34. MAGNETIC PROPERTIES OF BASALT SAMPLES FROM DEEP SEA DRILLING PROJECT
HOLES 597B AND 597C

Tadashi Nishitani, Institute of Mining Geology, Mining College, Akita University

ABSTRACT

Measurements of magnetic properties were made on basalt samples recovered from Holes 597B and 597C. This paper describes the intensity and inclination of natural remanent magnetization (NRM), the intensity of anhysteretic remanent magnetization (ARM), the median demagnetizing field (MDF) for NRM and ARM, the initial susceptibility, the Koenigsberger ratio \(Q \). The mean inclinations \(I \) after alternating field demagnetization for Holes 597B and 597C are \(45.4 \pm 7.1^\circ \) and \(45.0 \pm 7.6^\circ \), respectively. These numeric quantities are greater than the calculated value of \(I = 34^\circ \) expected at this site. A change of magnetic properties occurs at the depths of 100 and 120 m, respectively, which coincide with the boundaries between major petrological units.

INTRODUCTION

Site 597 (18°48'S, 129°45'W) is located west of the East Pacific Rise in crust of late Oligocene age (Fig. 1). Seafloor depth is about 4160 m. During Leg 92, basement was cored in Holes 597B and 597C, which were located less than 50 m apart. At Hole 597B, 5.43 m of basalt were recovered, and at Hole 597C, 55.2 m. One or two oriented samples (2.54 cm in diameter) were taken from every section of each core, for a total of 69 samples, to use for measurement of magnetic properties.

The numeric values of intensity of each parameter are compared to investigate the relationship between Holes 597B and 597C. The depth of Hole 597B is about 65 m, so the values from Hole 597C are averaged to about 65 m (from Sample 597C-3-1, 21-24 cm, to 597C-4-1, 60-63 cm). The mean magnetic properties for the upper 7 samples from Hole 597C are listed in Table 2. These nearly agree with those obtained in Hole 597B. Therefore, it is possible that the magnetic properties of Hole 597B correspond to those of the upper part (55.7 to 65 m) of Hole 597C. Magnetic properties are almost the same laterally, at a distance of about 50 m between Holes 597B and 597C.

All samples were demagnetized up to 900 Oe. In general, inclinations decrease at depths from 55 to 73 m where the AF peak field increases (Fig. 4). From 73 to 100 m, magnetizations are more stable than those of the upper part (Fig. 5). Below 100 m, inclinations only slightly deviate from the alternating field (Figs. 6, 7, and 8).
The amount of inclination is stable at a certain level of demagnetization, which is thus distinguished as the best method of magnetic cleaning and is termed the optimum demagnetizing field (ODF) for the alternating field demagnetization method.

ARM Measurement

Mean ARM intensities are $2.71 \pm 0.66 \times 10^{-3}$ emu/cm3 for Hole 597B and $2.71 \pm 0.69 \times 10^{-3}$ emu/cm3 for Hole 597C; their deviation is not very large. The variation of ARM intensity corresponds to the variation of NRM intensity. Figure 9 shows the relationship between NRM and ARM intensity. Alternating field demagnetization of ARM was performed. The stability (MDF) of ARM shows considerable variation: from 36 to 353 Oe. The mean MDF of Holes 597B and 597C are 129 ± 43 and 113 ± 72 Oe, respectively. The MDF of NRM and the MDF of ARM show good correlation and their peaks coincide (Figs. 10 and 11).

DISCUSSION

A positive inclination indicates reversed polarity at this latitude (18°48'S). All samples showed reversed polarity except at two depths (597C-7-4, 137-140 cm and 597C-7-5, 70-73 cm). These most likely indicate the normal interval between Anomalies 8 and 9. This would imply an age of 28.5 Ma for Site 597 (Harland et al., 1982); this age is consistent with that determined from the study of nannofossils from the site (Knüttel, this volume). The mean inclinations, after AF demagnetization, for Holes 597B and 597C are 45.4 ± 7.1° and 45.0 ± 7.6°, respectively. These values are greater than the calculated value of $I = 34°$ expected at this site, assuming a dipolar field. Unusually high inclination values are also reported at Sites 319 and 320 on the Galapagos Rise (Ade-Hall and Johnson, 1976), perhaps for these same basic reasons. High inclination values suggest that basalts in Holes 597B and 597C were generated at 26.6°S and moved northward to the present position. Marshall (1978) reported that remanence inclinations at the North Pacific sites differ considerably from the present geomagnetic field inclination and suggested a northward motion of the Pacific crust. Hammond et al. (1974) showed northward movement of the Central Pacific Basin, and Francheteau et al. (1970) indicated that the Pacific crust migrated northward about 30°. However, shallow inclination values were observed in Holes 332A, 332B, 396, and 396A in the Atlantic (Ryall et al., 1977). Therefore, high inclination values at Holes 597B and 597C are not a global feature, but may be a local characteristic of the Pacific area. Other mechanisms proposed to explain this discrepancy include tectonic rotation, secular variation, geomagnetic excursions, or a change in NRM.

Figures 3 and 10 indicate that the magnetic properties show a large change at about 100 m depth, particularly the MDF of NRM and ARM and the Q value. Above 100 m the Q value shows extreme variation, but it is constant below 100 m. The stability of NRM and ARM decreases gradually as the depth increases from 55 to 100 m, and it increases abruptly at approximately 100 m. It decreases again as depth increases to 120 m and increases at depths below 120 m. A change of magnetic properties occurs at 100 m and 120 m, which coincides with the boundaries between major geochemical and petrological units (Pearce et al., this volume).

The NRM intensity increased in particular after the inclination change occurred. Other magnetic properties, susceptibilities and Q values do not show such unusual variations. We can therefore assume that the intensity of the magnetic field increased significantly just after the magnetic reversals occurred.

REFERENCES

Table 1. Magnetic properties of basalt samples from Holes 597B and 597C.

<table>
<thead>
<tr>
<th>Core-Section</th>
<th>Magnetic intensity of NRM (emu/cm² × 10⁻³)</th>
<th>MDF of NRM (°C)</th>
<th>Susceptibility of NRM (emu/cm³ × 10⁻¹)</th>
<th>ARM intensity of ARM (mT)</th>
<th>MDF of ARM (°C)</th>
<th>ARM inclination (°)</th>
<th>Stable inclination (°)</th>
<th>ODF of ARM (°C)</th>
<th>Sub-bottom depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole 597B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1, 17-20</td>
<td>1A</td>
<td>1.34</td>
<td>193</td>
<td>2.75</td>
<td>155</td>
<td>66.5</td>
<td>53.3</td>
<td>121.8</td>
<td>150</td>
</tr>
<tr>
<td>2-1, 17-20</td>
<td>7B</td>
<td>0.32</td>
<td>197</td>
<td>1.30</td>
<td>2.75</td>
<td>155</td>
<td>66.5</td>
<td>53.3</td>
<td>121.8</td>
</tr>
<tr>
<td>2-1, 20-24</td>
<td>7B</td>
<td>0.36</td>
<td>196</td>
<td>3.28</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>2, 110-137</td>
<td>1B</td>
<td>0.68</td>
<td>178</td>
<td>3.28</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>2, 131-134</td>
<td>1B</td>
<td>0.88</td>
<td>178</td>
<td>3.87</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3, 20-32</td>
<td>3A</td>
<td>0.49</td>
<td>119</td>
<td>5.15</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3, 20-32</td>
<td>3B</td>
<td>0.26</td>
<td>91</td>
<td>4.87</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3, 3-6, 117</td>
<td>1A</td>
<td>1.29</td>
<td>78</td>
<td>3.28</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3, 3-6, 117</td>
<td>3B</td>
<td>1.33</td>
<td>151</td>
<td>3.96</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3, 3-6, 117</td>
<td>1B</td>
<td>1.50</td>
<td>108</td>
<td>2.65</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
<tr>
<td>3-4, 40-23</td>
<td>4A</td>
<td>0.42</td>
<td>46</td>
<td>3.80</td>
<td>2.87</td>
<td>152</td>
<td>65.2</td>
<td>53.6</td>
<td>122.9</td>
</tr>
</tbody>
</table>

Hole 597C										
3-1, 21-24	2	1.56	265	0.62	6.90	2.75	155	53.8	121.8	55.24
3-1, 131-132	7	1.75	91	2.43	2.00	3.29	60.8	41.3	242.3	48.3
3-1, 131-132	7B	0.36	146	1.21	1.87	155	53.8	121.8	55.24	48.3
3-1, 131-132	3B	0.35	114	0.39	2.72	155	53.8	121.8	55.24	48.3
4-1, 60-23	1D	3.75	216	3.44	4.14	138	51.3	37.9	342.7	65.12
4-1, 60-23	3B	3.29	216	3.44	4.14	138	51.3	37.9	342.7	65.12
4, 20-26	2A	0.72	57	4.73	1.13	44	59.7	48.2	16.9	66.22
4, 20-26	2A	0.72	57	4.73	1.13	44	59.7	48.2	16.9	66.22
4, 31-114	1B	0.47	47	3.94	2.08	60	5.84	53.8	281.3	67.13
4, 31-114	1B	0.47	47	3.94	2.08	60	5.84	53.8	281.3	67.13
4-3, 31-14	3B	0.32	41	1.67	1.13	44	59.7	48.2	16.9	66.22
4-3, 31-14	3B	0.32	41	1.67	1.13	44	59.7	48.2	16.9	66.22
4, 45-26	3B	0.45	45	3.08	2.66	41	67.6	44.9	352.8	60.25
4, 45-26	3B	0.45	45	3.08	2.66	41	67.6	44.9	352.8	60.25

Table 2. Average magnetic properties from Holes 597B and 597C.

<table>
<thead>
<tr>
<th></th>
<th>Hole 597Ba</th>
<th>Hole 597Cb</th>
<th>Hole 597Cc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(54.59-56.42 m)</td>
<td>(55.73-65.12 m)</td>
<td>(55.73-132.63 m)</td>
</tr>
<tr>
<td>NRM intensity (emu/cm3) $\times 10^{-3}$</td>
<td>1.60 ± 1.02</td>
<td>1.90 ± 1.47</td>
<td>3.61 ± 2.51</td>
</tr>
<tr>
<td>MDF of NRM (Oe)</td>
<td>123 ± 43</td>
<td>151 ± 69</td>
<td>137 ± 101</td>
</tr>
<tr>
<td>Susceptibility (emu/cm3) $\times 10^{-3}$</td>
<td>1.46 ± 1.17</td>
<td>1.37 ± 1.58</td>
<td>3.16 ± 1.56</td>
</tr>
<tr>
<td>Q</td>
<td>2.71 ± 3.93</td>
<td>2.89 ± 3.87</td>
<td>4.24 ± 3.81</td>
</tr>
<tr>
<td>ARM intensity (emu/cm3) $\times 10^{-3}$</td>
<td>2.71 ± 0.66</td>
<td>2.89 ± 0.59</td>
<td>2.71 ± 0.69</td>
</tr>
<tr>
<td>MDF of ARM (Oe)</td>
<td>129 ± 43</td>
<td>146 ± 55</td>
<td>113 ± 72</td>
</tr>
<tr>
<td>NRM inclination (°)</td>
<td>59.7 ± 9.3</td>
<td>55.7 ± 13.3</td>
<td>57.3 ± 11.9</td>
</tr>
<tr>
<td>Stable inclination (°)</td>
<td>45.4 ± 7.1</td>
<td>43.6 ± 10.5</td>
<td>45.0 ± 7.6</td>
</tr>
<tr>
<td>ODF of NRM (Oe)</td>
<td>141 ± 26</td>
<td>175 ± 69</td>
<td>162 ± 75</td>
</tr>
</tbody>
</table>

a Mean value of all Hole 597B samples ($n = 11$).
b Mean value of upper part of Hole 597C samples ($n = 7$).
c Mean value of all Hole 597C samples ($n = 58$).

Figure 2. Intensity of NRM, inclinations after AF demagnetization, susceptibilities and Q values ($H = 0.36$ Oe) for Hole 597B plotted against sub-bottom depth.
Figure 3. Inclinations after AF demagnetization, intensities, susceptibilities, and Q values ($H = 0.36$ Oe) for Hole 597C plotted against sub-bottom depth.
Figure 4. Results of AF demagnetization for Sample 597C-4-1, 120–123 cm. A. Change in intensities. B. Change in direction of NRM.

Figure 5. Results of AF demagnetization for Sample 597C-6-1, 109–112 cm. A. Change in intensity. B. Change in direction of NRM.
MAGNETIC PROPERTIES OF BASALT SAMPLES, HOLE 597B, 597C

Figure 6. Results of AF demagnetization for Sample 597C-8-7, 9-12 cm.
A. Change in intensity. B. Change in direction of NRM.

Figure 7. Results of AF demagnetization for Sample 597C-10-2, 104-107 cm. A. Change in intensity B. Change in direction of NRM.
Figure 8. Results of AF demagnetization for Sample 597C-11-3, 13-15 cm. A. Change in intensity. B. Change in direction of NRM.

Figure 9. Relationship between NRM intensity and ARM intensity.
Figure 10. Intensity and MDF of NRM and of ARM as a function of sub-bottom depth at Site 597C.

Figure 11. Relationship between MDF of NRM and of ARM.