ingens* Zone; however, the disconformity is substantiated by the LAD of *C. bicornis* (Hays) (about 1.8 m.y.) immediately below the Brunhes/Matuyama boundary as noted by Barton and Bloemendal (this volume).

PALEOMAGNETISM

The two most notable paleomagnetic results were the location of the Brunhes/Matuyama boundary at 99 m sub-bottom depth, and the surprisingly low intensities of magnetization, given the higher terrigenous input at this site.

HPC cores from Holes 594 and 594A were sampled at 50 cm intervals. The XCB cores from Hole 594A were sampled at 150 cm intervals. Absolute orientations were obtained for only four cores from Hole 594. Laboratory NRM and low-field magnetic susceptibility measurements have been completed for most of Hole 594 (Table 4). The relatively high negative mean inclination is largely due to the preponderance of normal directions during the Brunhes.

Alternating peaks and troughs in magnetic susceptibility occur within the first 12 cores (0–108 m sub-bottom depth). Depths of the most prominent peaks are shown in Table 5 and generally coincide with higher intensities of magnetization. These variations have not yet been carefully compared with the lithologic variations during the Quaternary. However, it was noted that in the upper part of the sequence, where the alternating dark, fine-grained and light, coarser-grained sediments are most pronounced, the darker-colored sediments are characterized by higher NRM. Deeper in the sequence this contrast in NRM disappears well before the color zonations disappear. This suggests that gradual diagenesis of magnetic minerals of terrigenous origin is occurring on a time scale on the order of 10^5 yr.

No very thin, surficial, high-intensity layer was found in Hole 594. The general pattern of intensity variations is also shown in Hole 594. The general pattern of intensity variations is also shown in Table 4. A region of uniformly high intensity during the Miocene which was observed at previous sites was also not present.

A magnetic polarity stratigraphy based on NRM results for Hole 594 is presented in Figure 10. There is convincing evidence that the Brunhes/Matuyama boundary occurs within Core 594-11. Below this, the interpretation is less certain. A possible alternative to the illustrated (preferred) scheme is to assign the top of the Gauss Chron to the depth where the top of the Olduvai Subchron is illustrated. The Olduvai Subchron would then replace the Jaramillo in the figure. However, this interpretation is in poorer agreement with the diatom and radiolarian stratigraphy and is less probable. Below the top of the Gauss, directions are too scattered for po-

Table 4. Preliminary NRM and magnetic susceptibility data for Hole 594.

Geometric mean intensity	0.072 µG
Scalar mean inclination (+ 1 s.d.)	$-20.7^{\circ} + 38.4^{\circ}$
Axial dipole inclination	-63.8°
Mean angle between repeats	15.4° (34 repeats)
NRM intensity variation	
0–10 m	High (0.1 to 10 μ G, typically)
10-200 m	Intermediate ($\sim 0.1 \ \mu G$)
200-350 m	Low (0.01 to 0.1 µG)
Below 350 m	Medium to low (0.01 to 0.3 μ G)
Susceptibility variation	
0-108 m	Alternating peaks and troughs
0-30 m	Intermediate (5 to 25 μ G Oe ⁻² typically)
30-179 m	Low (1 to 10 μ G Oe ⁻¹)
179–184 m	Very low (0 to 1 μ G Oe ⁻¹)
184-399 m	Weak diamagnetic
399-488 m	Low (0 to 2 μ G Oe ⁻¹)

Table 5. Prominent peaks in magnetic susceptibility, Hole 594.

Core-Section (level in cm)	Sub-bottom depth (m)	Susceptibility $(\mu G \text{ Oe}^{-1})$
1-4, 025	4.75	41.3
2-2, 125	8.65	29.6
3-3, 075	19.25	239.2
4-1, 125	26.35	64.2
4-3, 025	28.35	249.2
15-1, 025	130.95	11.2
16-2, 075	142.55	11.2
46-2, 025	430.05	10.3

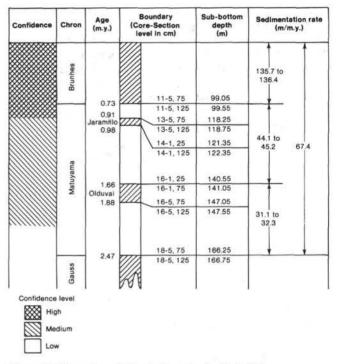


Figure 10. Magnetic polarity stratigraphy for Hole 594.

larity intervals to be resolved with any degree of confidence. There are some fairly long intervals with a predominantly normal inclination bias, which is indicative of partial secondary overprinting during the Brunhes Chron—probable because viscous remanence built up in fine-grained iron monosulfides.

Results of partial AF demagnetization tests conduced on the *Glomar Challenger* on three sediment samples from the Brunhes Chron are summarized in Table 6. A viscous component amounting to 10 to 20% of the natural remanence was detected. The results show that these upper sediments preserve a stable primary remanence which dominates the NRM. As in previous sites, there is a strong case for arguing that the deterioration of the paleomagnetic record with depth is caused by a combination of very gradual diagenetic alteration of primary magnetic minerals (in a sulfur-rich environment) and compaction effects. In materials with a sufficiently large number of uniformly distributed magnetic grains, gradual compaction into a closer-packed structure will cause dispersion of the directions of remanence of individual

Table 6. Summary of progressive AF demagnetization data for three samples within the upper, long normal zone, Hole 594.

Core-Section (level in cm)	Sub-bottom depth (m)	J ₀ (μG)	Stable range (Oe)	ΔI
1-4, 75	5.25	3.686	0-600	±15°
5-4, 75	39.95	1.194	0-400	±15°
6-3, 75	48.05	0.970	0-400	± 12°

Note: $J_0 = NRM$ intensity, Stable Range is the range of peak demagnetizing field within which only small changes in direction occur, ΔI is the inclination change in this stable range.

grains without changing the statistical mean direction. The magnitude of the resultant magnetization will, of course, be less. When the density of magnetic grains falls to sufficiently low values, statistical averaging of the dispersed directions will no longer give the original mean, and the resultant directions of magnetization of specimens will become scattered.

As noted in the paleomagnetic report for Site 591, there was a marked decrease in magnetization after storage by a factor of two to three. Repeat measurements conducted on board the *Glomar Challenger* showed that most of these decays occur during the first 36 hr. of storage. The problem is a serious one which requires detailed investigation.

SEDIMENTATION RATES

Sedimentation rates are calculated upon the diatom and radiolarian datum ages provided in Table 3. The ages of the datums have been determined by intercalibration with magnetostratigraphy elsewhere. In most cases, the stratigraphic level of the datum is known only within certain depth limits, and hence the midpoint is used in the plot (Fig. 11).

Sedimentation rates were high (76-78 m/m.y.) during much of the middle and late Miocene during deposition of foraminifer-bearing nannofossil ooze and nannofossil ooze. Unlike nearly all of the sites drilled further north during Leg 90, rates at Site 594 (~30-40 m/m.y.) were relatively low during the latest Miocene and Pliocene, an interval punctuated by 3 disconformities. Rates of deposition began to increase dramatically at the base of the Pleistocene, were high during the early Pleistocene (late Matuyama chron; 89 m/m.y.) and even higher (avg. 138 m/m.y.) during the last 700,000 yr. (Brunhes Chron). Therefore, there are three broad, stratigraphic intervals marked by differing rates of sedimentation: intermediate rates during much of the middle and late Miocene, lowest rates during the latest Miocene and Pliocene, and highest rates during the Pleistocene.

SUMMARY AND CONCLUSIONS

Site 594 is located at the southern margin of the Chatham Rise east of the South Island of New Zealand, in a water depth of 1204 m at a position of 45°31.41'S, 174°56.88'E. The site lies in the subantarctic water mass immediately south of the Subtropical Convergence, and is the southernmost of a series of sites forming a north-

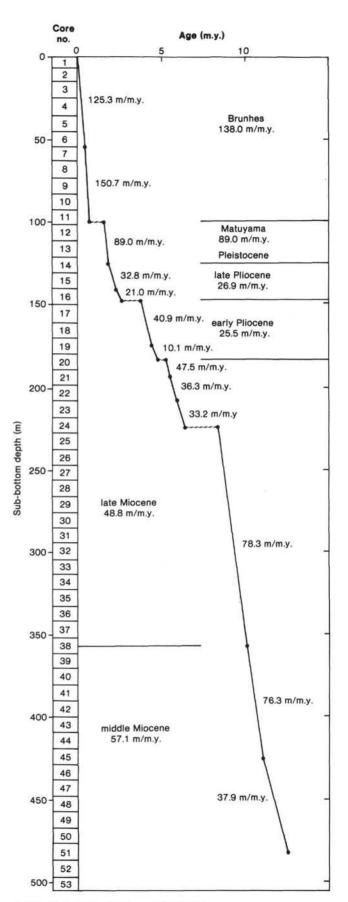


Figure 11. Sedimentation rates for Site 594.

south transect. It is situated in a transitional region between oceanic and terrigenous influences, thus differing from all other sites on the southwest Pacific transect. It is located on a relatively flat, smooth seafloor, underlain by what appears to be a simple seismic stratigraphy of parallel reflectors.

Site 594 consists of three holes cored to a maximum sub-bottom depth of 639.5 m. Excellent core recovery was obtained from 0 to 207.5 m sub-bottom depth (Holocene to latest Miocene) using the HPC to about 130 m in Holes 594 and 594A. The remaining section was rather poorly recovered using the XCB.

The section extends from the latest early Miocene to the Holocene and is cut by at least four unconformities. A paleomagnetic stratigraphy has been identified down to the late part of the Gauss Chron (about 2.5 m.y. ago).

The sequences are assigned to two lithostratigraphic units, the lower one of which is subdivided into two subunits (Fig. 12). Divisions are based mainly upon differences in composition that are clearly revealed in the color changes.

Unit I, of earliest Pliocene to Quaternary age, consists of an alternating sequence of pelagic and hemipelagic lithofacies generally defined by bluish gray and greenish gray sediment, respectively. Pelagic-hemipelagic cycles range in thickness from 0.5 to 10 m. Contacts between lithofacies are completely gradational, subtle variations in color between the bluish gray and greenish gray end-members.

The pelagic lithofacies consists mainly of blue gray foraminifer-bearing nannofossil ooze, foraminifer- and clay-bearing nannofossil ooze, or foraminifer-bearing clayey nannofossil ooze. The lithofacies is dominated by calcareous nannofossils, with rare to common foraminifers and clay minerals, and trace and rare amounts of quartz, feldspars, mica, and biogenic siliceous components that include sponge spicules, diatoms, and radiolarian fragments.

The hemipelagic lithofacies consists of a variety of sediment intergrades between a clay- and silt-bearing nannofossil ooze and a nannofossil-bearing clayey silt; this greenish gray lithofacies is commonly diatom- and spongespicule-bearing, and rarely foraminifer-bearing. Dominant components are varying quantities of calcareous nannofossils, clay minerals, and silt-sized grains of quartz, feldspar, and mica. Foraminifers and siliceous biogenic components are rare to common. Compared to the pelagic lithofacies, the sediment is relatively enriched in both terrigenous silt and clay and in biogenic siliceous components, notably sponge spicules and diatoms, with relative depletion of both foraminifers and nannofossils. A few volcanic ash layers are present.

The contact between Units I and II is gradational over several meters, but is recognized by the change from interbedded pelagic and hemipelagic facies of Unit I to a pelagic facies in Unit II. Unit II, of late early Miocene to earliest Pliocene age, is mainly a foraminifer-bearing nannofossil ooze (chalk) to nannofossil ooze (chalk). Separate ooze and chalk subunits are defined, the ooze/ chalk transition occurring at about 466 m in Hole 594. Subunit IIA, of early middle Miocene to earliest Pliocene age, is a light gray foraminifer-bearing nannofossil ooze that grades down into a nannofossil ooze near 245 m sub-bottom depth. Calcareous nannofossils dominate the components; foraminifers are generally common above 245 m but form only trace to rare amounts below this level.

Subunit IIB, of late early to early middle Miocene age, is a light gray nannofossil chalk with occasional interbeds of olive gray silt-bearing clayey nannofossil chalk below 534 m sub-bottom; these are interpreted as turbidite layers. Below 467 m sub-bottom depth (early middle Miocene), distinctive pale to dark green laminae occur commonly in the subunit. The laminae may represent altered volcanic glass.

The turbidite interbeds range in thickness from a few to 90 cm, have sharp erosional bases, are normally graded, and have burrowed gradational tops that grade upward into overlying chalk. They are dominated by calcareous nannofossils with common micas and clay minerals, rare foraminifers, and occasional quartz and feldspar grains. Textures range from medium to very fine silt at the base of beds to clay-dominated at the top. There is a pronounced habitat stratification in the infaunal burrow types in the thicker beds in the upper portion of units, with Planolites between 0 and about 5 cm, Chondrites to depths of 10 cm, and Zoophycos to depths of 15 to 20 cm in the beds.

Site 594 has much paleoceanographic potential. There is a fine biostratigraphic sequence of subantarctic elements from the middle Miocene to the Holocene. Both calcareous and siliceous microfossil groups are well represented. The calcareous nannoplankton assemblages are typical of cold water and largely lack the warm-water forms so useful in biostratigraphic zonations. Considerable microfossil reworking, particularly with respect to foraminifers, was observed associated with the early middle Miocene turbidites.

The latest Miocene to Holocene sequence of oscillations between dark hemipelagic and lighter pelagic biogenic sediments is climatically related. The pelagic episodes mark climatic warmings and high sea levels (interglacials). These have little biosiliceous sediment, less calcareous dissolution, and warmer-water planktonic foraminifer faunas. The hemipelagics mark cooler (glacial) episodes when low stands of sea level led to major sediment bypassing over the continental shelves and the deposition of terrigenous materials in the basins surrounding New Zealand. These episodes exhibit cold-water planktonic foraminiferal faunas, rich siliceous microfossil assemblages, and much carbonate dissolution. Intergrades occur between these two extremes. Twenty-five major hemipelagic episodes have occurred during that interval represented by sediments in the last 6 m.y. The oldest coincides with the well-known Kapitean (Messinian) regression.

A distinct increase in radiolarian abundances occurs during the latest Miocene in response to the important paleoceanographic changes then; perhaps it is related to the development of the Subtropical Convergence.

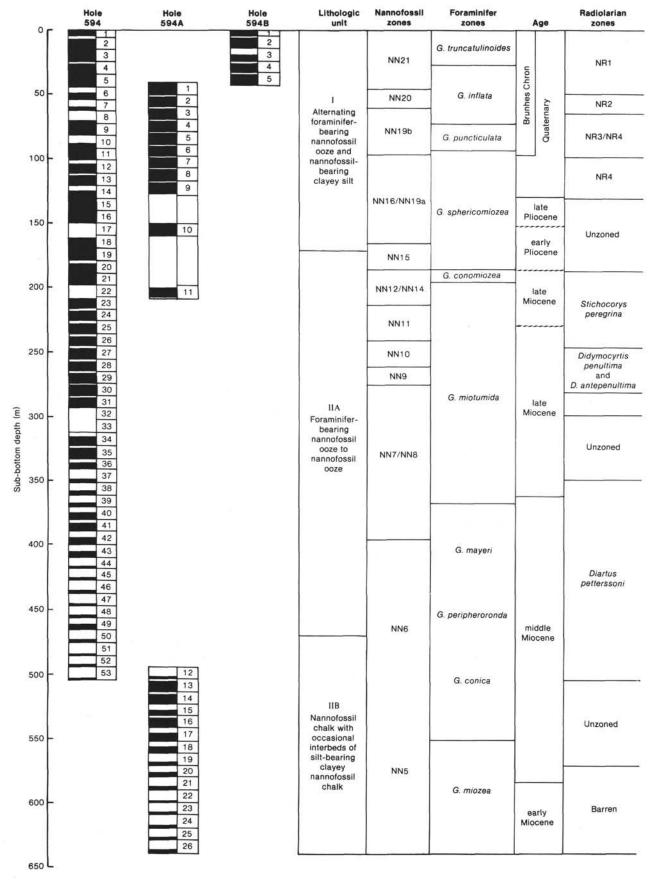


Figure 12. Summary lithology, biostratigraphy, and mass accumulation rates for Site 594. Core recovery shown in black.

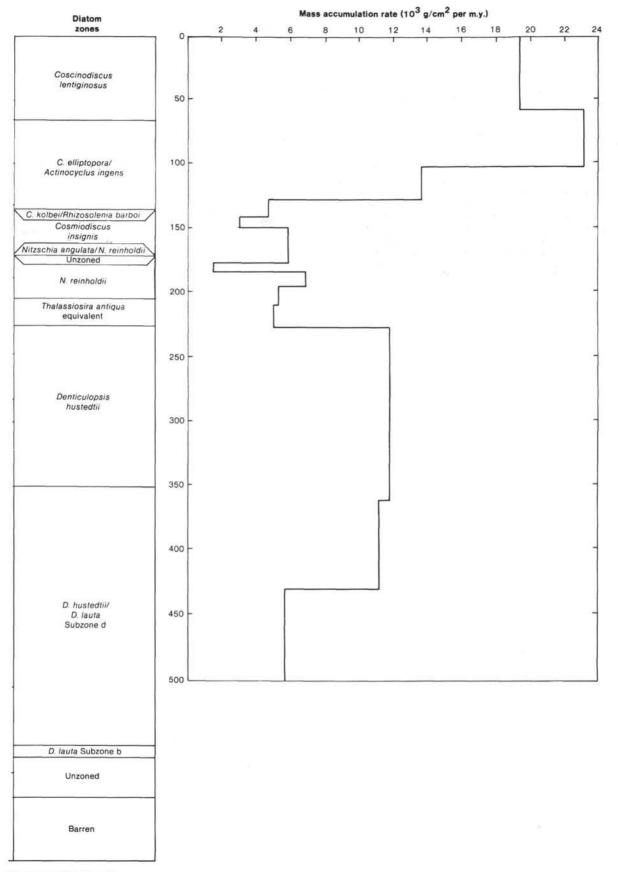


Figure 12. (Continued).

REFERENCES

- Ballance, P. F., 1976. Evolution of the upper Cenozoic magmatic arc and plate boundary in northern New Zealand. *Earth Planet. Sci. Lett.*, 28:356-370.
- Barron, J. A., 1980. Lower Miocene to Quaternary diatom biostratigraphy of DSDP Leg 57, off northeastern Japan, Deep Sea Drilling Project. In Scientific Party, Init. Repts. DSDP, 56, 57, Pt. 2: Washington (U.S. Govt. Printing Office), 641-686.
- _____, 1981. Late Cenozoic diatom biostratigraphy of the middlelatitude eastern North Pacific, Deep Sea Drilling Project Leg 63. In Yeats, R. S., Haq, B. U., et al., Init. Repts. DSDP, 63: Washington (U.S. Govt. Printing Office), 507-538.
- Carter, R. M., and Norris, R. J., 1976. Cenozoic history of southern New Zealand: an accord between geological observations and plate tectonic predictions. *Earth Planet. Sci. Lett.*, 31:85-96.
- Ciesielski, P. F., 1983. The Neogene and Quaternary diatom biostratigraphy of subantarctic sediments, Deep Sea Drilling Project Leg 71. In Ludwig, W. J., Krasheninnikov, V. A., et al., Init. Repts. DSDP, 71, Pt. 2: Washington (U.S. Govt. Printing Office), 635-665.
- Cullen, D. J., 1976. Sediment transport on the continental shelf of Otago: a reinterpretation of so-called relict features. N.Z. J. Geol. Geophys., 9:527-534.

- Griggs, G. B., Canter, L., Kennett, J. P., and Carter, R. V., 1983. Late Quaternary marine stratigraphy southeast of New Zealand. Geol. Soc. Am. Bull., 94:791-797.
- Mammerickx, J. L., Chase, T. E., Smith, S. M., and Taylor, I. L., 1974. Bathymetry of the South Pacific. IMR Technical Reports, Scripps Institution of Oceanography, La Jolla, California.
- Martini, E., and Müller, C., 1976. Eocene to Pleistocene silicoflagellates from the Norwegian-Greenland Sea (DSDP Leg 38). In Talwani, M., Udintsev, G., et al., Init. Repts. DSDP, 38: Washington (U.S. Govt. Printing Office), 857-896.
- Nelson, C. F., and Hume, T. M., 1978. Relative intensity of tectonic events revealed by the Tertiary sedimentary record in the North Wangianui Basin and adjacent areas, New Zealand. N.Z. J. Geol. Geophys., 20:369-392.
- Weaver, F. M., and Gombos, A. M., 1981. Southern high latitude diatom biostratigraphy. In Warme, T. E., Douglas, R. C., and Winterer, E. L. (Eds.), The Deep Sea Drilling Project: A Decade of Progress. Soc. Econ. Paleont. Mineral. Spec. Publ., 32:445-470.

Date of Acceptance: 3 December 1983

e	APHIC			RAC	TER										
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRIP	TION	
			A				0.5				Yellowish gray (5Y 7/2) 58 7/1 10Y 6/2 58 7/1 mottles	NANNOFOSSIL-B	(58 7/1) to	LT OR SILTY CLAY, greenish gray (5GY 6/1),
						1	1.0			1.	5GY 6/1				(10Y 4/2), soft, massive, nifers, sponge spicules in
							-		11	17		SMEAR SLIDE SU	MMAR	Y:	
							1.1		0		-58 7/1 burrow		1,20	1, 12	20 3, 60
							1				enne ana 1996/1002		D	D	D
							1.1		1			Texture:	12	125	
							1.7			1		Sand	C	C	-
						2	1 3			1		Silt	A	A	C
					lentiginosus	1				1		Clay	A	A	A
2					line		1					Composition: Quartz	с	С	с
2					2		-			1		Feldspar	C	c	c
Quaternary				-	le.		1				00000000	Mica	R	R	c
S				NR1	Sug	1.1	-			1	10Y 4/2	Mica Heavy minerals	R	т	т
-					Coscinodiscus		-						A	A	A
					in o		1.6					Clay Volcanic glass	R	Ť	Ť
					28		1 2					Glauconite	T	-	T
					0		-					Pyrite	1	÷.	Ť
	L 1									1.5		Foraminifers	R	R	T
				, J		3	1					Calc, nannofossila	c	c	R
							-			1		Diatoms	~	T	-
							1	T- Printing		-	- · · ·	Radiolarians	Ŧ	-	-
							-	1-1			10 M M	Sponge spicules	R	C	B
							1				5G 6/1 to 5G 4/1	oponign spicoles			
							-			1	0.0 10 1				
	2							L							
	Nich						-	1							
	truncatulinoides 421						1	1							
	ater					4	-	1-4							
	ma					4	-			1					
	G. trui NN21						1 2	-		1					
	UZ						-								
	10000		A			cc	-	±		1					

	PHIC			OSS	IL										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIP	TION	
						1	0.5				- 5GY 4/1 - 5GY 4/1 5G 4/1 - 10Y 6/2 - 10Y 6/2 - 10Y 6/2 - 5G 6/1 10Y 6/2 burrows	FOSSIL OOZE, II SB 5/1), soft, mat burrow mottling pyrite blebs. NANNOFOSSIL S dark greenish gray pale olive (10Y 6/2	ght to sive wit and sc iLTY C (5G 4	medium th comm attered CLAY, (/1), sof) BEARING NANNO bluish gray (58 7/1 to non pale olive (10Y 6/2) dark gray (N3 to N4) reenish gray (5G 6/1) to t, massive with common s and scattered pyritized
						2	and the state of t		2222		5G 4/1 - 5Y 8/1 5G 8/1 - chunk 5G 8/1	spots. SMEAR SLIDE SI Texture: Sand Silt Clay Composition:	2,70 D C A A	4,70 D C A A	D C A A
			F		inosus	3	terlered to a				- N3 py. - N3 - N3 - N3 - IW	Ouartz Feldspar Mica Heavy minerals Clay Volcanic glass Glauconite Pyrite Foraminifers Calc. nannofossils	C C C R A R T T R A	CCCTATTTRA	С — — Т С R Т Т С R Т Т С А
Quaternary				181	Coscinodiscus lentiginosus	4			[5552]	•	- N4 py. 58 5/1 + N4 - 10Y 6/2 mottles 58 7/1	Diatoms Radiolarians Sponge spicules Tunicate spicules	T R T	T T R	Т Я —
					F	5	and the set of the set				- 10Y 6/2 - N3 - 10Y 6/2 - N3 58 5/1 - N3 58 7/1				
	inoides					6	and a set of set				N4 10Y 6/2 mottles 10Y 6/2 mottles 10Y 6/2 mottles				
	G. truncatulinoides NN21	A				7		Void			5B 5/1				

SITE 594 H	FOS	SIL		RE	3 CORED I	NTERV	AL 15.5–25.1 m		SIT	1.0		HOLE	SSIL	 ORE	4 CORED	NTER	TT	26.1-34.7 m	
	HADIOLARIANS	ACTER SWOLDING	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	saweres	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC	ZONE	CHAR	RADIOLARIANS DIATOMS	METERS	1 1	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTION
	A NRI	a nijijoonu	1 2 3 4 5 6			errer errer as & passes erreren errere errere errere	 N4 58 7/1 N4 56 7/1 N4 56 6/1 56 4/1 10 Y 6/2 burrows 56 4/1 10 Y 6/2 hue 56 6/1 10 Y 6/2 10 Y 6/2 10 Y 6/2 10 Y 6/2 56 6/1 56 6/1 56 6/1 56 7/1 	PORAMINIFER (AND CLAY) BEARING NANNO- POSSIL COZE, light bluids gay (58 7/1), soft but firm, masive with pale clive (10Y 6/2) hugs and burrow mottles throughout, some pyrite speck. CLAY. AND SILT-BEARING NANNOFOSSIL OCZE, soft to firm, dark greenibl gray (56 4/1) to greenibl gray (56 6/1), massive with gle clive (10Y 6/2) huss and bur- rows, alternates with FORAMINIFER. (AND CLAY.) BEARING NANNOFOSSIL COZE, all color boundaries gradational. SMEAR SLIDE SUMMARY: 1, 49 1, 66 4, 77 6, 128 M D D Texture: Sand C R C C Sith A A A A Composition: Clav: A A A A Composition: Clause - T R R Clause - T R R Clause - T R R Clause - T R R Clause - T T Pyrite C R R C Claic nanoofosib A A A A Distom T T T Rudiolarians T T T Rudiolarians R R R R	Distortor	c). initiate	A LOUIS A LOUI	÷.	NR1 Cachioditeut fantiphoteut -	3				58 5/1 58 7/1 10Y 6/2 burrows 10Y 6/2 burrows 58 7/1 58 7/1 with 56 7/1 56 7/1 56 7/1 56 6/1 58 5/1 58 5/1 58 5/1 58 5/1 58 7/1 with 10Y 6/2 mottles 58 5/1 58 7/1 with 10Y 6/2 mottles 58 5/1 58 7/1 with 10Y 6/2 mottles 58 7/1 with 10Y 6/2 mottles 58 7/1 with 10Y 6/2 mottles 58 5/1	FORAMINIFER- AND CLAY-BEARING NANNOFOSSIL OOZE, light bluich gay (58 7/1) to medium bluich gay (58 5/1), soft but firm, massive with common burrow motting in paie low (10% 62) colors, diffuse boundarie, alternates with CLAYEY SLTY NANNOFOSSIL OOZE, greenich gay (56 6/1) to datk, grenich gay (56 4/1), soft but firm, massive with paie olire (10% 6/2) burrow mottles and hus, scattered dark gay (N4) pyrite. SMEAR SLIDE SUMMARY: 2, 59 2, 114 5, 84 M D D Texture: Sand R C - Sitt C A - Clay D A - Composition: Quertz R A R Feldspar T - T Heavy minerals T T T Clay C A - Volcanic gless T R R Glucoontie - T T - Pyrits T R T Rodicatians T R T Nongenetic R R T Undefined, too small (sigy?) C

SITE 594 HOLE		COF	RE 5 (COREC	INTER	RVA	L 34,7-44.3 m		SITE	59	1. F	OLE		CC	ORE	6 COREC	DINTER	VAL	44,3-53.9 m	
TIME - ROCK UNIT BIOSTRATIORAPHIC BIOSTRATIORAPHIC FORAMINITERS MANNOFOSSILLS MANNOFOSSILLS MANNOFOSSILLS	ER	SECTION	GRAP LITHO	эніс	DISTURBANCE SEDIMENTARY	S		LITHOLOGIC DESCRIPTION	TIME - ROCK	ŧ€		FOSS	CTER SWOLVIG	SECTION		GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY			LITHOLOGIC DESCRIPTION
Outternery MR1	t. Cost. monitoria remingmenta	1					58 4/1 5G 4/1 2 58 8/1 ash 58 7/1 5G 4/1	CLAYEY QUARTZOSE NANNOFOSSIL OOZE, dark gray and dark grain (58 5/1 and 5G 4/1) alternating with CLAYEY NANNOFOSSIL OOZE, light and very light gray (58 171, 56 417, 58 417, 56 107, 56 107, 56 107, 56 107, 56 107, 56 107, 57 107, 58 107, 5	L	G. Inflata NN20 NN20 NN21	A	F IbN F	n Coscinodiscus lentiginosus in	1 2 3 4 CC					NB 5G 8/1 5G 6/1 5G 4/1	FORAMINIFER- AND CLAY(7)-BEARING NANNO FOSSIL QOZE (NB), homogeneous with color grading down into light greenith grading (63/1) overlying CLAY, QUARTZ, and MICA-BEARING NANNOFOSSIL QOZE, dark green (5G 4/1), homogeneous throughout. SMEAR SLIDE SUMMARY: 1,112,2,148 D D Texture: Sand R R Sit A A Compatition: QuartZ R C Feldpar T T Mica – C Clay C C Volcanic grass R R Glacconite – T Pyrite T T Foraminifers C R Calc, numbrostilis D A Diatoms T T Sponge spicules T T
	F	5					58 7/1		TIME - ROCK	BIOSTRATIGRAPHIC 5	с	FOR STILLE	TER	SECTION	METERS	GRAPHIC	DRILLING DISTURBANCE SEDIMENYARY STRUCTURES	Π	53.9–63.5 m	LITHOLOGIC DESCRIPTION
G. inflats NN21 >		6 7 CC				*			Owsternery	G. inflata NN19B	A	2 AN	Coscinodiacus lentipinosus	1 2 CC	1.0				5G 4/1 58 7/1	MICA- AND QUARTZ-BEARING NANNOFOSSIL DOZE, dark greenish (SG 4/1), homogineoux, H_Srich, pryns- rich gruding down into FORAMINIFER-BEARING NAN- NOFOSSIL DOZE, light bluink gray (SB 7/1), firm, stained slightly with vellowish iron oxide. SMEAR SLIDE SUMMARY: 1, 39 2, 54 D D Texture: Sand R – Sitt A A Clay A D Composition: Quartz C R Feldopar T T Mica C – Haavy minerals T – Clay R – Volcanic glass R R Pyrite T – Foraminifers R C Colcu, cannotosiis A A Diatoms R T Radiolarians T T

681

×	VPHIC		F	RAC		1							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC	DESCRIPTION
Oustermary	G. inflote NN198	A	A	NR2	Coscinodiscus lentiginosus	-F	1 CC	0.5			•	FORAMINIFER	1,60 D C A A C T C C T C C

TE	594	-	HOI		-		ORE	9 CORED		ER	VA	L 73.1-82.7 m		_	
	PHIC			OSS	TER										
INN	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	CECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRIF	PTION
	8		2	æ	F	-	0.5- 1 1.0-				-	5G 4/1 5G 7/1 5B 7/1 5G 7/1 5B 7/1 5B 7/1	subtle color cycl sulfide. SPONGE SPICI NANNOFOSSIL-B	es, son JLE-BE EARIN Jark gr urbated	
Quaternery	G. puncticulata	A	A	NR3 + NR4	Coscinodíscus elliptopora/Actimocyclus ingens		3 -					5G 6/1 5G 4/1 5 G 7/1, burrow 5G 4/1 tharp contact 58 7/1	Mica Clay Volcanic glass Pyrite Foraminifers Calc, manofosilis Diacoms Radiolarians Radiolarians Sponge spicules	CCRTRCCTC	н - - Т Р С Т Т
					Th Coscin							5G 4/1			
							5					58 7/1			
	G. puncticulata NN19B						7					- 5G 4/1			

K	3	FI	OSSI										
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOGIC	DESCRIPTION
Pleistocene G. pumoriculete NN19B	A	A	NR3 + NR4	Coscinodiscus elliptopora/Actinocyclus ingens	• F	1 2 CC	0.5						S, SPONGE SPICULE SILT, dark green Ine-grained, homogeneous, occasional bur- SUMMARY: 1,70 D C C C T R R C T C C C C C

	PHIC		F	OSS	TER										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRI	PTION	
						đ	0.5				5G 4/1	ish gray (5G 4/1, 5 and FORAMINIFI	IG 5/1) ER-BEA gray (E hic fora	, homo RING 58 7/1, ms, dis	ICULE SILT, dark green geneous, minor burrowing SILTY NANNOFOSSIL 5B 6/1), burrow mottled seminated pyrite.
								1~			L	SMEAN SLIDE SU	3,45	4, 14	2 5, 102
					с		+	<u></u>	1 18		58 6/1	Texture:	D	D	D
					Ŭ			+	1 .,		and the second second	Silt Clay	A	CA	Å
							1.8	***	4		C 5G 6/1	Composition:			
								12-1	4 14	1	5G 4/1	Quartz Feldspar	C	R	c
							1.					Mica	R	R	С
	1.022						1.2	1-1				Heavy minerals Clay	T C	R	c
	NN198							7				Volcanic glass	Ť	т	-
	ž				2	H	+	+			58 6/1	Glauconite Pyrite	Ŧ	T	5
	8		с		Cascinodiscus ellipropara/Actinocyclus ingens		1	1+				Carbonate unspec.	Ť	т	
	sphericomiozee				clus		1.5					Foraminifers	C	C	R
	rico				ancy.					1	۲	Calc. nannofossils Diatoms	A 	AR	-
are	tohe	A			4010	1	1	12				Radiolarians	т	т	T (
Pleistocene	6			R4	ora/		1	124				Sponge spicules	R	R	-
5				NR3 + NR4	dozo			12			5G 4/1				
				VR3	ellip	F	-		11	(DG 4/1				
				~	scus				1						
					pou			£~							
					0.80		1.1								
					Ĩ	4	1								
							1.5			1	L				
							1	+			58 8/1				
	-									١.	= 58 7/1 58 7/1				
						c									
						~		1							
							1.1	1	1 ++		58 8/1				
						5		+			So or i				
						1		7-1							
							1	3-1-1-		*					
								1	łĽ						
				-			+	121		1	٢				
								1	1		5G 4/1				
							1		1 1.		L				
							1	<u></u>							
	4			NR4		1		1+			2000000				
	2/19			ž			1.1		1 1		5B 5/1				
	102							1	1 ++	1	58 7/1 to				
	aphericomiozea NN16/19A	1								1	58 6/1				
	pher						1	1							
	6.4					c	-	1 Tr	2 2	1	5G 4/1				

T LERS	HADIOLARIANS	CTER	SECTION	METERS	GRAPHIC	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLO	GIC DESCRIPTION	TIME - ROCK UNIT		CHA	RADIOLARIANS SMOTAR		METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION
Pleistocenie T G. geheriemicrees 8101 NN15/19A 8101	NR4 RAA	Coecinoditeus etiletropose/Acchinecyclus ingens C	1 2 3 4 5 CC	0.5			56 4/1 FORAMINI 58 5/1 FORAMINI 58 5/1 Builsh gray 107 6/2 mottles solor bour 56 4/1 Section 2. 56 4/1 Section 2. 56 4/1 SMEAR SL 56 7/1 Texture: 56 7/1 Texture: 56 7/1 Texture: 107 6/2 Sit 107 6/2 mottles Clay 56 4/1 SMEAR SL 58 5/1 Clay Compositie 58 5/1 Clay Mica 58 5/1 Clay Compositie 58 5/1 Clay Compositie 58 5/1 Clay Mica 58 5/1 Clay Compositie 58 5/1 Clay Mica 56 6/1 Songet point 56 6/1 58 7/1 56 4/1 Songet point 56 4/1 Songet point 56 4/1 Songet point 58 7/1 107 6/2	R C C R C C G C R rais T T SS D - - T R R - T R R - Jongpec. - R -	anty Pinistoonee	G. uphericomozow Nunt6/19A	POIAM	т NR4 RAC Coscinations addproportal adjant 20 DIA	3	1.0		11.110 14.0000 14.00000 14.00000 14.00000 14.00000 14.00000 14.00000 14.00000 14.00000 14.00000 14.00000 14.000000 14.0000000000	- 58 5/1 - 58 5/1 - 58 5/1 - 58 5/1 - 58 5/1 - 58 5/1 - 107 6/2 - N4 - N4 - N4 - N4 - N4 - N4 - N4 - 107 6/2 - N4 - 107 6/2 - N4 - 107 6/2 - N4 - 56 5/1 - 56 5/1 - 58 5/1 - 56 6/1 - 107 6/2 - 56 6/1 - 107 6/2	FORAMINIFER, SILT. AND CLAY,BEARING NANNO FOSSIL ODZE, bluith grav (58 5/1 to 58 7/1), soft but lim, reasive with prominent burrow motiling in pair olid (10' 8/2) alwales, saturated pyrite (N4) pseck, diffus contacts with NANNOFOSSIL CLAYEY SILT, greenil grav (56 4/1) to 56 8/1), soft for im, massive with com mon pair olid (11' 10 56 8/1), soft for im, massive with pyrite specks. SMEAR SLIDE SUMMARY: 1, 129 3, 80 5, 68 CC M D D M Textures Sand – – – C Sint A C A A Cuy D D A C Composition Currot C C C C Nica R C M C Heavy minerals T – – – C Glauconte C R R Foraminifers C C R R Foraminifers C C R R Glauconte C R R Foraminifers A C-A C Diatom T – T T Rediclafan – – Sponge spicules R R R

	0			oss	11	T				Г				
ĸ	APHIC				TER									
UNIT UNIT	BIOSTRATIGR. ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPT	TION
						1	0.5				5G 6/1-4/1 -5G 8/1 58 7/1 -5G 4/1 58 7/1- Burrows 5/1 -10Y 6/2 - N5 58 7/1	FOSSIL OOZE, blu massive with exter color burrow mott with NANNOFOSS 4/1 to 5G 6/1) wi	ish gray nsive pi ling, sca SIL CL/ th mucl mottles	AND SILT-BEARING NANNO (58 5/1 to 58 7/1), soft to firm, ale olive (10Y 6/2) and other tisrend pyrite specks, alternating AYEY SILT, greenish gray (50 h local color variation due prin with pule olive (10Y 6/2) hues
							-				= 58 5/1 = 10Y 6/2 58 7/1 to N7 = 10Y 6/2	SMEAR SLIDE SU		Y: 3,54 D
ue.					pled)	2	1000				- 10Y 6/2 5G 6/1	Texture: Silt Clay Composition:	A	A D
early Ploistocene				NR4	Unzoned (not sampled)							Quartz Feldspar Mica	С Я Т	C C R
100					Unzone				1		N4 10Y 6/2 hue N4	Heavy minerals Clay Glauconite Pyrite	T C T	T C T T
						3			1		5G 6/1-4/1 • N6 • 5GY 6/1 layer	Foraminifers Calc. nannofossils Diatoms Radiolarians	C D T T	R A T T
						L					- N4 5G 6/1	Sponge spicules	R	B
	uniozea 3A					4					N4 pyrite 58 7/1			
	G. sphericorniozea NN16/19A							탄고			NG, pyrite 10Y 6/2 hues			
-	~	A	A			CC	-				5G 4/1			

¥	VPHIC			OSS	IL	1							L 130.7140.3 m					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRIP	TION		
Pleistocene							,	0.5	AT ATATA		(- 10Y 6/2 - 5G 8/1 + 10Y 6/2 - 5G 4/1 + N4 - 10Y 6/2 - 10Y 6/2 - N4	FORAMINIFER, FOSSIL OOZE, bit or light gray (N8 o and hues in pale of especially evident (N4), elternating CLAYEY SILT, g massive with hues 6/2) color, scattered	ish gra r N7), ive (10° icross c with reenish and bu	y (58 7/ stiff, ma Y 6/2) to color bou SPONG gray (50 rrow mo	1 to 58 ssive wi nes, ext ndaries E SPI G 4/1 t	5/1) to very ligh th color mottlin tensive burrowin , scattered pyrit CULE-BEARING o 5G 6/1), stiff
					с		2	TATILITY STREET			mand an man		- 5G 4/1 5G 6/1 to - 5G 4/1 N7/8 - 5G 4/1 N8 - N4 - 10Y 6/2 - N4 - 5B 7/1 to N7	SMEAR SLIDE SU Texture: Sand Silt Clay Composition: Quartz		1Y: 2,70 D - C D C	3, 36 M R C D	5, 16 M C D
late Pliocene						Coscinodiscus elliptopora/Actinocyclus ingens	3	and and and			anteres ander	•	- N4 - SGY 6/1 - SGY 6/1 - SGY 6/1 - N7 N7 to N8 - 10Y 6/2 - 10Y 6/2 - SG 8/1 - W	Feldspar Mica Heavy minerals Clay Volcanic glass Glauconite Pyrite Foraminifers Cale. nannofossils Diatoms	CCTATTTR -	RTTCITICDI	CRTC-RCAT	C C 1 R C A
				Unzoned		Coscinodiscus all	4	tradition labor		1	Try and		- N8 58 5/1 to 58 7/1 - 5G 4/1 - 5G 6/1 - N4 + 10Y 6/2 hue - 5G 4/1	Radiolarians Sponge spicules	i c	R	T R	R
					(unrepresented)	hizosolenie berboi Zone	5	no fra da na			La services and a service for	•	5G 6/1 - 10Y 6/2 hue 5B 5/1 NB - N4 5B 5/1 - N8 - N8 - N8 - N8					
	. sphericomiozea NN16/19A				G. wuhilicus Zone (Coscinodiscus koloei/Rhizosplenie	ó	titil must read			- stress see		- 58 5/1 - 59 8/1 - 10Y 6/2 - 58 5/1 N7-8 - 56 4/1 with 56 6/1 hues - N4					
	6, 40 NN	A					7	1	¢				- N4					

ITE 594 HOLE	CORE 16 CORED INTERVA			l ₽	94 H	FOSSI	L	T	US GONED	TT	AL 159.5-169.1 m	
	NOLICIA SUPERATION CONTINUES CONTINU	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAP		RADIOLARIANS	DIATOMS	SECTION		DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	51 June 10	LITHOLOGIC DESCRIPTION
G. sphericomicans Let Plocene C. sphericomicans United and a structure NN16/19A United and a structure > United and a structure > Cosmicidirus insumit	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	N7 CLAYEY SILT TO CLAY- AND SILT BEARING NANNO FOSSIL 002E, geentials gray (5G 4/1, 5G 6/1 and 5GY 6/1), stift, massive but burrow mottling pervasive in light provide gray (N7) and other colors, cattered prive speeck (M45), alternating with (FORAMINIFER-BEARING) NANNO busited and burrow mottle in light provide gray (N7) and 81) over- lowich gray (5Y 8/1), stift, massive but interately biotur- busted and burrow mottle in light pays (N7), and 81) over- lowich gray (5Y 8/1), stift, massive but interately biotur- busted and burrow mottle in light pays (N7), and burge purples (5P 6/2) and pale olives (10Y 6/2), rare pyrite (N4) specks. N4 SMEAR SLIDE SUMMARY: N4 2,80 4,80 6,80 0 N4 SMEAR SLIDE SUMMARY: N4 0 N5 Clay A N5 G(11 to 5GY 6/1) Sitt A N6 Clay A D N7 SG 6/1 to 5GY 6/1 Composition: Clay T N8 SG 6/1 to 5GY 6/1 Composition: Clay T N8 Volcanic gras T T N9 Clay T T N9 Glay T T N7 N8 Composition: Composition: Core T T N7 N8 Volcanic gras T T N7	sarty Pitocene	NNIS NNIS/19A		C paveran A	m. Astrophia anguitas and Nitzchia minholdsi Zones undifferentiated	4 5 6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5		ert anne lanner en en erte lanne an trans lanner an trans la lanner la lanner la lanner bet erte erte ander bet erte erte erte erte erte erte ert	N4 N7 107 6/2 107 6	NANNOFOSSIL OOZE TO FORAMINIFER-BEARING NANNOFOSSIL OOZE, very light to light gray (N8 to N7), sometimes with light blash gray (B7/1) or vellowish gray (BY B/1) have, stift, massive but extensively burrow mot- ted in pale olive (10V 6/2) and gray (N7) tones, small sandy pockets throughout, scattered pyrite (N4), alte- nating with FORAMINIFER, SILT - AND/OR CLAY BEARING NANOFOSSIL OOZE, greeniby gray (56 G7) to 50Y 6/11, stiff, stiff

	594 ≌		HOL	ossi	1	T	ORE	19 CORED	П	٦		L 169.1–178.7 m				
	APH		CHA	RAC	TER	_		1		1						
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIP	FION	
					F	1	0.5		L		•	- N6 - 10Y 6/2 N8 - 10Y 6/2 - N7	light to light gray (6/2) or yellowish burrow mottled in	N8 to N gray (similar scattere	7) with 5GY 6/ colors, id pyriti	NOFOSSIL OOZE, ver common pale olive (10' 1) tones superimpose stiff, massive, prominen s (N4 to N6), occasiona
							1	まずぜょたい	11	ł		10Y 6/2			3, 129 M	4, 26 D
							1.0	モーエー	i i	1		- N6 N7	Texture:	0	m	0
										1		+ N6, 10Y 6/2 mottles	Sand Silt Clay	c D	A C C	- C A
- 3	0.0		2			2		\$T++++		1		teres	Composition:			
							1	1+		1		- N6	Quartz Feldspar	т	T	R
								+-++_		1			Feldspar Mica	Ŧ	Ť	R
							1	+ +++++++++++++++++++++++++++++++++++++				NB	Heavy minerals	Ť	2	т
						-	-	+ ++++					Clay	-	-	R
			A				1.12	1744	11				Volcanic glass		т	- T+
								174		3		- N7 pockets	Glauconite Pyrite	T	R	-
							-	F-F-		E		- N7 - N4	Foraminifers	c	C	C
						3		++++		-		= N4	Calc. nannofossils	D	A	A
						1		トートーー					Radiolarians	т	T	т
							1	トートニー				+ N7	Sponge spicules	R	R	R
90										11	•	 N6 pyrite N7 pocket 	Microteklite	20	1	
early Pliocene				T	Zones undifferentisted		-					- N4				
i.				Unzoned	in the				1 1	*****		N7 + 5GY 6/1				
ar.				22	£					11		- N4				
2				-	P		-	T-1	1 1			10Y 6/2 hue				
					10	4		TTL		1		- 10Y 6/2 mottles				
					Zo	-11	1.3	TTLL	11							
					11.1		1.1	T-1		1		- N4 N8				
					indic		1 -	T-1		1		- N4				
	0.5				10.00		1 4	T-1		1		10Y 6/2 mottles 10Y 6/2				
					18	-F		TTL	l t			N4				
					Vinz		1	1-1	1 1	11		N/ 58 //1 to 56 6/1				
					5			[-]L+	1	11		- 10Y 6/2				
	0.01				dil a		1 7	1-1L-L	1			10Y 6/2 layers N8				
					hok	5		1-1	11	11		VICE.				
					rein			1-1	11	11		10Y 6/2 mottles				
					Nizzchia reinholdii and Nizzchia angulara		1 7	T+1,+,-	1 1			-				
					1280		1	1-1	6	11		10Y 6/2 mottles				
					Ni	L	1	1-1	1	13		N7				
								1-1		1		10000				
								1-1		1		10Y 6/2 mottles				
								1-1								
								1-1		,		10Y 6/2 mottles				
						1		7-1		1		10100510705204070707070				
		1						*-1	1	. 1						
	802	1		1				オーヤーナー				- 10Y 6/2				
	nio				2			ヤーヤー		11		- N7				
	sphericomiozes 415	1			Unzoned		-	アーキー		1		- 10Y 6/2				
	2 yes		L (1	ŝ		7	オーキーー		1		- N4 N8				
	G. sphe NN15	A	A	1	1	c		+++++++++++++++++++++++++++++++++++++++		1						
	TOZ	1.75	1.72		1 I.	10	-		1. 1	1.6	1 I					

	HIC			OSSI	L					Γ	L 178.7-188.3 m				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DI	ESCRIPT	TION	
	NN16		A	per	с	1	0.5				N8 	light to light gray with subtle superi at several levels (th layers occasionally, CLAY-, SILT- AN FOSSIL OOZE, gr	 (NB to imposed iese may strongly D FOR/ eenish gi 	MINI ay (50	INOFOSSIL OOZE, very or bluish gray (58 7/1 of pale olive (10Y 6/2 y-bearing), stift wish hare w mottled. FER-BEARING NANNO 6 6/1) with similar chare ARING NANNOFOSSIL
				Unzoned			-				-10Y 6/2	SMEAR SLIDE SU	MMAR	6	
				2			1	·/					2,24	2, 11	4 5, 48
						2	11111				10Y 6/2 	Texture: Silt Clay Composition:	D D	D 	C D
						H		+++++	1 66		- 10Y 6/2 + N7 NB	Quartz Feldspar	R	C	R
e e	8		A		÷			ホニーニー	l Ht		- N4 N7 + 10Y 6/2	Mica	2	Ť	R
early Pliocene	ghericomiozea				1881)		1	T	1 13		mottles N8	Clay	-	C	С
1 P	ricor				Barron.		-	$T_{\perp} \leftarrow \perp$	I Fr		5Y 8/1 N7	Volcanic glass Glauconite	-	TR	Ŧ
3	ohe	A			Barr	3	-	7			mottles and hues	Pyrite	т	T	Ť
	8				-			T++++			N8	Foraminifers	C	C	C
- 11	~ I				Zor		17	T++++				Calc nannofossils	D	A	A
					iii b		-	T1				Radiolarians	-	12	T
				_	reinholdil Zone		1.1		L tt	-	IW	Sponge spicules	R	R	R
					Nitzschia reli		111		1		 10Y 6/2 N7 N5 ash pocket 10Y 6/2 58 7/1 				
				Stichocorys peregrina Zone	NIN	4	Innii				N8 N8 5G 6/1 				
late Miccene		4		ocorys)			111				10Y 6/2 hues				
late	NN15		A	Sticl	С		11.11		1		- 10Y 8/2				
	conomiozea NN12/14					5	- The			•	10Y 6/2 hues 10Y 6/2 hues				
	conomio. NN12/14						1	T [+_+_			10Y 6/2 hues				
	G. CC	A	A			cc		T			- 10Y 6/2 NB				

687

SITE 5	-	HOLE		c	ORE	21 COR	ED INTERV	AL 188.3-197.9 m	s	SITE	594	H	OLE		C	ORE	23 CORED	INTER	VAL 207.5-217.1 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC	L	NANNOFOSSILS PADIOLARIANS PSO	CTER	SECTION	METERS		DEFLUING	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	22	RADIOLARIANS US	CTER	SECTION	METERS		DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Late Micerne G. conomicine G. conomices	NN12/14	Skichronick Balantina Zone Skichronick Balantina Zone	1981) D		4		וריק הקרקה שישור שיי ייייי שלי לי שליי שלי לי לי ייייי ייייי לי מייניייייייייייי	- 10Y 6/2 FORAMINIFER-BEARING NANNOFOSSIL COZE TO NANNOFOSSIL COZE. light to very light gay (N7 to N8) with yellowich gay (SY 8/1) to pale cline (10° 6/2) N4 N8 N4 N8 M4 N8 M4 N8 M4 N8 M4 N8 M4 N8 M4 ford discrete interbadi, which become with general interamini. N4 bursow motifed and scattered pivilized spacks (N4). N8 SMEAR SLIDE SUMMARY: N8 Sith R SY 8/1 to Texture: D 10Y 6/2 bas Sand - N8 Sith R SY 8/1 to 10Y 6/2 Oprite - N7 N8 Fetdapar 10Y 6/2 Aprite T Core 22 - no recovery. - N4 N8 Silicoffagelates - N7 N8 Fetdapar 10Y 6/2 Pyrite T Foraminifers R C Core 22 - no recovery.		Late Miccone	G miotunida NN12/14 NN12/14		in Zane	(Barren, 1981) >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		5	$\frac{1}{1}$		 5Y 8/1 5Y 8/2 5P 6/2 specks Pale green (5G 8/1) lay 5P 6/2 5P 8/1 5P 8/1 5P 8/1 5P 8/1 5P 8/1 5Y 8/1 <	

	2	1	F	ossi	1				D 10						
2	HA				TER										
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DE	SCRIP	TION	
late Miocene	G. miotumida NN11 BK	10	3) A A	Stechocorys paregirina Zona and	alassiosina antiqua Zonal equivalent (Barron, 1981)	-c	1				NB 97 - Biscults 31 5Y B/1 51 NB 00 NB 00 SY B/1 61 SY B/1 61 NB 00 NB	ccasional biscuits terbeds of DIAT ayish yellow (5Y MEAR SLIDE SU ixture:	of har OM-BE 8/1), st 3, 99 D A A T T T R D C T T	der chu ARING reaks of Y: 4, 16 M T T T C A C T R	ht grav (N8), soft, with ki, pyrits pocks. Soma NANNOFOSSIL DOZE, pyrite. 4, 105 D C D T R D R T R R
	02										NB				
		A	A			1 1	CC	and the state of	- Inc.	- C. Ber	5G 8/1, biscuit				

SITE	594 ≌	-	HOL	ossi	L			RE	25 CORED	ΠT	T	Ī	. 226,7-236,3 m	
CK	RAPH	40	CHA	RAC	TER	-	-							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARV	STRUCTURES EAMBLES	avmr.rco		LITHOLOGIC DESCRIPTION
					ent		1	0.5					N8 with some faint yallowish (5Y 8/1) bands	NANNOFOSSIL OOZE, very light gray (N8), soft almos hemogeneous, some pyrite, cycles are not obvious. SMEAR SLIDE SUMMARY; 2, 110 D Texture: Slit A Clay A
					Thalassiosira antiqua Zonai equivalent	-c	2	the second second						Composition: Mice T Foraminifere R Cale, nannofossilis D Diatoma R Radiolarians T Sponge spiculet R
late Miocene			A	Stichocorys peregrina Zone	. Tha		3				-		5Y 8/1 N8	
				S	frii (Barron, 1980)		4						5Y 9/1, very subtle	
					Denticulopsis husteditii (Barron,	-c	5						N8 N7 N8	
	i miotumida NN11				a		6			-	-		بر 87	
	6	A	A			13	cc						- 5Y 8/1	

TIME - ROCK UNIT ZONE FORAMINIFERS NANNOFOSSILS MANNOFOSSILS ADIOLATIANS ADIOLATIANS DIATOMS	ASTRUCTORY ASTRUC	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIDSTRATIGRAPHIC ZONE		ARACT SNUILARD	ER	SECTION	GRAPHIC LITHOLOGY	DIRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
late Mocene Sichocorys pergrisu Zone		FORAMINIFER-BEARING NANNOFOSSIL DOZE, very light gray (NB, homogeneous, streaks of iron sulfide, cycles are suppressed; some drilling disturbance. Subble layers of yelfowish hue are richer in diatoms and sponge spoules. SMEAR SLIDE SUMMARY: 218 D 5Y 8/1 Sme N8 SY 8/1 Taxture: N8 SY 8/1 Composition: Duart2 To Str 8/1 Composition: Duart2 N8 SY 8/1 Cale namofossilip N8 SY 8/1 Songe spicules N8 D SY 8/1 Cale namofossilip N8 Sy 8/1 Songe spicules N8 Sy 8/1 Songe spicules Sy 8/1 Songe spicules Sy 8/1 Sy 8/1 <t< td=""><td>late Miccone</td><td>G. mbotumida NN10</td><td>A A</td><td>S. pereprina Zone</td><td>Demiciologina fuotretira (tarrofs, 1980)</td><td>2 3 4 5</td><td></td><td>00000000</td><td>NB N7 Sharp bottom contact N8 N8 N8</td><td></td></t<>	late Miccone	G. mbotumida NN10	A A	S. pereprina Zone	Demiciologina fuotretira (tarrofs, 1980)	2 3 4 5		00000000	NB N7 Sharp bottom contact N8 N8 N8	

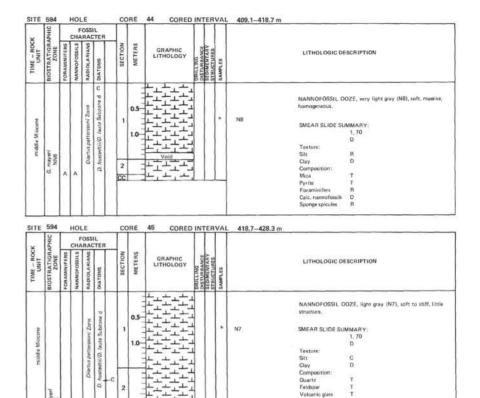
SITE 594

~	PHIC			OSS	IL										
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRIP	TION
						1	0.5					NB	pyrite stains thro 8/1) burrows and	ughout, VOLC ogy at radation	
							1.0					X N7 1/2, iron sulfide band	Texture:		5, 56 M
					A		10.01					NB	Sand Silt Clay Composition:	C D	R A A
						2							Quartz Mica Volcanic glass Pyrite	Ť	T T A B
late Miccene	10					-	-					- 5Y 8/1 - 5Y 8/1	Foraminifers Calc. nannofossils Diatoms Radiolarians	R D R T	R A R T
late M	01NN		A		, 1980)	3						N8	Sponge spicules	R	R
				antepenultima Zone	tedtii (Barron,		- Do Da			-		- 5Y 8/1 - 5Y 8/1			
	_			Q'	Denticulopsis hustedtii		Trees.					NB			
				Didymocyrtis penultima +	Deni	4				_		- 5Y 8/1			
				Didymocyrtil		-				85-5		5Y 8/1			
	G. miotumida NNB			2		5	100				•	- 5Y 6/1			
	G. P	A	A			CC	-					NB			

×	PHIC		F	OSS	TEF	2						1			
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	SU GRA LITHO	PHIC LOGY	DISTURDANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRI	PTION
					A		1					NB + 5Y 8/1, subtle N8 + 5Y 8/1 N8	of iron sulfide of ooze and SPONG	light (E SPIC DOZE,	very light gray (NB), with speck gray (NT); with biscuits of firms CULE- AND DUTAO-BEARING light yellowish gray bands (5Y RY: 32 2,145 M –
	6NN						2					N7 N8 N7 Biscuit N7 5 Y B/1, subtle	Ouartz Mica Pyrite Foraminifers Calc. nannofossils Diatoms Radiolarians Sponge spicules	T T T R D C T C	T T R D C T C
late Miocene	z		A				3					N8 + 5Y 8/1 Iron suifide, N6 N8 - 5Y 8/1, subtle + 5Y 8/1, subtle N8			
				rtis antepenultima Zone	il (Barron, 1980)		4					- 5Y 8/1 N8 - 5Y 8/1			
				Didymocyrtis penultima + Didymocyrtis antepenultima Zone	Denticulopsis hustedtii (Barron, 1980)	A	5					N8 - 5Y 8/1			
	G. miotumida NN9			Didyi			6	++++++++++++++++++++++++++++++++++++++				NB - N7, subtle - N7, subtle - N7, subtle - 57 8/1, subtle N8			

TIME – ROCK UNIT BIOSTRATERAPHIC ZONE PORAMINIFERS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS MANNOFOSSILS	Πs	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	RADIOLARIANS RADIOLARIANS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
G. ministermida Itte Miccene NN378 B NN27NN68 NN378 B NN27NN68 NN378 B N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N Ontricutorial burneritie (Starrow 1980) N	1			NANNOFOSSIL OOZE, very light gray (N8), with specks of iron sulfide (N7), homogeneous except for variations of firmer and less firm ooze. SMEAR SLIDE SUMMARY: 2,80 D Texture: Sitt C Clay D Composition: Quartz T Foraminifers R N8 Caic, nanoofossils D	late Mocene	G, mictumida NN7/8	A A A	Unabored Disfyrracyris perufina + 0. antegrantima Zove Να Να	3	4			Void NANNOFOSSIL OCZE, very light gray (NB), homogene except a few specks of iron suffice, a few biscuis of firm ooze, and a few silica-rich(?) yelfowish bands. N8 1, 94, 2, 80 D D D Composition: Duartz T Vicianic glass T Primer biscuit Categories Primer biscuit N8 Primer biscuit N0 TE: Care 32, 293,9–303,5 m: no recovery. N8 SY 8/1, subtle Sy 8/1, subtle SY 8/1, subtle N8 SY 8/1, subtle

SITE	594 U	· ·		SSIL	-	CO	RE	33 CORED	INTE	T	L 303.5-313.1 m	SIT	-	594 0	н	OLE	_	_		DRE	35 COREC	INT
×	APHIC		CHAR	ACTE								×		THU	c	FO	ACT	TER				
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	ONI	BIOSTRATIGRAPHIC	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE
lare Miccene	G. miotumide NN7/B	A	A	Not sampled D. hust.		cc		<u></u>			NANNOFOSSIL OOZE, very light gray (N8), as in previous cores.								1	0.5		1 1 1 1 1 1
SITE	594		IOLE		_	co	RE	34 CORED	INTE	RVA	L 313.1–322.7 m									1.0		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		FOI CHAR	ACTE		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	CTURES LES	LITHOLOGIC DESCRIPTION							с	F			
Ē	BIOST	FORA	NANN	DIATOMS					DISTU	STRUCTUF SAMPLES									2			
							0.5				NANNOFOSSIL OOZE, very light gray (NB). Totally homo- geneous. except for a few specks of iron sulfide (N7).							en, 1980)				
						1	1.0				N8 SMEAR SLIDE SUMMARY: 2, 80 D Composition: Quartz T	late Mincene					Unzoned	Denticulopsis hustedtii (Barron, 1980)				
				c		-	1				Usartz 1 Mica T Pyrite T Foraminifers R							ticulopsis	3	1 and 1		
						2	1111			•	N7, subtle Catc. nannofosilla D Diatoms T N8 Sponge spicules R							Den	H	-		
				1980)			1111			-	- 5Y 8/1, subtle, silica-rich(?)								4	111		
Nocene				d (Barron,							N8								1			
late Mioci				Unzoned Denticulopsis hustedtil		3	1111			ł								с	-			
				Denticulo			1110			-	5Y 8/1, subtle N8								5	1.1.1		
							1		-	-	- IW 			da						1.1		
						4	111		'		+ Chunk of iron sulide N8			G. miotumida NN7/8					6			
							and a second			~~	N7, suble		1		-	^	_		100		<u>14. 4. 4</u>	1
				с					ľ		+ Chunk of iron sulfide											
	miotumida NN7/8					5					N8											
	C. 11					cc	1.1.1															


	594 0	- 1	HOL	-			RE	35 CORED	INTER	VA	L 322.7-332.3 m		
1	APHI		CHA		TER								
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DESCRIPTIO	N
Hange Milliongene	G. miotumida MN7/B			Unzoned	ο Denticulopuis hutredni (Barron, 1980) ο	1 2 3 4 5 6 CC	0.5		0 00 0 0000000 0 0		N8 + B + B + B N8 + B + B	NANNOFOSSIL ODZE, very ation: between firmer and entirely homogeneous. SMEAR SLIDE SUMMARY: 2,80 Composition: Quartz T Mica T Forminifers R Cate. nanofossils D Diatoms T Sponge spicules B B = biscuits	

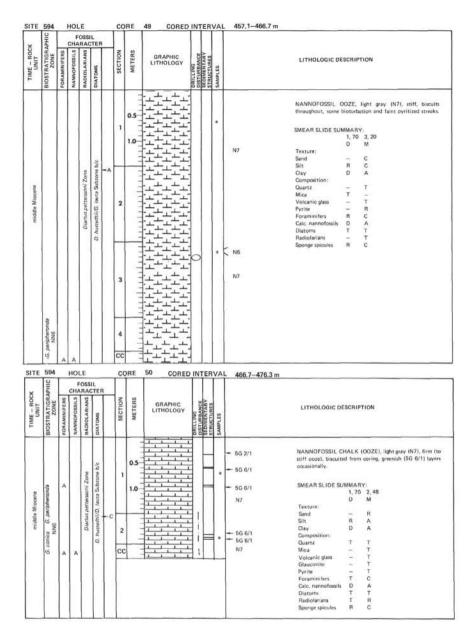
SITE 594 H	HOLE	CORE 36 CORED I	NTERVA	L 332.3–341.9 m	SITE 594 HOLE CORE 37 CORED INTERVAL 341.9-351.5 m
IME - ROCH UNIT STRATIGRA ZONE	FOSSIL CHARACTER SINGLANNANN BADIOLANNANN DIATOMS		DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	
	4 (0		•	NANNOFOSSIL OOZE, very light gray (N8), firmer, specks of pyrite, firmer biscuits, and a chert fragment. VOLCANIC ASH in Core Catcher, olive gray (SY 4/1) grading upward to light olive gray (SY 7/1) with sharp bottom contact. — Ohert fragment — Ohert fragment	Parton A
lare Miocene	Unzoned Culopsis hustedtil (Barron, 1980	2 		NB SMEAR SLIDE SUMMARY: 1,81 CC,14 D M Composition: Quartz T R Mice T T	SITE 594 HOLE CORE 38 CORED INTERVAL 351.5-361.1 m CHARACTER CHARACTER UTHOLOGY UT
	Dent	3 	00 00	B Volcaric glass — A B Pyrite T R Foraminifers R R Calc, nanofosilis D C Distorm T - N8 Sponge spicules T T IW B B = Bracuit	N8 NANNOFOSSIL DOZE, very light gray (N8), almost ho geneous except for iron suffice layers (N8) and bix and light greenish gray (SG 8/1) layer of slightly m sliceous composition. 5 G 8/1 10- 4 +
G. miotumida NN7/8 >	A			N8 = 5Y 4/1 N8	00 <

	1C		F	oss	IL.						Γ	Г	361.1-370	
XCK	RAPI	90	1.14	RAC	TER	R	z							
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
middle Miccene	eri			Diartus petterssoni Zone	D. lauta Subzone d	- A		0.5		0 0			NB	NANNOFOSSIL OOZE, very light gray (N8), soft with firm biscuits as shown, massive, no clear bioturbation SMEAR SLIDE SUMMARY: 2,70 D Texture: Silt R Clay D Composition: Mics T
Ē	G. mayeri G. mayeri NN7/8	A	A	Diartus	D, hustedtii/D.		2	the second se		0		*		Volcanic glass T Pyrite T Foraminifers R Calc. nannofossils D Sponge spicules T
	594	_	HOL			-	co	RE	40 CORED		ER	VAL	370,1-380,	3 m
×	APHI		CHA	RAC	TER	2								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
middle Miocene				Diartus petterssoni Zone	D. hustedtii/D. fauta Subsone d D		1 2 3	0.5					N8 - 1W	NANNOFOSSIL DOZE, very light gray (N8), soft, massive bioturbation not avident. SMEAR SLIDE SUMMARY: 2,70 D Texture: Silt C Olay D Composition: Quartz T Mice T Heevy minerals T Volcanic glass T Volcanic glass T Calc. nannofossils D Sponge spicales R
	G. mayeri NN7/8	A	A				4	altered on						

	594 ⊇	Г		oss		TT	RE	41 CORED	TT		. 380.3–389.9 m			
×	AP	<u> </u>		-	TER	-	()							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DI	SCRIP	FION.
						1	0.5		0		NB	light gray (NB), s	oft with tion 2, IMMAR	5 NANNOFOSSIL OOZE, very biscuits where shown, pyritik little evidence of bioturbation Y: 2, 45
							-	-7 + + + +				Texture:	D	M
- 8					F	H	-					Silt Clay	C D	A A
							-		p			Composition: Quartz	т	Ŧ
	1					11	1					Mice	т	÷
						2			1			Pyrite Micronodules	T	A A
- 1					P	1	1					Foraminifers	c	2
	- 1			ane	20u	11	-			11		Calc, nannofossils	D	A
				2 1	-B			+++++				Sponge spicules	R	-
ča				250V	2		12							
Mio		1.5		tter	· Jac	H	-				N8			
middle Miocene				Diartus petterssoni Zone	hustedhi/D. Iauta Subzone									
¢				Dia	D. hust	3	Televiel.				- N4 bleb py.			
							-							
							1				NB			
							12				10000			
						4	1							
						1	1				Concretion			
							-	-1-1-1						
							1	-1						
1	eri 1/8				c	H	-							
	mayeri NN7/8					5	12							
- 5	G	A	Ā			cc	-				N8		-	

112	594	-	HOI			-	1	RE	42 CORED		<u>en</u>	VAL	389.9–399.5 m	
2	BHI			RA	IL CTER									
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	1	LITHOLOGIC DESCRIPTION
mi ddle Miccene	8/ZNN		A	Diartus petterssoni Zone	D. hustedtii/D, lauta Subzone d n		1	1.0			6	•	Pyrite, in celestite s NB T. CC CC CC CC CC CC CC CC CC CC CC CC CC	ANNOFOSSIL DOZE, very light gray (NB), soft, massive, tile clear bioturbation, concretions of mixed pyrite, chert d/or celestite in Sections I and 3. MEAR SLIDE SUMMARY: 2,70 4, 22 D M exture: IN – C Lay D D omposition: user: IN – C Lay D D D omposition: user: IN – C Lay D D D omposition: user: IN – C Lay D D D omposition: user: IN – C Lay D D D omposition: user: IN – C Lay D D D omposition: USE IN – C Lay D D D D D D D D D D D D D D D D D D D
	G. mayeri NN6	~	A				4	three is a second				•		
ITE	594		HOL	E			co	RE	43 CORED	INT	ER	VAL	399.5-409.1 m	
	DIH			OSS	TER		1							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	_	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY	SAMPLES	į	LITHOLOGIC DESCRIPTION
middle Miocene	G. mayer! NN6	A	A	Diartus petterssoni Zone	D. hustedtii/D. lauta Subzone d T	. t	1	1.0					NB SP NB CC CC M M G Fi CC CC CC CC CC CC CC CC CC CC CC CC CC	ANNOFOSSIL OOZE, very light gray (NB), soft, massive, omogeneoux, little clar bioturbation. AEAR SLIDE SUMMARY: 1,80 D sturs: bt R ay 0 mposition: carrier T auconite T auconite T auconite T sic. nanofossili D oxogra spicules R

CC


Foraminifers R Calc. nannofossils D

Sponge spicules

	594			oss	L		Ĩ	RE	46 CORED	TT	TT	428,3-437,9 m		
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DELLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC DE	SCRIPTION
middle Miocene	G. peripheraronda G. mayeri NN6	A	A	Diartus petterssoni Zone	D. hustedtii/D. lecta Subzone d	• C	1 2	0.5				N7 Vold	NANNOFOSSIL O ture. SMEAR SLIDE SU Texture: Sit Cary Composition: Ouartz Glacoonite Pyrite Foraminifers Cate.nanofossila Sponge spicules	OZE, light gray (N7). stiff, little.stru MMARY: 2,80 D C D T T F R R R D R
	594 알	1	HOL	E										
5	÷ 1			OSSI			co	HE	47 CORED	INTER	TT	437.9-447.5 m		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS		RADIOLARIANS BOOM	TER SWOLVIG		SECTION	METERS	GRAPHIC	DISTURBANCE Z	Π	437.9-447.5 m	LITHOLOGIC DE	SCRIPTION
middle Miscene UNIT UNIT	G. peripheronde BIOSTRATIGRAPH NN6	-	CHA	RAC	TER				GRAPHIC		Π	437,9-447.5 m		OZE, light gray (N7), stiff, little struc suits as shown.

SITE 594 HOLE CORE 48 CORED INTERVAL 447.5–457.1 m 19 FOSSIL 1<

*	UHIC			OSS		R								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOG	IC DESCRIF	TION
midtile Miocene				Diartus petterssoni Zone	D. hustedtii/D. lauta Subzone b/c undifferentiated	- c	1	1.0		0 0		NANNOFOS: Turr, occasior SMEAR SLID N7 Texture: Sitt Cary Composition: Quartz Glasconit Pyrist Glasconit Pyristiferi Glasconit Pyristiferi Glasconit Pyristiferi Glasconit Pyristiferi Glasconit Pyristiferi Glasconit Pyristiferi Glasconit Sponge spicul	E SUMMAR 1, 70 D T T Sills T+ T	
	G. peripherandia NN6	A	A				3 CC	The state of the second se				- 5Y 6/1 biscuit N7 _ 5Y 6/1 < 5Y 6/1 - 1W N7		

×	APHIC		F	-										
TIME - ROCK UNIT	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DI	ESCRIPTION
middle Miocene	G. conica NN8	A	A	Diartus petterssoni Zone	D. hustedtii/D. Inura Subzone b/c	+0	1	0.5				N6 pyrite 10G 6/2 10G 6/2 10G 6/2 composite N6 N7, includin 10G 6/2 composite	massive with some and pale purple (! laminae (?ash), sed SMEAR SLIDE SU	HALK, very light grav (N8), generally motting and laminae of light grav (N7) P 0/2), distinctive paie green (10G 6/2) ment partly disrupted by coring. MMARY: 1, 70 D T T T T T R B B

×	APHIC		F	RAC		i								
UNIT UNIT	BIDSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC D	ESCRIP	TION
middle Miocene	G. comica			Diartus petterssoni Zona	tii/D. lauta Subzone b/c	- c	1	0.5				10G 6/2 massive with ma 5P 6/2, py. exattered pyritize laminee harder and NB SMEAR SLIDE St 10G 6/2 Texture:	y pale d (5P 6 l fracture JMMAR 1, 50 D	
	G. conica NN6	A	A	Diarte	D. hustedti/D.		2	I TETTE				Silt Clay Composition: Cuartz PloG 6/2 SP 0/2 wisp N8. soft SP 0/2 wisp N8. soft SP 0/2 wisp N8. soft SP 0/2 wisp SP 0/2 wisp	R D 1 T T T T R D R	T T T T T T R A T R C

×	APHIC		F	OSSI RAC									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DE	SCRIPTION
Middene	G. conice NN6	A	A	Not sampled	D. hustedtii/D. lauta Subzone b/c	1 CC	0.5		4	+-			HALK, very light gray (N8), soft with ion by drilling, burrow mottled in light MMARY: 1, 18 D T T T R D R R D

X DHIC	FOSSIL			111			APHIC		OSSIL RACTER			11	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS	NANNOFOSSILS RADIOLARIANS DIATOMS	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT		FORAMINIFERS	RADIOLARIANS DIATOMS	SECTION	GRAPHIC LITHOLOGY W	DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Outtenery Outtenery R R	о Н Соислообласи Антбрлоиия н Н Л	1 2 3 4 5 6 7 7			56 4/1 DIATOM., SPONGE SPICULE, NANNOFOSSIL BEAR ING CLAYEV SIL, dark greenish gray to greenish gray ISG 4/1 to 5G 8/1). 56 6/1 FORAMINIFER BEARING NANNOFOSSIL ODZE, light bluich gray (56 8/1) to greenish gray (56 6/1) lithology is intermediate in amount of terrigenous com- geneous; some yellowish iron oxide(?) streaks. H ₂ S odor. Light greenish gray (56 8/1) to greenish gray (56 6/1) lithology is intermediate in amount of terrigenous com- gonant. 58 7/1 SMEAR SLIDE SUMMARY: 3,99 5, 125 D 58 8/1 Ouartz R Feldspar T R Heavy minerals T Volcanic glass T Clay minerals C Mica R Porter R Foraminifers CLic, nanoforestik A Biotoms Statom Sponge spicules R C Statom SG 8/1 58 7/1 Sponge spicules R C Sitom SG 8/1	Outstrinty	NV20/21		AI Copicioodiacus Anniĝinosus - 1 - 0	1 2 3 4 5 6 7 7 7			5G 4/1 NANNOFOSSIL BEARING CLAYEY SILT TO SILT. * Pocket of FeS and forams Interpret (GG 6/1) 5G 4/1 For Source 5G 4/1 NOFOSSIL OOZE, light blink gray (GB 7/1 to 5B 8/1) * Subite burrow trace SMEAR SLIDE SUMMARY: 1, 22, 4, 22 * Subite burrow trace SMEAR SLIDE SUMMARY: 1, 22, 4, 22 * Subite burrow trace D * Subite burrow trace Composition: Clarit C C Pyrite * G 4/1 C SG 5G 6/1 Songet spicules * So at a spice spice statistic spice

	594 2		-	.E	_	T	DRE	3 CORED	T	T		60.5-70.1 m		
×	APH	- 5	CHA	RAC	TER									
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS		DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTION
						1	0.5				•	5G 4/1	BEARING CLAYE geneous.	DIATOM, AND SPONGE SPICULE Y SILT, dark green 15G 4/11, homo- EARING NANNOFOSSIL OOZE, light), H ₂ Sodor.
					F	2				-		58 7/1	SMEAR SLIDE SU Composition: Quartz Feldspar Heavy minerals Clay minerals Mica Pyrite	1,75 D A T C C C C
Quaternary					Coscinodiscus lentiginosus	3						5G 4/1 5B 5/1 5G 5/1 5B 5/1	Foraminifers Calc. nannofossils Radiolarians Diatoms Sponge spicules	R C T C C C
						4	Contraction Contraction		1 1.1			5G 6/1 Burrow Iron sulfide Iron sulfide 5G 4/1		
					с	5	and so that a second					5Y 4/4 5G 4/1		
						6						5Y 4/4 5G 4/1		
	-		R			C		t		-	-	1		

~	PHIC			FOSS	CTER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNDFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METEDe	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
							0.	1			5G 4/1	DIATOM, SPONGE SPICULE, AND NANNOFOSSII BEARING CLAYEY SILT, dark green (5G 4/1), homo geneous, abundant H ₂ S. OUARTZ-, MICA- AND FORAMINIFER-BEARING NAN NOFOSSIL OOZE, light blue gray (5B 7/1), burrowed stained with iron sulfide.
											Olive gray SY 4/4 5G 4/1	SMEAR SLIDE SUMMARY: 4,78 D Composition: Quartz C Heavy minerals T Mica C Pyrite T Foruminifers C Calc: mannofosils A Diatoms T
nary					Coscinodiscus lentiginosus	3	111				5G 5/1	Sponge spicules R
Quaternary					Coscinodis	4			11-6		5G 7/1 5B 7/1 5G 6/1 Long burrow 5B 7/1	
						5			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		5G 8/1 5G 4/1	
						6					5G 7/1 5G 6/1 5G 4/1	
	2		B			1710		Void			- 5G 4/1	

CULE, AND NANNOFOSSIL	TIME - ROCK	UNIT BIOSTRATIGRAPHIC ZONE	CHA	DIATOMS	R	SECTION	GRAPHIC LITHOLOGY	G MANCE MARY MES		LITHOLOGIC DESCRIPTION
CULE AND NANNOFOSSIL			FOR.	PIADIO DIATO		0 2		DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		
T, dark green (SG 4/1), homo- S SILTY NANNOFOSSIL d light greenish gray (SB 7/1 to pyrite pockets filled with larger	Quaternauy	Administrative Admini	7 M	Ru Cotechoodiscus Inniĝinouus D		1.0- 			5G 4/1 5G 6/1 5G 6/1 5G 7/1 5G 7/1 5G 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1 5B 7/1	FORAMINIFER BEARING SILTY NANNOFOSSIL ODZE. Lipht biaith gray (58 7/1). SILT-BEARING, FORAMINIFER-AND NANNOFOSSIL BEARING CLAY, dark green (56 4/1), homogeneous SMEAR SLIDE SUMMARY: 1,70 2,70 D Composition: Cuarta R C Feldspar R C Clay minerals R C Clay minerals R C Foraminifers C R Clar annofossil A T Radiotarian A T Sponge spicoles R R
				ter .	Oukte	Outer Control	Veterinary Veterinary S Contrological frequencies S	Constranty Constr		50 6/1 5 5 5 5 5 5 7/1 5 5 5 5 5 7/1 5 5 5 5 5 7/1 5 6 7/1 5

2 F05	LE A CORE 7 CORED INTERVAL	- 98,9-108,5 m	SITE E	94 0	HOLE		- 00	DRE 8 CORE	INTERV	/AL 108.5-118.1 m
	RACTER NOLLUS SHOLLY GRAPHIC SHOLLS SHOLLY GRAPHIC SHOLLS S	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIUSTHATIGRAPH ZONE FORAMINIFERS	CHAR	ACTER	SECTION	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION
eurly Preidtocene Mildriga >		SG 6/1 slope FORAMINIFER: (AND CLAY) BEARING NANNO. N7 N7 58 7/1 (to N7/8) FORAMINIFER: (AND CLAY) BEARING NANNO. N7 BS 7/1 (to N7/8) FORAMINIFER: (AND CLAY) BEARING NANNO. SV 6/1 lamina Timesive with prominent burrow mottles of pale diversion of the diversion of th	aanty Pleitocane	NNIGTBA	~	Not sampled	1 2 3 4 5 6 6 CC			5G 4/1 + N4 FORAMINIEER. (AND CLAY.) BEARING NANNI- 5 B7/1 107 672 FOSSIL ODZE, bluid gray (58 7/1 to 58 6/1), soft maxive with prominent burrow motifies of pair of 5G 6/1 5G 4/1 SG 4/1 5G 4/1 SG 4/1 5G 6/1 SG CLLE BLAING RANNOFOSSIL, AND/OF SSIL OF CLLE BEARING CLAYE SILT, greenit gray (56 6 to 5G 6/1) 5G 6/1 SPICLE BEARING CLAYE SILT, greenit gray (56 6 to 5G 4/1), soft, massive, burrow motified in FORAMINEER, NANNOFOSSIL, ODZ 107 6/2 SG 8/11 107 6/2 SMEAR SLIDE SUMMARY: 5G 6/1 SMEAR SLIDE SUMARY: <

TE 594 HO	_			ORI	9	C	ORED	INTE	AVA	- 118.1–127.7 m	SITE			HOL	ΕA		CORE	10 0	CORED IN	TERV	AL 149.9-159.5 m	
	HANNOFOSSILS HADIOLARIANS	CTER	CELTION			GRAP:	HIC .OGY	DRILLING DISTURBANCI SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK	TICRATICRAPHIC	ZONE	CHA	RADIOLARIANS PLAN	Π	SECTION	GRAP	HIC DOGY DNITH	SEDIMENTARY STRUCTURES		LITHOLOGIC DESCRIPTION
easty PleAstocene NN16/18A N	~	Not sampled		3		╡╴╞╴╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕╕			8	58 7/1 layer 5G 4/1 FORAMINIFER: (AND CLAY.) BEARING NANNO- POSSIL DOZE, build gray (58 7/1 to 58 5/1), soft, massive with prominent burrow motiles of pale clive (10° 472), occinical pyritical streaks and bleis (N4), subfle color shades gradational and interbadded with FORAMINIFER. NANNOFOSSIL, AND/OR SNOEE 5G 4/1 5G 4/1 to 5G 4/1, soft, massive, burrow motiles of pale clive (N4) RANNOFOSSIL, AND/OR SNOEE SPICULE-BEARING CLAYEY SILT, greening gray (56 6/1 to 5G 4/1), soft, massive, burrow motiles on FORAMIN IFER. (AND CLAY.) BEARING NANNOFOSSIL OOZE, pyrite (N4) blets. 5G 4/1 to 5G 4/1, soft, massive, burrow motiles on FORAMIN IFER. (AND CLAY.) BEARING NANNOFOSSIL OOZE, pyrite (N4) blets. 5G 4/1 Composition: D 10Y 8/2 mottles SMEAR SLIDE SUMMARY: 3, 113 5G 4/1 Composition: D 10Y 8/2 how 5G 6/1 Calc, namofrading Clauconite 5G 4/1 Composition: Clauconite 5G 4/1 Sponge spicules 5G 4/1 Sponge spicule 5G 6/1 Sponge to 5 SG 6/1 Sponge to 5 SG 6/1 Sponge to 5 SG 6/1 SG 6/1 Sponge to 5 SG 6/1 SG 6/1 Sponge to 5 SG 6/1 SG 6	early Pliceme		G. punctoura	N	NU Mittachild Andrew Mittachild Mittachild Mittachild Mittachild Andrew Mittachild Andrew Mittachild Andrew Mittachild Mittachild Andrew Mittachild Mittachild Mittachild Andrew Mittachild		2 3 4 5 6 7 CC	┙╽┍╢┑╕╕┆╍┍┨┍╍┍┨╍┍┅┍╍┍┙┍╍┍┨┍╍┍╏┶╍┍╽┶╍┍╽╍┍╎┙╍┍╢╸╍┍╎╸╍╒╎╍╍╞╎╍┍┝┝┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿		200	 N4 N4 N4 N4 + 5Y 8/1 10Y 6/2 mottles N4 streaks N4 - 5Y 8/1 SY 8/1 hue N7 N7 8 N7 SY 8/1 N7 SY 8/1 N7 SY 8/1 hue N4 5Y 8/1 N7 N7 N7/8 SY 8/1 N7 N7 N7/8 SY 8/1 N7 N7 N8 10Y 6/2 hue N7 N7<!--</td--><td>NANNOFOSSIL DOZE TO FORAMINIFER-BEARING NANNOFOSSIL ODZE, vev light gar (NB) to light gar (NB) with velowing any GS (NI) overtones, obtain the scattered privilation of the second stream. As for NANNOFOSSIL ODZE TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- GUIDANT ANNOFOSSIL TO TO FORAMINIFER- MICA TO FORAMINIFER TO TO FORAMINIFER- GUIDANT TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- Sponge spicules R R = FORAMINIFER- Sponge spicules R R R R FORAMINIFER- SpiceSpiceSpiceSpiceSpiceSpiceSpiceSpice</td>	NANNOFOSSIL DOZE TO FORAMINIFER-BEARING NANNOFOSSIL ODZE, vev light gar (NB) to light gar (NB) with velowing any GS (NI) overtones, obtain the scattered privilation of the second stream. As for NANNOFOSSIL ODZE TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- GUIDANT ANNOFOSSIL TO TO FORAMINIFER- MICA TO FORAMINIFER TO TO FORAMINIFER- GUIDANT TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- BEARING NANNOFOSSIL TO TO FORAMINIFER- COMPOSITION TO TO FORAMINIFER- Sponge spicules R R = FORAMINIFER- Sponge spicules R R R R FORAMINIFER- SpiceSpiceSpiceSpiceSpiceSpiceSpiceSpice

_	594 ≌		HOL	oss				RE		TT	Г	L 197.9-207.5 m			
ž	Hdb		CHA	RAC	TER	_	_					1			
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DUATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARV STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIP	TION
							1	0.5			*	N7 to N8 SY 8/1 hues N4 10Y 6/2, N4 10Y 6/2 10Y 6/2 5P 6/2 N8	NANNOFOSSIL O with yellowish gray mottles in 5Y 8/1 a	OZE, li (5Y 8 and 10Y illy mad	TO FORAMINIFER-BEARING ight to very light gray (N7 to N8 //) hus at several levels, burrow f 02, soft to stiff with occasional sive except for bioturbate struc RY:) 3, 30
oue					c		2	and and a state of the state of				-5Y 8/1 -5P 6/2 -5P 6/2 -5P 6/2 N7 to N8 -5Y 8/1 N8 -5Y 8/1 N8	Composition: Quartz Glauconite Mica Foraminifers Celc. nannofossite Radiolarians Diatoms Sponge spicules	, D TTRRDTTR	о.
late Miocene							3	- Internation			*	N8 to N7			
					lauta Subzone b/c		4					5Y 8/1 and 5P 6/2 mottles N8			
					D. hustedtii/D. lau	-c	-					- 5G 7/2 5Y 8/1 on N8 - 5P 6/2, 5G 7/2 - 5P 6/2			
	G, miotumida NN11/12	A					5 CC	the second second				NB 10Y 6/2 10Y 6/2 N8			

SITE 594 HOLE A CORE 12 CORED INTERVAL 495.5-505.1 m

×	APHIC			OSSI RAC	L TER									
TIME - ROCK UNIT	BIOSTRATIGRA	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIPTION
liocene	Zone				Subzone b/c	,	0.5					- 10G 4/2 NA 10G 4/2 5P 4/2 streaks 10G 4/2 10G 4/2	firm, massive with gray hues, pyritize	CHALK, very light gray (NB), stiff to diffuse bioturbate structures in subtle d streaks (5P 4/2) and common grayish laminae, often composite. Evidence of n 1.
middle Miocene	G. conica NN6 G. triacantha	A	A		D. hustedtii/D. lauta	R 2 CC	1.0		4 4 4 4			5P 4/2 10G 4/2 laminae Void 10G 4/2 10G 4/2 10G 4/2 10G 4/2, N7 N7 10G 4/2, N8	SMEAR SLIDE SU Composition: Ouartz Foraminiters Calc. nannofossils Sponge spicules	MMARY: 1,80 D T R R

SITE 594 HOLE A CORE 13 CORED INTERV	VAL 505.1-514.7 m	SITE 594 HOLE A CORE 14 CORED INTERVAL 514,7–524,3 m
	LITHOLOGIC DESCRIPTION	SIDE CHARACTER VOID 100 100 100 100 100 100 100 100 100 100
мию 1 10- 1 1	FORAMINIFER BEARING NANNOFOSSIL CHALK, very lipht gray (NB), firm But bisulting produces soft sections), matrix but throughly bisultated (finduces (2000)) NM priftized (SP) speck and strakk, complexities (SP) 106 4/2 graven (106 4/2 color laminage throughout. 106 4/2 color laminage throughou	OC OS OS <thos< th=""> OS OS OS<!--</td--></thos<>

×	APHIC	3		OSS	TER	0										
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATONS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC I	DESCRIPTION			
middle Miccene	G. conica NN6 NN6		A		D. hustedtii//D. laute Subzone b/c	- c	1	0.5		1111		5G 7/2, 5Y 8/1 massive but thos 96 7/2, 5Y 8/1 valiowich gray 106 4/2 N8 5G 7/2, 100 r/2) color famin 5G 7/2, 100 r/2) color famin 5G 7/2, 100 r/2) 10G 4/2 r/2) 10G 4/2 r/2) 10G 4/2 N8 10G 4/2 N7 Jaminas, bioturbated N7 Jaminas, bioturbated N7 10G 4/2 N7 hue	CHALK, vary ligh oughty biotarbated and y By Br/Ji, light gray (N specks, prominent gr an, Phanoites-list SMEAR SLIDE SU Composition: Ouartz Foldspar Clay mineals Mica Foraminifers Cate, nanofossils Radiotrians Diatoms Sponge spicules	d swirled 7) and p sen (10) wws.	t in col purples 3 4/2 Y:	ors of (5P)
	S N	A	۸				cc	-		A 11		N8 N6				

ITE				OSS		Ť	T	E 16 COREL	TI		-	L 533.9-543.5 m		~		
×	APH	<u> </u>	CH/	RA	CTER	_										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION		GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC D	ESCRI	PTION	
middle Miocene					hustedtii/D. Iaura Subzone b/c C	3	2			and repeat from the new new meeting the second s		+ 106 8/2 + 106 8/2 + 106 8/2 - Overt frags. + 5% 8/1 + 106 8/2 + 106 8/2 + 106 6/2 + N8 + N8 + 106 8/2 + 106 8/2 + 106 8/2 + 106 8/2 + 106 6/2 + 5% 7/7 - 106 6/2 + 5% 7/1 + 106 8/2 + 106 8/	NANNOFOSSIL (pale green laminae medium light gray SPONGE SPICULI CHALK, olive gray	CHALF (10G (N6) I E-BEA y to b ondrite on 6, P	C, very 8/2 to 1 aminae, RING 0 rown (5 s burro robable	CLAYEY NANNOFOSSII Y 4/2), very hard (porce) ws. Layer continues int turbidite.
The second second second second	G. conice? NNS				D. hurt	4						IW N7 106 6/2 Pocket of glass 106 7/2 N7 N7 N6 N7 106 6/2 56Y 5/1 -106 6/2				

	APHIC		CHA	OSS											
LIME - KOCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES CAMOUNT	ound Lto		LITHOLOGIC DI	ESCRIPTION
eue					D. hustedtii/D. lauta Subzone b	-c	1	0.5				T 1111 1	10G 6/2 Flaser beds 106 6/2 106 6/2 106 6/2 106 6/2 10G 6/2 10G 6/2 106 6/2	NANNOFOSSIL pale green (10G 6 Zoophycos abunda Core catcher has	
middle Miocene					Subzone b		2	The second se		#		111	10G 6/2 10G 6/2 5Y 7/1 10G 6/2 5Y 7/1 Zoophycas	Composition: Mica Pyrite Foraminifers Cale: nannofossils Diatoms Sponge spicules	7,80 D T T R D T R
	P. Glomerosa curva NNS	A	A		D. lauta	2.E. 0	4			K		thrt 1	10G 6/2 N7 flaser beds 10G 6/2 laminae 5Y 7/1 Zoophycos 5Y 4/1		

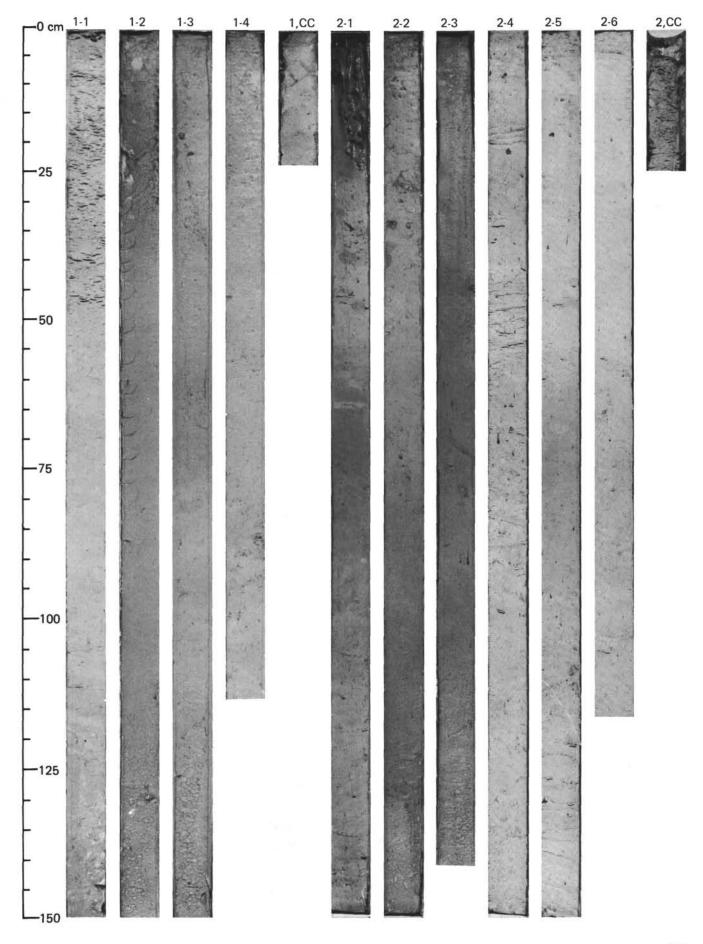
×	APHIC	- 23		OSSI	L								
TIME - ROCK UNIT	BIOSTRATIGRA ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION	
middle Miocene	P. glomerosa curva NN5	A	A		O D. Inura Subzone b	1 2 CC	0.5			1	-	N8 NANNOFOSSIL CHALK, very light gray (N8), w 10G 6/2 Jaminae. 10G 6/2 Iaminae. 10G 6/2 IoG 6/2 10G 6/2 NANNOFOSSIL CHALK, very light gray (N8), w 10G 6/2 Iaminae. 10G 6/2 NANNOFOSSIL CHALK, very light gray (N8), w 10G 6/2 Iaminae. 10G 6/2 NANNOFOSSIL CHALK, very light gray (N8), w NA NANNOFOSSIL CHALK, very light gray (N8), w	

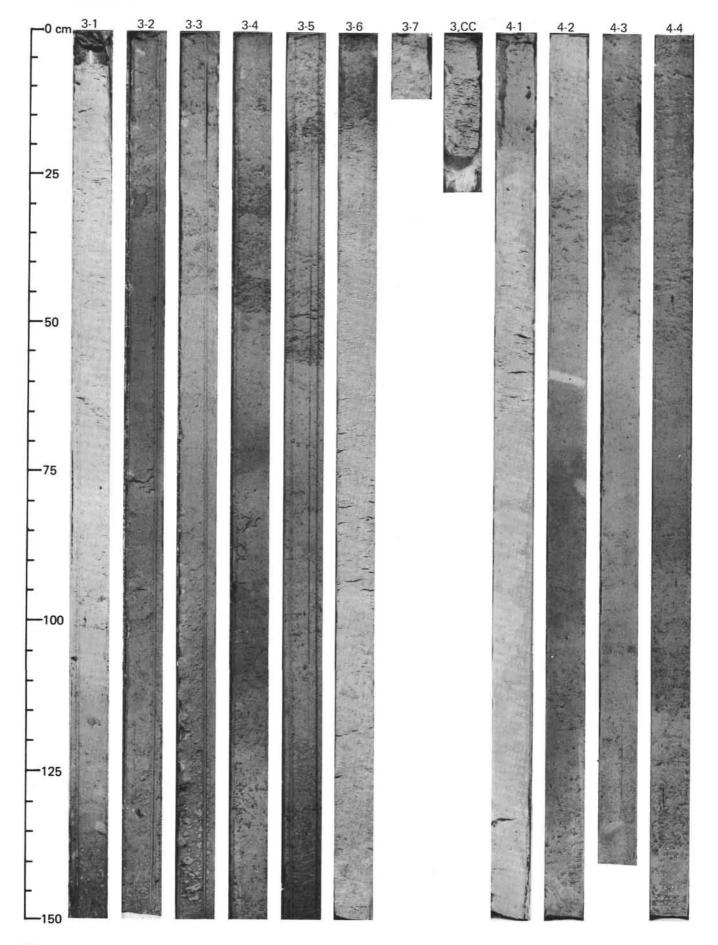
×	APHIC		F	OSSI		1					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SILICOFLAG- ELLATES	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLINO DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
middle Miocene	P. glomerosa curva NNS C. triacantha Zone	A			Unzonet	- F	1 2 3 CC	0.5			NANNOFOSSIL CHALX, very light gray (NB), numerou pale green (10G 0/2) thin (<2 mm) laminae. At 5 to 15 cm: MICA- AND QUARTZ-BEARING NANNO FOSSIL CHALX, brown (5Y 4/1), probable turbidite. Abundant gray (N7) laminae in Section 2.

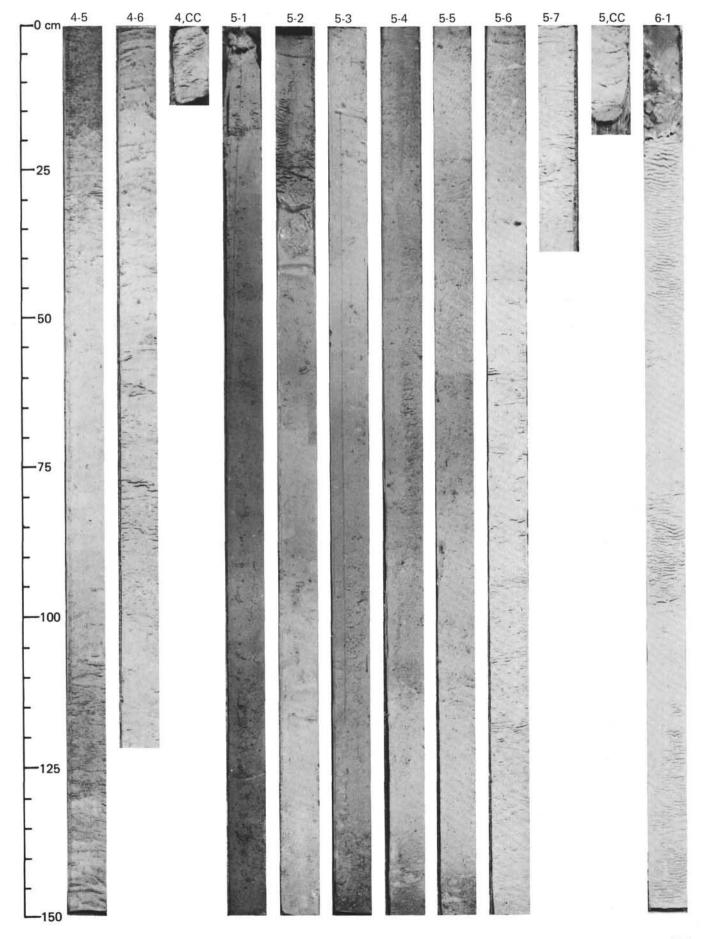
×	APHIC			_	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
early Minoene					O Unzoned	1	0.5			•	⊥ N7 1 006 6/2 1 006 6/2 1 006 6/2 1 006 6/2 1 006 6/2 1 W	NANNOFOSSIL CHALK, very light gray (N8), numerou very pale green (10G 5/2) laminae and gray (N7) burrows Core catcher has: MICA- AND QUARTZ-BEARING NANNOFOSSIL CHALK, brown (5Y 4/1) with white (N8) burrows, probable turbidite.
	G. miozea NN5	~	A			2 CC	- Lorenza				N7 - 10G 6/2 5Y 4/1	

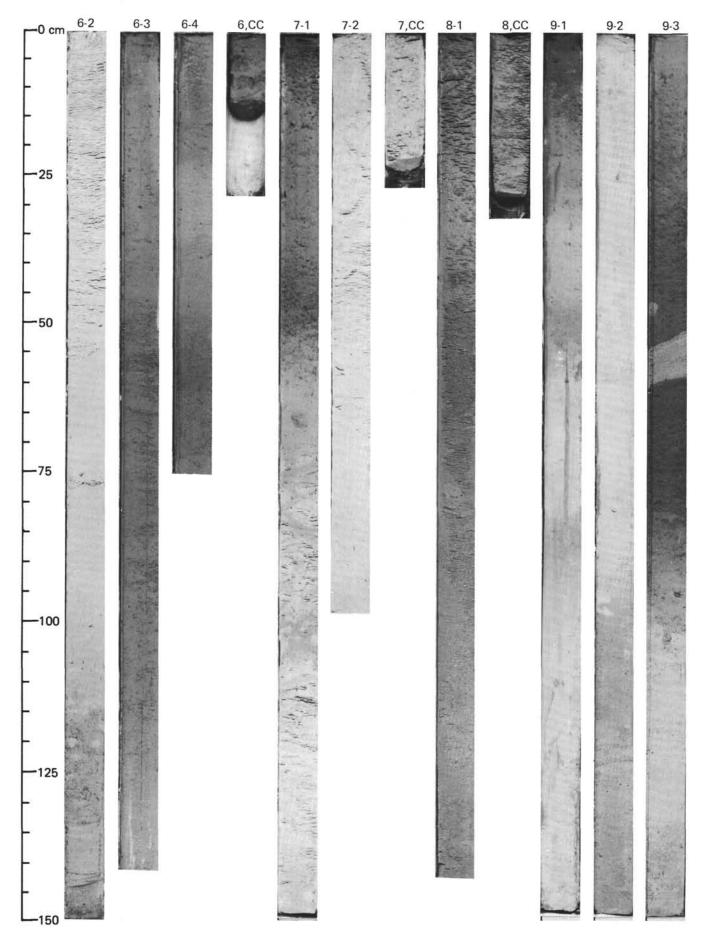
×	APHIC			OSS	TER			1					
TIME - ROCK UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC DESCRIPTION
early Miocene	G. miozee NN5	A			Barren	1 CC	0.5			4		N8 님 5Y 4/1 N8	NANNOFOSSIL CHALK, very light gray (N8), badly di turbed by coring into biscuits.

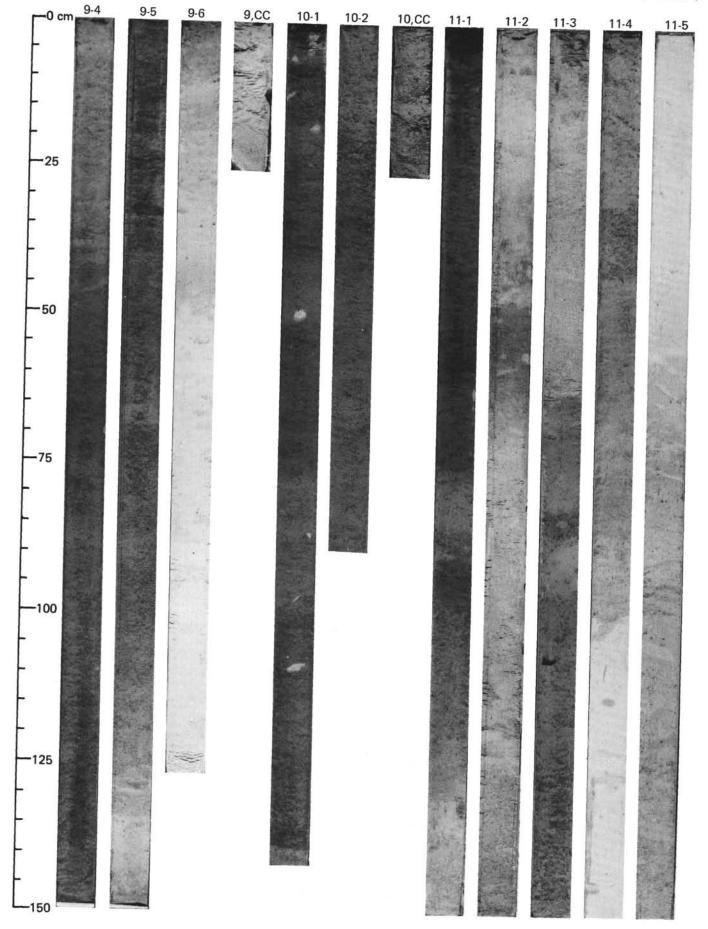
SITE 594 HOLE A CORE 23 CORED INTERVAL 601.1-610.7 m

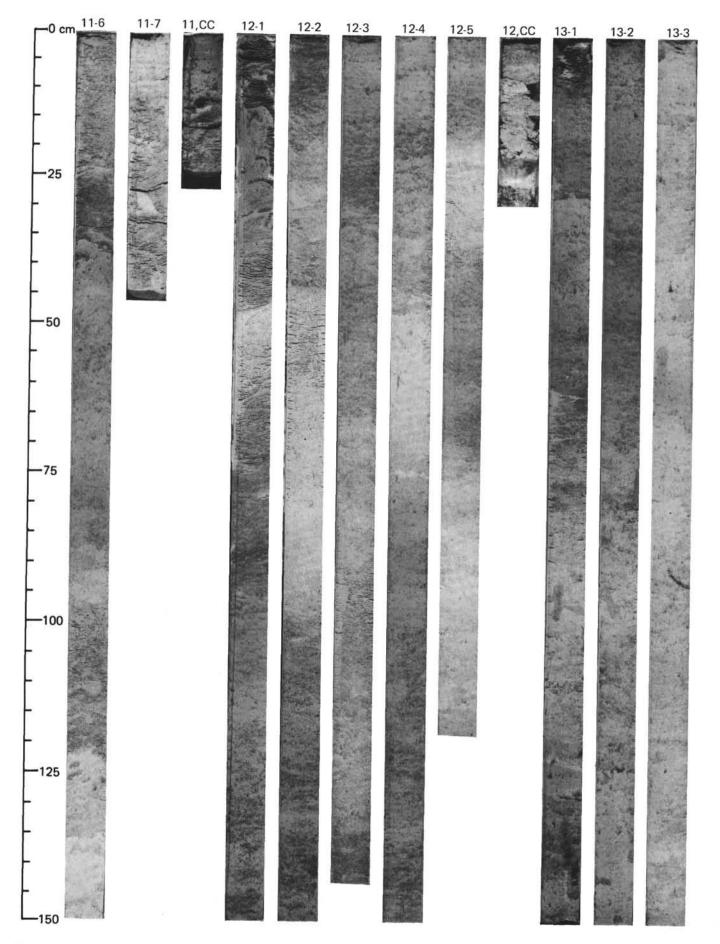

¥	PHIC			OSS	TER				Π	Π	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES	LITHOLOGIC DESCRIPTION
early Miocene	G. miozee NN5	A	A		Barren	2	0.5				1 5Y 4/1 Flase beds 106 6/2 green 110G 6/2, luminae and streaks of iron sulfide a 106 6/2 blebs (N6, N7). MICA AND QUARTZ-BEARING NANNOFOSS CHALK, olive grav (6Y 4/1), heavily burrowed at top w 5Y 4/1 N8

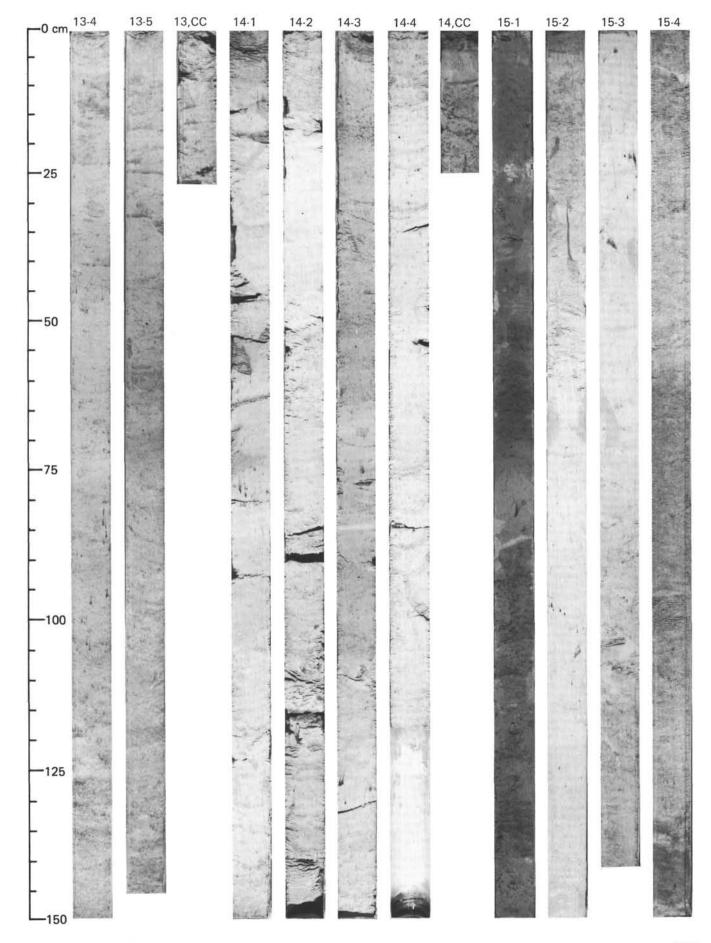

×	VPHIC	.0		OSSI RAC	L TER									
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCR	IPTION	
early Miocene					Barren	1	0.5			NB T Flaser beds 5Y 4/1	LIZED CHALK, limestone, with upper contact. Ti (~20 cm deep) Planolites (< 5 cm CLAYEY NAM	olive scoured urbidite , then t deep)	SIL CHALK, dark	d and almost and graded ith Zoophyco m deep), then
early	G. miozes NN5	A			8	2				N8 	(5GY 4/1), hard, SMEAR SLIDE S Composition: Quartz Clay minerals Mica Pyrite			A R A

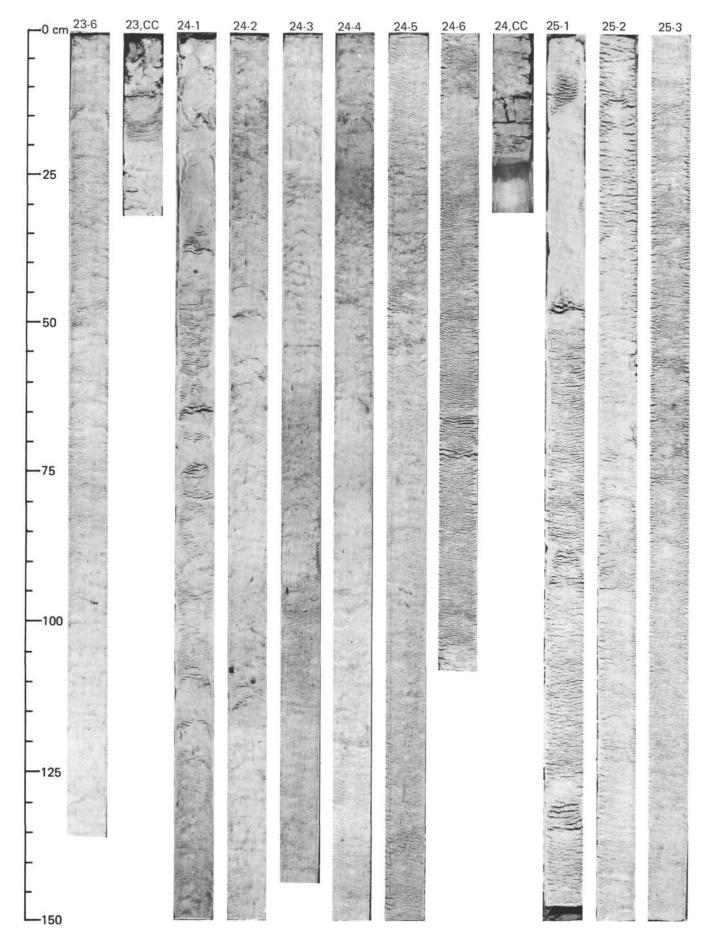

×	APHIC			OSSI	L						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	ШТН	IOLOGIC DESCRIPTION
	G. miczee NNS	A			Barren	1 2 CC	0.5			MICA-	IOFOSSIL CHALK, very light gray (NB). AND QUARTZ-BEARING NANNOFOSSIL K, very hard, olive gray (5GY 4/1), turbidite.


×	VPHIC			OSSI	L			Ш	Τ		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	avont Ltua		LITHOLOGIC DESCRIPTION
early Miocene					Barren	,	0.5	20000 ~~~~		Flasors 5G 4/1, turbidite / N8	NANNOFOSSIL CHALK, very light gray (NB). MICA- AND QUARTZ-BEARING NANNOFOSSIL CHALK, green ISG 4/1), turbidite, hard.
	G. miozee NN5	A	A			2		321		⁴ 5G 4/1, turbidite N8 ← 5G 4/1 N8 ← 5G 4/1 N8 N8	


SITE 594 (HOLE 594)





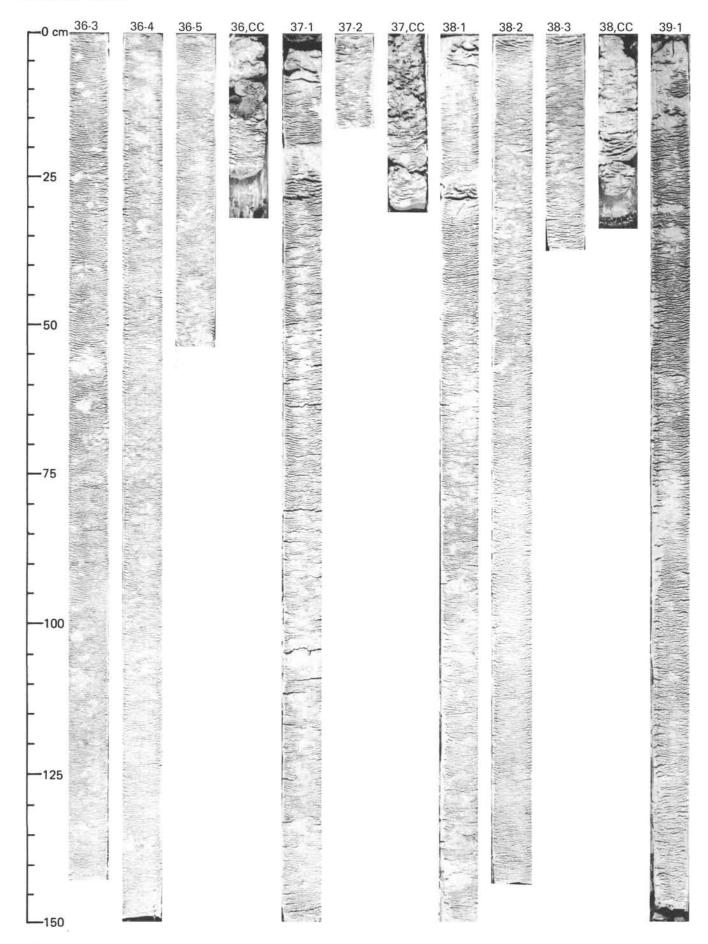


- 0 cm 	15-5	15-6	15-7	15,CC	16-1	16-2	16-3	16-4	16-5	16-6	16-7	16,CC
- - - - - - - - - - - - - - - - - - -							and the second but it is a secon					

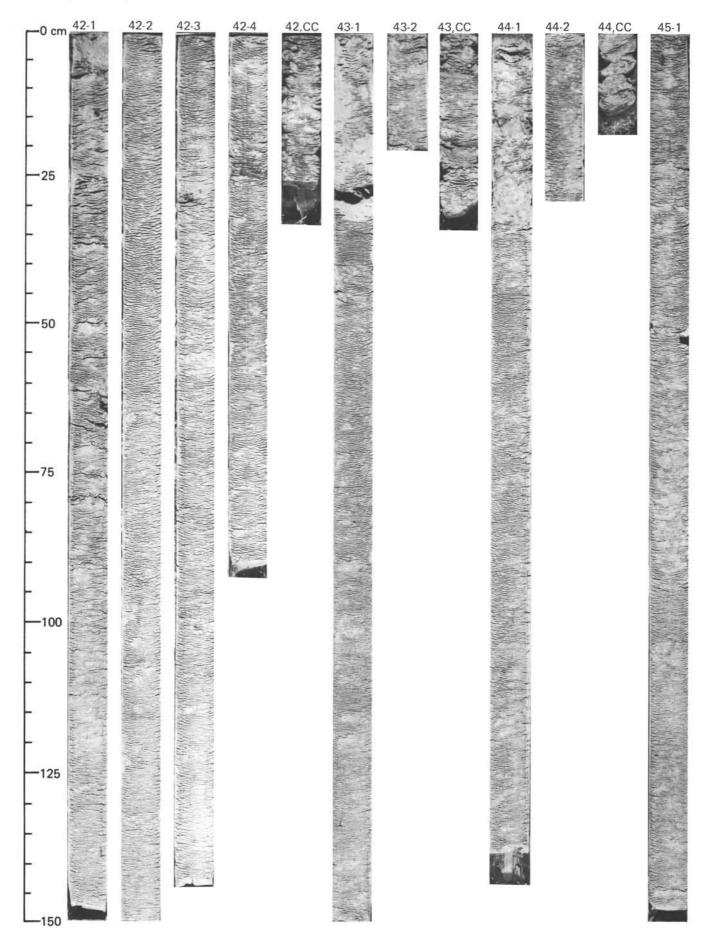
-0 cm - - - - - - - - - - - - - - - - - - -	17 NO RECOVERY	18-1	18-2	18-3	18-4	18-5	18-6	18,CC	19-1	19-2	19-3	19-4
- - 		1 194 - 194	1.1									

19-5	19-6	19-7	19,CC	20-1	20-2	20-3	20-4	20-5	20,CC		21-2
	14						The second second			and the state of the	a a

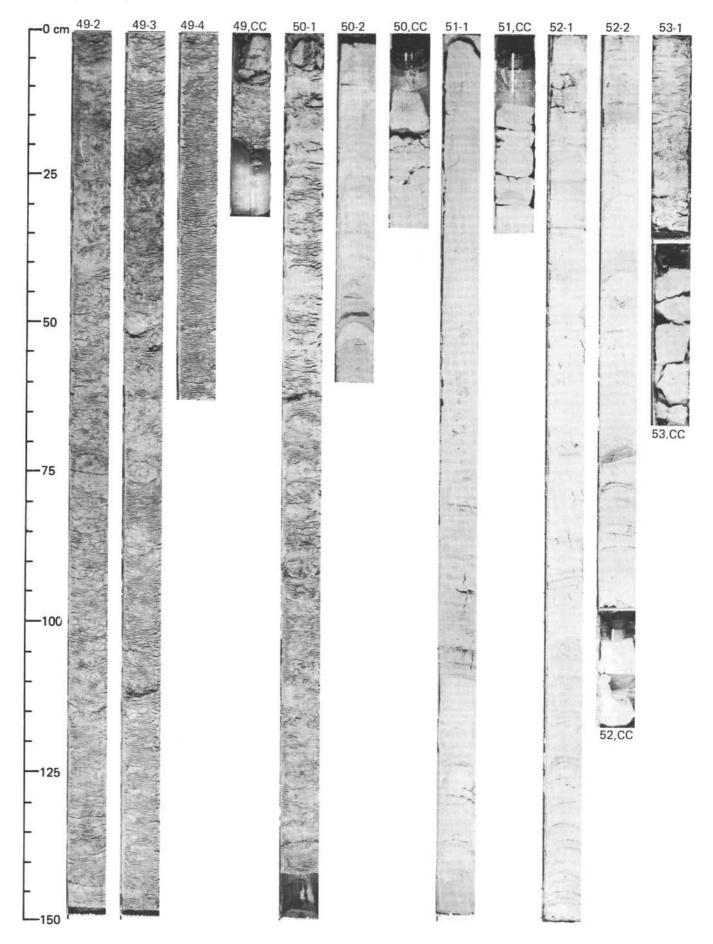
-0 cm 21-3 21-4 21-5 21-6 21-7 21,CC 22 23-1 23-2 23-3 23-4 23-5 -<
-50
-50
-75 NO RECOVERY
-100



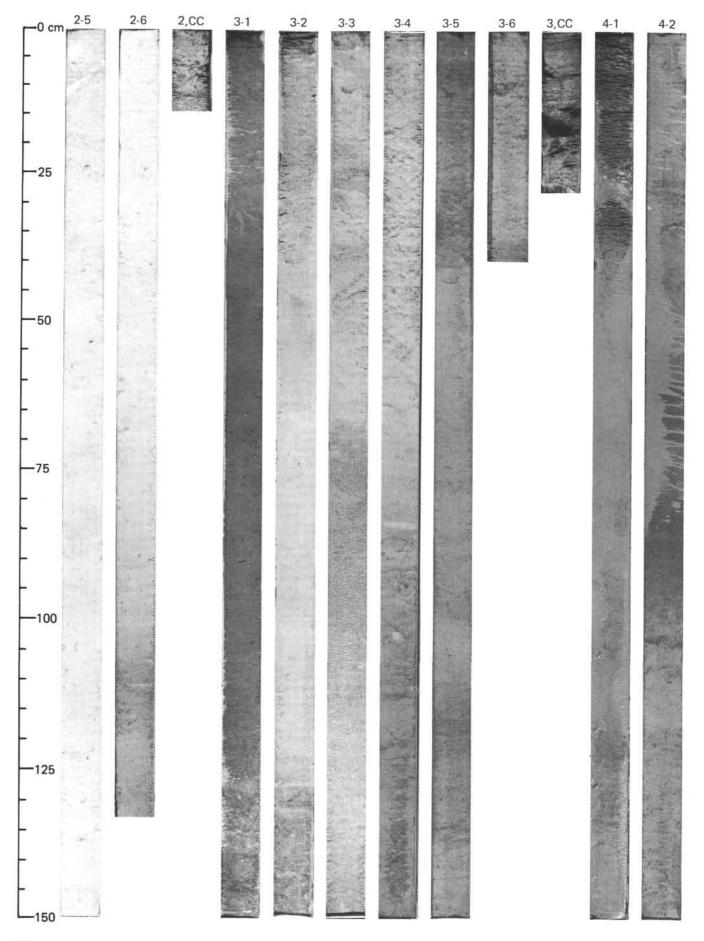
25.4	25-5	25-6	25,CC		26-2		26-4		26,CC		
------	------	------	-------	--	------	--	------	--	-------	--	--


0 cm 27-3	27-4	27-5	27,CC	28-1	28-2	28-3	28-4	28-5	28,CC	29-1	29-2
		No. 1						1 1 m	and the second		
	A AND A	al la la	-				de ma		G		
	March 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Al athes					ST.			A CHARLES
-	Sec. Sec.	The second				A APANA	1.4.4		5		
-		CT STAT								A	
	and the second	A Land			A Land		W. Cher			301	
-50	in the second	All					an yang	P. B. B. B.			
-	A Start	alter of the					In the second				
		Way 4. 1					14 cl + 5 cl				
	No. and	A.A.A.			1		the law				
75		A ANTA		M.		A CARA	Wite disk	A ALLAND			
	Je	1		A PARTIN			lie tali	No.			
	19 19 19 19 19 19 19 19 19 19 19 19 19 1	Welling .					144 144 144				
-		Contrast Contrast									
-100	Sind a	AND AND					1.1919				and the
		1.4		A CAN			And And				and the second
-		The second s					to the to				And
-		ALC: N				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					the second
						14 14 14 14 14 14 14	it a state				All and a second
		till a		P. A.							
		Sec.		and a	de la		a start				and the second
- 150	100 P	ALC:					AL AN				A A A A A A A A A A A A A A A A A A A
100											

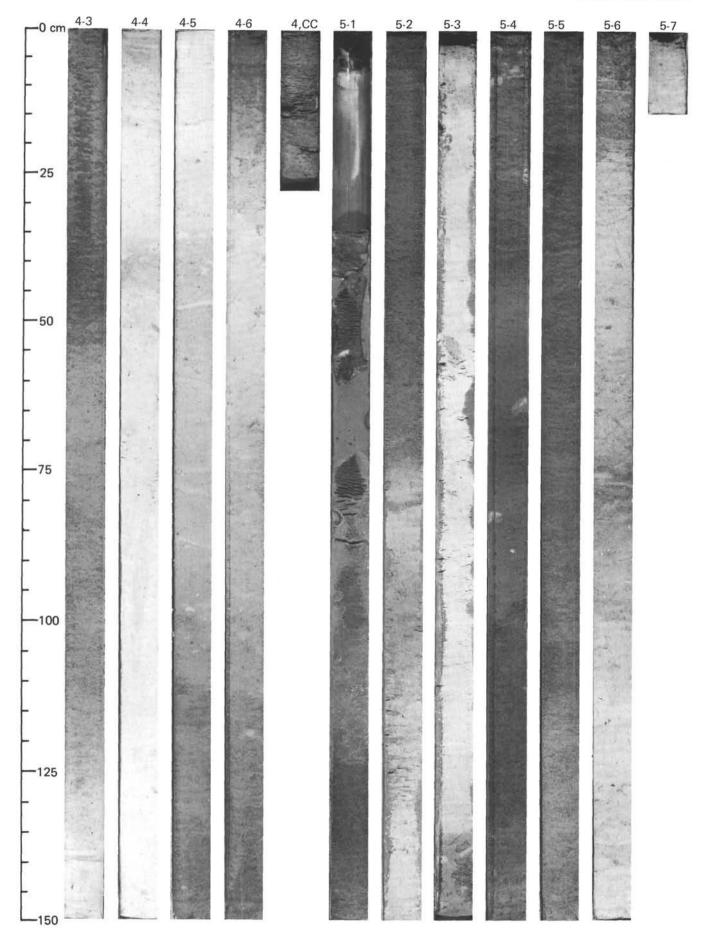
SITE 594 (HOLE 594)

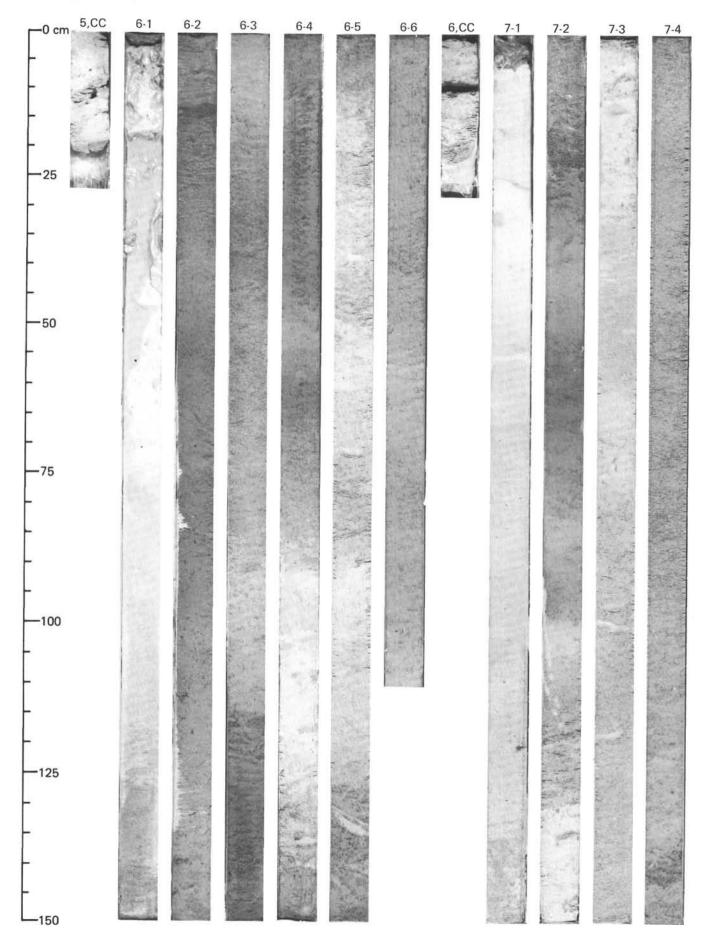

-0 cm 31	-1 31-2	31-3	31-4	31-5	31-6	31,CC	32	33	34-1	34-2	34-3
-			A State					ALL .	All and		S. Mar
-								Contraction of the second		Alt -	R.
	No. No.	1									a spo
- 4	"		A Martin	All and a second							
-25			h na			M					
						13					
				A State	A A A A						
		11- 11 (M-1-)									
-50		4			W. M. C.						
-				North Party							
											and the second
-					-A						
-							ΞRΥ				
-75							NO RECOVERY				
-			14 A.				JO RE		ALL ALLA		
-			and the second				2				A. C. L.
-			na an an								
-											and for
-100											
-											and a second
-125									district of	N The second	
								the second s			
-								100 C			
								14 14 10 12 1	te		
_150		- 1	1822	The second		L				-no.	

-0 cm 39-2	39,CC	40-1	40-2	40-3	40-4	41-1	41-2	41-3	41-4	41-5	41,CC
						N. Chill					
-	Pollo,			and					A. C.		2
-25				le l'action			A THE	tale 11	1	The second	2
-	1							A North			
-						N. A.					44
-			A UN		C.F. Marine	N.		Sales -		ng seat	
-					A. A. A.		dia		Contraction of the second seco		
-50		11			No.						
-					a fulling	N.W.W.					
-		A STATE			AMA C						
-					and the			Part Party			
-					No. 10						
-75						Kowie w					
		ALL DAY			ong me	A Bada			A.		
		1.11			sulta Marth						
					and and	A. angle					
-100			Part of						(Attill)		
-						A Maria					
C VA			1000								
-				ALC: NO		NUL V		And A			
-125					100						
1			Hall								
								and Alexandra and a start of the providence of the start of			
-											
150							The second se		A.		

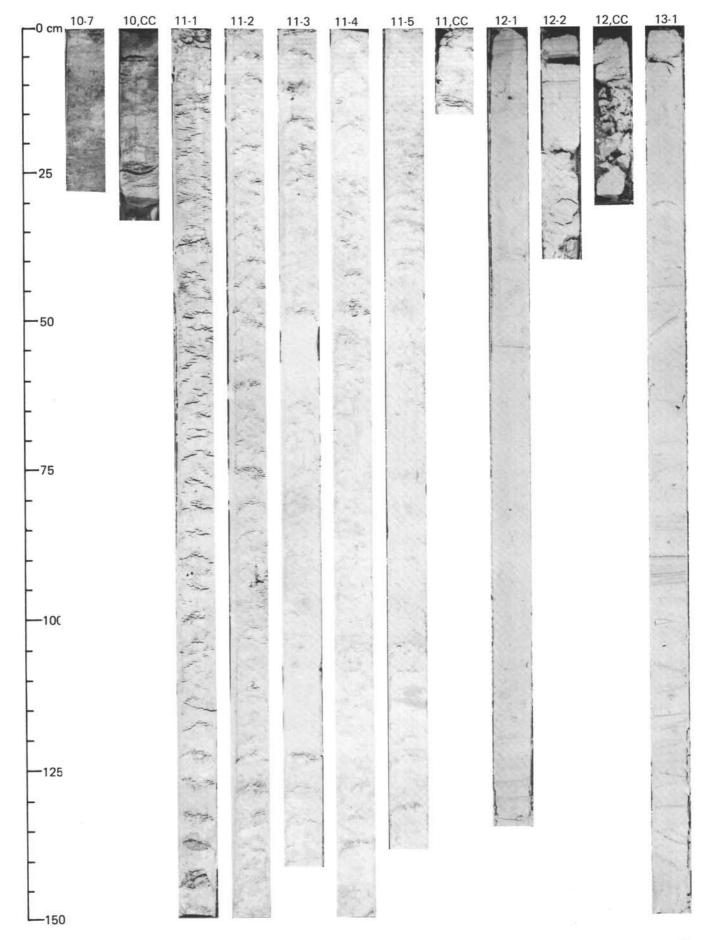


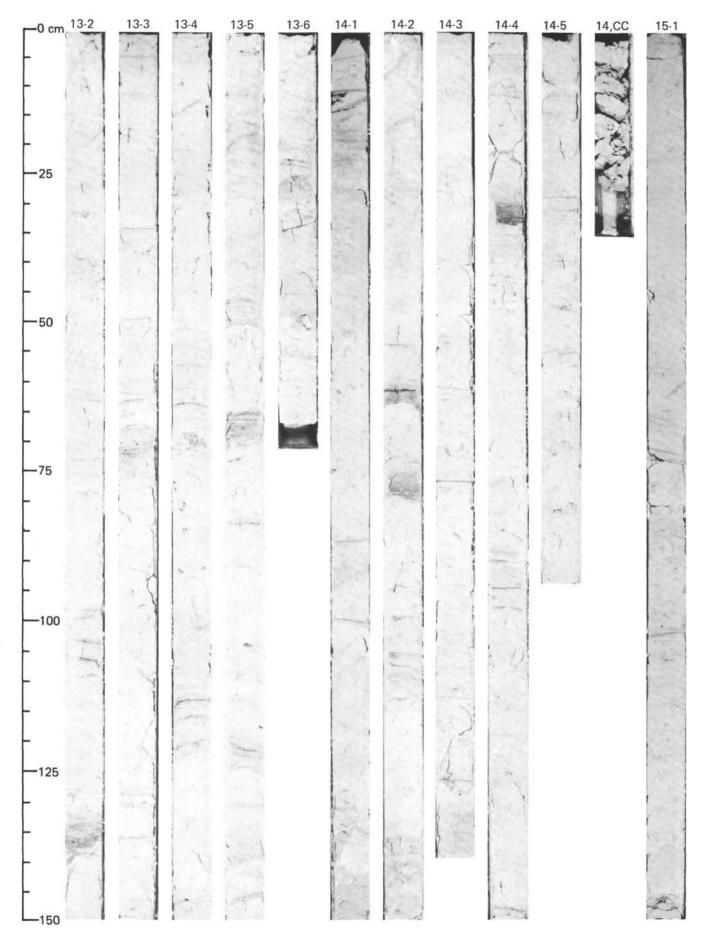
$-0 \text{ cm}^{45.2}$	45,CC			46,CC		47,CC			48-3	48,CC	49-1
------------------------	-------	--	--	-------	--	-------	--	--	------	-------	------

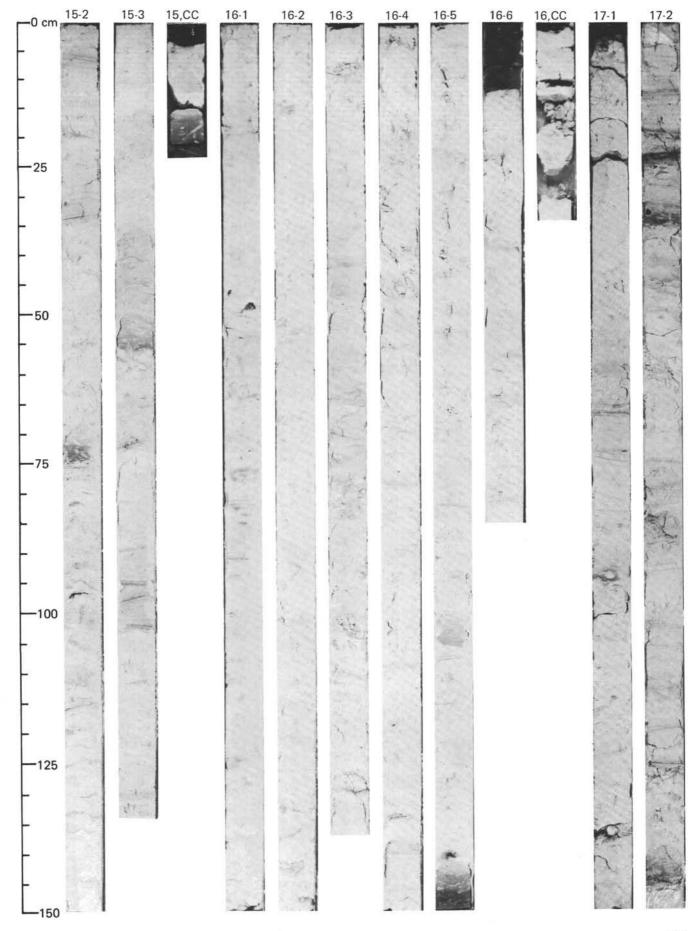


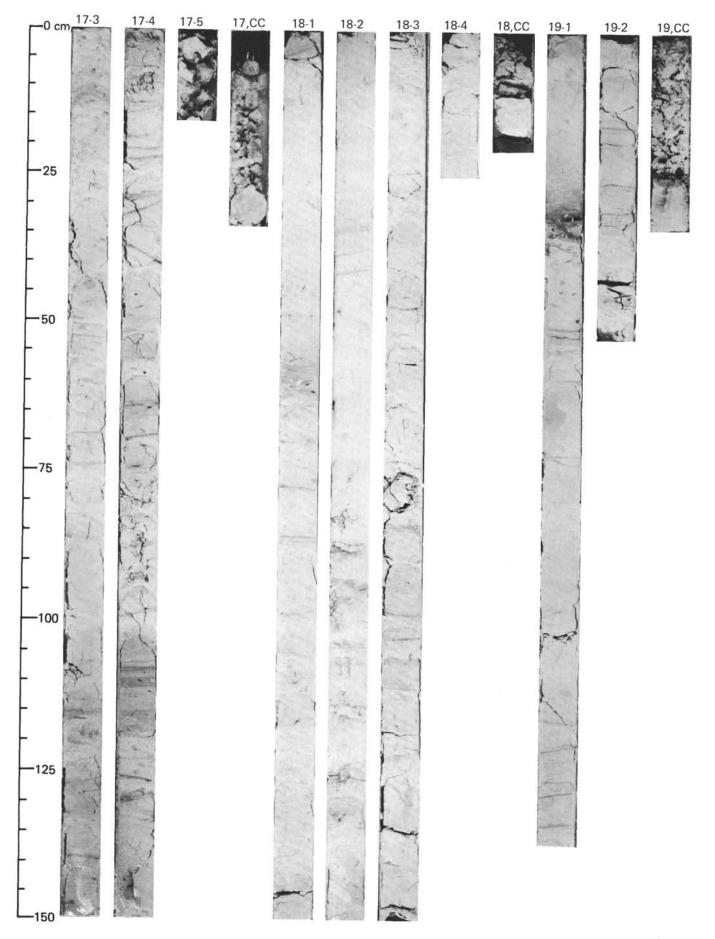

SITE 594 (HOLE 594A)

0 cm 1-1	1-2	1-3	1-4	1-5	1-6	1-7	1,CC	2-1	2-2	2-3	2-4
							H				

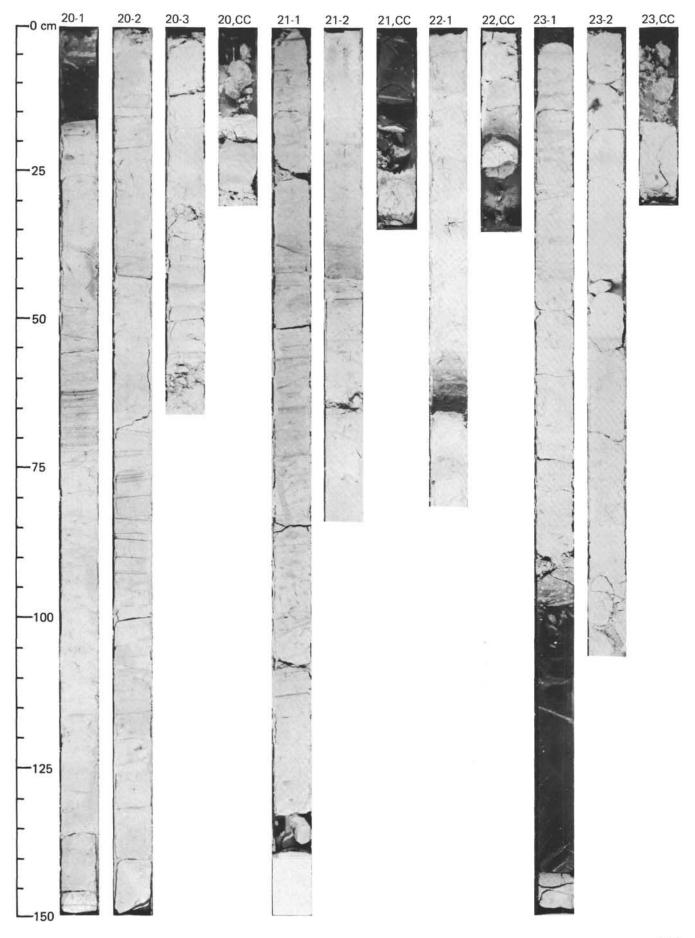

SITE 594 (HOLE 594A)

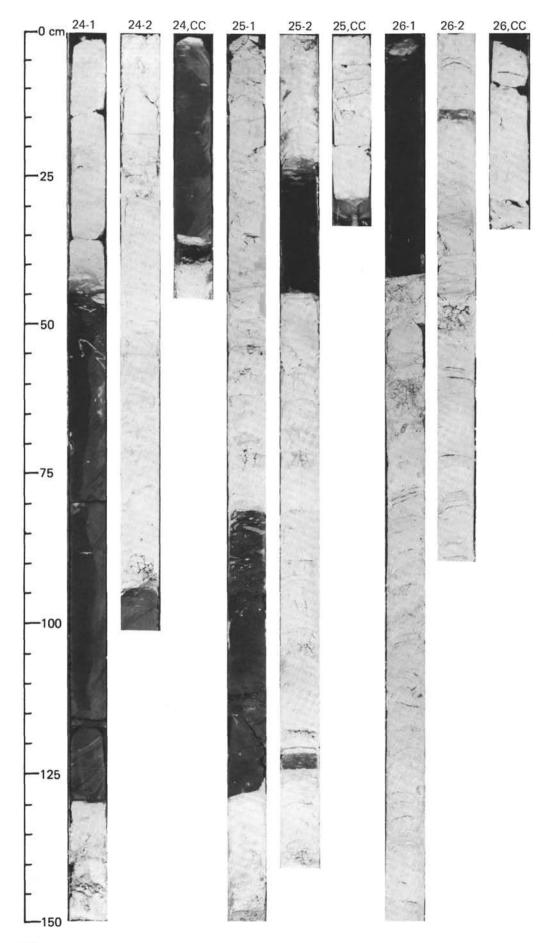





— 0 cn	n 7-5	7-6	7,CC	8-1	8-2	8-3	8-4	8-5	8-6	8,CC	9-1	9-2

9-4 9-5 -25 -25 -25 25 	9,CC 10-1	10-2 10-3	10-4	10-5	
		And Second se			





SITE 594 (HOLE 594A)

744