3. SITES 604 AND 605¹

Shipboard Scientific Party²

SITE 604 (HOLE 604)

Date occupied: 0616 hr., 8 June 1983

Date departed: 0157 hr., 10 June 1983

Time on hole: 1 day, 19 hr., 41 min.

Position: 38°42.79'N; 72°32.95'W

Water depth (sea level; corrected m, echo-sounding): 2361

Water depth (rig floor; corrected m, echo-sounding): 2371

Bottom felt (m, drill pipe): 2374.0

Penetration (m): 294.5

Number of cores: 31

Total length of cored section (m): 294.5

Total core recovered (m): 117.58

Core recovery (%): 40

Oldest sediment cored:

Depth sub-bottom (m): 284.9 Nature: Glauconitic claystone, silt, sand, and conglomerate Age: late Miocene Measured velocity (km/s): 1.46 (very disturbed material, extremely difficult to sample)

Basement: Not reached

SITE 604 (HOLE 604A)

Date occupied: 0157 hr., 10 June 1983

Date departed: 2340 hr., 10 June 1983

Time on hole: 21 hr., 43 min.

Position: 38°43.08'N; 72°33.64'W

Water depth (sea level; corrected m, echo-sounding): 2328

Water depth (rig floor; corrected m, echo-sounding): 2338

Bottom felt (m, drill pipe): 2350

Penetration (m): 284.4

Number of cores: 4

Total length of cored section (m): 34.8

Total core recovered (m): 2.17

Core recovery (%): 6

Oldest sediment cored:

Depth sub-bottom (m): 294.5 Nature: Glauconitic claystone, silt, sand, and conglomerate Age: late Miocene Measured velocity (km/s): N/A

Basement: Not reached

Principal results: Site 604, on the uppermost continental rise off New Jersey, lies at the seaward end of a set of DSDP holes which, when completed and joined with existing wells, will form a shelf-slope-rise transect. Two holes at the site, offset 1.2 km apart along a multichannel seismic line, together provide fairly good coverage of the reasonably continuous Holocene to upper Miocene section. Drilling at Site 604 calibrated the seismic stratigraphy and litho-stratigraphy of this site and also intersected a massive upper Miocene debris flow: a major discovery that had been predicted by shipboard seismic facies interpretation. Both holes had to be abandoned at approximately the same stratigraphic level, where they encountered loose sands not drillable by *Glomar Challenger*.

The section consists of three lithologic units, outlined here with thicknesses taken from Hole 604.

Unit I consists of 84 m of Pleistocene dark gray, interbedded clay and silt with some slumped Eocene material near the top and internal slump structures toward the base.

Unit II is composed of 155 m of lower Pleistocene, Pliocene, and upper Miocene greenish gray clay with variable amounts of glauconitic shelf sand turbidites and biogenic silica.

Unit III consists of 56 m of upper Miocene glauconitic, biosiliceous silty claystone, silt, sand, and conglomerate with quartz pebbles and displaced blocks of middle Eocene chalk up to 50 cm across. Reworked middle Miocene fossils are common. We interpret Unit III as debris flows and turbidites emplaced as a result of a major low stand in sea level which occurred during the late Miocene. This interpretation is compatible with the onshore and nearshore geology of this region, where upper Miocene sediments are largely missing.

SITE 605

Date occupied: 0013 hr., 11 June 1983

Date departed: 1915 hr., 16 June 1983

Time on hole: 5 days, 19 hr., 2 min.

Position: 38°44.53'N; 72°36.55'W

Water depth (sea level; corrected m, echo-sounding): 2194

Water depth (rig floor; corrected m, echo-sounding): 2204

Bottom felt (m, drill pipe): 2207

Penetration (m): 816.7

Number of cores: 71

Total length of cored section (m): 662.4

Total core recovered (m): 532.08

¹ van Hinte, J. E., Wise, S. W., Jr., et al., *Init. Repts. DSDP*, 93: Washington (U.S. Govt, Printing Office). ² Addresses: Dr. Jan E. van Hinte (Co-Chief Scientist), Instituut voor Aardwetenschap-

pen, Vrije Universitei, 1007 MC Amsterdam, The Netherlands; Sherwood W. Wise, Jr. (Co-Chief Scientist), Department of Geology, Florida State University, Tallahassee, Florida 32306; Brian N. M. Biart, Department of Earth Sciences, Open University, Milton Keynes MK7 GAA, United Kingdom (present address: Exploration Consultants, Ltd., Highlands Farm, Greys Road, Henley-on-Thames, Oxon RG9 4PS, United Kingdom); James M. Covington, Department of Geology, Florida State University, Tallahassee, Florida 32306 (present address: Texaco USA, P.O. Box 60252, New Orleans, LA 70160); Dean A. Dunn, Deep Sea Drilling Project, La Jolla, CA 92093 (present address: Department of Geology, University of Southern Mississippi, Hattiesburg, Mississippi 39406); Janet A. Haggerty, Department of Geocaography, Texas A&M University, College Station, Texas 77843 (present address: Tetra Tech, Inc., 11820 Northup Way, Suite 100, Bellevue, WA 98005); Philip A. Meyers, Department of Atmospheric and Oceanic Science, University of Michigan, Ann Arbor, Michigan 48109; Michel R. Moullade, Centre de Recherches Micropaléontologiques, University de Nice, 66034 Nice, Cedex, France; Jay P. Muza, Department of Geology, Florida State University, Tallahassee, Florida 32306; James Ogg, Department of Geology and Geophysics, University af Wyoming, Laramie, Wyoming 82701 (present address: Department of Geology, Kochi University, West Lafayette, Indiana 47904); Makoto Okamura, Department of Geology, Kochi University, Kochi City, Kochi Prefecture 780, Japan; Massimo Sarti, Instituto di Geologia, Universit, di Ferrara, 14100 Ferrara, Italy; Urich von Rad, Bundesanstalf für Geowissenschaften und Rohstoffe, 3 Hannover 51, Federal Republic of Germany.

Core recovery (%): 80

Oldest sediment cored:

Depth sub-bottom (m): 816.7 Nature: Olive gray marly limestone Age: late Maestrichtian Measured velocity (km/s): 2.243 (vertical) 2.334 (horizontal)

Basement: Not reached

Principal results: Site 605, 6 km west-northwest of Site 604 on the upper continental rise off New Jersey, was chosen as the last viable alternative for achieving the objectives for the lower half of the New Jersey Transect that eluded us at Site 604, namely a deep penetration to the Maestrichtian to study unconformities, sea level changes, seismic stratigraphy, and litho- and biofacies changes. With the aid of a last-minute 24-hr. time extension for the leg, most of our objectives were achieved in one 816.7-m hole that penetrated to the upper Maestrichtian, captured an excellent Cretaceous/Tertiary boundary sequence, and allowed us to calibrate the seismic stratigraphy.

The section consisted of five lithologic units.

Subunit IA: 198 m of Pleistocene gray silty clay; the hole was washed to 154.3 m, and continuously cored thereafter.

Subunit IB: only 30 cm of Pleistocene, green, biosiliceous calcareous clay with some reworked siliceous microfossils from Unit II.

Unit II: 152 m of lower middle Eocene, greenish gray, biosiliceous nannofossil chalk.

Unit III: 214 m of lower Eocene, greenish gray, nannofossil limestone, formed in the same environment as Unit II, but considerably altered by diagenesis; the preservation of microfossils is poor.

Unit IV: an unusually long upper Paleocene section (176 m) consisting of dark greenish gray, clayey nannofossil limestone.

Unit V: 77 m of lower Paleocene to upper Maestrichtian, olive gray marly limestone. It is subdivided into two subunits at approximately the Cretaceous/Tertiary boundary, based on a significant increase in the amounts of terrestrial silt and glauconite which appear above that point.

The presence of detrital material in the lower Danian sediments is attributed to the effects of the Cretaceous/Tertiary boundary event. The boundary section itself at Site 605 is reasonably complete and expanded for a deep-sea section, a function of the continental margin setting where sedimentation rates are relatively higher than at other DSDP sites. The boundary separates the foraminiferal *Guembelitria cretacea* Zone (P0) and the coccolith Zygodiscus sigmoides Zone (CP1) above from (respectively) the Abathomphalus mayaroensis and Nephrolithus frequents zones below. The core, however, fractured right at the boundary, and no "boundary clay" was observed. We fear that it was washed out during the drilling process.

The Paleogene section is, in general, highly bioturbated and shows evidence of cyclic sedimentation at selected intervals in Units III and IV. The unusually high biosiliceous productivity which persisted during the Eocene (Unit II and III) is attributed to possible high trophic levels associated with upwelling, perhaps due to the incursion of a precursor Labrador Current into this area. The cored section at Sites 604 and 605 dates oceanic reflection Horizons A^c (49.5 Ma), A* (60 Ma), and G(P) (2.8 Ma). The section also dates other Eocene and Paleocene sequence boundaries, which are unconformities on the continental slope, and documents this portion of the Vail et al. (1980) standard cycle chart.

INTRODUCTION

Sites 604 and 605 consist of three drill holes located along a 6.2-km section of U.S. Geological Survey seismic line 25, on the uppermost continental rise off New Jersey. Holes 604A and 605 were offset from Hole 604 in an attempt to achieve penetration deeper than a Miocene debris-flow deposit that terminated rotary drilling in Hole 604. The seismic profile indicated that this Miocene deposit pinched-out slightly upslope from Hole 604; Hole 604A was drilled at the maximum possible distance upslope from Hole 604, but this hole was also terminated in the undrillable Miocene deposit.

Because acoustic beacons transmitting on the operating frequencies for *Glomar Challenger* had been deployed at Site 604, Site 605 was located just far enough upslope to avoid reception of the signals from the Site 604 beacons. Consequently, both Sites 604 and 605 had identical objectives (to analyze the strata of the uppermost continental rise), and the combined results from both sites provide a good record of Maestrichtian-late Pleistocene sedimentation. Therefore, the results from both Site 604 and Site 605 are combined in this chapter.

BACKGROUND AND OBJECTIVES

General: The New Jersey Transect

Site 604 is part of the "New Jersey Transect," which was originally proposed as four coreholes (Table 1) located along a single seismic reflection profile (U.S. Geological Survey multichannel line 25) trending southeastward across the continental slope and rise off New Jersey (Fig. 1). The transect lines up with numerous wells on the coastal plain (Brown et al., 1972; Olsson, 1978), with wells on the continental shelf (Hathaway et al., 1979; Poag, 1979, 1980; Mattick and Hennessy, 1980; Scholle, 1980), and with DSDP Sites 106, 603, 388, and 105, at the base of the continental rise (Fig. 2). It is intended to complete the first comprehensive, dipwise transect of an entire passive margin from the coastal plain to the abyssal plain.

The New Jersey Transect also lies within a closely spaced network of seismic reflection profiles (Grow et al., 1979; Klitgord and Grow, 1980; Schlee et al., 1976; Schlee, 1981), so the transect sites provide an optimum set of targets for calibrating seismic stratigraphy to the sedimentary record cored in these sites. U.S.G.S. line 25 is a dip-line recorded in a joint program of the U.S. Geological Survey and the German Bundesanstalt für Geowissenschaften und Rohstoffe, which collected more than 6000 km of multichannel, high-resolution seismic reflection profiles.

The principal DSDP sites proposed for the New Jersey margin (NJ-1 to NJ-4) were located on or near line 25 in order to maximize the accuracy of seismic correlations in all present and future coring sites along the transect. The major scientific objectives in coring the New Jersey Transect holes were:

1. To document the presence of unconformities and to determine their nature, the duration of hiatuses, their

Table 1. Planned New Jersey Transect holes.

Hole	Bathumatria	Water	Shot Point	Dri	lled as	
	Bathymetric location	depth (m)	no. ^a	Leg Site		
NJ-1	Upper slope	827	2900	_	—	
NJ-2	Middle slope	1500	3060	95	612	
NJ-3	Uppermost rise	2200	3340	93	605	
NJ-4	Upper rise	2387	3500	93, 95	604, 613	

^a Shot points on U.S. Geological Survey seismic line 25 (see Fig. 1).

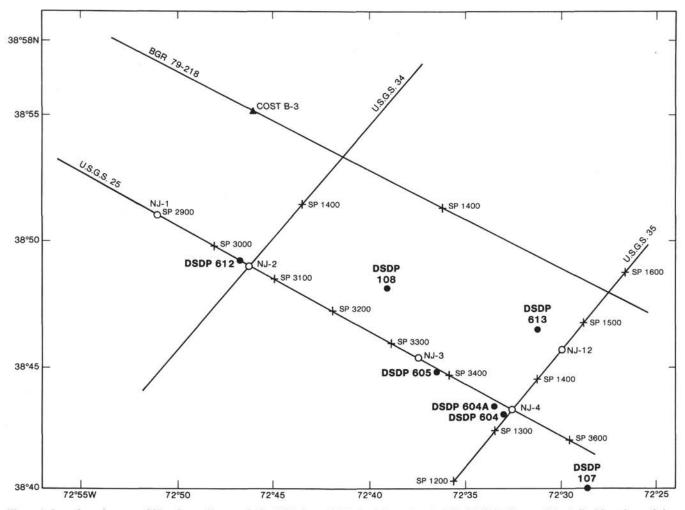


Figure 1. Location of proposed New Jersey Transect holes NJ-1 through NJ-4, with previously drilled DSDP sites, and the 3 final locations of sites drilled on Legs 93 (Holes 604, 604A, and 605) and 95 (Holes 612, 613). Tracks of reference seismic reflection profiles, U.S.G.S. lines 25 and 35 and BGR line 79-218, are also shown. SP = shot point.

correlation with seismic sequence boundaries or discontinuities (seen clearly on line 25), and their relationships to sea level fluctuations;

2. To examine the relationship between the faunal and lithic compositions and the variable character of seismic sequences seen on line 25;

3. To describe and correlate the lithofacies and biofacies sequentially from the upper slope (827 m water depth) to the upper rise (2387 m water depth);

4. To document the microfossil zones and evolutionary events of the Cenozoic and latest Cretaceous on a western Atlantic passive continental margin;

5. By virtue of the foregoing, to document the upbuilding, outbuilding, and subsidence history of this passive margin.

General objectives of drilling the New Jersey Transect were to find unconformities and other evidence for ancient sea level changes. The locations of the transect holes were considered optimal to record through lithology the influence of sea level changes on sedimentation regimes on the continental shelf and slope. With the high-resolution biostratigraphy expected from well-preserved, diverse microfossil assemblages, it should be possible to determine precisely the ages of unconformities and the changes in the sedimentary record and thus test the validity of substantial portions of the sea level curve of Vail et al. (1980) and perhaps document and determine the age of some of the presumed rapid changes in sea level.

Another objective of drilling and sampling the New Jersey Transect was to gain a better understanding of passive continental margin sedimentary processes and facies distribution; this can be achieved by the sequential description and correlation of the lithofacies and biofacies from the upper slope to the upper rise. Correlation of cored sections of known relative position and subsidence history will also make it possible to improve paleontologic criteria for paleobathymetric reconstruction as well as to establish a multiple biochronostratigraphic framework across depth zones.

The successful completion of the New Jersey Transect drilling by Legs 93 and 95 made it possible to calibrate a significant portion of the seismic reflection stratigraphy of the western Atlantic passive margin. This involved determining the age of seismic sequence boundaries; determining whether seismic sequence boundaries repre-

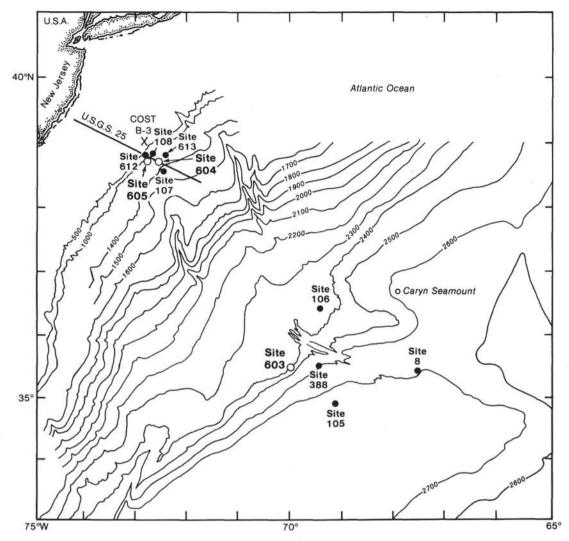


Figure 2. Map showing bathymetry of the continental slope and rise southeast of New Jersey, the location of DSDP sites and the COST B-3 well, and U.S.G.S. line 25. Bathymetry in fathoms.

sent depositional patterns, facies changes, or hiatuses; calculating estimates for the duration of possible hiatuses and for rate changes in sediment accumulation at the unconformities or their conformable extensions; and determining the sedimentary facies of different internal reflection configurations of the reflection units (seismic sequences). Part of this work is reported in this volume.

It was early clear that no single drill site could accomplish all of the tasks outlined above. The onlap pattern of the section along U.S.G.S. line 25 (Figs. 3 and 4) suggested the presence of major hiatuses, and it might not be possible accurately to date the events that caused these unconformities. At the deeper-water location of Site 603, however, it seemed most likely that there was preserved a record of conformable facies changes that correlated with lesser unconformities upslope. Furthermore, slumping and mass movements on the slope might have severely affected the sedimentary record, particularly at the deepest Site 604 (NJ-4). Therefore, all of the New Jersey Transect sites must eventually be considered together if a complete picture is to emerge from the drilling on Legs 93 and 95. By documenting the upbuilding, outbuilding, and subsidence history of this passive margin, we can develop criteria for the geohistorical analysis of lesser-known margins.

Site 604

DSDP Site 604 (NJ-4) was drilled near the intersection of U.S.G.S. seismic lines 25 and 35 (Fig. 1) to be the farthest seaward hole on the New Jersey Transect. Its location (shot point 3500 on U.S.G.S. line 25) was planned to sample a shallow (300–400 m sub-bottom) buried channel leading downslope (southeast), a few kilometers wide, within subsurface relief of 100–200 m. This channel is shown on Figure 4 as a hachured area between two seismic reflection horizons. The position for Hole 604 (Fig. 1) was determined by steaming northeast along U.S.G.S. line 35 from shot point 700 (southwest of the proposed NJ-4), using the *Glomar Challenger's* seismic profiling system to locate the buried channel.

Technical problems (see Operations Summary) made it impossible to penetrate this channel-fill deposit in either Hole 604 or in Hole 604A, offset 1.2 km to the northwest (Figs. 1, 3, and 4).

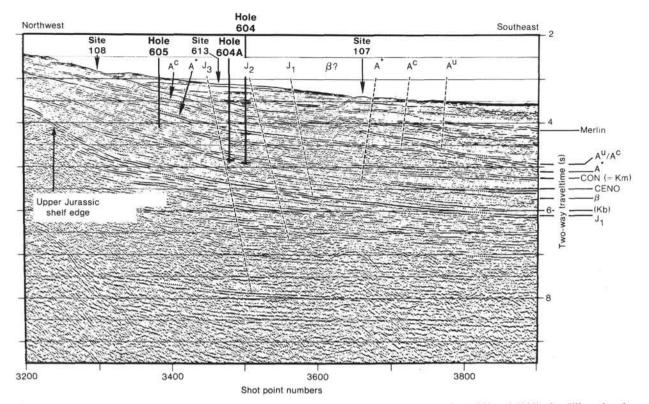


Figure 3. Upper continental rise portion of U.S.G.S. seismic reflection line 25 (between shot points 3200 and 3900) after Klitgord and Grow (1980), showing their interpretation of the seismic reflectors. The planned penetration of Site 604 is indicated to show the great depth of Horizon A* in the Klitgord and Grow interpretation (lower mark on corehole lines). The interpretation of line 25 by Schlee and Grow (1980) is indicated to the right of the figure; this interpretation is favored by Leg 93 scientists who added Kb. Km and Kb are reflection horizons defined at Site 603. Upper mark on corehole lines indicates actual penetration. Also shown are projected locations of Sites 107, 108, and 613.

Site 605

Site 605 was offset approximately 6.2 km northwest of Hole 604 (Fig. 1), along U.S.G.S. line 25. This location was chosen in a successful attempt to avoid the undrillable channel-fill deposit, by drilling upslope of its farthest extent shoreward (Fig. 4). The final location of Site 605 is only 2.5 km away from that which had been proposed for NJ-3 (Fig. 1, Table 1), so this hole fulfilled both the NJ-4 objective of sampling strata older than the channel-fill material and the objective of drilling near the NJ-3 location.

OPERATIONS

Site 604

During the northwesterly transit from Site 603 to the proposed location for Site 604 (NJ-4), the weather deteriorated rapidly, and winds reached 40 knots in squalls which persisted for most of June 7, but cleared by that evening. Upon arrival at shot point 700 on U.S.G.S. seismic line 35, *Challenger* changed course to approach the proposed NJ-4 location from the southwest by retracing U.S.G.S. line 35. The site location had been targeted as a buried channel near the intersection of U.S.G.S. lines 25 and 35 (shot point 3500 on line 25, see Table 1), trending northwest-southwest, with a subsurface relief of 100–200 m, at a sub-bottom depth of 300–400 m. NJ-4 at a predicted water depth of 3287 m, was placed on

U.S.G.S. line 35 (Fig. 1), using *Glomar Challenger's* seismic reflection system to locate this buried channel. The initial pass over the proposed NJ-4 location revealed a buried channel at 3.7 s two-way traveltime (Fig. 5), in the predicted water depth. A slow Williamson turn to the left was made to return *Glomar Challenger* to the location of NJ-4, and the positioning beacon was launched at 0616 hr. (local time) on 8 June 1983 (Fig. 6).

A standard rotary coring bottom-hole assembly (BHA) was assembled because operational reports from Site 107 nearby indicated that Pleistocene sediments in this area might be too stiff to penetrate to any appreciable depth with the hydraulic piston corer (HPC). Based on a PDR reading of 2366 m, the bit was lowered to 2371.9 m for a seafloor punch core, but no sediment was recovered. At 1500 hr., 8 June, the rig weight indicator registered solid bottom at about 2374 m. This was used for the official water depth although the core barrel contained only 5.3 m after reaching a depth of 2380.5 m (Table 2). Unusually firm Pleistocene clay made coring operations slow and tedious for the first 65 m, as only very light weight could be applied with the unsupported BHA while rotation and strong circulation were required to achieve penetration.

Coring continued through Pleistocene and Pliocene clay and sandy clay with only fair core recovery but good hole conditions. At about 260 m, BSF, the drill encountered soft glauconitic sand in an apparent Miocene slump deposit (Fig. 6). Two additional cores (without recovery)

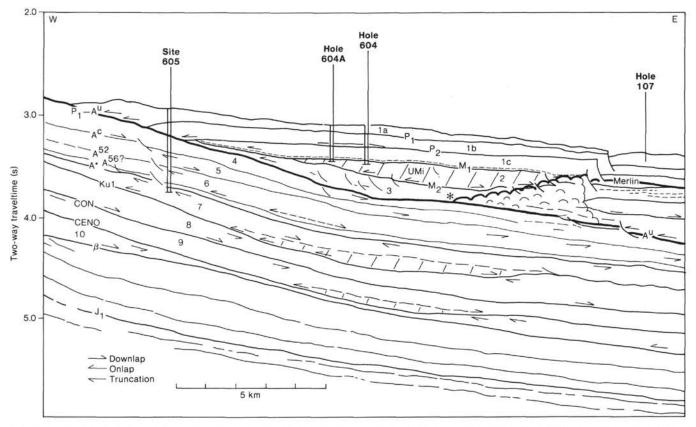


Figure 4. Line drawing interpretation of U.S.G.S. line 25 (Fig. 3), showing local reflection horizons and units and the position of Holes 604, 604A, and 605. The cross-hatched regions indicate debris-flow deposits that terminated drilling in both Holes 604 and 604A. Asterisk marks point where Merlin cuts into A^u.

were attempted before the sand began packing off and sticking the BHA, despite mud flushes and all attempts to stabilize the hole. As the bottom of the sand stratum had not been reached, prospects of successfully deepening the hole appeared dim. The hole was then filled with weighted mud, and the core bit was pulled clear of the seafloor.

Hole 604A

Study of the New Jersey Transect reference profile disclosed that the sand body appeared to pinch out rapidly to the northwest (Figs. 3 and 4). An optimum relocation site was chosen by the scientists about 2.5 km northwest of Hole 604. The profile indicated that the sand body could be avoided at this location while all other target strata could be cored. Unfortunately a move of 2.5 km was not technically feasible because a second positioning beacon had been dropped during Hole 604 operations to replace the malfunctioning original beacon. With beacons transmitting on both operating frequencies, about 6 km is considered to be a minimum distance to avoid interference with the new beacon. The only option open for a second attempt to core Site NJ-4 was therefore a maximum offset to the northwest to the approximate location of the edge of the sand body. The vessel was consequently offset about 1.2 km northwest along U.S.G.S. seismic line 25 as depth was monitored on the PDR.

Hole 604A was spudded at 0515 hr., 10 June. A firm seafloor was again "felt" with the weight indicator at

2350 m, as compared with a PDR reading of 2338 m. The previously cored clay section was washed to 249.6 m (Table 2) before coring commenced (Fig. 6). Only three cores were cut before the bit again broke into upper Miocene sand. The sand succeeded in sticking the drill string more quickly this time, and 15 min. were required to work the pipe loose after the first full core interval in the sand. Another core was attempted after the hole had been cleaned to total depth and a mud flush had been circulated. The pipe became stuck again, however, 6 m had been penetrated. Freeing the pipe was more difficult the second time, and it was apparent that the site was not drillable with *Challenger's* drilling system.

This hole was also filled with weighted mud in accordance with hydrocarbon safety policy. The vessel departed Site 604 shortly thereafter to move to a more suitable location along U.S.G.S. seismic line 25, out of the range of the beacons at Site 604.

Hole 605

The vessel, under way at slow speed, with the drill string suspended well above the seafloor, was moved 5 km further to the west-northwest along the reference profile (U.S.G.S. seismic line 25) to a total distance of about 6 km from the closest Site 604 beacon. LORAN C, the PDR, and the positioning system were monitored during the move, and a new beacon was launched at 0013 hr., 11 June (Fig. 6).

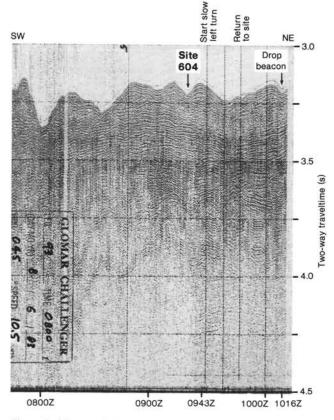


Figure 5. *Glomar Challenger* underway seismic profile near Site 604. This profile parallels U.S.G.S. line 35 (see Fig. 1). Note the buried channel near 3.7 s two-way traveltime at the proposed site location.

Water depth by PDR was 2202 m, and Hole 605 was spudded at 0708 hr., the same morning. The seafloor was detected by the weight indicator at 2207 m. The heave compensator was used, as at Site 604, to maintain a steady weight on the bit during the touchy spudding-in operation in the stiff clay.

The Pleistocene clay layer was drilled to 154.3 m BSF before coring began (Table 3). After another 48 m of clay, soft Eocene chalk was encountered. The chalk was cored with excellent rate of penetration (Fig. 6) and recovered for about 150 m before it became much harder, with properties approaching those of limestone. Drilling in the Eocene limestone continued, with phenomenal recovery to about 565 m sub-bottom, where Paleocene calcareous claystone was reached. Recovery remained very high, but the continued low penetration rate caused the "target" Cretaceous strata to remain tantalizingly out of reach as operation time ran out.

Upper Paleocene rock was still being cored at the time scheduled for termination of the operation. A last-minute phone call to DSDP in La Jolla resulted in a cruise extension of one day to attempt to penetrate through the lowermost Tertiary strata. Coring continued through the evening with little apparent change in the age or nature of the sediment. Then, around midnight, the drill suddenly reached lowermost Paleocene and soon after Cretaceous rocks. The final site objectives were fulfilled with only a few hours remaining. The hole was then filled with barite-weighted mud and *Glomar Challenger* departed Site 605 at 1915 hr., June 16. A brief PDR profile was made to the westnorthwest across the next proposed site on the New Jersey transect (Site NJ-3) and along U.S.G.S. seismic line 25. At 1935 hr., course was set for Norfolk, Virginia. As most of the return trip was to be made across the shallow waters of the continental shelf and heavy traffic was anticipated, the geophysical gear was not deployed. Leg 93 came to its official end at 1610 hr., 17 June 1983, when the ship docked at Norfolk.

LITHOLOGY

Site 604

The lithologic column of Site 604 was subdivided into three units: Unit I (0.0-84.0 m sub-bottom depth), gray to dark greenish gray alternations of clay and silt; Unit II (84.0-238.9 m sub-bottom depth), greenish gray clay with glauconite-rich intervals and variable amounts of biogenic silica; and Unit III (238.9-294.5 m sub-bottom depth), glauconite- and biogenic-silica-rich sandy siltstone with conglomerate and debris-flow intervals. Hole 604 was terminated in Unit III.

Units I and II were further subdivided as explained in the following descriptions. Hole 604A was washed to 249.6 m, then cored to 278.4 m (Cores 604-2 to -4); all the cored interval was in Unit III. The units, lithology, and recovery from Holes 604 and 604A are summarized in Table 4 and Figure 7.

Unit I: Pleistocene Interbedded Clay and Silt, Core 604-1 through Sample 604-10-1, 7 cm; Sub-bottom Depth 0-84.0 m

The unit is composed of a continuum from clay through silty clay through silt. The clay to silt lithologies have variable minor components of nannofossils, clastic carbonate, and glauconite. This unit has been subdivided into two subunits on the basis of heavy mineral content, carbonate content, and evidence of sedimentary slump structures. It is differentiated from the underlying Unit II, which is characterized by abundant glauconite sand and siliceous microfossils.

Subunit IA (Core 604-1 to top of Core 604-5; 0.0 to 35.3 m sub-bottom) is interbedded clay and silt layers. The sediments range in color from medium gray (N5) to predominantly dark greenish gray (5G 4/1-5Y 4/1) and in lithology from nannofossil-bearing (to-rich), carbonate-bearing (to-rich), silt-bearing (to-rich) clay, clayey silt, and sand-rich clay or silt. Fine-grained and slightly coarser grained layers alternate without any apparent gradation.

The total detrital content of these sediments is quite high. Quartz content ranges from 2 to 59% by smearslide analysis. Mica composes up to 10%, feldspar and heavy minerals up to 5% of the total composition. Pyrite and other opaque minerals are present only in very small quantities (up to 3%).

The carbonate content (as specified carbonate) of the dominant lithologies ranges from 5 up to 35%, based on smear-slide analysis. Nannofossils are noted in trace

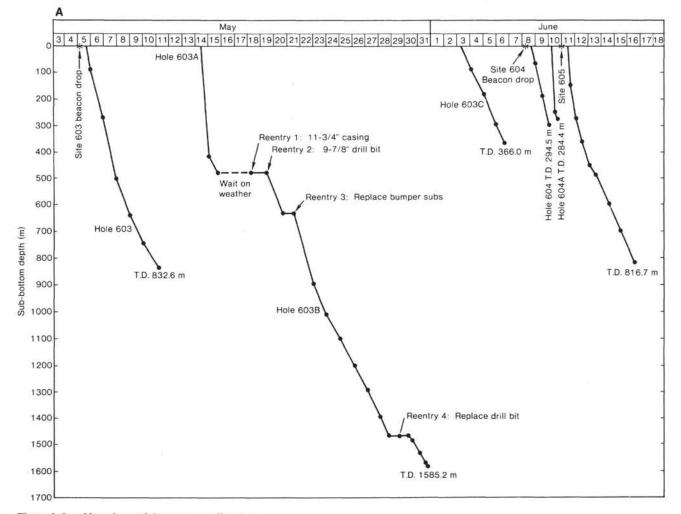


Figure 6. Leg 93 station activity summary diagram.

quantities up to 2%. Foraminifers are absent. Siliceous biogenic components appear in Core 603-3, in trace amounts up to 4%. Fish remains and plant debris occur sporadically in trace quantities up to 2%.

An unusual minor lithology of a mid-Eocene, biogenic-silica-rich nannofossil ooze occurs in Sample 604-1-1, 123-133 cm. This pale yellow (5Y 8/3) ooze contains diatoms (10%), radiolarians (10%), sponge spicules (5%), clay (5%), and foraminifers (3%), in addition to 67% nannofossils. This is interpreted as a displaced block from its lithology and the middle Eocene age of the microfossils.

Subunit IA is distinguished from Subunit IB by an increase in the heavy minerals and the strong evidence of slump structures in Subunit IB.

Subunit IB (top of Core 604-5 to 604-10-1, 7 cm; 35.3-84.0 m sub-bottom) is gray and dark greenish gray clay and silt with slump structures. The sediments range in color from light brown gray (5GY 4/1-5G 4/1) to gray (N5) at the base of the unit. The lithology ranges from carbonate-bearing (to -rich), silt bearing (to -rich), nannofossil-bearing, glauconite-bearing clay to silt.

The sedimentary structures are revealed by color patterns of shades of yellowish brown, pinkish gray (2.5YR 4/1), and reddish yellow (5YR 6/6), which appear as swirls or convoluted layers (Fig. 8) and contorted lenses in a gray or light brown matrix. The distortion of these layers/bands is probably due to slumping, and not to drilling deformation (pers. comm., Operations Manager Glen Foss, 1983).

The quartz content of the dominant lithologies is Subunit IB ranges from 2 to 7% based upon smear-slide analysis. Mica occurs in quantities of 1 to 15%, with feldspar appearing sporadically from trace quantities up to 2%. Heavy minerals increase in abundance from Subunits IA to IB and range from 1 to 10%. Glauconite, pyrite, and opaque minerals occur more frequently in this subunit than in Subunit IA.

The total carbonate content (both detrital and biogenic) decreases from the top of Subunit IB (4-21% total carbonate) to its base (4-10% total carbonate). Calcareous nannofossils occur only in trace amounts in Cores 604-8 and -9.

Subunit IB is distinguished from Unit II by the presence of common to abundant glauconite sand, siliceous microfossils, and an abundance of calcareous microfossils. This subunit is differentiated from the overlying subunit by the evidence of slumping.

Table	2.	Coring	summary,	Site	604.
-------	----	--------	----------	------	------

Core	Date (June		dri	th from ll floor (m)	se	th below afloor (m)	Length cored	Length recovered	Percentag	
no.	1983)	Time	Top	Bottom	Тор	Bottom	(m)	(m)	recovered	
Hole 604										
1	8	1550	2374.	0-2380.5	0.	0-6.5	6.5	5.29	81	
2	8	1700	2380.	5-2390.1	6.	5-16.1	9.6	2.14	22	
3	8	1842	2390.	1-2399.7	16.	1-25.7	9.6	1.71	18	
4	8	2005	2399.	7-2409.3	25.	7-35.3	9.6	0.10	1	
5	8	2117	2409.	3-2418.9	35.	3-44.9	9.6	3.10	32	
6	8	2228	2418.	9-2428.5	44.	9-54.5	9.6	6.58	69	
7	9	0008	2428.	5-2438.1	54.	5-64.1	9.6	0.30	3	
8	9	0108	2438.	1-2447.7	64	1-73.7	9.6	2.41	25	
9	9	0210		7-2457.3		7-83.3	9.6	3.11	32	
10	9	0305		3-2466.9	10.000	3-92.9	9.6	6.63	69	
11	9	0355		9-2476.5		9-102.5	9.6	8.14	85	
12	9	0451		5-2486.1		5-112.1	9.6	1.96	20	
13	9	0543		1-2495.7		1-121.7	9.6	5.64	59	
14	9	0635		7-2505.3		7-131.3	9.6	7.74	81	
15	9	0725		3-2514.9		3-140.9	9.6	3.75	39	
16	9	0813		9-2524.5		9-150.5	9.6	5.77	60	
17	9	0930		5-2534.1		5-160.1	9.6	5.66	59	
18	9	1020		1-2543.7		1-169.7	9.6	6.20	65	
19	9	1115		7-2553.3		7-179.3	9.6	6.90	72	
20	9	1214		3-2562.9		3-188.9	9.6	2.86	30	
21	9	1403		9-2572.5		9-198.5	9.6	5.62	59	
22	9	1503	120121-0112	.5-2582.1		5-208.1	9.6	7.91	82	
23	9	1612		.1-2591.7		1-217.7	9.6	5.64	59	
24	9	1713		.7-2601.3		7-227.3	9.6	0.33	3	
25	9	1810		.3-2610.9		3-236.9	9.6	4.89	51	
25	9	1902		.9-2620.5		9-246.5	9.6	4.05	42	
20	9	1902		.5-2630.1		5-256.1	9.6	1.50	16	
28	9							1.05	+ 100	
28	9	2052 2143		.1-2639.7		1-265.7	9.6 9.6	0.00	+ 100	
	9					7-275.3	100.00			
30 31	10	2247 0020		.3-2658.9		3-284.9 9-294.5	9.6 9.6	0.60	6	
Total							294.5	117.58	40	
Hole 604A										
1M	10	1244	2350	.0-2599.6	0	0-249.6	-	_	Wash	
2	10	1343		.6-2609.2		6-259.2	9.6	0.17	2	
3	10	1453		2-2618.8		2-268.8	9.6	1.91	20	
4	10	1602		.8-2628.4		8-278.4	9.6	0.04	1	
5	10	2200		4-2634.4		4-284.4	6.0	0.04	1	
12			2020.		2,0,	. 20114				
Total							34.8	2.17	6	

Unit II: Lower Pleistocene-Uppermost Miocene Greenish Gray Clay with Glauconite-Rich Intervals, Sample 604-10-1, 7 cm through 604-26-2, 46 cm; Sub-bottom Depth 84.0-238.9 m

Unit II is characterized by intervals rich in glauconitic sand and by variable amounts of biogenic silica within the dominant lithology of greenish gray clay (Fig. 7). The unit was subdivided into four subunits (Table 4) by the presence or absence of these two characteristics.

Subunit IIA (Cores 10–13; 84.0 to 121.7 m sub-bottom) has glauconite-rich sand layers in a biogenic-silicarich to silica-bearing clay. The glauconite-rich (10–35%) intervals of sandy to clayey silt are generally dark greenish gray (5Y 4/1) to olive gray (5Y3/2) and contain abundant quartz silt (10–15%), nannofossils (5–25%), and biogenic silica (typically 15%, generally with similar amounts of diatoms, radiolarians, and sponge spicules). These redeposited sands, 30 cm to 3 m thick, are dominant in Core 604–10, and decrease in abundance in the underlying cores. The interbedded clay is lighter in color (greenish gray, 5GY 5/1, to gray, N5-N6) with a lower abundance of biogenic silica (2-12%). The clay has variable quantities of quartz silt (8-30%) and nannofossils (1-15%), with sporadically important amounts of foraminifers, skeletal carbonate, siderite, pyrite, and glauconite. There is no typical composition. There is continuum between the clay and glauconite-rich silt. No evidence of turbidite structures or graded beds was noted, although the contacts between silt and clay intervals are often sharp. The disturbance of these cores during drilling may have obscured details of primary sedimentary structures.

Subunit IIB (Cores 14–19; 121.7–179.3 m sub-bottom) is very similar to Subunit IIA in having interbedded clay and glauconite-rich silt but is distinguished by the virtual absence of biogenic silica (less than 3%). The glauconite-rich (8–24%) silts and silty clays are very minor components except in Core 604–19, where they comprise about 30% of the core. They increase in abundance from Cores 604-18 upward to Core 604-14. Possible grading and distinct lower contacts of some of these dark

Table 3. Coring summary, Site 605.

Core no.	Date (June 1983)	Time	Depth from drill floor (m) Top Bottom	Depth below seafloor (m) Top Bottom	Length cored (m)	Length recovered (m)	Percentag recovered
що.	1985)	Time	top Bottom	top Bottom	(m)	(m)	recovered
1M	11	1241	2207.0-2361.3	0.0-154.3	—	9.21	Wash
2 3	11 11	1342 1459	2361.3-2370.9	154.3-163.9 163.9-173.5	9.6	tr 4.23	0 44
4	11	1601	2370.9-2380.5 2380.5-2390.1	173.5-183.1	9.6 9.6	4.23	44
5	11	1750	2390.1-2399.7	183.1-192.7	9.6	3.55	37
6	11	1906	2399.7-2409.3	192.7-202.3	9.6	5.46	57
7	11	2000	2409.3-2418.9	202.3-211.9	9.6	9.62	+100
8	11	2050	2418.9-2428.5	211.9-221.5	9.6	0.05	1
9	11	2138	2428.5-2438.1	221.5-231.1	9.6	6.35	66
10	11	2224	2438.1-2447.7	231.1-240.7	9.6	9.17	96
11	11	2310	2447.7-2457.3	240.7-250.3	9.6	9.53	99
12 13	11 12	2359 0056	2457.3-2466.9	250.3-259.9	9.6 9.6	9.65 9.64	+100 + 100
14	12	0200	2466.9-2476.5 2476.5-2486.1	259.9-269.5 269.5-279.1	9.6	9.04	+ 100
15	12	0255	2486.1-2495.7	279.1-288.7	9.6	9.51	99
16	12	0343	2495.7-2505.3	288.7-298.3	9.6	9.66	+ 100
17	12	0436	2505.3-2514.9	298.3-307.9	9.6	9.66	+100
18	12	0545	2514.9-2524.5	307.9-317.5	9.6	4.55	47
19	12	0640	2524.5-2534.1	317.5-327.1	9.6	9.67	+100
20	12	0745	2534.1-2543.7	327.1-336.7	9.6	4.29	45
21	12	0840	2543.7-2553.3	336.7-346.3	9.6	8.01	83
22	12	0955	2553.3-2562.9	346.3-355.9	9.6	9.68	+100
23	12	1125	2562.9-2572.5	355.9-365.5	9.6	9.63	+100
24 25	12 12	1250 1413	2572.5-2582.1 2582.1-2591.7	365.5-375.1 375.1-384.7	9.6 9.6	9.72 9.20	+ 100 96
26	12	1635	2591.7-2601.3	384.7-394.3	9.6	8.50	89
27	12	1823	2601.3-2610.9	394.3-403.9	9.6	9.55	99
28	12	2010	2610.9-2620.5	403.9-413.5	9.6	5.33	56
29	12	2150	2620.5-2630.1	413.5-423.1	9.6	7.39	77
30	12	2347	2630.1-2639.7	423.1-432.7	9.6	5.98	62
31	13	0210	2639.7-2649.3	432.7-442.3	9.6	9.63	+100
32	13	0430	2649.3-2658.9	442.3-451.9	9.6	9.70	+100
33	13	0647	2658.9-2668.5	451.9-461.5	9.6	7.50	78
34	13	0855	2668.5-2678.1	461.5-471.1	9.6	9.77	+ 100
35 36	13 13	1045	2678.1-2687.7	471.1-480.7	9.6	7.93	83 42
37	13	1240 1430	2687.7-2697.3 2697.3-2706.9	480.7-490.3 490.3-499.9	9.6 9.6	4.03 8.98	42 94
38	13	1615	2706.9-2716.5	499.9-509.5	9.6	9.69	+ 100
39	13	1800	2716.5-2726.1	509.5-519.1	9.6	9.46	99
40	13	2040	2726.1-2735.7	519.1-528.7	9.6	5.38	56
41	14	0020	2735.7-2745.3	528.7-538.3	9.6	8.96	93
42	14	0308	2745.3-2754.9	538.3-547.9	9.6	9.66	+100
43	14	0503	2754.9-2764.5	547.9-557.5	9.6	9.64	+100
44	14	0645	2764.5-2774.1	557.5-567.1	9.6	8.83	92
45	14	0830	2774.1-2783.7	567.1-576.7	9.6	8.15	85
46	14	1020	2783.7-2793.3	576.7-586.3	9.6	9.14	95
47	14	1200	2793.3-2802.9	586.3-595.9	9.6	8.93	93
48 49	14 14	1435 1700	2802.9-2812.5 2812.5-2822.1	595.9-605.5 605.5-615.1	9.6 9.6	6.63 8.77	69 91
50	14	1850	2822.1-2831.7	615.1-624.7	9.6	9.52	99
51	14	2110	2831.7-2841.3	624.7-634.3	9.6	4.68	49
52	14	2240	2841.3-2850.9	634.3-643.9	9.6	9.74	+ 100
53	15	0055	2850.9-2855.4	643.9-648.4	4.5	2.38	53
54	15	0258	2855.4-2860.5	648.4-653.5	5.1	1.55	30
55	15	0500	2860.5-2870.1	653.5-663.1	9.6	7.89	82
56	15	0645	2870.1-2879.7	663.1-672.7	9.6	9.66	+100
57	15	0847	2879.7-2889.3	672.7-682.3	9.6	8.82	92
58	15	1000	2889.3-2898.9	682.3-691.9	9.6	0.00	0
59	15	1229	2898.9-2908.5	691.9-701.5	9.6	9.70	+ 100
60 61	15 15	1430 1655	2908.5-2918.1 2918.1-2927.7	701.5-711.1 711.1-720.7	9.6 9.6	9.66 8.21	+ 100 86
62	15	1850	2918.1-2927.7	720.7-730.3	9.6	8.90	93
63	15	2045	2937.3-2946.9	730.3-739.9	9.6	8.32	87
64	15	2226	2946.9-2956.5	739.9-749.5	9.6	9.61	+ 100
65	15	2353	2956.5-2966.1	749.5-759.1	9.6	2.28	24
66	16	0140	2966.1-2975.7	759.1-768.7	9.6	6.03	63
67	16	0327	2975.7-2985.3	768.7-778.3	9.6	6.66	69
68	16	0540	2985.3-2994.9	778.3-787.9	9.6	9.63	+ 100
69	16	0730	2994.9-3004.5	787.9-797.5	9.6	7.88	82
70	16	0929	3004.5-3014.1	797.5-807.1	9.6	9.12	95
71	16	1105	3014.1-3023.7	807.1-816.7	9.6	9.62	+100

Table 4. Site 604 lithostratigraphy.

Unit/Subunit	Lithology	Core-Section	Sub-bottom depth (m)	Age
I	Gray to dark greenish gray alternations of clay and silt	604-1 to 604-10-1, 7 cm	0.0-84.0	late Pleistocene
IA	Interbedded clay and silt layers	604-1 to 604-5, 0 cm	0.0-35.3	late Pleistocene
IB	Gray and dark greenish gray clay and silt with slump structures	604-5, 0 cm to 604-10-1, 7 cm	35.3-84.0	late Pleistocene
п	Greenish gray clay with glauconite-rich intervals (variable amounts of biogenic silica)	604-10, 7 cm to 604-26-2, 46 cm	84.0-238.9	Pleistocene late Miocene
IIA	Greenish gray clay with glauconite-rich sand and biogenic silica	604-10-1, 7 cm through 604-13,CC	84.0-121.7	Pleistocene
IIB	Greenish gray clay with glauconite-rich sand	604-14 through 604-19,CC	121.7-179.3	Pleistocene-late
IIC	Greenish gray clay with biogenic silica	604-20 through 604-24,CC	179.3-227.3	Pliocene Pliocene-late Miocene
IID	Greenish gray clay with glauconite-rich sand and biogenic silica	604-25 through 604-26-2, 46 cm	227.3-238.9	late Miocene
ш	Glauconite- and biogenic-silica-rich silty claystone and conglomerates	604-26-2, 46 cm to 604-31 and 604A-2 through 604-4,CC	238.9-294.5	late Miocene

greenish gray (10GY 3/2-5GY 3/2), muddy sand layers were noted, especially in the abundant 2- to 5-cm-thick sands of Core 604-14. In addition to glauconite, the silt layers are rich in quartz (4-20%), detrital and bioclastic carbonate (10%), and foraminifers (10% in an interval in Core 604-14). The dominant silt-rich clay contains typically 5-15% quartz, 5-10% detrital carbonate, siderite, or skeletal carbonate, and minor quantities of nannofossils and foraminifers (1-5%).

Subunit IIB cores contained a large amount of gas (methane), which had to be vented before splitting the cores—a feature unique to this subunit. Conspicuous pale red (2.5 YR 6/2) silty clay occurs from Sections 604-16-1 to 604-16-3 (and also at the base of Subunit IIA in Sections 604-13-2 and 604-13-4). Foraminiferal sandy laminae and layers are found in Core 604-17.

Subunit IIC (Cores 604-20 to -24; 179.3 to 227.3 m sub-bottom) is homogeneous biogenic-silica-bearing clay (4-10% radiolarians and sponge spicules) of grayish olive green color (5GY 3/2, 5GY 4/1). The clay is siltbearing (typically 4-8% quartz and 2-5% unspecified carbonate); it is nannofossil-bearing (4-8% nannofossils) in Cores 604-20 and -21 to nannofossil-rich (15-40%) in Cores 604-22 through -24. In this subunit, and throughout Unit II, the abundances of calcareous and siliceous microfossils and nannofossils appear to be positively correlated. There are rare occurrences of pyrite nodules and grain clusters and of tiny white concentrations of quartz silt. The homogeneous clay may be moderately bioturbated, but such features were obscured during wire-splitting of the cores.

Subunit IID (Core 604-25 through Sample 604-26-2, 46 cm; 227.3 to 238.9 m sub-bottom) is a greenish gray clay characterized by the abundance of glauconite-rich intervals and biogenic silica. Midway in Core 604-25, the induration of the clay necessitated the change from wire splitting to saw cutting of cores, so the lithologies changed from clay and silt to claystone and siltstone. Many structures of the clay-claystone, such as vaguely defined, moderate bioturbation and the very irregular contacts between glauconite-rich siltstone and claystone, were visible on the smooth, cut surface. Such structures are obscured in the overlying subunits by the wire-splitting process. The glauconite-rich clayey siltstones are dark greenish gray (5G 3/1-5Y 4/1), silt-rich (18% quartz, 4% mica in Sample 604-25-3, 110 cm), and diatom-bearing (4%). The interbedded claystone is dark grayish olive green (5GY 3/2, 5GY 4/1) and biogenic-silica-rich (2-15% diatoms, 1-3% radiolarians, 1-5% sponge spicules, and 1% silicoflagellates). Other components of the claystone are quartz (typically 10%), mica (4%), pyrite (3%), and nannofossils (0-30%). The base of Subunit IID is placed at the top of the uppermost conglomeratic bed, the distinguishing characteristic of Unit III. The lowest 2 m of the subunit (upper portion of Core 604-26) appears to be normally graded from a glauconite-rich, diatom-rich silty claystone to biogenic-silica-rich claystone. The contacts between the glauconite-rich siltstone and the underlying claystone exposed on the cut surfaces of Sections 604-25-3 and 604-25-4 are very complex and possibly involve a combination of bioturbation, current reworking, and/or distortion by slumping.

Unit III: Upper Miocene Glauconite- and Biogenic-Silica-Rich Silty Claystone and Conglomerate (debris flow deposit), Sample 604-26-2, 46 cm to Core 604-31 and Cores 604A-1 through 604A-4; Sub-bottom Depth 238.9-294.5 m

The unit is composed primarily of grayish olive green (5GY 3/2) claystone with varying amounts of silt, biogenic silica, and glauconite. The drilling characteristics indicated abundant sand intervals, but this lithology was poorly recovered. Intervals of gray (5Y 5/1), matrix-supported conglomerates occur throughout the unit. The conglomerates contain rounded quartz pebbles and the following types of clasts: dark gray (5Y 4/1), homoge-

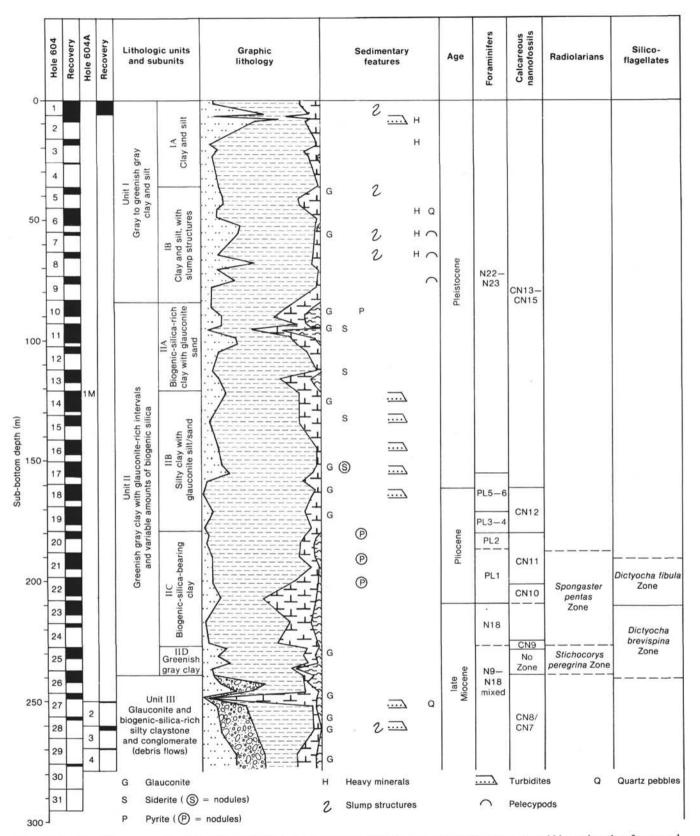


Figure 7. Stratigraphic summary for Holes 604 and 604A, indicating cored intervals, core recovery, lithology, age, and biostratigraphy of recovered sediments.

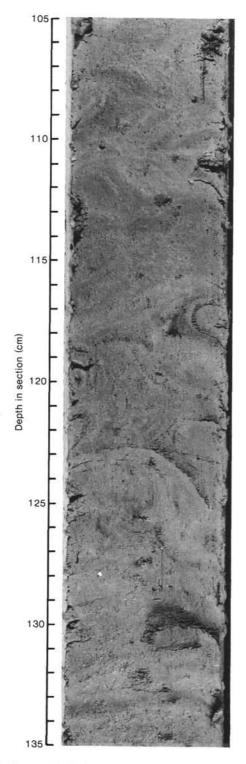


Figure 8. Contorted beds, interpreted as being due to slumping. Sample 604-8-1, 105-135 cm.

neous, biogenic-silica- and silt-bearing claystone; pale greenish yellow (10Y 8/2), clay-rich, biogenic-silica-rich nannofossil chalk; olive black (5Y 2/1) biogenic-silica-rich claystone; fragments of grayish green (5GY 3/2-5GY 4/1) limestone; and rare fragments of shells. These clasts and quartz pebbles are embedded in a silty clay-stone or clayey sandy siltstone matrix.

In Section 604-26-2 at 66 cm, an erosive contact at the base of a conglomerate is visible. Also in 604-26-2, from 90-150 cm, there is a concentration of glauconite grains surrounding a clast of dark gray biogenic-silicaand silt-bearing claystone (Fig. 9). These glauconite grains are arranged in a band partly encompassing the clast and appear to have been caught up as a contorted layer, possibly during a debris flow.

In the remainder of the unit are some carbonate layers, such as nannofossil chalk at 604-27-1, 35-85 cm (50 cm thick), carbonate ooze in the top of Core 604-28, and a foraminifer- and nannofossil-bearing, siliceousbiogenic- and clay-rich chalk at 604-30-1, 34-36 cm. These carbonate intervals appear to be blocks or slumped masses related to debris flows.

Glauconite is a common component of the matrix of the conglomerates; it also occurs in the normal background sediment of biogenic-silica- and silt-bearing/silty claystone.

Both Holes 604 and 604A were terminated because the unconsolidated glauconitic sand could not be penetrated by rotary drilling.

Site 605

Site 605 was washed to a sub-bottom depth of 154.3 m, because the equivalent, more complete Pleistocene record was continuously cored at Site 604. From 154.3 m down to the total depth of 816.7 m, Hole 605 was continuously cored. The lithologic column was subdivided into five units (see Table 5). The hole was terminated at 816.7 m still in Unit V, because the Leg 93 operating time had expired.

A graphic summary of the lithology and sedimentary structures is given in Figure 10. Figure 11 compares the lithologic units cored at site 604 and 605. Lithologic Unit I of Site 605 approximates Unit I of Site 604. Unit III of Site 604 is not present in Site 605, which was deliberately placed to avoid drilling this lithologic unit. It is important to note that the Site 605 lithologic units were numbered sequentially and are *not* equivalent to the Site 604 lithologic units (e.g., Unit III of Site 605 is not the same as Unit III of Site 604; see Fig. 11).

Unit I: Pleistocene Gray Silt-Rich Clay, Core 605-1M to 605-6-4, 149 cm; Sub-bottom Depth 0-198.7 m

This unit was poorly cored: only five cores were taken and the upper 150 m were washed, since Site 604 had already provided the Pliocene-Pleistocene record. Subunit IA (gray silt-rich clay) comprises the upper 198.5 m of the unit. A separate Subunit IB was identified in 605-6-4 from 125 to 149 cm; this 24-cm-thick layer is green in color and has significant amounts of glauconite and biogenic silica (Fig. 10). The correlation of the washed Core 1M (0-154.3 m) with the Pleistocene section of Site 604 is difficult. This core contains medium gray, biogenic-silica- and carbonate-bearing, silt-rich clay with layers of coarse sand more than 150 cm thick. Unit I at Site 604 was deposited in deeper water and is devoid of sand layers. Core 605-1M also contains a slumped bed of mid-Eocene light greenish gray biogenic silica and clay-rich nannofossil ooze-chalk (similar to Core 604-9).

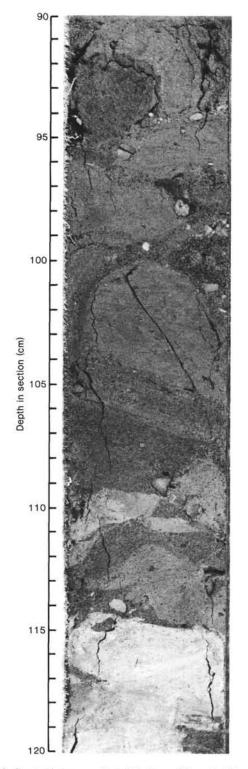


Figure 9. Contact between a clast of dark gray biogenic-silica- and siltbearing claystone (115-120 cm) and overlying conglomerate of glauconite grains, quartz pebbles, and claystone clasts (90-115 cm). Sample 604-26-2, 90-120 cm (lithologic Unit III). Unit III is characterized by these glauconitic debris-flow conglomerates.

Cores 605-3 through 605-6-4, 149 cm correlate roughly with Subunit IB of Site 604. They contain glauconiteand nannofossil-bearing clay (texturally, sandy silty clay) and dark to medium gray, calcareous-silt- and quartzsilt-bearing clay of mid-Pleistocene age. This sediment contains abundant unspecified biogenic calcite fragments (mollusks, etc.); locally, it contains glauconite and nannofossils. Small pyrite nodules and tiny light gray spots (burrow fills?) with quartz silt are common. In general, the content of terrigenous quartz, feldspar, mica, and heavy minerals is very high (5-23%) and the carbonate content very low (less than 26%; see Fig. 10). The quartz silt lenses contain reworked Miocene and Eocene nannofossil assemblages. Section 605-6-1 to Sample 605-6-4, 125 cm contains mostly middle Pleistocene calcareous and terrigenous-silt-rich clay which grades downward into the clay and ooze of Subunit IB (see Fig. 10). The lithologic transition between the dark gray clay of Subunit IA and the slightly siliceous clay of Subunit IB occurs in Section 605-6-4 between 121 and 125 cm; it is marked by the upper extent of siliceous organisms and of glauconite as significant components of the sediment and by a change in color from green (Subunit IB) to gray (Subunit IA).

Subunit IB consists of a 24-cm-thick layer of homogeneous, structureless, biogenic-silica-bearing, calcareous-material-rich clay. It contains siliceous organisms in amounts of 7.8% (mainly radiolarians, diatoms, and sponge spicules), various carbonate components, including nannofossils (10%), foraminifers (1%), and unknown carbonate phases (up to 15%) that might be either detrital or authigenic (siderite). The detrital component is also significant (quartz, mica, feldspar), reaching a total of 5%. Subunit IB contains 5% glauconite and 2% pyrite in the sediments. The percentage of glauconite decreases upward dramatically in the lower 5 cm of the unit (Sample 605-6-4, 144-149 cm).

The lower boundary of Unit I coincides with a significant biostratigraphic break corresponding to the entire Pliocene, Miocene, Oligocene, and part of the Eocene. The contact between Units I and II, which occurs between Samples 605-6-4, 149 cm and 605-6,CC, and has the characteristics of a major unconformity, is an abrupt lithologic change associated with an upward increase in glauconite content and a dramatic upward decrease in biogenic silica.

Unit II: Lower Middle Eocene Greenish Gray, Biogenic-Silica-Rich, Nannofossil Chalk, Sample 605-6-4, 149 cm to 605-22-3, 50 cm; Sub-bottom Depth 198.7-349.8 m

The upper boundary of Unit II occurs between Samples 605-6-4, 149 cm and 605-6,CC, as a sharp contact between the Pleistocene green clay of Unit I and a layer of biogenic silica ooze of early middle Eocene age representing the topmost horizon of Unit II (Fig. 10). The contact between the two units represents an abrupt lithologic change and hiatus between Eocene and Pleistocene sediments. The lower boundary of Unit II is marked by an abrupt change in color from light greenish gray (Unit III) to darker greenish gray (Unit II), and by a dramatic upward increase of opal-A (preserved) biogenic silica microfossils. From smear-slide estimates, the transition is rapid and occurs between 605-22-1, 6 cm and 605-22-3, 50 cm, where well-preserved opaline microfossils are present only in trace amounts.

Table 5.	Site	605	lithostratigraphy.
----------	------	-----	--------------------

Unit/Subunit	Lithology	Core/Section	Sub-bottom depth (m)	Age
I				
IA	Gray silt-rich clay and green biogenic- silica-bearing, calcareous-material- rich clay	605-1 to 605-6-4, 125 cm	0-198.5	Pleistocene
IB	Green biogenic-silica-bearing calcareous- material-rich clay	605-6-4, 125-149 cm	198.50-198.7	Pleistocene
п	Greenish gray biogenic-silica-rich nanno- fossil chalk	605-6-4, 149 cm to 605-22-3, 50 cm	198.7-349.8	early middle Eocene
Ш	Greenish gray nannofossil limestone with varying amounts of foraminiferids and calcified radiolarians	605-22-3, 50 cm to 605-44-5, 33 cm	349.8-563.8	early middle Eocene to early Eocene
IV	Dark greenish gray clay-rich to clayey nannofossil limestone (marl)	605-44-5, 33 cm to 605-64-1, 54 cm	563.8-740.4	late Paleocene to early Paleocene
v	Olive gray, silt-rich or foraminifer-rich, clayey nannofossil limestone	605-64-1, 54 cm through 605-71,CC	740.4-816.7	early Paleocene to middle Maes- trichtian
VA	Dark greenish gray, glauconite-bearing and silt-rich nannofossil clayey limestone	605-64-1, 54 cm to 605-66-1, 120 cm	740.4-760.2	early Paleocene
VB	Olive gray, clay-rich foraminifer-nanno- fossil limestone	605-66-1, 120 cm to 605-71,CC	760.2-816.7	Maestrichtian

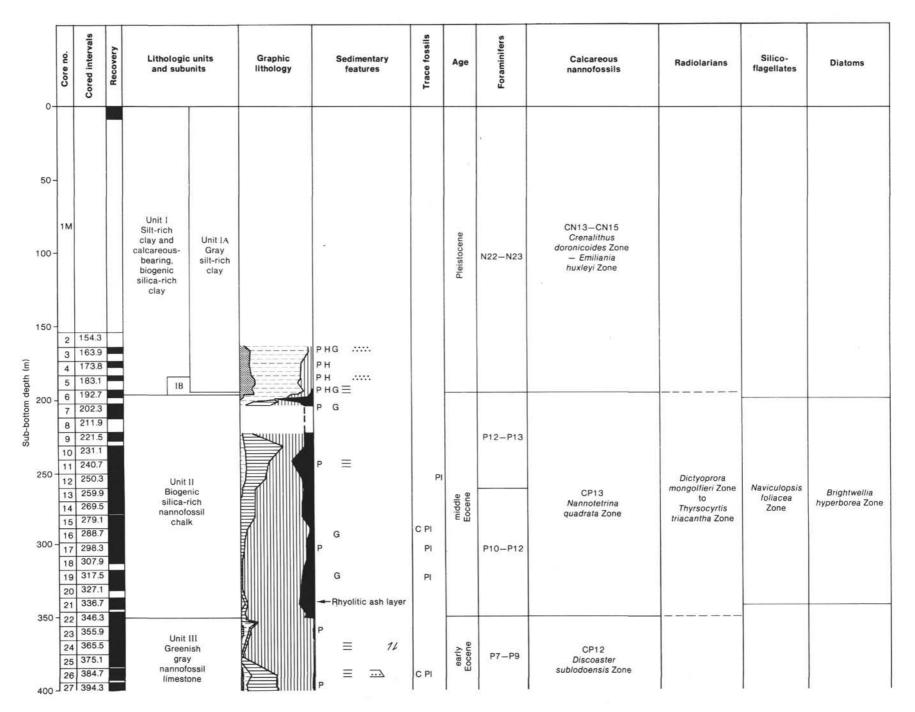
Unit II is a monotonous sequence of homogeneous, biogenic-silica-rich nannofossil chalk, in places foraminifer-bearing (about 3-5% in Cores 605-16 to -18). The color is light greenish gray (5GY 7/1). The biogenic silica content is constantly high, on average around 12 and 15%, exceptionally reaching values up to 30% (Sample 605-11-2, 100 cm). The clay content is negligible for most of the unit down to Core 605-14. It is present in significant amounts (6-8%) from Core 605-15 to the top of Core 605-19.

Clay and biogenic silica contents are extremely high (45 and 50%, respectively) at the top of Unit II, immediately below the contact with Unit I, where a layer of clayey, biogenic-silica ooze occurs. This layer might represent a dissolution of "residual" facies of the underlying chalk. A significant amount of carbonate of unknown origin is also present in addition to the biogenic fraction (mostly nannofossils and foraminifers, percentages of 2-3%). This unknown carbonate phase could be either authigenic or detrital, as suggested by the positive correlation with clay content (Fig. 10). Pyrite is the most significant minor component, occurring as scattered clusters, small nodules up to 5 mm, and lenses. Dark gray pyrite-rich haloes are frequently present around burrows, and pyrite-bearing to pyrite-rich, biogenic-silica-rich nannofossil chalk, as well as pyrite concretions, occur as burrow fills. Black cm-thick bands and zones (burrows?) containing well-preserved pyritized radiolarians and diatoms (up to 7%) occur in Sample 605-12-1, 17 cm and Section 605-13-1.

A thin (2 cm) dark gray ash layer of rhyolitic composition, containing transparent, unaltered glass shards, bubble wall shards, quartz, and biotite, occurs at 605-21-2, 146 cm (Fig. 12).

Bioturbation is the most conspicuous feature of the biosiliceous nannofossil chalk of Unit II. The sediments are constantly reworked, sometimes completely burrowed, especially in the lower half of the unit. Bedding is rarely preserved (Samples 605-11-3, 30-50 cm and 605-11-4,

140-150 cm). Frequently "streaked-out" burrows mimic horizontal layering.


Unit II shows a wide variety of burrow structures, ranging in diameter from 1 to 2 mm (Chondrites-type) up to several cm, with burrow lengths up to 10 cm (Fig. 13). Planolites-type horizontal ovals (Figs. 13A, 13B), and Chondrites-type tubules (Figs. 13A, 13C) are by far most common feature. Large vertical or oblique tubes with crenulated outlines (Figs. 13A, 13D), horizontal burrows with backfill structures (Muensteria, Fig. 13D), and inverted funnel-shaped escape burrows (Figs. 12, 13E) are also common.

Burrow fills usually have a composition similar to the surrounding sediment. Darker color shading, from light brownish gray (5Y 7/1 to 6/1) to light brownish olive (5YR 6/1) to pale olive (5Y 5/3, 6/3) and grayish green (5G 5/2), usually indicates higher clay contents. Dark gray (N4) to grayish black are associated with pyrite.

Unit III: Upper Lower Eocene Greenish Gray Nannofossil Limestone, Sample 605-22-3, 50 cm to 605-44-5, 33 cm; Sub-bottom Depth 349.8-563.8 m

The upper boundary of Unit III was placed at 605-22-3, 50 cm, corresponding with the sudden upward increase in the biogenic silica content and the decrease in the clay content. The lower boundary of Unit III is a sharp contact between the light greenish nannofossil limestone of Unit III and the underlying dark clayey nannofossil limestone (marl) of Unit IV, in Sample 605-44-5, 33 cm.

Unit III consists of a monotonous nannofossil limestone containing various amounts of foraminifers and clay, which frequently occurs in rather high percentages (10–30%). The color is dominantly greenish gray (5GY 6/1) to light greenish gray (5GY 7/1), changing to grayish green (10GY 5/1, 5/2) and pale grayish green (10GY 6/2) in the lower half of the unit, from Core 605-34downward.

292

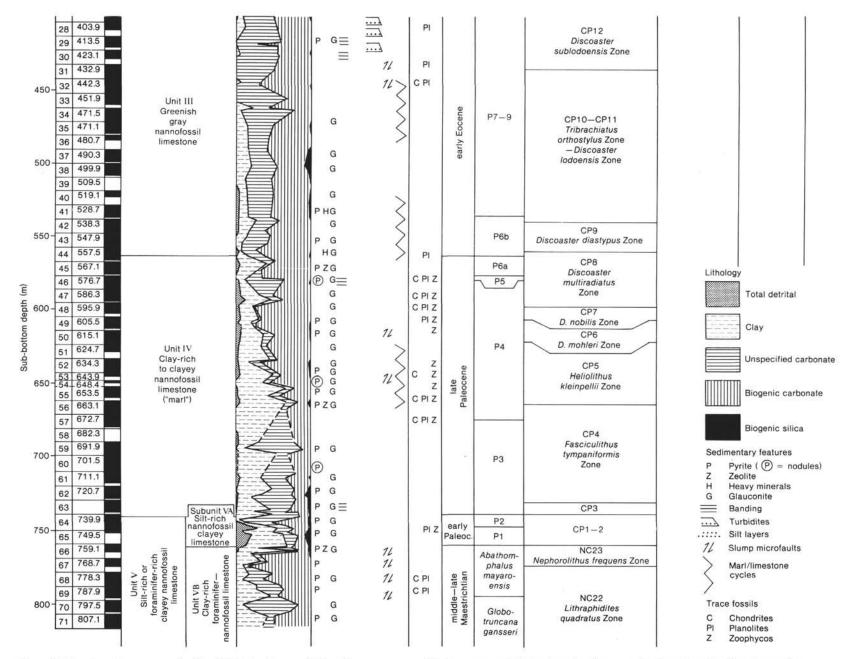


Figure 10. Stratigraphic summary for Site 605, indicating cored intervals, core recovery, lithology, age, and biostratigraphy of recovered sediments and sedimentary rocks.

293

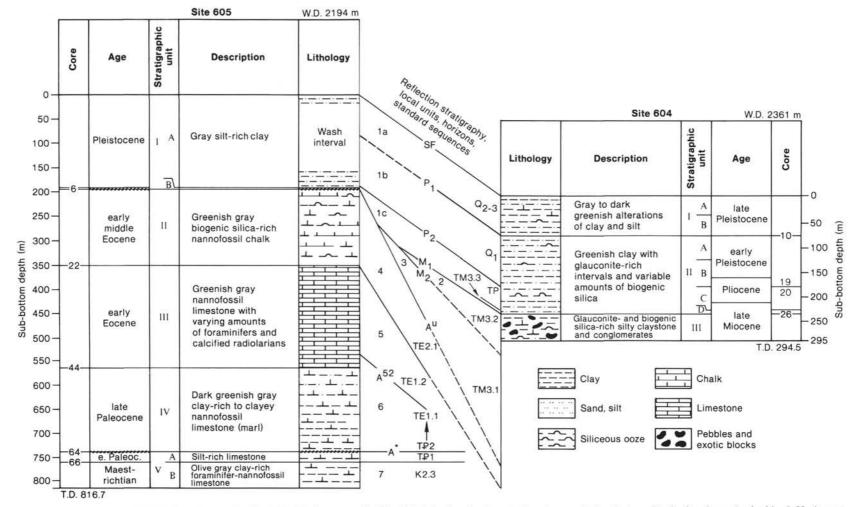


Figure 11. Comparison of lithologic units cored in Site 604 with those cored in Site 605. Seismic reflection stratigraphy correlating the two sites is also shown (revised by JvH, August 1986).

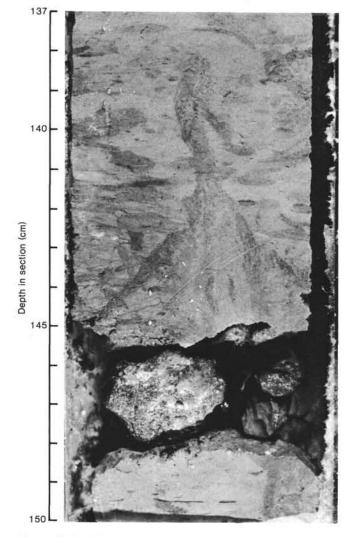


Figure 12. Rhyolitic ash layer at 605-21-1, 146 cm, overlain by an inverted funnel-shaped burrow (escape structure?). Sample 605-21-2, 137-150 cm.

Foraminifers are present in amounts ranging from 1 to 8%. At the bottom of the unit, from Sections 605-42-1 to 605-44-3, the foraminifers reach percentages of 10 to 15%. Discrete foraminiferal sand layers, 1 to 2 cm thick, are frequent from 605-26-5, 70 cm down to 605-29-5, 60 cm (Fig. 14). In some cases they show a sharp base and gradational upper contact and are therefore interpreted as thin turbiditic layers or winnowed deposits.

Biogenic silica occurs in trace amounts, in some cases reaching values of 2% (Sample 605-23-3, 26-27 cm). Higher values of biogenic silica (up to 8%) from Cores 605-37 to -38 qualify the sediments as biogenic-silicabearing. In these cores, "ghosts" of dissolved radiolarians infilled with authigenic opal-CT are found.

Clay is present in amounts ranging from 4 to 10% between Cores 605-23 and -28; it is almost absent between Cores 605-29 and -33, and is present with average values of 15 to 20% from Core 605-34 to the bottom of the unit. The basal sediments of the unit have a significant amount of detrital materials (quartz, mica, heavy minerals). Pyrite occurs mostly as scattered tiny nodules; iron-sulfide-enriched zones occur at several levels as black streaks (Cores 605-30, -36, and -42) and as haloes around burrows, frequently associated with pyrite concretions.

An interesting, but so far unexplained feature of Unit III sediments is that certain blocks of the more clayey limestones ("marls") and even entire core sections developed concave-upward surfaces after cutting and desiccation in the core laboratory. Limestones in Cores 32 through 35 and Cores 40 through 43 developed these "bowed-upward" cut surfaces.

The bioturbation is very intense throughout Unit III. The degree of reworking and the trace fossil assemblages are different between Units II and III: there are fewer distinct, individual, trace fossils in Unit III. Most of the trace fossils in Unit III are Planolites and Chondrites (Fig. 14), but some other unusual burrow structures are also found in this unit. Sample 605-32-1, 95-98 cm, has a distinct, comet-shaped, nearly vertical burrow (Cylindrichnus?) cut by a microfault (Fig. 13F), and in Sample 605-26-2, 72-77 cm there is a contorted burrow with a three-dimensional structure, cylindrical cross section (8-15 mm diameter), and meniscate backfill structures (Fig. 13G). Sedimentary structures such as lamination or banding are occasionally preserved (Cores 605-24 to -30). In the less bioturbated horizons, "streaked-out" burrows frequently mimic horizontal layering.

From Cores 605-33 to -35 and in Core 605-40, alternation of intensely bioturbated, faintly laminated, and homogeneous undisturbed horizons gives rise to a clearly cyclic pattern. Variation in the clay content and color changes (clay-rich and clay-bearing nannofossil limestone are respectively grayish green, 10GY 5/2, and a lighter grayish yellowish green, 10GY 6/2 to 7/2) enhance the cyclicity in Core 605-44, at the bottom of the unit. Cycles are usually on a scale of 10–40 cm, with an average wave length of 7–8 cycles per 9-m core (Fig. 10).

Unit IV: Upper Paleocene Dark Greenish Gray, Clay-Rich to Clayey Nannofossil Limestone ("marl"), Samples 605-44-5, 33 cm to 605-64-1, 54 cm; Sub-bottom Depth 563.8-740.4 m

The upper boundary of Unit IV is placed at a distinct color and lithology change at 605-44-5, 33 cm; the greenish gray (5GY 5/2 to 7/2) limestone of early Eocene age (Unit III) is underlain by a dark greenish gray (5GY 4/1 to 5/1) marl of Paleocene age (Fig. 15). The lower boundary of Unit IV is difficult to define and somewhat arbitrary; it is placed at 605-64-1, 54 cm.

The main sediment type is a dark greenish gray (5GY 4/1) clayey nannofossil limestone ("marl") which alternates with a greenish gray (5GY 5/1) or gray (N5 to 5Y 5/1), clay-rich, nannofossil limestone ("marly limestone"). Some varieties are rich in terrigenous silt (up to 10% quartz and 2% mica), but usually terrigenous silt- and sand-sized material comprises less than 5%. There is, however, a distinct increase of terrigenous silt content from the almost purely pelagic early Eocene Unit V.

Figure 10 shows that the carbonate content (as estimated from smear slides) varies widely, from 30 to 90%. A significant trend is seen below Core 56, where "un-

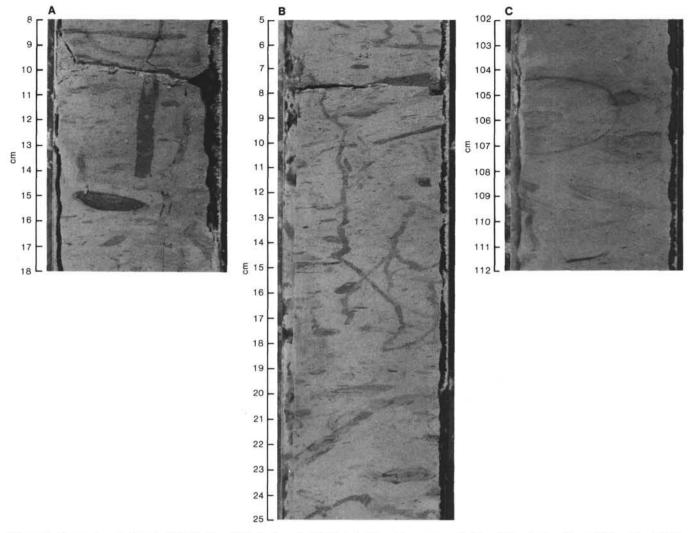


Figure 13. Burrow types in lithologic Units II and III. A. Sample 605-16-4, 8-18 cm shows mm-scale Chondrites, horizontal ovoid Planolites (at 15 cm), and vertical burrow at 10-14 cm (Skolithos?). B. Complex vertical array of interfingering burrows with meniscate structure at 8-18 cm, Planolites burrows at 20 and 23 cm, and nearly vertical burrow with backfill structures (Teichichnus) from 21-23 cm. Sample 605-19-4, 5-25 cm. C. Planolites (105 and 109 cm), Chondrites, and a "halo burrow" between 104 and 107 cm. Sample 605-16-4, 102-112 cm. D. Horizontal burrows with meniscate structure (Muensteria), Planolites burrows, and a vertical burrow between 27 and 29 cm. Sample 605-17-1, 20-35 cm. E. Inverted funnel-shaped escape burrow, Sample 605-17-5, 120-135 cm. Also seen in the figures are Planolites outige and mm-scale Chondrites burrows. F. nearly vertical tapered Cylindrichnus burrow tub a microfault (reverse faulting). Section also shows Chondrites burrows and several small, horizontal Planolites burrows. Sample 605-32-1, 93-103 cm. G. Three-dimensional burrow with cylindrical cross-section and backfill structures (72-78 cm), plus an assortment of Chondrites and Planolites burrows. Sample 605-26-2, 58-78 cm.

specified carbonate" (mostly silt- and clay-sized micritic calcite, some biogenic fragments) increases downhole at the expense of calcareous nannofossils. This is probably due to diagenetic recrystallization in the more carbonate rich sediments at burial depths below 650 m. Above this burial depth, nannofossils constitute 70 to 90% of the total carbonate content. In general, foraminifers are very rare (less than 3%) and very poorly preserved. Only Core 605-56 contains 5% foraminifers (foraminifer-bearing limestone).

Siliceous organisms are rare, except for poorly preserved radiolarians in the form of opal-CT filled "ghosts," and calcified radiolarians are found in some levels. Pyrite (framboids or fragments of pyritized radiolarians) occurs in trace amounts to 2%. Glauconite is rare to absent, as is zeolite (except up to 1% in Cores 605-48, -49, and -56). Unit IV is characterized by a high diversity of burrow structures which usually penetrate the sediment in a horizontal direction, giving the appearance of a banded structure similar to that seen in Unit II. The burrow fills are usually greenish black (5G 3/1). Some burrows are filled by pyrite concretions. Often nannofossils and foraminifers are better preserved in the burrow fills than in the adjacent sediment, producing a more silty-sandy appearance in the burrows. The most common burrow types are Chondrites and Planolites, but Unit IV is remarkable for its abundance of well-preserved Zoophycos burrow structures, some of which extend 20–30 cm vertically (Fig. 16).

Except for some faint color banding and "speckly lamination" (caused by flattened, horizontal burrows), no bedding or lamination is preserved. A compacted shell layer was recognized in Sample 605-50-6, 82-83 cm.

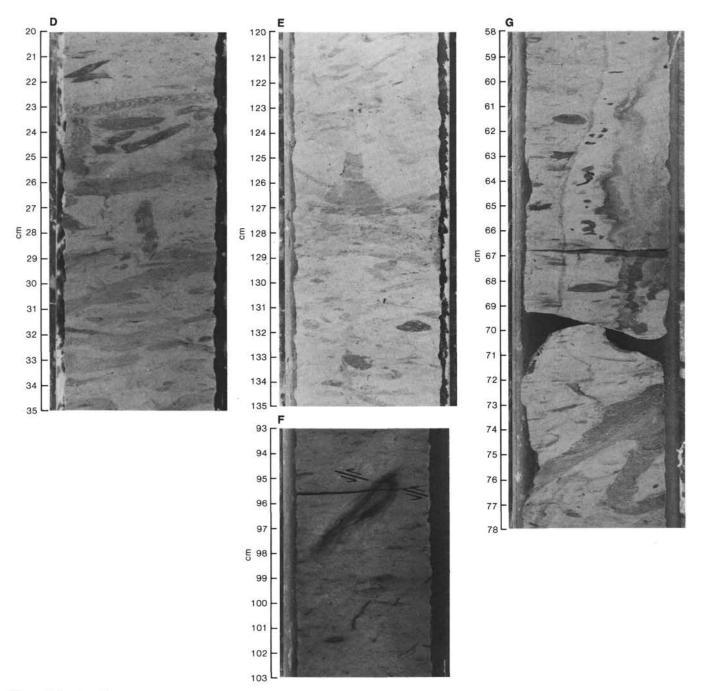


Figure 13 (continued).

Marl-limestone cycles (shown by a faint to distinct color zonation) are well developed in Units III and IV (especially in Cores 605-51 to -55, and -58 to -62; see Fig. 10). Usually, the dark-colored intervals (5GY 5/1 to 5GY 4/1) consist of clayey nannofossil limestone ("marl") to nannofossil claystone ("clayey marl"), whereas the lighter-colored zones (5GY 6/1) are a clay-bearing to -rich nannofossil limestone ("marly limestone"). The thickness of the dark or light-colored intervals varies from 10 to 60 cm. Since the color boundaries are very gradational, the wavelength of the cycles is difficult to estimate. In general, the wavelength tends to decrease from Cores 605-51 (4 cycles/core) to Core 605-57 (8) to Core 605-60

(14). The "cycles" are partially due to the concentration of dark burrows (more bioturbated areas are darker). Also different "cycles" may overlap each other.

Unit V: Lower Paleocene to Middle Maestrichtian Olive Gray, Foraminifer-Nannofossil Clayey Limestone, Samples 605-64-1, 54 cm through 605-71,CC; Sub-bottom Depth 740.4-816.7 m

Unit V is distinguished from the overlying Unit IV by an abundance of foraminifers and terrigenous silt (Fig. 17). The general lithology is olive gray (5Y 5/1), moderately bioturbated, foraminifer-nannofossil clayey limestone ("marly limestone"), though two major subunits

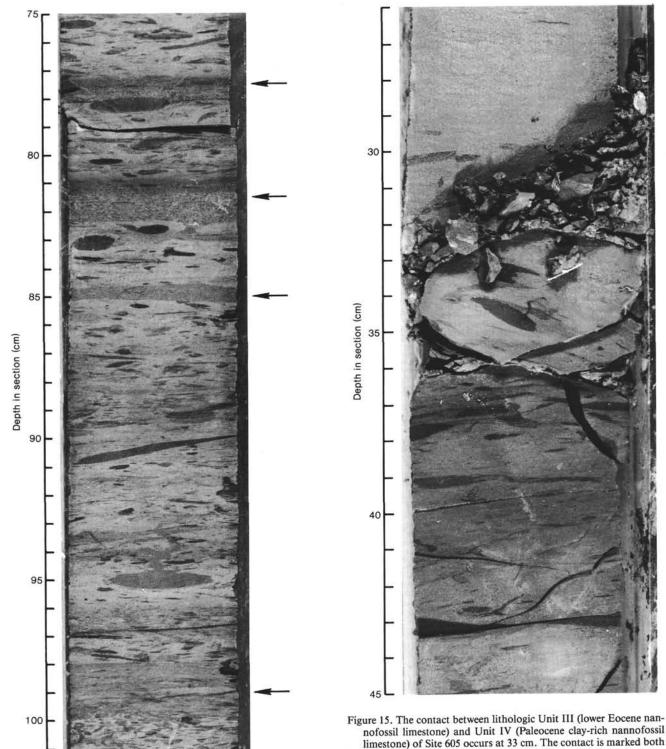


Figure 14. Lithologic Unit III at Site 605 contains foraminiferal sand layers (seen here at 77.5, 81-82, 85, and 98-100 cm). Sample 605-26-5, 75-101 cm also shows Chondrites and Planolites burrows.

can be made on the basis of the variable importance of terrigenous silt versus foraminifers (Table 5). Subunit VA (terrigenous-silt-rich) has a fairly narrow transition to Subunit VB (foraminifer-rich) in Sections 605-66-1. The transition between the subunits contains the Cretaceous/Tertiary boundary.

In contact between inhologic onit III (lower Eocene halfnofossil limestone) and Unit IV (Paleocene clay-rich nannofossil limestone) of Site 605 occurs at 33 cm. The contact is marked both by a lithologic change and by a color change, with greenish gray (5GY7/2 to 5/2) sediments overlying dark greenish gray (5GY5/1 to 4/1) sediments. Unit IV limestones are also more heavily bioturbated than the overlying Unit III limestones. Samples 605-44-5, 26-45 cm.

The base of Subunit VB is 816.7 m sub-bottom, the total depth of Site 605.

The top of Unit V is difficult to define, and is somewhat arbitrarily placed at 605-64-1, 54 cm. Above this level are found dark greenish gray, clayey nannofossil

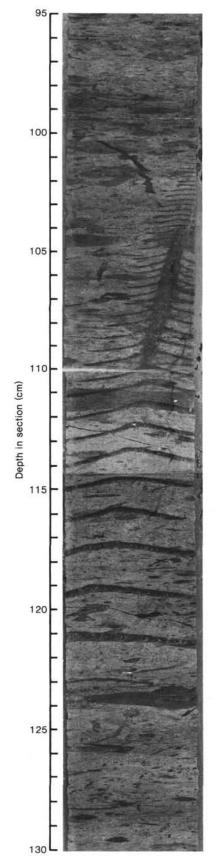


Figure 16. Unit IV of Site 605 is marked by remarkable preservation of Zoophycos burrows, such as the one extending from 101-122 cm. This core also shows Chondrites and Planolites burrows. Sample 605-57-1, 95-130 cm.

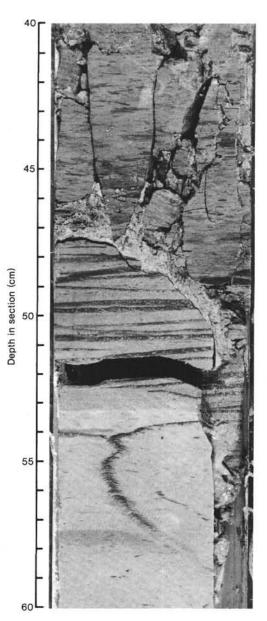


Figure 17. Contact between lithologic Units IV and V, in Sample 605-64-1, 40-60 cm, is placed at a color change at 53.2 cm. This color change is overlain by a severely bioturbated zone from 47-53 cm, so the lithologic contact has been somewhat arbitrarily defined. The interval between 47 and 54 cm is interpreted as the burrowed zone underneath an unconformity. This level coincide with reflection Horizon A*.

limestones of Unit IV, which have insignificant amounts of terrigenous silt and foraminifers. Sample 605-64-1, 47-54 cm is interpreted as being an unconformity, with a sharp basal color change topped by an interval with moderate to severe bioturbation by Zoophycos burrows, which appear to have penetrated from the overlying unit (Fig. 17; cf. Bruins et al., Lang and Wise; both this volume). The top of Unit V is arbitrarily placed at the sharp color change at 54 cm in Section 605-64-1, although it is possible that the contact may be anywhere within the bioturbated interval (47-54 cm).

Subunit VA (605-64-1, 54 cm to 605-66-1, 120 cm) is Paleocene silt-rich glauconite-bearing, clayey nannofossil limestone ("marly limestone") dark greenish gray (5G4/ 1 to 5G4.5/1), with moderate bioturbation. The uppermost 6 m of Subunit VA is a unique interval in which the silt and clay content decrease rapidly upward, distinct darker-sediment-filled burrows vanish, and the lithology changes from clayey nannofossil limestone to a very dense, light greenish gray (5GY 7/1) limestone with 99% carbonate. The uppermost 7 cm of this interval constitute the presumed unconformity discussed earlier. The transition between Subunits VA and VB is gradational, and the boundary has been arbitrarily placed at 605-66-1, 120 cm.

Smear-slide estimates of the composition of Subunit VA below the uppermost 6 m have a relatively narrow range: terrigenous silt of quartz and mica (10-32%, typ-ically 15-20%), glauconite (2-3%), recrystallized radiolarians (2-3%), diatoms, fish debris (1-2%), and clay (20-60%, typically 35%). The total carbonate (20-45%, typically 40%) is composed of nannofossils (10-20%) range), foraminifers (0-10%); typically 4%, with an increase in abundance in the basal transition zone of Section 605-66-1), and unidentifiable carbonate fragments or detritus (typically 15\%). The ratio of silt plus clay to total carbonate is approximately 1:1, indicating that this lithology could also be called a calcareous mudstone.

Abundant burrows in this subunit are commonly filled by darker material, which is presumably slightly more clay-rich. The burrows are generally of subhorizontal types, though rare Zoophycos were recovered in Core 605-65. There is a vague indication of "cyclic" changes in the abundance of burrows and the darkness of the sediment.

The lowermost meter of Subunit VA is noteworthy in that this section contains the Cretaceous/Tertiary boundary. Shipboard analysis of the nannofossil content of smear slides indicated that the Maestrichtian/Danian contact in Site 605 occurs in Section 605-66-1, somewhere within a brecciated zone between 43 and 71 cm depth (Fig. 18). Because this contact is brecciated, it appears likely that, any "boundary clay", if originally present, was washed away by the drilling process. Basal Danian sediments in Section 605-66-1, are moderately burrowed, and contain more foraminiferal sand and glauconite silt than do the uppermost Maestrichtian sediments. There is also a slight color change at the boundary, from dark gray (5Y4.5/1), clay-rich, Maestrichtian nannofossil limestones to dark greenish gray (5G5/1), clayey Danian nannofossil limestones.

Section 605-66-1 also contains the gradational transition between Subunits VA and VB. Subunit VB (Samples 605-66-1, 120 cm through 605-71,CC) is olive gray (5Y 5/1, NS) clay-rich Maestrichtian, foraminifer-nannofossil limestone. The microfacies is a clay-rich pelagic foraminiferal packstone. Subunit VB differs in composition from Subunit VA in that VB sediments are richer in foraminifers and contain less terrigenous silt. The decrease in foraminiferal content and increase in silt is gradual, with transition occurring in Section 605-66-1. The Subunit VA/VB transition zone contains the Cretaceous/ Tertiary boundary, as discussed earlier. The boundary between these two subunits has been arbitrarily placed at 605-66-1, 120 cm, at the approximate midpoint of a

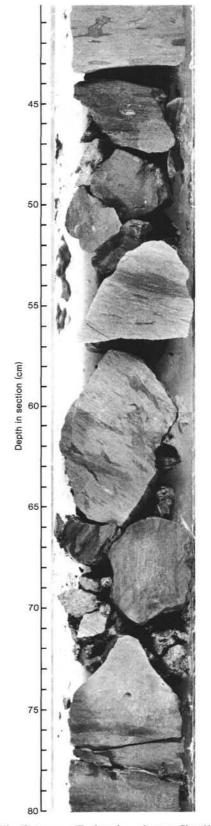
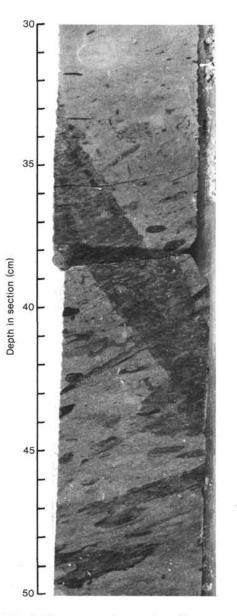



Figure 18. The Cretaceous/Tertiary boundary at Site 605 occurs in Section 605-66-1, somewhere in a brecciated interval between 43 and 71 cm. The sediments below 71 cm contain Maestrichtian nannofossils but the fragment between 65 and 71 cm contains Danian nannofossils, as did all other fragments in the brecciated interval. If a "boundary clay" lamina was originally present, it has apparently been lost in the drilling process.

brecciated zone. Below this poorly defined transition, the average composition has a typical range of clay (15-30%), foraminifers (10-25%), nannofossils (25-35%), and unspecified carbonate (15-30%). The total carbonate content (60-80%) in Subunit VB is approximately twice as much as in the overlying silt-rich Subunit VA, and the abundance of foraminifers and absence of terrigenous silt (maximum of 5\%) are the distinguishing characteristics of VB. In addition, there are trace amounts of recrystallized radiolarians, glauconite, and pyrite.

As in Subunit VA, there is moderate bioturbation with a darker infilling of the burrows. Both vertical and horizontal burrows are abundant (Figs. 19, 20). Core 605-68 has beautifully preserved burrows including Planolites,

90

Depth in section (cm)

Figure 19. Subunit VB cores contain a number of burrow structures, including Chondrites, Planolites, and horizontal burrows with back-fill structure (Muensteria). The subvertical burrow between 34 and 45 cm has subsequently been cut by at least two additional generations of burrows. Sample 605-68-6, 30-50 cm.

Figure 20. Subunit VB cores contain laminations with an apparent 10-15° dip (102 and 110 cm). Note clear Chondrites burrows (92-95 cm), Planolites (98-99 cm), and horizontal Muensteria burrows at 97 and 108 cm. Sample 605-69-2, 90-110 cm.

Chondrites, horizontal burrows with backfill structures (Muensteria?), and a large $(2 \times 4 \text{ cm})$ subvertical burrow which has been reworked by at least two additional generations of younger burrows (Fig. 19).

The uppermost cores (Cores 605-66 to -69) display "cycles" of lighter-colored, less bioturbated intervals alternating with darker, more heavily bioturbated intervals. In Core 605-68 there were 16 cycles, but below this core the "cycles" are much broader and are indistinct.

Core 605-69 has levels with lamination and cross-lamination (Fig. 20), which display an apparent 10–15° dip. Cores 605-70 and -71 have a similar apparent dip, estimated from the general tilt of subhorizontal burrows. Scattered microfaults occur throughout Subunit VB, as demonstrated by offset sediment laminae and offset burrows (Fig. 21).

BIOSTRATIGRAPHY³

Site 604 Summary

At Site 604, *Glomar Challenger* recovered sediment in 29 of 31 cores drilled by rotary drilling to a depth of 294.5 m in Hole 604, and four cores from a total penetration of 284.4 m in Hole 604A (Table 2). Calcareous nannofossils, diatoms, radiolarians, foraminifers, and silicoflagellates are present in each of the three lithologic units of these holes. Figure 7 summarizes Site 604 biostratigraphy.

Unit I extends from the sediment/water interface to 84 m sub-bottom (Core 604-1, top, to Sample 604-10-1, 7 cm). These sediments are late Pleistocene to middle Pleistocene in age, as is indicated by both the foraminifers and nannofossils. The foraminifers in Unit I are rare to abundant and show moderate preservation. Low P/B ratios, intervals that are barren of foraminifers, and the common occurrence of the benthic foraminifer genus *Elphidium* and other inner neritic forms indicate displacement from a littoral environment. The planktonic foraminiferal assemblage in Cores 604-3, -4, -7, and -8 is a cool-water assemblage. Reworked Eocene foraminifers are present in Core 604-2.

Nannofossils, which are relatively common and well preserved in Cores 604-1 through -5, decrease in abundance in Cores 604-5 through -9 and become rare in Core 604-10. Preservation in Cores 1 through 10 is moderate to poor. A light green clast of silty clay in Core 604-9 yielded abundant, well-preserved, Eocene calcareous nannofossils. Reworked mid-Eocene nannofossils are present throughout Cores 604-1 through -10.

Radiolarians are absent from Unit I or are present only as rare amounts of reworked Eocene specimens. Samples 604-2,CC and 604-6,CC contain Eocene radiolarians, possibly transported from Eocene material further up the continental slope from Site 604.

Unit II extends from 84.0 to 238.9 m sub-bottom (Sample 604-10-1, 7 cm to Sample 604-26-2, 46 cm) and is early Pleistocene to latest Miocene in age. The Pliocene/Pleistocene boundary is placed between Samples

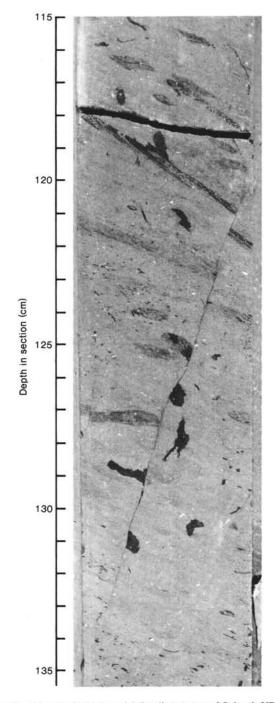


Figure 21. Microfaulted Maestrichtian limestones of Subunit VB, Site 605. Chondrites, Planolites, and Muensteria burrows are also seen in Sample 605-69-4, 115-135 cm.

604-18-2, 50-54 cm, and 604-18-3, 30-32 cm based on the last appearance datum (LAD) of *Discoaster brouweri*, or between Samples 604-17-2, 90-94 cm and 604-17-3, 90-96 cm based on foraminifers (Moullade, this volume). The nannofossil Miocene/Pliocene boundary occurs at the top of Core 25 based on the LAD of *Discoaster quinqueramus* and *D. berggrenii*. The Miocene/ Pliocene boundary based on foraminifers occurs between Samples 604-23-3, 90-94 cm and 604-23-4, 90-94 cm (Moullade, this volume).

³ For convenient cross-reference between chrono-, bio-, and seismostratigraphy we used the time scale of Vail and Mitchum (1979), unless otherwise stated.

Temporal control is good in Cores 604-11 through -20 using nannofossils. In Cores 604-21 through -26, it is not so accurate: calcareous microfossils are more poorly preserved and in lesser abundance because of an increase in the siliceous sediment component.

Foraminifers are sometimes absent or nondiagnostic in Cores 604-15 through -20. In general, the planktonic foraminiferal assemblage throughout Unit II is a coldwater assemblage.

The uppermost part of Unit II (Cores 604-10 to -13) is barren of radiolarians, except for reworked Eocene specimens in Samples 604-10,CC and 604-11,CC. Cores 604-14 to 604-24 are Pliocene, and the radiolarian Miocene/Pliocene boundary occurs between Cores 604-24,CC and 604-25,CC, as approximated by the base of the *Spongaster pentas* Zone. The lowermost part of Unit II contains upper Miocene Radiolaria.

The debris flows which comprise Unit III extend from 238.9 to 294.5 m sub-bottom (Sample 604-26-2, 46 cm through Core 604-31). The pelagic sediments of Unit III that could be interpreted as being in situ are late Miocene in age, the oldest being assigned to the Tortonian (calcareous nannofossil Zone CN7), the youngest possibly to the late Messinian-early Zanclean (radiolarian Stichocorys peregrina Zone, 604A-4,CC), but certainly not older than foraminiferal zone N17 (latest Tortonian-Messinian), which is identified in Core 604A-3. All elements of the debris flow will be either displaced or reworked. Reworked Eocene nannofossils, radiolarians, and foraminifers persist throughout this unit. The late Miocene microfossil assemblage contains sparse to few, poorly preserved to moderately preserved nannofossils, poorly preserved radiolarians and silicoflagellates, and poorly preserved foraminifers.

Site 605 Summary

Site 605 is located on the upper continental rise 6 km upslope of Site 604 on U.S.G.S. seismic profile 25. Site 605 was washed to a sub-bottom depth of 154.3 m (Core 1M), then continuously cored from 154.3 m to a total sub-bottom depth of 816.7 m (Table 3). The lithologic column was subdivided into five units. The biostratigraphic zonation for Site 605 is shown in Figure 10.

Unit I, Core 605-1 to Sample 605-6-4, 149 cm (0-198.5 m sub-bottom), is composed of gray silt-rich clay, Pleistocene in age. The foraminifers are dominated by a cold-water planktonic assemblage (no keeled globorotaliids). Displaced inner- to middle-shelf benthics are common, and at some levels reworked Eocene and Neogene plankton are found. The nannofossils in Cores 605-1 through Section 605-6-4 are middle Pleistocene in age. Nannofossils are rare to few in abundance; preservation ranges from poor to good. These cores contain intervals of reworked Eocene nannofossils. Radiolarians are absent in Unit I with the exception of Core 1, which contains a reworked Eocene assemblage.

Unit II is lower middle Eocene, greenish gray, biogenic-silica-rich nannofossil chalk (Samples 605-6-40, 149 cm to 605-22-3, 50 cm). The contact between Units I and II represents an abrupt lithologic change and stratigraphic hiatus. The foraminifers in Unit II are characteristic of a subtropical planktonic-rich assemblage which actually persists through Core 605-44. Benthics are rare or absent in most cores. Preservation is poor, in that many of the foraminifers are filled and coated with secondary calcite. Foraminifer Zone P13 to P10 are probably present. The nannofossils in Unit II illustrate the expanded nature of this lithologic unit, which was deposited within the time represented by the Nannotetrina quadrata Zone, spanning ~4 Ma. Nannofossils are relatively abundant in Unit II and preservation is moderate to good. The radiolarian assemblage is also representative of the middle Eocene. Radiolarian abundances are relatively common and preservation is moderate. The percentage of diatoms and silicoflagellates in the unit is also high. Diatoms are abundant and well preserved in Cores 605-7 through -21. Abundance decreases rapidly and preservation becomes poorer as the biogenic silica component of siliceous microfossils decreases toward the bottom of the section (Cores 605-22).

Unit III (Sample 605-22-3, 50 cm to 605-44-5, 33 cm) is composed of a rather monotonous, sometimes cyclic sequence of nannofossil limestone and chalk containing variable amounts of foraminifers and clay. Excellent temporal control is provided by the nannofossil assemblages, which indicate a middle early Eocene through early Eocene age for this unit. The foraminiferal assemblage in Unit III is rich in planktonics and representative of subtropical paleoenvironments. Abundances peak in the lower part of the interval, but in no case are foraminifers common. Preservation is poor as a result of diagenesis. The nannofossil assemblage in Unit III ranges from abundant to few and preservation ranges from good to poor. Abundance appears to be low in the top part of this section (Cores 605-22 through -28), increases through Core 605-35, decreases through Core 605-39, and again becomes abundant in Cores 605-40 through Core -44. Once again, the short time intervals represented between the nannofossil datums illustrate the expanded nature of this Eocene unit. Radiolarians are rare and poorly preserved throughout the entire unit. Except in a very few cases, they are not identifiable.

The Paleocene/Eocene boundary was placed between 605-44-1, 50-52 cm and 605-44-2, 50-52 cm, which probably lies within a continuous sequence in the lowermost part of lithologic Unit III. The early Eocene Tribrachiatus contortus nannofossil sedimentary subzone overlies the Paleocene Discoaster multiradiatus Zone. Unit IV (Sample 605-44-5, 33 cm to 605-64-1, 54 cm) is an upper Paleocene clayey nannofossil limestone. The entire upper Paleocene is represented by the foraminiferal and nannofossil assemblages of Unit IV, a fact which illustrates the expanded nature of the upper Paleocene sediments at Site 605. To the contrary, the lower Paleocene is thin and incomplete and we reached the K/T boundary by surprise. Benthic foraminifers dominate (up to 80%) in the lower portion of the section where the fauna is poorly preserved. The nannofossils are generally common to abundant and moderately preserved down through Core 605-63, but are poor in portions of the next two cores. Radiolarians are rare and poorly preserved from Cores 605-44 through -51. They are absent from Core 605-51 to the bottom of the hole.

Unit V is clay-rich foraminiferal-nannofossil limestone which ranges in age from early Paleocene through late Maestrichtian (Samples 605-64-1, 54 cm, through 605-71,CC). A reasonably complete Cretaceous/Tertiary boundary was recovered in Core 605-66, except that the core shattered at that point and the "boundary clay," if present, was washed away during drilling. At the contact, the foraminiferal Globigerina eugubina Zone (P1a) and the coccolith Zygodiscus sigmoides Zone (CP1) overlie the Abathomphalus mayaroensis and Nephrolithus frequens zones respectively. Foraminifers in Unit V are rather abundant, but preservation is poor as a result of diagenesis. The plankton-rich assemblage (90-95%) is dominated by forms representative of tropical/subtropical paleoenvironments. The nannofossils are relatively abundant and preservation is mostly moderate to good in Cores 605-64 through -71. Radiolaria are absent from Unit V sediments.

Foraminifers

Hole 604

The Quaternary and most of the Neogene were continuously cored in Hole 604. The foraminiferal content of the >160 μ m size-fraction of all 29 cores was examined aboard ship. The foraminiferal content in the cores containing calcareous microfossils varied from rare to abundant, with moderate preservation. The percentage of planktonic foraminifers in core-catcher samples was also highly variable, ranging from 5 to 97% of the total fauna. No evidence of strong dissolution was observed in these cores. Any absence of foraminifers from Hole 604 cores is attributed to dilution by terrigenous materials, especially in those cores containing debris-flow deposits. For the planktonic foraminiferal distribution see Moullade (this volume).

Mud and water extracted from the liner and lying on the top of Core 604-1 yielded a relatively warm water, presumably Holocene and/or Recent foraminiferal association characterized by a very high percentage of planktonics. Among those, keeled species such as Globorotalia tumida, G. menardii, G. truncatulinoides, and G. hirsuta are present. Below this uppermost level, the planktonic populations from the Quaternary Cores 604-1 to -16 are mainly dominated by temperate to cold-water forms such as G. inflata, Neogloboquadrina pachyderma, and Globigerina bulloides. The warmer-water and biostratigraphically more significant forms are extremely rare or more often absent because of climatic conditions in the Quaternary, and a detailed subdivision of the 150m-thick Quaternary sequence represented in Hole 604 has not been possible. However, we may assume that Cores 604-1 to -9 are of late Pleistocene age, based on the occurrence of pink specimens of Globigerinoides ruber (cf. Moullade, 1983) in these cores.

The Pliocene/Pleistocene boundary cannot be precisely located in Hole 604 by the distribution of foraminifers. However, the location of this boundary in Core 604-17 according to nannofossil data is consistent with the extinctions of G. gr. obliquus and Neogloboquadrina humerosa in Sample 604-13, CC and the first appearance of N. dutertrei in Sample 604-17, CC. Globorotalia truncatulinoides, a Pleistocene marker, is unfortunately (for climatic reasons) much too scarcely present in this hole, and its apparent absence in Cores 604-17 to -14 cannot be strictly interpreted in terms of biostratigraphic significance.

Shipboard examination of core-catcher samples indicates that the Quaternary strata, which are enriched in benthic foraminiferal content, are lithologically characterized by greater amounts of detrital material (quartz and micas) and glauconite; they also contain greater percentages of colder-water planktonic foraminifers. Furthermore, in these intervals the benthic foraminifer content is dominated by shallow-water genera, such as Elphidium, a fact which contradicts paleodepth estimates based on the present sub-bottom depth of the hole. Thus we are led to consider that these periodic enrichments in shallow-water benthics may result from inner-shelf transportation and redeposition in a bathyal environment by turbidity currents or downslope slumping. These periods of redeposition, in turn, coincide with colder climatic episodes.

The interval from the lower part of Core 604-17 to the upper part of Core 604-23 has been tentatively assigned a Pliocene age, based on the previously discussed foraminifer evidence for the Pliocene/Pleistocene boundary. The Miocene/Pliocene boundary occurs somewhere between Samples 604-23, CC and 604-22, CC based on the LAD of *Globigerina praebulloides* in 604-23, CC, the presence of *Sphaeroidinellopsis paenedehiscens* in Samples 604-23, CC and 604-22, CC. However, the presence or absence of the early Pliocene marker species *G. margaritae* should be evaluated with caution: because of climatic factors, this species is found only in Sample 604-22, CC (see Moullade, this volume).

The Pliocene sequence of Hole 604 has been subdivided into early Pliocene (foraminiferal Zones PL1-PL2), middle Pliocene (Zones PL3-PL4), and late Pliocene (Zones PL5-PL6), based on the occurrence of the late Pliocene marker species *Globorotalia tosaensis* and *G. miocenica*, the LADs of *Globoquadrina altispira* and *Sphaeroidinellopsis seminulina*, and the occurrence of the early Pliocene marker species *Globigerina nepenthes*.

Precise age estimates of Cores 604-24 to -31 are difficult to obtain, because the foraminiferal faunas in these cores are impoverished. Samples from several cores were barren, and in fossiliferous samples there is an apparent mixing of middle and late Miocene species, including *Catapsydrax* sp., *Globorotalia conoidea, Neogloboquadrina continuosa, G. mayeri, Globoquadrina dehiscens, G. baroemoenensis*, and *Globigerina praebulloides*. At the present stage of the investigation it is not yet possible to discern whether the deepest part of Hole 604 is effectively of middle Miocene age or if middle Miocene species have been reworked in strata of late Miocene age.

Hole 604A

Only one wash core and three rotary cores were taken at Hole 604A. Core 604A-1M corresponds to a drilled interval of about 250 m below the seafloor. Sample 604A-1M-1, 2-4 cm yielded a late Pleistocene to Holocene, mostly planktonic association, dispersed in an enormous amount of detrital quartz. Planktonics are here quantitatively dominated by Globorotalia inflata, with rare Neogloboquadrina pachyderma and Globigerina bulloides. Very rare Globorotalia tumida, G. hirsuta, and pink tests of Globigerinoides ruber were also present. Sample 604-1-2, 90-94 cm contained a few moderately well preserved foraminifers, including Globigerina nepenthes, Sphaeroidinellopsis seminulina, and possibly G. praebulloides. This is a rather nondiagnostic upper Miocene to lower Pliocene(?) microfauna. Sample 604-1,CC and Core 604-3 yielded a more significant late Miocene (foraminiferal Zone N17) assemblage, including G. nepenthes, G. praebulloides, Globorotalia gr. cibaoensisjuanai, G. plesiotumida, G. conoidea, Globoquadrina dehiscens, and Orbulina suturalis. This upper Miocene microfauna was characterized by a relatively important percentage of benthics, and was found in a strong detrital matrix with abundant quartz, glauconite, and clayey pebbles. Sample 604A-4,CC revealed only very rare and poorly preserved mid-late Miocene foraminifers, including Globoquadrina dehiscens and Orbulina suturalis, but no N17 zonal markers. The stratigraphic distribution of the planktonic foraminifers is shown in Figure 22A.

Site 605

Neogene-Quaternary

Neogene and Quaternary sediments were not the primary objective of drilling Hole 605 and, as a result, the uppermost 154.3 m of silty clays were washed before coring. The top of wash Core 605-1M yielded a Holocene to late Pleistocene foraminiferal assemblage dominated by the cold-water species *Globorotalia inflata* and *Globigerina bulloides*, with rare specimens of *Globorotalia tumida*, *G. menardii*, *G. truncatulinoides*, and pink tests of *Globigerinoides ruber*.

Cores 605-1 to -6 contain a relatively nondiagnostic late Pliocene-Pleistocene foraminiferal fauna dominated by cold-water, stratigraphically less significant species. The percentages of planktonic foraminifers in these cores are low, and most species are rare. Section 605-1-17 contains an anomalous fauna in which 90% of the planktonic foraminifers are reworked Eocene species with a few late Neogene to Quaternary species (*Globorotalia inflata, Neogloboquadrina pachyderma*).

Core 605-6 represents the basal Pleistocene, as shown by the presence of rare specimens of *Globigerinoides* sp. gr. *obliquus, Neogloboquadrina humerosa*, and *N. dutertrei*. An Eocene/Pleistocene unconformity is present in this core, marked by a change in color and lithology at Sample 605-6-4, 149 cm. Sample 605-6, CC contains an *in situ* middle Eocene foraminiferal fauna, as discussed below. These data indicate that Site 605 was washed and cored through a 198.7-m-thick Quaternary sequence, unconformably overlying the Eocene (Fig. 22B).

Paleogene

Eocene

The lithologic composition of Units II (siliceous chalks) and III (limestones) made it very difficult to extract foraminifers from such a strongly recrystallized material. Foraminifers appeared to be recrystallized, filled and coated with calcite. Their abundance reached a maximum, together with a slightly better preservation, near the top and the bottom of the Eocene sequence.

The upper part of Unit II (Sample 605-6,CC to Core 605-12) yielded common to abundant, moderately to poorly preserved foraminifers, with predominant planktonics, including *Globorotalia bullbrooki*, *Truncorotaloides topilensis*. *T. rohri*, and *Globigerina frontosa*. Such an assemblage can be referred to the P12-P13 foraminiferal zones (early middle Eocene).

The lower part of lithologic Unit II (Cores 605-13 to -22) contained rare and poorly preserved foraminifers, mostly planktonics, with predominant *Globorotalia bull-brooki* and *Globigerina frontosa*. These relatively long ranging species characterize an interval which includes foraminiferal Zones P10 to P13 (early middle Eocene).

The majority of lithologic Unit III (Cores 605-23 to -41), yielded such badly preserved foraminifers, particularly the planktonics, that their identification was made practically impossible. However, *Globorotalia formosa formosa* was recognized in Sample 605-32, CC and *G. caucasica* and *G. quetra* in Sample 605-38, CC. These taxonomic attributions point to a P7-P9 zonal assignment (early Eocene) for Cores 605-32 to -38.

Cores 605-42 to Section 605-44-4 yielded more abundant and still poorly preserved but more easily identifiable foraminifers. *Globorotalia aequa, G. subbotinae, G. pseudotopilensis, G. formosa gracilis, G. marginodentata, G. wilcoxensis,* and *G. broedermanni* were the most representative planktonics in these cores. This assemblage is representative of foraminiferal Subzone P6b (earliest early Eocene).

More detailed shore-based investigation of the benthic foraminifers of lithologic Units II and III is given by Hulsbos (this volume).

Paleocene

Sediments from lithologic Units IV and V (Sample 605-44,CC to Section 605-66-1) contain rare to sometimes common, still poorly preserved but more easily identifiable planktonic and benthic foraminifers. For this section, preliminary shipboard results have been combined with the initial results of more detailed shore-based studies conducted by P. Saint-Marc and M. Moullade for the Paleocene and by H. Janssen and D. Kroon for the Cretaceous/Tertiary boundary. As a result, almost all the Paleocene foraminiferal zones were individually recognized and delineated in the sequence which was cored in Hole 605 (see Saint-Marc, this volume). Section A

Α		-	-	_	_			_	_		_	_	_			_	_									_	_		_		_		-
Age	Zone	Core no.	Abundance	Preservation	Planktonics (%)	Globorotalia tumida	G. inflata	G. hirsuta	Neogloboquadrina dutertrei	N. pachyderma	Globigerinoides ruber	G. ruber (pink tests)	G. conglobatus	G. trilobus	G. sacculifer	Globigerina bulloides	Globorotalia praemiocenica	G. scitula	Neogloboquadrina humerosa	N. acostaensis	Sphaeroidinellopsis seminulina	Orbulina universa	Globigerina falconensis	G. nepenthes	G. praebulloides	Globigerinoides gr. obliquus	Globoquadrina altispira	Globorotalia gr. cibaoensis juanai	G. plesiotumida	G. conoidea	Orbulina suturalis	Globigerinita glutinata	Globoquadrina dehiscens
Pleist.	N23		R	м	98	•	•	•	0	0	0	•	0	0	•	0	ē.						-										
		1M	F	м	65								•	•		0	0	•	0	•	0	Φ	0	0	•	Φ							
late Miocene	N17	2	FR	M	62 24											Φ)	0			0		0		•		0	0	Φ	Φ			
MIOCEIIe		3	F	м	72					•				0)	0	0			•	0	Φ		0	0	•		00	0		•	•	
		4	С	м	88					•				•		0		•		•	•	0	Φ	•	•	•	0	Φ	•		Φ	•	•
		2.	R	Р	66		-				-	-		•	-	٠					•	•									•		0
3			-					_	_		_	_	_	_	-	_	_	_	_	_	_			1									
Age	Zone	Core no.	Globorotalia tumida	G. truncatulinoides	G. menardii	Neogloboquadrina pachyderma	N. dutertrei	Pulleniatina obliquiloculata	Globigerinoides ruber	G. ruber (pink tests)	G. trilobus	G. sacculifer	G. conglobatus	Globigerina falconensis	G. bulloides	Globorotalia scitula	Orbulina universa	Globigerinoides gr. obliquus	Neogloboquadrina humerosa	Globorotalia crassaformis	Sphaeroidinella dehiscens	Globorotalia cf. hirsuta	Neogloboquadrina acostaensis										
			Φ	• •	D •	0	0	ल्टल्य	0	0	•	•	Φ		0																		
		1M			D	Φ		1	Φ						Φ	•																	
lary	-23	2		•	D	Φ		1	Φ	0				0	Φ		•																
Quaternary	N22-	3		•	D	Φ		(0					0	Φ		•																
o	2	4		•	D	Φ			•						Φ		Φ											ery	rar	е			
		5		•	D	Φ		(0						Φ											100	Ra Fe						
		6		-	R	8	:		8		:				800		:	:	:	0	0	•				0		omr oun					
middle Eocene	P12-13					Ŷ			-			142			9			с 1			_					-							

Figure 22. Distribution of planktonic foraminifers in (A) Hole 604A, (B) Hole 605. No vertical scale.

605-44-6 to Core 605-45 contain *Globorotalia velasco*ensis, G. cf. occlusa, G. aequa, G. subbotinae, and (in the upper part only) G. pseudotopilensis, and thus belong to the late Paleocene P6a Subzone. Then a short interval, represented by the upper part of Core 605-46, yielded most of the species cited above, with the exception of G. subbotinae, and therefore corresponds to the P5 Zone. A thick interval from the lower part of Core 605-46 to Core 605-56 corresponds to the stratigraphic range of *Globorotalia pseudomenardii*, index marker of foraminiferal Zone P4, accompanied by *G. pusilla pusilla*, *G. chapmani*, *G. acuta*, *Globigerina velascoensis*, and *G. mckannai*. In addition, *Globorotalia velascoensis*, *G. cf. occlusa*, *G. aequa*, and *Globigerina nitida* first

appear in the middle part of this zone, and *Globorotalia* conicotruncana and *Globigerina triloculinoides* become extinct about 20 to 30 m below the top of Zone P4.

Cores 605-57 to -62 were attributed to foraminiferal Zone P3, on the basis of the co-occurrence of *Globorotalia pusilla pusilla*, *G*. cf. *angulata*, *G*. *conicotruncana*, *G*. *chapmani*, and *G*. cf. *compressa*.

The interval including Core 605-63 and the upper part of Core 605-64 seems to correspond to Zone P2, for Sample 605-64-2, 90-92 cm contains *Globorotalia* cf. *uncinata*, the zonal marker, plus *G. pseudobulloides*, *G.* cf. *inconstans*, and *G. trinidadensis*. However, the attribution of the upper part of this interval, devoid of foraminifers, to Zone P2 remains questionable.

Sample 605-64, CC contains the same assemblage as Sample 605-64-2, 90-92 cm, with the exception of G. cf. *uncinata*, and is thus attributed to the upper part of Zone P1 (= G. trinidadensis Subzone). Sample 605-64-4, 90-92 cm was devoid of planktonic foraminifers and showed only strongly dissolved benthics. Core 605-65 can be attributed to the middle part of Zone P1 (= G. pseudobulloides Subzone) because the zonal marker occurs; Globigerina daubjergensis, G. triloculinoides, and G. cf. fringa were also found in this interval.

The uppermost 75 cm of Section 605-66-1 were studied in more detail by Smit and Van Kempen (this volume). Most of this interval belongs to the *Globorotalia pseudobulloides* Subzone P1c of Smit and Romein (1985). Their zonal subdivisions P1b and P1a have not yet been identified in the 605 sequence, but one chip of sediment (Sample 605-66-1, 73-74 cm; see Fig. 18) located just above the Cretaceous/Tertiary boundary (as defined on the basis of shipboard observations) yielded foraminifers from the P0 (*Guembelitria cretacea*) Zone.

The relatively precise biostratigraphic control for the Paleocene sequence cored in Hole 605 permitted us better to discern some variations in the sedimentation rates. Considering the usually accepted duration of the Paleocene foraminiferal zones, the sedimentation rate seems to have been at a maximum during the middle part of the Paleocene (Zones P3 and P4), with an approximate accumulation rate of 50 m/Ma. In Zones P1 and P2, the sedimentation rate dropped to 6 m/Ma. On the other hand, a condensed sedimentary section or even a hiatus may be suspected in the upper Paleocene, as indicated by the reduced thickness of foraminiferal Zone P5 sediments.

Cretaceous

Completing the preliminary shipboard observations, data obtained by shore-based investigations conducted by H. Jansen and D. Kroon (this volume) have been included in this site chapter. Samples taken from Sections 605-66-2 to 605-69-4 contain rare specimens of *Abathomphalus mayaroensis*, together with *Rugoglobigerina scotti* and *Planoglobulina fructicosa*, which indicates that this interval is part of the late Maestrichtian *A. mayaroensis* Zone (UC 17). Thus the remaining interval from Section 605-69-5 to the bottom of Hole 605 (Sample 605-71,CC) should be assigned to the Maestrichtian *Globo-* truncana stuarti Zone (UC 15). In this interpretation, the occurrence of rare and isolated specimens of A. mayaroensis in Sample 605-71,CC is considered to result from downhole contamination.

Calcareous Nannofossils

Site 604

Drilling in Hole 604 recovered 29 sediment cores containing few to abundant nannofossils of late Miocene to Quaternary age but was terminated prematurely after the drill bit had penetrated 55.6 m into a series of debris flows estimated to be some 200 m thick. The first 18 cores contain common Pleistocene nannofossils with a few scattered layers of reworked or redeposited Eocene sediment. In Cores 604-18 to -22, the dominant assemblage is Pliocene, but sporadic Pleistocene forms are also present. Cores 604-25 to -28 contain upper Miocene coccolith assemblages with a significant reworked component, particularly in the debris flows below Sample 604-26-2, 46 cm. Assuming that the lowermost sample from the debris flows, Sample 604-30-1, 79-80 cm, represents a true in situ assemblage, it is assigned to the Discoaster hamatus Zone (CN7; lower Tortonian).

The upper part of Core 604-1 down to Sample 604-1-1, 84-87 cm contains Quaternary forms, such as *Syracosphaera pulchra, Gephyrocapsa oceanica, G. caribbeanica, Calcidiscus leptoporus, Ceratolithus cristatus*, and *Pontosphaera japonica*. This interval is assigned to the *G. oceanica* or *huxleyi* zones. Future examination of prepared samples with the scanning electron microscope should confirm or deny the presence of the late Holocene marker, *Emiliania huxleyi*.

Samples 604-1-1, 110-112 cm and 604-1-1, 130 cm contain a well-developed Eocene assemblage in an allochthonous nannofossil ooze, which probably represents transported Eocene sediments exposed further up the continental slope from Site 604. Nannoliths observed from this interval include *Discoaster barbadiensis*, *D. saipanensis*, *Reticulofenestra umbilica*, *R. reticulata*, *Coccolithus formosus*, *Isthmolithus recurvus*, *Campylosphaera dela*, *Rhabdosphaera tenuis*, *Chiasmolithus grandis*, *Discolithina pulcher*, and *Zygolithus dubius*. Core 5 also contains an interval of redeposited Eocene sediments. Samples 604-5-2, 50-54 cm through 604-5-2, 110-112 cm contain Eocene forms similar to the ones mentioned above from Core 1.

The highest occurring Pliocene forms were observed in Core 18. Sample 604-18-3, 30-32 cm contains *Discoaster brouweri* in its six-rayed form. Sample 604-18-4, 50-54 cm contains numerous triradiate forms of *D. brouweri*. It has been suggested that this may indicate a useful horizon to establish the Pliocene/Pleistocene boundary (Backman and Shackleton, 1983), particularly where reworking is a problem. In our section, however, it has been possible to subdivide the *D. brouweri* Zone, which extends down to Sample 604-19-5, 50 cm, into at least three subzones. Species most often encountered include *D. brouweri*, *D. surculus*, *D. pentaradiatus*, and *Calcidiscus macintyrei*. Cores 604-20 and -21 contain assemblages that include the forms above with the addition of *Reticulofenestra pseudoumbilica* and *D. asymmetricus* are assigned to the *R. pseudoumbilica* Zone (CN11).

Cores 604-22 through -24 yielded a diverse but rare assemblage of amauroliths and are assigned to the Amaurolithus tricorniculatus Zone (CN10). The assemblage includes Discoaster intercalaris, A. primus, D. surculus, C. macintyrei, R. pseudoumbilica, and A. delicatus. A few reworked Eocene species are also present.

Samples from Core 25 lack amauroliths and contain only rare discoasters such as *D. surculus* and *D. berg*grenii and are assigned to the *D. quinqueramus* Zone (CN9).

Sample 604-26-2, 120 cm, from an Eocene chalk cobble within a debris flow, contains an Eocene assemblage of the *Isthmolithus recurvus* Subzone (CP15b). Eocene species include *I. recurvus*, *Chiasmolithus oamaruensis*, *D. barbadiensis*, *Coccolithus formosa*, *D. tani*, and *R. reticulata*. The underlying sample, 604-26-2, 146 cm, contains what is believed to be an *in situ* Miocene assemblage of the *D. neohamatus* Zone (CN8). Species in this population include *D. bollii*, *D. neohamatus*, and *D. calcaris*. Another Eocene clast sampled at 604-26-3, 18 cm is underlain by more sediment assigned to CN8 (down to Sample 604-27-1, 138 cm). The samples examined from Cores 604-28 and -30 (there was no recovery in Core 29) are early Tortonian in age (CN7).

The difficulties in dating the upper Miocene section are considerable. Virtually every sample shows evidence of either reworking or redeposition. Recovery was especially poor, except for Cores 604-25 and -26. If our late Miocene dates are correct and if the samples dated indeed contain mostly *in situ* coccolith assemblages, then the debris flows we penetrated at Site 604 are early Tortonian in age.

Four cores cut in Hole 604A recovered short segments of the lower Pliocene-upper Miocene section before the hole was abandoned because of the poor drilling conditions. The lowest core dated (Core 604A-3) contained coccoliths of the *D. neohamatus* Zone (CN8).

Site 605

In Hole 605, calcareous nannofossils are common to abundant in the Paleogene chalks below Section 605-6-4. Preservation throughout the cored interval fluctuated from moderate to poor, with a distinct decrease in the quality of preservation in samples from the lower Eocene interval.

Quaternary forms are typical from the top of the hole down to 605-6-4, 127 cm. Sample 605-6-4, 150 cm contains middle Eocene nannofossils of the *Chiasmolithus* gigas Subzone (CP13b) of the *Nannotetrina quadrata* Zone (CP13). Species present in Zone CP13 down to 605-22-3, 110-111 cm include *Chiasmolithus grandis*, *C. solitus, Coccolithus pelagicus, C. formosus, Discoaster barbadiensis, D. saipanensis*, and *Zygrhablithus bijugatus*. Preservation in this interval is poor to moderate. Many of the discoasters are overgrown and placoliths are often etched. The *D. sublodoensis* Zone (CP12) spans the interval from 605-22-4, 20-21 cm to 605-31-4, 50-52 cm. Species common in this zone include *Chias*-

molithus grandis, C. solitus, Coccolithus pelagicus, C. formosus, D. barbadiensis, D. sublodoensis, Neococcolithus dubius, and Sphenolithus radians. Preservation in this interval is poor to moderate. The D. lodoensis Zone (CP11) spans the interval from 605-31-5, 50-52 cm to 605-36-2, 50-52 cm. The first occurrence of C. formosus is used to approximate the base of CP11. The interval from 605-36-2, 50-52 cm to 605-42-1, 50-52 cm is assigned to the Tribrachiatus orthostylus Zone (CP10). Species observed within this zone include Chiasmolithus consuetus, Coccolithus pelagicus, D. lodoensis, D. barbadiensis, and T. orthostylus. The lowermost Eocene zone, the D. diastypus Zone (CP9), spans the interval from 605-42-2, 50-52 cm to 605-44-1, 50-52 cm. Preservation is poor to moderate, and common species in this interval include Chiasmolithus consuetus, Coccolithus pelagicus, D. barbadiensis, D. binodosus, D. diastypus, Tribrachiatus orthostylus, and Zygrhablithus bijugatus.

The Paleocene/Eocene boundary is coincident with the boundary between this and the underlying D. multiradiatus Zone (CP8), and lies between 605-44-1, 50-52 cm and 605-44-2, 50-52 cm. Nannofossils of the upper Paleocene D. multiradiatus Zone persist in samples from 605-44-2, 50-52 cm to 605-48-4, 110-112 cm. Species present in this interval include Discoaster multiradiatus, D. nobilis, Campylosphaera eodela, Chiasmolithus bidens, C. consuetus, Coccolithus pelagicus, and Toweius eminens. Samples from 605-48,CC through 605-49-2, 110-112 cm lack D. multiradiatus and are placed in the D. nobilis Zone (CP7). Save for the lack of D. multiradiatus and Campylosphaera eodela, the assemblage in this zone is similar to that of the overlying interval. The boundary between the D. nobilis Zone (CP7) and the D. mohleri Zone (CP6) at this site falls between 605-49-2, 110-112 cm and 605-49-3, 50-52 cm. The D. mohleri Zone spans the interval from Sample 605-49-3, 50-52 cm to Sample 605-50-5, 50-52 cm. Sediments of the underlying Heliolithus kleinpellii Zone (CP5) are first encountered in 605-50-6, 110-112 cm. An assemblage characteristic of this zone persists down to 605-56-2, 50-52 cm. Species composing this assemblage include Fasciculithus tympaniformis, Chiasmolithus consuetus, Cruciplacolithus tenuis, Zygodiscus sigmoides, and numerous specimens of H. kleinpellii. The F. tympaniformis Zone (CP4) encompasses samples from 605-55-4, 50-52 cm to 605-63-2, 50-52 cm. The population is the same as that of the overlying H. kleinpellii Zone except that H. kleinpellii is absent. The interval from 605-63-4, 50-52 cm to 605-64-4, 50-52 cm is placed within the combined Ellipsolithus macellus/Chiasmolithus danicus zones (CP3-CP2). Preservation within this interval is typically poor, and the occurrence of E. macellus, a delicate form highly susceptible to dissolution, is thus heavily influenced by secondary alteration. The earliest Paleocene Cruciplacolithus tenuis Subzone (CP1b) spans the interval from below 605-64-5, 110-112 cm to 605-66-1, 21-23 cm.

The highest occurrence of definitively Cretaceous nannofossils occurs in 605-66-1, 70-71 cm. The interval from this sample to the top of Section 605-66-1 contains rare Cretaceous and Paleocene forms and a large number of thoracosphaerids. Samples from 605-66-1, 70–71 cm through 605-67-3, 126–127 cm contain the latest Cretaceous marker species, *Nephrolithus frequens*, and are assigned to the zone of the same name. Samples from the interval below 605-67-3, 126–127 cm to the termination of drilling are assigned to the *Lithraphidites quadratus* Zone.

Radiolarians

Site 604

Core-catcher samples (or, in some cases, the deepest material in the core liner) were studied aboard ship for all cores taken at Site 604. All 31 core-catcher samples from Hole 604 were examined. A water sample taken from the top of Core 1, while the liner was still in the coring device, contained a few Pliocene to Recent radiolarians with moderate preservation, including *Didymocyrtis tetrathalamus, Dictyophimus crisiae*, and *Phormocyrtis* sp.

In general, radiolarians are absent or rare in the uppermost 13 cores of this hole. Samples 604-2, CC, 604-6, CC, 604-10, CC and 604-11, CC, contain reworked Eocene radiolarian assemblages with *Thyrsocyrtis rhizodon*, *Podocyrtis diamesa*, *Theocampe* sp., and *Euchitonia* sp.

Sample 604-14,CC contains common radiolarians with moderate preservation, and is of Pliocene to Recent age. This sample contains *Spongaster tetras, Anthocyrtidium* sp., and *Didymocyrtis tetrathalamus* along with reworked Eocene radiolarians.

Cores 604-15 to -20 have common radiolarian assemblages with good to moderate preservation. Samples 604-21, CC to 604-24, CC are of early Pliocene age, and contain *S. pentas, Stichocorys peregrina*, and *Lamprocyrtis heteroporos*. Based on these identifications, Cores 604-21 to -24 are placed in the *Spongaster pentas* Zone. These samples also contain reworked Eocene (*Podocyrtis papalis, Phormocyrtis striata, Theocampe* sp., *Periphaena* sp.), and Miocene (*Cyrtocapsella tetrapera*) radiolarians.

The first appearance of *S. pentas* marks the base of the *S. pentas* Zone, and approximates the Miocene/Pliocene boundary. This event occurs somewhere between Samples 604-24, CC and 604-25, CC. Samples 604-25, CC and 604-26-1, 54-56 cm are in the late Miocene Stichocorys peregrina Zone, as indicated by the presence of *S. peregrina, Stichocorys* sp., and Acrobotrys sp. These samples also contain reworked late Miocene radiolarians (Diartus hughesi and Didymocyrtis antepenultima).

Sample 604-26,CC is effectively barren of Radiolaria, and 604-27-1, 55-57 cm contains only a few reworked Eocene radiolarians, including *Dictyoprora mongolfieri, Liriospyris geniculosa, Podocyrtis papalis*, and *P. sinuosa*, with moderate preservation of the individual specimens. All deeper samples in Hole 604 (604-27,CC, 604-28,CC, and 604-30,CC) were barren.

Hole 604A

Four core-catcher samples from Hole 604A were examined for Radiolaria. Core 1 of this hole was a wash core obtained by drilling from the seafloor to 249.6 m sub-bottom; this sample contained abundant early Pliocene Radiolaria, including six-rayed Spongaster pentas, S. tetrathalamus, Anthocyrtidium sp., and Stichocorys peregrina. Based on these species, this material would be in the Spongaster pentas Zone. However, the sample also contained reworked late Miocene (Didymocyrtis antepenultima, D. penultima) and Eocene (Podocyrtis papalis) radiolarians.

The trace of material recovered by drilling Core 2 from 249.6 to 259.2 m sub-bottom is also from the early Pliocene *Spongaster pentas* Zone. Sample 604A-3,CC contained only reworked Eocene radiolarians.

604A-4,CC is of late Miocene age, and contains common but poorly preserved radiolarians belonging to the *Stichocorys peregrina* Zone. These include *S. peregrina*, *Stichocorys* sp., and circular specimens of *Spongaster* sp. Sample 604A-4,CC also contains reworked Eocene specimens of *Podocyrtis papalis*, *Lychnocanoma babylonis*, and *L. bellum*.

Site 605

Strewn slides of 65 core-catcher samples of Cenozoic sediment in Site 605 were examined for their radiolarian content. In general, this site has very poorly preserved siliceous microfossils. Core-catcher samples from Cores 1 to 5 of Site 605 are barren.

Cores 6 to 21 contain common to abundant radiolarian assemblages with good to moderate preservation. Radiolaria in these cores include *Dictyoprora mongolfieri*, *D. amphora*, *Thyrsocyrtis triacantha*, *T. hirsuta hirsuta*, *T. hirsuta robusta*, *Podocyrtis diamesa*, and *P. papalis*. Based on these species, these sediments are latest early Eocene (*D. montgolfieri* Zone) to earliest middle Eocene (*T. triacantha* Zone) in age. Differentiation between these two zones is not possible because *Eusyringium lagena* or *Theocorys anaclasta* are missing in these samples. Despite this difficulty, it appears that there was a major peak in the accumulation of siliceous sediments at Site 605 during the early to middle Eocene.

All Cenozoic sediments below this material (Cores 22 to 65) are either barren or contain rare, poorly preserved spumellarian radiolarians that are not age-diagnostic. Samples 605-27,CC and 605-28,CC may be tentatively identified as being early Eocene in age, based on the presence of *Dorcadospyris angisca* (Goll, 1968).

Silicoflagellates and Ebridians

Site 604

Silicoflagellates were examined from Cores 604-21 to -26, where forms were generally sparse, except in Section 604-25-4, which contained common silicoflagellates. Samples from Sections 604-21-1 through 604-23-2 were assigned to the Pliocene *Dictyocha fibula* Zone; samples from Section 604-23-3 through 604-26, CC, were assigned to the late Miocene *Dictyocha brevispina* Zone.

Site 605

Silicoflagellates were present in rather small numbers in the biosiliceous nannofossil chalks between Cores 605-7 and -21. In general, ebridians, strongly dominated by *Ebriopsis antigua antigua*, were more numerous than silicoflagellates. Silicoflagellates were generally dominated by *Naviculopsis foliacea* with *Corbisema tricantha* common to abundant between Cores 605-10 and -14. Cores 605-7 through -21 can be assigned to the Eocene *Naviculopsis foliacea* Zone of Bukry (1981).

Diatoms

Hole 604

Diatoms in Hole 604 are sparse and mostly reworked from older strata except for some forms toward the base of the hole. Diatoms in the Pleistocene sediments of Cores 604-4 to -11 are all reworked from the upper and middle Miocene. Diatoms in the Pleistocene to upper Miocene sediments of Cores 604-13 to -25 are characteristic of the middle to upper Miocene and Eocene. Cores 604-25 to -30 contain forms no older than middle Miocene, except for species obviously reworked from the Eocene.

Hole 605

Diatoms were observed in 30 samples from Hole 605. In the interval between 202.61 m and 349.51 m sub-bottom depth (Cores 605-7 to -22), diatoms are abundant and moderately to well preserved except for Core 22, where abundance and preservation drastically diminish. The age of the interval is early middle Eocene; it can be assigned to the *Brightwellia hyperborea* Zone of Gombos (1983). The *B. hyperborea* Zone in Hole 390A (Blake Plateau) has been correlated with foraminifer Zones P11 and P10 and Martini's (1971) nannofossil Zone NP15. No indication of stratigraphic breaks was indicated by the distribution of diatoms in Hole 605.

At present, no formal diatom zonation has been established for the Eocene.

SEDIMENT ACCUMULATION RATES

Site 604

The Site 604 sediment accumulation diagram (Fig. 23) is based on selected nannofossil biohorizons. Numeric ages are based on the scale of Vail and Mitchum (1979). Accumulation rates are difficult to determine for this site because reworked material is present throughout the entire drilled interval. Accumulation rates for the entire Pleistocene (i.e., sediment/water interface to 162 m subbottom) average 9 cm/10³ years. Pliocene sedimentation rates average 1.9 cm/10³ years, and extrapolating these rates to the top of the debris flow at 239 m (dashed line in Fig. 22) gives an age of 5.9 Ma for this deposit. Using the foraminiferal dates for the top of Unit III would be 6.6 Ma. See Moullade (this volume) for detailed curve based on foraminiferal datums.

Site 605

The sediment accumulation rates for Site 605 are calculated using the time scale of Vail and Mitchum (1979). The average rate of accumulation of the Pleistocene is about 10 cm/10³ years, using selected nannofossil biohorizons or the fact that basal Pleistocene foraminifers

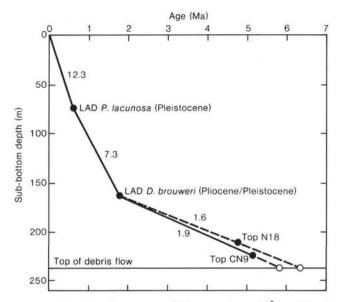


Figure 23. Site 604 sediment accumulation rates (in $cm/10^3$ years) based on nannofossil biostratigraphy.

occur above the unconformity. An unconformity has removed the late Eocene to Pliocene sedimentary record at this site. Estimating, from shipboard nannofossil and foraminifer data, that we entered the Eocene below the top of the Lutetian (at ~46 Ma), the average rate at which the 150 m of middle Eocene sediment accumulated is 5 cm/10³ years. The lower Eocene between 350 and 565 m accumulated at an average rate of 4.8 cm/10³ years. See Bruins et al. (this volume) for a discussion of the Paleocene and Cretaceous accumulation rates at Site 605.

GEOCHEMISTRY

Site 604

Shipboard geochemical measurements were made of interstitial gases, organic carbon concentrations and C/N ratios in organic matter, calcium carbonate concentrations, and geochemical properties of interstitial water samples.

Interstitial Gases

Concentrations of interstitial gases were low. Core sections were not sampled until they had been warmed in the core lab in order to obtain enough gas to allow analysis. The composition of the interstitial gases was almost totally CH_4 and CO_2 , and no H_2S odor was noticeable. These biogenic gases could not be accurately quantified because of their low volumes and the way in which they were sampled.

Organic Carbon and Nitrogen

Concentrations of organic carbon in sediments from Site 604 average 0.65% and vary between 0.06 and 2.11%(Appendix II). Little relationship exists between these concentrations and sub-bottom depth, except for the interval between ~ 170 and 240 m (Cores 604-19 to -26), where relatively high values of 0.94 to 2.11% consistently appear. C/N ratios range between 7.8 and 23.5 and, like organic carbon concentrations, are not related to sediment depth. The C/N values average 13.8 and indicate that the organic matter in these sediments is a mixture of continental and/or marine material. The variability in concentrations of organic carbon and in C/N ratios suggests that the proportions of terrigenous and aquatic sediments in Cores 604-1 to -26 have fluctuated over the period of time represented by this 250-m-thick sequence of sediment.

Carbonate Carbon

Concentrations of calcium carbonate generally vary between 2 and 19% in Site 604 sediments, but one exceptionally high value of 59% is recorded in Sample 604-27-1, 75-78 cm (Appendix II). For the most part, carbonates are minor constituents of these sediments, even though this site has always been above the CCD.

Interstitial Water

Five samples of interstitial water were squeezed from sediments from Site 604. Values of pH, alkalinity, chlorinity, and concentrations of Ca⁺⁺ and Mg⁺⁺ are shown in Figure 24. Neither pH nor chlorinity deviate significantly with depth from values typical of seawater. Alkalinity is unexplainably higher than expected, and both calcium and magnesium are lower than expected. The concentrations of Ca⁺⁺ and Mg⁺⁺ begin to increase and decrease, respectively, in response to the diagenetic changes common in marine sediments (cf. Gieskes et al., 1982).

Site 605

Geochemical measurements at Site 605 were not done aboard ship because of the limited amount of time between this site and the end of the cruise. Samples were collected, however, for subsequent shore-based analyses of carbonate and organic carbon contents of sediments. Furthermore, none of the core sections at Site 605 gave evidence of abundant biogenic or thermogenic gases. We encountered no hydrogen sulfide odor, no extensive gas pockets, nor extrusion of cores when they warmed to ambient temperature.

Organic Carbon and Nitrogen

Concentrations of organic carbon are low in most Site 605 samples (Appendix II). The range of values of the 108 samples analyzed on shore is from 0.08 to 0.60 wt.%, and the mean is $0.22 \pm 0.10\%$, slightly below the mean of 0.3% calculated by McIver (1975) for DSDP Legs 1 through 31. Although organic carbon concentrations are generally variable throughout Site 605 sediments, those in the upper six cores are consistently greater than the mean value. A similar trend toward decreasing concentrations over the topmost sediment sections also exists at Site 603 (site chapter, this volume) and has been described for Leg 58 sediments from the western North Pacific (Waples and Sloan, 1980). Such downhole decreases are attributed to continued microbial degradation of organic matter after its burial in the seafloor.

Atomic C/N ratios of the organic matter contents of Site 605 sediments average 25.4 ± 14.6 for the 105 samples which had measurable nitrogen contents. This value is higher than those found in sediments of similar age at Sites 603 and 604 (site chapter, this volume) and is characteristic of land-plant organic material (Müller, 1977). C/N values, however, are quite variable at Site 605, ranging from 4.5 to over 100. This variability in C/N ratios, when combined with the general variability of organic carbon concentrations, suggests fluctuations in the proportions of marine and continental contributions of organic matter to the sediments at this continental margin site.

PHYSICAL PROPERTIES

Site 604

The following physical properties were studied at Sites 604 and 605: sonic velocity, shear strength, bulk physical properties, GRAPE. No heat flow experiments were conducted as the time required was not deemed worthwhile. No physical properties were measured for Hole

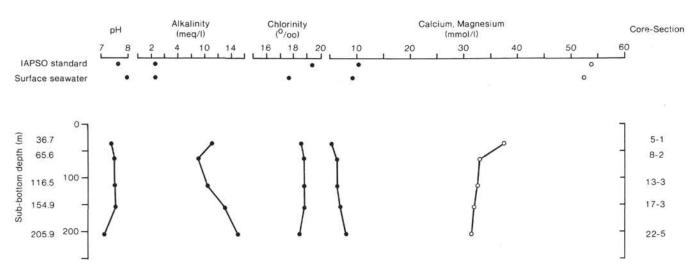


Figure 24. Values of pH, alkalinity, chlorinity, and dissolved calcium and magnesium from interstitial waters squeezed from sediments from Site 604.

604A. All methods were the same as at Holes 603B and 603C. Only vertical velocity was measured. Bulk physical properties were all determined by the Boyce (1976) cylinder technique. Following good results at Hole 603C, both Torvane and pocket penetrometer measurements of shear strength were made.

All measured and calculated data are shown in Figure 25. The measurements are affected by gas exsolving within the sediments. Fracturing of the core causes (apparent) porosity to increase with depth; wet-bulk density and sonic velocity are consequently decreased. Further, the Boyce gravimetric chunk technique assumes a saturated sample; exsolved gas displaces pore water and further lowers the measurement of density. Error arising from sample damage causes similar trends in the bulk physical properties, simply because they are determined from the same sample. Such disturbance reduces the value of any deductions concerning in situ properties. However, if all trends were dominated by gas it might be reasonable to expect shear strength to decrease; this was not the case. Therefore, if breaks in the physical properties are to be considered significant they would be indicated primarily by shear strength and carbonate content and only secondarily by sonic velocity and bulk physical properties (the latter being considered as a whole).

The most prominent break, at 174 m, represents a sharp increase in shear strength and a peak in carbonate content.

Lower-amplitude breaks occur at 112, 151, 163, 190, 212, and 235 m. Low recovery between 0 and 85 m hinders analysis. Shear strength increases slowly with depth and levels off at approximately 20 kPa at 112 m. Be-

tween 112 and 151 m carbonate content is variable (7-15%). Between 190 and 212 m carbonate content, porosity, and water content show a transitional increase. As a result of low recovery, no measurements were possible between 212 and 235 m. Below 235 m all measurements are variable, reflecting the heterogenous lithology (upper Miocene slump, facies).

Seismic Reflectors and Physical Properties at Site 604

Three high-amplitude reflectors were penetrated at Site 604. The quality of the data is generally poor, as stated earlier. The reflectors at Site 604 are P_1 (84 m, Core 19), P_2 (179 m, Cores 20 and 19) and M_1 (239 m, Core 26).

Horizon P1 is tentatively correlated with a layer of transitional properties between 80 and 100 m; over this interval, shear strength increases slightly and bulk density increases. There is no break on the velocity log at 80 m although carbonate content is elevated (18%). The most prominent break in physical properties is at 173.5 m (Section 604-19-3), where the shear strength rises from 20 kPa to 40 kPa between 150 and 180 m sub-bottom. Grain density decreases slightly below this depth. It is likely that this break is responsible for Reflector P_2 , whose predicted depth prior to drilling was 162 m sub-bottom. Lithologically, this depth marks the boundary, within greenish gray clay between biogenic silica as an accessory constituent below and glauconite sand above (Subunits IIC/IIB). The other clear break at Site 604 is at 235 m, which approximately correlates with the predicted depth of Horizon M1. Lithologically, this is the top of the Miocene conglomerates and clays. Data are insufficient to comment further.

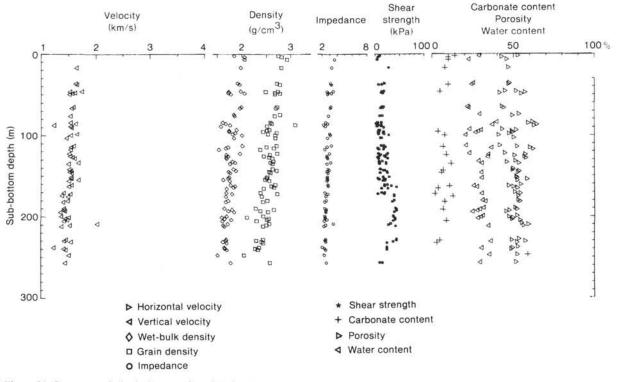


Figure 25. Summary of physical properties of Hole 604.

The depths of reflectors were based on a velocity of 1.7 km/s. It is likely that the true velocity is nearer 1.5 km/s for much of the upper part of the section, so predictions of the reflector depths are too deep. More detailed modeling is necessary to improve the correlation of physical properties and seismic reflections.

Site 605

Compressional sound wave velocity was measured both parallel and perpendicular to bedding in Site 605, at intervals of approximately 1.5 m (once per section, five samples per core) (see Fig. 26). Shear strength was measured between 165 and 206 m; below this interval it exceeded our ability to measure. Wet-bulk density, grain density, porosity, and water content were determined from the same samples as taken for the sonic velocity measurement (Fig. 26).

On the basis of physical properties, the following 13 units may be delineated:

Unit 1 (0-203 m): High density and low porosity reflecting the lithology—nonindurated gray clays. Horizontal velocity could not be measured.

Unit 2 (203–270 m): densities markedly lower and velocities higher than Unit 1, porosity and water content slightly lower than above. The contrast in densities is very marked, indicating an important change in composition.

Unit 3 (270-293 m): properties are broadly similar to those above, with the exception of density, which is higher. Again, compositional change is the cause. Base of unit is defined by a marked increase downward in horizontal and vertical velocity.

Unit 4 (293-350 m): bulk density increases with decreasing porosity and water content, resulting in a denser structure and, therefore, increasing sonic velocities.

Unit 5 (350-428 m): top defined by large increase in bulk density and sonic velocities resulting from sharp decreases in porosity and water content. These trends are maintained throughout this unit.

Unit 6 (428-455 m): top of unit marked by sharp increases in bulk density, grain density, and sonic velocity. At 428 m occurs the most prominent of all breaks in physical properties.

Unit 7 (455-552 m): slight decrease in bulk density; the remaining physical properties maintain established trends.

Unit 8 (552–565 m): sharp increase in bulk density, grain density, and velocities, resulting from a decrease in porosity and water content.

Unit 9 (565–600 m): bulk density decreases, resulting from a slight increase in porosity and water content; other properties remain the same.

Unit 10 (600–716 m); all physical properties exhibit a greater variability than those of the overlying unit.

Unit 11 (716–740 m): bulk density is lower because porosity is higher.

Unit 12 (740–760 m): wet-bulk density is higher; values are similar to those of Unit 10, although grain density is higher. Porosity and water content are lower than in Unit 11.

Unit 13 (760 + m): wet-bulk density and, to a lesser extent, grain density increase. Velocity is significantly higher.

Seismic Reflectors and Physical Properties at Site 605

The reflectors penetrated at Site 605 were A^u (192 m, Cores 5/6), A^c (~350 m, Core 20/22), A⁵² (~525 m, Core 44), and A* (740 m, Core 64).

Horizon A^u represents the unconformity caused by increased current activity during late Eocene to early Miocene times (Tucholke, 1979). This is consistent with the base of lithologic Unit I, 198.14 m. Lithologically, the boundary is important, separating green clay from underlying nannofossil chalk. The bulk physical properties show the change well; most noticeably, porosity rises to over 60%. Sonic velocity does not show the change well because the lowered density cancels the effect of increased porosity. The nannofossil chalks transmit sound well despite their low density. Thus the reflectivity of Horizon A^u at Site 605 is due to density variation alone.

Horizon A^c correlates with the top of physical properties Unit 5 (350 m, top of lithologic Unit III). Bulk density increases markedly with sonic velocity, because porosity and water content are abruptly reduced below this depth. Grain density rises slightly below the horizon, as a result of the higher carbonate content. Mobilization of silica (radiolarian tests replaced by calcite) shows that cementation is advanced, and greater rigidity of the sedimentary frame explains the higher velocity. Porosity is reduced by cement overgrowth and the collapse of tests weakened by dissolution. The precise cause for Reflector A^c is not obvious. It is possible that this reflector is due to chalk/limestone transition, but the physical properties do not demonstrate the transitional trend predicted by such a hypothesis.

Horizon A^{52} (523 m predicted depth) lies within physical properties Unit 7. This unit is characterized by a transitional decrease downward in porosity and water content. Wet-bulk density shows a similar trend, and grain density suggests that physical properties Unit 7 may be further divided into three sub-units; the top of the lowest of these, then, equates with Horizon A^{52} . Horizontal velocity is slightly elevated over this subunit, compared to those above. Lithologic Unit III has variable composition, and therefore it is likely that a minor change in lithology is responsible for this reflector.

Elsewhere in the North American Basin, Horizon A* is a hard limestone of Maestrichtian age (Tucholke, 1979). Correlation at Site 605 is complicated by the proximity of two physical property breaks to the predicted depth. Grain density exhibits a very marked increase at 740 m, which is approximately the boundary between lithologic Units IV and V, that is, between lower and upper Paleocene sediments. Bulk density and sonic velocity (particularly vertical velocity) show a more marked break at 760 m. Reflectivity is normally considered to be controlled by impedance (the product of these latter two properties). Although both horizons will cause reflections, exact correlation must await further study.

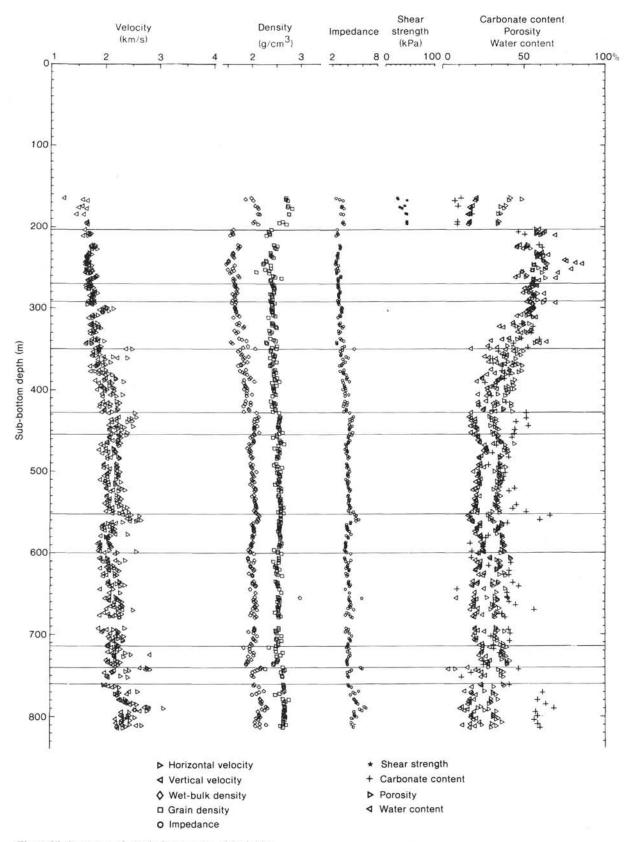


Figure 26. Summary of physical properties of Hole 605.

SEISMIC STRATIGRAPHY

After completion of Hole 603C on the lower continental rise, *Glomar Challenger* moved to the upper rise to drill Site 604 (= location NJ-4 of the New Jersey Transect). Site 604 is located at the intersection of two U.S.G.S. multichannel seismic profiles, lines 25 and 35 (Fig. 1). The portion of line 25 between shot points 3200 and 3900 published by Klitgord and Grow (1980, p. 1670)

was interpreted to prepare for drilling (Fig. 3). We applied the analytical methods outlined by Vail et al. (1977) and use their descriptive terminology.

To assign age and facies predictions to the profile and make a drilling pronosis for Site 604 (Fig. 27) and later for Hole 604A and Site 605, we used (1) the interpretation of line 25 by Schlee and Grow (1980), which closely compared with the drilling prognosis provided to us by TELEX from DSDP (Fig. 27); (2) Poag's (1980) correla-

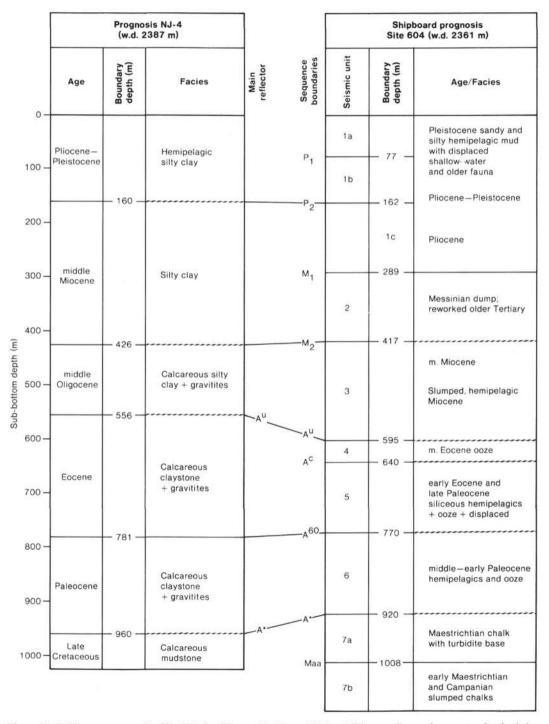


Figure 27. Drilling prognoses for Site 604. See Figures 11, 28, and 29 for drilling results. w. d. = water depths (m).

tion of the upper continental slope well COST-B3 with line 25; (3) the predictions of Vail et al. (1977) on the nature and age of North Atlantic "reflectors"; (4) the results of drilling Site 603; and (5) DSDP drilling results at Sites 107 and 108.

The latter provided good stratigraphic calibration points (see Fig. 1 for location). Site 108 projects on line 25 near shot point 3250 and dates the "outcropping" seismic sequence as middle Eocene (Cores 108-1 and -2, 39-75 m sub-bottom; Hollister, Ewing, et al., 1972b; i.e., below reflection Horizon A_T and above A_c of Tucholke [1979]). In our interpretaion of the profile this implied that there was no upper Eocene and no (or very little) middle Eocene at Site 604. On the other hand, we did expect a well-developed lower Eocene and Paleocene section. Hole 107 bottomed at 78 m in Pleistocene sandy, silty mud with displaced inner neritic Pleistocene and reworked Paleogene fauna, thus giving an indication of the age and nature of reflection Unit 1 at Site 604. In the following discussion, correlation with standard sequences refers to the depositional cycles and supercycles of Vail and Mitchum (1979). We followed general stratigraphic practice and identified local units and their boundaries, that is, reflection units and reflection horizons. Thus an objective description of the local succession of acoustic images of rock strata is obtained. This can then be correlated with a standard, either by speculation when the succession has not been drilled, or by conventional stratigraphic methods when the rocks have been sampled.

The reflection stratigraphy at Sites 604 and 605 is summarized in Figures 28 and 29, which also show the drilling results. (Note that our shipboard reading in milliseconds may not be accurate, because we had only a photographic reproduction of the published line to work with.) We distinguished 13 local seismic sequences, labeled reflection Units 1–10, and Subunits 1a–c and 6a, b. Units 8–10 were not reached by the drill. Figure 30 shows the

				Progno	sis					Drilling	results			
0.01 s below seafloor	Depths	Velocities	Local units	Horizons	Boundaries	Facies	Depths	Velocities	Units	Regional horizons	Standard	seduences	Time of events (Ma)	Lithologic units
_		1.70	1a	SF	c	Lenticular and transparent		1.86	1a		Q _{2.3}			i
	— 77 — —128—	1,70	1b	P ₁ —	<u>0</u> ?	Even parallel and contorted		1,90	1b	P ₁ -	Q1	Q	- 1.7 -	IIA
- 19				P2	O Te	Mound				G			2.8	IIB
-		1 70	1c	2	le	Even parallel	Talleer a	1.09	1c		TP			IIC
- 30	-255			— м ₁ —	O Td		239			—м,—	TM3.3			IID
-(34)	-(289)			(M ₁)-	10		TD 294.5	m				Tf		
		1.70	2			Disrupted onlap fill			2		TM3.2			III
- 	-417			—м ₂ —	O Td(e)					—м ₂ —			-(6.6)	
		1.70	3			Disrupted lenticular fill			3		(TM3.1)	(Te)		
					0					Merlin				
- 70 — - 75 —	—595— —640—	1.80	4	— A ^u —	O Te O Te	Even parallel disrupted			4	A ^u	(TE2.1)	(Ть)	(9.8) (45.5)	
e.		2.00	5		155	Disrupted even parallel			5		(TE1.2)	(Ta)		
- 88	-770-				O Te				6	A ⁵²	(TE1.1)		(52)	į.

() = Post-drilling prediction with standard sequences

Figure 28. Summary of reflection stratigraphy at Hole 604 location. Depths are in meters, velocities in km/s, time in Ma. Standard sequences are cycles and supercycles of Vail and Mitchum (1979). Boundary descriptions are: C = concordance, O = onlap, Td = depositional truncation, Te = erosional truncation.

				Prognosi	S					Drilling	results			
0.01 s below seafloor	Depths	Velocities	Local units	Horizons	Boundaries	Facies	Depths	Velocities	Units	Regional horizons	Standard	sequences	Time of events	Lithologic units
10.0-		1.70	1a	SF	o	Lenticular and transparent			1a	SF	Q _{2,3}			
		1.70	1b	P1	С	Even parallel transparent	Not sampled	1.68	1b	P ₂ ,	Q ₁	٩		IA
20.0-	—170— —200—			P ₂ /M ₁ /M ₂ -	O Te O Te		-196.7-			P ₂ , M ₁ ,M ₂ Merlin A ^u			-<45.5-	<u> </u>
n lundur		1.80	4			Even parallel disrupted		1.93	4		TE2.1	ть		п
43.5				A ^C	O Te		-390-			A ^c			-49.5-	
mhuul		2.00	5			Disrupted even parallel		1.93	5		TE1.2			ш
58.0-	-523-		-	A ⁶⁰	O Te					A ⁵²	7544		- 52	-
hunden		2.00	6a			Even parallel and transparent		2.00	6a		TE1.1	Та	(53.5)	
72.0-	-663-			A	C Te		670-						_ 58 _	IV
79.0		2.20	6b	Maa	c	Transparent	740-	2.00	6b	A* (A ⁶⁰).	TP2.2 TP2.1		60	
	140			-waa-	Te		TD 816.7	m			<u>TP1</u> _			
		2.20	7			Disrupted even and wavy parallel		(2.20)	7		K2.3	Кb	к/т	boundary
- 96.0-				Ku1-	O Te	Even and wavy	927-			к ⁷¹			(71)	-
Ξ			8		le	parallel								

Figure 29. Summary of reflection stratigraphy at Site 605 location, For explanation see Figure 28. Note that at the location of Site 605 sequence boundaries P₂, M₁, M₂, Merlin and A^u have merged (cf. Fig. 4).

correlation of these units with the ones defined at Site 603 and with the Vail et al. (1977) standard sequence chart.

Reflection Unit 1

The internal reflection configuration of reflection Unit 1 shows transparent portions and parallel, fairly even reflectors. It consists of turbidites and hemipelagic mud like the section cored at Site 107. A short, high-amplitude reflector above the base of Subunit 1b, which was thought to mark a possibly gas-filled, sand turbidite mound, indeed proved to be the top of a sandy turbiditic section but was without gas (lithologic Subunit IIB).

The prominent reflectors separating Subunits 1a, 1b, and 1c are referred to as reflection Horizons P_1 and P_2 . Both surfaces show onlap; P_2 truncates underlying sections to the west of Site 604. The two sequence boundaries coincide with lithologic boundaries (IIA/I and IIC/ IIB respectively) which both separate more quiet, biogenic-silica-bearing sediments below from sandier, slumped sediments above in which displaced shallow-water material has increased. A sharp downhole increase in shear strength marks the level of P_2 .

Good age determination with planktonic foraminifers (Moullade, this volume) and calcareous nannofossils (Lang and Wise, this volume) confirm that the horizons result from the onset of the first two major glacial sealevel low stands as they correlate with standard sequence boundaries Tb/Q and O_1/Q_2 . The P₂ event is clearly expressed in the isotope record as a major cooling event (Ganssen, this volume) and on that basis alone can be correlated with Horizon G at Site 603.

Reflection Unit 2

This unit rests on the irregular top surface of Unit 3. Its skewed plano-convex body, with a flat top and a convex base, pinches out to the west (updip) as well as to the east (downdip). We do not consider this feature to represent a downslope channel cut and fill, because it appears on a dip-line and does not show the strong erosion at its base a valley cut would. In our interpretation, its internal, disrupted, onlap-fill reflection pattern represents gravitite fill (mass flow, debris flow, grain flow, turbidites) behind a slump mound to its east. This interpretation has twice been confirmed by the drill (Hole 604 and 604A, lithologic Unit III), and by postcruise examination of a strike line over Site 604. The unit shows as a sheet on strike line U.S.G.S. line 35, where it should have had a V-shaped channel form if it were in fact a channel. The bounding reflection horizons of Unit 2 were work-labeled as M_1 and M_2 (Fig. 4). This was a mistake (it creates confusion, as they do not necessarily correlate with Hoizons M1 and M2 at Site 603) that cannot now be restored because the denotation found postcruise use among shipboard scientists and was used in preliminary reports.

Aboard ship M_1 was originally drawn at 0.34 s below seafloor on an interrupted, high-amplitude reflector. We now draw the sequence boundary at 0.30 s at the base of the first continuous, low-amplitude reflector above it. If we had done this on board we might not have risked drilling Hole 604A because the predicted thickness of the impenetrable debris flow of lithologic Unit III would have increased.

Horizon M₂ merges just west of Hole 604A with M₁, terminating Unit 2. To the east, M₂ follows a slump mound; either it merges with M1 over the top of the mound or spills over its obstruction and continues as a stringer. The age of Unit 2 is a matter of debate; it is most unfortunate that neither Leg 93 nor Leg 95 could sample its base with Unit 3 present underneath it. The age of its top can, thanks to shore-based paleontologic analysis, be determined as Messinian, as will be discussed in the following. Sample 604-24, CC, at the base of lithologic Subunit IIC, is of earliest Pliocene age based on nannofossils (base of Zone CN10; Lang and Wise, this volume) and on foraminifers (Zone N18 with Globorotalia tumida present; Moullade, this volume). In the absence of a hiatus the upper part of lithologic Subunit IID is of late Messinian age because it contains nannofossil Zone CN9 (Cores 604-25, Sections 1 and 2; Lang and Wise, this volume). The lower part of Subunit IID (Section 604-25-3 through Sample 604-26-2, 46 cm) is barren of calcareous fossils but yielded radiolarians of the Stichocorys peregrina Zone (Okamura, this chapter) of Messinian-early Zanclean age (Berggren et al., 1985). We conclude that lithologic Subunit IID is of late Messinian age, the time of the Mediterranean salinity crisis, and that this unit equates with standard sequence TM3.3. The unit is too thin to stand out on the seismic record, but will be recorded in the first continuous reflection cycle that drapes the irregular pattern of reflection Unit 2. In Figure 4 this cycle is indicated by a dashed line; it

dashed line; it could drape as far west as the point where it is cut off by reflection Horizon P_2 .

The conglomerate breccia of lithologic Unit III consists of displaced shelf and reworked slope and upper rise sediments. At some levels, Eocene or Neogene nannofossils, foraminifers, and radiolarians abound. The time of deposition of the debris flow at Site 604 must be later than that of its youngest component. These are radiolarians of the Messinian-early Zanclean S. peregrina Zone and foraminifers of the latest Tortonian-Messinian Zone N17 (both elements are common in samples from lithologic Unit III from Hole 604A; see earlier this chapter). One has to conclude, therefore, that the drilled upper part of Unit 2 belongs to the lower Messinian. Considering its internal reflection pattern and its geometry, which levels the slope behind a mound (overlying units are more or less horizontal, underlying units dip downslope), we expect the entire unit to be made of rapidly emplaced gravitites, and conclude that reflection Unit 2 is of early Messinian age, representing standard sequence TM3.2.

Reflection Unit 3

One of the objectives for drilling location NJ-4 of the New Jersey transect was to drill through one of a post-Eocene generation of large channels, seen on strike lines as cutting deeply into the older section of the continental rise. U.S.G.S. line 35 shows a large channel at Site 604 that appears as our Unit 3 on U.S.G.S. dip-line 25 over that location. Downdip the channel seems to have been diverted by a slump mound that predates the channel fill but that probably formed during the devastatingly erosive times of channel cut. The disruptive lenticular fill pattern (more chaotic in the east, more parallel onlap in the west) suggests turbidite facies. Two attempts to sample this unit failed (Holes 604 and 604A), depriving us of the opportunity to directly determine the nature of the fill and the age of the channel-cutting event by coring the section.

The sequence boundary associated with the channels has been labeled Horizon Merlin by Mountain and Tucholke (1985). At Site 604, Horizon Merlin cut into and merged with Horizon A^u . East of the site one could bring the base of Unit 3 over the slump mound (or include the slump in it?) well above Horizon A^u . Further east Horizon Merlin cuts down again into the underlying section (beyond Fig. 4; see Fig. 3).

Although Unit 3 was not drilled, its age can be reliably estimated by the drilling results obtained at Site 604. Both drilling prognoses (Fig. 27) were proven wrong for this unit. We correlate Unit 3 with the Tortonian standard sequence TM3.1, which implies an age of 9.8 Ma for the event that created Horizon Merlin. A speculative correlation could be based on the following general reasons: Unit 3 naturally underlies TM3.2 (Unit 2) and therefore is likely to represent the next older sequence; at the slump mound Horizon Merlin moves upsection to continue to the east, well above Horizon A^u, and therefore must postdate that event considerably; we found the same sequence at Site 603. However, the compelling reason for our correlation is formed by the fact that reworked

middle and upper Eocene and Tortonian fossils are dominant in Unit 2 (Lang and Wise, this volume). This implies that, during Unit 2 time, sediments of those particular ages would have to be exposed at the seafloor, updip from the debris-flow deposit, in order to be picked up by the flow, exactly as they would be today if the post-Unit 2 section were removed (and provided that Unit 3 is of Tortonian age; (see Fig. 4). Unit 3 could hardly be anything else but standard sequence TM3.1.

Reflection Units 4 through 7

The Neogene section of this continental rise that we just described is separated from the older, underlying section by a very distinct unconformity that outcrops at the seafloor (western edge of Fig. 4). From dredge samples of the exposed top of this section, and especially from the results of drilling at DSDP Site 108, the section below the unconformity is known to consist of Eocene chalk and limestone. Schlee and Grow (1980) and others assigned several oceanic reflection horizon nominators to the unconformity and sequence boundaries in the presumed limestones underneath (Fig. 3). We used their nomenclature in delineating our local reflection units and horizons (see Fig. 29, under "prognosis").

The internal reflections of these units show an even. parallel pattern that mostly is moderately to strongly disrupted. The disruptions, sometimes chaotic patterns, and numerous small normal faults all indicate that the succession has been creeping downslope during various periods of its existence and in various stages of consolidation. (See, for instance, Figs. 20 and 21 for its smallscale effect. These photographs are from Unit 7, which showed the strongest deformation.) Units 6a and 7 show onlap fill patterns at a break in slope of their underlying reflection horizon, indicating that downslope transport also occurred during sedimentation. This portion of Unit 7 even shows a fan complex pattern with high-amplitude parallel reflectors suggesting turbidite deposition. The presumed turbidites are ponded behind a slump mound that, curiously, lies at the same location as the mound behind which reflection Units 3 and 2 accumulated. Units 4 through 6 and the top of 7 were drilled and cored at Site 605. We recovered an exceptionally complete and in parts expanded middle Eocene to upper Maestrichtian section. "Classical" reflection Horizons Ac and A* were precisely dated in terms of nannofossil and, more broadly, foraminiferal zones. As is apparent from Figure 29, we had to revise our prognosis, the Paleocene being 100 m thicker than expected. As a consequence, the erosional truncation which we expected at the Cretaceous/Tertiary boundary was, in fact, at the basal Thanetian, as predicted by Vail et al. (1980), and we had the good fortune to drill a complete boundary section. Our drilling confirmed the ages of sequence boundaries as they appear on the Vail et al. chart, with one notable exception in the Paleocene.

We see a distinct sequence boundary, initially labeled A*, at 0.72 s below the seafloor at Site 605. The sequence boundary below it (at 0.79 s) has been well dated and correlates with the TP1/TP2.1 standard sequence boundary. Above, at 0.58 s, is another well-established

boundary that equates with the TE1.1/TE1.2 standard sequence boundary at 52 Ma. To correlate our boundary at 0.72 s we can choose either TP2.2/2.3 at 56 Ma, or TP2.1/2.2 at 59 Ma. Neither of them makes sense. If we choose the first, the boundary will lie at 580 m below seafloor (top Planorotalites pseudomenardii Zone): The consequent sonic velocities would be 0.71 km/s for Subunit 6 and 4.57 km/s for Subunit 6b, and the respective rates of sediment accumulation would be 1.25 and 4.00 cm/10³ years. If we choose 59 Ma as the sequence boundary age, the boundary will lie at 725 m (base Morozovella pusilla pusilla Zone). The velocities for 6a and 6b would then be 2.78 and 0.43 km/s, their accumulation rates 2.79 and 1.5 cm/10³ years. Since we are dealing with a continuous, homogeneous section these numbers make no sense. We propose that one of the standard sequence boundaries changes age, and, specifically, that it be placed at the top of the M. pusilla pusilla Zone. That 58-Ma level lies at 670 m at Site 605, which leads to a normally expected sonic velocity of 2.00 km/s for both Subunits 6a and 6b. Since the ages of the Vail et al. sequence boundaries have not been documented in publication, we do not know which boundary should be moved on their chart, if any can be moved at all.

We would also like to propose (on much weaker ground) that a cycle boundary be considered for the late Campanian. The Maestrichtian section accumulated at an approximate rate of 3 cm/10³ years using the zonation given by Jansen and Kroon (this volume) and the time scale of van Hinte (1976). Downward extrapolation of this rate gives a calculated estimate of 71.23 Ma for the age of reflection Horizon Ku1 at a predicted depth of 927 m in Hole 605.

Reflection Units 8 through 10

None of these units were drilled and they will not be discussed here. Figure 30 shows our estimated correlation of these units with Site 603 and with the Vail et al. (1977) chart.

SUMMARY AND CONCLUSIONS

Hole 604 is located in 2364 m of water on the uppermost continental rise, 160 km southeast of Atlantic City, New Jersey. As the seaward end member of the New Jersey Transect, the section here could be expected to show the strongest influence of open marine conditions. Several strong reflectors and sequence boundaries, visible on the multichannel seismic profile, were used to predict the section. These profiles showed upper units wedging out updip against more continuous Eocene beds which were cored at Site 108 some 13 km to the north.

The hole was rotary cored continuously from the surface with fair core recovery and good hole conditions. At about 260 m sub-bottom, the drill string encountered soft glauconitic sand in an apparent upper Miocene debris flow. The sand began packing off and sticking the BHA despite mud flushes and all attempts to stabilize the hole. Our copy of U.S. Geological Survey seismic line 25 (photographically enlarged by the shipboard photographer from a journal reprint since no other copies of Line 25 were on board) indicated that the sand-bearing unit would continue another 150 m. Prospects of successfully deepening the hole appeared nil and the hole was abandoned.

On the reference profile the sandy unit appeared to pinch out rapidly to the northwest. An optimum relocation site was chosen about 2.5 km northwest of Hole 604. The profile indicated that the sand body could be avoided at this location while all other target strata (middle Miocene or Oligocene) could be cored. Unfortunately, a move of 2.5 km was not technically feasible because positioning beacons on the only two usable operating frequencies had been dropped at Hole 604. A move of at least 6 km would be necessary to avoid interference from the old beacons. The only option open, therefore, was for a second attempt to core Site 604 at a maximum offset from the old beacons. This would put us approximately at the feather edge of the sandy unit, which we hoped would be sufficient to avoid any significant hole problems. The vessel was consequently offset about 1.2 km northwest along the seismic line.

Hole 604A, at a water depth of 2340 m, was washed to 249.6 m and continuously cored thereafter. After three cores the bit again broke into upper Miocene sand, which quickly packed off and stuck the pipe. Fifteen minutes were required to work the pipe free and another core was attempted after the hole had been cleaned and a mud flush circulated. After 6 m penetration the pipe became stuck again. Freeing it the second time was even more difficult, and it was apparent that the site was not drillable with *Challenger's* drilling system.

With the loss of Site 604, the scientific options for the leg became quite limited, considering the mission and time remaining. We were now constrained to relocate west-northwest along the reference profile at least 6 km from the Site 604 beacons. However, the Miocene strata of interest (reflection Unit 3) appeared to pinch out less than a kilometer past that point, if not sooner. Within another 4 km, Eocene siliceous chalks, too firm to be spudded, cropped out. We therefore elected to try the minimum offset of 6 km and again set our target on the Maestrichtian, which was thought to lie at about 663 m.

Hole 605 was spudded in 2197 m of water, washed to 154.3 m BSF, and continuously cored to 816.7 m. The hole was terminated after the expiration of time allotted for the cruise, which had already been extended by DSDP one day to allow the Cretaceous/Tertiary boundary to be reached.

Stratigraphy

Site 604

The lithologic units penetrated at Site 604 between 0 and 295 m are outlined in Table 4 and depicted in Figures 7 and 11. From top to bottom they are:

Unit I: 84 m of Holocene(?) to Pleistocene gray to dark greenish gray clays and silts in alternating sequences. The unit contains Eocene and Neogene fossils and some slumped or redeposited Eocene biosiliceous chalk in the upper 35 m (Subunit IA) and exhibits internal slump structures in the lower part (Subunit IB). Displaced shallow-water foraminifers and shell fragments are common.

Unit II: 155 m of lower Pleistocene to upper Miocene greenish gray clay with variable amounts of glauconitic shelf sand turbidites and biogenic silica. It is divided into four subunits based on the presence or absence of sand and biogenic silica.

Unit III: 56 m of upper Miocene glauconitic, biosiliceous silty claystone, sand, and conglomerate. The sands are inferred from the drilling characteristics. The conglomerates contain rounded quartz pebbles up to 1 cm long, clasts of claystone, chalk, and limestone up to 10 cm in diameter, and rare shell fragments. Elsewhere in the unit are found exotic blocks of nannofossil chalk up to 50 cm thick. These and the conglomerates appear to represent debris flows, whereas some of the sands could be turbiditic.

Site 605

Lithologic units penetrated at Site 605 between 0 and 816.7 m are outlined in Table 5, depicted in Figure 10, and correlated with units of Site 604 in Figure 11.

Unit I: Unit I is divided into two subunits. Subunit IA consists of 198 m of Pleistocene gray silt-rich clay with common displaced and reworked (Eocene) faunal elements and a high percentage of land-plant organic material. Subunit IB is only 24 cm of Pleistocene green biosiliceous and calcareous clay. It is separated by a disconformity from the underlying unit and contains some reworked siliceous microfossils from that unit.

Unit II: 152 m of lower middle Eocene, biosiliceous nannofossil chalk rich in radiolarians and diatoms.

Unit III: 214 m of lower Eocene, greenish gray, nannofossil limestone, with varying amounts of foraminifers and calcified radiolarians.

Unit IV: 176 m of upper Paleocene, dark greenish gray, clayey nannofossil limestone (marl).

Unit V: 77 m of lower Paleocene to middle Maestrichtian, olive gray, marly limestone.

All of the Paleogene to Maestrichtian units are strongly bioturbated. Preservation of trace fossils is excellent, and several examples of whole Zoophycos burrows are noted. The preservation of siliceous and calcareous microfossils is generally good in Unit II (except for foraminifers), poor in Unit III, and much improved in Units IV and V. Excellent recovery throughout most of the section, particularly the long (200 m) Paleocene interval, will allow detailed correlations of biozones with the magnetostratigraphy of the cores.

Seismic Stratigraphy

Drilling at Sites 604 and 605 was highly successful in delineating unconformities and calibrating the seismic stratigraphy. Figure 4 shows the interpretation of the seismic stratigraphy of U.S.G.S. line 25, based on the results of drilling at Sites 604 and 605. Figure 28 summarizes the seismostratigraphy of Site 604, and Figure 29 that of Site 605. All units that were penetrated have been dated and can be related to supercycles and cycles of Vail et al. (1979) (Fig. 11) with one problem. We cannot properly relate the Vail standard with the Site 605

mid-Paleocene sequence boundaries without implying odd sonic velocities or odd variations in sediment accumulation rates in an otherwise homogeneous section. The age determinations on which Vail based his cycle chart are not known; we cannot, therefore, assess their reliability. The Site 605 control point is excellent and certainly indicates that the Paleocene portion of the standard needs adjustment and that a sequence boundary event occurred at 58 Ma.

The cored sections at Sites 604 and 605 date oceanic reflection Horizons A^c (49.5 Ma) and A* (60 Ma), confirming the prediction of Vail et al. (1980). The results complement very well our findings at Site 603 (Fig. 29). Local reflection Horizons P_2 (=G at Site 603) and M_2 (=M at Site 603) are well dated at both sites. They are demonstrated to be reliable time-stratigraphic markers in both oceanic and continental margin acoustic stratigraphy. We expect that the same holds for Horizons that were dated at one site only: Merlin ($=M_2$ at Site 603), CON (=Km at Site 603) CENO (unnamed, but present at Site 603), and Kb (well dated at Site 603), as well as the more poorly dated Horizon Ku1, for which we propose a preliminary age of 71 Ma. The section drilled and sampled at Sites 604/605 determines with great precision the ages of Eocene and Paleocene unconformities on the continental slope, documents the Vail et al. (1980) cycle chart, refines its age assignments, and calibrates internal reflection patterns.

Depositional History

The oldest sediment cored at Sites 604 and 605 was middle to upper Maestrichtian clayey limestone (Hole 605, Subunit VB). The terrigenous silt content of this material is quite low, averaging about 3%, whereas the carbonate content is high, usually greater than 60%. The sediment contains only trace amounts of glauconite. These sediments show clear signs of mass downslope movements (creep) (Figs. 20 and 21).

Going upsection it is evident that we had penetrated a reasonably complete Cretaceous/Tertiary boundary sequence in an expanded section. The expanded Maestrichtian/Danian boundary sequence is a function of the continental margin environment of deposition, where sedimentation rates are generally higher than in the deep sea.

At the contact, the foraminiferal Guembelitria cretacea Zone (PO) and the coccolith Zygodiscus sigmoides Zone (CP1) overlie the foraminiferal Abathomphalus mayaroensis and coccolith Nephrolithus frequens zones, but other lower Danian foraminiferal zones (P1a and P1b) have not been recognized in the fragmented core (Fig. 18). Unfortunately, the core shattered just above the Cretaceous/Tertiary boundary, and thus it appears that the "boundary clay," if originally present, was washed away during coring. There is no visual lithologic discontinuity between upper Maestrichtian and lower Paleocene sediments which, on the other hand, are disconformably overlain by an unusually thick upper Paleocene section.

Unlike the Maestrichtian limestone below, the lowest Danian sediments (Subunit VA) show a marked rise in the percentage of terrigenous silt (15-20%) and glauconite (2-4%). Assuming that these micaceous silts and glauconites are land- and shelf-derived, this may indicate a drop in sea level at the time of the Cretaceous/ Tertiary boundary event. The silt and glauconite contents decrease rapidly in the top of Subunit VA, where the lithology becomes a foraminifer-bearing nannofossil limestone. This rapid decline may reflect a subsequent sea level rise. To some shipboard scientists this suggested that a terminal Cretaceous meteorite (Alvarez et al., 1980; Smit and Hertogen, 1980) did strike the ocean and cloud the Earth. However, the existence of a near-complete Cretaceous/Tertiary boundary section in the New Jersey coastal plain (Koch and Olsson, 1977) suggests that there was no appreciable drop in sea level associated with the boundary event. The silt and glauconite in Sub-unit VA, therefore, may possibly reflect exceptional current-wave (tsunami) activity induced by the impact, an explanation which would also account for the deepwater, current-bedded Cretaceous/Tertiary sand with spherules at Site 603 (see Site 603 site chapter). Another possibility could be that the effects of the impact decimated plant life, which resulted in increased hinterland erosion and terrigenous riverine output.

Marl-limestone cycles (shown by a faint to distinct color zonation) are well developed in Units III and IV at Site 605, especially in Cores 605-52 to -55, and 605-58 to -62. Since pelagic carbonate dissolution at this shallow site would not have been a factor in the genesis of these cycles, their cause could have been fluctuations in carbonate input related to productivity or to fluctuations in the input of terrigenous clay, which would tend to cause cyclic dilution of carbonate content during periods of continuous carbonate sedimentation (sea level fluctuations, climate). Another type of cyclicity is manifested in Cores 605-33 to -35 and 605-40, where intensely bioturbated and faintly laminated, undisturbed horizons alternate. These cycles may represent fluctuations in bottom-water oxygen content.

In general, the Maestrichtian–Eocene sequence at Site 605 (lithologic Units II to V) is heavily bioturbated, indicating steady input of nutrients (either via surface productivity or terrestrial influx) into the sediments. Beginning with Unit II deposition during the early middle Eocene, there is a sharp increase in biosiliceous material (diatoms, radiolarians, and silicoflagellates). Although this contrast may have been further accentuated by silica diagenesis, this is not likely to be a significant factor.

Because of drilling problems at Site 604, we obtained no direct information on the Oligocene-middle Miocene interval, nor do we know the nature and age of the lower 150 m of our seismic Unit 2 (the continuance of our lithologic Unit III). Reworked upper Eocene and middle Miocene microfossils in the upper Miocene sediments of Site 604 indicate that those units are present in the area. To date, no reworked Oligocene material has been identified, and at Site 605 these sediments were missing. There, Pleistocene sediments were separated from the middle Eocene by a pronounced disconformity which can be traced at seismic reflection Horizon A^u.

The upper Miocene glauconitic, biosiliceous silty claystone, silt, sand, and conglomerate with quartz pebbles and displaced blocks of middle Eocene chalk in Unit III (Hole 604) clearly represent debris and turbidite flows from upslope. Their emplacement followed canyon cutting centered about a time when glaciation on the Antarctic continent apparently induced significant eustatic lowering of sea level. Upper Miocene sediments are almost absent in offshore boreholes along the east coast of the United States and have not been identified in land outcrops of the coastal plain. During periods of lowered sea levels, the shoreline migrated toward the shelf break where river deltas spilled their loads. The debris flows and turbidites we drilled at Site 604 apparently result from such a period of deposition in an unstable shelfedge environment. Diatomaceous sediments associated with these deposits indicate further upwelling in this area. perhaps again related to incursions of the Labrador Current system. Glauconitic sands, shallow-water foraminifers and shell fragments, and occasional displaced Eocene material in Units I and II reflect further unstable sea level and current conditions into the Pliocene and Pleistocene particularly since the initiation of glacial times.

Highly contorted and convolute patterns in the Pleistocene Subunit IB at Site 604 are interpreted as internal slump structures, features which indicate unstable slope conditions as well. Slumping within Quaternary deposits has been widely observed on the continental slope in this area in detailed seismic surveys, for example, by Robb et al. (1981).

Seismic profile records and drilling at Site 108 reveal large areas upslope where post-Eocene sediments have been removed by erosion and slumping, thereby leaving a belt of Eocene chalk cropping out along strike at the surface. The incorporation of this material, along with middle Miocene microfossils, in the upper Miocene and Plio-Pleistocene indicates that denudation of the Eocene units was not limited to the Oligocene A^u Event. In our area, a major loss of material apparently occurred during the late Miocene (Tortonian and Messinian) in conjunction with profound sea-level drops (Vail cycles TM3.1 and TM3.2).

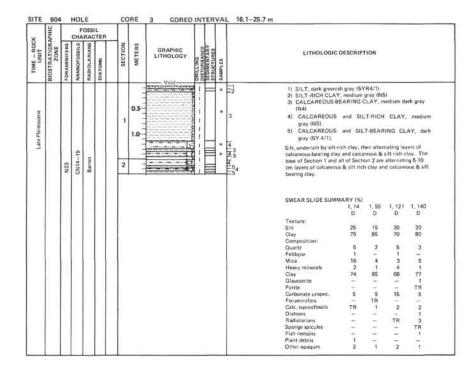
REFERENCES

- Alvarez, L. W., Alvarez, W., Asaro, F., and Michel, H. V., 1980. Extraterrestrial cause for the Cretaceous-Tertiary extinction. *Science*, 208:1095–1108.
- Backman, J., and Shackleton, N. J., 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian, and Pacific oceans. *Mar. Micropaleontol.*, 8: 141-170.
- Berggren, W. A., 1985. Neogene planktonic foraminiferal biostratigraphy and biogeography: Atlantic, Mediterranean, and Indo-Pacific regions. In Tsuchi, R. (Ed.), Pacific Neogene Datum Planes. IGCP Project 114: Tokyo: University of Tokyo Press.
- Berggren, W. A., Kent, D. V., Flynn, J. J., and Van Couvering, J. A., 1985. Cenozoic geochronology. Geol. Soc. Am. Bull., 96:1407– 1418.
- Boyce, R. E., 1976. Definitions and laboratory techniques of compressional sound velocity parameters and wet-water content, wetbulk density, and porosity parameters by gravimetric and gamma ray attenuation techniques. *In* Jackson, E. D., Schlanger, S. O., et al., *Init. Repts. DSDP*, 33: Washington (U.S. Govt. Printing Office), 931-958.
- Brown, P. M., Miller, J. A., and Swain, F. M., 1972. Structural and Stratigraphic Framework and Spatial Distribution of Permeability

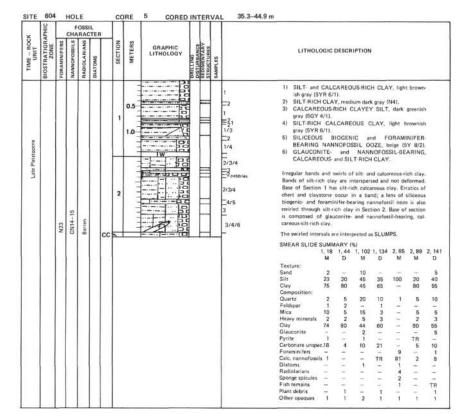
of the Atlantic Coastal Plain, North Carolina to New York. U.S. Geol. Survey Prof. Pap., 796.

- Bukry, D., 1981. Synthesis of silicoflagellate stratigraphy for Maestrichtian to Quaternary marine sediment. In Warme, J. E., Douglas, R. G., and Winterer, E. L. (Eds.), The Deep Sea Drilling Project. A Decade of Progress. Soc. Econ. Paleontol. Mineral. Spec. Publ., 32:433-444.
- Gieskes, J. M., Elderfield, H., Lawrence, J. R., Johnson, J., Meyers, B., and Campbell, A., 1982. Geochemistry of interstitial waters and sediments, Leg 64, Gulf of California. *In Curray*, J. R., Moore, D. G., et al., *Init. Repts. DSDP*, 64, Pt. 1: Washington (U.S. Govt. Printing Office), 675-694.
- Goll, R. M., 1968. Classification and phylogeny of Cenozoic Trissocyclidae (Radiolaria) in Pacific and Caribbean basins, Part I. J. Paleontol., 42(6):1409-1432.
- Gombos, A. M., Jr., 1983. Early and middle Eocene diatom evolutionary event. Bacillaria, 5:225-242.
- Grow, J. A., Mattick, R. E., and Schlee, J. S., 1979. Multichannel seismic depth sections and interval velocities over outer continental shelf and upper continental slope between Cape Hatteras and Cape Cod. In Watkins, J. S., Montadert, L., and Dickerson, P. W. (Eds.), Geophysical and Geological Investigations of Continental Margins. Am. Assoc. Pet. Geol. Mem., 29:65-83.
- Hathaway, J. C., Poag, C. W., Valentine, P. C., Miller, R. E., Schultz, D. M., Manheim, F. T., Kohout, F. A., Bothner, M. H., and Sangrey, D. A., 1979. U.S. Geological Survey core drilling on the U.S. Atlantic Shelf. Science, 206(4418):515-527.
- Hinte, J. E. van, 1976. A Jurrasic time scale. Am. Assoc. Pet. Geol. Bull., 60:489-497.
- Hollister, C. D., Ewing, J. I., et al., 1972a. Site 107—upper continental rise. In Hollister, C. D., Ewing, J. I., et al., Init. Repts. DSDP, 11: Washington (U.S. Govt. Printing Office), 351-356.
- _____, 1972b. Site 108—continental slope. In Hollister, C. D., Ewing, J. I., et al., Init. Repts. DSDP, 11: Washington (U.S. Govt. Printing Office), 357-364.
- Klitgord, K. D., and Grow, J. A., 1980. Jurassic seismic stratigraphy and basement structure of western Atlantic magnetic quiet zone. Am. Assoc. Pet. Geol. Bull., 64:1658-1680.
- Koch, R. C., and Olsson, R. K., 1977. Dinoflagellate and planktonic foraminiferal biostratigraphy of the uppermost Cretaceous of New Jersey. J. Paleontol., 51:480-491.
- McIver, R., 1975. Hydrocarbon occurrences from JOIDES Deep Sea Drilling Project. Proc. 9th World Hydrocarbon Congr., pp. 269– 280.
- Martini, E., 1971. Neogene silicoflagellates from the equatorial Pacific. *In* Winterer, E. L., Riedel, W. R., et al., *Init. Repts. DSDP*, 7, Pt. 2: Washington (U.S. Govt. Printing Office), 1695–1708.
- Mattick, R. E., Hennessy, J. L. (Eds.), 1980. Structural Framework, Stratigraphy, and Petroleum Geology of the Area of Oil and Gas Lease Sale No. 49 on the U.S. Atlantic Continental Shelf and Slope. U.S. Geol. Surv. Circular, 812.
- Moullade, M., 1983. Upper Neogene and Quaternary planktonic foraminifers from the Blake Outer Ridge and Blake Bahama Basin (Western North Atlantic), Deep Sea Drilling Project Leg 76, Sites 533 and 534. In Sheridan, R. E., Gradstein, F. M., et al., Init. Repts. DSDP, 76: Washington (U.S. Govt. Printing Office), 511-535.
- Mountain, G. S., and Tucholke, B. E., 1985. Mesozoic and Cenozoic stratigraphy of the United States Atlantic continental slope and rise. In Poag, C. W. (Ed.), Geologic Evolution of the United States Atlantic Margin: New York (Van Nostrand-Reinhold), pp. 293-341.
- Müller, P. J., 1977. C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, 41:765-776.
- Olsson, R. K., 1978. Summary of lithostratigraphy and biostratigraphy of Atlantic Coastal Plain (northern part). In Benson, W. E., Sheridan, R. E., et al., Init. Repts. DSDP, 44: Washington (U.S. Govt. Printing Office), 941-947.
- Poag, C. W., 1979. Stratigraphy and depositional environments of Baltimore Canyon Trough. Am. Assoc. Pet. Geol, Bull., 63:1452– 1466.
 - _____, 1980. Foraminiferal stratigraphy, paleoenvironments, and depositional cycles in the outer Baltimore Canyon Trough. In Scholle, P. A. (Ed.), Geological Studies of the COST No. B-3 Well, United

States Mid-Atlantic Continental Slope Area. U.S. Geol. Surv. Circular, 833:44-66.

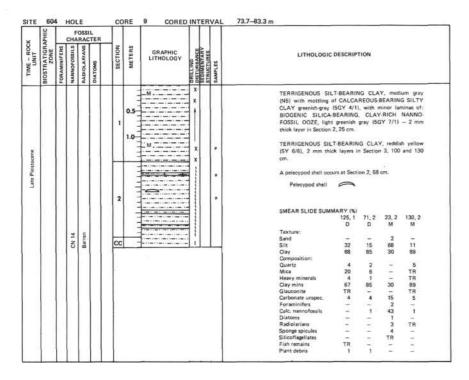

- Robb, J. M., Hampson, J. C., Jr., and Twichell, D. C., 1981. Geomorphology and sediment stability of a segment of the United States continental slope off New Jersey. *Science*, 211:935-937.
- Schlee, J. S., 1981. Seismic stratigraphy of Baltimore Canyon Trough. Am. Assoc. Pet. Geol. Bull., 65:26-53.
- Schlee, J. S., Behrendt, J. C., Grow, J. A., Robb, J. M., Mattick, R. E., Taylor, P. T., and Lawson, B. J., 1976. Regional framework off northeastern United States. *Am. Assoc. Pet. Geol. Bull.*, 60:926– 951.
- Schlee, J. S., Dillon, W. P., and Grow, J. A., 1979. Structure of the continental slope off the eastern United States. *In Doyle*, L. J., and Pilkey, O. H. (Eds.), *Geology of Continental Slopes*. Soc. Econ. Paleontol. Mineral., Spec Publ., 27:95–117.
- Schlee, J. S., and Grow, J. A., 1980. Seismic stratigraphy in the vicinity of the COST No. B-3 Well. In Scholle, P. A. (Ed.), Geological Studies of the COST No. B-3 Well, United States Mid-Atlantic Continental Slope Area. U.S. Geol. Surv. Circular, 833:111-116.
- Scholle, P. A. (Ed.), 1980. Geological Studies of the COST No. B-3 Well, United States Mid-Atlantic Continental Slope Area. U.S. Geol. Surv. Circular, 833.
- Smit, J., and Hertogen, J., 1980. An extraterrestrial event at the Cretaceous-Tertiary boundary. *Nature*, 285:198–200.
- Smit, J., and Romein, A. J. T., 1985. A sequence of events across the Cretaceous-Tertiary boundary. *Earth Planet. Sci. Lett.*, 74:157–170.

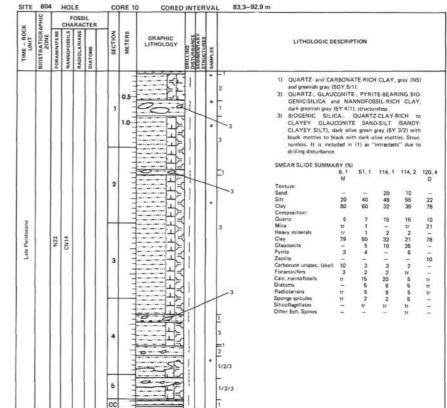
- Taylor, D. J., and Anderson, R. C., 1980. Geophysical studies. In Scholle, P. A. (Ed.), 1980. Geological Studies of the COST No. B-3 Well, United States Mid-Atlantic Continental Slope Area. U.S. Geol. Surv. Circular, 833:105-110.
- Tucholke, B. E., 1979. Relationships between acoustic stratigraphy and lithostratigraphy in the western North Atlantic Basin. *In* Tucholke, B. E., Vogt, P. R., et al., *Init. Repts. DSDP*, 43: Washington (U.S. Govt. Printing Office), 827-846.
- Vail, P. R., and Mitchum, R. M., 1979. Global cycles of relative changes in sea level from seismic stratigraphy. *In Watkins*, J. S., Montadert, L., and Dickerson, P. W. (Eds.), *Geological and Geophysical Investigations of Continental Margins*. Am. Assoc. Pet. Geol. Mem., 29:469-472.
- Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M., Thompson, S. III, Sangree, J. B., Bubb, J. N., and Hatlelid, W. G., 1977. Seismic stratigraphy and global changes of sea level. *In Payton*, C. E. (Ed.), *Seismic Stratigraphy: Applications to Hydrocarbon Exploration*. Am. Assoc. Pet. Geol. Mem., 26:49-212.
- Vail, P. R., Mitchum, R. M., Jr., Shipley, T. H., and Buffler, R. T., 1980. Unconformities of the North Atlantic. *Phil. Trans. R. Soc.* London, A, 294:137–155.
- Waples, D. W., and Sloan, J. R., 1980. Carbon and nitrogen diagenesis in deep sea sediments. Geochim. Cosmochim. Acta, 44:1463– 1470.


×	DIHA	- 8		RAC	TER														
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILE	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	ION			
							1	0.5					2	 NANNOFOSSIL-8 SILTY CLAY olive gray (SYS) QUART2-BEAR dark greenish gra BIOGENIC SIL pale yellow (S) middle Eocene for 	2) ING, CA y (5G 4/1) ICA-RICH Y 8/3) (4	RBONA	TE-RICH OFOSSIL	OOZE	5 2
Late Pleistocene		N23					2	I'NY THINKY				•	4	4) NANNOFOSSIL-S QUARTZ-RICH CI gravish olive green SMEAR SLIDE SUMI	.AY (sands ("forest gr	silty cla	y = textu		
Late			CN14-15	Barren			3						2/4	Texture: Sand Sill Composition: Quartz Feldgar Mica Heavy minerals Clay minerals	1, 11 M 40 60 30 - - - 60	1, 53 D 	1, 130 M 	2,60 M 25 25 50 20 - 2 - 48	3,00 D 25 40 35 45 1 2 3 35
						cc	4						PP sample	City minerais Glauconite Pyrite + opaques Carbonate unspec. Foraminiters Calc. nannofossils Diatoms Radiolarians Sponge spicules Fish remains	50 TR TR - 2 5 1 2 -	70 TR TR 20 TR 	5 - - 3 67 10 10 5	48 1 3 15 2 10 -	35 1 3 8 - - - TR

×	APHIC			RAC	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Late Pleistocene		N23	CN14-15			1 2 CC	0.5		i		•••	CALCAREOUS RICH OUARTZOSE SILTY CLAY, SILT- BEARING CALCAREOUS CLAY, SAND RICH CAL- CAREOUS RICH SILT, and CLAYEY SILT. Dark gray (8/3/1) with only slipht darkness variations. Banded on the flw-canimiset solar with fine/coarse grained alternations. These attentions are on centimeter scale in lower part of Sec. 1. In Sect. 2 are some light (SY41) gray 1 cm fine-grained bond within the fine-grained dark gray instravia. The coarse/fine tayers appear to have normal grading, but core is too disturbed to writh this. Drawing of Graphic Lithology is entirely schematic.
			123					A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O		-		SMEAR SLIDE SUMMARY (%)
											- 1	1,74 1,97 2,2 2,8 2,33
											- 1	M D D M
												Texture
											- 1	Sand 15 5 - Sitt 90 45 75 40 40
											- L	
			0.1	10 E							- (Clay 10 55 10 55 60
											- 11	Composition: Quartz 54 6 59 29 5
				11		1					- 1	
											- 1	Feldspar 6 1 3 5 -
												Mice 4 3 10 5 -
			2.1	hi i		1					- 1	Heavy minerals 25 - 5 5 4
				E (1					- 1	Clay 10 55 10 50 50
												Glauconite 1
												Pyrite – – 2 1
						1					- 1	Carbonate unspec. 1 35 20 10 40
						- U					- 1	Calc: nannofossils – – 1 2 –
					1						- 1	Other opaques 1 1 -

.

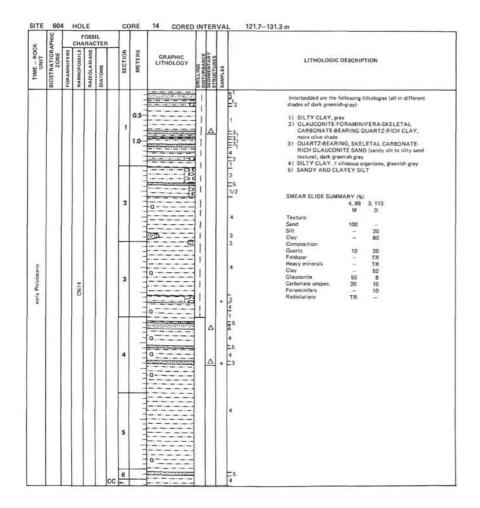

	APHIC			RAC	TER						
TIME - ROCK UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	samples	LITHOLOGIC DESCRIPTION
Late Pleistocene		N23	CN14-CN15	Barren		CC	× -				CALCAREDUS- and SILT-RICH to -BEARING CLAY. Dark greening gray (BGY4/1), with greening gray (SGY47) at base. Two silt-rich interasts. Only 10 cm recovered. Clam shell at base (1x1% cm).

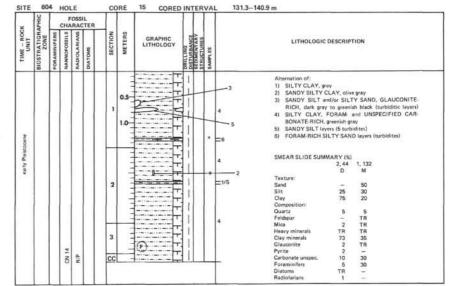


5	APHIC		CHA	-	TER											
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOWS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC DE	SCRIP	TION		
						1	0.5		· · · · · · · · · · · · · · · · · · ·	•	7 Sharp contact	 SILT- and CALC gray to gray (2.5 of CALCAREOL 5/1). SILT-RICH CLA 4/1) with sitry bands may be pn silty clay interva pieces and black SILTY CLAY, mineral-rich. 	YR 4/1 IS CLA Y, dark clay in/ oduced I of low pots.	-N3) w AY, waa greenisi tervals. 1 by slum wer Secti	ith interb k pinkist h gray (5 Some of ping; esp ion 1. Ra	edded swirls o gray (10R GY 4/1, 5G the twirling recally in the re claystone
						2	to the term				2	 Mineral-rich, SILT-RICH CLA greenish gray (5 fragment (pelecy very fine quartz p SMEAR SLIDE SUMM 	GY 4/ pod?) i ebbles. IARY (1, 39	1, 5Y 4 at Sectio %) 1,50	2, 100	tains a shell cm and rare 3, 110
eue												Texture: Silt Clay	M 38 62	D 28 72	D 20 80	D 42 58
Late Pleistocene		N23	CN14-15			3		~1~			Disrupted sharp contact	Composition: Quartz Feldspar Mica Heavy minerals Clay Palagonite Glauconite Glauconite Grabonate unspec, Foraminifers	1 TR - 52 TR - 35 -	3 TR 3 72 TR 15	4 TR 2 6 80 TR 3 TR	7 (25 58 1 3
						4					3	Cale. nannefossils Diatoms Sponge spicules Sitiooflagellates Plant debris (Organics) Other opaques	1 1 1 1 1	11111	1 TR - - 3	- 2 1 TR - 3
						5					4					

×	VPHIC			OSS	TER								
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Late Pleistocene		N23	CN 14-15	Barren		1	1	1.1		1		_	SILTY CLAY, medium gray (N4) with a faint swirl pattern from slumping. At 21 cm is a thin bandhens of PYRITE & GLAUCONITE GRAINS. Grains are silt, and mostly sand size.
2													SMEAR SLIDE SUMMARY (%) CC, 10 CC, 22 D M
													Texture: Sand — 50 Silt 40 48 Clay 60 2 Composition:
													Quartz 10 5 Mica 15 – Heavy minerals 5 1 Clay 80 1
													Glauconite TR 60 Pyrite 2 30 Carbonate unspec. 8 2 Calc. nanofosulis 1

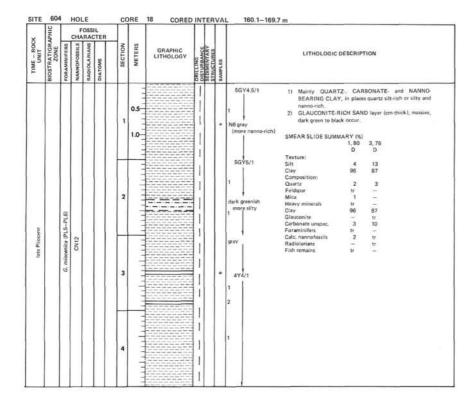
4 HH	L	CHA	OSSI RAC											
UNIT UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DES	CRIPT	ION		
Late Preistoenne	N23	CN14	Barren		1 2 CC	1.0			•	1) CALCAREOUS BEAL SILT, dark greenisk g 2) CALCAREOUS BEAL ium gray (N5) or : Difference between rt Lower half of Section wirks of silp-porr and ai origin. Ar Section 2, 47 cm is . (5YR 6/2), silt-bearing cla Ar Sect. CC, 13 cm is a sh pelecypod?) SMEAR SLIDE SUMMAR Texture: Silt Compesition: Compesition: Compesition: Compesition: Clay Feldapar Mica Heavy minerals Clay Pyrite/Micronodults Calo.	ray (5G RING mediun hese sha 1 and it-rich a 3-4 iy. well frag	Y 4/1). SILT-RIC 1 dark g des is uni top of S with sugg mm banc	CH CLA ray (N4 determin action 2 estions (stof pin)	Y, med-) layers, ed. ? display of slump cish gray




×	Ł			RAC	TER					L .						
TIME - HOCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHO	LOGIC DESCRIF	TION			
Late Pletdoene		N22	CN14		cc	1 2 3 4 5 6	0.5				 OUARTZ: to light gn Terrigenes, RICH CL/ 2') GLAUCOI GLAUCOI GLAUCOI GLAUCOI BEARING 4(3) GLAUCOI BEARING derk Grey MICA., 1 GENIC SI RICH CLJ GLAUCOI GLAUCOI GLAUCOI GLAUCOI 	21.AUCONITE, ICASIDERITE, ASIDER Y, olive gay (B) INTE, PYRITE, RICH CLAY, SUMARY (%) 50,1 M 15 25 60 15 17 17 7 8 9 9 9 9 9 9 9 18 18 25 25 60 10 15 17 17 18 18 25 25 25 25 25 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ND and ND and IS SAND CLAY SIL OOI SPECIFII ND-RICI PYRIT BEARIN Y 5/21. BEARIN reddish	SIDERI ¹ 2). , black. RICH BI 2E, olive ED CARE 1 SILTY E. FOR IG, QUAR G, QUAR	IOGENIC grav (5G BONATE- CLAY, IAM BIO- RTZ- TZ AND	

×	APHIC			RAC	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
sariy Pleistocene		N22	CN14	R/P		1 2 CC	1.0			52		SG 5/1 QUART2 and CAR80NATE-RICH CLAY, greenish gray 5/6 6/2 (5/6 5/1), light olive gray (5Y 6/2), and greenish-gray 5/6 5/1 (5/2 5/1) colored. T In Section 2, 0–10 cm is a layer of SANDY SILT. 5/4 SMEAR SLIDE SUMMARY (%) CC, 7 Texture: Silt 30 Clay 70 Composition Quirt 10 Mica 5 Clay 67 Pyrite 3 Carbonate unspec. 15 Caic, nanofossits TR Plant debris TR

_	0					
	÷	FOSSIL		 		


×	APHIC			OSSI	TER									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES		LITHOLOGIC	DESCRIP	TION
						T	0.5	۽ ج 			13 3 1/2 3 1	gray (5GY4/1) 2) SILTY CLAY, pal 3) MICA GLAUCON BEARING, QUAF 4) QUARTZ-MICA-5 timilar to (1), (close to clayton 5) SANDY and CL	In red to red ITE-PYRI ITZ-RICH SIDERITE but more el).	
early Plaistocene						2	and a set of				4/5	greenish gray. Color banding and gra SMEAR SLIDE SUMA Texture: Sand	MARY (%) 2,71 D	3, 132 D
early Pla						3					a IW	Silt Clay Composition: Quartz Mice Heavy minerals Clay Glaucomite Pyrite Carbonate unspec. Foraminiters Carbonate unspec.	20 80 8 2 - 83 2 5 - TR	40 50 15 7 7 8 44 3 5 10 13 2
	-	N22	CN 14	Barren		4					4 15 4 15	Diatoms Radiolarians Sponge spiculas Silicoflagellates Plant debris	TR - TR TR	5 3 2 TR

×	APHIC	<u> </u>	CHA	-	TER				Π	Τ		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION
						3	0.5				1/5	Alternation of: 1) SLITY CLAY, gray (N4) 2) SANDY SLITY CLAY, olive gray 3) SLITY CLAY, FORAM: and CARBONATE-RICH, greenin gray 4) FORAM-RICH SILTY SAND layers (= turbidites) 5) SILTY CLAY (same as [3]), pair and (2.5YR 6/2) 2/5) Greening gray-dark greening gray, pair red motiled or pair red, greening gray motifed
ocene						2	nuluu huu				1/5	D Texture: Silt 25 Clay 75 Composition: Quartz 15 Mica tr
Early Pleistocene						3	rodianij ron	OG T			1/5 3	Carbonate unspec. 5 Calc. nannofossils tr
						4	adamina		1		=2	
		N22	CN 13	A/P		cc					4	

×	APHIC	.8		RAC	TER												
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES		LITHOLOGIC D	ESCRIPT	TION		
						1	0.5	0 0 0				2 1) 3 2) 1 5 2 3) 2 4)	Terbedded Gray SILTY CLAY SANDY-SILTY CL CLAY) CARBONATE-BEA CLAY to QUART ING CARBONATE- SILTY SAND, rich QUART2 and CLA (/SIDERITE) SILT, with 2 mm pure side	RING Z GLAU RICH CI in forami Y MINE . ~8 cr	QUART DCONITE AY, green nifers (to RAL-RIC n thick li	TZ-SILT E-FORAT mish gra rbidites) CH CARE	RICH M-BEAR- V
late Pliocene		PL5-PL6	CN12d			2	and months	0 200000000000000000000000000000000000				3 SI 24 Tr 3 Si C - QQ	MEAR SLIDE SUMMA int ay omposition: uartz ridspar ica	1, 64 D 30 70 5 TR	1, 46 D 25 75 15	1, 54 M 85 15 15	4, 80 D 30 70 20
						3	Internet in the second second	a 0				H 3/2 G 3/2 G - P 3 G 3 G 3 G 3 G 3 G	ica avy minerals davonite rrite auconite rritonate unspec. (7 siderite) zaminifers de. nannofossiis songe spicules	- 68 4 - 10 5 2 -	3 73 TR 3 5 1 TR 	3 TR 11 - 5 60 5 - 1	2 1 66 3 - 3 2 TR 3
						4	Erectro.	-©≪ ₀-©									

×	APHIC			OSS	TER											
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES		LITHOLOGIC	DESCRIP	TION		
						1	0.5				10GY3/2 10GY5/2 5GY3/2 10GY5/2	Alternations of two / (1) SILT-BEARING BEARING CLA — grayish olive g (2) BIOGENIC SILI CALCAREOUS- RICH CLAY, d 3/2). Grading of Glauconiti Section 1.	i to NAI Y, gravish preen), ICA-BEARI BEARING ark gravish	NOFOS green (1 NG, SIL GLAU green (OGY 5/2, .T-RICH CONITE 10GY 3/3	5GY 4/2 CLAY to (SAND)- 2 to 5GY
						2		- 6 G			5GY4/2	SMEAR SLIDE SUM Texture: Sand Silt Clay Composition:	MARY (%) 1, 23 M 	1, 68 D - 23 77	2, 130 D 26 74	3, 19 D 20 16 64
Middle Pliocene		PL3-PL4	CN12			3	The first state of the state of	6 6			5GY4/2- 5GY4/1	Quartz Feldspar Mica Heavy minerals Clay Palagonite Glauconite Pyrite Zeolite Carbonate unspec. Foraminifiers	17 1 4 59 TR 1 - 7 1	7 TR 1 2 73 - TR - 1 4 2	4 3 74 TR - 4 2 10 TR	4
						4	in the other				5GY4/1	Calc, nannofossils Diatoms Radiolarians Soponge spicules Silicoflagehates Fibh remains Plant debris	TR 1 3 4 TR 1	8 1 TR - 1	3 TR TR 	111111
						5	tel erer									

~	APHIC	20		RAC	L					
TIME - ROCK	BIOSTRATIGR	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY BTRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
							0.5	۵	-	BIOGENIC SILICA, QUARTZ, and NANNOFOSSIL- BEARING CLAY, gravish olive green (5GY 3/2) with no apparent structure. Section 1.
								0		BIOGENIC SILICA, NANNOFOSSIL-BEARING CLAY, grayish olive green (5GY3/2) with no apparent structure Section 1 & 2.
Middle Pilocene		PL3-PL4	CN11				2			SMEAR SLIDE SUMMARY (%) 1, 10 2, 60 D Texture: Sand 3 - Silt 22 76 Clay 75 24 Composition: Oustr2 4 4 Mica 2 1 Heavy minerals 1 TR Clay 75 76 Glucconite 1 2 Pyrite 2 - Carbonate unspec. 3 4 Forzeniaters 1 - Cate, nanofossils 6 6 Diatoms 1 1
										Dintoms 1 1 Radiolarians 1 3 Sponge spicules 2 2 Plant debris TR 1 Other opsours 1 —

	PHIC			RAC	TER						
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
				Zone		,	0.5	0 100		•	NANNOFOSSIL and SILT-BEARING CLAY to CAL- CAREOUS, BIOGENIC SILCA, and QUARTZ SILT- BEARING CLAY, dark greenih gray ISOY 4/1 and SGY 3/21; homogeneous with rare white sorts of quartz silt clusters and rare pyvite nodules and clusters (dark grayish brown, 25.9 4/2). Sect. 3, 85-105 is 4 (2) Pyrite-rich zone with abundant fine black grain.
early Pliocene		PL1-PL2	CN11	Stichocorys peregrina Zone to Spongaster pentas		3	the state	• •			SMEAR SLIDE SUMMARY (N) 1,37 1,100 2,105 4,60 M D M D Texture: 1 100 31 100 21 Clay - 69 - 79 Composition: - - - 2 Mica - 1 - - Clay - 69 - 79 Glauconite - 1 - - Carbonaty unspec. - 69 - 79 Glauconite - 1 - - 79 Glauconite - 1 - - - Carbonaty unspec. - 6 2 - - Carbonaty unspec. - 6 2 - - Carbonaty unspec. - 6 2 - - - Carbonaty unspec. - 6 2 - -
						4		OG OP		•	Sponge spicules — 2 — 1 Plant debris — 1 — —

-	UHIC		F	OSS RAC	TER					
UNIT UNIT	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENYARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5			OUARTZ, MICA, BIOGENICSILICA-BEARING NANNO FOSSIL-RICH CLAY; dark greenish gray (5GY 4/1), structureless and homogeneous. SMEAR SLIDE SUMMARY (%) 1, 100 D Texture: Silt 35 Clay 65
						2				Composition: Quartz 8 Mica 2 Clay 63 Glausconite tr Pyrite 1 Zeolite tr Carbonate unspec. 2 Foraminifers tr Cale nanofossila 20 Diatoms tr
Early Pliocene		PL1-PL2	CN10	Spongaster pentas Zone		3	in the first set		 	Radiolarians 1 Sponge spicules 3
						4	nucleo for			
						5	to front to to			
						6	-		!	w

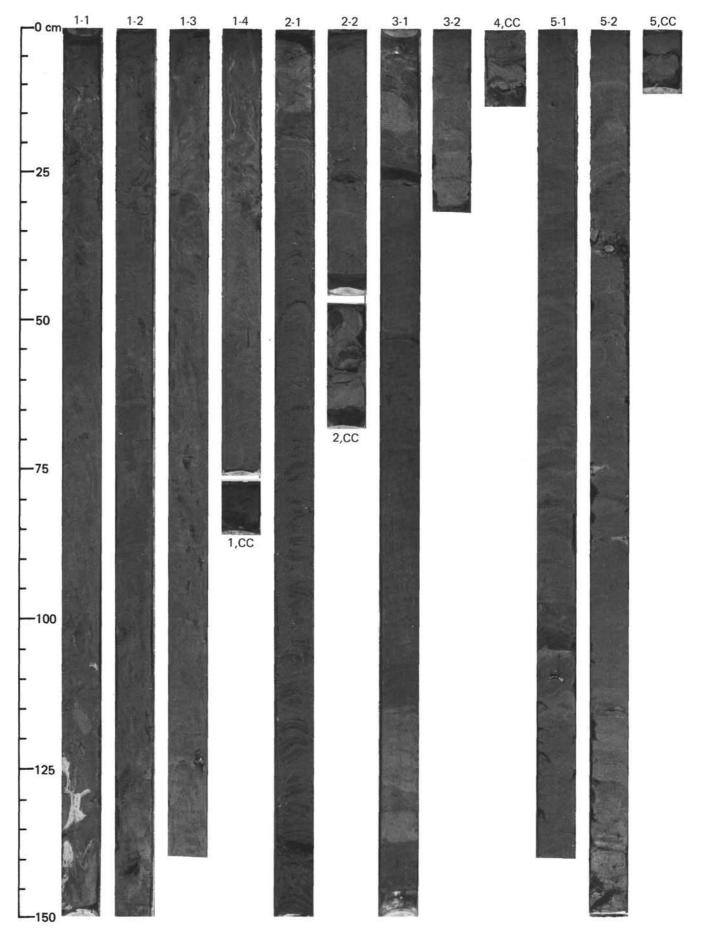
	PHIC		F	OSS	L					Π	Γ	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
							1	0.5				BIOGENIC SILICA: FORAMINIFERA, and PYRITE- BEARING, OUARTZ: and CLAYRICH NANNOFOSSIL CHALK, dark greenish gray (5GY 5/1 to 4/1), homogen- sous, no bedding, faintly mottled.
Miscene-early Pliocene		NBN18	CN9-CN10	Spongaster pentas Zone			2	area from from				SMEAR SLIDE SUMMARY (%) 3, 100 Texture: 60 Clay 40 Composition: Ouartz 15 Mica 1 Clay 25 Glayconine 3
late M				Spo			3	rectantion				Pyritat e unspec. 3 Foraminifers 3 Calc, nanofositis 40 Diatoms TR Radiolariann 2 Sponge spicules 3 Plant debris TR
яте	60-	4	HOL	E		cc	4	RE	0			7.7–227.3 m
			-	ossi	L					TT	T	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY	SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION
late Miocene		81N-6N	CN9	r pentas Zone			1 CC		Pro-		•	BIOGENIC SILICA-BEARING, NANNOFOSSIL-RICH CLAY grayish olive green (5GY3/2) with no apparent structure
				Spongaster								SMEAR SLIDE SUMMARY (%) 1, 10 D Texture: Sand 3 Sift 27 Clamposition: 70 Composition: 2 Out 1 Heavy minarais TR Clay 57 Glauconite: 2 Pyritis 1 Carbonate unspec. 2 Foraminifers TR Calc.namofosils 15 Distoms 1

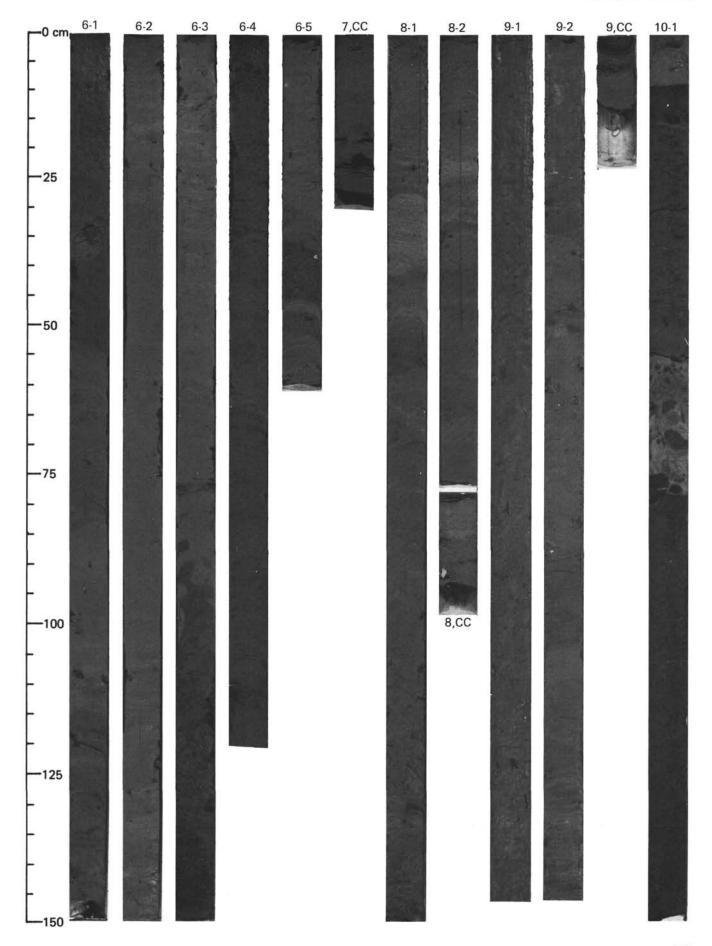
	PHIC			RAC	TER				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY SENTITING SENTITIN	LITHOLOGIC DESCRIPTION
						1	0.5		BIOGENIC SILICA-BEARING NANNOFOSSIL-RICH CLAYSTONE, dark gravih olive grave ISGY 3/2 and SGY 4/1). Intervals which are illtrich appead dark greenin grav (SG 3/1) due to abundance of greeninh black grains (CLAUCONTE): these all trich intervals are a complex biourbated and (P) current reworked mixture of gluconite- rich and clay-rich stringers and burrow fills. Moderate to heavy bioturbation throughout. Res time white, quartz- all concentrations. Section 1.8 2 wirk-split, Sections 3.8.4 saw out – imply- ing CLAY \rightarrow CLAYSTONE change in induration.
lety Miccene			CN9	corys peregrins Zone		2	and and a		SMEAR SLIDE SUMMARY (%) 1,20 1,140 2,8 2,28 3,110 D D M D Texture: Silt 45 38 34 32 42 Clay 55 62 66 68 58 Composition:
				Stichocorys		3			Quartz 5 15 10 3 18 Feldspar - 2 TR - 1 Mica - 3 3 - 4 Clay 5 62 66 68 58 Glauconite - 1 1 15 10 Pritis/Micronodulei 3 4 2 2 - Carbonate unspec. 2 2 2 - 4 Foraminfera 1 - - - - Diatoms TR - 2 TR 4 Radiolarians 3 3 2 6 1
						4	I see loose		Silicoffagellates — TR 1 — — Plant debris — 1 1 1 —

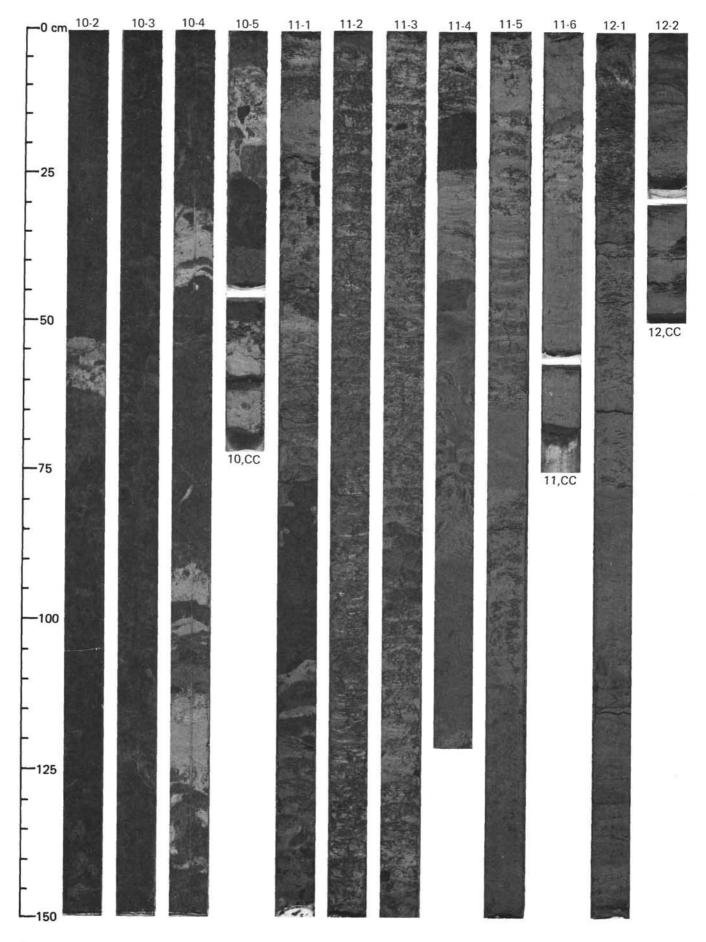
×	APHIC	3		RAC	L TER											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES		LITHOLOGIC	DESCRIPT	TION			
Late Miocene		N16-18	CN87	Stichocorys peregrina Zone		1	0.5			5GY3/2 1 2 5Y5/1 1 5Y4/1 	 BIOGENIC SILIC. gravish olive green frame doncentratif of Section 1 hast unable section 2, GLAUCONITE RI Graduitonal contain (CONGLOMERAT) (CONGLOMERAT) (CONGLOMERAT) (CONGLOMERAT) (CANARCH IN FOSSIL CHALK (CANARCH IN FOSSIL CHALK (CANARCH IN FOSSIL CHALK with quar (CLANARCH IN FOSSIL CHALK with QUARCH CANARCH IN FOSSIL CHALK with QUARCH CANARCH IN FOSSIL CHALK (CANARCH CANARCH IN FOSSIL CHALK (CANARCH) (CLANARCH IN FOSSIL CHALK (CANARCH) (CLANA	Faint lan ns of glause addition is 1 up to 1 CH to the ct at 49 on E, gray (65 e, pebbles in clay mai A & SILT), homoger cm similar is surround OGENIC (pale gr tz & glauc posed of S VE (olive b A & SILT	ninations conits sa of glauc name fro Y 5/1) co of quart. trix. Ero BEARIN nous Sect to (2) bi f a clast of SILICA eenish y onite is a luck SY	i (65-73 c nd. Rem <i>anite-rich</i> th additic om 17-49 intaining z with co sive cont G CLAY tion 2, 90 at a conc of (3). En RICH rellow, 1 mother o IOGENIO 2/1) IG CLAY	m) ainder to the on of om. clasts mimon act at STONE, h150 cm, entration vidence NANNO- OY 8/2), obble. SILICA- STONE	
						3	7	0.000.00		54	SMEAR SLIDE SUMM	1, 55	2,76	3, 57	3, 29	3, 9
						-		M		1.1	Texture:	D	D	M	D	м
		1				CC	-	0 M	1		Sand			2		5
							-		0-4 1 1	F .	Silt	35	30	83	34	5
											Clay	65	70	15	66	90
											Composition:			20	224	20
			1	1							Quartz	2	Б	Ξ.	10	5
			1								Mica	4	4	-	4	-
											Heavy minerals	1	-	10	25	175
		1	1								Clay Glauconite	63	67	15	66	1
	1	E.	1									2	1	-	1	5
		E .									Pyrite	1	4		3	
	1	1	1	1	11					1	Carbonate upspec.	-	5	40	2	90
	1	1	1		11					1	Foraminifers Calc, nannofossils	-	-	5	-	-
		1	1	1	11					1	Galo, nannofossils Diatoms	2	4	30	-	-
	E	1	1	1	1.1					1		15	5	100	в	
											Radiolarians	3	3	5	3	-
	1	1	1	1		1				1	Sponge spicules	5	1	5	2	-
	1	1	1	1	11					1	Silicoflagellates	1	-	-	1	
	1	1	1	1	1					1	Fish remains	1		-	_	-
											Plant debris		1			

1.5		OSSI							
FORAMINIFERS	-			SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
				1	0.5				CLAYEV SANDY SILTSTONE with fine pebbles of quartz; gravith olive green (50/3/2); contains glauconite- rich intervals. Between 22 and 25 cm is a layer of greenish grav (50; 6/1) NANNOFOSSIL-RICH CHALK NANNOFOSSIL CHALK, light greenish grav (50/7/1) with inregular banding in a slightly browner shade. Allochthonous block? Fragments of LIMESTONE (grav)sh green, 50/3/2 + 50/4/1) in CLAYEV SANDY SILTSTONE (dark green-
N		8					121		Ish gray, 5G Y3/1; glauconite-rich. SMEAR SLIDE SUMMARY (%) 1,20, 1,85, 1,110 D D M Texture: Sand 15 Sith 33, 95, 97 Clay 58, 5, 3 Composition: Quartz 20 Mica 8 Mica 8 Heavy minerals 2 Clay 58, 6, 3 Glauconite 5 Pyrint Cation 1, 20, - Glauconite 5 Pyrint Cation 1, 20, - Clay 1, 2
-					DRE	28 COREE		RVAL	Radiolarians 1 1 - Sponge spicules 1 1 - 8.1–265.7 m - - -
FORAMINIFERS	CH STISSOLONNAN	RADIOLARIANS	SWOLVIG	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STAUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
		Barren		1 CC	0.5	G	1××+ + -		0-5 cm CALCAREOUS OOZE, light gray (5Y 7/1) GLAUCONITE-RICH CLAYEY SILTSTONE with rare quartz pebbles (rounded) and large sand grains and rare shell fragments, dark olive gray (5Y 4/1). SMEAR SLIDE SUMMARY (%) 1, 3 M Texture: Silt 10 Clay 90 Composition: Quartz 3 Mica 2 Heavy minerals 1 Clay 10 Carbonate unspec. 80 Foraminifers 1 Radiolarians 2 Other Opaques 1
	81N6N	N9-M8	IonAutoroman Participation Par	(BN) (BN)	A HOLE COMPANY FOSSIL CHARACTER NVNNOVOV U SECLION NO NO NO NO NO NO NO NO NO				BIN-GN 10000 BIN-GN 100000 BIN-GN 10000000000 BIN-GN 1000000000000000000000000000000000000

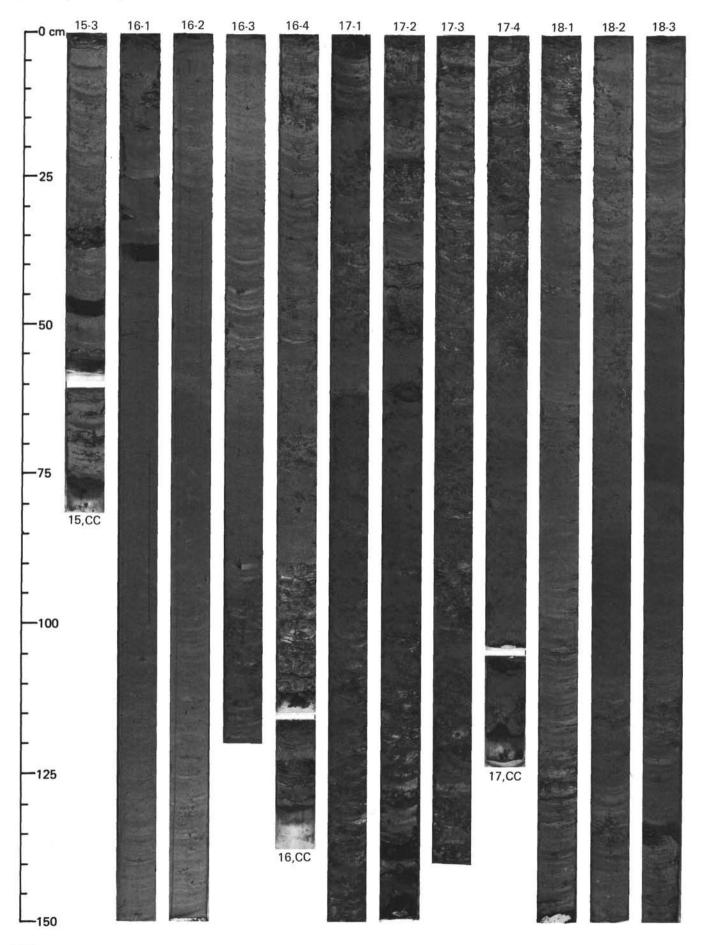
- 1	63	_		E	12	-	-		1	INT	1	- T	270.0 20	4.9 m			
	THIC	1	FO	DSSI													
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	CDESCRIP	TION	
Miocrne		N9-N18		c				0.5		~		17	5Y4/1	1) FORAMINIFEF BIOGENIC SIL gray (N7) with at base of rock	ICA- and 1 cm band	CLAY-R of light	OSSIL-BEARING, ICH CHALK, light medium gray (N6)
		2		Barren		cc	1		b	K		2		 BIOGENIC SILIC SILTY CLAYSTI fragments of plas small class (3 mm posed of CLAY 8 claystone. 	ONE, dark nt debris vis n length, 2 /	ible from nm thick	 4/1) with black 46-50 cm. One) - green, com-
														SMEAR SLIDE SUM	MARY (%)		
															1,42	1,65	1.80
														20233	M	D	M
			. 1		1									Texture: Sand			
			- 1	- 1	. 1									Silt	60	15	65
- 1			- 1	- 1	- 1									Clay	40	40	35
			- 1	- 1	1									Composition:	40	40	-30
			- 1			- 1								Quartz		16	
Т	- 1		- 1	- 1	- I	- 1								Feldspar	<u> </u>	2	
L														Mica	-	6	-
1	- 1	1	- 1	- 1	- I	1						1		Heavy minerals	÷.	3	-
T														Clay	28	40	35
1				- 1	1									Glauconite	-	2	
1	- 1		- 1											Pyrite	-	4	-
														Carbonate unspec. Foraminifers	40	5	-
1						1								Calc, nannofossils	5	28	5
T		- 1	- 1		1	- 1								Diatoms	3	3	10
		1	- 1		1	- 1								Radiolarians	6	3	30
		1												Sponge spicules	8	3	20
		1			- 1	- 1								Fish remains	-	1	20
														Plant debris	-	1	
						1								Core 31, 284.9-294.0	m: no rece	werv.	

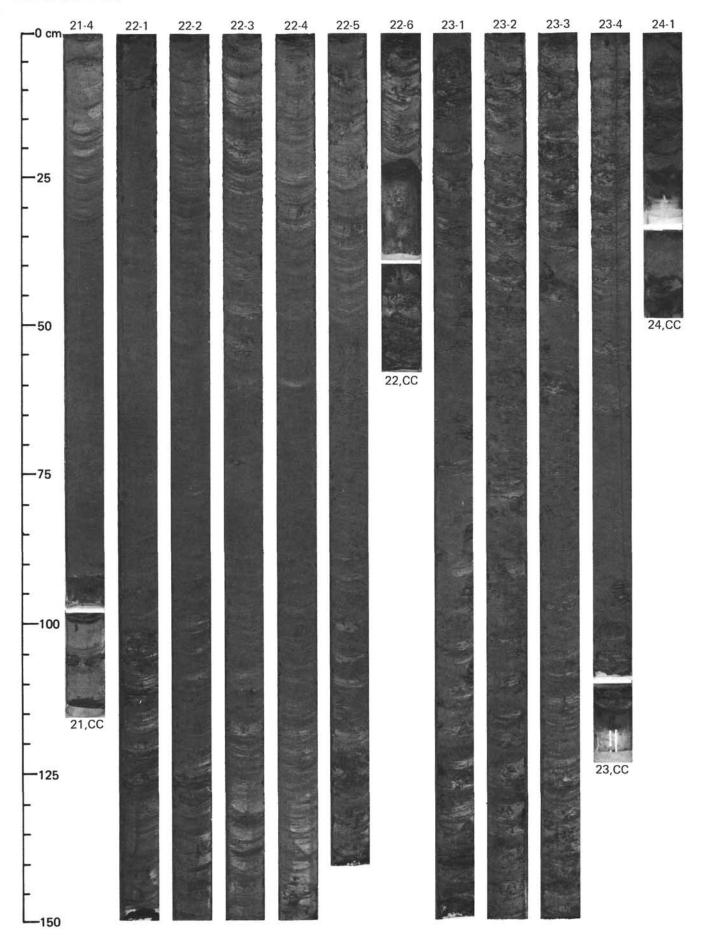

IGRAPHIC		FOS	SIL																×	VINON			FOSS	IL CTER											
BIOSTRATIGR	E 5	RADIOLARIANS	DIATOMS	and the second second	SECTION	METERS	G LIT	APHIC	Y	DISTURBANCE	STRUCTURES SAMPLES			LITHO	DLOGIC D	ESCRIPTIO	N		TIME ~ ROCK	- 9	ZONE	PORAMINIFERS MANNOFOSSILS		DIATOMS	SECTION	METERS		GRAPH	HIC OGY	DISTURBANCE SISTURBANCE EDIMENTARY TRUCTURES	AMPLES	LI	HOLOGI	CDESCRI	PTION
	N23 F	2 2			1	51111111111		Void			65 45		Soup most Soup Rest (5GY	15 cm, y CLAY, of core (4/1), stif	gray (N5) is SILTY f	DARSE SAN In Section 1 CLAYSTON Y 4/1), stiff.	, 15—138 cr IE, dark gre	m.		ā	5 4	2 2	R.	ō								BIOGENIC UNSPECI QUARTZ- dark green SMEAR S Texture: Sand	TED CAP RICH CL sh gray {I	RBONATE- AYSTONE, 5GY 4/1). MMARY (% 1,5 D 10	BEARING,
	21N	anna Tana			3	and the house of the set														SUR.			entas Zone									Silt Clay Compositi Duartz Feidspar Mica Heavy Min Clay Glauconitt Pyrite Carbonate Calc. nann Diatoms Radiolaria Sponge spi	erals unspec. ofossils	20 70 2 7R 72 3 2 5 7R 7R 7R 3 1	
	LUN	Consistent of	art us scalinario		4	ter here i here														Mioc		CNB	Soongaster p				_								

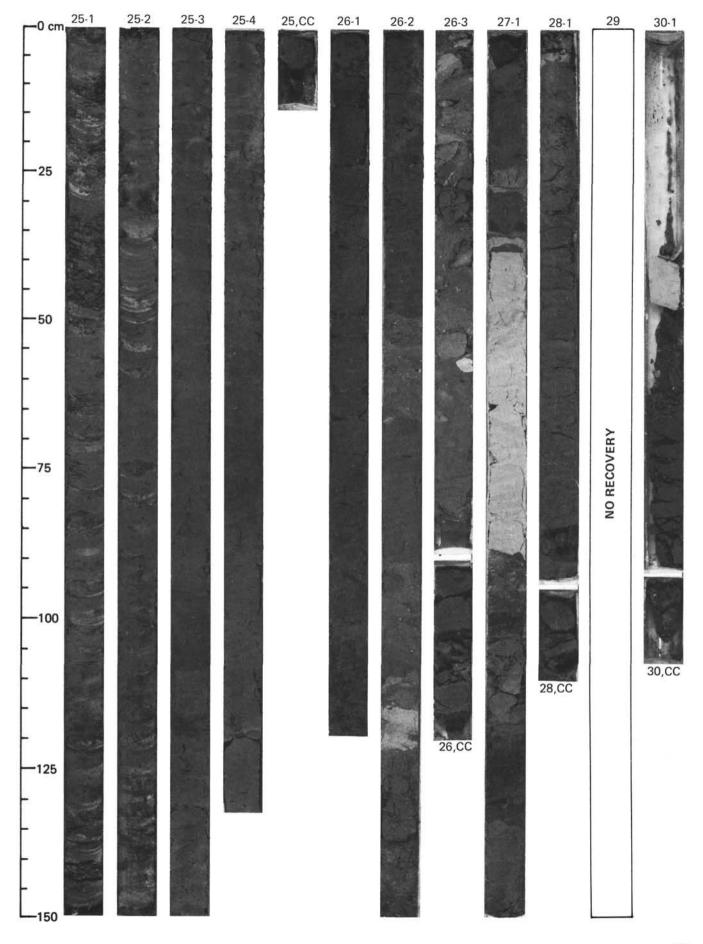

×	APHIC			RAC	TER									
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRIPTION	SAMPLES	LITHOLOGIC DI	ESCRIPT	ION	
				2		1	0.5	-0	/ \ /	* •	Several layers of silicifier and pebbly mud (quartz BIOGENIC SILICA- and FOSSIL CHALK, light g	pebbles i	INIFE	I cm) ERA-RICH NANNO-
late Miocene		N17	CNB	Stichocorys peregrine Zone?		Î	1.0	@	$\langle \rangle$		PYRITE-BEARING, G QUART2-RICH CLAY greenish gray (5GY 4/1 ments (up to 5 mm).	LAUCON (glauc	NITE-,	NANNOFOSSIL-, mudstone), dark
2				A							SMEAR SLIDE SUMMA	RY (%):		
		1	- 1	20		2		0	1/1		1.		1,5	1,14
		1	- 1	40			CC				()	м	M
				11		-				-	Texture:			
		1	- 1							- 1	Sand -		-	-
		_ 1								- 1			90	50
											Composition:	5	10	50
		- 1	- 1							- 1		5	-	2
			1										-	-
		_ 1	_ 1							- 1			1	-
		- 1	- 1							- 1			10	TR
		11	- 1							- 1			TR	+
		- 1	- 1	_						- 1			-	- AL
			- 1	_						- I		3	90	23
		- 1	- 1	- 1						- 1		1	-	10
		1	- 1							- I		0	-	50
		- I		- 1						- 1	Diatoms -		-	5
		- 1								- 1	Radiolarians -		-	4
		- 1	- 1							- 1	Sponge spicules 1	i S	-	6
		- 1	- 1								Plant debris T	'R .	-	
	I	- I									Other Opal cement, -	2 3	TR	-

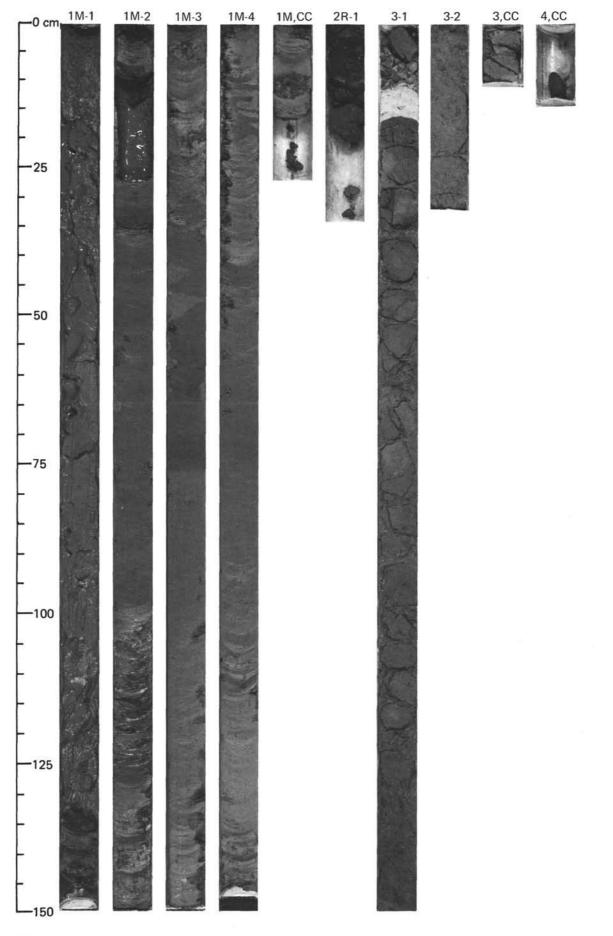

	APHIC			RAC	TER						
TIME - ROCK UNIT	BIOSTRATIGR/ ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Miocene		V7N17	CN8			1		<u></u>	3		One fragment (5 cm in diameter) of dark gray (5Y 4/1) OUARTZOSE, GLAUCONITIC SANDY MUDSTONE (with fish debria).

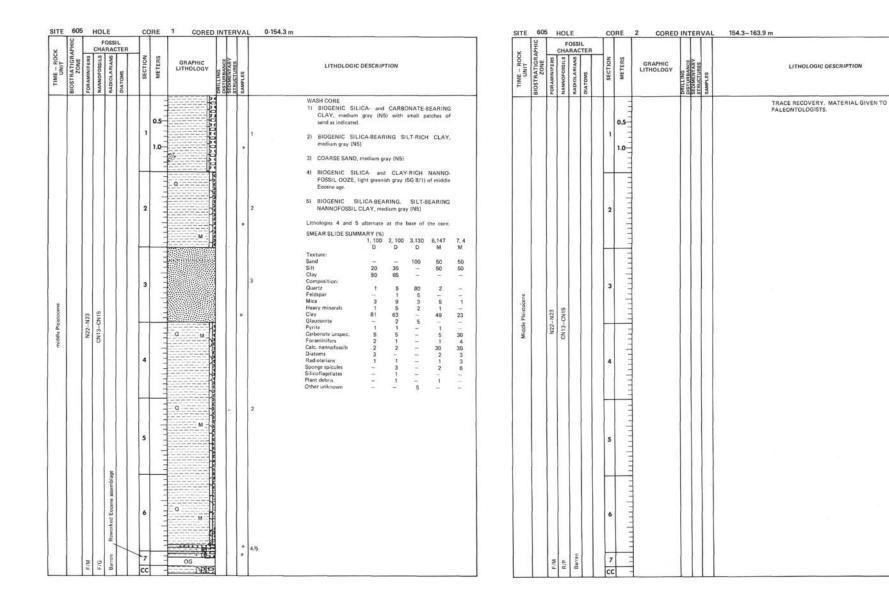
.....


SITE 604






	13-1	13-2	13-3	13-4	14-1	14-2	14-3	14-4	14-5	14-6	15-1	15-2
F									The second			
-									1 1 4	THE KAY		
F												
-												
-25										Sport.		
F							and a set		AT 2			
-									No. Yes			
-										14		
-				济 管						14,CC		
-50			e Arreit Casailte HEast						0			
-												
-									10020		125	
F												
-												
-75												
-												
-							1					
-	1		1									
-												
-100		6-1 ⁻¹ -1										
-												
-						1888 1888						
- 1												1 Alexandre
-				13,CC					A second			
-125						2014	and the second sec		Arres			
-			AL. T				20					
-	1.20							194 M	2015 1997 2017		-	
								A				
						Bar			編藝			- Pan
L-150							-		To PORT			e



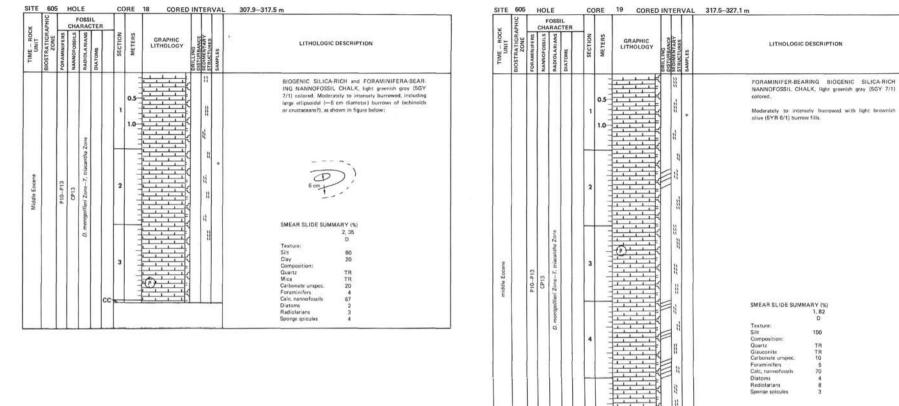
-0 cm 1	8-4	18,CC	19-1	19-2	19-3	19-4	19-5	20-1	20-2	21-1	21-2	21-3
-								-		8		
_												E.
_		Care -										E MARCE
_												
-25						200						
1												
							Same -		10			
					24.5							
							Contraction of the second					
-50												
	1922											
							The second					1
-75									-			
										and the		
						1					1	
						- Harris			-23	1		
								5.6				
				- Contract			19,CC			-		
				1.1				1		1	all the second sec	
								-		- C		
									1			
											INCE	
-125												
										(and		
									1.00		M)	
			-						20,CC			
					18 Sa	and a						
-150			1994 A. S. C. L.									

	PHIC			OSSI	TER													
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	TION		
Middle Pleistocene		N22-N23	CN13CN15	Barren		cc	2	0.5	0 0 0				1 2 5Y 4/1 3 5G 5/1 5G 5/1 5G 5/1 N4 3 5GY 4/1 3	Medium gray QUB ING CLAY with fin QLACCONTE: QUARTZ AND QLAY (fine surgy to QUARTZ AND QLAY (fine surgy to ing quartz, heavy min Micorens nanofossili. 3) CARBONATE-BEA ING CLAY, with s tragments. Light c to Section 2, 80 colored to Section SMEAR SLIDE SUM Texture: Sand Sand Sand Composition: Quartz Publication: Quartz Publication: Quarts Publication: Quarts Publication: Quarts Publication: Quarts Publication: Quarts Publication: Quarts Publication: Quarts Publication: Quarts Publication: Cartoonate unspect. Porsmolifers Commonities Commonitie	and NA SKELETA iity CLAY) curs at Sec nerals, and RING, OU cattered py grayish gree cm. Below 3, 88 cm. 1	ty bands NNOFO L CAR tion 1, rework VARTZ-F rite nod en (5G this is	SSIL-BE BONATI 60 cm, t ed Eoce RICH to ules and 5/1, 50 dark gra	ARING E-RICH contain- ne and BEAR- mollusc iY 4/1) w (N4)
							L							Calc. nannofossils		5	tr	
SITE Š	1000	-		OSS	IL	1		RE	4 CORED		ERV	/A	173.5–18					
TIME - ROCK	BIOSTRATIGRAPHIC 9	-	F	oss		3	SECTION	WETERS	GRAPHIC LITHOLOGY	DISTURBANCE		SAMPLES >	173.5–18		DESCRIP	TION		
		-	CHA	OSS	CTER	R			GRAPHIC LITHOLOGY				173.5-18	33.1 m	OUARTZ in places fa pots of quar	SILT-F intfy bar		
		-	CHA	OSS	CTER	3	SECTION	WETERS	GRAPHIC LITHOLOGY				. 173.5–18	CARBONATE- and gray (N4), motiled, fragments scattered. White to light gray sp	QUARTZ in places fa	SILT-F intfy bar		
Pleistocene TIME – ROCK UNIT		FORAMINIFERS	NANNOFOSSILS 2	OSS	CTER	2	L SECTION	WETERS	GRAPHIC LITHOLOGY			SAMPLES	. 173,5-18	CARBONATE: and gray (N4), motiled, fragments scattered. White to light gray s2 SMEAR SLIDE SUM Texture: Silt Clay Composition: Quartz Mica Heavy minerals Clay Glauconite Pyrite	OUARTZ in places fa pots of quar IMARY (%) 2,66 D 33 67 12 9 3 67 tr 3	SILT-F intfy bar		

	Ŧ		F	oss	L			5 CORED	INTE			
UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	TER SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
		20ne				,	0.5-					CALCAREOUS and SILT-RICH CLAY, Section 1, 0-125 cm is dark greenish grey (50/4/11), Saction 1, 125 cm- bare is grav (144, 50Y 3.5/11, Homogeneous with rare white specks and with silt clusters or lenses. The silt concentra- tions are enriched in heavy minerals and are possibly the remnants silt layers which have been washed away during drilling.
 Pleistocene 		Globorotalia inflata Zone	CN13-CN15						+			SMEAR SLIDE SUMMARY (%) 1,40 2,40 3,40 2,144 D D M Texture:
Middle		Globarot	CN			2						Silt 25 40 44 90 Clay 65 60 58 10 Composition: Quartz 8 10 10 30 Feddoar 2 4 3 9
									1			Feldspar 2 4 3 9 Mica 5 4 5 10 Heavy minerals 3 4 5 20 Clay 65 60 56 20 Giauconite 3
		R/M		Barren		3	1.1.1	- 0	4-			Pyrite 1 – 1 3 Carbonate unspec. 15 15 20 5 Foraminifers 1 – TR Calc. nanotossils – 2 – TR
_				_		-				-	-	Plant debris - 1
ITE	605 L		HOL	E OSSI	L		ORE	6 CORED	INTE	RV	/A1	192.7–202.3 m
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	TER SWOLVID	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	BTRUCTURES	SAMP1.ES	LITHOLOGIC DESCRIPTION
		-	-									
						,	0.5	M			* *	 CALCAREOUS & SILT-RICH CLAY, medium gray (N4) in homogenosis, no apparent structure Minor timbiogies in lower Section 4 and Core Catcher: 2) GLAUCONTE BEARING, PRITE-RICH, CALCAREOUS RICH CLAY, is a transition zone from gray (N4) to a gravish olive grain (SGY 3/2) in color (Sect. 4, 121-125 cm).
		V22				1	0.5	Void				(NAI) homogenous, no apparent structure Micro: Tichologie in lover Section 4 and Core Catcher: 2) GLAUCONITE BEARING, PYRITE-RICH, CALCAREOUS-RICH CLAY, is a transition zone from gar (NAI) to a grayish love graen (SOY 3/2) in
		N22						Void				 (N4), homogenour, no apparent structure Minor lincholgie in lower Section 4 and Core Catcher: 2) GLAUCONITE BEARING, PYRTE-RICH, CALCAREOUS-RICH (CLAY, 1a transition zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm). 3) BIOGENIC SILICA BEARING, CALCAREOUS RICH CLAY, grayish olive green (5GY 3/2) 1725-144 cm, Sec. 4), From 149 on up to 144 cm three appears to be a "Timing unward" at in a gluconite sand decrease. 4) CLAYEY BIOGENIC SILICA OOZE, grayish green (10G 4/2), Sharp contact above and below. This may be a disolution facies from the underlying chails.
aue.		N22				1		Void				 (N4), homogenour, no apparent structure Minor linhologies in lower Section A and Core Catcher: 2) GLAUCONITE BEARING, FYRITE-RICH, CALCAREOUS-RICH CLAV, is a transition zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm). 3) BIOGENIC SILICA-BEARING, CALCAREOUS RICH CLAY, grayish olive green (5GY 3/2) (725-144 cm, Sec. 4), From 149 cm up to 144 cm three spears to be a "fining upward" at in a glauconite and decrease. 4) CLAYEY BIOGENIC SILICA OOZE, grayish green (10G 4/2), Sharp contact above and below. This may be a dissolution facies from the underlying chaik, Between Sect. 4 and C.C. 5) CLAY & BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light green gray (5GY 7/1) in C.C.
wer Pleistocerre		N22						Void Void Void Void				 (N4), homogenour, no apparent structure Minor tinhologies in lower Section A and Core Catcher: 2) GLAUCONITE BEARING, PYRITE-RICH, CALCAREOUS-RICH CLAV, is a transition zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm). 3) BIOGENIC SILICA SEARING, CALCAREOUS RICH CLAY, gravish olive green (5GY 3/2) (725-144 cm, Sec. 4), From 149 cm upt ol 44 cm three spears to be a "fining upward" at in a glauconite and decrease. 4) CLAYEY BIOGENIC SILICA OOZE, grayish green (10G 4/2), Sharp contact above and blow, This may be a dissolution facies from the underlying chalk. Between Sect. 4 and C.C. 5) CLAY & BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light green gray (5GY 7/1) in C.C. No apparent structures in the above fithologies.
Iower Plaistocane		N22						Void				 (N4), homogenout, no appannt structure Minor Einblogie in lower Section 4 and Core Catcher: 2) GLAUCONITE BEARING, FYRITE-RICH, CALCAREOUS-RICH CLAY, is a transition zone from gray (N4) to a grayish olive green (50Y 3/2) in color (Sect. 4, 121-125 cm.). 3) BIOGENIC SILICA-BEARING, CALCAREOUS RICH CLAY, grayish olive green (50Y 3/2) 1/25-144 cm. Sec. 4), From 149 cm up to 14 cm three appears to be a "Timing upward" as in a glauconite and decrease. 4) CLAY'S BIOGENIC SILICA-RICH ADDES grayidh green (10G 4/2), Share contrast above and below. This may be a disclution facies from the underlying chalk. Between Sect. 4 and C.C. 5) CLAY'S BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light green gray (507 3/1) in C.C. No apparent structures in the above fitbologies. SMEAR SLIDE SUMMARY (5) 1, 95 1, 80 4, 125 4, 135 4, 149 CC, 5 D M M M D Texture: Sand _ 5
Iower Plaistocane		N22 N22				2		Void				 (N4), homogenous, no apparent structure Minor Einholge in lower Section 4 and Core Eatcher: 2) GLAUCONITE BEARING, FYRITE-RICH, CALCAREOUS-RICH CLAY, is a transition zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-12E cm.). 3) BIOGENIC SILICA BEARING, CALCAREOUS RICH CLAY, grayish olive green (5GY 3/2) (125-144 cm.) Sec. 4), From 149 cm up to 14 cm three appents to be a "Timing upward" as in a glauconite and decrease. 4) CLAY'S BIOGENIC SILICA ODZE, grayidh green (106 4/2), Sharp contact above and below. This may be a dissolution factor from the underlying chalk. Between Sec. 4 and C.C. 5) CLAY'S BIOGENIC SILICA-RICH NANNOFOGSIL CHALK, light green gray (SQY 7/1) in C.C. No apparent structures in the above fithologies. SMEAR SLIDE SUMMARY (%) 1, 95 1, 80 4, 125 4, 135 4, 149 CC; 5 D M M M D Texture: Sand <u>5</u> 5 - 5 - 5 Siti 39 00 45 46 50 82 Clay 61 70 50 55 50 118 Composition: Quartz 4 5 4 2 1 -
Epcene lower						3	1.0-	Void				 (NA), homogenout, no apparent structure Minor Einblogie in lower Section 4 and Core Catcher: 2) GLAUCONITE BEARING, FYRITE-RICH, CALCAREOUS-RICH CLAY, is a transition zone from gray (NA) to a grayish olive graen (5GY 3/2) in color (Sect. 4, 121-125 cm.). 3) BIOGENIC SILICA BEARING, CALCAREOUS RICH CLAY, grayish olive green (5GY 3/2) 175-144 cm, Sec. 4), From 149 cm up to 14 cm three sports to be a "fining upward" as in a glaconite and decrease. 4) CLAYY BIOGENIC SILICA OOZE, grayish green (10G 4/2). Sharp contact above and below. This may be a disolution facies from the underlying chaik. Between Sect. 4 and C.C. 5) CLAY & BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light green gray (SGY 7/1) in C.C. No apparent structures in the above fitbologie. SMEAR SLIDE SUMMARY (%) 1, 95 1, 80 4, 125 4, 135 4, 149 CC, 5 Composition: 5 and - 5 5 m 30 30 45 45 50 82 Composition: 6 1 70 50 55 50 18 Composition: 9 1 1 - 1 1 - 1 - Mica 12 10 1 2 Heavy mingray 3 2 Clay 61 68 50 54 45 18 Glaconite - 5 5 1 -
lower			CP13h			2	1.0-	Void				 (N4), homogenout, no apparent structure Minor Einblogie in lower Section 4 and Core Catcher: 2) GLAUCONITE BEARING, FYRITE-RICH, CALCAREOUS-RICH CLAY, is a transition zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm, at zmailion zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm, at zmailion zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm, at zmailion zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm, at zmailion zone from gray (N4) to a grayish olive green (5GY 3/2) in color (Sect. 4, 121-125 cm, at zmailion zone be a disoution facies from the underlying chalk. CLAY'S (BIOGENIC SILICA-RICH NANNOFOSSIL CHAILX, light green gray (SGY 7/1) in CC, 5 CHAY & BIOGENIC SILICA-RICH NANNOFOSSIL CHAILX, light green gray (SGY 7/1) in CC, 5 SMEAR SLIDE SUMMARY (%) 1, 95 1, 80 4, 125 4, 135 4, 149 CC, 5 SMEAR SLIDE SUMMARY (%) 1, 95 1, 80 4, 125 4, 135 4, 140 CC, 5 SMEAR SLIDE SUMMARY (%) 1 and a 5 Sitt 30 30 45 45 50 E2 Composition (1 70 50 55 50 18) Comparitor 1 1 - 1 - Fidaper 1 1 - 1 - Heavy minergial 32 Heavy minergial 32 Clay 61 68 50 54 45 18 Glasconite 5 5 1 -

SITE 605

	HIC		1	oss	IL	T	1	7 CORED	T	Т		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	-	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	RUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	8	×.	Z	æ	٥	1	0.5			ľ	*	BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light greeniah gray (BGY 7/1), Moderate bionumbation; burrows commonly filled by light brownina gray (BY 7/1) (contains slightly more clav) and rarely by dark gray (M4) PMITE-BEARING BIOGENIC SILICA-RICH NANNOFOSSIL CHALK; burrow types haw wride range from <i>Chendritter</i> to 10 cm long, 1 1/2 cm wide, vertical burrows. Sect. 1, 94-97 cm – dark gray soft clay with class of dark greenish gray (BY 4/1) cabonate-ich CLAYSTONE. Downhole contamination?
						2						SMEAR SLIDE SUMMARY (%) 1,1 1,1 1,96 4,82 D M M M Texture:
				*			1 to take 1					Sitt 93 94 20 90 Clay 7 6 80 10 Composition: - - 4 - Quartz - - 4 - Feldspar - - 2 - Clay 7 6 80 10
				Thyraocyrtis triacantha Zone		3	and and an					Pyrits 1 8 50 10 Carbonate unspec. 35 36 12 3 Foraminifien — TR — TR Calc. namofossils 45 35 1 70 Diatoms 3 4 - 3 Radiolarians 4 4 1 8 Sponge spicules 5 7 - 6
Middle Eocene		E14-114	CP13	Dictyoorora montpolitieri Zone-Th		4	the family for the second s				-	
				Die		5	and the data to the					
						6	1					
						7	-			l		


ITE	605		HO			co	DRE	8 COREC	INTER	TAL	211.9-221.5 m
×	APHIC		CH/	RAC	TER		12				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARV	SAMPLES	LITHOLOGIC DESCRIPTION
Middle Eocene		P12-P13	CP13	D. montgolfieri to T. triacantha Zone				<u>.</u>			BIOGENIC SLICA-RICH NANNOFOSSIL CHALK, light prevails grav (SGY 7/1). Moderate bioturbation: burrows commonly filled by light browning pay (SY 7/1) contains slightly more lay) and rarely by dark grav (N4) pyrite-bearing Si-rich Nannofossil Chalt: borrow types have wide range from <i>Chendrites</i> to 5 mm length and 3 mm in thickness.
SITE	608 알	;	HO	oss	IL	cc	DRE	9 COREL			221.5-231.1 m
OCK	ERAPH	12		1	TER	N	\$	- and a second			
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARV	SAMPLES	LITHOLOGIC DESCRIPTION
Middle Epcene		P12-P13	CP13	D. montgolfferi Zone-T. triacantha Zone		1	0.5			•	BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, john greenih gay (5GY 7/1); moderate biotubation with burrows commonly filled by light brownish gay (5Y 7/1–5Y 6/1). Rure privite clusters. Some burrows have gray (pyrite-rish?) halo or border. SMEAR SLIDE SUMMARY (%) 1, 100 D Texture: Silt DE Clay 4 Composition: Clay 4 Composition: Clay 4 Carbonate unipec, 10 Foraminifers 1 Calc, nannofossits 73 Diatoms 2 Radiolarians 5 Sponge: picules 4 Silicoffageliates 1
						4					W.

ITE 605 HOLE CORE 10 CORED INTERVAL	231.1-240.7 m		240.7-250.3 m
	LITHOLOGIC DESCRIPTION	Samuel Service	LITHOLOGIC DESCRIPTION
Models Eccent	BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light greenish grav (ISV 7/1)- SV 6/11. Wide variety of burrows. Section 3, 128–128 cm: Some burrows are infilied by gravib green (ISG 5/2). Biogenic alidearich chavey namo- fosiil CHALK. Rare tiny pyrite nodules throughout. SMEAR SLIDE SUMMARY (IS) 3.128 4, 100 Texture: M D Texture: 64 94 Clay 36 6 Composition 1 4 Radiolarians 6 6 Sponge spicules 5 2 Silicoffagellates 1 –	Modelle Econe Modelle	BIOGENIC SILICA NANNOFOSSIL CHALK, light green ish gay (GSY 7/1), with moderate biotrubation throughout the core, Burrows and filled by high brownink gray (SY 7/1) with a higher clay contant. In Section 3, 250 pm ond Section 4, the burrows are more horizontal and there is a faint laminated appearance. In Section 5, at 52 cm is a lens of pyrite. SMEAR SLIDE SUMMARY (%) 2, 100 Texture: Sit B0 Clay 9 Pyrite 1 Carbonate unspec. 28 Forcaminters 2 Calc. nanoofossits 30 Diatoma 20 Radiolarian 5 Sponge spicules 5

SITE 605 HOLE	CORE 12 CORED INTERVAL	250.3-259.9 m	SITE 605 HOLE	CORE 13 CORED INTERVAL	259.9–269.5 m
KING AND A CONTRACTOR A	GRAPHIC GRAPHIC GRAPHIC CULUER GRAPHIC CULUER CULUE	LITHOLOGIC DESCRIPTION	TIME – ROCK BIOSTRATICE APHIC SONG RATICE APHIC FORMATICE APHIC FORMATICE APHIC	R R R R R R R R R R R R R R R R R R R	LITHOLOGIC DESCRIPTION
Middle Econe P12–P13 CP13 CP13 Dictyoprea montpoliteri Zone-Thysocyriti blicenthe Zone	1 10	BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light grennih gray (50 7/1), Sections 2 and 5 set sliphtly diake shake. Moderate bioturbation; burrows commonly filled by light brownih gray (57 7/1–57 6/1), several types including nome bearows. Sect. 1, 17 cm – horizon of black pyritherich material con- taining well-preserved pyritized radiositian & diatoms. SMEAR SLIDE SUMMARY (%) 1,17 4,100 Texture: 5,17 100 92 Clay – 8 Composition: 7 2 Clay – 7 8 Pyritie outpet: 7 - Controninifiers – 25 Cate, name outpet: 7 - 2 Cate, name outpet: 7 - 8 Sponge spicules – 1	Middle Econe P10-P13 CP13		BIOGENIC SILICA-RICH NANNOPOSSIL CHALK, light greenish grav (SY 7/1), with moderate bioturbation. Brorow fills light torownish to light olive grav (SYR 6/1 to SY 6/1). Burrows are monoty Plano/ites-type, parity with horizontal spreiten burrows. Settered pyrite nodules and zones occar where pyritized radiolariant are common (burrow fills). SMEAR SLIDE SUMMARY (%) 1.81 D Texture: 0.121 D Texture: 0.121 D Texture:

SITE 605	-		c	DRE	14 CORED I	NTERV	AL 269.5-279.1 m			5 но	_		cor	RE	15	CORED	INTER	RVAL 279.1-288.7 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	CH	FOSSIL ARACTES SNUTANOTAL	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	ARAC SNVIJETOIDE	L TER SWOTPIG	SECTION	METERS	GR/ LITH	APHIC OLOGY	DRILLING DISTURBANCE SEDIMENTARY SERUCTURES	LITHOLOGIC DESCRIPTION
Middle Eccent	514-014	3 7. trikeantha Zone	3	internet error of the			BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, tight greenish grav, (GY 7/1) color, with (ght brownish olive (GYA 401) and (ght olive grav, GY 671), pain olive (GY 5/3), and pale olive (GY 6/3) burrow fulls. A great variety of trace tossil, (impossible to describe properly here) occur in this core. Gree is moderately burrowed. Infinitodal burrows have diameter <1 mm (fuccids) to >10 mm (<i>flavolitex</i>) pape). In some case continuous enrichek layers of darker (GY 5–6/3) material with hurrows of light greenish gray material occur. Pyrite nodules are present. Site 100 95 Clay 5 to 7 Composition: to 7 Cate, namofosila 65 70 Diatoms 2 5 Ratiolarians 6 5 Sponge spicules 7 5	Middle Econne		P10-P13 CP13	T, triacantha Zone		1 2 3 4 5 6 7					BIOGENIC SILICA RICH NANNOFOSSIL CHALK, light greenish gay (5CY 7/1), Moderately to leavily bioturbated, with light browning of the (11) burcows, meetly horizontal <i>Panol/ner</i> -type. Several vertical and horizontal large burcow up to 1 cm in diameter with "ipreiten" structure fee figure):

SITE 605 HOLE CORE 16 CORED INTERV	AL 288.7-298.3 m	SITE 605 HOLE CORE 17 CORED INTERVAL	298.3–307.9 m
LINE - ROCK LINE - ROCK CHANNING CHANNER CHANNING COST - ROCK AMMON OF COST - ROCK CHANNING COST - ROCK	LITHOLOGIC DESCRIPTION		LITHOLOGIC DESCRIPTION
Modile Goene Time: Modile Goene Children Eceneral	LITHOLOGIC DESCRIPTION FORAMINIFERA-BEARING, BIOGENIC SILICA-BEAR- ING to -RICH, NANNOFOSSIL CHALK, light greenish gay (BGY 77), headily to moderately boundsed (mostly horizontal <i>Planolites</i> type + "spreiten"-structure burrow. Scattered purite burrow fills. SMEAR SLIDE SUMMARY (%) 1,80 6,85 D 0 Texture: D 0 Sit 100 60 Clay - tr, Glauconite - tr, Glauconite - tr, Glauconite - tr, Glauconite - 20 Foraminifera - 20 Foraminifera - 20 Foraminifera - 20 Sponge spicules - 4	Module Economic Multiple	LITHOLOGIC DESCRIPTION FORAMINIFERA BEARING BIOGENIC SILICA RICH NANNOFOSSIL CHALK. light greenish gray (5GY 7/1) colered. Moderately bioturbated with light olive brownish (5YR 8/1) burnors, as in previous cores, and scattered pyrite nodules. SMEAR SLIDE SUMMARY (%) 4, 59 Texture: Difference Clay 10 Composition: Quartz TR Mica TR Clay TR Mica TR Clay TR Clay TR Carbonate unspec. 10 Foraminifern 3 Cale, namofosulis 75 Diatom 5 Radiolarianis 3 Sponge spicules 3

. . . .

Ŧ

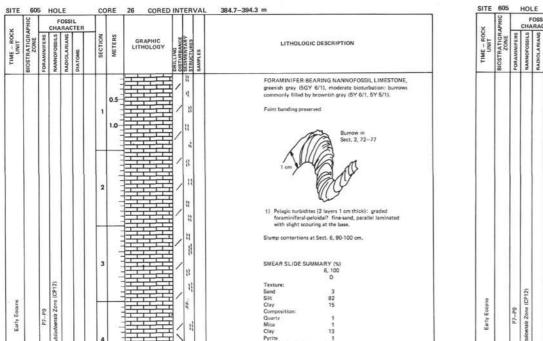
IW.

354

 (\mathbf{x})

PHIC				RAC	TER						
TIME - ROCK UNIT BIOSTRATIGRAP	ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
middle Externe		P10-P13	CP13	D. montpolfieri Zone-T. triacuntity Zone		3					BIOGENIC SILICA-RICH NANNOFOSSIL CHALK' light greenish grav (5GY 7/1) colored, heavily to moderately biotrasted. SMEAR SLIDE SUMMARY (%) 2, 64 D Texture: Silt 100 Mica tr. Carbonete unspec. 10 Catc. nannofossils 73 Diatoms 5 Radiolarians 8 Sponge picules 4 Fish remains tr.

	HIC			OSS	L		Τ				
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	COTION			APHIC	DRILLING DISTURBANCE SEDIMENTARY STRUCTURGS SAMPLES	LITHOLOGIC DESCRIPTION
							1	<u>1111111111111111111111111111111111111</u>		,	BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, light greenish grav (5GY 7/1), heavily to moderately biotur- bated. Burrow fills are light brownish gray (5Y 7/1) and rarely dark grav (N4) pyrite/bearing, silica-rich anno- fossil chalk. A rhyolitic ash layer with transparent clear glass shards, bubble-wall shards (from Bernuda volcanian?) dark gray, semiconsolidated, rest (not altared) about 2–3 cm thick, occurs in Section 2 at 146 cm.
				a Zone			2	7-17-17-17-17-17-17-17-17-1		<u>, , , , , , , , , , , , , , , , , , , </u>	
middle Eocene		P10-P13	CP13	montgol/lieri Zone-T. triacantha			3			רוו אלוו אלוו אלוו אלוו אל מיייי מיייי אלוו אלווי אייי איי	SMEAR SLIDE SUMMARY (%) 2, 146 6,6 M D Texture: Sand 75 - Silt 25 93 Clay - 7 Composition: Quartz 3 - Mica 3 -
				D.			•			∠ ш भर ш भर ш भर щ ≈ == == == == ==	Clay – 7 Volcanic glass 89 – Pyrite 5 – Carbonate unspec. – 20 Foraminifers – tr, Calc. namofossils – 53 Diatoms – 5 Radiolarians – 10 Sponge spicules – 5
						-				T X, II X,	
							3				



SITE 605 HOLE	CORE 22R CORED INTERVAL	346.3-355.9 m	SITE	505 H	OLE	COR	E 23 CORED INTER	VAL 355.9-365.5 m
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS NANNOFOSSILS RADIOLATIANS DAATONS		LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE FORAMINIFERS	HARNOLOSSIL HARACTE HARDOLARIANS		GRAPHIC GRAPHIC LITHOLOGY PUILING DAVENING SHAPHIC PUILING SHAPHIC SHA	LITHOLOGIC DESCRIPTION
Early Econne P10-P13 CP12 Berren		BIOGENIC SILICA-RICH NANNOFOSSIL CHALK, lipht green grav (5GV 7/1) BIOGENIC SILICABEARING NANNOFOSSIL CHALK by Section 3, 50 cm. NANNOFOSSIL LIMESTONE, lipht green grav (5GV 7/1) occurs from 50-111 cm, Section 3 with no siliceous organism. CLAY-RICH NANNOFOSSIL CHALK, green grav (5GY 67) begins blow 111 cm in Section 3 and continues throughout the remainder of the core is heavily to moderately biourband. Burrow fills are light brownish grav (5Y 7/1) and rately dark grav (N41 pyrite-berring, silice-tich nano- tossil dhak. SMEAR SLIDE SUMMARY (%) 1,10 2,71 3,111 3,121 1,10 1,10 1,00 100 100 Composition: Mica — — — TR Clay — — — — TR Clay — — — — TR Clay — — — TR TR TR Clay — — — TR TR TR Clay — — — TR TR TR Sponge spicules 3 4 — —	Early Ecotore		C012 Berren	1		SMEAR SLIDE SUMMARY (%) 1,100 3,100 5,100 D D D D Sit 80 65 90 Composition: 0 1 1 Durtz TR - - Mica 1 1 2 Prite 1 1 2 Carbonate umpec, 40 38 44 Columonifiers 3 8 45 Data mate umpec, 40 38 44 Carbonate umpec, 1 2 2 Print 1 2 2 Plant debris TR - -

	HIC		FO	SSIL		T	DRE	24 CORED	Π	T	365.5-375,1 m		SITE			FOL	SSI		T
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE			RADIOLARIANS	Т	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	CHA	SAC	DIATOMS 2	SECTION
						1	0.5		2	-	NANNOFOSSIL LIMESTONE TO CHAL (5GY 6/7-5GY 5.5/1); moderate to he burrows commonly filled by brownish 5Y 6/1). Rare pyrite nodules, Microfaults in Sect. 3, 115-125 cm and Sec Sect. 4, 70-90 cm is slightly laminated with horizon.	avy bioturbation, gray (5Y 5/1 ct. 4, 90-100 cm.							,
						2			11 11 41 11 11		SMEAR SLIDE SUMMARY (%) 1, 117 4, 25 M D Texture: 3 Silt 100 96 Clay - 4 Composition: - 4 Pyrite 85 - Carbonate unspec. 15 30								2
early Eccene		P7-P9	AT 14			3	ter		11 12 13	6	Foraminite dispet. 10 31 Foraminites – 65 Radiolarians Calcified – TR Sponge spicules – TR	17							3
						4			8 15 11				Early Eocene						4
						5	and the state of the state												5
						6	and so that a set		1] 1] 13	E.									6
						7 CC			XX 11 11										7

×	DIHO	Ĩ	F	OSS	IL					
TIME - HOCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS		DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		H 88 H 4	NANNOFOSSIL LIMESTONE, greenish gray (BGY 6/1– GGY 6.5/1) moderate bioturbation; burrows commonly filled by bewnish gray (BY), SY 5/1) faulty laminated nannofosil limestone. Core contains pyrite nodules.
						2	The second second second		21 22 22 21 22 21 22	SMEAR SLIDE SUMMARY (%) 1, 71 D Texture: Composition: Quartz Carbonate unspec. 95 Calc. nanofossils 5
						3	the second second		11 12 13	
Early Eocene						4			# # # #	2
						5	and a set of the set o			
						6	and the state of the state		1111111 # == = = = =	

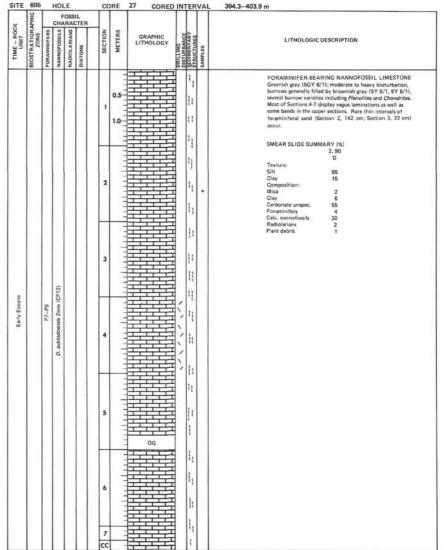
Carbonate unspec. Foraminifers

Calc. nannofossils

Radiolarians

40

40


2

3

7-

.... 22

0

	PHIC			OSS	IL		Γ		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY BILITING BIL	LITHOLOGIC DESCRIPTION
sariy Eocene		P7P8.	D. sublodoensis Zone (CP12)			2 3			FORAMINIFERA-BEARING CLAY-RICH NANNO- FOSSIL LIMESTONE, garyish yellow prien (SGY 7/2– SGY 6/1) becoming ask grann (TGG 6/2) in lower part of Section 4. Moderate bioturbation with vague lamination; burrow filling is commonly olive grav (UY 5/2–35 VS/1). Foraminifer-rich layers at Sect. 1, 124-125 cm and Sect. 3, 35-38 cm. These have sharp lower contacts and an upward decrease in foram abundance. Rare pyrite laminae and nodules. SMEAR SLIDE SUMMARY (%) 4, 65 0 Texture: Sitt 88 Clay 12 Composition: Clay 12 Pyrite TR Carbonate unspec. 40 Foraminifers 5 Cale, nannofossibs 43

~	PHIC			RAC	TER						
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		ŧ	1	FORAMINIFER-BEARING NANNOFOSSIL LIMESTONE Grayih green (10G % 5/1) to pale green (10G 8/2). Moder- arte to heavy bioturbation with vague laminations (except Sect. 2). Burrows are commonly filled with light olive gray (5Y 5/2 – 25 6/1) and creatly with greening farey (BGY 6/2). Abundant dark bluish gray streaks. Scattered rare pyrite nodules. Sect. 5: 60-62 cm Foram-rich layer 62-65 cm Interval with no bioturbation (turbidite?) 65-80 cm Bioturbated interval of Nannofossil Limestone, grayih green (5G 5/2) 80-93 cm Interval of no bioturbation – Clay-rich Nannofossil Limestone All the above are bound by sharp contacts.
									~		SMEAR SLIDE SUMMARY (%) 5,50 5,70 5,82 D M M Texture: D M S Sift 100 100 BS Clay - 15
Early Eocene		P7-P9	CP12			3	a frantin		+ +		Composition: Mica TR – Clay – 15 Glauconite TR – – Pyrite – 1 – Carbonate unspec. 40 20 55 Foraminifers 6 TR – Calc. namofossis 37 30 Sponge spicules TR – –
						4	and a set a set		~ ~ ~		
						5	en freedoere		+		2

	PHIC			OSS	IL						DIHO		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	DRITCLING DRITCLING DRITCLING DRITCLING BISTURGANCE BISTURGTURES SAMPLES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	5
						,	0.5		NANNOFOSSIL LIMESTONE 1) Paie green (106 G/2) usually moderately bioturbated, in Section 10, 025 cm, tryongly laminated with laminae-C1 min. Below 25 cm the laminations grad- ually become faint and bioturbation is more dominant. At 15 cm (Sec. 1), is a discontinuous 3 mm layer of pyritide radiolarian rich nannofosail lamentone. Sec 2, through Sec. 3, 12 cm is moderately bioturbated with faint laminations. 2) Sec. 3, 12-130 cm, sharp contact at top and bottom. Color change to greening yay (55 G/1). Little				
ocene		64-74	CP12			2			 biotrutbation from 12-14 cm. The remainder of the interval is moderately bioturbated and faintly laminated. 3) Sec 3, 130-150 cm, Sec 4, + CC: Sharp contact with color change to light greenish gray (SGV 7/1) with a pyrite streak just below contact. Slight bioturbation from contact to Sec 4, 25 cm, below it is moderately bioturbated with faint laminations. 				
Early Eocene						з			SMEAR SLIDE SUMMARY (%) 3,128 3,132 M 0 0 Texture: 0 0 Silt 90 85 85 Clay 10 15 15 Composition: 0 5 1 Glauconite 3 - - Gratoonste unspec. 50 40 55 Foraminifers 1 3 3 Cele. nunofossits 20 50 40				
						4			Diatoma Tonsin 20 50 40 Radiolarians 15 1 – Radiolarians 3 – – Sponge spicules 3 – – Other Opsques – 1 1	Early Eocene		P7-P9	and and

PHIC		F	OSSI	L TER				DINTER		
UNIT UNIT BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Early Elocree	84-14	CP10-CP11			1 2 3 4 5 6 7				-	NANNOFOSSIL LIMESTONE Light greenish-gray (6GY 7/1) becoming down core (below Sect 1, 80 cm) light pale green (10G 7/1) Moderstely bourbated (a) Bluinblick tiny fueoid-like streaky burrows (<1 mm)

	PHIC		CHA	OSS	TER						
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GR/ LITH	PHIC	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
						1			· · · · · · · · · · · · · · · · · · ·		CLAY BEARING, FORAMINIFER-BEARING to -RICH NANNOFOSSIL, LIMESTONE, pale green (10G 7/1). Bioturbation slight to moderate. Pyritehydrotroliterich laminae + pyrite nodules. Color ranger from pale green (10G 7/1) to greenish gray in the lower half of the core microfault [] dark gray-gray halo
						2			5 3		carbonate burrow fill
						3			ær¦ ∥		Biosurbation decreases. lighter colored, Not bioturbated during reen SMEAR SLIDE SUMMARY (%) 0 during reen 0 D D D
Early Eccene		64-14	CP10-CP11			4			33 74 12 12 12		fairthy banded Texture: pyrite-rich Sand – 5 burrow fills Clay – 10 Composition: Miza TR TR Clay – 9 Carbonate unspec. 90 71 Foraminifers 3 5 Calc, nanofosisi 5 15 Radiolarians 2 –
						5					Pyrite-rich bands
						6					
						7 CC	HHH				

×	APHIC		CHA	-	TER				INTER		
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENYARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Early Econe		6JP9	CP10-CP11			1 2 3 4 5	0.5				1) NANNOFOSSIL LINESTONE light-greenish gray (SGY-SG 7/1), and 2) FORAMINIFERA- and CLAY-BEARING NANNO- FOSSIL LIMESTONE, slightly darker green (SGY to G 8/1 or 6,5/1) 50 Sovering eraditions between: a) Intense to moderate biofurbation and only weak/ indisticut lamination b) Lamination: "more distinct than bioturbation (as in (a) a)" "Homogeneous" (= no lamination = only weak/ biofurbation of "green" burrow fills, no black burrow fills c SMEAR SLIDE SUMMARY (%) 2, 96 c SMEAR SLIDE SUMMARY (%) 2, 96 c SMEAR SLIDE SUMMARY (%) 2, 96 c Composition: Clay minerals c Sint c Sint c Composition: Clay minerals c Composition: Clay minerals c Composition: Clay minerals c Sint c Sint c Sint c Composition: Clay minerals c Composition: Clay minerals c Sint c Si

	HOLE		co	RE 3	4 CORED	NTER	AL 461.5-471.1	1 m		SIT	E 60	1		c	ORE	35 CORED	INTERV	AL	471.1–480.7 m	
TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS	CHAR	ACTER SWOLDING	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTIC	DN .	TIME - ROCK	BIOSTRATIGRAPHIC	CHA	DIATOMS	Z	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESC	RIPTION
Early Econom P7-P9	C911		1 2 3 4 5 6 7 7 CCC	0.5			1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1	D Testure: 80 Citay 20 Composition: 7 Mica 9 Heavy minerals 9 City 20 Ciauconite 17 Carbonate unspec. 50 Carbonate unspec. 50 Carbonate unspec. 50	Core 33 (less bioturbation A few bands of darker een) material (2-20 mm ; between:	Early Econe		P7-P9 CP10-CP11			5				IGG 6/2), light to moderati rare intervals of faint Lamin 2) Bioturbated and/or faint 3) Interval of 10GY 5/2 gr SMEAR SLIDE SUMMARY 2, Texture: 5 It Exture: 5 It Exture: 5 It Bit B Clay 1 Composition: Clay 1 Carbonate unspec, 4 Foraminifers Calc, nanofosilis	tly laminated ayish green

	PHIC			OSS	TER					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5			CLAY-RICH NANNOFOSSIL LIMESTONE, grayish green (10GY 6/2); moderate botturbation throughout, but burrows are difficult or expensive due to filling by same color material, in Section 3 some are filled by brownish gray. Rare pyrite nodule. Blue grey (dark) streaks are abundant.
Early Eocene		6d-1d	CP10-CP11			2				SMEAR SLIDE SUMMARY (%) 1, 100 D Texture: Sit: 86 Carporition: 14 Carporition: 14 Carporition: 17 Carbonate unspec. 44 For aminters 2 Catic. nannofossits 40

	Ĭ	1.4		OSSI	TER					11	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE		MANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
Early Econe		77-79	CP10-CP11			1	1.0				RADIOLARIAN, FORAMINIFER, and NANNOFOSSIL BEARING CLAY RICH LIMESTONE, gray vellow green (10GY 8/2) color. Entire core is moderately bioturbated giving the appearance of faint "transky" lamination. A few 2–5 mm thick brownish horizontal burrows occur. SMEAR SLIDE SUMMARY (%) 1,70 0 Texture: Sand 15 Silt 75 Clay 15 Composition: Quartz TR Mica TR Clay minerals 15 Glausonite Radiolarians 3

SITE	605			c	RE 3	8 CORED	INTERV/	L 499.9–509.5 m	SITE	605	1			CORE 39 CORE	DINTERVAL	. 509.5519.1 m
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	RADIOLARIANS VIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	CHA SE S	RACT RACT	ER	GRAPHIC LITHOLOGY W	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Early Econe		P7-99 CP10-0711		1 2 3 4 5 6 6 7 7 0 000				ADDICARIAN BEARING, CLAV, RICH NAANNOFOSSIL bioturbated and linitly liminated. Burrow RII is brownian gray to black and pyriteride. In Section 3, at 80 cm occurs a tem thick horizon of black in the locar portion of Section 5 is very faintly liminated. MEAR SLIDE SUMMARY (%) 20 Texture: Safe 6 Damosition: Damositio	Early Econne		P7.P9 D10-CP11					FORAMINIFER BEARING CLAY-RICH NAMNOFOSSIL LIMESTONE, gravit gran (10GY 5/2-8GY 5/2), lighter when dry. Modrate bioturbation; burnes filled by dark gravith grav (5GY 5/1, SGY 4/1), expecially in Sections 2 and 4, in general; burnes are burned bluth gravy straks.are abundant. SMEAR SLIDE SUMMARY (%) 1, 70 0 Texture: Sit 89 Clay 11 Composition: Clay 11 Carbonate surgee, 35 Foraminifert 7 Claic, anofossilis 46 Radiotarians Calcified 1

×	VPHIC			RAC	TER					
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	 METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY	SAMPLES	LITHOLOGIC DESCRIPTION
						1.0				EORAMINIFERA-BEARING, CLAV-RICH NANNOFOSS LIMESTONE, paie green (106. 62) with slight (A) to moderate (B) bioturbation. Burrows are infilled with brownish gray, pyriterich matraich. Burrows are com- pressed, and streaked-out horizontally, giving the impre- sion of faint Laminations. In the moderately bioturbated areas (B) the burrows are larger and more distinct. Some burrows continue across the full width of the cut surface a an irregular band.
Early Eocene		642d	CP10-CP11			2				SMEAR SLIDE SUMMARY (%) 1,100 D Texture: Sit 89 Cley Cley Cley Mica 2 Cley Mica 2 Cley 11 Glauconite TR Carbonate unable. 5 For aminifurs. 8 Cdc. manofosilis 71 Radiolarians 2

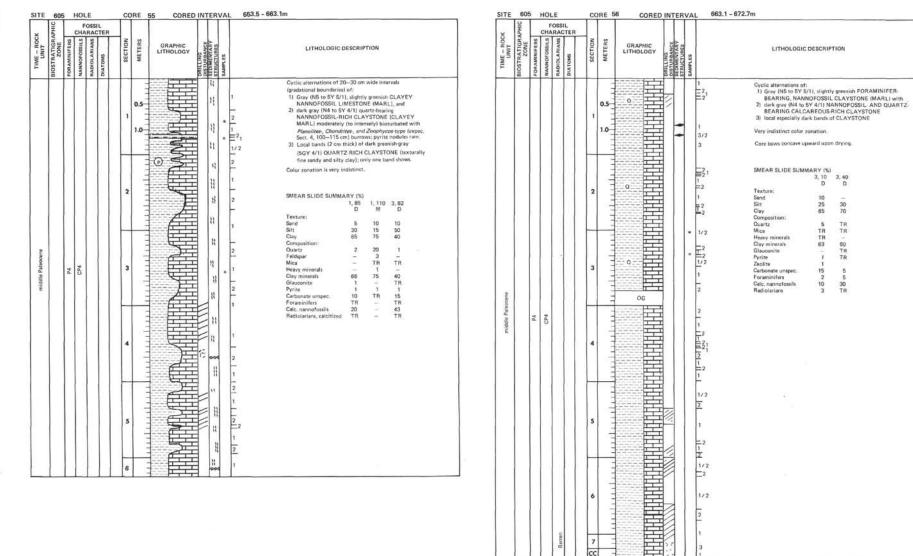
	605 2			oss		CC		41 CORED	IIII	
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	SWOLVIO	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
						1	0.5		1111 	FORAMINIFER-BEARING CLAY-RICH NANNOFOSSIL LIMESTONE, pale greenish gray (5G 6/2) to yetlowish grayish green (10GY 6/2). Moderate bioturbation, bui- rows often tilled by dark gray (5Y 4/1, 5GY 3/1; Chon- driter type, Scattered pyriter a blue-black treak, replaced radiotarians, (esp. Section 5, 83–85 cm where there is a vague lenticular relative concentration), and rare burrow linings.
						2				SMEAR SLIDE SUMMARY (%) CC, 1 M Silt 85 Clay 15 Composition: Guartz 1 Heavy minerals 1 Clay 14 Pyrtite 1
Eocsne		50	Zone (CP9)			3	Trada and the		· · · · · · · · ·	Carbonate unspec. 30 Foraminifers 5 Calc. nanofossils 45 Radiolarians 3 Fish remains TR
Early		P7P9	D. diastypus Zone			4				
						5				
						6 CC	dimentaria.		1 1 1	

SITE 605 HOLE	CORE 42 CORED INTERVAL	538.3 - 547.9m	SIT	E 60	_	OLE		c	ORE	43 CORED INTE	RVAL	547.9 - 557.5m
		LITHOLOGIC DESCRIPTION	TIME - ROCK	UNIT BIOSTRATIGRAPHIC	#	SI	ACTER	SECTION	METERS	GRAPHIC LITHOLOGY SWUTTHOLOGY	STRUCTURES	LITHOLOGIC DESCRIPTION
Ewity Exercise PBis D. divertypus Zone (CPB)		CLAY and FORMUNIEER RICH, NANNOFOSSIL LIMESTORE shading from gaving green 100 Y 0/2 to protein gree (SEY 3), sliphty to moderady bio- network (north) horized and bards occur. Derker greenish gray material contains more clay and less nannofosils. SMEAR SLIDE SUMMARY (%) 1,90 7,34 0 Texture: Sand 20 20 Sit 55 65 Clay 25 15 Composition: Duarts 2 1 Mica TR TR T Clay 25 15 Clay 25 15 Cl		codum	P66	D. diatypur Zone (CP9)			3		-	1 3

SITE 605 HOLE	CORE 44 CORED INTERVAL 557.5 -	567.1m	SITE	60	5 HOL	.E	CORE 4	5 CORED	NTERVA	/AL 567.1 - 576.7m
TIME - ROCK UNIT BIOSTRATIGRAPHIC FORMMUTERS MANUOFOSILIS RADIOLANIARS	RECTION RETERS READING CONCOMPANY RETERS READING CONCOMPANY RETERS READING CONCOMPANY RETERS	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATIGRAPHIC ZONE	CHA 22 19	RACTER RACTER SINUTANO	SECTION	GRAPHIC LITHOLOGY	DISTURBANCE SEDIMENTARY SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
early Exercise Pielo CPB		FORAMINIFER- and CLAY-RICH NANNOFOSSIL LIME- STONE, Section 1 to Section 5, 33 cm. Composed of cyclic alternations (10-20 cm intervals) of: (1) dark (10GY 5/2) (2) light-colored (6GY 1: 6/2) with gradational contacts. Core moderately to intensely burrowed, with distinct dark horizontal burrows (Fandlers type). FORAMINIFER-BEARING CLAYEY NANNOFOSSIL LIMESTONE (MARL), (dark) greening pay (5GY 4-5/1), occurs below Section 5, 33 cm. Core bows upward when dry. Many horizontal burrows. SMEAR SLIDE SUMMARY (%) 2, 72, 3, 33, 6, 51 0, 0 Texture: Sith 90 6, 51 0, 0 Composition: Quarts 1 TR 1 Mica Quarts 1 TR 1 Mica Mica TR TR TR Clay minerals 5 15 30 Guarconite Cury minerals 5 Solited alternation of the second clay minerals 1 TR 1 Mica Cary minerals 1 S 3 2 do 20 Foraminifiem 2 do 20 Foraminifiem Calc: nanofosibil alterial 1 Z Alloidarians calchized 1 Silicollagellates	lata Paleoscone		P6a CP8		0.5 1 1.0- 2 3 4		22 22 22 22 22 22 22 22 22 22 22 22 22	OUART2: and FORAMINIFERBEARING CLAYEY NANNOFOSSIL LURSTONE (MARL) Dark greenid may (60' 4/1), in place in Sect. 1 fainty banded (en to dm.sale), moderative bioturbated (mainly Planolite-type + Zoophycos with dark gray (N3) to gravit black K12 (ling). It lightens very gradually from Sec. 1 is 5 from dark greenid gray to greenide gray (N3) to gravit black K12 (ling). It lightens very gradually from Sec. 1 is 5 from dark greenide gray to greenide gray (N3) to gravit black K12 (ling). It lightens very gradually from Sec. 1 is 5 from dark greenide gray to greenide gray (N3) to gravit black K12 (ling). It lightens very gradually from Sec. 1 is 5 from dark greenide gravit of the second gravit gravit from the second gravit of the second gravit from thick. Sofy 6/1 SMEAR SLIDE SUMMARY (%) 7 strure: 5 GY 4/1 SMEAR SLIDE SUMMARY (%) 7 strure: 5 Gravit from Sec. 1 is 5 from Sec. 1 for Clay 38 223 30 Pyrite gravit from Sec. 1 for Clay 38 223 30 Pyrite gravit from Sec. 1 for Clay 38 223 30 Pyrite gravit for Sec. 1 for Clay 38 223 30 Pyrite 1 for for Clay 38 223 30 Pyrite 1 for Pyrite 1 for Pyrite 1 for Pyrite 1
late Platecenia P6a CPB	6 7 Void	×					6		HH H H B	5GY 6/1

SITE 605 HOLE CORE 46 CORED INTERV	AL 576.7 - 586.3 m	SITE 605 HOLE CORE 47 CORED INTERVAL	586.3 - 595.9m
	LITHOLOGIC DESCRIPTION	TIME - ROCK BIOSTRATICE BIOSTRATICE BIOSTRATICE CHARMENTER SECTION METERS MANNOFORM DIATIONS	LITHOLOGIC DESCRIPTION
	IN CLAY-RICH NANNOFOSSIL LIMESTONE Dark greenish gray (5GY 4/1, SGY 4.5/1). Moderate bio- turbation including <i>Planolites</i> , Burow links are commonly greenish black (5G 3/1) clay-rich Nannofossil Limestone (but vith more clay and nannofossil). Sect. 1 has slightly less bioturbation. SMEAR SLIDE SUMMARY (98) 180 Terture: 180 B 55 Composition: Carbonate unapoc. 191 Carbonate unapoc. 192 Calc. nannofossil 355 600 Radiolarian - 1 Other Opaques - 2		CLAYEY NANNOFOSSIL LIMESTONE, varying from dark greenish grav (5GY 5/1) vity moderate bioturbation <i>Phanlines</i> and <i>Chandrines</i> types are abundant. Three sets of <i>Zoophycos</i> -type burrows in this core. SILT-BEARING CLAYEY NANNOFOSSIL LIMESTONE, greenish grav (5GY 5/1) appears similar to the lithology above litted, but contains more guartz. This occurs in Section 6. SMEAR SLIDE SUMMARY (%) <u>3, 80, 5, 80, 6, 80, D, D, D, D, D, D, Tratures, 2, 2, 2, 10, Mices, 2, 2, 1, 2, Havy minerals, 1, -, -, Clay, 35, 35, 35, Glauconite, 1, TR, 1, Carbonate unaproc. 17, 10, 15, Foraminifers, 1, 1, -, Cate, nanofossit, 50, 6, 35, Radiolarians, -, TR, -, Fish remains, -, TR, -, TR, -, Fish remains, -, TR, -, </u>

	VPHIC	CH		SSI	TER											
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNUFUSALLS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES		LITHOLOGIC	DESCRIPT	ION	
						1	0.5			22 22	•	5GY 4/1 5GY 5/1	Alternation of dark gri gray (SGY 5/1), CLAY LIMESTONE, modera Zoophycos), Dark grai fills are quartz- and py SMEAR SLIDE SUMM	EY TO CL tely bioturi / to grayish rite-bearing	AY-RIC bated (P black ()	H NANNOFOSSIL lanolites-type + N3 to N2) burrow
				1			12					-	Concern of the bonn	1,20	1, 50	3, 91
tate Paleocene		20	2 4	CP1		2	and		+ + + + + + + + +	· · · · · · · · · · · · · · · · · · ·		5GY 4/1 5GY 5/1 5GY 5/1 5GY 5/1	Texture: Sand Silt Clay Composition: Quartz Mica Heavy minerals Clay Glauconite Pyrite Zeolite Carbonate unspec, Foraminifers Calc. namofosilis Radiolariani Fish remains	D - 70 30 3 TR 30 TR 30 TR 30 TR 30 TR 6 1 TR 6 - 61 TR -	D = 80 20 2 TR 20 TR 20 TR 	M 35 35 1 35 2 2 49 -
						4	rentation but		4 4 4 4 1 1 1 1	= = = = = ==		5GY 4/1 5GY 5/1 5GY 4/1 5GY 4/1 5GY 4/1 5GY 5/1	Zoophycos burrow			
						cc	-		12	13		5GY 4/1				


SITE		5	HOL		_	c	DRE	49 CORED	INTE	R	VAL	605.5 - 615.1 m
×	DIHA			RAC	TER							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
	-							मिन्द्र		1		CLAY-RICH NANNOFOSSIL LIMESTONE
						1	0.5					Sect. 1, top – Sect. 2, 30 cm – CLAYEY NANNOFOSSIL LIMESTONE, dark greeniah gray (5507 4/1), with moderate to light bioturbation of very dark brownish gray (557 3/1, 57 3/1). Section 2, 30 cm–Section 3, 20 cm: CLAY-RICH NANNO- FOSSIL LIMESTONE, greenish gray (5GY 5/1) with only small vague burrows of seme color.
						2						Section 3, 20 cm–Soction 4, 50 cm: CLAY-RICH NANNO- FOSSIL LIMESTONE, prenish grav (5GY 6/1–10GY 6/2) (lighter than sbow) with link to inturbution (small tize). Interval of 10GY 5/2 in Section 3, 60–73 cm with (?)clast of 5GY 6/1.
										\$	•	Section 4, 50 cm - base of core: SILT-BEARING CLAY- RICH NANNOFOSSIL LIMESTONE, dark greenish grav (5CY 4,5/1) with moderate to heavy biotrubration. Burrows often filled by very dark greenish grav (5GY 3/1) Zoophy- cos of large size in Section 6, 105–120 cm and Section 6, 50–70 cm. Microfaults and disturbed structure at Section 7.
			2									5, 70–90 cm.
e.			e (CPB)				1		H	1		SMEAR SLIDE SUMMARY (%) 2, 80 3, 80 4, 80 D D D
late Paleocene		P4	D. mohleri Zone			3					•	Texture: Silt 74 83 83 Clay 26 17 17 Composition: Ouartz 4 2 4
						4				1 1 1 1 1		Mice 1 3 Heavy minerals - - TR Clay 26 17 17 Palagonite - - TR Clauconite 1 2 1 Pyrite - - TR Cabonate 1 - 1 Cabonate 2 8 3 Foraminiter - 1 10 Calc. nanofossitis 65 70 60 Radiolarism TR 1 1
						5		06		13		
						6				*		

	FOSSIL	CORE 50 CORED INTERV		ſ		2		FO	SSIL	Т	T			AL 624.7 - 63
х \$ СН	RADIOLARIANS	NOLLDBS SETTING REAL NOTION REAL REAL NOTION REAL REAL REAL REAL REAL REAL REAL REAL	LITHOLOGIC DESCRIPTION		TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS H	ACTER		SECTION	GRAPHIC LITHOLOG	Y NEE	SAMPLES
Middle Parecene P4 (CPS) At Antreparty Zone			SILT BEARING, CLAYEY NANNOFOSSIL LIMESTONE, greenia gray (SGY 5/11 with durk greenia gray (SGY 4/1) borrow fill. Gore is moderately biocatacted by set. 3, 01-89 em: Set. 4, 122-140 cm: Set. 8, 355-44 cm. and 110-121 cm: Set. 7, 21-32 cm. A compacted shell layer occurs in Set. 6, at 82-83 cm. SMEAR SLIDE SUMMARY (%) 2, 80 Texture: D Texture: Clay 30 Composition: Clay 30 Composition: Clay 30 Composition: Clay 30 Clay 30 Clay 47 Calc. nannofossis 47 Radiolarians recrystallized 1		Middle Paleosne		Pa	M. Akangpelia Zone (CPE)			1			* 1 - 2 1 - 2 - 2 - 1 - 2 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2

SSIL	R									
RADIOLARIANS DIATOMS		SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	SEDIMENTARY	SAMPLES	LITHOLOG	C DESCRIP	FION
		1	0.5				•	These dark/light zor respectively. Moder	5GY 4/1) to ses are marke ate bioturbat lark greenish	greenish gray (5GY 5/1) -
			-		Ľ	13		SMEAR SLIDE SUM	MARY (%) 1, 35	1, 89
		H	-		Ξ	1			D	M
		2	TOPUT DOUT DOUT		1/1/			Texture: Sit Camposition: Camposition: Duartz Mica Heavy minerals Clay Glauconite 2 Carbonate unspec. Foramiotfers	70 30 2 1 TR 30 TR 7 TR	50 40 1
		3	and and mark			1 1 1 mar		Cale: namofossis Badiolarians	60 TR	40 TR

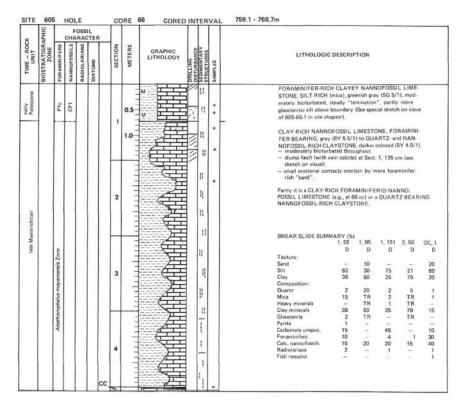
TE	_	6 1	F	oss		T	Τ	RE 52 COF				
č	APH	-	-	-	TER	-	2	40				
TIME - ROCK	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOG	DRILLING	SEDIMENTARY STRUCTURES	SAMPLES	LITHOLOGIC DESCRIPTION
Middle Platecene		54	H. Akkinpetti Zone (CP6)				1 1 2 2 2 3 3 3 4 5 5 6 7 CCC					CLAYEY NANNOFOSSIL LIMESTONE, greenish gray (BGY Sr11 isternating with) GRY R(11). The whole core has moderate biotur- bation, Small Infel Math Core has moderate biotur- bation, Small Infel Math Core in Section 1, at 33–36 child infel Math Core in Section 1, at 33–40 cm. Section 2, 33–31 cm; Section 3, 23–40 cm; Section 6, 5-26 cm, and 36–46 cm. No sharp boundaries between lithelogies. SMEAR SLIDE SUMMARY (%) 1, 40 1, 10 D Texture: Sitt 87 50 Composition: Clay Glauconite 1 - Heavy mineral Carborate unspec: 13 10 Carborate unspec: 13 10 Cate mannofositi 1 - D Pyrite 1 - Other opagois

	HIC		F	OSS	IL							
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC ITHOLOGY	DRILLING	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
Middle Paleocene		P4	H, kleinpelli Zone (CP5)	Barren			1 2 CC	1.0				CLAYEY NANNOFOSSIL LIMESTONE. dark gramining ray (SGY 4/1) becoming SGY 4.5/1 in lowarp part of Sec. 1. Moderate to alight bioturbation; burrows generally filled with darker colored marky limestone. Rare pyrite nodule. Core is heavily biecolated from drilling. SMEAR SLIDE SUMMARY (%) 1, 55 D Texture: Sit 50 Clay 50 Composition: Quartz 2 Mica 3 Clay 45 Glauconite 1 Carbonate unspec. 10 Foraminifers 1 Cate. nanofossili 37 Radiolarians 1 Fish remains TR Other Opaquei TR
SITE				E OSSI			co	DRE 54	COREI		ERVAL	648.4 - 653.5m
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	METERS	GRAPHIC ITHOLOGY	DISTURBANCI	SEDIMENTARY STRUCTURES SAMPLES	LITHOLOGIC DESCRIPTION
middle Paleocene	P4		CP5	Barren			1	0.5			* *	FORAMINIFER-BEARING CLAYEY NANNOFOSSIL LIMESTONE, grav (NS, slightly greenish), Moderately bioturbated with streaked-out burrows. Zooghycos burrow at Section 1, 80 cm.
				Bs		cc	-					SMEAR SLIDE SUMMARY (%) 1,65 D Texture: D Sand

7 cc

372

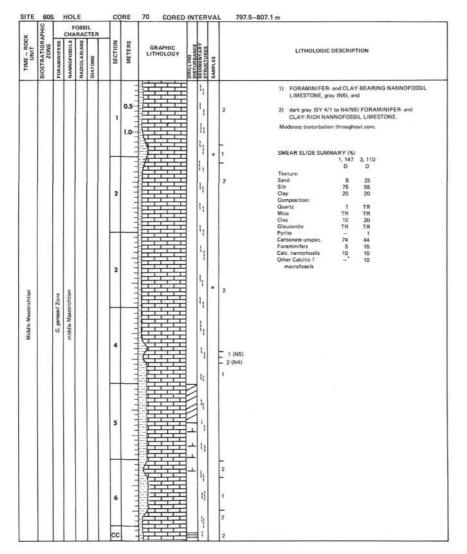
TIME – ROCK UNIT UNIT BIOSTRATIGRAPHIC ZONE FORAMINIFERS RADIOLARIANS RADIOLARIANS IADIOLARIANS RADIOLARIANS	RECTION BELLING C CTION C C C C C C C C C C C C C C C C C C C	L 672.7 - 682.3m	TIME - ROCK UNIT BIOSTRATIGRAPHIC ZONE	HOLE FOSSIL CHARACTE LANNOFORSILS RADIOLARIANS	ER Z	GRAPHIC LITHOLOGY	Π	LITHOLOGIC DESCRIPTION
anity Palaceme P3 P3 Barcon CP4		Well developed cyclic atternations of Jeach cs. 30–50 cml) (1) gray (BCY 5/1 to 5/1) FORAMINEER BEARING NANNOFOSSIL CLAYSTONE MARKUNAND (2) dark gray (max. 5GY 4/1 to 5G 4/1) NANNOFOSSIL- AND OUART2 BEARING CALCAREOUS RICH (2) CLAYSTONE Intensely bioturbated (Planolites, Choadrites, Zoophycos. 1 Ferspec. Sect. 1, 90-130 cml type burrows 2.10 mm dark claystone bands (probably burrows) also in (1) 1 Core 58, 682.3-891.9 m: no recovery. 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . 1 . 2 . <	60.00	P3 P3 P4				CLAYEY NANNOFOSSIL LIMESTONE to NANNOFOSSIL CLAYSTONE (Mari) Dark greenish pay (55Y 4/1) to greenish gray (55Y 5/1, 5Y 5/1) with well-developed cycles in lower parts of core. Light dark donoted by very dark greenish gray (55Y 3/1, 5Y 3/1). Approximately 9 light/dark cycles very tentatively identified. Range of compation is dary rich nanofosil lineatone to nanofosil claystone (darkest area). SMEAR SLIDE SUMMARY (%) 1, 64 5, 120 6, 122 0 0 0 Texture: 05 88 40 Clay 35 12 60 Compatibion: 35 12 60 Compatibion: 35 12 52 Glauconite TR – 1 Carbonate unpac, 42 27 15 Foraminifers 1 TR – 1 Carbonate unpac, 42 77 15 Foraminifers 1 TR – 2 Carbonate unpac, 42 77 15 Foraminifers 1 TR – 2 Cate, nanofosisi 20 11 30 Radiolariam – TR –

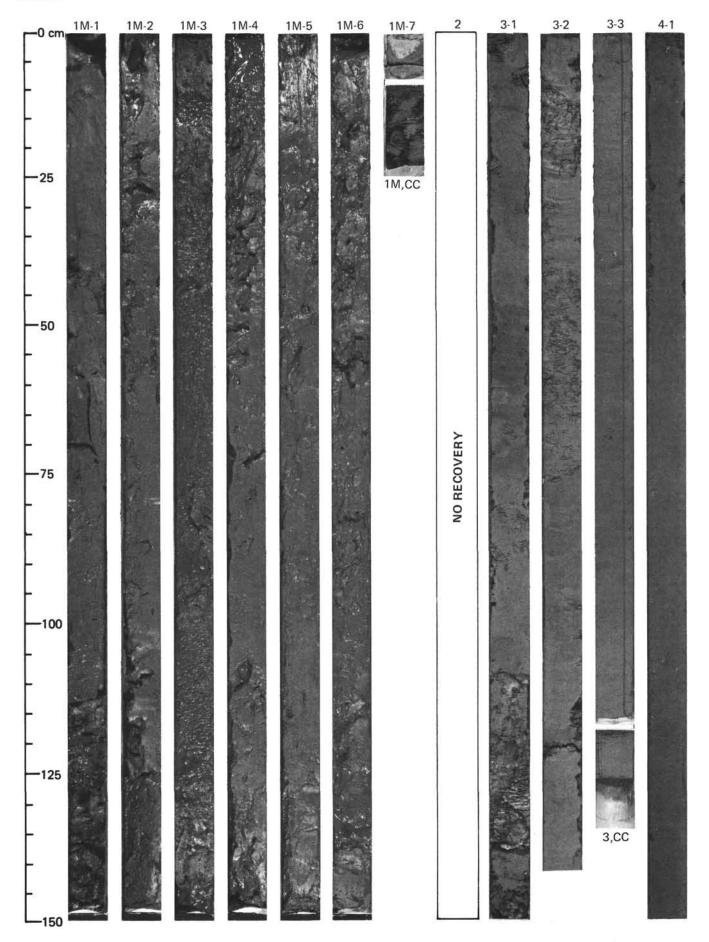

HIC	FC	SSIL					HIC		FI	DSSIL				
TIME - ROCK UNIT BIOSTRATIGRAPHIC	FORAMINIFERS	RADIOLARIANS DIATOMS	SECTION	ABUTCHING BISTURENCE DBISTUREN	LITHOLOGIC DESCRIPTION	TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS		NIANS	DIATOMS	SECTION	METERS	GR LITH
sariy Paleocene	P3 CP4	Berren	,		2 Cyclic alternations (approx. 13 - 15 cyclea/core) of: 1 1 1) gray (greening/arw, 50% 511 to 57 5/10 CLAY: RicH ANNAOG 550K ILMESTONE POSSIL LIMESTONE (MARL) 1 Intensely biopurbated (less in light colored Nannofosili Limestone). 2/1 Pyrite nodule occurs in Section 1, 40 cm. 2 SMEAR SLIDE SUMMARY (%) 1 2 SMEAR SLIDE SUMMARY (%) 2, 24 1 Cature: 50 2 Texture: 50 1 Cature: 50 2 Texture: 51 2 Texture: 51 2 Texture: 51 2 Texture: 51 2 Cateonate onspect 1 2 Texture: 51 3 Galaconite 7 4 TR 7 5 TR 7 5 TR 7 6 TR 7 7 Foreminifier 7 Foreminform 7 Foreminform 7 Foreminform 7 Foreminform 7 Texture: 7 8 TR 9 TR 10 TR 11 TR 12 TR 13 Texture: 7 14 TR 15 Texture: 7	serity Paleoome		2 2	CP4	Barron		3	1.0	

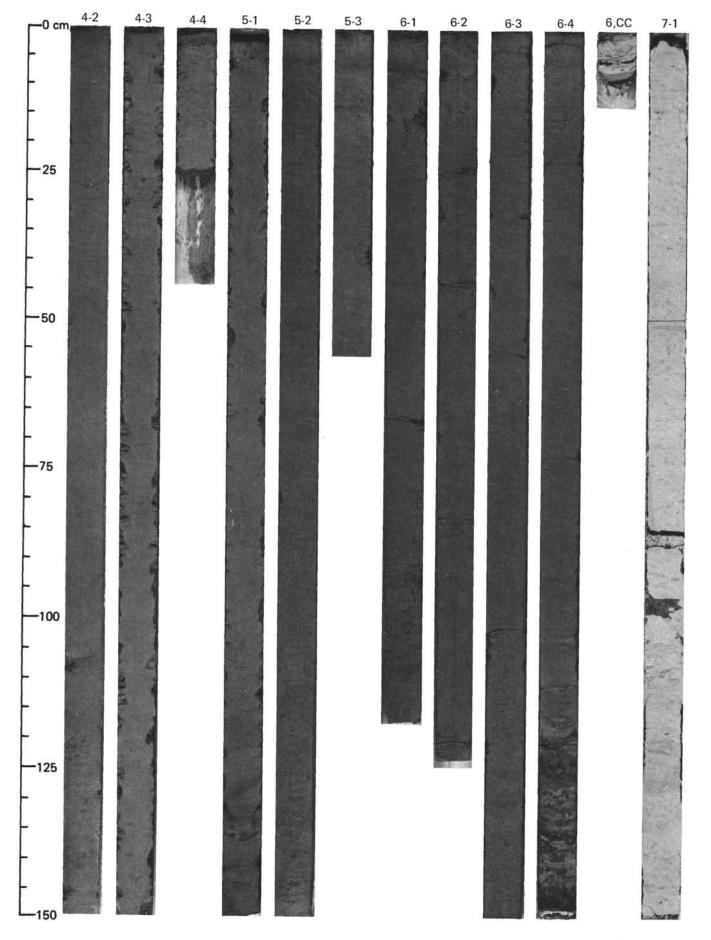
	Ę			oss			1		T						
5	APH			_	TER	-	-								
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE	SAMPLES		LITHOLOGIC	DESCRIP	TION	
						3	0.5		=		-1 2 - 1 :2 1	CLAYEY NANNOFC Predominantly grean of heavy bioturbation gray [5GY 4/1], gray are denoted "1" (ligh Moderate to light b of dark greenish gray	sh gray (5G or more cli (N4, N5) t), "2" (dar ioturbation	Y 5/1) v ay contro n Sect. k), or " visible	with darker intervals int (dark greenish 4), These "cycles" 1/2" intermediate.
									13		1/2	SMEAR SLIDE SUM			
					1		1		,		1		1, 60 D	2,50 D	4, 55 M
							1		22		1/2	Texture: Silt	65	80	60
							Ŧ		i		1	Clay	35	20	40
		61				2	15				2	Composition: Quartz	2	1	1
							12		1	11		Mica	÷	3	1
							1.2		15		-	Heavy minerals Clay	35	TR 30	TR 40
							1.2		10	11	1/2	Palagonite	30	30	TR
	10		5			H	-	- 6	1			Glauconite	-	TR	1
									1	11	1	Pyrite	41	-	1
							1.2		1			Carbonate unspec. Foraminifers	-	31	49
21							1.12		1.3			Calc. nannofossils	20	32	6
5						3	1.5		13	11	2	Radiolarians	-	1	8
ž.		5	CP4				12		155			Fish remains Other Opaques	1	1	7
conty Fareucone			0				hin	臣				Unie upaques			-
									11		2				
						4		唐	11	1					
							-	- P	1		1				
							17	-	1		-				
							. 13		ε,		1/2				
							-		11						
							1 2		11		1				
							-		11		£				
							-		14		1/2				
						5	1 4		11,		ī				
							1		11		1				
							1		13		1/2				
							-		11		1				
						-			11		-				
				E			1		11		2				
				Barren		6			15						
				_		100			11						
											1/2				

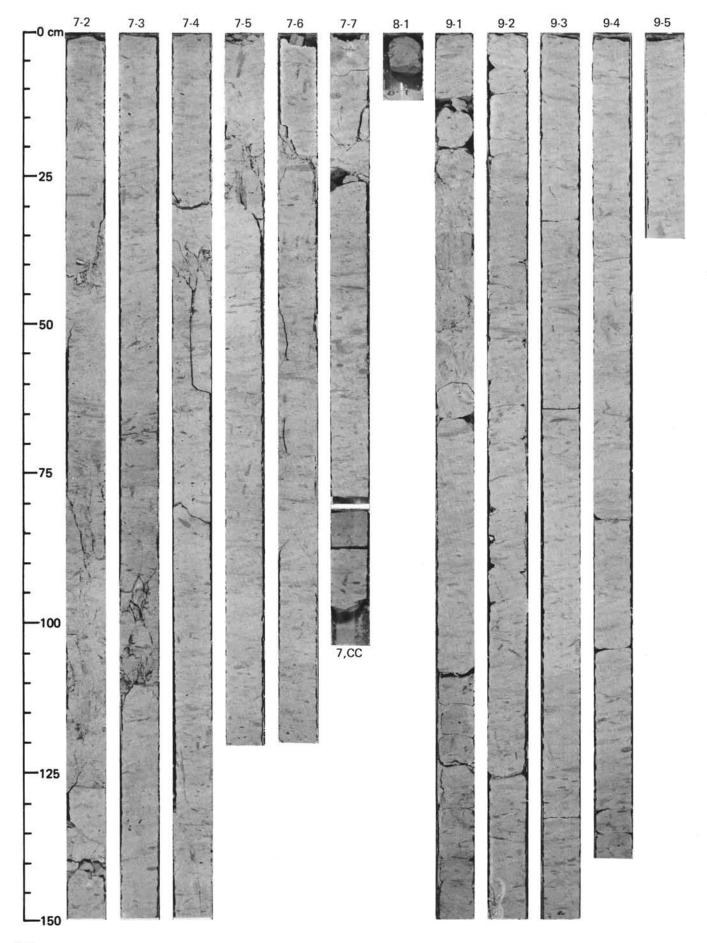
FOSSIL	L 720.7 - 730.3m	SITE 605 HOLE	CORE 63 CORED INTER	VAL 730.3 - 739.9m
	LITHOLOGIC DESCRIPTION	TIME – ROCK UNIT UNIT BIOSTRATICIRAMINE PORAMINER PORAMINER PORAMINER INAUROFORSILLE		LITHOLOGIC DESCRIPTION
	CLAYEY NANNOFOSSIL LIMESTONE, gray (N5), heavily bioturbated. - Burton are infilled with dark gray (N4) clayay material. - Section 1 and 2 only. At 140 cm in Section 2 begins bands warying in color light gray (BY 7/1, N7), very light gray (N8), and gray (BY 0/1) with rare bands of medium gray (N6). The darker the band the more additional and burtows. Net N7 ECOSIL Links STOME: The light gray and gray N7 ECOSIL Links STOME: The light gray and gray N7 ECOSIL Links STOME: The light gray and gray N7 and SY 8/11 and SY 8/11 N4/N5 SMEAR SLIDE SUMMARY (%) 2,40 4,10 5,40 D D D Texture: Silt 40 50 70 EV 7/1 Clay 60 50 30 N7 Composition: N8 Quartz TR – 1 N9 Mica 1 2 1 N1 Clay 35 20 N7 Composition: SY 7/1 Glaucenite 1 – - Carbonate unspec. 30 40 60 SY 7/11 Galox 13 2 1 Galox 13 2 15 15 Radiolarians TR 6 3 SY 6/1 N8 N7 N9 N7 N9 N7 N6 N7 N9 N7 N6 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N8 N7 N6 N7 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N6 N7 N7 N6 N7 N6 N7 N6 N7 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N6 N7 N7 N7 N6 N7 N7 N7 N7 N7 N7 N7 N7 N7 N7	Early Paleoone P2 P2 P2 P2 P3 P3 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4 P4	2 2 3 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	NB CLAYEY NANNOFOSSIL LIMESTONE, with varying co A/H N7 centrations of clay — constimus CLAY-RICH NANNO. A/H N7 centrations of clay — constimus CLAY-RICH NANNO. A/H N8, 5Y 67, & SOY 87/J. instrons these of gay (N6, NANNO. B/H N8, 5Y 67, & SOY 87/J. instrons these of gay (N6, NANNO. A/H N8, 5Y 67, & SOY 87/J. instrons these of gay (N6, NANNO. A/V IAI to moderately (B) biorubatat. instrons the observation widemt as medium gray (N4). A/V wertical (V). Biorubation widemt as medium gray (N4). B/A Graphic lithology is schematic. Clay content increases as B/H B/H M SMEAR SLIDE SUMMARY (N) B/H+V SMEAR SLIDE SUMMARY (N) B/H+V SMEAR SLIDE SUMMARY (N) B/H+V Gay 60 60 A/V Sitt 40 65 60 A/H Clay 60 36 60 A/V Sitt 1 1 1 B/H Mica 1 1 1 B/H Clay

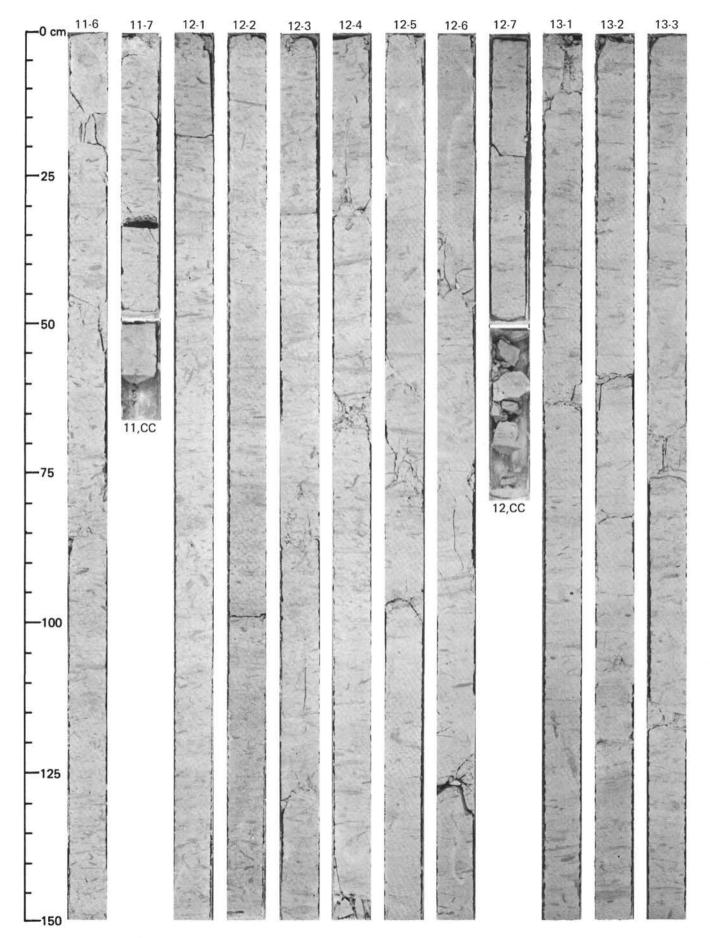
	PHIC		F	OSS	IL CTE	R										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS		SECTION	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENTARY STRUCTURES	SAMPLES	LITHOLO	GIC DESCRIP	TION			
Early Philosome	808	P1-P2 F01A	CP1-CP3 CP1-CP3 MANN	HADRI	01412		3 4 5				SGY 6/1 SGY 5/1 SGY 5/1 SGY 6/1 SGY 5/1 SGY 5/1 SGY 6/1 SGY 5/1 SGY 5/	JMMARY (%) JMMARY (%) Into see the second se	WESTON ay (5GY y biotur olor filling lense. Silt ontent. CH NANI grav (5G 5GY 3/1 25 cm: se re darker MINIFER- IIL LIME	eenish g E, light 6/1), v bated, 1 g as the content VOFOSS Y 6/1– 1. diment colored BEARIN 3, Secti	greenish with faint but these host sedi- increases UL LIME- 5GY 5/11 is burrow- VG SILT- greenish	
							7 CC		1							

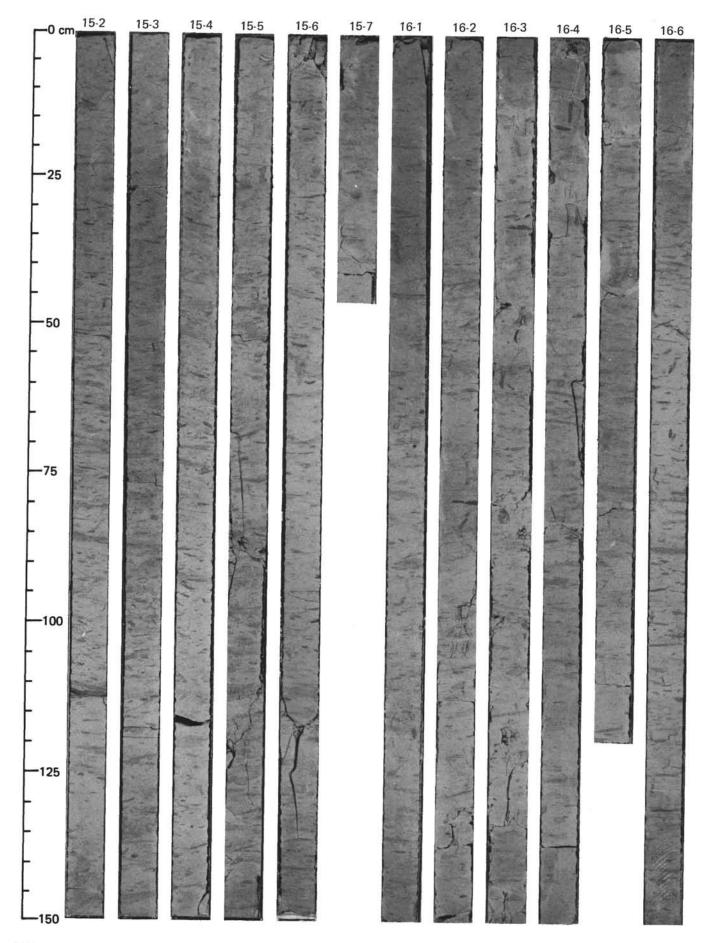

PHIC		CH	FOSSIL CHARACTER												
TIME - ROCK UNIT BIOSTRATIGRAPHIC	ZONE	FORAMINIFERS	INVINCE CONTRACTOR	RADIOLARIANS DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DISTURBANCE DISTURBANCE SEDIMENYARY	SAMPLES	LITHOLOGIC DESCRIPTION					
Early Paleocene		PIC CRITERS				cc.	1	0.5	G M		•	GLAUCONITE-BEARING, SILT-RICH NANNOFOSSIL MARL, dark greenink prav (BG 4/1) with varying intensity of medium dark gray (N4) burrows. Zoophycoc occurs in Sect. 1, 5-12 cm, and Sect. 2, 32–40 cm. The burrows are generally horizontal. FORAMINIFER-BEARING, CALCAREOUS MUDSTONE, derk spreink pray (GS 4/1) and moderative blourband. Burrows filled with medium dark gray (N4). Found in the base of Sect. 2, 64–71 and core catcher. SMEAR SLIDE SUMMARY (%) 1, 80 CC, 5 D D Texture: Sitt 50 60 Clay 50 40 Composition: Quartz 6 15 Feldspe 1 – Mica 5 5 Heavy minerals 1 2 Clay 40 36 Clayonite 3 2 Protein unspec. 15 15 For aminifers 2 6 Calc. nanofossis 20 10 Diatoms – 1 Radiolarians 3 4			

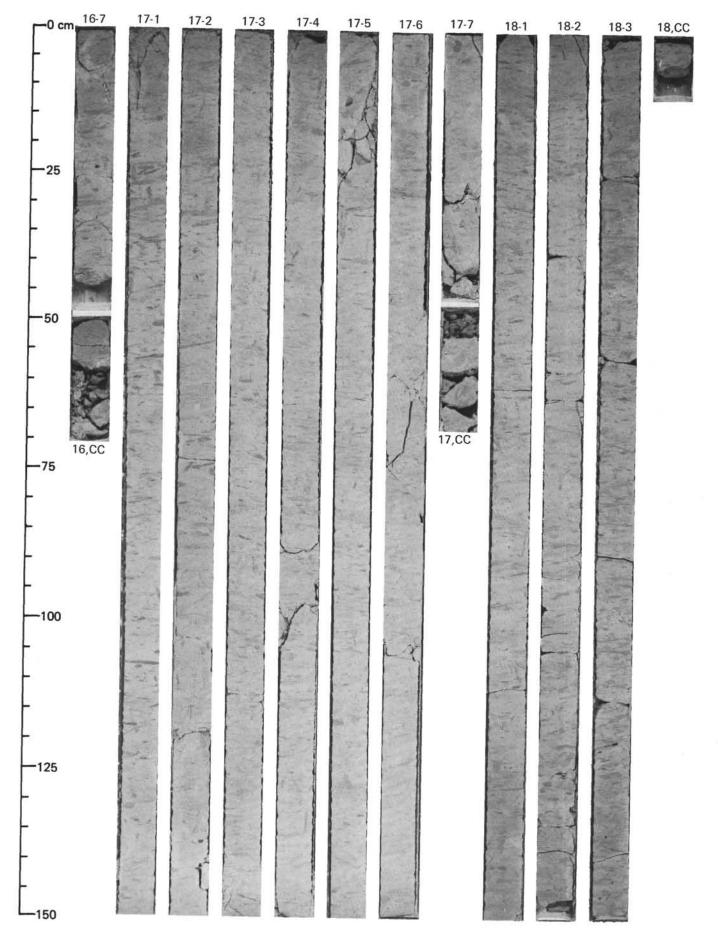

×	PHIC			ossi	IL TER		RE	67 COREE	Π	Τ	
UNIT UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	METERS	GRAPHIC LITHOLOGY	DRILLING	STRUCTURES STRUCTURES	LITHOLOGIC DESCRIPTION
Lete Mastrichtian						1	0.5		FORAMINIFER-RICH, CLAYEY NANNOFOSSIL LIME- STONE (MARL), ary (SY S/1) with dark gray (SY 4/1) elongate, straked-out Planofiler type burrow. Moderativy to slightly bioturbated in the upper most action. Biotur- bation becomes heavy downward. Microfaulting occurs in the core. FORAMINIFER- and CLAY RICH NANNOFOSSIL LIME- STONE, cyclic, shading trom light gray (N2) to gray (SY 5/1). Aburdant Chondrite-type burrow in addition to the usual Planofiler-type.		
		wnsis Zone	tian			2			+ + ** * *	SMEAR SLIDE SUMMARY (%) 1, 33 4, 34 D D Texture: Sand – 20 Sitt 60 65 Clay 40 15 Composition: Quartz 2 1	
		Abathomphalus mayarcensis	Late Maastrichtian			3	and hinter to the		Ouartz Z TR TR Mica - TR TR Heavy minerals 35 15 Glauconita - TR Pyrite - TR Carbonate unspec. 5 - Foramini 15 20 Calc. nannofossils 43		
						4	in the true			2 11 - 11 -]
						5	11111			21 21	

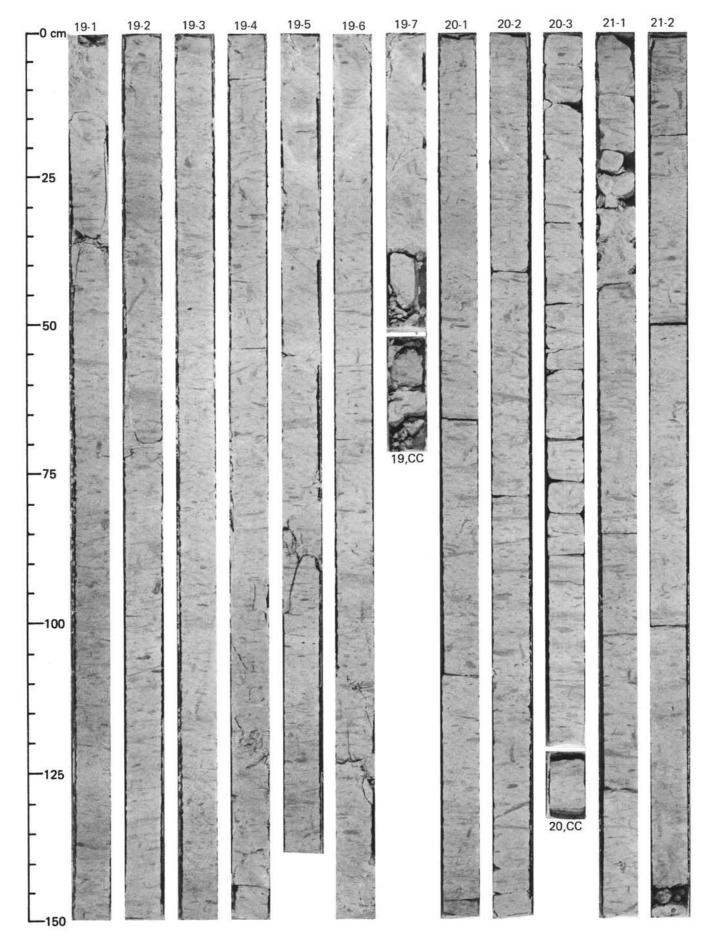

TIME - ROCK UNIT DSTRATIGRAPHIC ZONE RAMINIFERS DIOLARIANS DIOLARIANS DIOLARIANS			JOCK	GRAPHIC	12	FOS	CTER	NO	BS	GRAPHIC	a ve	
IIIME - FOCK UNIT BIOSTRATIGRAPHIC FORAMINIFERS NAWOFOSSILS RADIOLATIANS BIATOMS DIATOMS	WILLING SECTION METERS STRUCTURE SECTION METERS SECTION	LITHOLOGIC DESCRIPTION	TIME - ROCK	BIOSTRATI	FORAMINIFI	RADIOLARI	DIATOMS	SECTION	METERS	LITHOLOGY	DRILLING DISTURBANCE SEDIMENTARY STRUCTURES	LITHOLOGIC DESCRIPTION
Middle Maetrichtien A. mayanosekh Zone Middle Maetrichtien	$ \begin{array}{c} 1 \\ 0.5 \\ 1 \\ 1.0 \\ 2 \\ 1 \\ 1.0 \\ 1 \\ 1.0 \\ 1 \\ 1.0 \\ 1 \\ 1.0 \\ 1 \\ 1.0 \\ 1 \\ 1.0 \\ 1 \\ 1.0 $	Cyclic alternation of: (1) CLAY BEARING, FORMINIFER-RICH to FORAM- INIFERAL ANNOFOSSIL LIMESTONE. (2) FORAMINIFER-RICH, CLAY-RICH to CLAYEY NANNOFOSSIL LIMESTONE. Grav (FV E11) (2) and (SY 6/1) (1) Bioturbation slight to moderate. In Set 4 lighter horizons are alightly to not bioturbated at all. Burrow types: <i>Planolites</i> -type, <i>Choostifes</i> -type, In places up to three generations of burrows are see. Primary bar- rows are large (25 cm diameter) and nearly vertical. Sec- ondary burrows are smaller (1 cm diameter) and hori- contal, while turtilary burrows are see and fine network of <i>Choodities</i> -type branches. Layers or bands of foraminitral sands occur in Saction 4, 52 cm. SMEAR SLIDE SUMMARY (%) Texture: Sand 20 40 30 Sith 60 50 40 Composition: Comparison: Comparison: Comparison: Comparison: Comparison: Comparison: Comparison: Comparison: Carbonate unspec, 30 26 20 Foraminifers 15 30 20 Cale, namofosalis 35 33 30 Radiolarians TR – –	Maddia Maarrichtian		G. panteri Zone A. mayaroontis Zone	Middle Mastrichtian		1 2 3 4 5 6				Five indictinet cycles (about 70-100 cm vide) or 1 2 1) FORAMINIFERID-RICH NANNOFOSSIL 1 3TONE (MARL), light gray (VR) to light oli 2 2) FORAMINIFERID-BEARING NANNOFOS 1 2) FORAMINIFERID-BEARING NANNOFOS 1 CLAYSTONE (MARL), gray (NB) to olive gray (SF) to light oli 2 Moderately (1) to intensely (2) biorurbated, main subhrizontal Planofitter. and Chondritee type bu 1 Distinct sub-mon-cale lamination (graen-black lar partiy as low angle inclined (cross-) lamination. 2 Lamination indicates in-situ slope of 10-12° (mar rotational slump fault block?) 1 Faults (slump faults?) show downward displacer about 1 cm 2 0 1 SMEAR SLIDE SUMMARY (%) 1 SMEAR SLIDE SUMMARY (%) 2 Texture: 3 0 4 0

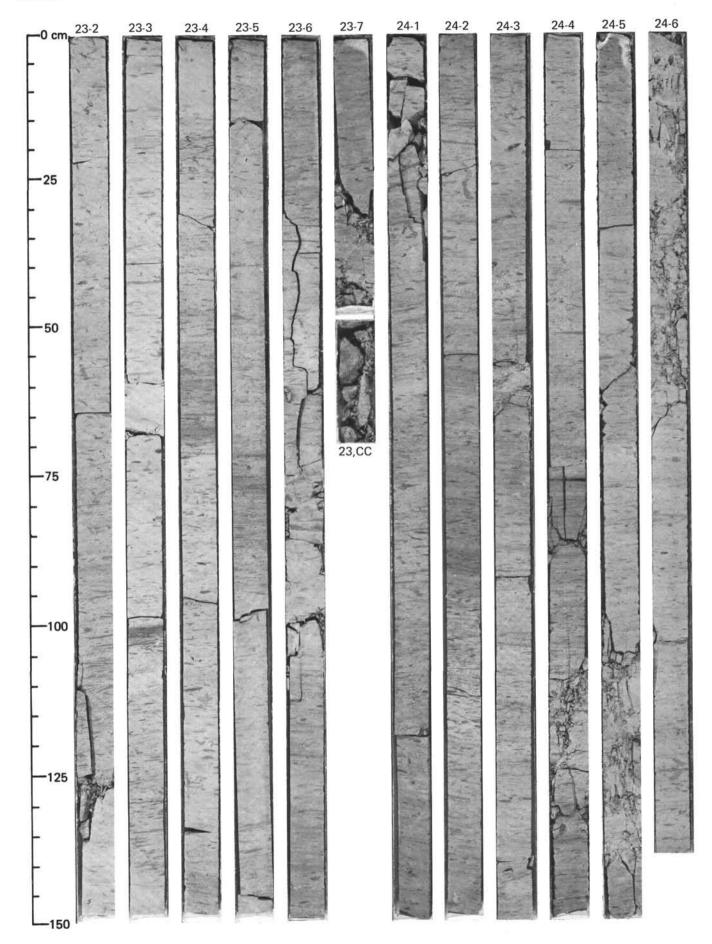

SITE 605

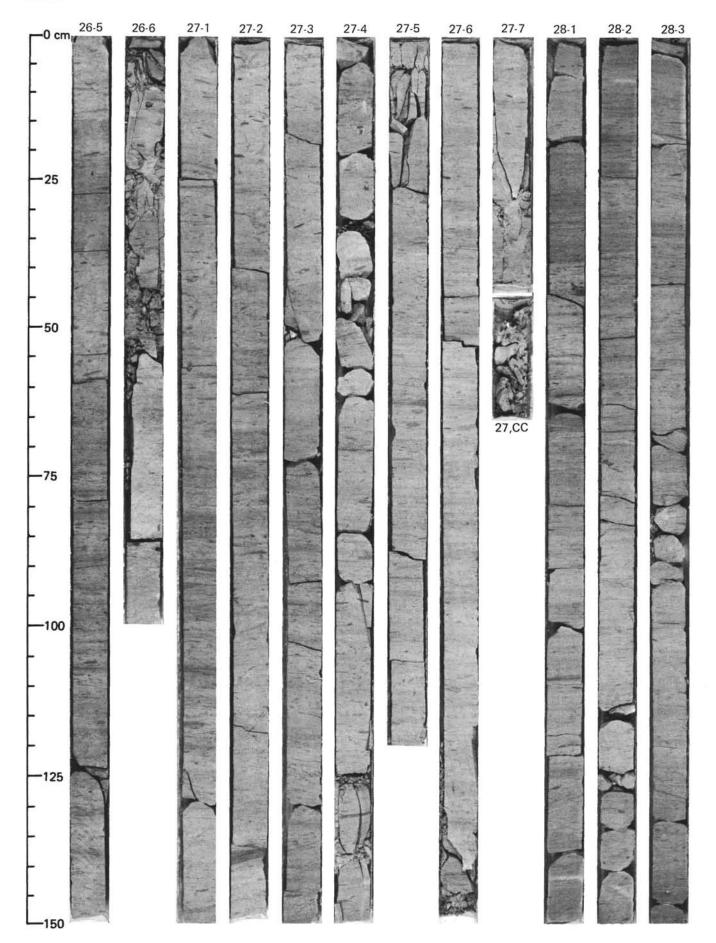

	PHIC			OSS	TER										
TIME - ROCK UNIT	BIOSTRATIGRAPHIC ZONE	FORAMINIFERS	NANNOFOSSILS	RADIOLARIANS	DIATOMS	SECTION	GRAPHIC LITHOLOGY		DRILLING DISTURBANCE SEOMENTARY STRUCTURES SAMPLES		LITHOLOGIC DESCRIPTION				
						1	0.5			*	FORAMINIFER-RICH CLAYEY NANNOFOSSIL LIMESTONE, dark greenink grav (5Y 4/1-N4/N5), with moderate bioturbation of very dark grav (5Y 3/1- N4). Vague lighter intervals (5Y 4.571-N5) in Section 3, 45-130 cm and Section 4, 136 cm-Section 5, 60 cm. Apparent 10-15 ⁶ dip of burrow "lamination" is probably a real dip of bed.				
		G. gansseri Zone				2	2 Texture: Sand Silit E Clay Composition: Quartz Mica	1,100 D Texture: Sand 5 Silt 50 Clay 45 Composition: Quartz 1 Mice 1 Haavy minerals TR Clay 32							
						3	an chandran				Glauconite 2 Pyrite 2 Carbonate unspec. 15 Foraminifiers 15 Calc, nannofossils 25 Radiolarians 2 Sponge splaules 1 Fish remains TR				
Middle Maastrichtian			middle Maatrichtian			4	and confirm		HIHHHHHHHH						
						5	and confirme								
						6	and and and		1 1 1						
						7									

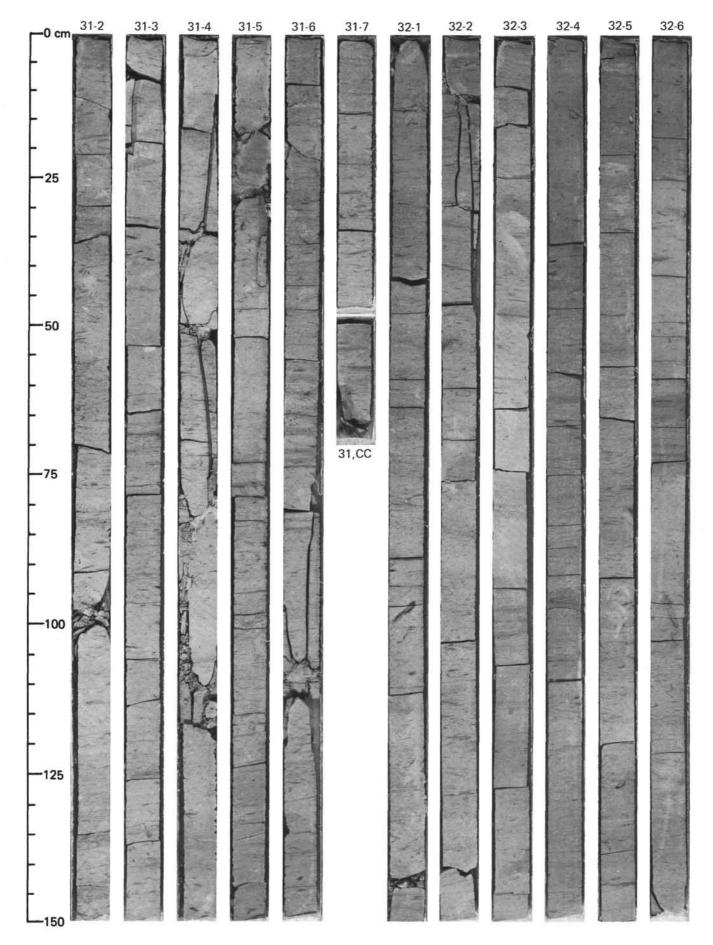


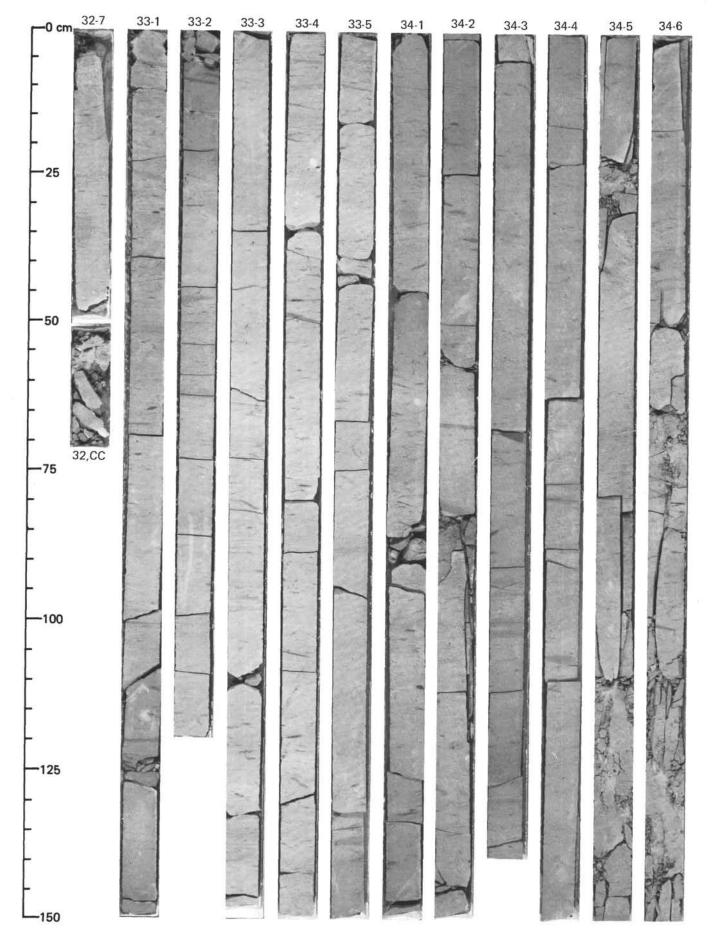


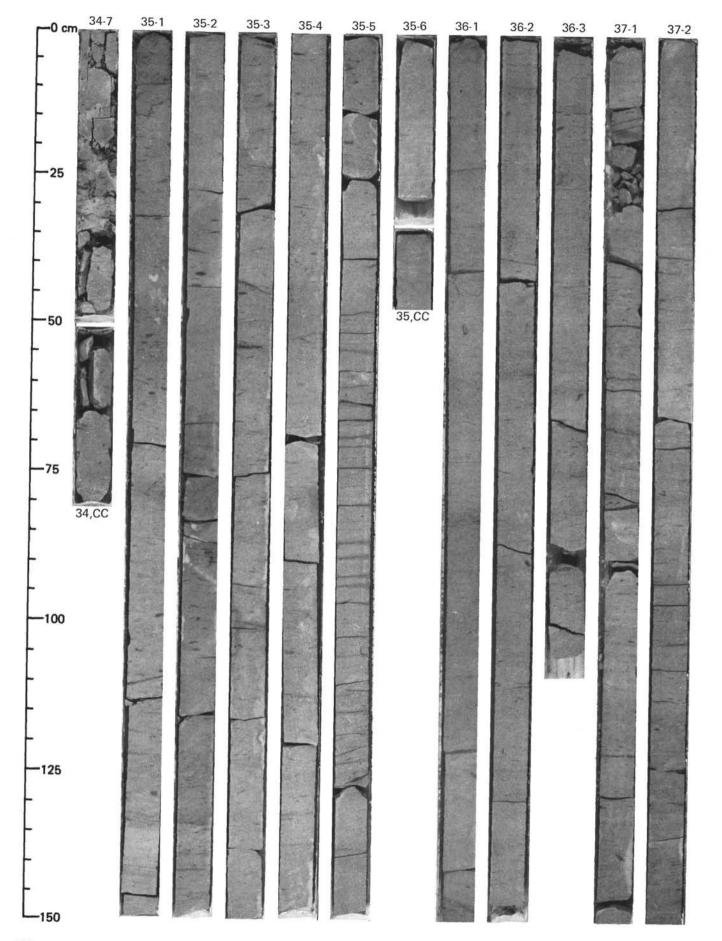

0 cm 10-1	10-2	10-3	10-4	10-5	10-6	10-7	11-1	11-2	11-3	11-4	11-5
	1	T. H			7	~				271	
-				- AL	1		States.		- tur	4.1	T
-	- A=	1	and in	1.50			- 11	Tor.	Bring	8月	M
		L	1-1-1	12	17		-			E	18
	and the			1.00					22		W4
-25	L.	6	1				4-1-2-	-4-		- F	2-1-
-	a the	Tre	162 7.		a Car		- Pilling	The second	ST - T	-2	and a
-	The second		100	Car Al	and the second		A. S.		L. K.	国家	The state
-	1	and the	5	- All							1 AND
-		· ····································		and the second	The second					A	-
-50		E.	2	-	- Fo		-	and a	Ter		4
-	the the	-		1						E	-it
	2 to	and the second se		The second	Et.			1 =			-
	-	and the second s	2	No.	-		the second	22	172	- 2-	1
-	The second	The star	1 the	1.9				-	KIO	and the second	17
75	-	to de	and the second	T.	AF.			T	- [4] - 1	Tit	
75		T			1 the second				CT.	17	in the
	- A		A.C.	100				1			
-	1-1	A Car	A A A	1 - SA	-		1 -	1		-2-1	T
		A.	1	T.	1		12	2	UT.		- 7-
-		1	3				1		The second	- 5- 1	
-100				-			and a set	and the	1	1.4	1-1
-	10.79	27	E E		The second second				A.	1	1
-				and and				and and	1		
-				E			-			-1-	-
-	1	-	3	1			the state	-	N.S.	t D	TEN.
-125	Contra B	No.			1		1			THE	
120					-		- to			1 Trans	
1	40		1	14	En T		1	+ X and A		18	
1 3-	The P			The second				2.2	the state		
	-	And St		- martin	K-			1	the state	ERP Lunit	
-	4	1		1 in	1-				A.A.		
-150	194425	1000	1 - March	1 2000	North of		1.11		OT HISKA	CONSIST.	

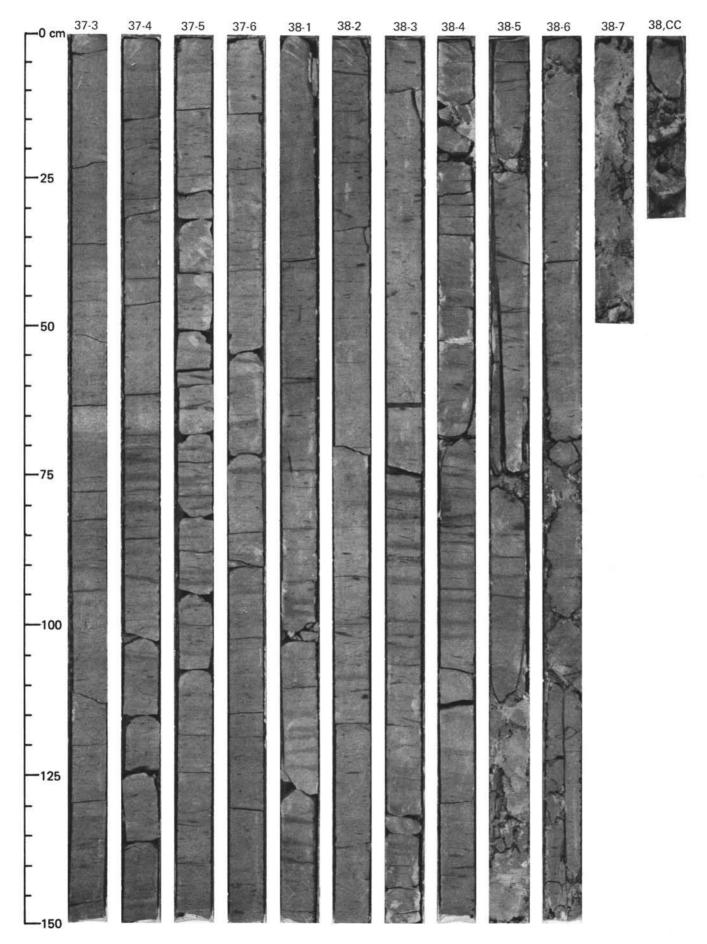

	13-4	13-5	13-6	13-7	14-1	14-2	14-3	14-4	14-5	14-6	14-7	15-1
	and a					24	and the		1-1	14	-	
	No.	5-1	the second	The co	1-1		4	H. Car			A COL	I.
-		12.01		The second			Sin.			1	med.	to and the
	1	3	-30			1			1	1		- And
-25		V-M	e Ja					Service -				-
-			C. A.	- 100					1			
-	Lee.			(196- A	and the second			12				
	the second							(A	1-			r 2
	-					1-			A.			1
-50	-	1	Fil	3 3	A AN	1	13-1		TY 1	Anna		11/2
	de ser		1	2014	See 28	- sette	1		1-1			
	the second	and a	E -	-		100		and and				and the second sec
							No to		1-1-1	1		1
75		No.		and a	Sec. 1	E-	and the		0.1			
-		in the		13,CC	1.478			the second	- y			and a
	and the second s	A)		,		X	-1	-	2	ind		- 12 B
-		V	-			The second				- 1		- C
-							the second		1			2
-100	The second		1.42			1	- The	13	1			and the
$\left \right $	and the second s	No.						-		the l		10 - 10 - 10
-	San and	A.A.			E.		-		12	E. C.		10
		A.								1		and a star
	a the state	i Jo	Fr			and the second s		1	10	and the second		
-125	- Territoria		The second							1		
-	1 Mar					and a	1	11		1		and at a
	Cold and		and and		1	- 1	A	-	27			
		All and				1	A	1		-		
[and and	12-1		and a	1	the second	-		No. A.		

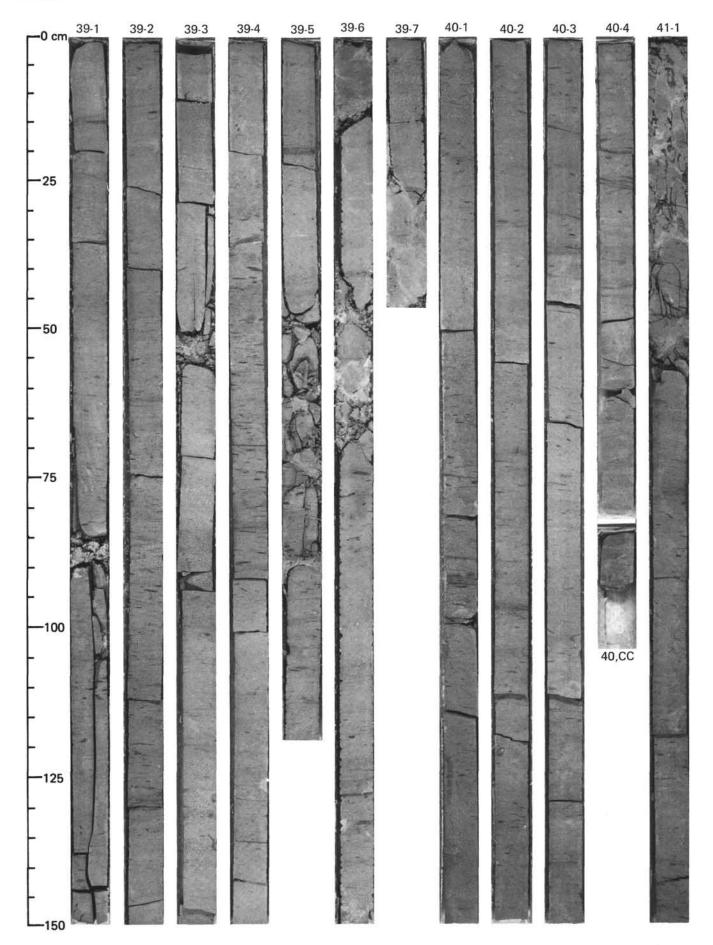


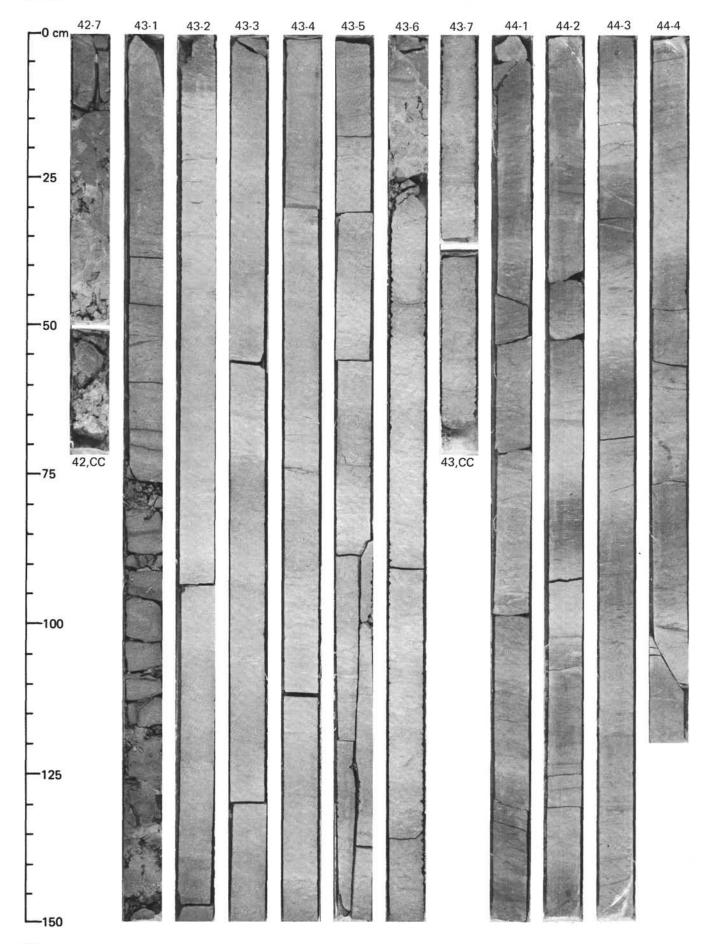

0 cm 21-3	21-4 21	5 21-6 22-1	3 22.4 22.5	22-6 22-7 23-1
a three of the t				Image: Constraint of the second of the se

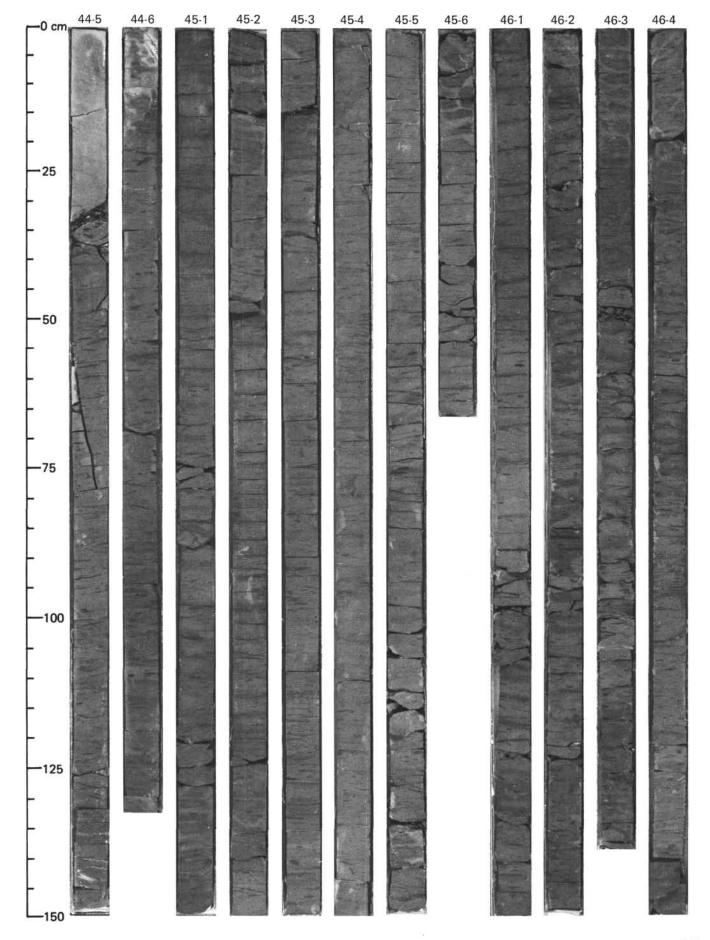


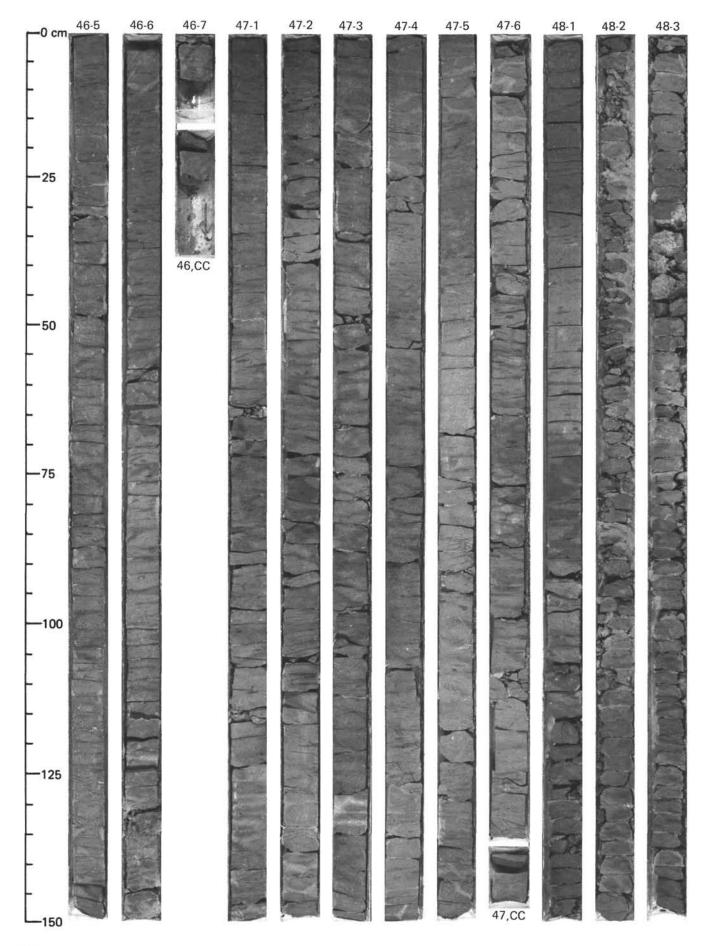

-0 cm 24-7	25-1	25-2	25-3	25-4	25-5	25-6	25-7	26-1	26-2	26-3	26-4
and a	12	T			and a						
		A REAL		in the second	Contraction of the second	12			1		and a
E-19										52	E. C.
	- 2		a start	- Aller			3	and the second			
- 31	and the second										and the second
-25	and the	1	a dest					-	1	KE	
	1 in			The second	The state			ř			
1. 风风	ALC: NO	and the second sec	1			1000				17	
			and the second sec					-		A.	A REAL
14. J			10							~	
-	5	and the		1						-	
-50		L	and the second second	the second					R.C.	26.2	S.C.
-	- The second	and the second			and a	a dan s					
- 12		and the second			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
- 5	1			10-1-1-					STA .		a contra
_				-				and and		Contraction of the second	
75		語い語	0		and the	1			SA	-	
-15	-				-	-			the state		
			- 6.0			ALC: NO.		-			
- 24,CC		and a	and the		20			1		and the second	
-	No.	12.2			1	-				The second	F
-				-		-		Ex.			
-100				and the second		Con C				1	-
_	The Real Property in the				the state			THE ARE	5-3-		100
		The second		1				1 miles	-24		7
Γ		and the second s	の一部で	-						-	
	3			C.E.	A CONTRACTOR	1 million		-		e min	A CRAME
F		The state									2 A
-125	- Lose	- 9 - in	Sec.					The .	Canada a		
-		ALLA C	The second						and the second		
-	-		- All			-		and the second s			
L		The second		3.0				And the second second	-		
	e		12		-						
Γ	Beat		-		ton at	The second				- Partie	1
L_150						R. Herbard			Provide States	Constraints	

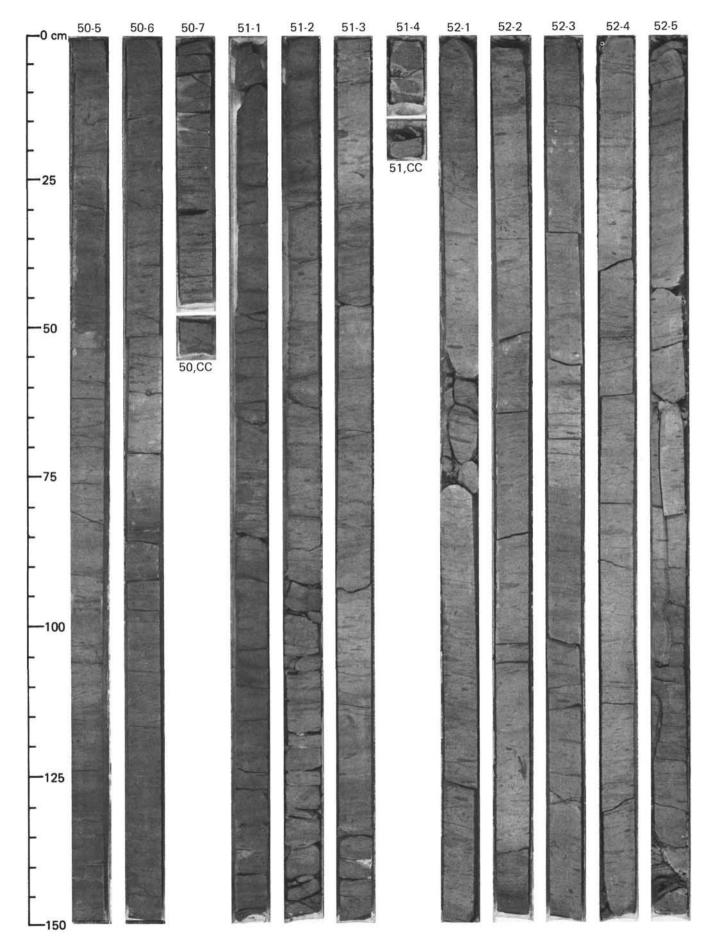


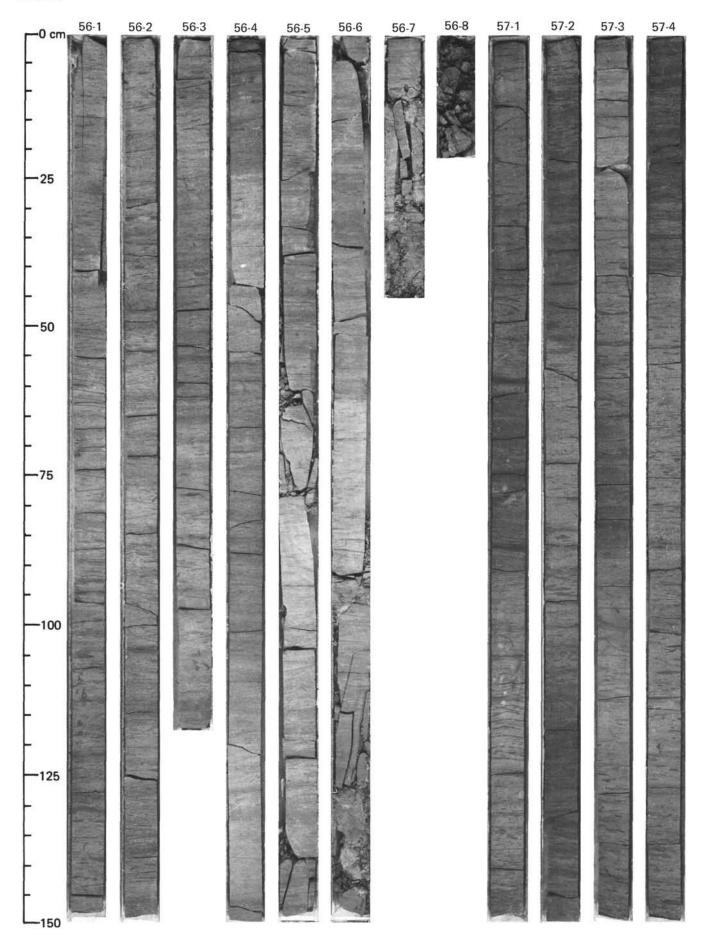

0 cm 28-4	29-1	29-2	29-3	29-4	29-5	30-1	30-2	30-3	30-4	30,CC	31-1
	Z			2-1	1				F	2	17
			~		-				A. C.		1
	A	1	in the second	and the second s						6	
_			No.					42		C.	
-25							0		2		
	5			ALC: NO	2				the same		-
-	X		3								a state
- 2	Carlos Martin										
-									-		State 1
-50			and the second	-							-
-							1		No.		
-				1	and the second						
-		in the second se				Contraction of the second		-lieve			and
-		- A			and and a second				àc		
-75		ALC: N				and the second	X				A STATE
-		X			124	Fucies	and the second		5		and and
-			E Carl								-
- 28,CC	T	5		and the second							The second se
-									1		
-100									N		-
ł				c					5		
-									34		
+			-0	and a	Z	~			F. L.		
+	D	No.							- 7.4		YY
-125											
-									B ender sold		
-											
F	0						15.00	Co			2
F					the second			E			A
L_150		to Share					2	NA.			



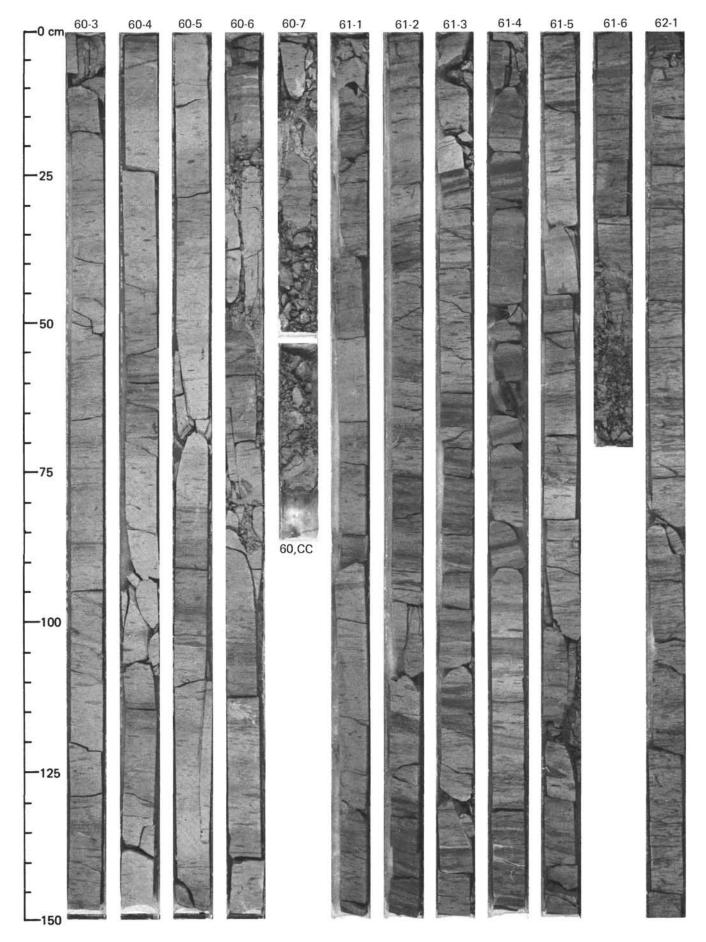




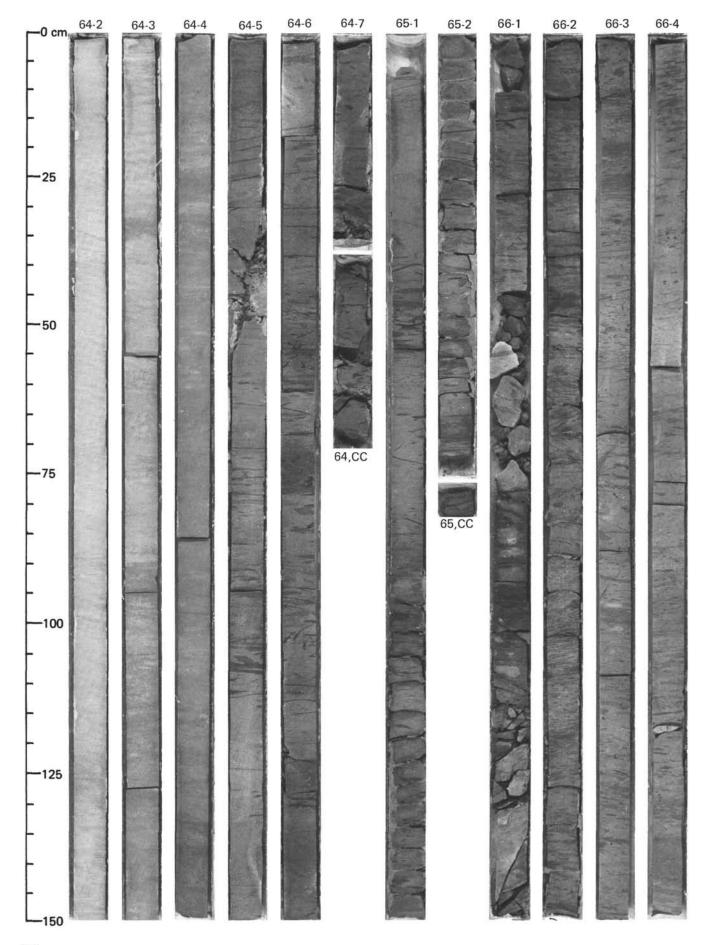

	41-2	41-3	41-4	41-5	41-6	41,CC	42-1	42-2	42-3	42-4	42-5	42-6
-								e -				
-		-									2	- 1
							N.					
-25					and a							
-						Sec.					-	
t									1			
								and the				
-50					1							
							1	No. 1				
		K									and the second	
-												
-75								-		A STATE		
t												
-	2	all.										
+										Shark -		
-100												
		LAN A										
-										M		
+		No.	A					111				
-125								T				
-								-				- Port
-												F
L_150 ¹⁰	Carried Street								2		e and	

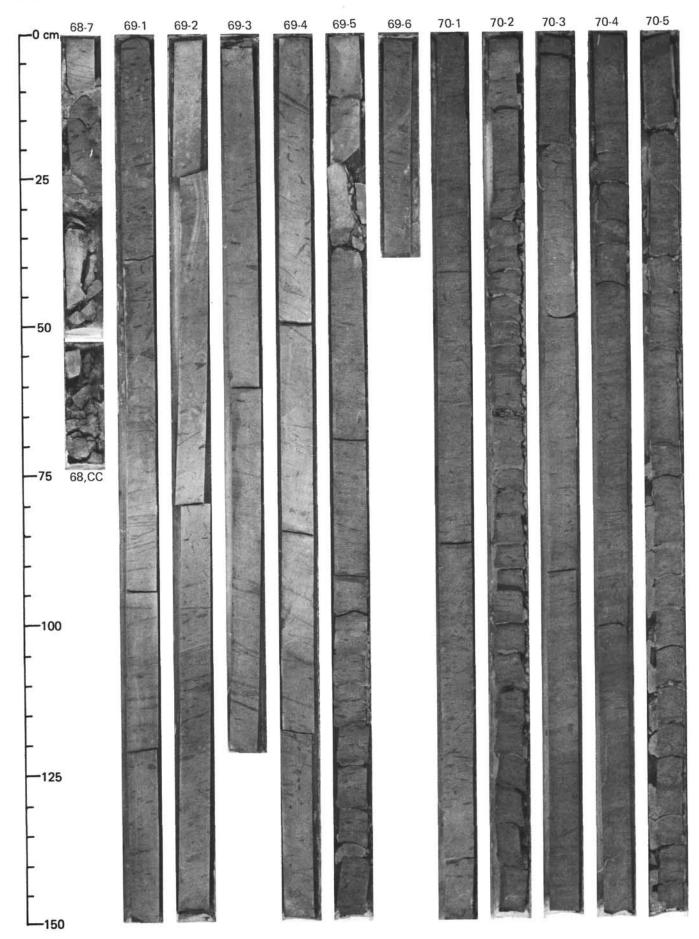


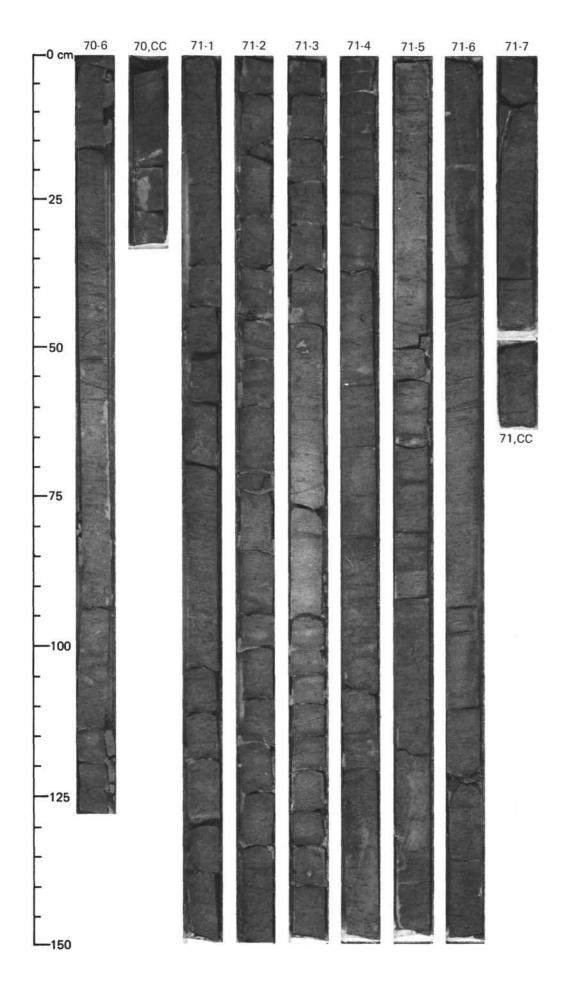
-0 cm 48-4	48-5	49-1	49-2	49-3	49-4	49-5	49-6	50-1	50-2	50-3	50-4
-	120		-								
-	r		-		in the		6				
			1		10 10						
-25		1-			A	1			10	2	
-	a la				1 C	L					
	Carl Carl		2	1 .	16			A Card			
	10-10		-	T	S	No.	The		- ac		
-50	1-1				172	1				5	
-				Y	LIF.						
			-	h	F						
-	48,CC		~	4	-PA						
-75						1			2		
		國	4	NA							
		1									
-		1	2 and	The state	1						
-100			A.	ALE						10	And A
			K			「「「					
0				KA I				7.			
-125		H					MAR				
-			-	-	11.19						AL IN
1000		1			A LINE			and and	and the second	-	K
		-	-	A A							No. of Concession, Name
150		1 and	and a second	-6-					1		



0 cm 52-6	52-7	53-1	53-2	54-1	54,CC	55-1	55-2	55-3	55-4	55-5	55-6




-0 cm 57-5	57-6	58	59-1	59-2	59-3	59-4	59-5	59-6	59-7	60-1	60-2
-25 -25		NO RECOVERY							59,00		



-0 cm 62-2	62-3	62-4	62-5	62-6	63-1	63-2	63-3	63-4	63-5	63-6	64-1
	1	1						201		No. of Lot, No.	
				2	- And		a I	1	1		
				-2		-		KET			
	10	and a	1. 3								
	14		-	19	A CONTRACTOR	the state					-10h - 1-
-25	RA	1	1	- Aller			X			55	
-		0.00	and the second		-7	2	- N			N	
-			N=		and the	24	-			3	
-	and the				- Contract					f	
-	A.	P.L.			17.		n		n		i de
-50	12	and the second s			*	5	X	E	Part of the		
-	1.0	X	Service State	V		Pro-			T	1	7
-						I	2			4	2
-		The second	N.			No.					
-		-		IF I		14	A.	4	100		
75					2		T	1			
10000			1 20-		R						
	-				H-						
	-	- La	T				3	-			
			The P		5.	I	-			*	and the second
-	~	-		1		F		The second		63,CC	
-100		and the second s	1				11				
-	No. of Concession, Name	and a	3-	-							
-	The second second		a final	24							
-	20		n		it i	N.	al a				
-	2 C			A	1			~			and the second
-125		-			1		A				
-	-	- 3					762	Carry Carry			
_		100			1			E			
		The second second		2-31				-			
-	-					2	ALL ALL				
	A NO	The second second									
150											

0 cm 66,CC	67-1	67-2	67-3	67-4	67-5	68-1	68-2	68-3	68-4	68-5	68-6
	54						-				
-					×		-				
-				6					1		-
-	The second							L		in the second se	
-25	1			5				Y			Sal -
Ī		A straight									2
[A STATE							-1	2	A BE	
-			and a		T				27		
-50		-0	0	- 1	E	R		[]	1	-	E
F				1 A				- A			
F	The second				1			× 1	1		-
-				ALL ALL	X	The second		N			
				4			and the second	5	-		
75	1			*				A			
[A A A A A A A A A A A A A A A A A A A	A STATE	The second		3	
			1	4		No.	1				
-									2mil		
-100				2 - 1							
F				-			14			Ĩ	
\mathbf{F}		AT IS							P	1	
-				1			6		5	67	
-										1	-
-125			$\geq r$	- A				2		-	1
							5	-			
								F			111
Ļ				A MARTIN							-
150	-								1ª Con		

